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An algorithm is described for the automated 
registration of remotely sensed  imagery that 
registers 6000 x 6000-pixel  images in 8-18 
minutes on an IBM RlSC System/6000@ 
workstation. The resulting registration is 
accurate to the subpixel level even in the 
presence of  noise and large areas of change in 
the images. It is shown that the registration- 
mapping function  for parallel projections has 
the  form F(x, y )  = A(x, y )  + h(x, y)e,  where 
A(x, y )  is an affine transformation, h(x, y )  is a 
function that depends on the topographic 
heights,  and e is a vector that defines the 
epipolar lines.  The algorithm determines the 
parameters of this equation using only the 
image  data, without knowledge of the viewing 
orientations or scene point coordinates. The 
search for match points is then a  one- 
dimensional search along the epipolar lines, 
which greatly increases the speed and 
accuracy of  the registration. 

Introduction 
Image registration is  the process of geometrically aligning 
two images of the same scene. It has applications in such 
diverse areas as robot vision [l], guidance systems [2], 
motion detection [3], medical  imaging [4], and 
manufacturing [5]. It also has important applications in the 
analysis of remotely sensed imagery, such as change 
detection, topographic mapping, and the alignment of 
images  with  maps. (See for example [6] or [7].) 

Although  most current methods of registering remotely 
sensed imagery require human involvement, there is a 
need for automated techniques. According to [8], “On the 
average, an up-to-date Landsat image can be obtained for 
most areas on the Earth every 16 days. Since any newly 
acquired Landsat image needs to be registered with other 
images or maps before it  can  be  useful, there is a great 
need to automate this process.” Another author states, 
“Manual handling of data for change detection . . . is a 
formidable task . . . . There is a definite  need for a change 
detector which  will automatically correlate and compare 
two sets of imagery taken of the same area at different 
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occlusion distortions. The second assumption, in which 
scene points are assumed to be projected to the imaging 
plane in parallel lines as shown in Figure 1, is valid when 
the imaging sensor is far from the scene and has a narrow 
field of view. 

The  algorithm uses two-dimensional cross-correlation to 
identify pairs of corresponding points in the images. This 
technique is accurate and works well  in the presence of 
noise and varying conditions of illumination. Since it does 
not attempt to identify features, it is applicable to many 
types of images  from satellites such as Landsat, SPOT, 
and ERS-1. 

The innovative feature of the algorithm  is its ability to 
exploit the epipolar constraint to increase the speed and 
accuracy of the registration. The epipolar constraint is 

F parallel projection imaging geometry. 
~. 

used in the registration of stereo imagery, where the 
orientation of the sensors is known a priori or can be 
derived  from  knowledge of the three-dimensional 

times  and display the changes and their locations to the 
interpreter” [9].  Although  much work has been done on 
automated registration, most relevant techniques apply 
only to simplistic images, and more are required for 
solving  real-world problems [lo]. Even for the 
comprehensive image analysis system described in [ll], 
“. . . manual selection of control points is  still the best 
method for scene registration.” 

This paper describes an  algorithm that has been 
developed for the registration of remotely sensed imagery 
without human intervention. The algorithm has the 
following properties: 

It has subpixel accuracy, which is necessary for 
applications such as change detection [12, 131. 
It registers 6000 X 6000-pixel  images  in  only minutes 
on an  IBM RISC System/6000@ workstation. 
It is reliable, producing accurate image registration in the 
presence of  image noise, topographic height variation, 
and  large areas of change. 
It uses only the data contained in the images. It does not 
require knowledge of  imaging sensor orientations or 
three-dimensional scene point coordinates, for example. 

The  algorithm  is based on  two  main assumptions about the 
imagery: 

coordinates of a few scene points [3, 14, 151. When the 
sensor orientations are unknown and no three-dimensional 
information is available, the principle cannot in general be 
used. However, for the special case in which the imaging 
geometry is a parallel projection, we demonstrate that the 
data necessary for  exploiting the epipolar constraint can be 
derived  from the image data without knowledge of the 
viewing orientations or scene point coordinates. 

After briefly  outlining the main steps of  image 
registration, we describe the cross-correlation technique 
used for identifying pairs of corresponding points. The 
explicit  form of the registration-mapping function  is then 
derived, which sheds light  on the image-registration 
problem. We then present the main steps of the 
registration algorithm,  explaining  how the orientation of 
the epipolar lines is derived and exploited to increase the 
speed and accuracy of the registration. The implementation 
results and plans for further work are presented, followed 
by the Appendix, in which  two applications of registered 
imagery are described: change detection and 
interferometry. 

Image  registration 
There are many approaches to solving the problem of 
image registration. One approach seeks to minimize the 
mean square difference between the pixel intensity values 
in a pair of images  through the use of gradients [16]. Most 
approaches, however, consist of the following three steps: 

The viewing orientations differ by no  more than two or 1. Identify a  set of match points, which are pairs of points 
three degrees. that correspond to the same point in the scene. (Match 
The  imaging geometry is a parallel projection. points are also referred to as correspondingpoints, 

The  first assumption is  valid for image pairs used  for various authors. 
change detection analysis, since large separation angles 2. Compute the registration-mappingfunction, which  is 

control points, conjugate points, and tie points by 

158 cause false changes in the images due to perspective and the function that assigns to each point (x, y )  in the first 
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3. 

image its  corresponding point F(x, y )  in the  second 
image. Note  that if [(x, y ) ,  (u ,  v)] is a match point, 
then (u,  v) = F(x, y ) .  
Resample  the  second image using the mapping  function 
F(x, y )  to bring  it into alignment  with  the first image. 

Traditional  registration techniques model the 
registration-mapping  function as a  first- or second-degree 
polynomial whose coefficients are  computed  by a  least- 
squares fit to the match points. However, globally defined 
polynomials cannot  accurately model the local distortions 
in the mapping  function  which  result  from topographic 
height variation [17, 181. More general  functions, such  as 
locally defined polynomials or splines, are  necessary. 

The  most difficult step of image  registration is the 
accurate identification of match  points. The traditional 
approach  uses human assistance  to identify these points. 
Automated  methods follow one of two main approaches 
[lo, 111. Area-based approaches  use  correlation  techniques 
to  match  the pixel intensity  patterns of one image with 
those of the  second image. Feature-based approaches  seek 
to identify features in the intensity patterns,  such  as edges, 
corners, line intersections, and closed  boundary regions. 
Feature-based  methods  are  faster  than  area-based  methods 
[lo], but  they tend to  be suited for  only special types of 
images. Area-based methods, on  the  other hand,  tend to  be 
more  robust, but they fail for images  taken  from  widely 
separated viewing  angles,  since perspective  and occlusion 
distortions  degrade  the  correlations [3, 111. 

Cross-correlation 
Since  the registration algorithm described in this  paper 
is designed  for  images taken  from similar  viewing 
orientations (where perspective and  occlusion distortions 
are minimal), and  since  robustness and  applicability to 
many  types of imagery are  important  requirements, an 
area-based method based on two-dimensional cross- 
correlation is used for  identifying  match  points. The high 
computational  cost  is minimized through  the use of several 
constraints, including the epipolar constraint described in a 
later section. 

The  cross-correlation  approach  assumes  that  the 
complicated  transformation that  relates two images of the 
same  scene is locally composed of plane  translations. 
Small templates or patches from one image appear  to be 
merely displaced in the  second image without perspective 
or rotational distortions. While this assumption is not 
strictly  true, it is nonetheless a  valid  approximation for 
images  which have undergone only a small change in 
viewing  orientation. For example, if an image undergoes 
a  small  planar  rotation,  small templates from the top and 
bottom  edges of the image appear  to shift  horizontally,  and 
templates from the right and  left edges  appear  to shift 
vertically. 

is extracted from the first image, centered  at  some point 
(a,  b) ,  and a  larger M X "pixel template f ,(i,  j ) is 
extracted from  the second,  centered  at  some point (c, d ) .  
The  value N should be large enough to provide  good 
correlation peaks, but not so large that  the  templates 
contain significant rotational distortions.  The  value M 
should  be  chosen so that (M - N) /2  is the maximum 
anticipated  displacement of the two templates. The two- 
dimensional cross-correlation function R(u ,  v) is then 
defined by 

N-1 N-l 

~ ( u ,  v) = f , ~ ,  j )M + u, j + 
i - 0  ,=0 

for 0 I u ,  v 5 M - N .  The  peak of the correlation, 
which  may be  determined with  subpixel accuracy 
through quadratic interpolation of the correlation values, 
determines  the  actual  match point. If the  peak  occurs  at 
the point (u ,  v), the  match point is 

[ (a ,  b) ,  (C + u - (M - M/2, d t ~i - (M - N)/2)]. (2) 

The correlation peak is more pronounced if the  means of 
the pixel  intensities of the  templates  are zero. This  can  be 
accomplished by  subtracting  the  means  before calculating 

The  correlations R(u ,  v) should not  be normalized, as 
in [19]. Featureless image regions yield high normalized 
correlations, but the  peaks  are  broad and  poorly defined. 
A better  measure of the correlation is the  sharpness of a 
peak, which  can be  measured quickly,  albeit  roughly, as 
follows. Let p be  the height of the  peak,  and let q be  the 
maximum height of the  correlation  surface  at a k e d  
distance of 2 pixels  from the location of the peak.  Then 
the  ratio q/p  is a measure of the  peak  sharpness,  with 0 
indicating  an ideal peak  and 1 indicating no peak at all. If 
this ratio  exceeds a  preassigned  threshold (e.g., 0.5), the 
match point should be rejected as  unreliable. 

R(u,  v). 

Accelerating  the  cross-correlation 
computations 
FFTs may  be used to  accelerate  the calculation of the 
cross-correlations.  The first templatef,(i, j ) must  be 
placed in an M X "pixel array and zero-padded  to avoid 
end effects. Let F,(a ,  b )  and F,(a, b )  denote  the two- 
dimensional Fourier  transforms of f,(i, j ) padded and 

f 2 ( z ,  j ), respectively. Then  the  cross-correlation function 
R ( u ,  v) is the  inverse  Fourier transform of the  product 
F , ( a ,  b)FI(a,  b ) ,  where * denotes  the  complex conjugate. 
The correlation  function thus  can  be  computed using three 
two-dimensional FFTs of size M x M .  

There  are  two  ways  to  further  reduce  the time spent 
computing the cross-correlations. The first method is to 159 

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 



minimize the number of match points that must  be 
identified. This is accomplished with the epipolar 
constraint, as described in the next section. The second 
method is to keep the search distance (M - N)/2  as small 
as possible. 

One way to minimize the search distance is to perform a 
multistage registration in two or more stages, in which a 
coarse registration is  first  performed on the images  with a 
low resolution [20]. Since the low-resolution images are 
smaller, the search distances are smaller as well.  By  using 
the results of this coarse registration, the search distances 
for match points in the higher-resolution images  can be 
constrained. 

A second way to reduce the search distances, which  is 
used by the current algorithm, is to use the first  few match 
points that are identified to constrain the search for further 
match points. As more match points are found, they define 
an increasingly accurate registration of the image, which 
predicts the locations of further match points. This  method 
is  similar to the multistage approach, but it does not 
require the images to be resampled to a lower resolution. 

Epipolar  constraint 
The image registration algorithm presented here adopts the 
epipolar  constraint principle  from the analysis of stereo 
imagery. A stereo imaging system consists of a pair of 
optical sensors with their viewing axes mutually  parallel 
and separated by a horizontal distance known as the 
baseline [3, 101. The viewing axes of the sensors are 
perpendicular to the baseline, and the image scanlines are 
parallel to the baseline. Since the displacement between 
the sensors is purely horizontal, the positions of 
corresponding points in the two images  differ only in 
horizontal displacement. The search for match points is 
thus reduced to a one-dimensional search along the 
horizontal lines, referred to as the epipolur  lines. Human 
binocular vision is an example of a stereo imaging system, 
and the human brain registers the disparate images  from 
the two eyes using the epipolar constraint [21]. 

If the viewing axes of the imaging sensors are not 
parallel, the match points are still displaced along epipolar 
lines, although the lines may no longer be parallel. For 
parallel-projected images, however, the epipolar lines are 
parallel to one another for any relative orientation of the 
sensors. Expressed in mathematical terms, the form of the 
registration mapping function for parallel-projected images 
is 

F(x, Y )  = A@,  Y )  + h(x, y)e, (3) 

orientations of the two imaging planes of the sensor 
relative to the scene, while the function h ( x ,  y )  depends 
on the topographic heights of the points of the scene. 

Equation (3) can be derived as follows. Let f and g be 
the vector-valued functions which  define the two images of 
the scene, in the sense that a point (u ,  v ,  w) in the scene 
maps to the point f(u, v ,  w) in the first  image  and to the 
point g(u, v ,  w) in the second image. Since the imaging 
sensors are assumed to be parallel projections, they can 
be  modeled as coordinate systems in  which points are 
projected to the X Y  plane by the natural projection 
p ( x ,   y ,  z )  = ( x ,  y ) .  After a fixed coordinate system is 
erected at the scene, the orientation and  position of the 
first sensor can be given by a coordinate transformation 
matrix pll a12 aI3] 

and a translation vector (a,,, a2,, u3,) '. The  imaging 
function f thus has the following  form: 

If we define the matrix S by 

and the vectors s and a by 

the function f can  be written in the form 

qu, v ,  w) = S[:] +- ws + a. 

Similarly, the second imaging function g can be written in 
the form 

g(u, v ,  w )  = T [  :] + wt + b, (9) 

where T is a 2 X 2 matrix and t and b are vectors. 
whereA is an  affine transformation (a 2 X 2 matrix Let h(x ,  y )  be the scalar-valued function which  assigns 
transformation followed by a translation), e is a fixed to each point ( x ,  y )  in the first  image the z-coordinate of 
vector, and h(x ,  y )  is a scalar-valued function. The vector the (non-occluded) point in the scene which maps to 
e determines the direction of the epipolar lines.  The  affine ( x ,  y )  under the function f. Note that h(x ,  y )  is not the 

160 transformationA and the epipolar vector e depend on the topographic height function; the domain of h ( x ,  y )  is the 
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image plane,  while the domain of the  topographic 
height function is the  scene plane.  Additionally,  let 
( x ,   y )  be a  point in the first  image, and let (u,  v ,  w) 
be  the non-occluded  point in the  scene which is mapped 
to ( x ,   y )  by  the function f. Since f(u, v ,  w) = ( x ,  y )  
and g(u, v ,  w) = F(x, y ) ,  the  function F(x, y )  can  be 
determined  by solving  for the  vector ( u ,  v )  in Equation (8) 
and  substituting  the resulting expression  into  Equation (9). 
Solving for this vector in Equation (8) gives 

["I = S"f(u, v ,  w) - WS"S - S"a. (10) 

Substituting this expression  into  Equation (9) yields 

g(u, v ,  w) = TS"f(u, v ,  w) t (b - TS"a) 

t w(t - TS"S). (11) 

Since w = h(x ,  y ) ,  Equation (11) is equivalent to 
Equation (3), where A ( x ,  y )  is the affine transformation 

A(x,  y )  = TS" + (b - TS"a), 

and e is the epipolar vector t - TS"s. 
The preceding  derivation  required the matrix S to  be 

invertible. We now investigate  the  conditions under which 
this is the  case.  Since  the matrix (4) is a coordinate 
transformation, its rows  are  orthonormal. In particular, the 
third row  vector is the  vector  cross  product of the first two 
rows, which implies u33 = ul1uZ2 - ul2uZ1. The right-hand 
side of this  identity is nonzero if and  only if S" exists. 
Note  that  the third row  vector of (4) is the line-of-sight 
vector  from  the  scene  to  the imaging sensor relative to  the 
scene  coordinate  system.  Thus,  the  matrix S is invertible 
if and  only if this line-of-sight vector is not horizontal 
relative to  the scene-a quite reasonable  assumption for 
remotely  sensed imagery! 

Equation (3) sheds light on the registration  problem 
and  completely  characterizes  the local distortions in 
registration caused  by  topographic height variation. 
Suppose, for  example, the  scene is  planar. Then the height 
function h ( x ,   y )  is constant,  and  the registration-mapping 
function is an affine transformation. The images can  be 
registered by identifying at least three match points  and 
performing  a least-squares fit to  the coefficients of the 
affine transformation. On the  other hand, the local 
distortions  due  to height variation in nonplanar  scenes  are 
merely displacements along  parallel  lines. Furthermore, 
these  displacements  are  directly  proportional  to  the 
heights. Figures 2(a) and 2(b) show two images of a scene 
composed of a vertical cylinder on a  planar square. 
Figure 2(c) shows  the result of applying  an affine 
transformation to  the  second image to register the planar 
squares. Figure 2(d) shows this  transformed image 

[:I (12) 

overlaid on the first image. The epipolar lines, which are 
shown  as  heavy  black lines  in  Figure  2(a), pass through 
corresponding  points on the cylinder  and show  that  the 
displacements of the points  along the lines are proportional 
to their  heights on  the cylinder. 

Determination of the  registration-mapping 
function 
The algorithm described in this paper  determines  the 
registration-mapping  function F in four  steps.  The first step 
determines  the affine transformation A ( x ,   y ) ,  and  the 
second  step  determines  the  orientation of the epipolar 
vector e .  The third step  determines  the height function 
h(x ,  y)lel on a grid of points, and  the fourth step fits a 
surface  to  these grid points  to  determine  the function 
F ( x ,   y ) .  The following paragraphs explain each  step in 
more detail. 

Step I A set of match points is identified using the 
cross-correlation technique described previously, and  an 
iterative least-squares fit of the coefficients of the affine 
transformation A ( x ,  y )  to  these  points is performed. Each 
iteration  eliminates the match  point with  the largest fitting 
error until the maximum fitting error of the remaining 
match points falls below  a  preassigned  threshold. The 
match  points  which  remain correspond  to  points in the 
scene which lie in the  same plane, thus making  possible 
the calculation of A ( x ,   y ) .  

Step 2 Each  match point [ ( x ,  y ) ,  (u ,  a ) ]  that  was 
eliminated by  the  least-squares iteration of Step 1 is 
replaced  with the  vector (u ,  v )  - A ( x ,  y ) .  A least-squares 
fit of these  vectors  to a line passing  through the origin is 
then performed,  yielding the direction of the epipolar 
vector e .  [The  magnitude of e ,  which is not  necessary  for 
the determination of F ( x ,   y ) ,  cannot  be  determined  unless 
the orientation of the image planes  relative to  the  scene is 
explicitly  known.] 

Step 3 At each point ( x ,  y )  of a  grid conceptually placed 
over  the first image, the cross-correlation surface is 
computed  for  templates  centered  at ( x ,  y )  in the first 
image andA(x ,  y )  in the  second image. The displacement 
h ( x ,  y)lel is then determined by  searching for  a peak along 
the epipolar line, whose direction was determined in Step 
2.  To  further  reduce  the probability of obtaining  a  false 
match point, a smoothness  constraint is  enforced  which 
does  not allow the  absolute  values of the  second 
derivatives of the function h(x ,  y)lel to  exceed a 
preassigned threshold. 

Step 4 The definition of the scalar-valued  function 
h ( x ,  y)jel is extended  to  the  entire image by interpolating  a 
surface through the  displacements determined in Step 3. 161 
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(a) An image of a vertical cylinder. (b) A second image of the cylinder from a different viewing angle. (c) The second image after 
application of  an affine  transformation. (d) The  transformed  image  overlaid  on  the  first image, along  with  the  epipolar  lines. 

(The current implementation uses Hermite polynomials 
[22], although other interpolating functions could be used 
instead.) This defines the registration-mapping function 
F(x9 Y 1 

All registration algorithms that are based on match point 
identification  must deal with the problem of false match 
points, which degrade the registration accuracy. (See [14], 
for example.) The algorithm described in this paper 
eliminates false match points in Steps 1 and 2 through the 
use of least-squares techniques. False match points are 
eliminated in Step 3 by application of the epipolar and 
smoothness constraints. Figure 3 illustrates the 

162 effectiveness of the epipolar constraint. A 30 x 30-pixel 

correlation surface, which has been smoothed and scaled 
by an exponential function to accentuate the peaks, is 
shown with the epipolar line overlaid in white. The peak 
over which this line passes corresponds to the true match 
point, but there are taller peaks which do not lie on the 
line. Without the epipolar constraint, the match point 
identification  algorithm  would choose one of these taller 
peaks, thereby yielding a false match point. 

When the viewing angles are  very close together, or 
when there is little height variation in the scene, the 
contribution of the second term h(x,  y ) e  to the 
registration-mapping function is negligible. This condition 
is  reflected  in there being only a few match points 
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eliminated by the iteration of Step 1, or not  enough vectors 
to perform a reliable least-squares fit  in Step 2, rendering 
Step 3 unnecessary. This results in a much shorter 
registration time. 

Implementation 
The registration algorithm has been coded in C on an  IBM 
RISC System/6000@  Model  560 workstation. The FFTs 
were computed using the IBM Engineering and  Scientific 
Subroutine Library (ESSL) [23]. For a pair of  6000 x 6000- 
pixel  images, 900 cross-correlations were computed 
for the least-squares iteration of Step 1, and 3600 were 
computed in Step 3. The cross-correlation template sizes 
were 60 X 60 pixels, the search distance was 30 pixels, 
and the peak sharpness threshold was 0.5. 

The 6000 X 6000-pixel  images were registered in less 
than  eight  minutes  when  the scenes were planar or when 
the viewing  angles were sufficiently close together. 
Otherwise, the registration required 18 minutes. These 
times included four minutes for the image-resampling step. 
The registration accuracy was estimated to be within 0.5 
pixel. This estimate was obtained by shifting the registered 
images various fractions of a pixel  until the change 
detection images (see the Appendix) were noticeably 
degraded. 

Before the epipolar constraint was implemented, 
the registration algorithm  fitted the match points to 
two-dimensional Hermite polynomials. To achieve a 
satisfactory level of registration accuracy, it was necessary 
to identify a very large  number of match points (about 
16-25 times as many as required by the later algorithm 
using the epipolar constraint). This resulted in registration 
times of the order of hours rather than minutes, even for 
planar scenes. Implementation of the epipolar constraint 
has resulted in a dramatic decrease in processing time. 

Current  and  further  work 
Current work is aimed at implementing the algorithm 
on a parallel processor computer. The goal is to yield 
registration times of less than one minute.  Most of the time 
is spent computing the cross-correlation surfaces, which 
could be computed in  parallel  [24, 251. 

Further work will be aimed at more carefully measuring 
the registration accuracy, since at least one study suggests 
that accuracies of 0.2 pixel or less are required for 
effective change detection for certain types of scenes [13]. 
?he assumption of similar  viewing  angles  will also be 
relaxed by implementing a correction for perspective 
distortion and rotation in the correlation process, as 
suggested in  [3] and [14]. 

Summary 
A complete algorithm for the automated registration 
of remotely sensed imagery has been presented. This 

I 1 A cross-correlation surface with an epipolar line overlaid on it. 

algorithm  is relatively fast, reliable,  and accurate to the 
subpixel level, even for large, noisy  images. It uses the 
epipolar constraint to dramatically improve its speed and 
accuracy. The innovative feature of the algorithm  is its 
ability to derive the data necessary for exploiting the 
epipolar constraint solely from the image data. Knowledge 
of viewing orientations and three-dimensional scene point 
coordinates is not needed. 

The modeling equation (3) used by the algorithm greatly 
clarifies the image-registration problem. It assumes only 
that the imaging geometry is a parallel projection, a valid 
assumption for many types of remotely sensed imagery. 
It presupposes no restrictions on the relative viewing 
orientations (although the assumption of similar  viewing 
orientations is required by the cross-correlation method for 
identifying match points), and it  can  be used with  almost 
any method of match point  identification. 

Appendix 
This appendix briefly describes two applications of 
registered imagery: change detection and interferometry. 

Change detection 
Change detection indicates regions of the scene which 
have changed between the imaging  times. It is used for 
assessing and  monitoring such processes as urban 
development [26] and changes in vegetation [9, 27,  281. 
There are a number of techniques for detecting the 
differences between two registered images, the simplest of 
which subtracts the images  pixel by pixel [12]. Normalized 
cross-correlation is another technique which is a natural 
measure of change for images registered by the algorithm 163 
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Sensor 1 

A Scene 

B 

Sensor 2 D 

Topographic  mapping by means of interferometry 

described in this paper. At each pixel the two-dimensional 
normalized cross-correlation coefficient of small templates 
from the two images  is computed. The values of this 
coefficient are scaled to pixel intensity values to produce 
a change-detection image which can be overlaid on the 
registered images.  High  pixel intensities represent regions 
of little or no change, while  low intensities represent 
regions that have changed. 

Inter$erometry 
Topographic mapping constructs a three-dimensional 
model of the scene using the disparity information 
contained in a pair of registered images.  The traditional 
method of topographic mapping  is stereo imaging, which 
derives the three-dimensional information  from the 
displacements of match points along the epipolar lines. 
A more accurate method of topographic mapping  is 
interjeometry [29-351, which derives the three- 
dimensional  information  from the phase components of 
complex-valued imaging data. The phase components 
measure the distances from the sensor to the points of the 
scene modulo the wavelength A of the imaging  signal.  The 
differences in phase between pairs of corresponding points 
in the registered images create  a pattern of interference 
fringes which indicates the topographic heights.  The 
similar  triangles of Figure 4 show that the relationship 
between the height h of a point in the scene and the phase 
difference 4 is given by the equation 

or h = ( D / , / W - ) 4  = (DIB)4, where B is the 
baseline distance and D is the distance to the scene. 
(It is assumed that D is  much  larger than B ,  so the phase 
difference 4 is approximately the quantity shown in the 
figure.) The topographic heights h are thus directly 
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modulo A. [The orientations of the imaging sensors can 
be effectively rotated to the orientation shown in the 
figure by subtracting the dominant spatial frequency of the 
interference fringes.  This frequency can be computed by 
finding the peak of the two-dimensional power spectral 
density of the fringes. In addition, the right-hand side of 
Equation (Al) must be multiplied  by a suitable scale 
factor, and the phase differences must  be  resampled.] 

Since the phase differences 4 (and the heights h )  are 
only  known  modulo A, they must  be “unwrapped.” 
Several techniques for two-dimensional phase unwrapping 
have been described in the literature [30,  32,  361, the most 
robust of which uses a least-squares approach to determine 
the functionf(x, y )  which  minimizes 

\ \ [ ( g - ; ) * + ( $ - z ) ] & d y .  2 

The principle  is that the partial derivatives of the wrapped 
phases 4(x, y )  and the unwrapped phases f ( x ,   y )  should 
agree. It is demonstrated in  [37] that the solution to a 
discretization of (A2) is given  by  solving a discretization 
of Poisson’s equation, 

with  Neumann boundary conditions. This equation can 
be solved by the iterative technique of simultaneous 
overrelaxation (SOR) described in Section 17.5  of  [38]. For 
images  larger than 1000 X 1000 pixels, a more practical 
method  is based on the use of the cosine transform and is 
described in Section 17.4 of  [38]. A more recent technique 
is based on the use of FFTs and  is described in [39]. 
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