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Automated
subpixel image
registration
of remotely
sensed imagery

An algorithm is described for the automated Introduction

registration of remotely sensed imagery that Image registration is the process of geometrically aligning
registers 6000 x 6000-pixel images in 8-18 two images of the same scene. It has applications in such
minutes on an IBM RISC System/6000® diverse areas as robot vision [1], guidance systems [2],
workstation. The resulting registration is motion detection [3], medical imaging [4], and

accurate to the subpixel level even in the manufacturing [5]. It also has important applications in the
presence of noise and large areas of change in  analysis of remotely sensed imagery, such as change

the images. It is shown that the registration- detection, topographic mapping, and the alignment of
mapping function for parailel projections has images with maps. (See for example [6] or [7].)

the form F(x, y) = A(x, y) + h(x, y)e, where Although most current methods of registering remotely
A(x, y) is an affine transformation, h(x, y) isa  sensed imagery require human involvement, there is a
function that depends on the topographic need for automated techniques. According to 8], ““On the
heights, and e is a vector that defines the average, an up-to-date Landsat image can be obtained for
epipolar lines. The algorithm determines the most areas on the Earth every 16 days. Since any newly
parameters of this equation using only the acquired Landsat image needs to be registered with other
image data, without knowledge of the viewing images or maps before it can be useful, there is a great
orientations or scene point coordinates. The need to automate this process.”” Another author states,
search for match points is then a one- “‘Manual handling of data for change detection .. . is a
dimensional search along the epipolar lines, formidable task . ... There is a definite need for a change
which greatly increases the speed and detector which will automatically correlate and compare
accuracy of the registration. two sets of imagery taken of the same area at different
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times and display the changes and their locations to the
interpreter”” [9]. Although much work has been done on
automated registration, most relevant techniques apply
only to simplistic images, and more are required for
solving real-world problems [10]. Even for the
comprehensive image analysis system described in [11],
““. .. manual selection of control points is still the best
method for scene registration.”

This paper describes an algorithm that has been
developed for the registration of remotely sensed imagery
without human intervention. The algorithm has the
following properties:

e It has subpixel accuracy, which is necessary for
applications such as change detection [12, 13].

o It registers 6000 X 6000-pixel images in only minutes
on an IBM RISC System/6000® workstation.

¢ It is reliable, producing accurate image registration in the
presence of image noise, topographic height variation,
and large areas of change.

¢ It uses only the data contained in the images. It does not
require knowledge of imaging sensor orientations or
three-dimensional scene point coordinates, for example.

The algorithm is based on two main assumptions about the
imagery:

¢ The viewing orientations differ by no more than two or
three degrees.
¢ The imaging geometry is a parallel projection.

The first assumption is valid for image pairs used for

change detection analysis, since large separation angles
cause false changes in the images due to perspective and
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occlusion distortions. The second assumption, in which
scene points are assumed to be projected to the imaging
plane in parallel lines as shown in Figure 1, is valid when
the imaging sensor is far from the scene and has a narrow
field of view.

The algorithm uses two-dimensional cross-correlation to
identify pairs of corresponding points in the images. This
technique is accurate and works well in the presence of
noise and varying conditions of illumination. Since it does
not attempt to identify features, it is applicable to many
types of images from satellites such as Landsat, SPOT,
and ERS-1.

The innovative feature of the algorithm is its ability to
exploit the epipolar constraint to increase the speed and
accuracy of the registration. The epipolar constraint is
used in the registration of stereo imagery, where the
orientation of the sensors is known a priori or can be
derived from knowledge of the three-dimensional
coordinates of a few scene points [3, 14, 15]. When the
sensor orientations are unknown and no three-dimensional
information is available, the principle cannot in general be
used. However, for the special case in which the imaging
geometry is a parallel projection, we demonstrate that the
data necessary for exploiting the epipolar constraint can be
derived from the image data without knowledge of the
viewing orientations or scene point coordinates.

After briefly outlining the main steps of image
registration, we describe the cross-correlation technique
used for identifying pairs of corresponding points. The
explicit form of the registration-mapping function is then
derived, which sheds light on the image-registration
problem. We then present the main steps of the
registration algorithm, explaining how the orientation of
the epipolar lines is derived and exploited to increase the
speed and accuracy of the registration. The implementation
results and plans for further work are presented, followed
by the Appendix, in which two applications of registered
imagery are described: change detection and
interferometry.

Image registration

There are many approaches to solving the problem of
image registration. One approach seeks to minimize the
mean square difference between the pixel intensity values
in a pair of images through the use of gradients [16]. Most
approaches, however, consist of the following three steps:

1. Identify a set of match points, which are pairs of points
that correspond to the same point in the scene. (Match
points are also referred to as corresponding points,
control points, conjugate points, and tie points by
various authors.

2. Compute the registration-mapping function, which is
the function that assigns to each point (x, y) in the first
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image its corresponding point F(x, y) in the second
image. Note that if [(x, y), (4, v)] is a match point,
then (u, v) = F(x, y).

. Resample the second image using the mapping function
F(x, y) to bring it into alignment with the first image.

Traditional registration techniques model the
registration-mapping function as a first- or second-degree
polynomial whose coefficients are computed by a least-
squares fit to the match points. However, globally defined
polynomials cannot accurately model the local distortions
in the mapping function which result from topographic
height variation [17, 18]. More general functions, such as
locally defined polynomials or splines, are necessary.

The most difficult step of image registration is the
accurate identification of match points. The traditional
approach uses human assistance to identify these points.
Automated methods follow one of two main approaches
[10, 11]. Area-based approaches use correlation techniques
to match the pixel intensity patterns of one image with
those of the second image. Feature-based approaches seek
to identify features in the intensity patterns, such as edges,
corners, line intersections, and closed boundary regions.
Feature-based methods are faster than area-based methods
[10], but they tend to be suited for only special types of
images. Area-based methods, on the other hand, tend to be
more robust, but they fail for images taken from widely
separated viewing angles, since perspective and occlusion
distortions degrade the correlations {3, 11].

Cross-correlation

Since the registration algorithm described in this paper

is designed for images taken from similar viewing
orientations (where perspective and occlusion distortions
are minimal), and since robustness and applicability to
many types of imagery are important requirements, an
area-based method based on two-dimensional cross-
correlation is used for identifying match points. The high
computational cost is minimized through the use of several
constraints, including the epipolar constraint described in a
later section.

The cross-correlation approach assumes that the
complicated transformation that relates two images of the
same scene is locally composed of plane translations.
Small templates or patches from one image appear to be
merely displaced in the second image without perspective
or rotational distortions. While this assumption is not
strictly true, it is nonetheless a valid approximation for
images which have undergone only a small change in
viewing orientation. For example, if an image undergoes
a small planar rotation, small templates from the top and
bottom edges of the image appear to shift horizontally, and
templates from the right and left edges appear to shift
vertically.
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The two-dimensional cross-correlation approach
proceeds as follows. A small N x N-pixel template f,(i, j )
is extracted from the first image, centered at some point
(a, b), and a larger M x M-pixel template f,(i, j ) is
extracted from the second, centered at some point (c, d).
The value N should be large enough to provide good
correlation peaks, but not so large that the templates
contain significant rotational distortions. The value M
should be chosen so that (M — N)/2 is the maximum
anticipated displacement of the two templates. The two-
dimensional cross-correlation function R(u, v) is then
defined by

N-1 N-1

Ru,v) = D> > Fli, )i +u,j +v)

=0 j=0

for 0 < u, v = M — N. The peak of the correlation,
which may be determined with subpixel accuracy
through quadratic interpolation of the correlation values,
determines the actual match point. If the peak occurs at
the point (1, v), the match point is

[@,b), (¢ +u~M-N2d+v-M-NDL (@

The correlation peak is more pronounced if the means of
the pixel intensities of the templates are zero. This can be
accomplished by subtracting the means before calculating
R(u, v).

The correlations R(u, v) should not be normalized, as
in [19]. Featureless image regions yield high normalized
correlations, but the peaks are broad and poorly defined.
A better measure of the correlation is the sharpness of a
peak, which can be measured quickly, albeit roughly, as
follows. Let p be the height of the peak, and let g be the
maximum height of the correlation surface at a fixed
distance of 2 pixels from the location of the peak. Then
the ratio g/p is a measure of the peak sharpness, with 0
indicating an ideal peak and 1 indicating no peak at all. If
this ratio exceeds a preassigned threshold (e.g., 0.5), the
match point should be rejected as unreliable.

Accelerating the cross-correlation
computations
FFTs may be used to accelerate the calculation of the
cross-correlations. The first template f, (i, j ) must be
placed in an M X M-pixel array and zero-padded to avoid
end effects. Let F\(a, ) and F,(a, b) denote the two-
dimensional Fourier transforms of f, (i, j ) padded and
f,(i, j ), respectively. Then the cross-correlation function
R(u, v) is the inverse Fourier transform of the product
F\(a, b)F3(a, b), where * denotes the complex conjugate.
The correlation function thus can be computed using three
two-dimensional FFTs of size M X M.

There are two ways to further reduce the time spent
computing the cross-correlations. The first method is to
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minimize the number of match points that must be
identified. This is accomplished with the epipolar
constraint, as described in the next section. The second
method is to keep the search distance (M — N)/2 as small
as possible.

One way to minimize the search distance is to perform a
multistage registration in two or more stages, in which a
coarse registration is first performed on the images with a
low resolution [20]. Since the low-resolution images are
smaller, the search distances are smaller as well. By using
the results of this coarse registration, the search distances
for match points in the higher-resolution images can be
constrained.

A second way to reduce the search distances, which is
used by the current algorithm, is to use the first few match
points that are identified to constrain the search for further
match points. As more match points are found, they define
an increasingly accurate registration of the image, which
predicts the locations of further match points. This method
is similar to the multistage approach, but it does not
require the images to be resampled to a lower resolution.

Epipolar constraint

The image registration algorithm presented here adopts the
epipolar constraint principle from the analysis of stereo
imagery. A stereo imaging system consists of a pair of
optical sensors with their viewing axes mutually parallel
and separated by a horizontal distance known as the
baseline [3, 10]. The viewing axes of the sensors are
perpendicular to the baseline, and the image scanlines are
parallel to the baseline. Since the displacement between
the sensors is purely horizontal, the positions of
corresponding points in the two images differ only in
horizontal displacement. The search for match points is
thus reduced to a one-dimensional search along the
horizontal lines, referred to as the epipolar lines. Human
binocular vision is an example of a stereo imaging system,
and the human brain registers the disparate images from
the two eyes using the epipolar constraint [21].

If the viewing axes of the imaging sensors are not
parallel, the match points are still displaced along epipolar
lines, although the lines may no longer be parallel. For
parallel-projected images, however, the epipolar lines are
parallel to one another for any relative orientation of the
sensors. Expressed in mathematical terms, the form of the
registration mapping function for parallel-projected images
is
Fx, y) = A(x, y) + h(x, y)e, &)
where A is an affine transformation (a 2 X 2 matrix
transformation followed by a translation), e is a fixed
vector, and h(x, y) is a scalar-valued function. The vector

e determines the direction of the epipolar lines. The affine
transformation 4 and the epipolar vector e depend on the
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orientations of the two imaging planes of the sensor
relative to the scene, while the function i(x, y) depends
on the topographic heights of the points of the scene.

Equation (3) can be derived as follows. Let f and g be
the vector-valued functions which define the two images of
the scene, in the sense that a point (4, v, w) in the scene
maps to the point f(u, v, w) in the first image and to the
point g(u, v, w) in the second image. Since the imaging
sensors are assumed to be parallel projections, they can
be modeled as coordinate systems in which points are
projected to the XY plane by the natural projection
r(x,y, z) = (x, y). After a fixed coordinate system is
erected at the scene, the orientation and position of the
first sensor can be given by a coordinate transformation
matrix

a, ap 4y
ay a4y ay 4)
a, a, a

3 32 33

and a translation vector (a,,, 4,,, a,,) T, The imaging
function f thus has the following form:

a,; ap 4y ay

fu, v, w) = v+ . (5)
Gy Gy 4y
w

If we define the matrix S by
a; a4y
S = (6)

a a

L 21 2

and the vectors s and a by

a3 Ay
§= Py a= > (7)
a Ay

the function f can be written in the form

23

u

fu, v,w) =S

v

+ ws + a. (8)

Similarly, the second imaging function g can be written in
the form

u

gu,o,w)=T +wt+b, 9)
v

where T is a 2 X 2 matrix and t and b are vectors.

Let A(x, y) be the scalar-valued function which assigns
to each point (x, y) in the first image the z-coordinate of
the (non-occluded) point in the scene which maps to
(x, y) under the function f. Note that h(x, y) is not the
topographic height function; the domain of h(x, y) is the
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image plane, while the domain of the topographic

height function is the scene plane. Additionally, let

(x, y) be a point in the first image, and let (u, v, w)

be the non-occluded point in the scene which is mapped
to (x, y) by the function f. Since f(u, v, w) = (x, y)

and g(u, v, w) = F(x, y), the function F(x, y) can be
determined by solving for the vector (u, v) in Equation (8)
and substituting the resulting expression into Equation (9).
Solving for this vector in Equation (8) gives

u
[ l = S7'f(u, v, w) —wS's — S 'a. (10)

v
Substituting this expression into Equation (9) yields
gu, v, w) = TS 'f(u, v, w) + (b — TS 'a)

+w(t — TS ). (11)

Since w = h(x, y), Equation (11) is equivalent to
Equation (3), where A(x, y) is the affine transformation

Ax,y) =TS (12)

X
+ (b—TS 'a),
y

and e is the epipolar vector t — TS 's.

The preceding derivation required the matrix S to be
invertible. We now investigate the conditions under which
this is the case. Since the matrix (4) is a coordinate
transformation, its rows are orthonormal. In particular, the
third row vector is the vector cross product of the first two
rows, which implies a,;, = a,,a,, — a,,a, . The right-hand
side of this identity is nonzero if and only if ™' exists.
Note that the third row vector of (4) is the line-of-sight
vector from the scene to the imaging sensor relative to the
scene coordinate system. Thus, the matrix § is invertible
if and only if this line-of-sight vector is not horizontal
relative to the scene—a quite reasonable assumption for
remotely sensed imagery!

Equation (3) sheds light on the registration problem
and completely characterizes the local distortions in
registration caused by topographic height variation.
Suppose, for example, the scene is planar. Then the height
function A(x, y) is constant, and the registration-mapping
function is an affine transformation. The images can be
registered by identifying at least three match points and
performing a least-squares fit to the coefficients of the
affine transformation. On the other hand, the local
distortions due to height variation in nonplanar scenes are
merely displacements along parallel lines. Furthermore,
these displacements are directly proportional to the
heights. Figures 2(a) and 2(b) show two images of a scene
composed of a vertical cylinder on a planar square.

Figure 2(c) shows the result of applying an affine
transformation to the second image to register the planar
squares. Figure 2(d) shows this transformed image
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overlaid on the first image. The epipolar lines, which are
shown as heavy black lines in Figure 2(a), pass through
corresponding points on the cylinder and show that the
displacements of the points along the lines are proportional
to their heights on the cylinder.

Determination of the registration-mapping
function

The algorithm described in this paper determines the
registration-mapping function F in four steps. The first step
determines the affine transformation A(x, y), and the
second step determines the orientation of the epipolar
vector e. The third step determines the height function
h(x, y)le| on a grid of points, and the fourth step fits a
surface to these grid points to determine the function
F(x, y). The following paragraphs explain each step in
more detail.

Step 1 A set of match points is identified using the
cross-correlation technique described previously, and an
iterative least-squares fit of the coefficients of the affine
transformation A(x, y) to these points is performed. Each
iteration eliminates the match point with the largest fitting
error until the maximum fitting error of the remaining
match points falls below a preassigned threshold. The
match points which remain correspond to points in the
scene which lie in the same plane, thus making possible
the calculation of A(x, y).

Step 2 Each match point [(x, y), (u, v)] that was
eliminated by the least-squares iteration of Step 1 is
replaced with the vector (4, v) — A(x, y). A least-squares
fit of these vectors to a line passing through the origin is
then performed, yielding the direction of the epipolar
vector e. [The magnitude of e, which is not necessary for
the determination of F(x, y), cannot be determined unless
the orientation of the image planes relative to the scene is
explicitly known.]

Step 3 At each point (x, y) of a grid conceptually placed
over the first image, the cross-correlation surface is
computed for templates centered at (x, y) in the first
image and A4 (x, y) in the second image. The displacement
h(x, y)|e| is then determined by searching for a peak along
the epipolar line, whose direction was determined in Step
2. To further reduce the probability of obtaining a false
match point, a smoothness constraint is enforced which
does not allow the absolute values of the second
derivatives of the function A(x, y)|e| to exceed a
preassigned threshold.

Step 4 The definition of the scalar-valued function

h(x, y)|e| is extended to the entire image by interpolating a
surface through the displacements determined in Step 3.
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(The current implementation uses Hermite polynomials
[22], although other interpolating functions could be used
instead.) This defines the registration-mapping function
F(x, y).

All registration algorithms that are based on match point
identification must deal with the problem of false match
points, which degrade the registration accuracy. (See [14],
for example.) The algorithm described in this paper
eliminates false match points in Steps 1 and 2 through the
use of least-squares techniques. False match points are
eliminated in Step 3 by application of the epipolar and
smoothness constraints. Figure 3 illustrates the
effectiveness of the epipolar constraint. A 30 x 30-pixel
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(a) An image of a vertical cylinder. (b) A second image of the cylinder from a different viewing angle. (c) The second image after
application of an affine transformation. (d) The transformed image overlaid on the first image, along with the epipolar lines.

correlation surface, which has been smoothed and scaled
by an exponential function to accentuate the peaks, is
shown with the epipolar line overlaid in white. The peak
over which this line passes corresponds to the true match
point, but there are taller peaks which do not lie on the
line. Without the epipolar constraint, the match point
identification algorithm would choose one of these taller
peaks, thereby yielding a false match point.

When the viewing angles are very close together, or
when there is little height variation in the scene, the
contribution of the second term i(x, y)e to the
registration-mapping function is negligible. This condition
is reflected in there being only a few match points
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eliminated by the iteration of Step 1, or not enough vectors
to perform a reliable least-squares fit in Step 2, rendering
Step 3 unnecessary. This results in a much shorter
registration time.

Implementation

The registration algorithm has been coded in C on an IBM
RISC System/6000® Model 560 workstation. The FFTs
were computed using the IBM Engineering and Scientific
Subroutine Library (ESSL) [23]. For a pair of 6000 X 6000-
pixel images, 900 cross-correlations were computed

for the least-squares iteration of Step 1, and 3600 were
computed in Step 3. The cross-correlation template sizes
were 60 x 60 pixels, the search distance was 30 pixels,
and the peak sharpness threshold was 0.5.

The 6000 x 6000-pixel images were registered in less
than eight minutes when the scenes were planar or when
the viewing angles were sufficiently close together.
Otherwise, the registration required 18 minutes. These
times included four minutes for the image-resampling step.
The registration accuracy was estimated to be within 0.5
pixel. This estimate was obtained by shifting the registered
images various fractions of a pixel until the change
detection images (see the Appendix) were noticeably
degraded.

Before the epipolar constraint was implemented,
the registration algorithm fitted the match points to
two-dimensional Hermite polynomials. To achieve a
satisfactory level of registration accuracy, it was necessary
to identify a very large number of match points (about
16-25 times as many as required by the later algorithm
using the epipolar constraint). This resulted in registration
times of the order of hours rather than minutes, even for
planar scenes. Implementation of the epipolar constraint
has resulted in a dramatic decrease in processing time.

Current and further work

Current work is aimed at implementing the algorithm

on a parallel processor computer. The goal is to yield
registration times of less than one minute. Most of the time
is spent computing the cross-correlation surfaces, which
could be computed in parallel [24, 25].

Further work will be aimed at more carefully measuring
the registration accuracy, since at least one study suggests
that accuracies of 0.2 pixel or less are required for
effective change detection for certain types of scenes [13].

he assumption of similar viewing angles will also be
relaxed by implementing a correction for perspective
distortion and rotation in the correlation process, as
suggested in [3] and [14].

Summary
A complete algorithm for the automated registration
of remotely sensed imagery has been presented. This
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A cross-correlation surface with an epipolar line overlaid on it.

algorithm is relatively fast, reliable, and accurate to the
subpixel level, even for large, noisy images. It uses the
epipolar constraint to dramatically improve its speed and
accuracy. The innovative feature of the algorithm is its
ability to derive the data necessary for exploiting the
epipolar constraint solely from the image data. Knowledge
of viewing orientations and three-dimensional scene point
coordinates is not needed.

The modeling equation (3) used by the algorithm greatly
clarifies the image-registration problem. It assumes only
that the imaging geometry is a parallel projection, a valid
assumption for many types of remotely sensed imagery.

It presupposes no restrictions on the relative viewing
orientations (although the assumption of similar viewing
orientations is required by the cross-correlation method for
identifying match points), and it can be used with almost
any method of match point identification.

Appendix
This appendix briefly describes two applications of
registered imagery: change detection and interferometry.

® Change detection

Change detection indicates regions of the scene which
have changed between the imaging times. It is used for
assessing and monitoring such processes as urban
development [26] and changes in vegetation [9, 27, 28].
There are a number of techniques for detecting the
differences between two registered images, the simplest of
which subtracts the images pixel by pixel [12]. Normalized
cross-correlation is another technique which is a natural
measure of change for images registered by the algorithm
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Sensor 1

Topographic mapping by means of interferometry.

described in this paper. At each pixel the two-dimensional
normalized cross-correlation coefficient of small templates
from the two images is computed. The values of this
coefficient are scaled to pixel intensity values to produce
a change-detection image which can be overlaid on the
registered images. High pixel intensities represent regions
of little or no change, while low intensities represent
regions that have changed.

® Interferometry

Topographic mapping constructs a three-dimensional
model of the scene using the disparity information
contained in a pair of registered images. The traditional
method of topographic mapping is stereo imaging, which
derives the three-dimensional information from the
displacements of match points along the epipolar lines.

A more accurate method of topographic mapping is
interferometry [29-35], which derives the three-
dimensional information from the phase components of
complex-valued imaging data. The phase components
measure the distances from the sensor to the points of the
scene modulo the wavelength A of the imaging signal. The
differences in phase between pairs of corresponding points
in the registered images create a pattern of interference
fringes which indicates the topographic heights. The
similar triangles of Figure 4 show that the relationship
between the height 4 of a point in the scene and the phase
difference ¢ is given by the equation

h &
5= m, (A1)

or h = (D/yB* = ¢°)¢ =~ (D/B)é, where B is the
baseline distance and D is the distance to the scene.

(It is assumed that D is much larger than B, so the phase
difference ¢ is approximately the quantity shown in the

figure.) The topographic heights A are thus directly
proportional to the measured phase differences ¢
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modulo A. [The orientations of the imaging sensors can
be effectively rotated to the orientation shown in the
figure by subtracting the dominant spatial frequency of the
interference fringes. This frequency can be computed by
finding the peak of the two-dimensional power spectral
density of the fringes. In addition, the right-hand side of
Equation (A1) must be muitiplied by a suitable scale
factor, and the phase differences must be resampled.]
Since the phase differences ¢ (and the heights #) are
only known modulo A, they must be ““unwrapped.”
Several techniques for two-dimensional phase unwrapping
have been described in the literature {30, 32, 36], the most
robust of which uses a least-squares approach to determine
the function f (x, y) which minimizes

of 9\ [of oo\’
I] &%) *(5‘5) b 42

The principle is that the partial derivatives of the wrapped
phases ¢(x, y) and the unwrapped phases f (x, y) should
agree. It is demonstrated in [37] that the solution to a
discretization of (A2) is given by solving a discretization

of Poisson’s equation,

af of

Pl P p(x, y), (A3)
with Neumann boundary conditions. This equation can

be solved by the iterative technique of simultaneous
overrelaxation (SOR) described in Section 17.5 of [38]. For
images larger than 1000 x 1000 pixels, a more practical
method is based on the use of the cosine transform and is
described in Section 17.4 of [38]. A more recent technique
is based on the use of FFTs and is described in [39].
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