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The Commercial Data Masking Facility (CDMF)  block cipher which uses a 64-bit key to encrypt a 64-bit
algorithm defines a scrambling technique for input plaintext to produce a 64-bit output ciphertext.
data confidentiality that uses the Data The 64-bit key contains 56 independent key bits which
Encryption Algorithm (DEA) as the underlying  determine the exact cryptographic transformation and 8
cryptographic algorithm, but weakens the bits which may be used as parity bits. The definition of
overall cryptographic operation by defining the DEA has been public knowledge since 1977 and has
a key-generation method that produces an undergone extensive public scrutiny. Its design has been
effective 40-bit DEA key instead of the 56 bits extensively described, for example, in [4]. Currently, it is
required by the full-strength DEA. In general, the most widely used commercial cryptographic algorithm.
products implementing the CDMF algorithm in  Its applications include protecting the privacy and
an appropriate manner may be freely exported  integrity of a wide variety of information assets, including
from the USA. The algorithm is thus intended electronic funds transfers (EFTs) and the personal
as a drop-in replacement for the DEA in identification numbers (PINs) of automatic teller machines
cryptographic products. Discussed in this (ATMs).
paper are the design requirements, rationale, RSA Data Security, Inc. has recently begun licensing
strength, and applications of the CDMF code for a symmetric 8-byte block cipher algorithm,
algorithm. designated as RC2, and a symmetric stream cipher
algorithm, designated as RC4 [5, 6]. The RC2 algorithm
is characterized as suitable for use as a ““drop-in”
Introduction replacement for the DEA. RSA Data Security, Inc.
A group of cryptographers at IBM designed the
cryptographic algorithm now known as the USA Federal it v oanied vrin o v prscd 1 198 e Pt A

Data Encryption Standard (DES) [2], or the ANSI Data reproduced, with permission. Additionally, there is a pending patent application
covering its subject matter; licensing information can be obtained from the Director
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states that both cipher algorithms are immune to known
cryptographic attacks [5]. However, public evaluation of
the claimed strength of the algorithms is hampered because
the algorithms are proprietary and their details have not
been publicly disclosed. The RC2 and RC4 algorithms have
a variable key size. When the keys are limited to 40 bits,
products implementing these algorithms are generally
exportable under U.S. Department of Commerce
jurisdiction. See the section on advantages of the CDMF
algorithm for a discussion comparing the CDMF algorithm
and the RC2 algorithm.

Although widely implemented and a de facto
international standard, the DEA is subject to government
regulations limiting the foreign destinations to which DEA-
based data privacy products can be shipped. Before the
development of the CDMF algorithm, many users had no
way to meet their increasing need for a publicly disclosed
method to protect the privacy of information assets on
communication lines. For example, see the paper by
Higgins and Mashayeki [7] in which they see the need for
a method of weakening the Data Encryption Algorithm.
Offering the CDMF algorithm with a stated strength
equivalent to 40 independent DEA-key bits meets the
security requirements of many users. Products
implementing the CDMF algorithm in an appropriate
manner, although subject to U.S. Department of State
jurisdiction, may be freely exported to any customer in
most countries of the world."

1 A note on terminology: In IBM products, the use of the term encryption is
reserved for strong algorithms, such as the DEA. Since the CDMF algorithm is not
as resistant to key exhaustion as the DEA, we do not claim that the CDMF
algorithm provides a form of data encryption, but rather that it provides a form of
data hiding or data masking.
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Design requirements
The design requirements for the CDMF algorithm are as
follows:

1. Tt must provide data privacy protection.

2. In general, products appropriately implementing it must
be freely exportable from the U.S.

3. It must have an easily understood strength against key
exhaustion and must be extensively scrutinized and
analyzed for possible weaknesses.

4. Tt must be capable of implementation on a wide range
of products.

5. It must be possible to define its cryptographic services
as an extension to the IBM Common Cryptographic
Architecture (CCA).

6. Its external key length must be 64 bits, permitting its
keys to be generated and distributed using existing DEA
key generation and distribution methods.

7. It must be possible for a system to implement it and the
DEA without undesirable side effects.

IBM’s committed direction for cryptography and
security is described in publications on the DEA-based
Common Cryptographic Architecture [8, 9] and the RSA-
based public key algorithm extension to the Common
Cryptographic Architecture [10], which are significant
parts of the IBM Security Architecture [11].

Implementations of the DEA and the CDMF algorithm
are not necessarily mutually exclusive. For example,

a financial institution could use the DEA when
communicating with other financial institutions and use
the CDMF algorithm when communicating with a
manufacturer.

Algorithm definition

Since the CDMF algorithm can be considered a
modification of the DEA, it was initially designated as
green-DEA, DEA-light, DEA—junior, etc. To avoid

the proliferation of designations, a single descriptive
designation was needed. Since the term ““encryption”
implies a certain level of strength, for example, when used
in ““Data Encryption Algorithm,”” the term “masking’ was
chosen to indicate that the method was not as strong as
the DEA. To emphasize its applicability to the commercial
market, the Commercial Data Masking Facility (CDMF)
designation was selected.

The market requirements described above resulted in the
design of the algorithm. The high-level process flow for the
design is shown in Figure 1. The model shows the
component of a cryptographic system that provides the
data masking and unmasking services to a calling program.
The model assumes a protected boundary where
intermediate results are not accessible to the caller of the
masking or unmasking services. Note that the CDMF key
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is assumed to be inside the protected boundary. In an
actual product, a CDMF key is passed as input and must
be protected when outside the protected boundary, for
example, by encrypting it with a master key. For
simplicity, the steps to recover the CDMF key are not
shown, since means for protecting and recovering keys are
well known and are not relevant to this discussion.

To mask data, the caller passes a 64-bit initialization
vector and the arbitrary-length input data to the CDMF
algorithm, which produces the output masked data under
the control of a CDMF key. To unmask data, the caller
passes the masked data to the algorithm, which recovers
the original data under the control of a CDMF key. The
entire masking process is composed of two processes: a
“‘key-shortening’ process and a standard DEA encryption
process in cipher block chaining (CBC) mode. The
initialization vector is Boolean exclusive-ORed with the
first 64-bit input plaintext, exactly as called for in the CBC
mode specification [12]. The CDMF key is first operated
on by the “*key-shortening” process to produce a CDMF-
derived DEA key. The derived key is then passed directly
to the DEA encryption process. Since the CDMF
algorithm is intended to provide for the privacy of data,
the CBC mode of the DEA is used. However, other modes
of DEA encryption could also be used as required. It
should also be clear that an implementation need only
produce the CDMF-derived key once for each request
and, if desired, could store the CDMF-derived key in an
internal associative buffer for quick recovery and use by
later requests.

A process flow diagram of the CDMF key-shortening
process is shown in Figure 2. A CDMF key is input
at the top of the diagram of the CDMF key-shortening
process, and a derived key is the result. There are four
subprocesses in the CDMF key-shortening process, each
meeting one of four goals. The diagram shows the process
flow for a generic solution applicable to the general
situation being addressed by the CDMF concept, and also
shows the process flow for the specific solution chosen for
the CDMF algorithm. The first step, which is carried out
for interoperability considerations, is to set every eighth
bit to a constant, in this case binary zero. This step may
be accomplished using a Boolean AND operation. The
second step protects the value of the input CDMF key and
is a simple cryptographic one-way function. That step is
accomplished by encrypting the output of the first step
with an arbitrarily determined constant DEA key K1 and
then using a Boolean exclusive-OR operation on the result
of the encryption and the result of the first step. The third
step effectively shortens the derived key by setting 24 bits
of the output of the second step to a constant. It may be
accomplished using a Boolean AND operation. The fourth
step scatters the value of the derived key throughout the
key space of the DEA, thus eliminating the recognizable
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structure of 24 fixed key bits defined in the third step. That
step is accomplished by encrypting the output of the third
step with an arbitrarily determined constant DEA key K2.
The constant key used in the fourth step is, of course,
different from the constant key used in the second step.

In the following definition of the CDMF algorithm, all
bits in a bit string are numbered from leftmost to rightmost
as bit 1 to bit 64, eK(X) represents DEA encryption of X
using key K, AND is the bitwise Boolean AND operation,
XOR is the bitwise Boolean exclusive-OR operation, and
:= represents the assignment operation. The procedural
definition of the CDMF algorithm is as follows:

1. Set parity bits.

Zero the following bits in the input CDMF key:

Bits 8, 16, 24, 32, 40, 48, 56, 64 of input CDMF key are
set to zero.

Call the result 1.
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This may be accomplished by the following:
I1 := input-key AND X' FEFEFEFEFEFEFEFE'

2. One-way function.

12 := 11 XOR eK1(I1)
where K2 is the fixed value X' C408B0540BA1ERAE".

3. Selection function.

Zero the following bits in 12:

1,2,3,4,8, 16, 17, 18, 19, 20, 24, 32, 33, 34, 35, 36,
40, 48, 49, 50, 51, 52, 56, 64.

Call the result 13.

This may be accomplished by the following:
I3 := 12 AND X' 0EFEQEFEOEFEQEFE'

4. Expansion function.

The derived key K' := eK2(I3)
where K2 is the constant DEA key
X'EF2C041CEB382FE6 .

5. Regular DEA invocation.

The derived key K' is used internally as the key in a
DEA invocation.

Design rationale

The CDMF key-shortening process consists of four steps
or procedures, as follows: 1) zero parity bits, 2) one-way
function, 3) selection function, and 4) expansion function.
This section discusses the rationale for each.

Zeroing the parity bits on the input CDMF key helps to
ensure interoperability. In the DEA [3], the definition of
cach eighth bit in the 64-bit key value states that each bit
“may be used” as a parity bit, while the other 56 bits
define a specific cryptographic transformation. In other
words, this definition states that use of the parity bits is
optional and implies that one system that conforms to the
standard can set and check the parity bits, while another
system can ignore the parity bits yet still conform to the
standard. This obviously has implications regarding the
interoperability between the two different, yet conforming,
systems. Such a situation can lead to inconsistent resuits.
(There can be advantages to ignoring parity bits besides
the obvious one of improved performance because of
less processing of the key value. For example, some
applications have taken advantage of systems in which
parity bits are ignored by declaring that an arbitrary
random number is a key encrypted by another key-
encrypting key, thereby eliminating the key-encryption
processing step.)

For two systems to interoperate, the same CDMF-
derived key must be produced from the same CDMF key
everywhere. However, one system may set and test keys
for odd parity, while another ignores key parity and sets
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the parity bits to some arbitrary values. In the CDMF, the
CDMF-derived key is a function of all 64 bits of the input
CDMF key, including the parity bits. However, only the
56 independent key bits in the input CDMF key, excluding
parity bits, are used to determine the value of the CDMF-
derived key. By first zeroing the parity bits on the input
CDMF key, the algorithm ensures that the CDMF-derived
key is the same on all systems, regardless whether parity
is set on the input CDMF key.

The rationale for the one-way function involves some
cryptanalytic considerations. An early notion was simply
to set 16 of the 56 independent key bits in a DEA key
to a constant, allowing the other 40 key bits to remain
independent and variable. This solution would be
acceptable provided that shortened keys and normal DEA
keys could not be used interchangeably in a cryptographic
system. Otherwise, certain security threats, discussed
below, could be a concern. One way to ensure that keys
are not used interchangeably is to build a system that uses
only shortened keys or uses only DEA keys. However, it
was recognized that a system with both DEA and the new
algorithm would have to be supported and that such a
cryptographic system must provide key separation between
DEA keys and shortened keys. It is relatively simple to
keep a key for a secret key algorithm, such as the DEA,
separate from a key for a public key algorithm, such as
RSA, because the natural sizes and components of the
keys are very different, making it unlikely that a user
would confuse a key used in one algorithm with another.
Even if the user did this, the cryptographic system could
easily be designed to ensure that such an incorrect usage
would not succeed. However, the situation is very
different when the keys under consideration have identical
sizes and essentially similar components, as is the case
with keys for the DEA and the CDMF algorithm,
especially since the CDMF algorithm was designed to take
advantage of existing DEA key generation and distribution
methods. In this situation it was believed that the risk of
either inadvertent or deliberate failure to maintain key
separation was much higher. Therefore, it was deemed
prudent to ensure key separation by imbedding a
separation mechanism directly into the new algorithm
definition, rather than depend on higher-level mechanisms.

For example, if the new algorithm were to set only 16
bits in the 56 independent bits of the key to a constant,
permitting the other 40 key bits to remain variable, the
input of a full-strength DEA key to the new algorithm
would allow a key partition attack using only a small
amount of known plaintext and matching ciphertext. (The
details of the CDMF algorithm are assumed to be public
knowledge.) First, an adversary passes the full-strength
DEA key to the new algorithm and recovers the value of
all bits in the key via a key exhaustion attack. This is done
by considering the 40 variable bits in the key as a 40-bit
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counter and checking all possible values, that is, from all
bits being set to zero to all bits being set to one. This
process takes a workfactor of 2, which is about a million
million trials. Knowing these bits, the adversary then
passes the key to a DEA invocation and exhausts on the
remaining 16 bits in the key in a similar fashion. This latter
attack has a workfactor of 2™, which is about 64 thousand
trials. The sum of these workfactors is still about 2% or
about a million million, which is substantially less than
the workfactor of 2% or about 72 quadrillion to exhaust

a DEA key. Thus, the key partition attack is potentially
devastating; the inclusion of a new shortened-key
algorithm could possibly allow an attack on the existing
DEA.

Another variant of the key partition attack, assuming
that the new algorithm sets only some bits on the input
key before passing the key to encipher and decipher
functions, is that occasionally it would be true that those
bits in the key would already be set. In other words, in
rare instances (about one in 64000), a full-strength DEA
key would conform to the pattern of the shorter new
algorithm key. This would be undesirable. Consider the
possibility of an insider adversary with access to the
cryptographic service interface being able to substitute a
known new algorithm key for a DEA key. An unsuspecting
user would use this key thinking that it was a full 56-bit-
strength DEA key, but the adversary would know that
certain bits were set; thus, a key exhaustion attack would
be much more feasible. Even more subtly, a user could
generate a full 56-bit-strength DEA key, and an adversary
could use the new algorithm encipher capability as a filter
by determining whether a standard DEA encipher and a
new algorithm encipher produced the same ciphertext
given the same input. If the results were different, the
adversary would know that that DEA key does not
conform to the pattern of the alternate algorithm key (this
would be the case most of the time). However, if the
results were the same, the adversary would know that the
apparently full-strength DEA key conformed by chance to
the pattern of a new algorithm key; therefore, the key
could be attacked by key exhaustion as if it were a new
algorithm key.

Since a user could be the generator of the key and the
filter processing run by an adversary without knowledge of
the user, this attack has many interesting ramifications.
For example, an adversary could write some trap code
testing many full-length DEA keys to determine whether a
full-length key ever conformed to the structure of a
shortened key. This trap code could then run as a
background task. The small cost of executing the trap code
could be considered analogous to the purchase of a lottery
ticket, because if the trap code ever detected the right
conditions, the result would be like winning a lottery in
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that a supposedly full-length key could now be broken with
much less work.

One way to perceive this problem is that the keyspace
for full-strength DEA keys and the keyspace for new
algorithm keys are not disjoint. After all, a DEA key or
a new algorithm key are both just 64-bit binary numbers.
If the values were equal, what could one do to tell them
apart?

The solution to this apparent dilemma was to realize the
essential asymmetry of the problem: Since a CDMF key
has fewer effective key bits than a DEA key, an adversary
would like to attack a DEA key through use of the CDMF
algorithm, but the reverse is not a concern. Therefore,
since the goal was to protect the value of the input key,
the use of a cryptographically strong one-way function
suggested itself. A strong one-way function is one for
which it is easy to compute the output from the input but
is considered computationally infeasible to invert; in other
words, given a particular output of the one-way function,
it is very difficult to find an input that will produce that
particular output. Therefore, if the input key were passed
through a one-way function, the value of the input key
would be difficult for an adversary to determine, even if
the adversary knew the value of the CDMF-derived key.
A standard cryptographic one-way function is achieved
by encrypting the input under a constant key and then
exclusive-ORing (XORing) the resulting ciphertext with the
input text to produce the result.®

The rationale for the selection function was to limit
the variability of the resulting value so that it is easy to
demonstrate the effective strength of the key both to
customers and to organizations responsible for enforcing
the regulations on cryptographic products. The selection
function sets sixteen bits, which were variable up to this
point, to a constant, leaving forty bits of variability.

The rationale for the expansion function was to reduce
potential concerns regarding the possibility of the
development of a shortcut method of attack because
certain key bits are held constant. The term “shortcut™
implies an attack that is quicker than exhaustion of the
keyspace. While such a shortcut attack is currently
unknown, the fear was that sometime in the future
someone might be able to reduce the strength of the
CDMF algorithm below its declared strength, possibly
because of the pattern in the derived key. To mitigate this
concern and mask any pattern in the derived key, this step
takes advantage of the pseudorandomness property of the
DEA and processes the shortened key by encrypting it

2 It is interesting to examine the history of this one-way function. In 1979, while
writing their book [4], Matyas and Meyer discussed different block chaining
methods, and this one-way function was filed away, among others, in a ““work-
to-do” sheet. It was not until 1982 that Meyer recognized the importance and
advantage of this particular function and caused it to be incorporated into an IBM
cryptographic design proposal. It was subsequently also used as the kernel for the
Modification Detection Code (MDC) algorithm [8, 13].
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with a constant DEA key to produce the CDMF-derived
key passed to the DEA invocation. This spreads the
variability of the value produced in the selection step
across the key space of the DEA, since a single bit change
on the input produces a large difference in the output. This
step helps ensure that an attacker is forced to determine
the key by exhausting all possible keys.

Security analysis of the algorithm
Some security-related goals of the CDMF algorithm are as
follows:

1. Its strength is based on the difficulty of key exhaustion.
The strength of a CDMF key is equivalent to 40
independent DEA-key bits.

2. A particular value of a CDMF key results in a
pseudorandom selection from one of 2* possible
CDMF-derived keys.

By basing the kernel of the algorithm on the DEA,
concerns relating to its inherent strength are addressed,
since the DEA has proven itself strong against diverse
cryptanalytic attacks. It is estimated that designing and
validating the DEA (verifying that it had no inherent
weaknesses to the best of the designers’ knowledge)
required about seventeen person-years (and some actual
years). The DEA has demonstrated itself to be strong
when challenged by many techniques that have defeated
other supposedly strong cryptographic algorithms. Given
our limited time and resources, it was suggested that the
DEA be used as the basis for the new algorithm, with the
addition that there be a preprocessor to the DEA process
to shorten the effective length of the key.

A CDMF key has a variability of 2%, or about a million
million. In analyzing how to exhaust a CDMF key to
recover the plaintext from ciphertext, the value of 12
calculated in step 3 of the CDMF algorithm can be
considered to be a 40-bit counter, albeit with some
extraneous constant bits scattered throughout the 64-bit
value. With complete knowledge of the CDMF algorithm,
with knowledge that it is being used in a specific situation,
and with some small amount of plaintext with its
corresponding masked text, testing whether a trial derived
key will produce the masked text from the given plaintext
takes two encryption steps (one to derive the key from
the counter and the other to mask the plaintext) and a
comparison. Assuming that the comparison step takes a
negligible amount of time and the exhaustion attack utilizes
software on a 16-MHZ microprocessor chip which is
capable of 7000 DEA encryption steps per second, the
expected time to find the derived key (that is, search half
the key space) is calculated to be about 4.8 years.

Assuming the use of a very fast DEA chip capable of
4000000 DEA encryption steps per second, the expected
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time to find the derived key is calculated to be about three
days. A study has recently been made by Wiener [13] in
which construction is assumed of a special-purpose
pipelined DEA chip capable of testing 50000000 DEA keys
per second. Assuming the use of such a chip, the expected
time to find the derived key is calculated to be about 5.8
hours. The study also proposes that a DES key search
machine could be built using these chips for around
$1500000. Using such a machine, the expected time to find
the derived key is calculated to be about 364 milliseconds.

Hence, the capability of an adversary to find the derived
key can be considered a matter of time and money.
However, there are actions a user could take to mitigate
the risk. For example, a user could perform selective
masking (masking only secret data and avoiding masking of
information that is not secret), since this would reduce the
ability of an adversary to match masked text with its
plaintext. The use of an appropriate data compression
technique before masking would also complicate the
adversary’s task. Changing the CDMF key frequently
would limit the scope of any exposure.

One type of possible refinement to a key exhaustion
attack is to perform a time/memory tradeoff, that is, be
willing to use some memory resources in an attempt to
reduce the time required. One obvious way to do this is to
build a dictionary of all CDMF-derived keys. This would
have to be done only once and would eliminate the need
for doing the encryption in the expansion step of the
CDMEF algorithm, thus reducing the number of encryptions
needed to one per trial-derived key. Since there are over a
million million CDMF-derived keys and each such key is
8 bytes long, such a dictionary would require about 8000
gigabytes (2 bytes) of storage. This might be reduced by
sorting and storing only portions of the keys, but the
storage needed would still be around 2000 gigabytes. Such
an attack is considered unlikely, since the cost in space
does not appear worth halving the time.

Without knowledge that the masked text was produced
using the CDMF algorithm rather than DEA, but still given
the assumption of some masked text with known plaintext,
the exhaustion workfactor of a CDMF key is the same as
for a DEA key.

Note that if the CDMF algorithm definition is altered to
use arbitrary secret values for the keys K1 and K2 used
in steps 2 and 4 and the specific bits set to a constant
in step 3, the key exhaustion attack mentioned above
is not feasible. However, considerations of system
interoperability, user acceptability, and Kerckhoff’s
principle® led us to decide on specific constants for these
values in the CDMF definition.

3 Kerckhoff’s principle states that the security of a cipher system resides entirely
in the secrecy of the key. That is, it is assumed that the adversary knows all the
details of the cipher system, including the details of the algorithm, except for the
secret key [15].
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Note also that the complementary property of the DEA*
is, in general, not a property of the CDMF algorithm.
Since the complementary property of the DEA has been
used to reduce the workfactor in certain types of key
exhaustion attacks, the absence of this property in the
CDMEF algorithm is a positive attribute.

Advantages of the algorithm

While comparable implementations of the CDMF algorithm
are expected to be slower than implementations of the
DEA or of RC2, there are some significant advantages to
the CDMEF algorithm, as listed below:

1. The primary advantage of the algorithm is that systems
can be implemented using it that should, in general, be
exportable; yet it is based on the strength of the DEA,
which has stood the test of time.

2. The specification of the CDMF algorithm, like the DEA
and unlike RC2, is public knowledge and therefore
permits open scrutiny and analysis by cryptographers.
Thus, the CDMF algorithm is aligned with the emphasis
on open systems.

3. A new system that supports only data privacy methods
using the CDMF algorithm can be set up so that it is
interoperable with an existing system that supports only
data privacy methods using the DEA. This can be
accomplished by having the new CDMF system
generate the keys and apply the key-shortening process
(only) to the key that is being sent to the existing DEA-
only system. On both systems the cryptographic
transformations will then be equivalent, although the
values of the keys will be different. Because the key
must be shortened on the CDMF-based system, there is
an inherent asymmetry to this solution. Note that it is
possible to prove, in some sense, that a DEA key was
actually derived from the CDMF key-shortening
process. This may be achieved by performing a DEA
decryption with the constant key used in the expansion
procedure on the DEA key (as data) and determining
whether the result conforms to the pattern for the
counter after the selection function.

4. Existing methods of generating pseudorandom 64-bit
DEA keys can be used to generate 64-bit CDMF keys.

5. Existing methods of distributing DEA keys can be used
to distribute CDMF keys. The key distribution method
can make use of DEA key-encrypting keys of either
single or double length. This allows the key distribution
mechanism to be strong and helps allay concerns that
an adversary will be able to break a key-encrypting key,

4 The complementary property of the DEA can be described as follows: Let

eK(X) = Y denote DEA encryption of plaintext X using key K to produce ciphertext
Y, and let ' indicate bitwise complementation, that is, inverting the value of each bit
in a value. Then the complementary property of the DEA states that if eK(X) = Y,
it follows that eK'(X') = Y'. Alternately, the complementary property can be
stated as eK(X} = (eK'(X"))'; see {4]).
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thereby exposing all of the keys encrypted under it. For
example, methods found in ANSI X9.17 [15] or the
IBM Common Cryptographic Architecture [7] may be
used to distribute CDMF keys.

The CDMF algorithm and the IBM Common
Cryptographic Architecture

With regard to integrating the CDMF algorithm into
existing implementations conforming to the IBM Common
Cryptographic Architecture, the following four
configurations may be of interest:

1. A CDMF-only system in a homogeneous CDMF-only
network.

2. A mixed DEA and CDMF system in a homogeneous
DEA and CDMF network.

3. A CDMF-only system in a heterogeneous DEA and
CDMF network.

4. A mixed DEA and CDMF system in a heterogeneous
DEA and CDMF network.

The first configuration is the easiest to understand. In
this case, because there was formerly no existing method
to achieve data privacy, the Common Cryptographic
Architecture encipher and decipher services must be
modified to use (only) the CDMF algorithm. The existing
services to generate or install keys into the system would
remain unchanged. This system is intended to be
exportable.

The second configuration is an extension of the first. In
this case, both the DEA and the CDMF algorithms could
be selected by the user as the method to use for data
privacy. Under current guidelines, this system would not
be intended to be freely exportable, but would be available
for financial institution use. A financial institution could
use the DEA when communicating with other financial
institutions and could use the CDMF algorithm when
communicating with nonfinancial institutions.

The third configuration assumes the requirement that a
user will wish to be able to exchange masked text between
a CDMF-only system and a DEA-only system; otherwise,
the configuration simplifies to the first one. To meet this
requirement, a new service, the CDMF key transform
service, is needed to transform a CDMF key into a
CDMF-derived DEA key. This service can only be
assumed to exist on a new CDMF-only system, since
DEA-only systems are assumed to be installed already in
an existing network. This system would be intended to be
exportable.

The use of this CDMF key transform service requires
some intelligence. If both systems are CDMF-only systems
or both systems are DEA-only systems, the CDMF key
transform service should not be used. If one of the
systems is a DEA-only system and the other is a CDMF-
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only system, the key used on the CDMF-only system must
not be transformed, while the key used on the DEA-only
system must be processed by the CDMF key transform
service. To aid in the determination of what should be
done, either the key distribution application will be
required to keep track of what is occurring, or
enhancements will have to be made to products
conforming to the IBM Common Cryptographic
Architecture that allow an indication to be kept in the key
token for a key-encrypting key (used to encrypt keys
between one system and another) regarding whether the
system for a particular key-encrypting key is a DEA-only
system, a CDMF-only system, or whether the type of
system has not been specified. Use of this information
would permit the correct decision to be made transparent
to the caller of the services.

The fourth configuration is the most complex. One goal
of the design was to allow the system administrator to
configure a system so that the system would appear to a
user as if it were a system in configuration one, two, or
three, yet continue to support the ability of a user to
specify explicitly what type of processing should be done
when that was appropriate. This objective attempts to give
the user the best of both alternatives. A user might let the
choices default and rational choices would be made ““under
the covers,”” but a knowledgeable user could exploit the
functionality of the system as desired. This objective is
met through the use of the “meta-default” concept
whereby the system supports the system administrator
specifying the default to be used if the user selects to use
the default option. Of course, the system will select the
default if the user has not specified which value to use.
This chain of default specifications is very flexible in that
it supports meeting the user’s requirements. Since this
system includes DEA-based data privacy, it is not intended
to be freely exportable under current guidelines.

CDMF test cases

In addition to the standard suite of test cases used to test
the DEA portion of the implementation [17], the following
test cases can be used to help ensure, but obviously
cannot guarantee, a correct implementation of the CDMF
algorithm:

Test 1

clear CDMF key of X'FFFFFFFFFFFFFFFE’ .
cleartext of X'0123456789ABCDEF' .
masked text is X'12CC8EE83(C686380'.

Test 2

clear CDMF key of X'06000000600000000' .
cleartext of X'0123486789ABCDEF’.
masked text is X'79B1D72AD877DR04’ .
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Test 3

clear CDMF key of X'0123456789103264' .
cleartext of X'0123456789ABCDEF' .
masked text is X'7D74932D74B13E13'.

These test cases may be run to ensure that the masked
text is produced from the specified cleartext using the
key designated for the CDMF masking. The same test
cases may be run using CDMF unmasking to ensure
that the cleartext is produced from the masked text in
each case.

Concluding remarks

A CDMF version of Advanced Interactive Executive/370™
(AIX/370) code was made available by IBM late in 1992.
An IBM satellite one-way broadcast project is currently
using the CDMF algorithm, and a CDMF product has been
developed in connection with the IBM Transaction
Security System (TSS). The need to integrate the algorithm
into the IBM Common Cryptographic Architecture has
been identified and is being addressed. The CDMF
algorithm is currently IBM’s strategic exportable data
masking method. As the benefits of the algorithm become
known, we expect that its implementations will continue to
expand.
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