
The 
Commerci,al 
Data  Masking 
Facility (CDMF) 
data  privacy 
algorithm 

by D. 6. Johnson 
S. M. Matyas 
A. V. Le 
J. D. Wilkins 

The  Commercial  Data  Masking  Facility  (CDMF) 
algorithm  defines  a  scrambling  technique  for 
data  confidentiality  that  uses  the  Data 
Encryption  Algorithm  (DEA)  as  the  underlying 
cryptographic  algorithm,  but  weakens  the 
overall  cryptographic  operation  by  defining 
a  key-generation  method  that  produces  an 
effective  40-bit  DEA  key  instead  of  the 56 bits 
required  by  the  full-strength  DEA. In general, 
products  implementing  the  CDMF  algorithm  in 
an  appropriate  manner  may  be  freely  exported 
from the USA. The  algorithm is thus  intended 
as  a  drop-in  replacement  for  the  DEA  in 
cryptographic  products.  Discussed  in  this 
paper are  the  design requirements,  rationale, 
strength,  and  applications of the  CDMF 
algorithm. 

Introduction 
A group of cryptographers at IBM  designed the 
cryptographic algorithm  now  known as the USA Federal 
Data Encryption Standard (DES) [2], or the ANSI Data 
Encryption Algorithm [3]. The  algorithm  is a symmetric 

block cipher which uses a 64-bit key to encrypt a 64-bit 
input plaintext to produce a 64-bit output ciphertext. 
The  64-bit key contains 56 independent key bits  which 
determine the exact cryptographic transformation and 8 
bits which  may be used as parity bits. The  definition of 
the DEA has been public knowledge since 1977 and has 
undergone extensive public scrutiny. Its design has been 
extensively described, for example, in  [4]. Currently, it is 
the most widely  used  commercial cryptographic algorithm. 
Its applications include protecting the privacy and 
integrity of a wide variety of information assets, including 
electronic funds transfers (EFTS) and the personal 
identification numbers (PINS) of automatic teller machines 
(ATMs). 

RSA  Data Security, Inc. has recently begun  licensing 
code for a symmetric 8-byte block cipher algorithm, 
designated as RC2,  and a symmetric stream cipher 
algorithm, designated as RC4  [5,  61. The RC2 algorithm 
is characterized as suitable for use as a “drop-in’’ 
replacement for the DEA.  RSA Data Security, Inc. 
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Design  requirements 

protected boundary Initialization vector Plaintext 
The  design requirements for the CDMF algorithm are  as 
follows: I I  

I I 
CDMF 
key 1 I 1. It must provide data privacy protection. 

2. In general, products appropriately implementing  it  must 

3. It must have an easily understood strength against key 
exhaustion and must be extensively scrutinized and 
analyzed for possible weaknesses. 

of products. 
5. It must be possible to define its cryptographic services 

as an extension to the IBM  Common Cryptographic 
Architecture (CCA). 

keys to be generated and distributed using existing DEA 

CDMF key- 

p”cess 
Shortening 

be freely exportable from the U.S. DEA CDMFderived key * (CBC 
mode) 

I 4. It must be capable of implementation on a wide range 

7 
Masked text 

6.  Its external key length  must be 64 bits, permitting its 

CDMF algorithm high-level process flow. 
key generation and distribution methods. 

7. It must be possible for a system to implement  it and the 

states that both cipher algorithms are immune to known 
cryptographic attacks [5]. However, public evaluation of 
the claimed strength of the algorithms is hampered because 
the algorithms are proprietary and their details have not 
been publicly disclosed. The RC2 and RC4 algorithms  have 
a variable key size. When the keys are limited to 40 bits, 
products implementing these algorithms are generally 
exportable under U.S. Department of Commerce 
jurisdiction. See the section on advantages of the CDMF 
algorithm for a discussion comparing the CDMF algorithm 
and the RC2 algorithm. 

international standard, the DEA is subject to government 
regulations limiting the foreign destinations to which DEA- 
based data privacy products can be shipped. Before the 
development of the CDMF algorithm, many users had  no 
way to meet their increasing need  for a publicly disclosed 
method to protect the privacy of information assets on 
communication lines. For example, see the paper by 
Higgins  and  Mashayeki [7] in  which they see the need  for 
a method of weakening the Data Encryption Algorithm. 
Offering the CDMF algorithm  with a stated strength 
equivalent to 40 independent DEA-key bits meets the 
security requirements of many users. Products 
implementing the CDMF algorithm  in  an appropriate 
manner, although subject to U.S. Department of State 
jurisdiction, may be freely exported to any customer in 
most countries of the world. 

Although  widely  implemented  and a de facto 

A note  on  terminology: In  IBM products,  the use of the  term encryption is 
reserved  for  strong  algorithms,  such as the  DEA. Since the  CDMF  algorithm is not 
as resistant to key exhaustion as the  DEA, we do  not  claim that  the  CDMF 
algorithm  provides  a  form of data  encryption,  but  rather  that  it  provides  a  form of 
data hiding or data  masking. 21 8 

DEA without undesirable side effects. 

IBM’s committed direction for cryptography and 
security is described in publications on the DEA-based 
Common Cryptographic Architecture [8, 91 and the RSA- 
based public key algorithm extension to the Common 
Cryptographic Architecture [lo], which are significant 
parts of the IBM Security Architecture [l l] .  

are not necessarily mutually exclusive. For example, 
a financial institution could  use the DEA  when 
communicating  with other financial institutions and use 
the CDMF algorithm when communicating with a 
manufacturer. 

Implementations of the DEA and the CDMF algorithm 

Algorithm  definition 
Since the CDMF  algorithm can be considered a 
modification of the DEA,  it was initially designated as 
green-DEA,  DEA-light,  DEA-junior, etc.  To avoid 
the proliferation of designations, a single descriptive 
designation was needed. Since the term “encryption” 
implies a certain level of strength, for example, when used 
in “Data Encryption Algorithm,” the term “masking” was 
chosen to indicate that the method was not as strong as 
the DEA. To emphasize its applicability to the commercial 
market, the Commercial Data Masking Facility (CDMF) 
designation was selected. 

The market requirements described above resulted in the 
design of the algorithm. The high-level process flow for the 
design  is shown in Figure 1. The  model shows the 
component of a cryptographic system that provides the 
data masking  and  unmasking services to a calling  program. 
The model assumes a protected boundary where 
intermediate results are not accessible to the caller of the 
masking or unmasking services. Note that the CDMF key 
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is assumed to be inside the protected boundary. In an 
actual product, a CDMF key is passed as input  and  must 
be protected when outside the protected boundary, for 
example, by encrypting it  with a master key. For 
simplicity, the steps to recover the CDMF key are not 
shown, since means for protecting and recovering keys are 
well  known  and are not relevant to this discussion. 

To mask data, the caller passes a 64-bit  initialization 
vector and the arbitrary-length input data to the CDMF 
algorithm,  which produces the output masked data under 
the control of a CDMF key. To unmask data, the caller 
passes the masked data to the algorithm, which recovers 
the original data under the control of a CDMF key. The 
entire masking process is composed of two processes: a 
“key-shortening’’ process and a standard DEA encryption 
process in cipher block chaining  (CBC)  mode. The 
initialization vector is Boolean  exclusive-ORed  with the 
first 64-bit  input plaintext, exactly as called for in the CBC 
mode  specification [12]. The CDMF key is  first operated 
on by the “key-shortening” process to produce a CDMF- 
derived DEA key. The derived key is then passed directly 
to the DEA encryption process. Since the CDMF 
algorithm  is intended to provide for the privacy of data, 
the CBC mode of the DEA is used. However, other modes 
of DEA encryption could also be used as required. It 
should also be clear that an implementation need only 
produce the CDMF-derived key once for each request 
and, if desired, could store  the CDMF-derived key in  an 
internal associative buffer  for quick recovery and use by 
later requests. 

A process flow  diagram of the CDMF key-shortening 
process is shown in Figure 2. A CDMF key is input 
at the top of the diagram of the CDMF key-shortening 
process, and a derived key is the result. There are four 
subprocesses in the CDMF key-shortening process, each 
meeting one of four goals.  The  diagram shows the process 
flow for a generic solution applicable to the general 
situation being addressed by the CDMF concept, and also 
shows the process flow for the specific solution chosen for 
the CDMF algorithm.  The  first step, which  is carried out 
for interoperability considerations, is to set every eighth 
bit to a constant, in this case binary zero. This step may 
be accomplished using a Boolean AND operation. The 
second step protects the value of the input CDMF key and 
is a simple cryptographic one-way function. That step is 
accomplished by encrypting the output of the first step 
with  an arbitrarily determined constant DEA key K1 and 
then using a Boolean exclusive-OR operation on the result 
of the encryption and the result of the first step. The third 
step effectively shortens the derived key by setting 24 bits 
of the output of the second step to a constant. It may be 
accomplished using a Boolean AND operation. The fourth 
step  scatters the value of the derived key throughout the 
key space of the DEA, thus eliminating the recognizable 
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Goal Generic solution Specific solution 

CDMF  key  CDMFkey 64 + 
protect input key One way 

Shorten derived key selection GJ c l3 

shortcut attacks 
Defend  against  Expansion 

+ 
Derived key K‘ 

I1 64 

KI 
64 

lr 7 Set 24 bits in 12 

K‘ 64 

CDMF key-shortening process. 

structure of  24  fixed key bits  defined  in the third step. That 
step is  accomplished by encrypting the output of the third 
step with  an arbitrarily determined constant DEA key K2. 
The constant key used in the fourth step is, of course, 
different  from the constant key used in the second step. 

In the following  definition of the CDMF algorithm,  all 
bits in a bit string are numbered  from leftmost to rightmost 
as bit 1 to bit 64, eK(X) represents DEA encryption of X 
using key K, AND is the bitwise Boolean AND operation, 
XOR is the bitwise  Boolean exclusive-OR operation, and 
:= represents the assignment operation. The procedural 
definition of the CDMF algorithm  is as follows: 

1. Set parity bits. 

Zero the following bits in the input  CDMF  key: 
Bits 8, 16, 24,  32,  40,  48, 56, 64 of input CDMF key are 

set to zero. 
Call the result 11. 
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This may be accomplished by the following: the parity bits to some arbitrary values. In the CDMF, the 
I1 := input-key AND X '  FEFEFEFEFEFEFEFE' CDMF-derived key is a function of all 64 bits of the input 

2. One-way function. 

12 := I1 XOR eKl(l1) 
where K2 is the fixed value X' C488BO54QBAI  EOAE' . 

3. Selection function. 

Zero the following bits in 12: 
1, 2, 3, 4, 8, 16,  17, 18, 19, 20, 24,  32,  33,  34,  35,  36, 

Call the result 13. 

This may be accomplished by the following: 
13 := 12 AND  X'OEFEOEFEOEFEOEFE' 

40, 48, 49, 50, 51,  52,  56,  64. 

4. Expansion function. 

The derived key K' := eK2(13) 
where K2 is the constant DEA key 

X'EF2CO41CE6382FE6'. 

5. Regular DEA invocation. 

The derived key K' is used internally as the key  in a 
DEA invocation. 

Design  rationale 
The  CDMF key-shortening process consists of four steps 
or procedures, as follows: 1) zero parity bits, 2) one-way 
function, 3) selection function, and 4) expansion function. 
This section discusses the rationale for each. 

Zeroing the parity bits on the input CDMF key helps to 
ensure interoperability. In the DEA [3], the definition of 
each eighth  bit  in the 64-bit key value states that each  bit 
"may be used" as a parity bit, while the other 56 bits 
define a specific cryptographic transformation. In other 
words, this definition states that use of the parity bits is 
optional and  implies that one system that conforms to the 
standard can set and check the parity bits, while another 
system can ignore the parity bits yet still conform to the 
standard. This obviously has implications regarding the 
interoperability between the two  different, yet conforming, 
systems. Such a situation can lead to inconsistent results. 
(There can be advantages to ignoring parity bits besides 
the obvious one of improved performance because of 
less processing of the key value. For example, some 
applications have taken advantage of systems in which 
parity bits are ignored by declaring that an arbitrary 
random  number  is a key encrypted by another key- 
encrypting key, thereby eliminating the key-encryption 
processing step.) 

For two systems to interoperate, the same CDMF- 
derived key must be produced from the same CDMF key 
everywhere. However, one system may set and test keys 

220 for odd parity, while another ignores key parity and sets 

CDMF key, including the parity bits. However, only the 
56 independent key bits in the input CDMF key, excluding 
parity bits, are used to determine the value of the CDMF- 
derived key. By first zeroing the parity bits on the input 
CDMF key, the algorithm ensures that the CDMF-derived 
key is the same on all systems, regardless whether parity 
is set on the input  CDMF  key. 

The rationale for the one-way function involves some 
cryptanalytic considerations. An early notion was simply 
to set 16  of the 56 independent key bits in a DEA key 
to a constant, allowing the other 40 key bits to remain 
independent and variable. This solution would be 
acceptable provided that shortened keys and normal DEA 
keys could  not  be used interchangeably in a cryptographic 
system. Otherwise, certain security threats, discussed 
below,  could  be a concern. One way to ensure that keys 
are not used interchangeably is to build a system that uses 
only shortened keys or uses only DEA keys. However, it 
was recognized that a system with both DEA  and the new 
algorithm would have to be supported and that such a 
cryptographic system must provide key separation between 
DEA keys and shortened keys. It is relatively simple to 
keep a key for a secret key algorithm, such as the DEA, 
separate from a key for a public key algorithm, such as 
RSA, because the natural sizes and components of the 
keys are very different,  making  it  unlikely that a user 
would confuse a key used in one algorithm  with another. 
Even if the user did this, the cryptographic system could 
easily be designed to ensure that such an incorrect usage 
would  not succeed. However, the situation is very 
different when the keys under consideration have identical 
sizes and essentially similar components, as is the case 
with keys for the DEA and the CDMF  algorithm, 
especially since the CDMF algorithm was designed to take 
advantage of existing DEA key generation and distribution 
methods. In this situation it was believed that the risk of 
either inadvertent or deliberate failure to maintain key 
separation was much  higher. Therefore, it was deemed 
prudent to ensure key separation by imbedding a 
separation mechanism directly into the new  algorithm 
definition, rather than depend on higher-level  mechanisms. 

For example, if the new  algorithm were to set only 16 
bits  in the 56 independent bits of the key to a constant, 
permitting the other 40 key bits to remain variable, the 
input of a full-strength DEA key to the new  algorithm 
would  allow a key partition attack using only a small 
amount of known plaintext and  matching ciphertext. (The 
details of the CDMF algorithm are assumed to be public 
knowledge.) First, an adversary passes the full-strength 
DEA key to the new  algorithm  and recovers the value of 
all bits in the key via a key exhaustion attack. This is done 
by considering the 40 variable bits in the key as a 40-bit 
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counter and checking all possible values, that is, from all 
bits being set to zero to all bits being set to one. This 
process takes a workfactor of 240, which is about a million 
million trials. Knowing these bits, the adversary then 
passes the key to a DEA invocation and exhausts on the 
remaining  16 bits in the key in a similar fashion. This latter 
attack has a workfactor of 216, which is about 64 thousand 
trials. The sum of these workfactors is  still about Z4’ or 
about a million  million, which is substantially less than 
the workfactor of Zs6 or about 12 quadrillion to exhaust 
a DEA key. Thus, the key partition attack is potentially 
devastating; the inclusion of a new shortened-key 
algorithm  could possibly allow  an attack on the existing 
DEA. 

Another variant of the key partition attack, assuming 
that the new algorithm sets only some bits on the input 
key before passing the key to encipher and decipher 
functions, is that occasionally it  would  be true that those 
bits in the key would already be set. In other words, in 
rare instances (about one in 64000), a full-strength DEA 
key would  conform to the pattern of the shorter new 
algorithm  key. This would be undesirable. Consider the 
possibility of  an insider adversary with access to the 
cryptographic service interface being able to substitute a 
known new  algorithm key for a DEA key. An unsuspecting 
user would use this key thinking that it was a full  56-bit- 
strength DEA key, but the adversary would  know that 
certain bits were set; thus, a key exhaustion attack would 
be much more feasible. Even more subtly, a user could 
generate a full 56-bit-strength DEA key, and  an adversary 
could use the new  algorithm encipher capability as a filter 
by determining whether a standard DEA encipher and a 
new  algorithm encipher produced the same ciphertext 
given the same input. If the results were different, the 
adversary would know that that DEA key does not 
conform to the pattern of the alternate algorithm key (this 
would be the case most of the time). However, if the 
results were the same, the adversary would  know that the 
apparently full-strength DEA key conformed by chance to 
the pattern of a new  algorithm key; therefore, the key 
could be attacked by key exhaustion as if  it were a new 
algorithm  key. 

Since a user could be the generator of the key and the 
filter processing run by an adversary without knowledge of 
the user, this attack has many interesting ramifications. 
For example, an adversary could write some trap code 
testing many full-length  DEA keys to determine whether a 
full-length key ever conformed to the structure of a 
shortened key. This trap code could  then run as a 
background task. The  small cost of executing the trap code 
could be considered analogous to the purchase of a lottery 
ticket, because if the trap code ever detected the right 
conditions, the result would be like  winning a lottery in 
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that a supposedly full-length key could now be broken with 
much less work. 

One way to perceive this problem  is that the keyspace 
for full-strength DEA keys and the keyspace for new 
algorithm keys are not  disjoint. After all, a DEA key or 
a new  algorithm key are both just 64-bit binary numbers. 
If the values were equal, what could one do to tell  them 
apart? 

The solution to this apparent dilemma was to realize the 
essential asymmetry of the problem:  Since a CDMF key 
has fewer  effective key bits than a DEA key, an adversary 
would  like to attack a DEA key through use of the CDMF 
algorithm, but the reverse is  not a concern. Therefore, 
since the goal was to protect the value of the input key, 
the use of a cryptographically strong one-way function 
suggested itself. A strong one-way function is one for 
which  it is easy to compute the output from the input but 
is considered computationally infeasible to invert; in other 
words, given a particular output of the one-way function, 
it  is very difficult to find an input that will produce that 
particular output. Therefore, if the input key were passed 
through a one-way function, the value of the input key 
would be difficult for an adversary to determine, even if 
the adversary knew the value of the CDMF-derived key. 
A standard cryptographic one-way function is achieved 
by encrypting the input under a constant key and then 
exclusive-ORing  (XORing) the resulting ciphertext with the 
input text to produce the result.2 

The rationale for the selection function was to limit 
the variability of the resulting value so that it is easy to 
demonstrate the effective strength of the key both to 
customers and to organizations responsible for enforcing 
the regulations on cryptographic products. The selection 
function sets sixteen bits, which were variable up to this 
point, to a constant, leaving forty bits of variability. 

The rationale for the expansion function was to reduce 
potential concerns regarding the possibility of the 
development of a shortcut method of attack because 
certain key bits are held constant. The term “shortcut” 
implies an attack that is quicker than exhaustion of the 
keyspace. While such a shortcut attack is currently 
unknown, the fear was that sometime in the future 
someone might be able to reduce the strength of the 
CDMF  algorithm  below its declared strength, possibly 
because of the pattern in the derived key. To mitigate this 
concern and mask any pattern in the derived key, this step 
takes advantage of the pseudorandomness property of the 
DEA and processes the shortened key by encrypting it 

2 It is interesting to examine the history of this one-way function. In  1979, while 
writing  their book [4], Matyas and Meyer discussed different block chaining 
methods, and this one-way function was filed away, among others, in a “work- 
to-do” sheet. It was not until  1982  that Meyer recognized the importance and 
advantage of this particular function and caused it to be incorporated into an IBM 
cryptographic design proposal. It was subsequently also used as the kernel for the 
Modification Detection Code (MDC) algorithm [8, 131. 221 

D. B. JOHNSON ET AL. 



with a constant DEA key to produce the CDMF-derived 
key passed to the DEA invocation. This spreads the 
variability of the value produced in the selection step 
across the key space of the DEA, since a single bit change 
on the input produces a large  difference in the output. This 
step helps ensure that an attacker is forced to determine 
the key by exhausting all possible keys. 

Security  analysis of the  algorithm 
Some security-related goals of the CDMF algorithm are as 
follows: 

1. Its strength is based on the difficulty of key exhaustion. 
The strength of a CDMF key is equivalent to 40 
independent DEA-key bits. 

pseudorandom selection from one of 240 possible 
CDMF-derived keys. 

By  basing the kernel of the algorithm on the DEA, 
concerns relating to its inherent strength are addressed, 
since the DEA has proven itself strong against diverse 
cryptanalytic attacks. It is estimated that designing and 
validating the DEA (verifying that it  had no inherent 
weaknesses to the best of the designers’ knowledge) 
required about seventeen person-years (and some actual 
years). The DEA has demonstrated itself to be strong 
when  challenged by many techniques that have defeated 
other supposedly strong cryptographic algorithms.  Given 
our limited  time  and resources, it was suggested that the 
DEA be used as the basis for the new  algorithm,  with the 
addition that there be a preprocessor to the DEA process 
to shorten the effective  length of the key. 

A CDMF key has a variability of 240, or about a million 
million. In analyzing  how to exhaust a CDMF key to 
recover the plaintext from ciphertext, the value of 12 
calculated in step 3 of the CDMF algorithm can be 
considered to be a 40-bit counter, albeit  with some 
extraneous constant bits scattered throughout the 64-bit 
value. With complete knowledge of the CDMF  algorithm, 
with  knowledge that it  is  being used in a specific situation, 
and  with some small amount of plaintext with its 
corresponding masked text, testing whether a trial derived 
key will produce the masked text from the given plaintext 
takes two encryption steps (one to derive the key from 
the counter and the other to mask the plaintext) and a 
comparison. Assuming that the comparison step takes a 
negligible amount of time and the exhaustion attack utilizes 
software on a 16-MHZ microprocessor chip which is 
capable of 7000 DEA encryption steps per second, the 
expected time to find the derived key (that is, search half 
the key space) is calculated to be about 4.8 years. 

Assuming the use of a very fast DEA chip capable of 

2. A particular value of a CDMF key results in a 

222 4000000 DEA encryption steps per second, the expected 

time to find the derived key is calculated to be about three 
days. A study has recently been made by Wiener [13]  in 
which construction is assumed of a special-purpose 
pipelined DEA chip capable of testing 50000000 DEA keys 
per second. Assuming the use of such a chip, the expected 
time to find the derived key is calculated to be about 5.8 
hours. The study also proposes that a DES key search 
machine  could  be  built  using these chips for around 
$1500000.  Using such a machine, the expected time to find 
the derived key is calculated to be about 364 milliseconds. 

Hence, the capability of an adversary to find the derived 
key can be considered a matter of time  and  money. 
However, there are actions a user could take to mitigate 
the risk. For example, a user could perform selective 
masking  (masking only secret data and avoiding  masking of 
information that is not secret), since this would reduce the 
ability of an adversary to match masked text with its 
plaintext. The use of an appropriate data compression 
technique before masking  would also complicate the 
adversary’s task. Changing the CDMF key frequently 
would  limit the scope of any exposure. 

One type of possible refinement to a key exhaustion 
attack is to perform a time/memory tradeoff, that is, be 
willing to use some memory resources in  an attempt to 
reduce the time required. One obvious way to do this is to 
build a dictionary of all CDMF-derived keys. This  would 
have to be done only once and would  eliminate the need 
for doing the encryption in the expansion step of the 
CDMF algorithm, thus reducing the number of encryptions 
needed to one per trial-derived key. Since there are over a 
million  million CDMF-derived keys and each such key is 
8 bytes long, such a dictionary would require about 8000 
gigabytes (243 bytes) of storage. This might be reduced by 
sorting and storing only portions of the keys, but the 
storage needed  would  still be around 2000 gigabytes. Such 
an attack is considered unlikely, since the cost in space 
does not appear worth halving the time. 

Without knowledge that the masked text was produced 
using the CDMF algorithm rather than DEA,  but  still  given 
the assumption of some masked text with  known plaintext, 
the exhaustion workfactor of a CDMF key is the same as 
for a DEA key. 

Note that if the CDMF algorithm  definition  is altered to 
use arbitrary secret values for the keys K1 and K2 used 
in steps 2 and 4 and the specific  bits set to a constant 
in step 3, the key exhaustion attack mentioned above 
is  not feasible. However, considerations of system 
interoperability, user acceptability, and Kerckhoff s 
principle3 led  us to decide on specific constants for these 
values in the CDMF definition. 

3 KerckholYs  principle  states  that  the  security of a  cipher  system  resides  entirely 
in  the secrecy of the key. That is,  it is assumed  that the adversary knows a l l  the 
details of the  cipher  system,  including  the  details of the  algorithm,  except  for  the 
secret key [15]. 
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Note also that the complementary property of the DEA4 
is, in general, not a property of the CDMF algorithm. 
Since the complementary property of the DEA has been 
used to reduce the workfactor in certain types of key 
exhaustion attacks, the absence of this property in the 
CDMF algorithm  is a positive attribute. 

Advantages of the  algorithm 
While comparable implementations of the CDMF algorithm 
are expected to be slower than implementations of the 
DEA or of  RC2, there are some significant advantages to 
the CDMF algorithm, as listed below: 

1. The primary advantage of the algorithm  is that systems 
can be implemented using  it that should, in general, be 
exportable; yet it is based on the strength of the DEA, 
which has stood the test of time. 

2. The specification of the CDMF  algorithm,  like the DEA 
and  unlike RC2, is public knowledge  and therefore 
permits open scrutiny and analysis by cryptographers. 
Thus, the CDMF algorithm is aligned  with the emphasis 
on open systems. 

3. A new system that supports only data privacy methods 
using the CDMF algorithm can be set up so that it  is 
interoperable with an existing system that supports only 
data privacy methods using the DEA. This can be 
accomplished by having the new CDMF system 
generate the keys and apply the key-shortening process 
(only) to the key that is  being sent to the existing DEA- 
only system. On both systems the cryptographic 
transformations will then be equivalent, although the 
values of the keys will be different. Because the key 
must be shortened on the CDMF-based system, there is 
an inherent asymmetry to this solution. Note that it  is 
possible to prove, in some sense, that a DEA key was 
actually derived from the CDMF key-shortening 
process. This may be achieved by performing a DEA 
decryption with the constant key used in the expansion 
procedure on the DEA key (as data) and determining 
whether the result conforms to the pattern for the 
counter after the selection function. 

4. Existing methods of generating pseudorandom 64-bit 
DEA keys can be used to generate 64-bit CDMF keys. 

5. Existing methods of distributing DEA keys can be used 
to distribute CDMF keys. The key distribution method 
can make use of DEA key-encrypting keys of either 
single or double length.  This  allows the key distribution 
mechanism to be strong and helps allay concerns that 
an adversary will be able to break a key-encrypting key, 

4 The complementary property of the DEA can he described as follows: Let 

Y, and let' indicate bitwise complementation, that is, inverting the value of each bit 
eKm = Y denote DEA encryption of plaintext X using key K to produce ciphertext 

in a value. Then the complementary property of the DEA states that if eK(X) = Y, 
it follows that eK' (X') = Y '  . Alternately, the complementary property can be 
stated as e K 0  = (eK'(X'))'; see 141. 
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thereby exposing all  of the keys encrypted under it. For 
example, methods found  in ANSI X9.17 [15] or the 
IBM  Common Cryptographic Architecture [7] may be 
used to distribute CDMF keys. 

The CDMF  algorithm  and  the IBM Common 
Cryptographic  Architecture 
With  regard to integrating the CDMF algorithm into 
existing implementations conforming to the IBM  Common 
Cryptographic Architecture, the following four 
configurations may be of interest: 

1. A CDMF-only system in a homogeneous  CDMF-only 

2. A mixed  DEA  and  CDMF system in a homogeneous 

3. A CDMF-only system in a heterogeneous DEA and 

4. A mixed DEA and CDMF system in a heterogeneous 

network. 

DEA and  CDMF network. 

CDMF network. 

DEA and CDMF network. 

The first  configuration  is the easiest to understand. In 
this case, because there was formerly no existing method 
to achieve data privacy, the Common Cryptographic 
Architecture encipher and decipher services must be 
modified to use (only) the CDMF algorithm.  The existing 
services to generate or install keys into the system would 
remain  unchanged. This system is intended to be 
exportable. 

The second configuration  is  an extension of the first.  In 
this case, both the DEA and the CDMF algorithms could 
be selected by the user as the method to use for data 
privacy. Under current guidelines,  this system would  not 
be intended to be freely exportable, but would be available 
for financial institution use. A financial institution could 
use the DEA when communicating  with other financial 
institutions and could use the CDMF algorithm when 
communicating  with  nonfinancial institutions. 

The third  configuration assumes the requirement that a 
user will wish to be  able to exchange masked text between 
a CDMF-only system and a DEA-only system; otherwise, 
the configuration  simplifies to the first one. To meet this 
requirement, a new service, the CDMF key transform 
service, is needed to transform a CDMF key into a 
CDMF-derived DEA key. This service can only be 
assumed to exist on a new  CDMF-only system, since 
DEA-only systems are assumed to be installed already in 
an existing network. This system would be intended to be 
exportable. 

The use of this CDMF key transform service requires 
some intelligence. If both systems are CDMF-only systems 
or both systems are DEA-only systems, the CDMF key 
transform service should not be used. If one of the 
systems is a DEA-only system and the other is a CDMF- 
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only system, the key used on the CDMF-only system must 
not  be transformed, while the key used on the DEA-only 
system must be processed by the CDMF key transform 
service. To aid in the determination of what should be 
done, either the key distribution application will be 
required to keep track of what is occurring, or 
enhancements will have to be made to products 
conforming to the IBM  Common Cryptographic 
Architecture that allow  an indication to be kept in the key 
token for a key-encrypting key (used to encrypt keys 
between one system and another) regarding whether the 
system for a particular key-encrypting key is a DEA-only 
system, a CDMF-only system, or whether the type of 
system has not been specified. Use of this information 
would permit the correct decision to be made transparent 
to the caller of the services. 

The fourth configuration is the most complex. One  goal 
of the design was to allow the system administrator to 
configure a system so that the system would appear to a 
user as if it were a system in  configuration one, two, or 
three, yet continue to support the ability of a user to 
specify explicitly what type of processing should be done 
when that was appropriate. This objective attempts to give 
the user the best of both alternatives. A user might  let the 
choices default and rational choices would be made “under 
the covers,” but a knowledgeable user could  exploit the 
functionality of the system as desired. This objective is 
met through the use of the “meta-default” concept 
whereby the system supports the system administrator 
specifying the default to be used if the user selects to use 
the default option. Of course, the system will select the 
default if the user has not  specified which value to use. 
This chain of default specifications is very flexible  in that 
it supports meeting the user’s requirements. Since this 
system includes DEA-based data privacy, it is not intended 
to be freely exportable under current guidelines. 

CDMF  test  cases 
In addition to the standard suite of test cases used to test 
the DEA portion of the implementation [17], the following 
test cases can be used to help ensure, but obviously 
cannot guarantee, a correct implementation of the CDMF 
algorithm: 

Test 1 

clear CDMF key of X’FFFFFFFFFFFFFFFF’ . 
cleartext of X’Ol23456789ABCDEF‘. 
masked text is X’lPCC8EE83C686380’. 

Test 2 
clear CDMF key of X0000000000000000‘ . 
cleartext of X’0123456789ABCDEF’ - 

Test 3 
clear CDMF key of X’0123466789103254’. 
cleartext of X’0123456789ABCDEF’. 
masked text is X’7D74922D74B12E13’. 

These test cases may be run to ensure that the masked 
text is produced from the specified cleartext using the 
key designated for the CDMF masking. The same test 
cases may be run using  CDMF  unmasking to ensure 
that the cleartext is produced from the masked text in 
each case. 

Concluding  remarks 
A CDMF version of Advanced Interactive Executive/370rn 
(AIW370) code was made available by IBM late in 1992. 
An IBM satellite one-way broadcast project is currently 
using the CDMF  algorithm,  and a CDMF product has been 
developed in connection with the IBM Transaction 
Security System (TSS). The  need to integrate the algorithm 
into the IBM  Common Cryptographic Architecture has 
been identified and is  being addressed. The CDMF 
algorithm  is currently IBM’s strategic exportable data 
masking method. As the benefits of the algorithm  become 
known, we expect that its implementations will continue to 
expand. 
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