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A family of adaptive communication receivers 
based on recursive least-squares  sequence 
estimation (RLSSE) algorithms is proposed 
which provides performance comparable to 
that of conventional linear receivers, but with 
reduced complexity and less sensitivity to 
channel mismatch.  A software-implemented 
version of the linear member of the family is 
shown to have performance equivalent to that 
of standard transversal equalizers under ideal 
conditions, yet offers a drastic improvement in 
white Gaussian noise mismatch environments. 
An analogous performance improvement for 
several test channels is also shown for 
software-implemented versions of the 
constrained (nonlinear)  members of the family 
over decision feedback  equalizers. Another 
advantage of the RLSSE family of receivers 
may be its ease of implementation, since it 
should be possible to combine the functions 
of channel estimation and  sequence estimation 
on the same  chip. 

Introduction 
Inherent in every communication system are channels 
which  link the transmitter and receiver. These channels 
include telephone lines used  in voice and  modem 
applications, underwater channels used  in acoustic 
applications, read/write channels used in magnetic storage 

devices, and atmospheric channels used in radar, satellite, 
and other wireless communication systems. Although their 
physical media  and propagation characteristics vary 
greatly, these channels typically share three fundamental 
problems which  plague the majority of high-speed 
communication systems: intersymbol interference, noise, 
and channel mismatch. 

InterJyrnbol integerence 
The majority of practical communication systems are 
adequately modeled as linear systems in which the 
received signal represents the convolution of the 
transmitted sequence with the channel impulse response. 
Because of several elements, including faster-than-Nyquist 
signaling  and  band-limited channels, the time dispersion 
created by this convolution causes a received pulse to be 
spread in time. Hence, two (or more) adjacent symbols 
can interfere with one another; this can be intuitively 
understood by analogy  with echoes over telephone lines. 
The phenomenon, which  is  commonly  known as 
intersymbol interference (ISI), may cause severe 
degradation in system performance unless the receiver 
can unravel or deconvolve the received signal. 

There are many well-known receivers which  mitigate the 
effects of ISI. These make use of schemes that range from 
high-complexity  algorithms based on  maximum-likelihood 
sequence estimation (MLSE) to low-complexity linear and 
decision feedback equalizers (DFEs). The latter have been 
and continue to be the backbone of modern receivers 
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by complexity and by assorted training/processing errors, 
some degree of channel mismatch is inevitable. U+-pl+-(q--p ik,) Receiver above, With the respect objective to the of three this paper fundamental is to propose problems a robust, posed 

low-complexity scheme for sequence estimation in the 
presence of noise,  intersymbol inte~erence, and 
mismatched channel conditions. The paper first formulates 
the problem of interest and then provides a brief yet 
important review of a related receiver, as well as the 

0 

theoretical development of the common least-squares 
algorithms. Theoretical and emDirica1  Derformance 

Y 

analyses are then provided for a new  family of receivers, 
followed by implementation considerations and a summary 
of the new results. 

[l-31. For all these schemes, though,  mitigating their 
complexity and/or suboptimum nature, particularly in real- 
time applications where low complexity is crucial, remains 
an open challenge. 

Noise 
Although the performance loss due to IS1  is typically the 
predominant factor in higher-data-rate systems [l], noise 
remains a key contributor to performance degradation. Of 
course, there are many types of random disturbances, such 
as thermal noise attributed to a receiver's front end, active 
jammers found in military systems, and  impulsive noise 
due to switching. However, since thermal noise plagues 
all practical receivers, one cannot ignore this common 
problem. 

By itself, thermal noise can cause appreciable 
performance degradation; coupled with severe ISI, as 
found  in channels with spectral nulls, noise can be 
crippling, particularly to linear receivers which more 
or less invert the channel and thus enhance the noise. 
Although nonlinear methods have been sought in these 
cases, the DFE is perhaps the only nonlinear receiver 
which can satisfy a low-complexity constraint while 
adequately treating these channels. Thus, expanding the 
number of low-complexity alternatives to treat noisy 
channels with severe IS1  is  still a key area of research. 

Channel mismatch 
Generally, a receiver must have at least implicit 
information regarding the spectral characteristics of the 
channel as well as  the statistics of the corrupting noise. 
Unfortunately, these quantities are often unknown  and 
possibly time-varying. Therefore, a receiver must 
continuously track the changing channel and noise 
statistics. If the receiver is not able to provide this feature 
accurately, the receiver is said to operate in the presence 
of channel mismatch. Under ideal training conditions and 
with sufficient processor power, continuous updates could 

132 be performed. However, since realistic cases are limited 

Problem  formulation 
As shown in Figure 1, we restrict attention to the common 
discrete-time equivalent communication system  model. In 
the figure,  an uncoded pulse-amplitude-modulated (PAM) 
binary data symbol, xk,  is transmitted across a linear time- 
invariant (LTI) channel filter' with  impulse response {hk}. 
The filter output y ,  is then corrupted by additive white 
Gaussian noise (AWGN), denoted as nk, which has a zero 
mean  and a variance of un*. Thus, the kth received symbol, 
rk, can be expressed as 

m 

and the goal of the receiver is to efficiently process this 
received signal to generate ik, a reliable estimate of the 
transmitted signal. 

adaptive communication receivers is proposed which is 
based on variants of the common recursive least-squares 
(RLS) algorithm. These new  algorithms,  which  we refer to 
collectively as recursive least-squares sequence estimation 
(RLSSE) algorithms, offer the performance and low 
complexity enjoyed by traditional receivers, yet  are 
insensitive to practical phenomena such as noise 
mismatch, which have been shown to plague both linear 
and DFE receivers [4]. In addition, we show that RLSSE 
receivers can be implemented in a very efficient manner, 
since the same basic algorithm can be used for both the 
channel and sequence estimation tasks [5]. 

To address this challenging problem, a family of 

Kalman  filter  equalizer 
The basic RLSSE structure described herein is related to 
the Kalman filter equalizer ( D E )  originally proposed by 

:Although  the  problem of interest is aimed  at  time-varying  channels, we approach 
it by assuming  that  the  sampling  rate is much  greater  than  the  channel  dynamics. 

F. GOZZO IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 



Lawrence and  Kaufman [6], who utilized a discrete 
Kalman  filter to estimate a binary input sequence 
transmitted over a dispersive finite  impulse response (FIR) 
channel. They also treated the channel estimation problem 
by extending the state vector to include the channel tap 
coefficients. This (nonlinear) extended Kalman  filter (EKF) 
approach falls into the category of  blind equalization, since 
no training sequence is exploited. 

There have been several other efforts which  follow the 
KFE approach for sequence estimation. Mark [7] briefly 
discusses the initialization of the state vector, as well as a 
method of avoiding the EKF approach in [6] by estimating 
the channel tap gains via a pseudo decision feedback 
approach. Kleibanov et al. [8] also investigated the 
Kalman equalizer, but examined its convergence properties 
further and showed the advantages of increasing the filter 
dimension beyond the length of the channel filter. Luvison 
and Pirani [9, 101 also proposed a scheme which is based 
on that of [6], but additionally discussed topics such as 
carrier recovery, timing extraction, and limitations of the 
KFE under real-time constraints. 

An in-depth summary of the KFE approach as well as 
its practical considerations can be found in the work of 
Benedetto and  Biglieri [ll], who extended the theory to 
cover correlated data, and also provided several examples 
to demonstrate the sensitivity of the KFE approach to 
channel mismatch. Mulgrew  and  Cowan also presented a 
detailed state-space analysis of the KFE for signaling over 
minimum  and  nonminimum phase channels [12]. By 
exploiting Wiener  filter theory, they bounded the 
performance of the KFE and showed that the convergence 
and MSE performance of FIR transversal equalizers and 
KFEs are roughly the same. They also found that the KFE 
was typically of lower order, although this does not 
necessarily constitute lower overall complexity. 

Prasad and Pathak [13] developed a similar analysis; a 
state-space approach was exploited. However, they used 
Mendel's smoothing approach from  seismology [14], 
claiming that it yields marginally better performance under 
a low-complexity constraint than the Lawrence-Kaufman 
approach 161. More recently, Yurtseven and Kumar [15] 
have revisited the work of [6] and  applied a stochastic 
Newton algorithm for the estimation of the extended state 
vector. Although they claimed to have improved  on the 
EKF approach of [6] ,  their approach is also not guaranteed 
to converge. Similar  efforts for improving the EKF channel 
estimator can also be found in the work of Delle  Mese  and 
Corsini [16]. 

Limitations of the KFE approach 
Although the KFE approach described above is 
theoretically sound and may be useful in certain 
applications, KFE receivers share two fundamental 
limitations. First, one must have an accurate estimate of 
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the noise statistics in order to fully  exploit the Kalman 
filter structure.' This not  only increases system complexity 
(since a noise variance estimator must be implemented), 
but also renders KFE receivers susceptible to noise 
mismatch. Second and  more important is the fact that 
the Kalman  filter is inherently a linear filter; hence, its 
performance over channels with spectral nulls  is severely 
degraded by noise enhancement. In fact, the MSE 
performance of all KFE receivers is (asymptotically) no 
better than that of conventional linear equalizers-simple 
linear filters-optimized for an MSE criterion. This 
fundamental limitation, coupled with the noise mismatch 
problem, precludes the use of existing KFE schemes over 
many practical channels. 

Motivation behind the E S S E  approach 
The RLSSE approach has been motivated by three 
practical needs:  low complexity, reduced sensitivity to 
channel mismatch, and adequate performance over 
channels with spectral nulls. It differs  from the KFE 
approach in several fundamental respects. First, the error 
criterion used in the RLSSE receivers is based on a least- 
squares criterion rather than a least-mean-square criterion. 
Since the least-squares approach makes no assumptions 
regarding the statistics of the noise, we  will see that the 
RLSSE algorithms are impervious to white Gaussian noise 
mismatch,  and that they are significantly less complex, 
because an estimate of the noise variance is  not needed. 

The second fundamental difference is that one class of 
the proposed RLSSE algorithms  is nonlinear. Therefore, 
while the simplest (linear) RLSSE algorithm is comparable 
in performance to linear  equalizers-and hence KFE 
receivers-the constrained RLSSE algorithm can cope 
with channels with spectral nulls. Finally, and perhaps 
most important from a practical standpoint, we show that 
the RLSSE algorithms  lead to an extremely efficient 
implementation, since the channel estimation and sequence 
estimation tasks have a duality that is  fully exploited by 
the RLSSE approach [5]. 

Least-squares  sequence  estimation 
The new RLSSE algorithm introduced in this section falls 
in the class of channel estimation-based receivers, as 
shown in Figure 2. This class of receivers requires an 
explicit channel estimate to decode the transmitted 
sequence, and has been found to be generally more robust 
to mismatch conditions than channel-equalization-based 
receivers such as the linear, DFE, and neural-network- 
based receivers. 

worthwhile to briefly  review the standard RLS algorithm 
Before we describe the RLSSE algorithm,  it is 

2 A method of estimating the noise statistics was briefly discussed in [12]; however, 
the complexity and accuracy of such a process remain an open  issue. 133 
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Communication receivers 

I 
Channelegualization-based Channd-estimation-based 

Neural net KFE 

Linea RLSSE MLSE DFE 
- 

Partition of selected  communication  receivers.  The RLSSE approach  falls  under  the  category of channel-estimation-based  receivers. 

and its utility  in channel estimation. As we contrast the Batch least-squares channel estimator (BLSCE) 
channel and sequence estimation problems and note their In our analysis, we assume a slowly  time-varying channel 
strong duality, the motivation behind the RLSSE approach filter which can be described by a finite-order difference 
becomes apparent. equation given by 

RLS algorithm  and  channel estimation 
The application of the recursive least-squares (RLS) 
algorithm to adaptive filtering problems has had 
considerable attention in the communications literature 
because of its fast convergence properties and insensitivity 
to the channel's eigenvalue spread [2,  17-22]. It has sewed 
well in initializing  and tracking the taps of linear and 
decision feedback equalizers, and has also been extremely 
useful in the task of channel estimation, which  is crucial in 
any MLSE receiver. 

Although the development of the least-squares estimator 
is now  well known, we review it  briefly here so that the 
RLSSE development can exploit this familiar derivation. 
We derive both the batch and recursive forms of the least- 
squares channel estimator in order to expose the features 
which will help us predict the performance of the RLSSE 
family of receivers. In addition, in order to deal with 
possible variations in the coefficients of the channel model, 
an exponential weighting is also employed in the least- 
squares performance index. 

134 
The channel estimation approach here and  in Appendix A follows that found in [Z] 

and [19],  but has been extended to treat  the more generic IIR channel model. 

M L-1 

i = l  i = O  

where xk and yk  represent the noise-free channel input and 
output, respectively, and M and L represent the order of 
the model. Thus, it  is clear that yk  can be recursively 
computed solely on the basis of M past outputs and L 
inputs, and our development also holds for the special FIR 
case (i.e., M = 0). 

We can define the coefficients of the actual channel 
model  in (2)  by a and b, which are of dimension M X 1 
and L X 1, respectively, and are given by 

a = [a, a2 - aMIT, 

b = [bo b, * * * bL-JT, (3) 

where [*IT denotes transposition. For notational 
simplicity,  an (M + L )  X 1 coeficient  vector is 
introduced and  defined as 

c = [;I. 
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Since the vector e completely specifies the actual channel, 
the channel estimation problem can be  posed as finding  an 
estimate E which is closest to e in a least-squares sense.4 
The actual channel and its estimate at time k are denoted 
by ck and Ek, respectively. 

symbols is transmitted, resulting in the N + 1 
input-output observable pairs, 

Assume that a known training sequence of N + 1 

{(xo, rO)(x19 '1) ' * rN)>* (5) 
To ensure a unique solution, let N > n ,  where n is  defined 
as n = max(L, M ) .  Let the vector qk be defined as the 
(M + L )  x 1 training  vector' 

qk = Irk-1 ' k - 2  ' * ' 'k-M xk xk- l  * * * xk-(L-l)lT' (6) 

We define the estimation error  ek as the difference 
between the actual channel output (i.e., the desired 
response) and the estimated channel output: 

ek = rk - ql<. (7) 

We can use the vector form of the above equation, i.e., 

e, = 'N - QN EN 9 (8) 

where rN and e, are (N - n + 1) X 1 observable and 
error vectors, respectively, and Q, is an (N - n + 1) X 

(M + L )  training  ma&. These are given by 

rN = Irn 'n+I * ' * rN]T ,  

eN = [en en+l - e,lT, 

The cost, J ,  for a weighted least-squares performance 
index can be expressed as 

N 

J = 2 wke:, (10) 
k=n 

where wk is  defined as an exponential weighting  term, 

wk = y(N-k)  0 < y s 1, n 5 k s N. (11) 

To express our cost equation in matrix form,  we  define a 
weighting matrix W,, whose elements are given  by 

4 Real-valued (soft) estimates of a vector v are denoted as 1, and G denotes a  binary 
(hard) estimate. Also, unless denoted otherwise by context, lowercase bold symbols 

5 In theory, q k  should be the ideal training vector, 
represent vectors, while uppercase bold symbols represent matrices. 

% = bk.1 Yk.2 ' " Yk-M xk xk.l ' " Xk-(L.lJr. 

But for IIR channels (M > 0), the first M elements in this ideal version require 
knowledge of the unobservable (noise-free) channel output, so the more practical 
definition above is used. Although the implications of this are not significant at 
moderate signal-to-noise ratio (SNR), the practical definition generally leads to 
biased channel estimates for IIR channel filters that  are based on an  output-error 
formulation 1231. 

Thus our cost function can be formulated as 

J = eiWNeN 

= [ r ~  - QN ENI~WJ~N - QN EN] 

= rLWN r, - EiQiW, rN - riWNQN E, + EiQiWNQN EN 

= r;WNrN - 2EiQiWNrN + EiQiWNQNEN. (13) 

Now, by using the gradient operator to minimize (13) with 
respect to E,,,, we obtain 

VJ = -2QiWN r, + 2QiWNQN E, = 0, (14) 

where 0 is the all-zero vector. Solving for E, yields the 
optimal weighted least-squares estimate, 

E: = [QiWNQN]"QiWNrN. (15) 

With each new received signal,  we can update the channel 
estimate by simply updating the observable vector r and 
the training matrix Q, and computing the new channel 
estimate by (15). The update of r can be accomplished via 

where we have introduced an initialization  vector g, which 
is  defined by 

g = [O 0 ' . *  0 0 11. (17) 

The shift matrix S is given by 

S =  

'0 0 0 0  
1 0  0 0  
0 1  . .  

. ... . . 
. .   . .  
. .  0 0  

,o  0 1 0  

A block diagram6 of the BLSCE structure is shown in 
Figure 3. Note that while the continuous update of the 
observable vector r is explicitly shown, the continuous 
update of the training matrix Q is  not shown. 

Several observations can now be made  regarding the 
BLSCE structure which will  be useful for comparing with 
the batch sequence estimator development. 

BLSCE  observations 
Linear  estimator - Since all operations on the 
observable vector are linear operations, we see that the 
BLSCE structure is clearly a linear estimator. 

6 Solid lines in subsequent figures represent scalar values, while dashed lines 
represent vector quantities. 135 
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conditioned nature [2]. Also, the intermediate variables U, 
and vk have been introduced to reduce  computation^.^ 

Duality between channel  and sequence estimation 
Theoretically, the receiver has no  knowledge of whether a 
signal {x,} was passed through a linear filter  with  impulse 
response {h,}, or whether {h,} was passed through a filter 
with  impulse response {x,}. The channel output is simply 
the noise-corrupted convolution of the input  and channel 
impulse response, i.e., 

rk = x, * h, + n, . (20) 

By  posing both problems in a system identification 
framework, we  can describe the two problems as dual 
adaptive filtering tasks. That is, the channel estimation 
process uses a known  information sequence to identify an 
unknown channel, while the sequence estimation process 
uses a “known” impulse response to identify an unknown 
sequence. This duality is shown in Figures 5 and 6. The 

Recursive least-squares channel estimator (RLSCE). inherent similarity between channel and sequence 
estimation is clearly evident from (20) and the figures. 
Several observations worth noting are  the following: 

Time-varying - Since q:, and hence Qi, are changing 
with each new  training symbol, the filter shown in the 
diagram  is a time-varying structure. Note further that 
this is true whether or not the channel is time-variant. 
Sensitive to training  matrix - By  noting the inverse 
operation required in this structure, we see that the 
estimator performance hinges  upon the invertibility of 
[Q,’wQ,]. However, since we are at liberty to design 
the training sequence a priori, a carefully planned 
training sequence usually avoids any significant 
problems. 

variant, the inverse operation shown in the diagram  must 
be performed with each new sample. This  is, of course, 

136 highly  inefficient,  and  so recursive forms are desirable. 

High complexity - Since the BLSCE filter  is  time- 

Both problems are inverse problems (more specifically, 
deconvolution problems) which are known to be ill- 
posed; i.e., their solutions for nontrivial cases are not 
necessarily unique. 
In general, accurate knowledge of {h,} is required to 
estimate {xk} ,  and vice versa. 
Accurate estimation of an arbitrary {h,} requires the use 
of a known sequence {x,}  which is persistently exciting; 
i.e., the training  signal  must have sufficient energy in the 
spectral bands of interest to excite the unknown channel, 
and vice versa. 

Although  both problems share these similarities, the fact 
remains that {h,} is specified over a field  of reals, and {x,} 

7 An intermediate variable is introduced in [19] to reduce computation. That 
variable was factored to yield Uk and vk, resulting in a  further reduction (at the 
expense of memory). 

F. G O U O  IBM J. RES. DEVELOP. VOL. 3s NO. 2 Mmcn 1994 



Table 1 Recursive least-squares channel estimator (RLSCE) algorithm. 

No. Procedure * X + s  I t 0  Storage Comment 

0 k = 0, Eo = cinit, - - " - - Initialization 

Po = E " I  

1 r k , k = k +  1 0 0 0 0  1 1 Receive signal 

qk 0 0 0 0  N N Training vector 
3 Uk = y-*p,-, 0 0.5(N2 + N) 0 0 0.5(N2 + N )   N 2  Intermediate step 

' k  = 'kqk N 2   N 2  0 0  1 N Intermediate step 

5 k k = -  ' k  N + l  N N O  1 N Gain vector 
+ ql'k 

Tk = ' k  - q:'k-, N + l  N 0 0  1 1 Innovation term 

7 Pk = U, - kkVT 0.5(N2 + N)  0 .5(N2 + N )  0 0 0.5(N2 + N )   N 2  Correlation matrix 
inverse 

8 Ek = Ek-, + kkTk N N 0 0  0 N Channel estimate 

Total 1.5N2+3.5N+2  2N2+4N N 0 N 2 + 2 N + 4   2 N 2 + 4 N + 2  

Nores: 
" 

1. 4 = [*I ' " * M  bo " ' b ~ - 1 1 ~ ,  q k  = [Yx-~ ." Y X - M X X  " ' + - ( ~ - l ] ] ~ .  
2. N is the  order of the estimator; i.e., N A M + L .  

4. YO represents memory inputloutput with no arithmetic operations performed. 
3. qni, is initial estimate; E is small positive constant; y is exponential-weighting. 

5. Step 3 not required if y = 1.0. 
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is over a binary field. Thus, while channel estimation deals 
with the estimation of a finite number of real-valued 
parameters, sequence estimation* deals with the estimation 
of an infinite number of binary-valued parameters. 

By exploiting the duality shown in Table 2 and applying 
the new variables directly in the solution for the least- 
squares channel estimate (15), 

Batch least-squares sequence estimator (BLSSE) 
The duality described above suggests that by making 
several basic substitutions, the same estimator structure 
can be used, and so we now revisit the batch channel 
estimator and perform the appropriate modifications. 

First, we need an appropriate model  for the unknown 
information sequence. Since we are assuming that {x,}  is 
an uncoded' sequence, the z-transform of an arbitrary 
L-length message sequence can be given by a simple FIR 
model, viz., 

we obtain the unconstrained solution for the least-squares 
sequence estimate, i.e., the real-valued sequence estimate 
which is closest to the actual transmitted sequence in a 
least-squares sense. Recall, however, that the transmitted 
information  need  not be of finite  length,  and  it  is, 
furthermore, a binary-valued sequence. To accommodate 
this, we first extract the first element of Ek by filtering the 
parameter vector, 
- 

xk-(L-l) = fEk, (25) 

where the pick-off vector f is  defined  by 
L-1 

X(z) = 2 x$, (21) 
i=O 

where the length of the message sequence is at least as 
long as the channel response to enable a unique solution. 
Thus, by using the same naming convention followed in 
the channel estimation development, we find that the 
coefficient vector and its soft estimate are now  given by 

'k = LXk-(L-1) Xk-(L-l)+l 

Ek = ['k-(L-1) 'k-(L-1)+1 ... 'k-1 'k]" (22) 

... 
xk-l XklTI 

Next, we must reexamine the topic of input-output 
observable pairs. Recall that the channel estimator 
development required the use of a known training 
sequence. The same applies for sequence estimation. 
However, in this case the "known"  training  signal is the 
estimate of the channel's impulse response. Thus, the 
training vector is  now  given by the (L X 1) vector 

qk = rhL-I 'L-2 * * '1 $1'. 
" 

(23) 

The estimated samples of the impulse response are 
determined by 

M L-l 

,=I  i=O 

where is the Dirac delta function, and the parameters 
i i i  and g, are found by the channel estimator. Note that the 
training matrix also changes with the new qk, as defined  in 
(9). These key variables and their counterparts in the 
channel estimation process are summarized in Table 2. 

From  a classical standpoint [24], it can be argued  that what is commonly known 
as sequence estimation is not an estimation problem at all, but  a detection problem. 
We resist this argument, since posing the problem in an estimation framework leads 
to an elegant duality which we exploit. 
9 This model could be easily modified for exploiting sequences which have been 
intentionally (or unintentionally) coded  by a linear filter, such as a transmission 
filter or linear code used in bandwidth-shaping schemes. 

This soft decision can now be passed through a simple 
threshold device to yield the hard decision2k-(L-l,, i.e., 

The process described would continue by simply  shifting 
the elements of rk as was done in the BLSCE structure, 
and recomputing the least-squares solution given by (15). 
A block diagram of the BLSSE receiver is shown in 
Figure 7. 

BLSSE observations 
Identical in structure to batch channel estimator - 
Preceding the pick-off vector f shown in the figure, the 
BLSSE and BLSCE structures are identical in form; 
hence, by simply  redefining the contents of the training 
vector, one can use the same architecture to estimate 
both the channel and  unknown sequence. 
Linear estimator - As was the case for the BLSCE 
structure, the soft estimate is a linear function of the 
observable vector; hence, the BLSSE estimator-up to 
the threshold device-is a linear receiver. 

9 Time-invariant receiver for time-invariant channels - 
Recall that the batch channel estimator was time- 
varying, even for stationary channels. If the channel 
filter varies with  time, the BLSSE receiver is also time- 
varying. However, if the channel is time-invariant, the 
training vector qt, and hence Ql,  of the BLSSE receiver 
does not change with each new training symbol. 
Therefore, once an initial burst of symbols has been 
sent, the filter reaches steady state and hence becomes 
stationary. 
Sensitivity to training  matrix - The BLSSE filter is also 
sensitive to the invertibility of  [Q:WkQk]. In contrast to 
the channel-estimation problem, though, the training 
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Table 2 Duality  between  channel and sequence  estimation. 

Channel estimation Sequence estimation 

Signal  model 
L-1 

H(z) = z h , z  -i 

,=O 

L-1 

X(2) = Z X , 2 "  
t=O 

~~ ~ 

Note: An FIR channel model is shown, since this is much more prevalent in practice. The duality also exists for an IIR channel model, although it is not as  ohvious as that 
shown for the FIR model. 

matrix Q, cannot be specified by the designer, since it 
now represents the channel coefficients. 

time-invariant for LTI channels, the matrix 
[Q,'w,Q,] "Q,'w, must be calculated just once; hence, 
the batch form itself is not as inefficient as the BLSCE 
structure. However, even though the BLSSE structure 
may be more  efficient than its BLSCE counterpart under 
time-invariant conditions, the ability to handle  time- 
varying channels still necessitates a recursive form. 

Recursive least-squares sequence estimator (RLSSE) 
By substituting the parameter definitions detailed in 
Table 2, the recursive form of the least-squares sequence 
estimator follows the derivation of the recursive channel 
estimator. The only difference  is  found at the end of each 
iteration, where the following  must occur in order to 
accommodate the shift and threshold operations, which are 
not found in conventional RLS algorithms: 

Pick off and constrain soft estimate. Prior to shifting the 
elements of the coefficient vector, we must  first extract 

Moderate complexity - Since the BLSSE filter is 

an estimate of the "oldest" symbol, i.e., 2k-(L-ll. 
Analytically, we can do so by filtering the parameter 
vector by the pick-off vector f defined  in (26). Once this 
soft estimate has been removed from the coefficient 
vector, we constrain it  and obtain the final estimate. 

parameter vector, it  is clear that after each iteration, a 
new  initial estimate of the parameter vector can be found 
by simply  shifting the elements to the left by using the 
shifting matrix S, already defined  in (18). In addition, 
while  all RLS algorithms require an  initial estimate of the 
coefficient vector at start-up, our shifted RLS scheme 
requires a continuous initialization of the current 
(rightmost) symbol of the coefficient vector. This can 
be accomplished by augmenting the shifted coefficient 
vector by the quantity Xkg, where 2, is  an  initial guess 
of the current symbol. Note that 2, = 0 for our equally 
likely binary model, but we leave this important step in 
the algorithm for generality and for possible extensions 
to coded schemes. Note that the shift matrix is a linear 
operation which is useful for the purpose of analysis, but 
in practice this is a trivial memory shift which simply 139 

Shift  and initialize E , .  By noting the form of the 
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The RLSSE(L,O) receiver. 

propagates a particular vector element from  right to 
left. Thus, for a filter of length  five, the unconstrained 
parameter vector and its shifted/initialized version could 
be generally described by 

5; = [El E2 E3  E4 E,], 

E;s + 2,g = [E* E3 E4 E, 41. 

Ship and initialize Pk. The inverse covariance matrix 
must also be shifted (up and to the left) to remain 
synchronized with the coefficient vector. This can be 
accomplished by3ltering the covariance matrix by the 
transformation STPS, where S is the previously defined 
shifting matrix. It should be noted that this covariance 
shift  effectively shifts the elements of k, as well.  After 
the shift, the "new" elements of P, must also be 
initialized. We can satisfy this initialization by 
augmenting the shifted covariance matrix above with the 
matrix E-'@, whose entries are all zero except for the 
lower right element, which has the value E-' .  For 
example, shifting  and  initializing  an arbitrary 3 X 3 
matrix P would appear as 

P =  

A block diagram of the linear RLSSE receiver is shown in 
140 Figure 8. For reasons which become apparent in the next 

section, this receiver is referred to as the RLSSE(L, 0) 
receiver. 

Constraining  the  estimator-the RLSSE(L, D)  
algorithm 
Although the optimum  (maximum-likelihood) receiver for 
binary signaling  is  well  known  and has been shown to 
be nonlinear (see for instance [25]), the complexity of 
these MLSE schemes typically precludes a realizable 
implementation (e.g., Viterbi decoders). Other suboptimum 
methods have evolved, such as reduced-state methods [26, 
271 or reduced-search methods such as the "algorithm 
[28]. Still, the moderate to high complexity of these 
suboptimum MLSE schemes has prevented their 
widespread use. 

Indeed, the DFE is undoubtedly the most popular 
nonlinear receiver which exhibits both low complexity and 
reasonable performance. Furthermore, since the DFE is 
merely a nonlinear variant of the linear feedback equalizer, 
we are motivated to seek a nonlinear variant of the linear 
RLSSE estimator in an  effort to improve its performance 
over channels with severe ISI. 

Toward that end, consider the role of the past sequence 
estimate E,-' shown in Figure 8. During each iteration, this 
vector acts as an  initial guess which is corrected on the 
basis of the error and  gain vector. Note, however, that Ek-' 
represents a soft estimate of the true coefficient vector c,. 
Hence, we already know that it is, in general, not correct. 
It thus seems intuitive to constrain these soft estimates 
before they are used in the next iteration. If these 
decisions are correct, E ,  stands a good chance of being 
correct as well. However, since some of these elements 
have been in the RLSSE decoding  window for only 
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The RLSSE(L,D) receiver. 

Expanded view of the  D-threshold device for binary  data  transmission. 

a few samples and are, furthermore, noise-corrupted, an 
incorrect decision is certainly possible. The leftmost 
element of E k W 1 ,  however, can be considered the most 
mature estimate; i.e., since it has propagated through the 
full  length of the RLSSE window,  it seems reasonable to 
assume that, after some point, it has been equalized 
enough so that constraining it  may  improve the overall 
performance. 

In this spirit, we extend the linear R U S E  receiver to a 
nonlinear structure which  we designate the RLSSE(L, D) 
receiver, as shown in Figure 9. 

In the figure,  all elements are identical to those found in 
Figure 8 except for the new D-threshold device which has 
been inserted in the feedback path. The D in the lower 
right corner of the device signifies that only the leftmost D 
symbols are constrained. Thus, the RLSSE(L, 0) is the 141 
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Table 3 The RLSSE(L,D) algorithm. 

No. Procedure ? x t s  I10 Storage  Comment 

- 

0 

0 

0 

L Z  

L + l  

L + l  

0 .5(Lz + L )  

L 

0 

0 

0 

0 

- " 

0 0 0  

0 0 0  

0.5(L2 + L )  0 0 

L Z  0 0 

L L O  

L 0 0  

0.5(Lz + L )  0 0 

L 0 0  

0 0 1  

0 0 0  

0 O D  

0 0 0  

- 

1 

L 

0.5(Lz + L )  

1 

1 

1 

0.5(LZ + L )  

0 

0 

L 

0 

L Z  

Total 1 . 5 L 2 + 3 . 5 L + 2   2 L 2 + 4 L  L D + l   2 L 2 + 3 L + 4  

- 

1 

L 

L 2  

L 

L 

1 

L Z  

L 

0 

0 

0 

0 

2 L 2 + 4 L + 2  

4. Step 3 is not required  if y = 1.0. 
5. For time-invariant channels, Steps 2-7 and Step 12 are not necessary after the gain  Vector converges. 

Initialization 

Receive signal 

Training vector 

Intermediate  step 

Intermediate step 

Gain vector 

Innovation  term 

Correlation  matrix 
inverse 

Sequence  estimate 

Pickoff & constrain 

Shift & initialize Ek 

Constrain D symbols 

Shift & initialize Pk 

linear receiver already discussed, while, at the other 
extreme, the RLSSE(L,L) receiver uses a fully 
constrained estimate. An expanded view of the D- 
threshold device is shown in Figure 10, and a summary 
of the RLSSE(L, D) algorithm is given  in Table 3. 

Observations on RLSSE(L, D )  receiver 
Varying degrees of nonlinearity - By  noting once again 
that the final soft estimate is  linear in the observable 
vector, we see that for D = 0, the RLSSE is a linear 
estimator up to the threshold device. However, one can 
also increase D up to the length of the RLSSE window, 
in order to increase the degree of nonlinearity. 
Same core algorithm as RLSCE - It is important to 
note that the processing required by Steps 0-8 of the 
RLSSE algorithm  is identical to that found in the 
RLSCE algorithm-only the definition of q, has 

142 changed. Furthermore, Steps 0-8 represent virtually all 

of the significant processing. This significant fact 
suggests that an RLSSE receiver can exploit the same 
core architecture for both the channel and sequence 
estimation tasks, as we have successfully accomplished 
in our tests. 
Moderate to low Complexity - As shown in the table, 
the RLSSE algorithm can handle time-varying channels, 
since qk need only be updated with the new channel 
estimate. From the complexity analysis shown in the 
table, we see that the worst-case complexity is O(N2)  
for time-varying channels. If, however, the channel is 
time-invariant7 the gain vector rapidly converges to its 
steady-state value. Therefore, the burdensome task of 
computing Pk is  not necessary, and so Steps 2-1 and 
Step 12  can be avoided, resulting in an O(N)  algorithm. 

of L symbols has been received, the algorithm  will 
synchronously generate estimates. Thus, the overhead 

Synchronous operation - After the initial burst 
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of buffer  management required by some receivers is 
avoided. 

Theoretical  performance  analysis 
An informative theoretical analysis of the nonlinear 
RLSSE(L,D) receiver does not seem feasible without 
unrealistic assumptions; hence, computer simulations have 
been used to establish the performance of the generic 
RLSSE(L, D) receiver. However, by assuming stationary 
and ergodic conditions, the asymptotic performance of the 
linear RLSSE(L, 0) structure can easily be determined, as 
is  now shown. 

P e ~ e c t  channel knowledge 
If one assumes that the channel estimator generated a 
perfect estimate of the channel impulse response, the mean 
square error (MSE) performance of the linear RLSSE(L, 0) 
structure can be readily ascertained. Since the least- 
squares and least-mean-square error are asymptotically 
identical in AWGN [29, 301, the asymptotic performance of 
the RUSE&, 0) structure with perfect channel knowledge 
is that of  all linear receivers which were optimized for an 
MSE criterion, viz., 

1 NO 
~ w S E ( m . 0 )  2T I H(e j q *  + No 

where IH(e'")l* represents the discrete power spectrum of 
the channel filter. 

" - (30) 

White Gaussian noise mismatch 
If the noise statistics during  training  differ  from those 
during decoding, a noise mismatch condition is present, as 
shown in Figure 11. 

However, recall that the RLSSE approach does not 
depend on the noise statistics, implicitly or explicitly. It is 
strictly based on the channel estimate. Therefore, as long 
as the training sequence is sufficiently  long that the 
channel estimate converges to an unbiased solution, 
the performance of the RLSSE(L,D) algorithm  during 
decoding is independent of the noise variance during 
training. Hence, the RLSSE(L,D) receiver is insensitive to 
white Gaussian noise mismatch,  and the MSE performance 
given in (30) is valid for the special case of noise 
mismatch. This insensitivity to noise  mismatch  is a 
significant advantage which is not  offered by linear or 
decision feedback equalizers" [4]. 

Arbitrary channel mismatch 
We can  apply the same argument to the case of arbitrary 
channel mismatch, shown in Figure 12, as long as we 

10 F. Gozzo and J. 8. Anderson, "The Impact of Noise Mismatch on Linear and 
Decision Feedback Equalizers," IEEE Tram. Commun., submitted August 20, 
1991. 
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White Gaussian noise mismatch: the condition in which a receiver 
is trained/optimized for a particular noise level, but decodes in a 
different noise level environment. 

J 

Arbitrary channel mismatch: the condition in which a receiver is 
trained for a particular channel filter and noise level, but decodes 
in another environment. 

constrain the noise to be white and Gaussian. Therefore, 
by  using the arbitrary channel mismatch  formula  derived in 
[4], and constraining the noise to be white, we find that the 
asymptotic performance of the RLSSE(L, 0) receiver is 
given  by 
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Block  diagram  of a generic  equalizer.  Feedforward and feedback  coefficients are generally  different  from  channel  coefficients  introduced 
previously. 

Table 4 Channels used in noise mismatch tests. 

Channel X Comment 

A \/1 - a2 

1 - az" 

(1 + a)*  

(1 - a)Z  
IIR model of simple low-pass channel. 

B (0.06 - 0 . 0 7 ~ "  + O.lz-' -24 FIR model of typical data-quality 

- 0 . 3 ~ - ~  - O . ~ Z - ~  + z-' + 0 . 5 ~ - ~  telephone line. 

+ 0.k" - 0.3.z-* + 0 . 0 5 ~ - ~  + 0.1~"~) 

C m2(1 + z-l) co Two-way model with spectral null. 
Common in radio channel applications. 

144 where HT (elu) represents the discrete Fourier transform of the channel filter during training. 
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Pegormance comparison with 1inearlDFE receivers 
By  exploiting the arbitrary mismatch results from [4], we 
can directly compare the performance of the RLSSE(L, 0) 
receiver to linear  and DFE receivers in the presence of 
channel mismatch in white Gaussian noise. The 
equalization schemes we address can be depicted by the 
generic equalizer shown in Figure 13. For the linear 
equalizer, the two switches shown are in the down 
position; hence, the threshold device is  not in the feedback 
loop. For notational convenience, we  refer to this linear 
structure as LFE(L,M), where L and M represent the 
number of taps in the feedforward and feedback filters, 
respectively. In addition, since the marginal performance 
advantage offered by recursive linear equalizers is typically 
outweighed by their potential instability [2], we restrict our 
analysis of linear equalizers to the nonrecursive case, i.e., 
LFE(L , 0) . 

By  flipping both switches up, the nonlinear threshold 
device is moved into the feedback loop, thereby creating 
the decision feedback equalizer which  we  refer to as 
DFE(L,M). Now, the feedforward and feedback filters 
can be interpreted as  a linear equalizer and canceler, 
respectively [l]. That is, the received signal  is  first 
processed by the Lth-order feedforward filter  which 
attempts to equalize the precursors (samples before the 
peak sample) of the channel impulse response. Once the 
precursors have been equalized, the Mth-order recursive 
filter mitigates the effect of the postcursors (samples after 
the peak sample) [31]. Thus, 

4L 

I B 

w 

I Magnitude spectra of channels used in noise mismatch tests. 

Table 5 Channels used in arbitrary mismatch tests. 

C \/E2 + az" 

1 NO 1 NO A'IH(e'")l2 - -  - 
27r IH(e'")lZ + No [ IH(e'")/' + No [IH(e'")I2 + No + A]Z[IH(e'")12 + No] 1 dw = JLFE(m,O) . (34) 

+ 

This relation is also valid under  most (but not  all) arbitrary channel mismatch cases. 
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a 

Magnitude  spectra and approximate  eigenvalue  spread x of chan- 
nels  used  in  arbitrary  mismatch tests. 

Em irical test results 
We R ave resorted to simulation in order to further evaluate 
the MSE and Pb performance of the RLSSE(L,D) receiver 

146 under perfect channel knowledge  and  in various degrees of 
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noise and channel filter  mismatch. The transfer functions 
and  magnitude spectra of these test channels are tabulated 
and plotted in  Table 4 and Figure 14, respectively, for the 
noise mismatch tests and  in  Table 5 and Figure 15, 
respectively, for the arbitrary mismatch tests. Note that 
Channel C exhibits nulls,  while Channel A does not have 
any nulls over the stable" regions of interest. Figure 15 
also plots the approximate eigenvalue spread x as a 
function of the test channel parameter a ,  where x is 
defined as 

m=(lff(eJW)I2) 
X =  min (JH(eJW)J *> 
and has been shown to be a useful tool in the study of 
arbitrary channel mismatch [4]. 

Test description 
For each of the test channels, the MSE  and error 
probability Pb of LFE(31,O),  DFE(16,15)  and  RLSSE(31,O) 
receivers were measured. Since the LFE and DFE 
receivers required 31 taps to validate asymptotic MSE 
predictions, we used 31 taps for the linear RLSSE(L, 0) 
receiver as well  (for the MSE test only). Note, however, 
that the RLSSE(L, 0) requires roughly LC taps to achieve 
its optimum performance, where LC is the length of the 
channel filter.  This becomes evident when we examine the 
sensitivity of the RLSSE(L, 0) performance as a function 
of L. 

All receivers were trained by  an RLS algorithm  with a 
pseudorandom binary (+ 1) data sequence until their 
respective tap vectors converged. The trained receivers 
then detected a pseudorandom binary data sequence until 
at least 100 bit errors occurred. All RLSSE receivers 
utilized the steady-state gain vector after 100 symbols; 
hence, the complexity of  all receivers shown is O(N).  
Finally, note that the RLSSE receivers invoked the same 
RLS procedure for both channel and sequence estimation. 

Validation of theoretical MSE predictions 
The MSE performance comparison of the receivers, 
assuming perfect channel knowledge,  is shown in Figure 
16, while the analogous plots for the case of noise 
mismatch are shown in Figure 17. As expected, MSE 
results for channel filter  mismatch were identical to the 
LFE results previously shown in [4], so for brevity they 
are not shown (Pb results are shown for channel filter 
mismatch, as described below). Theoretical MSE curves 
for the RLSSE(m,O), LFE(a,O) and DFE(m,m) receivers 
were calculated by numerically integrating Equations (31), 
(32), and (33), respectively. In addition, the theoretical 
curve for the AWGN channel [IH(e'"')l = 11 was plotted 

12 Channel A does exhibit a  null  at o = a when a = 1, hut it becomes unstable 
since the pole is on the  unit circle. 
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as a benchmark. For ease of interpretation, the plots are 
labeled SNR,,, and SNR,,,, denoting the signal-to-noise 
ratio during train and run  modes, respectively. Note that 
SN&,,, = -10 10g[2(N0 + A)] and SNR,,, = 
- 10 log ( 2N0). 

Probability of bit  error 
Bit error rates were also measured during testing. l3  

Representative results from these tests are shown in Figure 
18 for the case of perfect channel knowledge  and in Figure 
19 for the channel filter  mismatch case. By inspecting 
theoretical and test results, several observations can be 
made: 

13 A theoretical approximation of Pb is introduced in Appendix B. 

For all test cases, the measured MSE for the linear 
RLSSE(L, 0) receiver closely approximated the 
asymptotic predictions. 

that JRLSSE(m,O) 5 JLFE(m,O) in white Gaussian noise 
mismatch, with equality only under the idealistic case of 
no noise  mismatch. In fact, the linear  RLSSE(31,O) 
receiver also outperformed the DFE in several of the 
noise  mismatch tests. 
The linear RLSSE is relatively robust. Recall that the 
LFE and DFE receivers required an accurate estimate of 
the "peak  sample" of the channel impulse response; 
i.e., they were trained with the optimal delay for each 
channel. No such delay was used  for the linear RLSSE 

The  empirical results support the theoretical prediction 
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MSE performance of RLSSE(L.0)  in  white noise mismatch theoretical  predictions vs. test  results. The RLSSE(w,O), LFE(w,O), and 
DFE(w,w) curves  were  calculated  by  numerically  integrating  Equations (31), (32), and (33), respectively.  The  symbols  represent  test 
measurements.  The AWGN curves  apply  only to LFE and DFE receivers;  they  show  the  best  MSE  possible for either  equalizer  in  the 
presence of noise  mismatch. 

receiver. In fact, the linear RLSSE receivers used in  all 
tests were identical, including the initialization of y and E. 

constrained nonlinear RLSSE receiver was better than or 
comparable to the DFE performance. For those channels 
in which the RLSSE(L,D) could not  perform  well,  it 
seems that a  large  number of precursors reduced the 
effectiveness of the constrained algorithm. This problem 
was found to be less severe as the constraint parameter 
D was decreased. However, this led to performance 
comparable to that of the RLSSE(L,O) receiver. It was also 
found  that  modifylng parameters y and E could  improve on 

For some channels, the performance of the fully 

148 the performance of the  fully  constrained  receiver. 

Implementation  considerations 
A number of implementation considerations have been 
investigated throughout the various tests. Several of the 
key findings are now summarized. 

Parameter sensitivity 
There are four basic parameters which must be specified 
for the generic RLSSE(L, D) receiver-L, D, y, and E-' 

We have found that the filter  length L must  be at least 
equal to the channel length in order to achieve adequate 
performance. Although  higher-length filters may improve 
performance in some cases, the gain is not always 
appreciable. In fact, there were mismatch scenarios in 
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Bit  error  probability of RLSSE(L,D) assuming  perfect  channel  knowledge. DFE uses  actual  decision  feedback vs. correct  decision  feedback 
assumed  in  theoretical  predictions. 

which increasing the receiver complexity actually 
degraded performance. This complaiity inversion 
phenomenon, which was also found to exist in linear, 
DFE, and MLSE receivers, is further described in [4]. 
Test results which show the sensitivity of the linear 
receiver to the length of the RLSSE window L are 
summarized in Figure 20. 

is quite robust with  regard to y and E. In fact, we  used 
constant values of y = 1.0 and E-' = 15 for all test 
channels. Other values outside these nominal values 
were also used, but there was no appreciable gain or 
loss in performance. It is also clear that the channel 
characteristics (e.g., degree of nonminimum phase) play 
a key role in the optimal selection of D. Although the 

From the tests, we have found that the linear receiver 

optimization of D was not theoretically addressed, we 
found that the extreme values D = 0 and D = L usually 
led to optimum performance. 

Exploiting IIR channel models 
Although the RLSSE development is based on a finite- 
length  decoding  window, the channel estimator need not 
be constrained to an  FIR  model.  In fact, for Channel A, 
which  is a one-pole IIR channel, we found  it  useful to 
identify the channel with  an  IIR  model  and truncate the 
model to a suitable length before presenting it to the 
RLSSE decoder. The advantage of this method (for this 
channel) is rapid convergence, which occurs because only 
one parameter must  be estimated. A disadvantage of this 
approach is the biased estimate which occurs at extremely 149 
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Bit  error  probability of RLSSE(L,D) in  the  presence of channel  filter  mismatch. DFE uses  actual  decision  feedback vs. correct  decision 
feedback  assumed in theoretical  predictions. 

low SNR levels. A comparison of the FIR- and the IIR- 
trained receivers is shown in Figure 21. Note that since the 
FIR approach yields unbiased estimates, the performance 
is insensitive to noise mismatch. The  IIR approach 
resulted in a biased estimate; hence, the receiver was 
in a channel mismatch condition at low SNR. 

Steady-state implementation 
The generic RLSSE(L, D) receiver shown in Figure 9 has 
complexity O(L2) ,  where L is the width of the RLSSE 
window. This quadratic complexity is quite promising  in 
light  of the exponential complexity, i.e., O(2L- ' ) ,  exhibited 
by most MLSE schemes. However, more  efficient RLSSE 
implementations are possible. 

matter, if only block-adaptive training  is used, the gain 
If the channel impulse response is stationary, or, for that 

vector converges to a steady-state solution. The important 
control-theoretic proof  of this convergence, shown in [ll] 
for the KFE receiver, can be adopted here under the 
restriction of stationarity and ergodicity. In fact, this 
convergence was found to be extremely rapid-roughly 
three to four times the channel length. It was also found 
that the gain vector is not a function of D; hence, both 
linear and nonlinear schemes can  use the same steady-state 
gain vector. Figure 22 illustrates the fast convergence of 
the gain vector for the RLSSE(3,O) and the fully 
constrained RLSSE(3,3) receiver over Channel C. 

Stability 
The numerical stability of both conventional and fast RLS 
algorithms has had considerable attention in the literature. 
This potential instability has been attributed primarily to 
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the propagation of numerical  imprecision  when  updating 
Pk [32-341.  As noted in the RLSSE development, the Pk 
matrix is  partially  reinitialized  with every iteration. Hence, 
its stability-with respect to numerical precision-is 
ensured irrespective of the exponential weighting, since the 
value of any element of Pk can be calculated as a finite 
sum of operations on the initialization matrix E- ’@.  

Numerical  precision 
The numerical precision shown in the  simulation results 
was based on 64-bit  floating-point arithmetic. Although we 
did not investigate the effects of precision below 32 bits, 
we feel that the impact of this should not be significant, 
because of the inherent stability created by constant 
reinitialization of Pk. Certainly, more precise RLS 

schemes such as square-root factorizations [35] could  be 
implemented if available. 

Using  variants of the RLS algorithm 
If the channel impulse response is time-varying and 
requires continuous channel estimation (in a decision- 
directed mode), the gain vector does not reach a steady 
state; hence, Pk must be calculated on a continuous basis. 
Fast RLS algorithms [36-381 have been introduced to 
reduce the complexity of the standard RLS algorithm  from 
O(NZ) to O(N).  Although these schemes have typically 
been plagued by instability, it is believed that the RLSSE 
receiver can exploit these fast RLS algorithms  and 
guarantee stability because of the continuous 
reinitialization of Pk described in  (29). It should be noted 151 
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that employing a fast RLS algorithm in our RLSSE 
receiver would  be extremely advantageous, since the 
complexity would be O(N)  for both time-varying and 
time-invariant channels. 

Several variants which were tested with some success 
included  reinitializing the entire covariance matrix during 
each iteration, guessing at the newest (unequalized) 
received symbol, and adaptively switching to a steady- 

152 state mode once the gain vector converges. 

F. GOZZO IBM 1. RES.  DEVELOP.  VOL. 38 NO. 2 MARCH 1994 

Combined  channellsequence estimator 
Since the core RLS algorithm  is identical for both the 
channel estimator and the sequence estimator, the same 
software can be used for both. In fact, the receiver 
used  in our tests invoked the same software procedure. 
Furthermore, since there have been  many advances in 
hardware implementations of RLS algorithms,  we expect 
that combining the channel and sequence estimator in a 
single chip could be achieved if the RLSSE algorithm were 
to be  used. 

Summary 
We have proposed a new  family of algorithms based on 
recursive least-squares estimation for the reception of 
digital  signals over channels with intersymbol interference 
(ISI) and white Gaussian  noise. For comparison, the 
asymptotic predicted performance of the linear version is 
shown in Table 6 along  with the asymptotic performance 
of linear and  decision feedback equalizers. The analogous 
predictions for the case of channel filter  mismatch in white 
Gaussian noise are shown in Table 7. 

Theoretical predictions and test results have indicated 
that the performance of a software-implemented version of 
the RLSSE(L, 0) receiver is comparable to that of standard 
linear equalizers under no-mismatch (ideal) conditions. 
When noise mismatch was present, the performance far 
exceeded that of LFE receivers as well as the DFE 
receiver in some severe cases of mismatch. 

While the linear  and DFE receivers required tedious 
optimization of the training delay, no such delay was 
necessary for the software-implemented version of the 
linear RLSSE(L, 0) receiver. Its robustness with respect to 
the algorithm  parameters-L, E ,  and y-was very good. 

For several channels with  minimal precursors, the 
software-implemented version of the fully constrained 
RLSSE(L, L )  receiver was comparable to a DFE receiver 
in performance under  ideal conditions, and substantially 
better in the presence of noise mismatch over those 
channels. The optimization of D ,  however, must  be 
further addressed for broad applicability of the nonlinear 
RLSSE(L, D )  receiver. Promising areas of research include 
joint optimization of the parameters ( L ,  D ,  E ,  and y), 
incorporating a delay in the channel-estimation process, 
and incorporating prefilters to mitigate precursors. 

The same core algorithm was used for both training 
and  decoding,  suggesting that it  should be possible to 
implement a hardwired RLSSE receiver in an  efficient 
manner. Since incorporating both channel estimator and 
decoder on a single chip should be possible with RLSSE 
receivers, the use of the RLSSE family of algorithms 
should  be  beneficial for applications such as hand-held 
communications, multimedia, wireless networks, and other 
size/weight/cost-constrained systems. 



Table 6 Theoretical MSE performance of RLSSE, LFE, and DFE in white Gaussian noise mismatch. 

Receiver Mean square error 

RLSSE(m,O) 

LFE(m,  0) 

A2(H(e'")I2 
+ No  [IH(e'")lZ + No + A]2[IH(e'")lZ + N o d  

+ 

Assu~nptiom: 
~~ 

1. Source  is  uncorrelated  sequence with unit power. 
2. Noise  is AWGN with  variance No + A during training and No during decoding. 
3. MSE  for DFE(m, m) receiver  assumes comect past decisions. 

Table 7 Theoretical MSE performance of RLSSE, LFE, and DFE in channel filter  and white Gaussian noise mismatch. 

Receiver 
~~ 

Mean square  error 

LFE(m, 0) 
1 NO IIIH(e'")lZ + N,]H,(e'") - [IHT(e'")I2 + No + AIH(e'")lZ I:, [ JH(e'")lZ + No [IHT(ei")12 + No + A]2[1H(e'")12 + No] 1 + 

Assumptions: 
1. Source  is  uncorrelated  sequence  with unit power. 
2. iyoise  is AWGN with variance No + A during training and No during decoding. Channel filter spectrum  is HT(eJ") and H(e'") during training and decoding, 

3. MSE  for DFE(m,m) receiver  assumes  correct  past decisions. 
respectively. 

Appendix  A:  Derivation of the RLS algorithm 
The RLS algorithm can be derived by  use of the  batch 
least-squares  estimator,  repeated here: 

Cf;" = [ QiWNQN] -'QiWN rN . 
First,  we exploit the diagonal nature of the weighting 
matrix in (15), WN, to obtain the  recursive form, 
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For notational con~enience'~,   we define the  inverse  term in 
(15) as 'N, 

PN = [Q~WNQNI-', (A2) 

and  by using this simplification in (Al), we yield 

l4 In addition to notational convenience, P i '  = QLWNQN represents the time- 
averaged  autocorrelation matrix. Furthermore,  as  is mentioned by Proakis [?.] and 
elaborated  by Bierman [35], this matrix is in general  non-Toeplitz and may be ill- 
conditioned. 153 
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Pi '  = yP,', + qNq; .  (A3) 

To remove the inverse operator, a simplified version of the 
matrix inversion lemma [19], 

(A + BC)" = A" - A"B(1 + CA"B)"CA (A41 

is  applied  by  making the substitutions 

After these substitutions, the following recursive equation 
is  found for PN: 

A further simplification results from  defining the gain 
vector, 

Y -",+lqN 
kN = 

so that we  can rewrite PN as 

L1 + Y - l q ; p N - l q N l '  

' N  = f l [ I  - k N q i l P N - ,  2 (A8) 

where I is the appropriately dimensioned identity matrix. 
Now consider the nonbracketed factor in (15). This 

term, which represents the time-averaged cross-correlation 
vector, can be rewritten as 

Q i w N r N  = YQ;- iWN-IrN- l  + q N r N  ' (-49) 

Finally, by calculating the innovation term'5, 
T- 

T N  = 'N - qN'N-1 9 ('410) 

and substituting these results in (15), we obtain the 
recursive weighted least-squares estimator for c ,  
" 

cN = 'N-1  + k,?7N . (Al l )  

Appendix 6: Approximating the probability of 
bit error 
The MSE analyses and measurements described in this 
paper and in [4] led to satisfying conclusions, since both 
the theoretical and practical results were in close 
agreement. Recall, however, that the Pb performance 
curves shown so far were based only on test 
measurements. While test measurements are indeed the 
only means of accurately assessing Pb for arbitrary 
channels and  mismatch conditions, it is important to 

provide a theoretical justification for the Pb results. In this 
appendix, an approximation of P, for the LFE, DFE, and 
linear RLSSE receivers is obtained as  a function of their 
respective MSE performance in arbitrary channel 
mismatch conditions. 

Under practical (finite-complexity) conditions, the output 
of any IS1 receiver generally contains residual IS1  which  is 
not Gaussian. Even with this residual ISI, it is possible 
and  useful to determine the SNR of the (unconstrained) 
receiver output [2,  391. 

If the total MSE at the output of the receiver (prior to 
the detection device) is denoted by J ,  it is clear that the 
output signal-to-noise ratio SNRo, is given [2] by 

1 - J  

J 
SNRo, = -- , 

Now, assume that the unconstrained output is passed 
through a simple threshold device.I6 If we assume that 
both the residual IS1 and the noise components of the 
unconstrained output are Gaussian, the error probability 
can be approximated by 

Pb = - erfc (Jl) 1 SNRO"1 

2 

where 

Note that Equation (A13) can be used for the LFE, DFE, 
or linear RLSSE receiver by  simply replacing J in (A13) 
with the appropriate formula in Table 7. 

The theoretical P, approximation shown above was 
compared against the P, measured via Monte Carlo 
simulation  for several test channels under various degrees 
of mismatch. These comparisons are shown in Figure 23. 
As can be seen, the theoretical approximation supports the 
experimental data quite well in many regions of interest. 
Furthermore, there are regions in which the fit could be 
tightened by increasing the receiver complexity. 
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' 5  Note that  the innovation term  here represents the apriori ertimation error, since 
It is based on the previous channel estimate, whereas the batch least-squares 
development utilized the a posteriori estimation error e ( k ) ,  which was based on a 

~~ 

154 current channel estimate. 

$6 If the soft output is followed by an optimal decision device (i.e.,  a sequence 
estimator) which attempts to eliminate the residual ISI, the analysis would follow 
an error-state approach to bound  the  error event probability [39, 401, which cannot 
make direct use of the MSE formulas of Table 7. 
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