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A family of adaptive communication receivers
based on recursive least-squares sequence
estimation (RLSSE) algorithms is proposed
which provides performance comparable to
that of conventional linear receivers, but with
reduced complexity and less sensitivity to
channel mismatch. A software-implemented
version of the linear member of the family is
shown to have performance equivalent to that
of standard transversal equalizers under ideal
conditions, yet offers a drastic improvement in
white Gaussian noise mismatch environments.
An analogous performance improvement for
several test channels is also shown for
software-implemented versions of the
constrained (nonlinear) members of the family
over decision feedback equalizers. Another
advantage of the RLSSE family of receivers
may be its ease of implementation, since it
should be possible to combine the functions
of channel estimation and sequence estimation
on the same chip.

Introduction

Inherent in every communication system are channels
which link the transmitter and receiver. These channels
include telephone lines used in voice and modem
applications, underwater channels used in acoustic
applications, read/write channels used in magnetic storage

devices, and atmospheric channels used in radar, satellite,
and other wireless communication systems. Although their
physical media and propagation characteristics vary
greatly, these channels typically share three fundamentai
problems which plague the majority of high-speed
communication systems: intersymbol interference, noise,
and channel mismatch.

o [Intersymbol interference

The majority of practical communication systems are
adequately modeled as linear systems in which the
received signal represents the convolution of the
transmitted sequence with the channel impulse response.
Because of several elements, including faster-than-Nyquist
signaling and band-limited channels, the time dispersion
created by this convolution causes a received pulse to be
spread in time. Hence, two (or more) adjacent symbols
can interfere with one another; this can be intuitively
understood by analogy with echoes over telephone lines.
The phenomenon, which is commonly known as
intersymbol interference (ISI), may cause severe
degradation in system performance unless the receiver
can unravel or deconvolve the received signal.

There are many well-known receivers which mitigate the
effects of ISI. These make use of schemes that range from
high-complexity algorithms based on maximum-likelihood
sequence estimation (MLSE) to low-complexity linear and
decision feedback equalizers (DFEs). The latter have been
and continue to be the backbone of modern receivers
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Discrete-time equivalent communication system model.

[1-3]. For all these schemes, though, mitigating their
complexity and/or suboptimum nature, particularly in real-
time applications where low complexity is crucial, remains
an open challenge.

® Noise

Although the performance loss due to ISI is typically the
predominant factor in higher-data-rate systems [1], noise
remains a key contributor to performance degradation. Of
course, there are many types of random disturbances, such
as thermal noise attributed to a receiver’s front end, active
jammers found in military systems, and impulsive noise
due to switching. However, since thermal noise plagues

all practical receivers, one cannot ignore this common
problem.

By itself, thermal noise can cause appreciable
performance degradation; coupled with severe ISI, as
found in channels with spectral nulls, noise can be
crippling, particularly to linear receivers which more
or less invert the channel and thus enhance the noise.
Although nonlinear methods have been sought in these
cases, the DFE is perhaps the only nonlinear receiver
which can satisfy a low-complexity constraint while
adequately treating these channels. Thus, expanding the
number of low-complexity alternatives to treat noisy
channels with severe ISI is still a key area of research.

® Channel mismatch

Generally, a receiver must have at least implicit
information regarding the spectral characteristics of the
channel as well as the statistics of the corrupting noise.
Unfortunately, these quantities are often unknown and
possibly time-varying. Therefore, a receiver must
continuously track the changing channel and noise
statistics. If the receiver is not able to provide this feature
accurately, the receiver is said to operate in the presence
of channel mismatch. Under ideal training conditions and
with sufficient processor power, continuous updates could
be performed. However, since realistic cases are limited
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by complexity and by assorted training/processing errors,
some degree of channel mismatch is inevitable.

With respect to the three fundamental problems posed
above, the objective of this paper is to propose a robust,
low-complexity scheme for sequence estimation in the
presence of noise, intersymbol interference, and
mismatched channel conditions. The paper first formulates
the problem of interest and then provides a brief yet
important review of a related receiver, as well as the
theoretical development of the common least-squares
algorithms. Theoretical and empirical performance
analyses are then provided for a new family of receivers,
followed by implementation considerations and a summary
of the new results.

Problem formulation

As shown in Figure 1, we restrict attention to the common
discrete-time equivalent communication system model. In
the figure, an uncoded pulse-amplitude-modulated (PAM)
binary data symbol, x,, is transmitted across a linear time-
invariant (LTI) channel filter’ with impulse response {n}.
The filter output y, is then corrupted by additive white
Gaussian noise (AWGN), denoted as #,, which has a zero
mean and a variance of anz. Thus, the kth received symbol,
r,, can be expressed as

rk=yk+nk

= > hx_ +n,, (1)

j=—w

and the goal of the receiver is to efficiently process this
received signal to generate £,, a reliable estimate of the
transmitted signal.

To address this challenging problem, a family of
adaptive communication receivers is proposed which is
based on variants of the common recursive least-squares
(RLS) algorithm. These new algorithms, which we refer to
collectively as recursive least-squares sequence estimation
(RLSSE) algorithms, offer the performance and low
complexity enjoyed by traditional receivers, yet are
insensitive to practical phenomena such as noise
mismatch, which have been shown to plague both linear
and DFE receivers [4]. In addition, we show that RLSSE
receivers can be implemented in a very efficient manner,
since the same basic algorithm can be used for both the
channel and sequence estimation tasks [5].

Kalman filter equalizer
The basic RLSSE structure described herein is related to
the Kalman filter equalizer (KFE) originally proposed by

! Although the problem of interest is aimed at time-varying channels, we approach
it by ing that the pling rate is much greater than the channel dynamics.
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Lawrence and Kaufman [6], who utilized a discrete
Kalman filter to estimate a binary input sequence
transmitted over a dispersive finite impulse response (FIR)
channel. They also treated the channel estimation problem
by extending the state vector to include the channel tap
coefficients. This (nonlinear) extended Kalman filter (EKF)
approach falls into the category of blind equalization, since
no training sequence is exploited.

There have been several other efforts which follow the
KFE approach for sequence estimation. Mark [7] briefly
discusses the initialization of the state vector, as well as a
method of avoiding the EKF approach in [6] by estimating
the channel tap gains via a pseudo decision feedback
approach. Kleibanov et al. [8] also investigated the
Kalman equalizer, but examined its convergence properties
further and showed the advantages of increasing the filter
dimension beyond the length of the channel filter. Luvison
and Pirani [9, 10] also proposed a scheme which is based
on that of [6], but additionally discussed topics such as
carrier recovery, timing extraction, and limitations of the
KFE under real-time constraints.

An in-depth summary of the KFE approach as well as
its practical considerations can be found in the work of
Benedetto and Biglieri [11], who extended the theory to
cover correlated data, and also provided several examples
to demonstrate the sensitivity of the KFE approach to
channel mismatch. Mulgrew and Cowan also presented a
detailed state-space analysis of the KFE for signaling over
minimum and nonminimum phase channels [12]. By
exploiting Wiener filter theory, they bounded the
performance of the KFE and showed that the convergence
and MSE performance of FIR transversal equalizers and
KFEs are roughly the same. They also found that the KFE
was typically of lower order, although this does not
necessarily constitute lower overall complexity.

Prasad and Pathak [13] developed a similar analysis; a
state-space approach was exploited. However, they used
Mendel’s smoothing approach from seismology [14],
claiming that it yields marginally better performance under
a low-complexity constraint than the Lawrence-Kaufman
approach {6]. More recently, Yurtseven and Kumar [15]
have revisited the work of [6] and applied a stochastic
Newton algorithm for the estimation of the extended state
vector. Although they claimed to have improved on the
EKF approach of [6], their approach is also not guaranteed
to converge. Similar efforts for improving the EKF channel
estimator can also be found in the work of Delle Mese and
Corsini [16].

® Limitations of the KFE approach

Although the KFE approach described above is
theoretically sound and may be useful in certain
applications, KFE receivers share two fundamental
limitations. First, one must have an accurate estimate of
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the noise statistics in order to fully exploit the Kalman
filter structure.’ This not only increases system complexity
(since a noise variance estimator must be implemented),
but also renders KFE receivers susceptible to noise
mismatch. Second and more important is the fact that

the Kalman filter is inherently a linear filter; hence, its
performance over channels with spectral nulls is severely
degraded by noise enhancement. In fact, the MSE
performance of all KFE receivers is (asymptotically) no
better than that of conventional linear equalizers—simple
linear filters—optimized for an MSE criterion. This
fundamental limitation, coupled with the noise mismatch
problem, precludes the use of existing KFE schemes over
many practical channels.

® Motivation behind the RLSSE approach
The RLSSE approach has been motivated by three
practical needs: low complexity, reduced sensitivity to
channel mismatch, and adequate performance over
channels with spectral nulls. It differs from the KFE
approach in several fundamental respects. First, the error
criterion used in the RLSSE receivers is based on a least-
squares criterion rather than a least-mean-square criterion.
Since the least-squares approach makes no assumptions
regarding the statistics of the noise, we will see that the
RLSSE algorithms are impervious to white Gaussian noise
mismatch, and that they are significantly less complex,
because an estimate of the noise variance is not needed.
The second fundamental difference is that one class of
the proposed RLSSE algorithms is nonlinear. Therefore,
while the simplest (linear) RLSSE algorithm is comparable
in performance to linear equalizers—and hence KFE
receivers—the constrained RLSSE algorithm can cope
with channels with spectral nulls. Finally, and perhaps
most important from a practical standpoint, we show that
the RLSSE algorithms lead to an extremely efficient
implementation, since the channel estimation and sequence
estimation tasks have a duality that is fully exploited by
the RLSSE approach [5].

Least-squares sequence estimation
The new RLSSE algorithm introduced in this section falls
in the class of channel estimation-based receivers, as
shown in Figure 2. This class of receivers requires an
explicit channel estimate to decode the transmitted
sequence, and has been found to be generally more robust
to mismatch conditions than channel-equalization-based
receivers such as the linear, DFE, and neural-network-
based receivers.

Before we describe the RLSSE algorithm, it is
worthwhile to briefly review the standard RLS algorithm

2 A method of estimating the noise statistics was briefly discussed in [12]; however,
the complexity and accuracy of such a process remain an open issue.
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and its utility in channel estimation. As we contrast the
channel and sequence estimation problems and note their
strong duality, the motivation behind the RLSSE approach
becomes apparent.

® RLS algorithm and channel estimation

The application of the recursive least-squares (RLS)
algorithm to adaptive filtering problems has had
considerable attention in the communications literature
because of its fast convergence properties and insensitivity
to the channel’s eigenvalue spread [2, 17-22]. 1t has served
well in initializing and tracking the taps of linear and
decision feedback equalizers, and has also been extremely
useful in the task of channel estimation, which is crucial in
any MLSE receiver.

Although the development of the least-squares estimator
is now well known, we review it briefly here so that the
RLSSE development can exploit this familiar derivation.
We derive both the batch and recursive forms of the least-
squares channel estimator in order to expose the features
which will help us predict the performance of the RLSSE
family of receivers. In addition, in order to deal with
possible variations in the coefficients of the channel model,
an exponential weighting is also employed in the least-
squares performance index.

3 The channel estimation approach here and in Appendix A follows that found in {2]
and [19], but has been extended to treat the more generic IIR channel model.
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Partition of selected communication receivers. The RLSSE approach falls under the category of channel-estimation-based receivers.

Batch least-squares channel estimator (BLSCE)

In our analysis, we assume a slowly time-varying channel
filter which can be described by a finite-order difference
equation given by

M L-1
Ve = E 4y, + Z bx, ;. @
i=1 i=0

where x, and y, represent the noise-free channel input and
output, respectively, and M and L represent the order of
the model. Thus, it is clear thaty, can be recursively
computed solely on the basis of M past outputs and L
inputs, and our development also holds for the special FIR
case (i.e., M = 0).

We can define the coefficients of the actual channel
model in (2) by a and b, which are of dimension M X 1
and L x 1, respectively, and are given by

a= [al a,::- aM]T’
b=[bb,"- bL—l]T’ &)

where [+]" denotes transposition. For notational
simplicity, an (M + L) X 1 coefficient vector is
introduced and defined as

13
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Since the vector ¢ completely specifies the actual channel,
the channel estimation problem can be posed as finding an
estimate € which is closest to ¢ in a least-squares sense.*
The actual channel and its estimate at time k are denoted
by ¢, and €, respectively.

Assume that a known training sequence of N + 1
symbols is transmitted, resulting in the N + 1
input—output observable pairs,

{Oe rYx s 1)+ (2 T} ©)

To ensure a unique solution, let N > n, where n is defined
as n = max(L, M). Let the vector q, be defined as the
(M + L) X 1 training vector’

q =In n,

We define the estimation error e, as the difference
between the actual channel output (i.e., the desired
response) and the estimated channel output:

T~

€ =T UG- )
We can use the vector form of the above equation, i.e.,
eN=l‘N—QNEN, (8)
where 1, and e, are (N — n + 1) X 1 observable and

error vectors, respectively, and Q,, is an (N ~ # + 1) X
(M + L) training matrix. These are given by

rN = [rn rn+1 toe rN]T’
ey=1le e, - eN]T’
q,
T
qn+1
Q=1 . ©)
9y
The cost, J, for a weighted least-squares performance
index can be expressed as
N
T= wei, (10)
k=n
where w, is defined as an exponential weighting term,
w,=9y"Y 0<yslnsksN. (11)

To express our cost equation in matrix form, we define a
weighting matrix W,,, whose elements are given by

4 Real-valued (soft) estimates of a vector v are denoted as ¥, and ¢ denotes a binary
(hard) estimate. Also, unless denoted otherwise by context, lowercase bold symbols
represent vectors, while uppercase bold symbols represent matrices.

5 In theory, q; should be the ideal training vector,

9 = Dy Yer' ' View X Kt xk—(L—l)]T-

But for IIR channels (M > 0), the first M elements in this ideal version require
knowledge of the unobservable (noise-free) channel output, so the more practical
definition above is used. Although the implications of this are not significant at
moderate signal-to-noise ratio (SNR), the practical definition generally leads to
biased channel estimates for IIR channel filters that are based on an output-error
formulation [23].
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T
Tem X Xy 7 Xl op) ©) .

Worict V=1

Wyl ) = (12)

0 i #].

Thus our cost function_ can be formulated as
T

J =eW,e,

(ry — Qy EN]TWN[rN - Q5]

T ~T T T | <TAT ~
ryWyr, — § QW ry — ,W,Q, &, + ¢, QW,Q, ¢,

= W, I, — 26QaW, 1, + E\QRW,Q, &, - (13)
Now, by using the gradient operator to minimize (13) with
respect to €,, we obtain
VJ = -2Q;W, 1, + 2Q;W,Q, %, = 0, (14)

where 0 is the all-zero vector. Solving for €, yields the
optimal weighted least-squares estimate,

& = [QW, Q1 'Q W, - (15)

With each new received signal, we can update the channel
estimate by simply updating the observable vector r and
the training matrix Q, and computing the new channel
estimate by (15). The update of r can be accomplished via

r;r = r:—ls + 718 (16)

where we have introduced an initialization vector g, which
is defined by

g=[00---001] 17
The shift matrix § is given by

(0 0 0 0-
1 0 0 0
0 1
s=[+ - o | (18)
. 0 0
[0 0 1 04

A block diagram® of the BLSCE structure is shown in
Figure 3. Note that while the continuous update of the
observable vector r is explicitly shown, the continuous
update of the training matrix Q is not shown.

Several observations can now be made regarding the
BLSCE structure which will be useful for comparing with
the batch sequence estimator development.

BLSCE observations

& Linear estimator — Since all operations on the
observable vector are linear operations, we see that the
BLSCE structure is clearly a linear estimator.

6 Solid lines in subsequent figures represent scalar values, while dashed lines
represent vector quantities.
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Batch least-squares channel estimator (BLSCE). The term z~
represents a unit delay.

£
3
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~ Figured

Recursive least-squares channel estimator (RLSCE).

o Time-varying — Since q}, and hence Q;, are changing
with each new training symbol, the filter shown in the
diagram is a time-varying structure. Note further that
this is true whether or not the channel is time-variant.

» Sensitive to training matrix — By noting the inverse
operation required in this structure, we see that the
estimator performance hinges upon the invertibility of
[Q;W,Q,]. However, since we are at liberty to design
the training sequence a priori, a carefully planned
training sequence usually avoids any significant
problems.

® High complexity — Since the BLSCE filter is time-
variant, the inverse operation shown in the diagram must
be performed with each new sample. This is, of course,
highly inefficient, and so recursive forms are desirable.
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Recursive least-squares channel estimator (RLSCE)

The recursive implementation of (15) is embodied in Figure
4. The figure illustrates a linear recursive estimator which
forces the estimate to take the form

&=t tkn, 19)

where 7, represents the estimation error and k, is a gain
vector. Thus the essence of the recursive solution lies in
finding the gain vector (derived in Appendix A) which
yields the least-squares estimate. The key equations in the
RLSCE algorithm are summarized in Table 1. Note that
the algorithm requires an initialization of € by an initial
guess, as well as a starting point for the correlation matrix
inverse, P, = Q;W,Q,, to remedy its possibly ill-
conditioned nature [2]. Also, the intermediate variables U,
and v, have been introduced to reduce computations.”’

® Duality between channel and sequence estimation
Theoretically, the receiver has no knowledge of whether a
signal {x,} was passed through a linear filter with impulse
response {k,}, or whether {4, } was passed through a filter
with impulse response {x,}. The channel output is simply
the noise-corrupted convolution of the input and channel
impulse response, i.c.,

r,=xxh +n,. (20)

By posing both problems in a system identification
framework, we can describe the two problems as dual
adaptive filtering tasks. That is, the channel estimation
process uses a known information sequence to identify an
unknown channel, while the sequence estimation process
uses a “known’’ impulse response to identify an unknown
sequence. This duality is shown in Figures 5 and 6. The
inherent similarity between channel and sequence
estimation is clearly evident from (20) and the figures.
Several observations worth noting are the following:

» Both problems are inverse problems (more specifically,
deconvolution problems) which are known to be ill-
posed; i.e., their solutions for nontrivial cases are not
necessarily unique.

« In general, accurate knowledge of {h,} is required to
estimate {x,}, and vice versa.

 Accurate estimation of an arbitrary {A,} requites the use
of a known sequence {x,} which is persistently exciting;
i.e., the training signal must have sufficient energy in the
spectral bands of interest to excite the unknown channel,
and vice versa.

Although both problems share these similarities, the fact
remains that {#,} is specified over a field of reals, and {x,}

7 An intermediate variable is introduced in [19] to reduce computation. That
variable was factored to yield U, and v, resulting in a further reduction (at the
expense of memory).
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Training a channel estimator. A known training sequence {xk} is
used to estimate the unknown sequence {hk}.
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Training a sequence estimator. A ““known”’ training sequence {&
q k

is used to estimate the unknown (soft) sequence {xk}.

Table 1 Recursive least-squares channel estimator (RLSCE) algorithm.
No. Procedure + X - 2 /0 Storage Comment
0 k=0,¢ = cy, - - - - - - Initialization
P,=¢ 'l
1 r,k=k+1 0 0 0 0 1 1 Receive signal
2 q 0 0 0 0 N N Training vector
3 U =9"'P 0 0.5(N*+N) 0 0 0.5(N*+N) N? Intermediate step
4 v, =1Ugq, N? N? 0 0 1 N Intermediate step
\A .
5 k= N+1 N N O 1 N Gain vector
1+ q,‘Tvk
6 n=r- q,TE,(_1 N+1 N 0 0 1 1 Innovation term
7 P =U - kv 0.5(N*+N) 05(N>+N) 0 0 0.5N?+N) N? Correlation matrix
inverse
8 ¢ =¢t_ +kn N N 0 0 0 N Channel estimate
Total L5N?+3.5N+2 2N’+4N N 0 N?+2N+4 2N*+4N+2
Notes: - . T T
L =18y by b ] @ = Doy " Veem X Xim-ny] -

2. N is the order of the estimator; i.e., N & M + L.
3. ¢ is initial estimate; ¢ is small positive constant; y is exponential-weighting.
4. /O represents memory input/output with no arithmetic operations performed.
5. Step 3 not required if ¥ = 1.0.
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is over a binary field. Thus, while channel estimation deals
with the estimation of a finite number of real-valued
parameters, sequence estimation® deals with the estimation
of an infinite number of binary-valued parameters.

Batch least-squares sequence estimator (BLSSE)
The duality described above suggests that by making
several basic substitutions, the same estimator structure
can be used, and so we now revisit the batch channel
estimator and perform the appropriate modifications.
First, we need an appropriate model for the unknown
information sequence. Since we are assuming that {x,} is
an uncoded’ sequence, the z-transform of an arbitrary
L-length message sequence can be given by a simple FIR
model, viz.,

L-1
X(z)= > xz7, (1)
i=0

where the length of the message sequence is at least as
long as the channel response to enable a unique solution.
Thus, by using the same naming convention followed in
the channel estimation development, we find that the
coefficient vector and its soft estimate are now given by

— RN T
G = [xk—(L—l) xk—(L—1)+1 Xt xk] ’
T = Y 7 ces ¥ z17
G = [xk—(L—l) X -1+ x %] (22)

Next, we must reexamine the topic of input—output
observable pairs. Recall that the channel estimator
development required the use of a known training
sequence. The same applies for sequence estimation.
However, in this case the “known’” training signal is the
estimate of the channel’s impulse response. Thus, the
training vector is now given by the (L x 1) vector

q.=[k_ h_, - kK" (23)

The estimated samples of the impulse response are
determined by

M
Ek = 2 ah_; + Eiak—i s (24)
i=1

where 8,_, is the Dirac delta function, and the parameters
a, and b, are found by the channel estimator. Note that the
training matrix also changes with the new q,, as defined in
(9). These key variables and their counterparts in the
channel estimation process are summarized in Table 2.

8 From a classical standpoint [24], it can be argued that what is commonly known
as sequence estimation is not an estimation problem at all, but a detection problem.
We resist this argument, since posing the problem in an estimation framework leads
to an elegant duality which we exploit.

9 This model could be easily modified for exploiting sequences which have been
intentionally (or unintentionally) coded by a linear filter, such as a transmission
filter or linear code used in bandwidth-shaping schemes.
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By exploiting the duality shown in Table 2 and applying
the new variables directly in the solution for the least-
squares channel estimate (15),

¢ = [Q:Wka]_leTWkrk > (15)

we obtain the unconstrained solution for the least-squares
sequence estimate, i.¢., the real-valued sequence estimate
which is closest to the actual transmitted sequence in a
least-squares sense. Recall, however, that the transmitted
information need not be of finite length, and it is,
furthermore, a binary-valued sequence. To accommodate
this, we first extract the first element of € by filtering the
parameter vector,

Z gy = 1, (25)
where the pick-off vector f is defined by

f=[10---0] (26)
This soft decision can now be passed through a simple
threshold device to yield the hard decision J%k_(L_l), i.e.,

) ) +1 % ,.,20,

Riq-p = SgN {xk_(,__l)} =11 £y <0, (27

The process described would continue by simply shifting
the elements of r, as was done in the BLSCE structure,
and recomputing the least-squares solution given by (15).
A block diagram of the BLSSE receiver is shown in
Figure 7.

BLSSE observations
& Identical in structure to batch channel estimator —
Preceding the pick-off vector f shown in the figure, the
BLSSE and BLSCE structures are identical in form;
hence, by simply redefining the contents of the training
vector, one can use the same architecture to estimate
both the channel and unknown sequence.
& Linear estimator — As was the case for the BLSCE
structure, the soft estimate is a linear function of the
observable vector; hence, the BLSSE estimator—up to
the threshold device—is a linear receiver.
Time-invariant receiver for time-invariant channels —
Recall that the batch channel estimator was time-
varying, even for stationary channels. If the channel
filter varies with time, the BLSSE receiver is also time-
varying. However, if the channel is time-invariant, the
training vector q:, and hence Q:, of the BLSSE receiver
does not change with each new training symbol.
Therefore, once an initial burst of symbols has been
sent, the filter reaches steady state and hence becomes
stationary.
& Sensitivity to training matrix — The BLSSE filter is also
sensitive to the invertibility of [QZWkQ .J- In contrast to
the channel-estimation problem, though, the training
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H—a-n

Batch least-squares sequence estimator (BLSSE).

Table 2 Duality between channel and sequence estimation.

Channel estimation

Sequence estimation

Signal model

Coefficient vector ¢, [hyhy - h

071 L-2 ""L-1

Training vector q, [x, x,_, ="

L-1
H(z) = Eh‘.z -
i=0

L-1
X@) = dxz”
i=)

T . e
] [C PP A

T —
xk—(L‘l)] (n

Note: An FIR channel model is shown, since this is much more prevalent in practice. The duality also exists for an IIR channel model, although it is not as obvious as that

shown for the FIR model.

matrix Q, cannot be specified by the designer, since it
now represents the channel coefficients.

® Moderate complexity — Since the BLSSE filter is
time-invariant for LTI channels, the matrix
[Q:WkQ A 'IQZW,( must be calculated just once; hence,
the batch form itself is not as inefficient as the BLSCE
structure. However, even though the BLSSE structure
may be more efficient than its BLSCE counterpart under
time-invariant conditions, the ability to handle time-
varying channels still necessitates a recursive form.

Recursive least-squares sequence estimator (RLSSE}

By substituting the parameter definitions detailed in

Table 2, the recursive form of the least-squares sequence
estimator follows the derivation of the recursive channel
estimator. The only difference is found at the end of each
iteration, where the following must occur in order to
accommodate the shift and threshold operations, which are
not found in conventional RLS algorithms:

e Pick off and constrain soft estimate. Prior to shifting the
elements of the coefficient vector, we must first extract
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an estimate of the ““oldest™ symbol, i.e.,fk_(L_l).
Analytically, we can do so by filtering the parameter
vector by the pick-off vector f defined in (26). Once this
soft estimate has been removed from the coefficient
vector, we constrain it and obtain the final estimate.
Shift and initialize €,. By noting the form of the
parameter vector, it is clear that after each iteration, a
new initial estimate of the parameter vector can be found
by simply shifting the elements to the left by using the
shifting matrix S, already defined in (18). In addition,
while all RLS algorithms require an initial estimate of the
coefficient vector at start-up, our shifted RLS scheme
requires a continuous initialization of the current
(rightmost) symbol of the coefficient vector. This can

be accomplished by augmenting the shifted coefficient
vector by the quantity X, g, where £, is an initial guess

of the current symbol. Note that ¥, = 0 for our equally
likely binary model, but we leave this important step in
the algorithm for generality and for possible extensions
to coded schemes. Note that the shift matrix is a linear
operation which is useful for the purpose of analysis, but
in practice this is a trivial memory shift which simply
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The RLSSE(L,0) receiver.

propagates a particular vector element from right to
left. Thus, for a filter of length five, the unconstrained
parameter vector and its shifted/initialized version could
be generally described by

T —
¢, =[6¢¢¢¢cl

eS+xg=1[¢ ¢, ¢ ¢ %] (28)

Shift and initialize P,. The inverse covariance matrix
must also be shifted (up and to the left) to remain
synchronized with the coefficient vector. This can be
accomplished by filtering the covariance matrix by the
transformation $”PS, where § is the previously defined
shifting matrix. It should be noted that this covariance
shift effectively shifts the elements of k, as well. After
the shift, the “new”” elements of P, must also be
initialized. We can satisfy this initialization by
augmenting the shifted covariance matrix above with the
matrix ¢ 'gl, whose entries are all zero except for the
lower right element, which has the value £™'. For
example, shifting and initializing an arbitrary 3 x 3
matrix P would appear as

P(1,1) P2,1) P3,1)
=|P(1,2) P2 P32,
P(1,3) P22,3) PG3,3)
P2,2 P32 O
SPS + ¢ 7'gl = |P(2,3) PGB,3) 0 [, (29)
0 0 e

A block diagram of the linear RLSSE receiver is shown in
Figure 8. For reasons which become apparent in the next
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section, this receiver is referred to as the RLSSE(L, 0)
receiver.

Constraining the estimator—the RLSSE(L, D)
algorithm

Although the optimum (maximum-likelihood) receiver for
binary signaling is well known and has been shown to

be nonlinear (see for instance [25]), the complexity of
these MLSE schemes typically precludes a realizable
implementation (e.g., Viterbi decoders). Other suboptimum
methods have evolved, such as reduced-state methods [26,
27] or reduced-search methods such as the M-algorithm
[28]. Still, the moderate to high complexity of these
suboptimum MLSE schemes has prevented their
widespread use.

Indeed, the DFE is undoubtedly the most popular
nonlinear receiver which exhibits both low complexity and
reasonable performance. Furthermore, since the DFE is
merely a nonlinear variant of the linear feedback equalizer,
we are motivated to seek a nonlinear variant of the linear
RLSSE estimator in an effort to improve its performance
over channels with severe ISI.

Toward that end, consider the role of the past sequence
estimate €,_, shown in Figure 8. During each iteration, this
vector acts as an initial guess which is corrected on the
basis of the error and gain vector. Note, however, that €,_,
represents a soft estimate of the true coefficient vector c,.
Hence, we already know that it is, in general, not correct.
It thus seems intuitive to constrain these soft estimates
before they are used in the next iteration. If these
decisions are correct, €, stands a good chance of being
correct as well. However, since some of these elements
have been in the RLSSE decoding window for only
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Expanded view of the D-threshold device for binary data transmission.

a few samples and are, furthermore, noise-corrupted, an In this spirit, we extend the linear RLSSE receiver to a

incorrect decision is certainly possible. The leftmost nonlinear structure which we designate the RLSSE(L, D)

element of €, _,, however, can be considered the most receiver, as shown in Figure 9.

mature estimate; i.e., since it has propagated through the In the figure, all elements are identical to those found in

full length of the RLSSE window, it seems reasonable to Figure 8 except for the new D-threshold device which has

assume that, after some point, it has been equalized been inserted in the feedback path. The D in the lower

enough so that constraining it may improve the overall right corner of the device signifies that only the leftmost D
performance. symbols are constrained. Thus, the RLSSE(L, 0) is the 141
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Table 3 The RLSSE(L,D) algorithm.

No. Procedure * X + 2 10 Storage Comment
0 k=0, = ¢y - - - - - - Initialization
P, = eI
1 r,k=k+1 0 0 0 0 1 1 Receive signal
2 q 0 0 0 0 L L Training vector
3 U =9y'P_, 0 0.5(L*+L) 0 0 0.5(L* + L) L* Intermediate step
4 v, =Ug, L’ L? 0 0 1 L Intermediate step
Vi
5 k= ——— L+1 L L 0 1 L Gain vector
1+4q,v,
6 m,=r - q,(T‘c'k_1 L+1 L 0 0 1 1 Innovation term
7 P =U, - kv, 0.5(L*+ L) 05L*+L)y 0 0 05L>+1L) L’ Correlation matrix
inverse
8 €& =¢2, +kn, L L 0 0 0 L Sequence estimate
9 Xp_q-n = sgn (fc,) 0 0 0 1 0 0 Pickoff & constrain
10 é,f_l = ‘c'kT_IS + xXg 0 0 0 0 L 0 Shift & initialize €,
11 &, = sgny (&) 0 0 0 D 0 0 Constrain D symbols
12 P =SPS+e'gl 0 0 0 0 L’ 0 Shift & initialize P,
Total 1.5L243.5L+2 2L*+4L L D+1 2L°+3L+4 2L7+4L+2

Notes:

- - . o aqT = = = =7
L& = {F_ g 1) Be—worger " Ty Bl @ = Mrpoy Apg 20 by hg) .

2
3. Steps 1-8 are identical to the RLSCE algorithm of Table 1.
4. Step 3 is not required if y = 1.0.

5

linear receiver already discussed, while, at the other
extreme, the RLSSE(L, L) receiver uses a fully
constrained estimate. An expanded view of the D-
threshold device is shown in Figure 10, and a summary
of the RLSSE(L, D) algorithm is given in Table 3.

Observations on RLSSE(L, D) receiver

& Varying degrees of nonlinearity — By noting once again
that the final soft estimate is linear in the observable
vector, we see that for D = 0, the RLSSE is a linear
estimator up to the threshold device. However, one can
also increase D up to the length of the RLSSE window,
in order to increase the degree of nonlinearity.

s Same core algorithm as RLSCE — It is important to
note that the processing required by Steps 0-8 of the
RLSSE algorithm is identical to that found in the
RLSCE algorithm—only the definition of q, has
changed. Furthermore, Steps 0-8 represent virtually all

F. GOZZ0

. it IS initial estimate; ¢ is small positive constant; y is exponential-weighting; %, is soft estimate of current symbol.

. For time-invariant channels, Steps 2-7 and Step 12 are not necessary after the gain vector converges.

of the significant processing. This significant fact
suggests that an RLSSE receiver can exploit the same
core architecture for both the channel and sequence
estimation tasks, as we have successfully accomplished
in our tests.

s Moderate to low complexity — As shown in the table,
the RLSSE algorithm can handle time-varying channels,
since q, need only be updated with the new channel
estimate. From the complexity analysis shown in the
table, we see that the worst-case complexity is O(N?)
for time-varying channels. If, however, the channel is
time-invariant, the gain vector rapidly converges to its
steady-state value. Therefore, the burdensome task of
computing P, is not necessary, and so Steps 2-7 and
Step 12 can be avoided, resulting in an O(N) algorithm.

s Synchronous operation — After the initial burst
of L symbols has been received, the algorithm will
synchronously generate estimates. Thus, the overhead
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of buffer management required by some receivers is
avoided.

Theoretical performance analysis

An informative theoretical analysis of the nonlinear
RLSSE(L, D) receiver does not seem feasible without
unrealistic assumptions; hence, computer simulations have
been used to establish the performance of the generic
RLSSE(L, D) receiver. However, by assuming stationary
and ergodic conditions, the asymptotic performance of the
linear RLSSE(L, 0) structure can easily be determined, as
is now shown.

® Perfect channel knowledge

If one assumes that the channel estimator generated a
perfect estimate of the channel impulse response, the mean
square error (MSE) performance of the linear RLSSE(L, 0)
structure can be readily ascertained. Since the least-
squares and least-mean-square error are asymptotically
identical in AWGN [29, 30], the asymptotic performance of
the RLSSE(L, 0) structure with perfect channel knowledge
is that of all linear receivers which were optimized for an
MSE criterion, viz.,

JRLSSE(““,U) = % J:” |H(e ja))|2 + NO d(l), (30)
where |H(e’*)|” represents the discrete power spectrum of
the channel filter.

® White Gaussian noise mismatch

If the noise statistics during training differ from those
during decoding, a noise mismatch condition is present, as
shown in Figure 11.

However, recall that the RLSSE approach does not
depend on the noise statistics, implicitly or explicitly. It is
strictly based on the channel estimate. Therefore, as long
as the training sequence is sufficiently long that the
channel estimate converges to an unbiased solution,
the performance of the RLSSE(L, D) algorithm during
decoding is independent of the noise variance during
training. Hence, the RLSSE(L, D) receiver is insensitive to
white Gaussian noise mismatch, and the MSE performance
given in (30) is valid for the special case of noise
mismatch. This insensitivity to noise mismatch is a
significant advantage which is not offered by linear or
decision feedback equalizers™ [4].

® Arbitrary channel mismatch
We can apply the same argument to the case of arbitrary
channel mismatch, shown in Figure 12, as long as we

10 F. Gozzo and J. B. Anderson, ““The Impact of Noise Mismatch on Linear and
Decision Feedback Equalizers,” IEEE Trans. Commun., submitted August 20,
1991,
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White Gaussian noise mismatch: the condition in which a receiver
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Arbitrary channel mismatch: the condition in which a receiver is
trained for a particular channel filter and noise level, but decodes
in another environment.

constrain the noise to be white and Gaussian. Therefore,
by using the arbitrary channel mismatch formula derived in
[4], and constraining the noise to be white, we find that the
asymptotic performance of the RLSSE(L, 0) receiver is
given by
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Block diagram of a generic equalizer. Feedforward and feedback coefficients are generally different from channel coefficients introduced
previously.

Table 4 Channels used in noise mismatch tests.

Channel H(z) X Comment
\ [ . H 2
A 1-¢ M IIR model of simple low-pass channel.
1-az?! (1-a)
B V1/1.951 (0.06 - 0.07z" + 0.1z7* ~24 FIR model of typical data-quality

=037 = 0727 + 27 + 0.527° telephone line.

+0.0z77 - 0.327% + 0.0527° + 0.1z7Y)

C Vi@ +z™h £ Two-way model with spectral null.
Common in radio channel applications.

; L (= [ Ny [UHEP + Ny e™) - [Hye) + NHEM]) o
®0) = A joo . jor jo w,

RSEO T om ), LHE) + N, (H(™)" + N [HE") + N]

144 where H;, (¢’*) represents the discrete Fourier transform of the channel filter during training.
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® Performance comparison with linear/DFE receivers
By exploiting the arbitrary mismatch results from [4], we
can directly compare the performance of the RLSSE(L, 0) i
receiver to linear and DFE receivers in the presence of | A @=09)
channel mismatch in white Gaussian noise. The ‘\/
equalization schemes we address can be depicted by the B
generic equalizer shown in Figure 13. For the linear
equalizer, the two switches shown are in the down
position; hence, the threshold device is not in the feedback ) A (@=05
loop. For notational convenience, we refer to this linear ~
structure as LFE(L, M), where L and M represent the
number of taps in the feedforward and feedback filters,
respectively. In addition, since the marginal performance
advantage offered by recursive linear equalizers is typically
outweighed by their potential instability [2], we restrict our
analysis of linear equalizers to the nonrecursive case, i.e.,
LFE(L,0).

By flipping both switches up, the nonlinear threshold
device is moved into the feedback loop, thereby creating
the decision feedback equalizer which we refer to as
DFE(L,M). Now, the feedforward and feedback filters
can be interpreted as a linear equalizer and canceler,
respectively [1]. That is, the received signal is first Channel
processed by the Lth-order feedforward filter which
attempts to equalize the precursors (samples before the
peak sample) of the channel impulse response. Once the
precursors have been equalized, the Mth-order recursive
filter mitigates the effect of the postcursors (samples after
the peak sample) [31]. Thus,

la{ei)|

A

J,

LFE(»,0)
=) [ ad [HE") + NJH (") = [Hy(e™)" + N, + AlH(Ee")|"
2m j AT N [H{) + N, + AP[HE™)" + N] ¢

and

J,

DFE(w,)

= exp do}. (33)

: I « al [HE®) + NH (™) — [H ™) + N, + AlH(E"™)|’

— 11 : + : :
27 | [HE@) + N, [H@") + N, + AF[HE") + N,]

Note that by comparing (31) and (32), it is clear that Jp; o) < e is always valid for the case of white Gaussian
noise mismatch:

J

RLSSE(x,0)

L N
2 J'_ﬂ HE)+N,“ " 2n J'

n N, AYHE™))
- + . = .
. [H(e™)* + N, " [[HE™)|* + N, + AV [|H(E™))* + N 4o = Jiexing)

This relation is also valid under most (but not all) arbitrary channel mismatch cases. 1

NThe exceptions we found occurred in those situations where, for a given level of
filter mismatch, the transversal equalizer performed better with noise mismatch than
without it. Intuitively, the filter and noise mismatch can sometimes mitigate each
other [4].
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Magnitude spectra and approximate eigenvalue spread x of chan-
nels used in arbitrary mismatch tests.

Empirical test results
We have resorted to simulation in order to further evaluate

the MSE and P, performance of the RLSSE(L, D) receiver
under perfect channel knowledge and in various degrees of

F. GOZZO

noise and channel filter mismatch. The transfer functions
and magnitude spectra of these test channels are tabulated
and plotted in Table 4 and Figure 14, respectively, for the
noise mismatch tests and in Table 5 and Figure 15,
respectively, for the arbitrary mismatch tests. Note that
Channel C exhibits nulls, while Channel A does not have
any nulls over the stable' regions of interest. Figure 15
also plots the approximate eigenvalue spread y as a
function of the test channel parameter @, where y is
defined as

_ max(|H(e™)|%)

¥ min () )

and has been shown to be a useful tool in the study of
arbitrary channel mismatch [4].

¢ Test description

For each of the test channels, the MSE and error
probability P, of LFE(31,0), DFE(16, 15) and RLSSE(31,0)
receivers were measured. Since the LFE and DFE
receivers required 31 taps to validate asymptotic MSE
predictions, we used 31 taps for the linear RLSSE(L, 0)
receiver as well (for the MSE test only). Note, however,
that the RLSSE(L, 0) requires roughly L _ taps to achieve
its optimum performance, where L_ is the length of the
channel filter. This becomes evident when we examine the
sensitivity of the RLSSE(L, 0) performance as a function
of L.

All receivers were trained by an RLS algorithm with a
pseudorandom binary (+1) data sequence until their
respective tap vectors converged. The trained receivers
then detected a pseudorandom binary data sequence until
at least 100 bit errors occurred. All RLSSE receivers
utilized the steady-state gain vector after 100 symbols;
hence, the complexity of all receivers shown is O(N).
Finally, note that the RLSSE receivers invoked the same
RLS procedure for both channel and sequence estimation.

® Validation of theoretical MSE predictions

The MSE performance comparison of the receivers,
assuming perfect channel knowledge, is shown in Figure
16, while the analogous plots for the case of noise
mismatch are shown in Figure 17. As expected, MSE
results for channel filter mismatch were identical to the
LFE results previously shown in [4], so for brevity they
are not shown (P, results are shown for channel filter
mismatch, as described below). Theoretical MSE curves
for the RLSSE(x,0), LFE(e,0) and DFE(, ») receivers
were calculated by numerically integrating Equations (31),
(32), and (33), respectively. In addition, the theoretical
curve for the AWGN channel [|[H(e’*)|? = 1] was plotted

12 Channel A does exhibit a null at @ = 7 when @ = 1, but it becomes unstable
since the pole is on the unit circle.
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MSE performance of RLSSE(L,0) assuming perfect channel estimates: theoretical predictions vs. test results. The RLSSE(e,0), LFE(cc,0)
and DFE(e, ) curves were calculated by numerically integrating Equations (31), (32), and (33), respectively. The symbols represent test
¢ measurements. Note that the RLSSE(e,0) and LFE(x,0) curves (dotted lines) are identical.

as a benchmark. For ease of interpretation, the plots are
labeled SNR ., and SNRy ., denoting the signal-to-noise
ratio during train and run modes, respectively. Note that
SNR i = —1010g[2(N, + A)] and SNR, =

—10 log(2N,).

S Probability of bit error

Bit error rates were also measured during testing.”
Representative results from these tests are shown in Figure
18 for the case of perfect channel knowledge and in Figure
19 for the channel filter mismatch case. By inspecting
theoretical and test results, several observations can be
made:

13 A theoretical approximation of Py is introduced in Appendix B.
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& For all test cases, the measured MSE for the linear
RLSSE(L, 0) receiver closely approximated the
asymptotic predictions.

» The empirical results support the theoretical prediction

that Jo spmo) < Jirgme I White Gaussian noise
mismatch, with equality only under the idealistic case of
no noise mismatch. In fact, the linear RLSSE(31,0)
receiver also outperformed the DFE in several of the
noise mismatch tests.

& The linear RLSSE is relatively robust. Recall that the
LFE and DFE receivers required an accurate estimate of
the “‘peak sample’” of the channel impulse response;

i.e., they were trained with the optimal delay for each
channel. No such delay was used for the linear RLSSE

F. GOZZO
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presence of noise mismatch.

receiver. In fact, the linear RLSSE receivers used in all

tests were identical, including the initialization of y and &.

¢ For some channels, the performance of the fully
constrained nonlinear RLSSE receiver was better than or
comparable to the DFE performance. For those channels
in which the RLSSE(L, D) could not perform well, it
seems that a large number of precursors reduced the
effectiveness of the constrained algorithm. This problem
was found to be less severe as the constraint parameter
D was decreased. However, this led to performance
comparable to that of the RLSSE(L,0) receiver. It was also
found that modifying parameters y and & could improve on
the performance of the fully constrained receiver.
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MSE performance of RLSSE(L,0) in white noise mismatch: theoretical predictions vs. test results. The RLSSE(e,0), LFE(x,0), and
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measurements. The AWGN curves apply only to LFE and DFE receivers; they show the best MSE possible for either equalizer in the
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Implementation considerations

A number of implementation considerations have been
investigated throughout the various tests. Several of the
key findings are now summarized.

® Parameter sensitivity

There are four basic parameters which must be specified
for the generic RLSSE(L, D) receiver—L, D, ¥, and e
We have found that the filter length L must be at least
equal to the channel length in order to achieve adequate
performance. Although higher-length filters may improve
performance in some cases, the gain is not always
appreciable. In fact, there were mismatch scenarios in
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assumed in theoretical predictions.

which increasing the receiver complexity actually
degraded performance. This complexity inversion
phenomenon, which was also found to exist in linear,
DFE, and MLSE receivers, is further described in [4].
Test results which show the sensitivity of the linear
receiver to the length of the RLSSE window L are
summarized in Figure 20.

From the tests, we have found that the linear receiver
is quite robust with regard to y and &. In fact, we used
constant values of y = 1.0 and £™' = 15 for all test
channels. Other values outside these nominal values
were also used, but there was no appreciable gain or
loss in performance. It is also clear that the channel
characteristics (e.g., degree of nonminimum phase) play
a key role in the optimal selection of D. Although the
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Bit error probability of RLSSE(L, D) assuming perfect channel knowledge. DFE uses actual decision feedback vs. correct decision feedback
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optimization of D was not theoretically addressed, we
found that the extreme values D = 0 and D = L usually
led to optimum performance.

® Exploiting IIR channel models

Although the RLSSE development is based on a finite-
length decoding window, the channel estimator need not
be constrained to an FIR model. In fact, for Channel A,
which is a one-pole IIR channel, we found it useful to
identify the channel with an IIR model and truncate the
model to a suitable length before presenting it to the
RLSSE decoder. The advantage of this method (for this
channel) is rapid convergence, which occurs because only
one parameter must be estimated. A disadvantage of this
approach is the biased estimate which occurs at extremely
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feedback assumed in theoretical predictions.

low SNR levels. A comparison of the FIR- and the IIR-
trained receivers is shown in Figure 21. Note that since the
FIR approach yields unbiased estimates, the performance
is insensitive to noise mismatch. The IIR approach
resulted in a biased estimate; hence, the receiver was

in a channel mismatch condition at low SNR.

& Steady-state implementation
The generic RLSSE(L, D) receiver shown in Figure 9 has
complexity O(L?), where L is the width of the RLSSE
window. This quadratic complexity is quite promising in
light of the exponential complexity, i.e., O(2"™"), exhibited
by most MLSE schemes. However, more efficient RLSSE
implementations are possible.

If the channel impulse response is stationary, or, for that
matter, if only block-adaptive training is used, the gain

F. GOZZO
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vector converges to a steady-state solution. The important
control-theoretic proof of this convergence, shown in [11]
for the KFE receiver, can be adopted here under the
restriction of stationarity and ergodicity. In fact, this
convergence was found to be extremely rapid—roughly
three to four times the channel length. It was also found
that the gain vector is not a function of D; hence, both
linear and nonlinear schemes can use the same steady-state
gain vector. Figure 22 illustrates the fast convergence of
the gain vector for the RLL.SSE(3,0) and the fully
constrained RLSSE(3,3) receiver over Channel C.

® Stability

The numerical stability of both conventional and fast RLS
algorithms has had considerable attention in the literature.
This potential instability has been attributed primarily to
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Channel A (a = 0.5)
SNRygany = SNRgyy = 10dB

1073

104

10-5L RLSSE(L,0)
1 L s L L o ] [ L 1

00 01 02 03 04 05 06 07 08 09
ATRAIN

1.0

Channel C (a = 0.707)
SNRgans = SNRpyy = 10dB

RLSSE(L, 0)

1072 S I
00 01 02 03 04 05 06 07 08 09

ATRAIN

1.0

Channel A (a = 0.9)
Rpany = SVRgoy = 10 dB

RLSSE (L, 0)
] ] ) | el ]
00 01 02 03 04 05 06 07 08

ATRAIN

Channel C (@ = 0.435) "
SNRpamy = SNRyyy = 10

102

£l
& j0-3

104

RLSSE(L,0)

L I | )| k) ke - H L

00 01 02 03 04 05 06 07 0.8 09

10-3}

1.0

“TRAIN

Impact of complexity on performance of RLSSE(L,0) receiver in the presence of channel filter mismatch.

the propagation of numerical imprecision when updating

P, [32-34]. As noted in the RLSSE development, the P,
matrix is partially reinitialized with every iteration. Hence,
its stability—with respect to numerical precision—is
ensured irrespective of the exponential weighting, since the
value of any element of P, can be calculated as a finite
sum of operations on the initialization matrix & 'gl.

& Numerical precision

The numerical precision shown in the simulation results
was based on 64-bit floating-point arithmetic. Although we
did not investigate the effects of precision below 32 bits,
we feel that the impact of this should not be significant,
because of the inherent stability created by constant
reinitialization of P,. Certainly, more precise RLS

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994

schemes such as square-root factorizations [35] could be
implemented if available.

& Using variants of the RLS algorithm

If the channel impulse response is time-varying and
requires continuous channel estimation (in a decision-
directed mode), the gain vector does not reach a steady
state; hence, P, must be calculated on a continuous basis.
Fast RLS algorithms [36-38] have been introduced to
reduce the complexity of the standard RLS algorithm from
O(N?) to O(N). Although these schemes have typically
been plagued by instability, it is believed that the RLSSE
receiver can exploit these fast RLS algorithms and
guarantee stability because of the continuous
reinitialization of P, described in (29). It should be noted
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that employing a fast RLS algorithm in our RLSSE
receiver would be extremely advantageous, since the
complexity would be O(N) for both time-varying and
time-invariant channels.

Several variants which were tested with some success
included reinitializing the entire covariance matrix during
each iteration, guessing at the newest (unequalized)
received symbol, and adaptively switching to a steady-
state mode once the gain vector converges.
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& Combined channellsequence estimator

Since the core RLS algorithm is identical for both the
channel estimator and the sequence estimator, the same
software can be used for both. In fact, the receiver

used in our tests invoked the same software procedure.
Furthermore, since there have been many advances in
hardware implementations of RLS algorithms, we expect
that combining the channel and sequence estimator in a
single chip could be achieved if the RLSSE algorithm were
to be used.

Summary

‘We have proposed a new family of algorithms based on
recursive least-squares estimation for the reception of
digital signals over channels with intersymbol interference
(ISI) and white Gaussian noise. For comparison, the
asymptotic predicted performance of the linear version is
shown in Table 6 along with the asymptotic performance
of linear and decision feedback equalizers. The analogous
predictions for the case of channel filter mismatch in white
Gaussian noise are shown in Table 7.

Theoretical predictions and test results have indicated
that the performance of a software-implemented version of
the RLSSE(L, 0) receiver is comparable to that of standard
linear equalizers under no-mismatch (ideal) conditions.
When noise mismatch was present, the performance far
exceeded that of LFE receivers as well as the DFE
receiver in some severe cases of mismatch.

While the linear and DFE receivers required tedious
optimization of the training delay, no such delay was
necessary for the software-implemented version of the
linear RLSSE(L, 0) receiver. Its robustness with respect to
the algorithm parameters—L, &, and y—was very good.

For several channels with minimal precursors, the
software-implemented version of the fully constrained
RLSSE(L, L) receiver was comparable to a DFE receiver
in performance under ideal conditions, and substantially
better in the presence of noise mismatch over those
channels. The optimization of D, however, must be
further addressed for broad applicability of the nonlinear
RLSSE(L, D) receiver. Promising areas of research include
joint optimization of the parameters (L, D, &, and ),
incorporating a delay in the channel-estimation process,
and incorporating prefilters to mitigate precursors.

The same core algorithm was used for both training
and decoding, suggesting that it should be possible to
implement a hardwired RLSSE receiver in an efficient
manner. Since incorporating both channel estimator and
decoder on a single chip should be possible with RLSSE
receivers, the use of the RLSSE family of algorithms
should be beneficial for applications such as hand-held
communications, multimedia, wireless networks, and other
size/weight/cost-constrained systems.
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Table 6

Theoretical MSE performance of RLSSE, LFE, and DFE in white Gaussian noise mismatch.

Receiver Mean square error

RLSSE(w, 0 L Mo d

0, —— —_—

(*=0) 27_[_7 [HE™ + N, “
LFE(=,0 o Ny A’|H(e™))?

00, —_— - + - — d
) 27 J |He™)* + N, * [|[He™)’ + N, + AP'[|[He™)’ + N,] @
1 " A He™)?
— _ + . - d

DFE(x, «) exp 21TL NHE™ + N, " [HEe")| + N, + AL[HE) + NJ|“

Assumptions:
1. Source is uncorrelated sequence with unit power.
2. Noise is AWGN with variance N, + & during training and N, during decoding.
3. MSE for DFE(w, «) receiver assumes correct past decisions.

Table 7 Theoretical MSE performance of RLSSE, LFE, and DFE in channel filter and white Gaussian noise mismatch.

1. Source is uncorrelated sequence with unit power.

respectively.
3. MSE for DFE(%, ») receiver assumes correct past decisions.

Appendix A: Derivation of the RLS algorithm
The RLS algorithm can be derived by use of the batch
least-squares estimator, repeated here:

EszS = [Q;WNQN] ~JQ;/VVer»/ . (15)

First, we exploit the diagonal nature of the weighting
matrix in (15), W,,, to obtain the recursive form,

N
[QAW, Q1= D 9,7V "q;

k=n

N-1
= > qv""q; + q,v" g,
k=n

IBM 1. RES. DEVELOP. VOL. 38 NO. 2 MARCH 19%

Receiver Mean square error
. N 2 4 NOTH (e) — [|H () juy| 2

RLSSE(w, 0) L j [ - + [Ure™) + °.]w f(e ) 2” T(i 2( + Nyl ]dw

2w J_ LHE™)|" + N, [H ™) + NI [[HEe™)" + N,]

1 (= N, [IHE™)? + N,JHe™) — [[He™)* + N, + A]He™)|"
LFE(x, 0) —f a2 + AN 7 N «

2m J_ LHE™)]" + N, [[He™)* + N, + Al’[|H(e’*)|” + N,]

1 (- | N, [ HEe™) + N,JH (™) - [|He’)* + N, + AJH(e™)|?
DFE(, =) N P L MiHE N, T (H e + N, + AL[[HE™) + N,] dw
Assumptions:

2. Noise is AWGN with variance Ny + A during training and Nj during decoding. Channel filter spectrum is HT(ej “) and H(e’®) during training and decoding,

N-1

N-k-1_T T
> vy g + q,ay
k=n

VQ;—1WN—1QN—1 + qu:/ . (A1)

For notational convenience™, we define the inverse term in
(15) as P,

P, = [QIJWNQN] ° (A2)
and by using this simplification in (A1), we yield

14 In addition to notational convenience, P,Ql =Q ;WNQ v TEpresents the time-
averaged autocorrelation matrix. Furthermore, as is mentioned by Proakis {2] and
elaborated by Bierman [35], this matrix is in general non-Toeplitz and may be ill-
conditioned.
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P = yP,' +q,q). (A3)

To remove the inverse operator, a simplified version of the
matrix inversion lemma [19],

(A+BC)'=A"~AB(1+CA'B)'CA’ (A4)
is applied by making the substitutions

A=qyPl,

B=q,,

C=q. (A5)

After these substitutions, the following recursive equation
is found for P,;:

y klPN~qu
[1+ vy 'qy P, q,]

P, =7y 'P

N-1

a,y P, (A6)

A further simplification results from defining the gain
vector,

K Y ‘IPN—qu

=, AT . 1°
YO+ y TPy g,
so that we can rewrite P, as

P, =y '[I - kyqyIP,_,, (A8)

(A7)

where 1 is the appropriately dimensioned identity matrix.

Now consider the nonbracketed factor in (15). This
term, which represents the time-averaged cross-correlation
vector, can be rewritten as

Q}\./WNI'N = 'VQ:/Aququ T ATy - (A9)
Finally, by calculating the innovation term s,
My =Ty = ylyors (A10)

and substituting these results in (15), we obtain the
recursive weighted least-squares estimator for c,

& =6, tk

N (All1)

S

Appendix B: Approximating the probability of
bit error

The MSE analyses and measurements described in this
paper and in [4] led to satisfying conclusions, since both
the theoretical and practical results were in close
agreement. Recall, however, that the P, performance
curves shown so far were based only on test
measurements. While test measurements are indeed the
only means of accurately assessing P, for arbitrary
channels and mismatch conditions, it is important to

15 Note that the innovation term here represents the @ priori estimation error, since
it is based on the previous channel estimate, whereas the batch least-squares
development utilized the @ posteriori estimation error e(k), which was based on a
current channel estimate,

F. GOZZO

provide a theoretical justification for the P, results. In this
appendix, an approximation of P, for the LFE, DFE, and
linear RLSSE receivers is obtained as a function of their
respective MSE performance in arbitrary channel
mismatch conditions.

Under practical (finite-complexity) conditions, the output
of any ISI receiver generally contains residual I1SI which is
not Gaussian. Even with this residual ISI, it is possible
and useful to determine the SNR of the (unconstrained)
receiver output {2, 39].

If the total MSE at the output of the receiver (prior to
the detection device) is denoted by J, it is clear that the
output signal-to-noise ratio SNR  is given [2] by

1-J
SNR,, = =5 (A12)

Now, assume that the unconstrained output is passed
through a simple threshold device."® If we assume that
both the residual ISI and the noise components of the
unconstrained output are Gaussian, the error probability
can be approximated by

2
1 1(1 —J)
—Eerfc At (A13)
where
2 *© 2
erfc(B) & —J e dt. (A14)
v Js

Note that Equation (A13) can be used for the LFE, DEFE,
or linear RLSSE recciver by simply replacing J in (A13)
with the appropriate formula in Table 7.

The theoretical P, approximation shown above was
compared against the P, measured via Monte Carlo
simulation for several test channels under various degrees
of mismatch. These comparisons are shown in Figure 23.
As can be seen, the theoretical approximation supports the
experimental data quite well in many regions of interest.
Furthermore, there are regions in which the fit could be
tightened by increasing the receiver complexity.
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16 Jf the soft output is followed by an optimal decision device (i.e., a sequence
estimator) which attempts to eliminate the residual ISI, the analysis would follow
an error-state approach to bound the error event probability [39, 40], which cannot
make direct use of the MSE formulas of Table 7.
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P, performance in channel filter mismatch: theoretical vs. test results (Channels A, C). RLSSE(w,0), LFE(%,0), and DFE(w, ) curves
were calculated by first numerically integrating the appropriate equation of Table 7 to find J, and then applying (A13). Symbols represent

test measurements.
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