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The Fast Staggered Transform (FST) is a
variant of the fast Fourier transform (FFT) and
is introduced to simplify and unify Fourier
methods for the Poisson equation with
boundary conditions specified on a staggered
grid—one for which the boundary of the
computational domain does not coincide with
grid points, but is staggered at half grid
spacings. Composite symmetric extensions of
the computational domain are introduced for
cases in which the boundary conditions are
nonsymmetric. For example, one boundary
may coincide with grid points while the
opposite boundary is staggered. This is
referred to as a mixed grid. Compact
symmetric FFT and FST algorithms are a
relatively new family of algorithms which offer
significant performance improvements

compared to traditional pre- and post-
processing algorithms. The resuits of
performance tests of both types of algorithms
are presented. Furthermore, compact
symmetric algorithms make possible the
application of Fourier methods to six mixed
grid boundary conditions which previously
could not be treated by Fourier methods.

1. Introduction

We briefly review the Fourier analysis method for the
Poisson equation on a rectangular region. For simplicity,
we present this material in one spatial dimension, while in
practice it is used in two or more spatial dimensions. In
one spatial dimension, the discretized Poisson equation is

un—l - 2un + un+1 =f;u
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Table 1 Discrete homogeneous boundary conditions.

Acronym Boundary Discrete
condition analog
C Cyclic u, = Uy,
D Dirichlet u, =0
N Neumann u, — uy, =0
DS Dirichlet-staggered u, +u, =0
NS Neumann-staggered u, —u, =0

for 1 < n < M. We must specify boundary conditions at
both the left and right endpoints. We may assume, without
loss of generality, that the boundary conditions are
homogeneous, since inhomogeneous boundary values may
be absorbed into £, and f,,. The discrete, homogeneous
boundary conditions we consider, specified for n = 1, are
shown in Table 1. Note that we consider two variants of
Dirichlet and Neumann boundary conditions, depending
upon whether the boundary coincides with a grid point or
is staggered at a half grid spacing. The notation D-N
indicates a homogeneous Dirichlet boundary condition at
the left endpoint and a homogeneous Neumann boundary
condition at the right endpoint. Similar notation is used for
other combinations. Combinations which involve only
C, D, or N are referred to as standard grid boundary
conditions. Combinations which involve only DS or NS
are referred to as staggered grid boundary conditions.
Other combinations are referred to as mixed grid boundary
conditions.

The discretized boundary value problem may be written
in matrix form as

Au =f, 1)

where A is a matrix of dimension M, and u, f are vectors
of length M. The boundary conditions have been used to
eliminate u, and u,, . 4 is tridiagonal, and in one spatial
dimension we would simply solve this linear system by
Gaussian elimination.

However, we proceed as follows in anticipation of
extensions to higher dimensions. First, we find the
eigenvalues and eigenvectors of A. These are summarized
in Tables 2, 3, and 4. Note that 4 always has a full set of
linearly independent eigenvectors whose components are
trigonometric expressions. Note also that in these tables
the computational domain is different for each boundary
condition. The reason for this will become clear after the
corresponding symmetric FFT or FST has been studied.
For this general discussion, we denote the eigenvalues
by A, (repeated to multiplicity) and the corresponding
eigenvectors by ¢, for 1 < k < M. We now seek a
solution for u in the form of an eigenvector expansion:
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This requires that we also express f as an eigenvector
expansion:

f=>fo.- 3)
k=1

Since f is known and the vectors @, are linearly
independent, we may compute f,. As we will see shortly,
j‘k may be computed most efficiently by means of a
symmetric FFT. Thus, this step is referred to as Fourier
analysis. Substituting Equations (2) and (3) into Equation
(1) yields

M M
2 b =4 2 L,
k=1 k=1
M
= 2 ﬁk)‘kd’k
k=1

Since the vectors ¢, are linearly independent, we conclude
that

bA, = fk

forl =k =M.

We may now compute 4,, unless A, = 0. In this case,
the compatibility condition fk = 0 must hold, and 4, is
arbitrary. Thus, the solution for u is not unique in this
case. This occurs for C-C, N-N, NS-NS, N-NS§, and
NS-N boundary conditions, and corresponds to the fact
that the solutions to these problems are unique only up to
an additive constant. Having determined #,, we may now
compute u using the inverse of the corresponding
symmetric FFT. This step is called Fourier synthesis.

To clarify the role played by symmetric FFTs, we now
consider a specific case. Assume that homogeneous
Dirichlet boundary conditions are specified at both
endpoints. In this case,

A, = —4sin’ [7k/2(M + 1)]
and
the nth component of ¢, = sin [2mkn/2(M + 1)]

for 1 < k, n < M. Thus, the eigenvector expansion for
the nth component of f (denoted f,) is

f,= > f, sinl2akn/2(M + 1)

k=1
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Table 2 Eigenstructure for the standard grid.

Boundary conditions

nth component of eigenvectors

Computational domains

Transforms Associated eigenvalues Eigenvector indices
c-C cos (2mwkn/N) 0=n<sN-1
R FFT ~4 sin®(wk/N) 0<k=N2or
0<k=(N-12
and and
sin (2mkn/N) 0sn=s=N-1
~4 sin*(wk/N) 1<sk<N2-1lor
l=sks(N-12
N-N cos (2mkn/N) 0<n < N2
RE FFT ~4 sin®(wk/N) 0<k = N/2
D-D sin (2mkn/N) 1lsn=N2~-1
RO FFT ~4 sin®(wk/N) 1sk=<N2-1
N-D cos [2mn(2k + 1)/N] 0=<n=<N/4-1
RE-O FFT —4 sin’*[m(2k + 1)/N] O<sk=<N/i4-1
D-N sin [27n(2k — 1)/N] l1<n =< N/4
RO-E FFT —4 sin’[m(2k — 1)/N] 1sk =< N/4

Table 3 Eigenstructure for the staggered grid.

Boundary conditions

nth component of eigenvectors

Computational domains

Transforms Associated eigenvalues Eigenvector indices
NS-NS cos [mk(2n + 1)/N] 0<n=<Ni2-1
RSE FST —4 sin®(wk/N) O0<sksN2-1
DS-DS sin [7k(2n + 1)/N] 0<n=<N/2-1
RSO FST ~4 sin*(mk/N) 1<k = NR2

NS-DS cos [m(2k + 1)(2n + 1)/N] 0<n=N/4-1
RSE-SO FST —4 sin’[#(2k + 1)/N] 0<k=<N/i4-1
DS-NS sin [7(2k + 1)(2n + 1)/N] 0<n=N/A4-1
RSO-SE FST —4 sin’[w(2k + 1)/N] 0<k<NH4-1
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Table 4 Eigenstructure for the mixed grid.

Boundary conditions nth component of eigenvectors Computational domains
Transforms Associated eigenvalues Eigenvector indices
N =202M + 1)

N-NS cos (4mkn/N) O=snsM

RE-E FFT —4 sin*(2mk/N) Osks=sM

N-DS cos [27n(2k + 1)/N] Osn=M

RE-O FFT —4 sin’[m(2k + 1)/N) Osk=M

D-NS sin [2mn(2k — 1)/N] lsnsM

RO-E FFT —4 sin’[m(2k — 1)/N] l<sk=sM

D-DS sin (4wkn/N) l=snsM

RO-O FFT —4sin’@mkiN) l<k<M

NS-N cos [2mk(2n + 1)/N] OsnsM

RSE-SE FST —4 sin*(27k/N) O<sksM

NS-D cos [m(2k + 1)(2n + 1)/N] 0sn=<M-1

RSE-SO FST —4 sin®[m(2k + 1)/N] O<k<M-1

DS-N sin [m(2k + 1)(2n + 1)/N] O<sns M

RSO-SE FST —4 sin’[w(2k + 1)/N] O0<ks=sM

DS-D sin 2mk(2n + 1)/N] 0sn<M-1

RSO-SO FST ~4 sin*(2mk/N) lsksM
for 1 < n < M. A fast algorithm for computing fk is Thus, the original data f, have been extended in a manner
obtained as follows. We make an odd, periodic extension related to homogeneous Dirichlet boundary conditions. It
of the original data f, (referred to as RO-symmetric of happens that the sequence f, is related to the discrete
length N): Fourier transform (DFT) of the extended sequence f,. This

relationship is given by
fN—n = _f;,
N-1
and ~12if, = DFT (f) = UN 3, fw"
n=0

f N+n = f;l ?

for0 < k < N — 1, where
where N = 2(M + 1). Note that

“)N = eiZ-n’/N.
fi=10 )
It can be shown that the sequence f, represented as a DFT
and is real, odd, and periodic of length N:
120 fun =0 fuw =
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and
fN+k =fl; *

The importance of this relationship to the DFT is due to
the fast Fourier transform (FFT) which is a fast algorithm
for computing the DFT. Similarly, #, may be computed
from i, by means of an inverse fast Fourier transform
(IFFT). Thus, FFT algorithms are responsible for the
efficiency of the eigenvector expansion method.

2. Fast staggered transform (FST)

Next, assume that the boundary points are staggered

at a half grid spacing, and that homogeneous Neumann
boundary conditions are specified at each of these. We
refer to this as a Neumann-staggered boundary condition,
which is approximated at n = 0 by u, — u_, = 0. In this
case,

A, = —4 sin’ [mk2(M + 1))
and
the nth component of ¢, = cos [wk(2n + 1)/2(M + 1)]

for 0 < k, n < M. Thus, the eigenvector expansion for
the nth component of f is

M
f,=12f+ 3 f cos[mk(2n + 1)/2M + 1))
k=1

for 0 = n < M. A fast algorithm for computing fk is
obtained as follows. We make a staggered even, periodic
extension of the original data f, (referred to as RSE-
symmetric of length N):

fN—n—l = f;l

and

fN+n = f;l k4

where N = 2(M + 1). Note that
fuo =1,

and

Janor = Fan -

Thus, the original data f, have been extended in a manner
related to homogeneous Neumann-staggered boundary
conditions. It is shown in {1] that the sequencef“k is related
to the discrete staggered transform (DST) of the extended
sequence f,. This relationship is given by

N-1
12f, = DST(f) = UN D fw, "™
n=0
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for 0 < k < N — 1. It can be shown that the sequence f,
represented as a DST is real, odd, and odd-periodic of
length N:

Jy—e =
and
fN+k = _fk'

The importance of this relationship to the DST is due to
the fast staggered transform (FST), which is a fast
algorithm for computing the DST similar in nature to the
FFT. A simple example of the FST algorithm is described
in Section 6; more detail may be found in [1]. By means of
an inverse fast staggered transform (IFST), u, may be
computed from #,.

3. Composite symmetries

We now modify this problem and analyze the impact on
the solution method. Assume that the left boundary point
is staggered at a half grid spacing, whereas the right
boundary point coincides with a grid point, and that
homogeneous Neumann boundary conditions are specified
at each of these. We refer to these as NS-N boundary
conditions (sce Table 1). In this case,

A, = —4sin’ [wk/2M + 1)]
and
the nth component of ¢, = cos [wk(2n + 1)/2M + 1)]

for 0 < k, n < M. Thus, the eigenvector expansion for
the nth component of f is

M

f,=12f+ > f, cos[mk(2n + 1)/(2M + 1)]
k=1

for0 =n <M.

A fast algorithm for computing fk is obtained by
modifying that for NS-NS boundary conditions. We have
already seen that a staggered even, periodic extension of
the original data f, (RSE symmetry) corresponds to
NS-NS boundary conditions. However, in this case our
boundary conditions are nonsymmetric. Qur approach is to
superimpose a second symmetry which corresponds to a
Neumann boundary condition (not staggered) at the right
endpoint. We refer to this as a composite symmetry. More
specifically, we make a composite staggered even-
staggered even, periodic extension of the original data f,
(referred to as RSE-SE-symmetric of length N):

fN—rwl =f;t 2
Fanonaa =1
and

fN+n = n?
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Table 5 Symmetries in the IDFT.

Acronym Symmetry Sequence DFT
Periodic Xy, =X, Xy =X,
R Real X =x, Nk = X,
RE Real £, =x, )?k =X,
Even Xy_, =X, Xy =X,
RO Real x, =x, Xk = -X,
Odd Xy_y = —X, Xy = =X,
RE-E Real composite £, =x, X =X,
Even-Even Xy =X, Xy, =X,
(N even) Xypon = X, X, = (-)fx,
RE-O Real composite X ==x X =X
Even-0Odd Xy_, =X, Xy =X,
(N even) Xnizen x, X, = — 1)kt X,
RO-E Real composite X, =x, X =-X,
Odd-Even Xy_, = —X, Xy = =X,
(N even) Xy = X, X, = (-1)"'x,
RO-0 Real composite £, =x, X = -X,
0dd-0dd Xy_, = —X, X, = —X,
(N even) Xyjpon = =%, X, = (-1)*x,

where N = 2(2M + 1). Note that

foer =
and
futer = ot

Thus, the original data f, have been extended in a manner
related to homogeneous NS-N boundary conditions. It is
shown in [1] that the sequencefk is related to the discrete
staggered transform (DST) of the extended sequence f, .
This relationship is given by

12f, = F,,

for 0 < k = M, where F,, are the even terms of the DST
of f . It can be shown that the sequence F, is real, odd,
with zero odd terms, and odd-periodic of length N:

Fy,=~-F,
F = (-1)'F,
and
Fy..=—F,.
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As before, the nonzero values F,, may be computed
efficiently by means of the fast staggered transform (FST).
Similarly, 4, may be computed from &, by means of an
inverse fast staggered transform (IFST).

Finally, we assume that the left boundary point is
staggered at a half grid spacing with a homogeneous
Neumann boundary condition specified, while the right
boundary point coincides with a grid point with a
homogeneous Dirichlet boundary condition specified. We
refer to these as NS-D boundary conditions {see Table 1).
In this case,

A, = =4 sin’ [m(2k + 1)/22M + 1)]
and

the nth component of ¢,

= cos [m(2k + 1)(2n + 1)/(22M + 1))]

for 0 < k, n = M — 1. Thus, the eigenvector expansion
for the nth component of f is

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994




Table 6 Symmetries in the IDST.

Acronym Symmetry Sequence DST
Periodic Xyin =X, Xy = —X,
R Real £ =x, X, = X
RSE Real X =x, X =X
Staggered (S) Xy poy =X, Xy o = =X
Even
RSO Real £ =x, X =X
Staggered (S) R R Ky = X
Odd
RSE-SE Real composite X, =x, X =X,
S. Even-S. Even Xy g =%, Xy = —)fk
(N even) Xnponoy =%, X, = (-1)°X,
RSE-SO Real composite xz, = x, X =X
S. Even-S. Odd Xy poy = X%, Xy = X,
(N even) Xnpen-1 = "%, X, = _1)k+1Xk
RSO-SE Real composite X, =X, Xk = —X,
S. Odd-S. Even Xpyyoy = —X, Xy =X,
(N even) Xnp-n-1 = %y X, = (-)*'x,
RSO-SO Real composite X, =x, Xk = =X,
S. Odd-S. Odd Xy_poy = —X, Xyu =X
k
(N even) Xyponoy = =X, X, =(-1D)'X,
M-1 and
f,= 2§ cos[m(2k + D2 + 1/2CM + 1)) f,=0.
k=0

forO0<n<sM-1.

A fast algorithm for computing]’k is obtained by
modifying the ideas above. As before, we superimpose a
second symmetry which will correspond to a Dirichlet
boundary condition (not staggered) at the right endpoint.
More specifically, we make a composite staggered even—
staggered odd, periodic extension of the original data f,
(referred to as RSE-SO-symmetric of length N):

Sy =1»

funenr = ~f

and

fyn =1

where N = 2(2M + 1). Note that
fua =1
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Thus, the original data f, have been extended in a manner
related to homogeneous NS-D boundary conditions. It is
shown in 1] that the sequencefk is related to the discrete
staggered transform (DST) of the extended sequence f,.
This relationship is given by

12f, = F,

for0 < k = M - 1, where F,,, are the odd terms of the
DST of f . It can be shown that the sequence F, is real,

odd, with zero even terms, and odd-periodic of length

+1

N:
Fy,=-F,

~F, . 123
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As before, the nonzero values F, | may be computed
efficiently by means of the fast staggered transform (FST).
Similarly, u, may be computed from 2, by means of an
inverse fast staggered transform (IFST).

Using techniques similar to those illustrated above,
we have developed Fourier methods for 17 boundary
conditions for the Poisson equation. These are summarized
briefly in tabular form. The 17 boundary conditions are
listed in Tables 2-4. Beneath each boundary condition is
the associated symmetric extension of the computational
domain and the transform (DFT or DST). These
symmetries are defined in Tables 5 and 6.

4. Overview of compact symmetric algorithms
It is clear from the preceding discussion that FFT
algorithms (or variants thereof) form the core of fast
eigenvector expansion methods. Therefore, we discuss a
relatively new family of symmetric FFT algorithms which
offer significant performance improvements and are
applicable to a broader range of boundary conditions.
Recall that in the eigenvector expansion method we found
it useful to extend a given sequence of real data according
to a symmetry which is related to the boundary conditions.
We then computed the FFT of this real, symmetric
sequence. These symmetries in the data result in many
redundant computations in the complex FFT algorithm.
Therefore, specialized FFT algorithms, referred to as
symmetric FFTs, have been developed which eliminate
these redundant computations.

The traditional symmetric FFT algorithms are referred
to as pre- and post-processing algorithms. These
algorithms are described in detail in [2, 3], and related
information may be found in [4, 5]. We briefly summarize
the idea behind these algorithms. Given a symmetric
sequence x, of length N, where N is even, we first
compute an auxiliary sequence y, of length N/2 which is a
simple linear function of x_. This is the pre-processing
step. We then input y, into a complex FFT algorithm and
obtain its transform Y,. The transform X, of x is then
recovered from Y,. This is the post-processing step. The
operation counts for the pre- and post-processing steps are
of asymptotically lower order than that for the complex
FFT of y,. Since y, has length N/2, the operation
count for the pre- and post-processing algorithms is
approximately half that of computing the complex FFT
of the symmetric sequence x, directly. However, for
sequences of practical length, the low-order operation
counts of the pre- and post-processing steps are still
significant. Furthermore, the pre- and post-processing
steps require additional data accesses which also
contribute to the total execution time.

Compact symmetric FFTs are a relatively new family of
symmetric FFTs which eliminate redundant computations
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due to symmetries in the data, and also eliminate the
additional computations and data accesses associated with
pre- and post-processing algorithms. Compact symmetric
FFTs are also available for symmetric sequences of length
N where N is odd. This has applications in fast Poisson
solvers in which one boundary coincides with grid points,
while the opposite boundary is staggered at a half grid
spacing.

We now briefly review the development of compact
symmetric FFTs. A compact symmetric FFT known as
Edson’s algorithm has long been available for real
sequences. In [6], a compact symmetric FFT for real
even sequences is introduced, but in the context of
Clenshaw—Curtis quadrature. In [3], in-place compact
symmetric FFTs are developed for real, even, odd,
quarterwave even, and quarterwave odd symmetries. All
in-place algorithms based on the splitting method require
either the input or output sequence to be in a permuted
order, referred to as bit-reversed order. These in-place
algorithms require the input sequence in physical space
to be in bit-reversed order, and produce the forward
transform in natural order. From our discussion of the
eigenvector expansion method, it is clear that this is the
opposite of what is desired. In [7], analogous algorithms
are developed which accept the input sequence in physical
space in natural order, and produce the forward transform
in bit-reversed order. We follow the general approach
set forth in [7]. A simple modification of this approach
using additional storage space leads to out-of-place
implementations which allow both the input and output
sequence to be in natural order. While this is not
necessary for applications to fast Poisson solvers, it does
result in a software interface which is easier to understand.
The software whose performance is analyzed in Section 5
is an out-of-place implementation, and the additional
storage space required does not exceed half of the
cache size on the IBM RISC System/6000® (RS/6000)
processor.

5. Performance of symmetric algorithms

Before discussing compact symmetric FFTs in more
detail, we indicate the magnitude of the performance
improvement offered by these algorithms in comparison to
pre- and post-processing algorithms. In [1], software is
designed and developed for the compact symmetric FFT
for real, odd (RO) symmetric sequences (the sine
transform). We now compare the performance of this
software to an implementation of the pre- and post-
processing algorithm for the sine transform which uses the
real FFT from the IBM Engineering/Scientific Subroutine
Library (ESSL) on the IBM RS/6000 processor. The FFT
software in ESSL is very highly optimized for the RS/6000
processor, and in order to make a fair comparison of the
performance of these two algorithms we used similar

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994




Table 7 Timing data for 3D grid on the IBM RS/6000
processor.

N CINIT CTRAN  PINIT PTRAN DELTIM
32 0.000755 0.002703 0.000181 0.005246 48.5
64 0.001540 0.023219 0.000108 0.034237 32.2
128 0.006136 0.209906 0.000189 0.295097 28.9
256 0.022428 2.105508 0.000358 2.778550 24.2
N length of the RO symmetric sequence
CINIT compact algorithm initialization time (seconds)
CTRAN compact algorithm transform time (seconds)
PINIT pre- and post-processing algorithm initialization time (seconds)
PTRAN pre- and post-processing algorithm transform time (seconds)
DELTIM  100(PTRAN — CTRAN)/PTRAN

coding techniques for the compact algorithm as well as the
pre- and post-processing steps. The most important issues
are cache management and facilitating the use of the
floating-point multiply/add (FMA) instruction." Our
performance results are for the forward and inverse
transform of a three-dimensional grid of size (N/2)*

(N is the length of the RO-symmetric sequence, and the
computational domain is 1 < n < N/2 - 1). That is,

we perform two transforms of (N/2)? RO-symmetric
sequences of length N. The sequences being transformed
are stored with a stride of one (column ordering in
FORTRAN), and they are processed in blocks which fit
within the cache size (64KB for the RS/6000 Model 550
processor). Assembly language listings were reviewed to
ensure that the FMA (and FMS) instruction was used by
the compiler whenever possible. The timing data are
summarized in Table 7.

6. Detalls of compact symmetric algorithms
Software for compact symmetric FFTs and FSTs is
significantly more complicated than that for pre- and post-
processing algorithms. To give an idea of what is involved,
we now provide a high-level description of the compact
symmetric FST for real, staggered even (RSE)-symmetric
sequences of length N, where N is a power of 2 (referred
to as radix = 2). A more general algorithm for any
composite value of N is developed in detail in [1]. Given
an RSE-symmetric sequence x, of length N, its DST X, is
real (R) and odd conjugate symmetric (OCS). These
symmetries are defined in Table 8. We indicate that X,
satisfies both of these symmetries by noting that X, is
ROCS-symmetric. We develop an algorithm for computing
the IDST of X, which requires that X, be input in a
permuted order. The output of this algorithm is x in
natural order. By algebraically inverting this algorithm

for the IDST, we obtain an algorithm for computing the
DST of x, which allows x, to be input in natural order.

! See [8-10] for the development of FFT algorithms for machines with fused
multiply/add instructions. Such algorithms might also be used as a starting point for
the developments in this paper and are an area for further research. A real-input
FFT for multiply/add machines is discussed explicitly in [9].
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The ROCS-symmetric sequence X, is split into two
subsequences, consisting of the even-numbered terms and
the odd-numbered terms. The subsequence of even terms
is ROCS-symmetric, while the subsequence of odd terms is
RSOCS-symmetric (see Table 8), both with length N/2.
Assume for the moment that we know the IDST of these
subsequences. We develop equations, referred to as
combine equations, for obtaining the IDST of the parent
sequence from the IDST of its subsequences. These
combine equations are not developed here, but may be
found in [1]. The IDSTs of the subsequences are obtained
by splitting them and repeating the process. Eventually,
subsequences of length 1 are obtained, for which
computing the IDST is trivial. This completes the
algorithm.

Each time a sequence is split, the resulting
subsequences satisfy certain symmetries. This information
is recorded in the ““splitting tree’” in Figure 1. Refer to
Table 8 for definitions of the symmetries appearing in the
splitting tree. In the tables, p refers to a factor of N, while
q identifies subsequences and satisfies 0 < g < p — 1.
At each stage of the algorithm, we must fully exploit
these symmetries in order to eliminate redundant data and
computations. In a sense, the entire algorithm is embodied
in the splitting tree. For reasonably general composite
values of N, the splitting tree becomes significantly more
complicated than the example shown in Figure 1. In fact,
the software implementation of this algorithm must be
capable of automatically generating the splitting tree for a
given value of N, and then “‘reading’’ this splitting tree in
order to execute the algorithm correctly. This has been
accomplished by providing the software with a knowledge
base which describes the symmetries of the subsequences
resulting from the splitting of a symmetric parent
sequence. This knowledge base must include all
symmetries which appear at any stage of the algorithm,
and all factors of N which are allowed (usually 2, 3, 5, 7).

It should be noted that the use of composite factors of N
may lead to more efficient implementations.” For example,
the software whose performance is analyzed in Section 5
uses factors of 4 and 8 rather than 2. Each factor
processed results in an access of all of the data. Thus,
larger factors result in fewer data accesses provided that
the target hardware has a sufficient number of floating-
point registers to process each factor without storing
intermediate results. The IBM RS/6000 processor, having
32 floating-point registers, is capable of processing factors
larger than 8, but we have not yet implemented this.

The compact algorithms for composite symmetries are
special cases of those for the more basic even and odd
symmetries. As an example, we now describe the compact
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2 See [4, 8] for a performance analysis of the use of composite factors of N.
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Table 8 Symmetries in the DST.

Acronym Symmetry Sequence IDST

Periodic Xy = =X, Xnin = Xn
fole 0dd X, , = -%, £ =x,

Conj

Sym
SOCS Stag XN-—k—l = ——k x, = w[;("+1/2)x—n

odd x = @ Bruag

n N n
Conj
Sym
_ _—(n+12)5

OCSIS ocs Xpa =™ Xpokorg Yuo-a = O Vg

Indcd

Interseq

Sym

_ 1)

SOCSIS SOCs X g = “Xpiryg Vipgar = OV

Indcd

Interseq

Sym
R Real _k = Xk xN—n—l = x_n
1 Imag X = -X, Xyonoy = =%,
ROCSZO ROCS & zero X =X, % =x,

0Odd terms Xy, = —)k(,, Xnon-1 = %4

(N even) X, = (-1)'X, Xnpa-n-1 = Xy
ROCSZE ROCS & zero 2 =X % =x

Even terms Xy, = =X, Xn-n-1 = g

(N even) X, = (-1)"'x, Xn-n-1 = "n
I0CSZE 10CS & zero X, = -X, £, = x,

Even terms Xy =X, Xyop-1 = X,

(N even) X, = (-1)*'x, XNn-n-1 = Xy
10CSZO 10CS & zero X = ~X, X, =x,

0Odd terms Xy, =X, Xyon-1 = "Xn

(N even) X, = (-1)*X, Xnn-n-1 = "Xn
Z Zero X, =0 x, =0

algorithms for RSE-SE- and RSE-SO-symmetric FSTs. ROCSZO-symmetric. As before, we develop an algorithm
Given an RSE-SE-symmetric sequence x, of length for computing the IDST of X, . The ROCSZO-symmetric
N = 2(2M + 1), its DST X, is real (R), odd conjugate sequence X, is split into two subsequences consisting of
symmetric (OCS), with zero odd terms (ZO). We indicate the even-numbered terms and the odd-numbered terms.

126 that X, satisfies all of these symmetries by noting that X, is  The subsequence of even terms is ROCS-symmetric, while
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ROCS
ROCS <
RSOCS

ROCS
RSOCSIS
RSOCS<
RSOCSIS*
ROCS
R
RSOCSIS <
R
RSOCS
RSOCSIS*
N=16 N=8 N=4 N=2

Splitting tree for radix-2 RSE FST with N = 16. In Figures 1-3,
an asterisk indicates a subsequence which is redundant because of
an intersequence symmetry.

the subsequence of odd terms is Z-symmetric (identically
zero), both with length 2M + 1. The IDST of a Z
sequence is also a Z sequence, so this branch of the
splitting tree requires no further processing. We continue
splitting the other branch of the splitting tree as before.
However, we note that N contains only one factor of 2,

so all remaining factors are odd. As an example, Figure 2
shows the splitting tree for the first two factors of N, these
being 2 and 3, respectively.

Recall that the RSE~-SE-symmetric FST is associated
with NS-N boundary conditions. There is an alternative
approach for NS-N boundary conditions which highlights
one of the advantages of compact algorithms over pre- and
post-processing algorithms. From Figure 2, it is clear that
we could have started with an RSE-symmetric sequence
of length 2M + 1 instead. Pre- and post-processing
algorithms have the restriction that the length of a
symmetric sequence must be even, so a compact algorithm
is required to proceed further. We have chosen the
approach of composite symmetries because it leads to a
consistent approach for all nonsymmetric boundary
conditions. For example, NS-D boundary conditions are
associated with the RSE-SO FST. Given an RSE-SO-
symmetric sequence x, of length N = 2(2M + 1),
its DST X is real (R), odd conjugate symmetric (OCS),
with zero even terms (ZE). We indicate that X, satisfies
all of these symmetries by noting that X, is ROCSZE-
symmetric. The remainder of the algorithm for the
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ROCS
ROCS< ROCSIS(1)
ROCSIS*(1)

ROCSZO

Splitting tree for RSE-SE-symmetric FST.

z
ROCSZE
< RSOCSIS(0)
RSOCS < RSOCS

RSOCSIS*(0)

| Splitting tree for RSE-SO-symmetric FST.

RSE-SO FST is analogous to that for the RSE-SE FST,
and its splitting tree is shown in Figure 3.

7. Estimate of software package size

As is often the case with mathematical algorithms, there
are some disadvantages as well as advantages associated
with compact symmetric FFTs and FSTs. Pre- and post-
processing algorithms require only a modest quantity of
simple, straightforward software to supplement a library of
real and complex FFTs. On the other hand, software for
compact algorithms is complex, and unique software is
required for each of the basic transforms. We now
estimate the quantity of code required to implement all of
the compact symmetric FFTs and FSTs developed in [1].
There it was shown that 17 boundary conditions for the
Poisson equation can be addressed by five basic transforms
(R, RE, RO FFTs and RSE, RSO FSTs). By a basic
transform we mean both the forward and inverse
directions, since one direction is seldom useful without the -
other. For each basic transform, we have identified a need
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for four factors of the sequence length N, namely 2, 3, 5, 7
(for simplicity, we are ignoring composite factors, as
discussed in Section 6). If we combine the independent
options discussed above, we obtain at least 5 x 4 = 20
variations of the basic transforms. From prototype
software for the RO FFT, we estimate that each variation
requires approximately 1800 lines of FORTRAN code
(including comments). Thus, the entire package of 20
variations requires approximately 36K lines of FORTRAN
code.

However, there is a great deal of similarity between
the codes for these compact symmetric algorithms.
More importantly, in [1] it is shown how a symbolic
computational tool such as Mathematica [11] can be
used to automate the most labor-intensive steps in the
implementation process. Specifically, Mathematica can
be used to algebraically simplify the general combine
equations for specific factors of the sequence length N,
and map the inputs and outputs to storage locations which
allow the algorithm to be implemented in place. The
Mathematica output can be inserted into a FORTRAN
subroutine skeleton, compiled, and executed. Performance
tuning is still required for the target hardware.

8. Summary

For each of the boundary conditions in Tables 2, 3, and 4,
an FFT or FST algorithm has been developed which
computes the coefficients in the corresponding eigenvector
expansion as efficiently as possible by eliminating all
redundant computations which would occur in the full
complex FFT, and without pre- or post-processing. We
conclude by summarizing how the algorithms presented at
a high level in this paper, and in much greater detail in [1],
are related to previously published algorithms.

The algorithms in [7] were developed for radix-2 only.
We have generalized all of these to radix-p for a general
factor p, yielding mixed radix algorithms.’ This has
resulted in a number of new intermediate symmetries
which occur in the course of the splitting method. After
the combine equations are obtained for the inverse
transform, they must be inverted to obtain those for the
forward transform. For the radix-p algorithms, this
requires the inversion of many systems of p equations in p
unknowns. We have exploited the special nature of these
systems of equations to invert them in closed form. The
real quarterwave even and quarterwave odd transforms,
which we refer to as the real staggered even (RSE) and
real staggered odd (RSO) FFTs, have been used for N-D
and D-N boundary conditions, respectively. We have
shown that the algorithms for these symmetries in [7] are
not in place. We have developed two new compact

3 Related work is inctuded in [4, 5]. The Good-Thomas FFT [4, 12] might also be
used as a starting point for these developments, and may have advantages for the
mixed radix case. This is an area for further research.
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symmetric FFTs, called real composite even-odd (RE-O)
and composite odd-even (RO-E) for these boundary
conditions. We have shown that these new algorithms are
in place and obtain the goal of eliminating all redundant
operations which would occur in the full complex FFT.

For staggered grid boundary conditions, we have
developed new algorithms based on a variant of the DFT
which we refer to as the discrete staggered transform
(DST). In analogy with the FFT, we have developed
efficient algorithms for computing the DST, which we refer
to as the fast staggered transform (FST). Previously, the
only known algorithms for staggered grid boundary
conditions were the real quarterwave even and
quarterwave odd FFTs, and the pre- and post-processing
algorithms in [13]. Although the real quarterwave even and
quarterwave odd FFTs have been used for NS-NS and
DS-DS boundary conditions, respectively, the algorithms
for these symmetries in [7] are not in place. The pre- and
post-processing algorithms for NS-DS and DS-NS
boundary conditions are less efficient than the new
compact symmetric FSTs for the same general reasons
discussed previously.

For mixed grid boundary conditions, we have developed
new algorithms based on superimposing two symmetries.
We refer to the resulting symmetries as composite
symmetries. Previously, the only known algorithms for
mixed grid boundary conditions were the pre- and post-
processing algorithms in [13] for NS-D and D-NS
boundary conditions. Again, the pre- and post-processing
algorithms are less efficient than the new compact
algorithms. Furthermore, we have developed compact
algorithms for six mixed grid boundary conditions which
previously could not be treated by Fourier methods.
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