
The Fast
Staggered
Transform,
composite
symmetries,
and compact
symmetric
algorithms

by B. L. Bradford

The Fast Staggered Transform (FST) is a
variant of the fast Fourier transform (FIT) and
is introduced to simplify and unify Fourier
methods for the Poisson equation with
boundary conditions specified on a staggered
grid-one for which the boundary of the
computational domain does not coincide with
grid points, but Is staggered at half grid
spacings. Composite symmetric extensions of
the computational domain are introduced for
cases in which the boundary conditions are
nonsymmetric. For example, one boundary
may coincide with grid points while the
opposite boundary is staggered. This is
referred to as a mixed grid. Compact
symmetric FFT and FST algorithms are a
relatively new family of algorithms which offer
significant performance improvements

compared to traditional pre- and post-
processing algorithms. The results of
performance tests of both types of algorithms
are presented. Furthermore, compact
symmetric algorithms make possible the
application of Fourier methods to SIX mixed
grid boundary conditions which previously
could not be treated by Fourier methods.

1. Introduction
We briefly review the Fourier analysis method for the
Poisson equation on a rectangular region. For simplicity,
we present this material in one spatial dimension, while in
practice it is used in two or more spatial dimensions. In
one spatial dimension, the discretized Poisson equation is

OCopyright 1994 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to zpu6lish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 B. L. BRADFORD

Table 1 Discrete homogeneous boundary conditions.

Acronym Boundaty Discrete
condition analog

C Cyclic uo = uM
D Dirichlet
N Neumann u* - uo = 0
DS Dirichlet-staggered
NS Neumann-staggered u1 - uo = 0

uo = 0

u1 + uo = 0

M

u = i i k f p k .

k = l

This requires that we also express f as an eigenvector
expansion:

for 1 I n 5 M . We must specify boundary conditions at
both the left and right endpoints. We may assume, without
loss of generality, that the boundary conditions are
homogeneous, since inhomogeneous boundary values may
be absorbed intof, and fM. The discrete, homogeneous
boundary conditions we consider, specified for n = 1, are

Since f is known and the vectors are linearly
independent, we may computeh. As we will see shortly,

fk may be computed most efficiently by means of a
symmetric FFT. Thus, this step is referred to as Fourier
analysis. Substituting Equations (2) and (3) into Equation
(1) yields

shown in Table 1. Note that we consider two variants of
Dirichlet and Neumann boundary conditions, depending
upon whether the boundary coincides with a grid point or
is staggered at a half grid spacing. The notation D-N
indicates a homogeneous Dirichlet boundary condition at
the left endpoint and a homogeneous Neumann boundary
condition at the right endpoint. Similar notation is used for
other combinations. Combinations which involve only
C, D, or N are referred to as standard grid boundary
conditions. Combinations which involve only DS or NS
are referred to as staggered grid boundary conditions.
Other combinations are referred to as mixed grid boundary
conditions.

The discretized boundary value problem may be written
in matrix form as

Au = f, (1)

where A is a matrix of dimension M, and u , f are vectors
of length M. The boundary conditions have been used to
eliminate uo and uM+,. A is tridiagonal, and in one spatial
dimension we would simply solve this linear system by
Gaussian elimination.

However, we proceed as follows in anticipation of

I

I

extensions to higher dimensions. First, we find the
eigenvalues and eigenvectors of A . These are summarized
in Tables 2, 3, and 4. Note thatA always has a full set of
linearly independent eigenvectors whose components are
trigonometric expressions. Note also that in these tables
the computational domain is different for each boundary
condition. The reason for this will become clear after the
corresponding symmetric FFT or FST has been studied.
For this general discussion, we denote the eigenvalues
by Ak (repeated to multiplicity) and the corresponding
eigenvectors by 4k for 1 5 k I M . We now seek a

118 solution for u in the form of an eigenvector expansion:

B. L. BRADFORD

M r M 1

M

k = l

Since the vectors $k are linearly independent, we conclude
that

GkAk = A
for 1 I k 5 M .

the compatibility Condition?, = 0 must hold, and 2, is
arbitrary. Thus, the solution for u is not unique in this
case. This occurs for C-C, N-N, NS-NS, N-NS, and
NS-N boundary conditions, and corresponds to the fact
that the solutions to these problems are unique only up to
an additive constant. Having determined C k , we may now
compute u using the inverse of the corresponding
symmetric FFT. This step is called Fourier synthesis.

consider a specific case. Assume that homogeneous
Dirichlet boundary conditions are specified at both
endpoints. In this case,

A, = -4 sin2[rk/2(M + l)]
and

We may now compute a,, unless Ak = 0. In this case,

To clarify the role played by symmetric FFTs, we now

the nth component of 4k = sin [2rkn/2(M + l)]
for 1 I k , n 5 M. Thus, the eigenvector expansion for
the nth component off (denotedfJ is

k = l

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994

Table 2 Eigenstructure for the standard grid.
~~~~~~~ 

Boundary conditions nth component of eigenvectors Computational domains 
"""""""~"""""""""""""""""" 

Transforms Associated eigenvalues Eigenvector indices 

C-C cos (2rknlN) 0 1 n  I N  - 1 

R FFT -4 sin2(?rk/N) 0 I k I N/2  or 
""""""""""""""""""""""-""-- 

0 I k 5 ( N  - 1)/2 
and and 

sin (2rrknlN) O s n s N - 1  

-4 sin2(rrk/N) l s k 1 N 1 2 - 1 o r  
"_""""""""""""""" 

1 k 5 ( N  - 1)/2 

N-N cos  (2rknlN) 0 I n  .S N12 
"""""""""~""""""""""""-"""- 

RE FFT -4 sin2(nJclN) 0 I k I N/2 

D-D sin (2rknlN) l s n < N / 2 - 1  

RO FFT -4 sin2(?rklN) l ~ k I N / 2 - 1  
"""""""""""""""~"""""""""" 

N-D cos[2m(2k + l) /N] O s n < N / 4 - 1  

RE-0 FFT -4 sin2[?r(2k + l ) / w  O s k I N 1 4 - 1  
............................ 

D-N sin [27rn(2k - 1)/N] 1 s n I N/4 

RO-E FFT -4 sin2[?r(2k - l ) / w  1 s k I Nl4 
"""""~"""""""""""-""-""-------- 

Table 3 Eigenstructure for the staggered grid. 
~ ~ _ _ _ _ _ _   _ _ _ _ _ _ ~ ~  ~ ~ 

Boundary conditions nth component of eigenvectors Computational domains 
"""""""""""""""""""""""----- 

Transforms Associated eigenvalues Eigenvector indices 

NS-NS cos [rk(2n + 1)/N] O s n  s N/2 - 1 

RSE FST -4  sin2(rk/N) O s k k N f 2 - 1  
"""""""""""""""""""""""""- 

DS-DS sin [rk(2n + l) /N] 0 1 n s N / 2 - 1  
"""""""""""""""""""""""""- 

RSO FST -4 sin2(rklN) 1 I k s N/2 

NS-DS cos [ 4 2 k  + 1)(2n + l ) / w  O < n s N / 4 - 1  

RSE-SO FST -4 sin2[rr(2k + l ) / w  O I k s N / 4 - 1  
"""""""""""""""""""""""-"" 

- 

DS-NS sin [ r(2k + 1)(2n + 1)/N] O s n  s N/4 - 1 
.......................... 

RSO-SE FST -4 sin2[r(2k + 1)/N] O s k s N / 4 - 1  

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 B. L. BRADFORD 



Table 4 Eigenstructure for the mixed grid. 

Boundary  conditions  nth  component of eigenvectors Computational  domains 
"""""""""""""""""""""""""- 

Transforms Associated eigenvalues 
N=2(211++ 1 )  

Eigenvector indices 

N-NS cos (4 rrkn/N) O s n s M  

RE-E FFT -4 sin2(2?rk/N) O s k s M  
"""""""""""""""""""""""""- 

N-DS cos [ 2 m ( 2 k  + l ) / N ]  O s n  s M  

RE-0 FFT -4 s in2[r (2k  + l ) / w   O s k s M  
"""""""-"""""""""""""""""" 

D-NS s i n [ 2 m ( 2 k  - l ) / W  l s n s M  

RO-E FFT -4 sin2[?r(2k - l ) / N ]  I s k s M  
""""""""_""""""""""""""""" 

D-DS sin ( 4 r k n l N )  l < n s M  
""""""""_""""""""""""""""" 

RO-0 FFT -4 sin2(2?rk/N) l s k s M  

NS-N cos [2rk(2n + l ) / N ]  O s n  I M 

RSE-SE FST -4 s i n 2 ( 2 r k / N )  O s k s M  
.......................... 

NS-D cos [ r ( 2 k  + 1)(2n + 1 ) / N ]  0 1 n s M - 1  
"""""""""""""""""""""""""- 

RSE-SO FST -4   s in2 [ r (2k  + 1)/N] O s k I M - 1  

DS-N sin [ 4 2 k  + 1)(2n + l ) / N ]  O s n s M  
.......................... 

RSO-SE FST -4 sin2[r(2k + 1 ) / N ]  O s k s M  

DS-D sin[2wk(2n + 1 ) / N ]  O s n  s M -  1 
"""""""""_"""""""""""""""" 

RSO-SO FST -4 sin2(2?rk/N) l s k s M  

for 1 I n 5 M .  A fast algorithm  for cornputingjk is 
obtained as follows. We  make  an  odd, periodic extension 
of the original data f ,  (referred to  as RO-symmetric of 
length N ) :  

f N + n  = f ,  7 

where N = 2(M + 1). Note  that 

B. L. BRADFORD 

Thus, the original data f n  have been extended in a manner 
related to homogeneous  Dirichlet boundary conditions. It 
happens  that  the  sequencefk is related to  the  discrete 
Fourier transform  (DFT) of the  extended  sequence f ,  . This 
relationship is given by 

N-1 

-112 ft = DFT (f,) = 11N 2 L w i k n  
n=O 

for 0 I k I N - 1, where 

W N  = eiZa/N 

It  can  be  shown  that  the  sequence$  represented  as a DFT 
is  real, odd,  and periodic of length N :  

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 



The importance of this relationship to the DFT is due to 
the fast Fourier transform (FFT) which  is a fast algorithm 
for computing the DFT. Similarly, un may be computed 
from fi, by means of  an inverse fast Fourier transform 
(IFFT). Thus, FFT algorithms are responsible for the 
efficiency of the eigenvector expansion method. 

2. Fast  staggered  transform (FST) 
Next, assume that the boundary points are staggered 
at a half  grid spacing, and that homogeneous  Neumann 
boundary conditions are specified at each of these. We 
refer to this as  a Neumann-staggered boundary condition, 

fN-k = -& 
and 

fN+k = -& ' 

The importance of this relationship to the DST  is due to 
the fast staggered transform (FST), which  is a fast 
algorithm for computing the DST  similar in nature to the 
FFT. A simple  example of the FST algorithm  is described 
in Section 6; more detail may  be  found in [l]. By means of 
an inverse fast staggered transform (IFST), un may be 
computed from 2,. 

which is approximated at n = 0 by u,, - u - ~  = 0. In this 
case, 

A, = -4 sin2[&/2(M + l)] the solution method. Assume that the left boundary point 

and 

the nth component of # k  = cos [.lrk(2n + 1)/2(M + l)] homogeneous  Neumann boundary conditions are specified 

for 0 I k ,  n 5 M .  Thus, the eigenvector expansion for conditions (see Table l). In this case, 
the nth component off is 

3. Composite  symmetries 
We now  modify this problem  and analyze the impact on 

is staggered at a half  grid spacing, whereas the right 
boundary point coincides with a grid point, and that 

at each of these. We refer to these as NS-N boundary 

A, = -4 sin2[.lrk/(M t I)] 
M 

f ,  = 1/2& + 2 i COS [ ~ k ( 2 n  + 1)/2(M + l)] 
k = l  

for 0 I n I M .  A fast algorithm for computing A is 
obtained as follows.  We  make a staggered even, periodic 
extension of the original data fn (referred to as RSE- 
symmetric of length N ) :  

fN-n-1 = f n  
and 

fN+n = fn 7 

where N = 2(M + 1). Note that 

fN-1 =fo 
and 

fN,2- 1 = fNr2 ' 

Thus, the original data fn have been extended in a manner 
related to homogeneous Neumann-staggered boundary 
conditions. It is shown in [l] that the sequencefk is related 
to the discrete staggered transform (DST) of the extended 
sequence f,. This relationship is given by 

N-1 
1/2& = DST ( f n )  = 1/N 2 

n=O 

and 

the nth component of 4k = cos [nk(2n + 1)/(2M + l)] 
for 0 5 k ,  n s M .  Thus, the eigenvector expansion for 
the nth component off is 

M 

f ,  = 1/2& t z i  cos[.lrk(2n + 1)/(2M + l)] 
k = l  

f o r O 5 n s M .  
A fast  algorithm for computingfk is obtained by 

modifying that for NS-NS boundary conditions. We have 
already seen that a staggered even, periodic extension of 
the original datafn (RSE symmetry) corresponds to 
NS-NS boundary conditions. However, in this case our 
boundary conditions are nonsymmetric. Our approach is to 
superimpose a second symmetry which corresponds to a 
Neumann boundary condition (not staggered) at the right 
endpoint. We refer to this as a composite symmetry. More 
specifically,  we  make a composite staggered even- 
staggered even, periodic extension of the original data f,, 
(referred to as RSE-SE-symmetric of length N):  

fN-"-1 =f ,  7 

fN,2-n - 1 = f ,  ' 
and 

fN+n = fn ' 121 

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 B. L. BRADFORD 



Table 5 Symmetries in the IDFT. 

Acronym Symmetry  Sequence DFT 

Periodic xN+n = XN+k = 

R 

RE 

RO 

Real 

Real 
Even 

Real 
Odd 

2" = x, 

RE-E Real composite Zn = X" 

Even-Even xN- ,  = 
(N even) 

x, = x, 
xN-k = 

XNiZ-" = X" x, = ( - l )kX ,  

RE-0 Real composite 2" = x, 
Even-Odd xN-" = 
(N even) 

x, = x, 
xN-k = xk 

xNIZ-n = x, = (-l)k+'Xk 

RO-E Real  composite 
Odd-Even 
(N even) 

2" = X" 
- x, = -x, 

x N - ,  = -x,, XN-k = 
xNIZ-n = x, = ( - l )k+ 'X ,  

RO-0 Real  composite 4 = x, - 
Odd-Odd 

x, = -x, 
x N - ,  = -xn 

(N even) 
xN-k = 

xN/2-n = x, = ( - l )kX ,  

where N = 2(2M + 1). Note that 

fN-1 ' f o  

and 

fM-1 = fM+l * 

Thus, the original data f, have  been extended in a manner 
related to homogeneous NS-N boundary conditions. It is 
shown in [l] that the sequencek is related to the discrete 
staggered transform (DST) of the extended sequencefn. 
This relationship is given by 

1 / 2 i  = Fzk 

for 0 I k 5 M ,  where FZk are the even terms of the  DST 
offn. It can be shown that the sequence Fk is real, odd, 
with zero odd terms, and odd-periodic of length N :  

FN-k = -Fk 9,  

F, = (- l),F, , 
and 

122 FN+, = -Fk . 

As before, the nonzero values FZk may be computed 
efficiently by means of the fast staggered transform (FST). 
Similarly, un may  be computed from a, by means of an 
inverse fast staggered transform (IFST). 

Finally,  we assume that the left boundary point is 
staggered at a half  grid spacing with a homogeneous 
Neumann boundary condition specified,  while the right 
boundary point coincides with a grid  point  with a 
homogeneous  Dirichlet boundary condition specified. We 
refer to these as NS-D boundary conditions (see Table 1). 
In this case, 

A, = -4 sinZ[,r(X + 1 ) / ( 2 ( 2 ~  + I))] 

and 

the nth component of 4, 

= cos [T(X + 1 ) ( h  + 1)/(2(2M + l))] 

for 0 I k ,  n 5 M - 1. Thus, the eigenvector expansion 
for the nth component off is 

B. L. BRADFORD IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 



Table 6 Symmetries in the IDST. 

Acronym Symmetry  Sequence DST 

R 

RSE 

RSO 

RSESE 

RSE-SO 

RSO-SE 

RSO-SO 

Periodic 

Real 

Real 
Staggered (S) 
Even 

Real 
Staggered (S) 
Odd 

Real composite 
S. Even-S.  Even 
(N even) 

Real composite 
S. Even-S.  Odd 
(N even) 

Real  composite 
S. Odd-S.  Even 
(N even) 

Real  composite 
S. Odd-S.  Odd 
(N even) 

XN-,  = -x, 

x, = x, 

x, = ( - l ) k X ,  

= 

A?, = x, 

x, = ( - l ) k + I x ,  

xN-k = 

x, = -x, 

x, = ( - l ) k + I x ,  

xN-k = 

- x, = -x, 

x, = ( - l ) , X ,  
xN-k = 

" 1  

f ,  = 2 cos [ 7 r ( u c  + 1)(2n + 1)/(2(2M + 1))l 
k=O 

f o r O s n s M - 1 .  
A fast algorithm for computingfk is obtained by 

modifying the ideas above. As before, we superimpose a 
second symmetry which will correspond to a Dirichlet 
boundary condition (not staggered) at the right endpoint. 
More  specifically, we make a composite staggered even- 
staggered odd, periodic extension of the original data f ,  
(referred to as RSE-SO-symmetric of length N ) :  

f N - n - 1  = f ,  9 

fN/*-n-1 = 9 

and 

f N + n  = f ,  ' 

where N = 2(2M + 1). Note that 

f N - 1  = f0 

and 

f M  = 0 .  

Thus, the original data f ,  have been extended in a manner 
related to homogeneous NS-D boundary conditions. It is 
shown in [l] that the sequenceh is related to the discrete 
staggered transform (DST) of the extended sequence f , .  
This relationship is given by 

1 /2 i  = F2k+l 

for 0 5 k I M - 1, where F2k+l are the odd terms of the 
DST off,. It can be shown that the sequence Fk is real, 
odd, with zero even terms, and odd-periodic of length 
N 

F N - k  = -Fk 9 

Fk = (-l)kt'Fk, 

and 

IBM J. RES. DEVELOP.  VOL. 38 NO. 2 MARCH 1994 

FN+k = -Fk . 

B. L. BRADFORD 



As before, the nonzero values Fzk+l may be computed 
efficiently  by means of the fast staggered transform (FST). 
Similarly, u, may  be computed from 2, by means of  an 
inverse fast staggered transform (IFST). 

Using techniques similar to those illustrated above, 
we have developed Fourier methods for  17 boundary 
conditions for the Poisson equation. These are summarized 
briefly  in tabular form. The 17 boundary conditions are 
listed in Tables 2-4. Beneath each boundary condition is 
the associated symmetric extension of the computational 
domain  and the transform (DFT or DST). These 
symmetries are defined  in Tables 5 and 6. 

4. Overview of compact  symmetric  algorithms 
It is clear from the preceding discussion that FFT 
algorithms (or variants thereof) form the core of fast 
eigenvector expansion methods. Therefore, we discuss a 
relatively new  family of symmetric FFT algorithms  which 
offer  significant performance improvements and are 
applicable to a broader range of boundary conditions. 
Recall that in the eigenvector expansion method  we  found 
it  useful to extend a given sequence of real data according 
to a symmetry which  is related to the boundary conditions. 
We then computed the FFT of this real, symmetric 
sequence. These symmetries in the data result in many 
redundant computations in the complex FFT algorithm. 
Therefore, specialized FFT algorithms, referred to as 
symmetric FFTs, have  been developed which  eliminate 
these redundant computations. 

to as pre- and post-processing algorithms. These 
algorithms are described in detail in [2, 31, and related 
information  may  be  found in [4, 51. We briefly  summarize 
the idea  behind these algorithms.  Given a symmetric 
sequence x, of length N ,  where N is even, we  first 
compute an auxiliary sequenceyn of  length N/2 which  is a 
simple linear function of xn .  This  is the pre-processing 
step. We then input  y, into a complex FFT algorithm  and 
obtain its transform Y,. The transform X, of x, is then 
recovered from Y,. This  is the post-processing step. The 
operation counts for the pre- and post-processing steps are 
of asymptotically lower order than that for the complex 
FFT of y,. Since y,, has length N/2, the operation 
count for the pre- and post-processing algorithms  is 
approximately half that of computing the complex FFT 
of the symmetric sequence x, directly. However, for 
sequences of practical length, the low-order operation 
counts of the pre- and post-processing steps are still 
significant. Furthermore, the pre- and post-processing 
steps require additional data accesses which also 
contribute to the total execution time. 

The traditional symmetric FFT algorithms are referred 

Compact symmetric FFTs are a relatively new  family  of 
124 symmetric FFTs which  eliminate redundant computations 

due to symmetries in the data, and also eliminate the 
additional computations and data accesses associated with 
pre- and post-processing algorithms.  Compact symmetric 
FFTs are also available for symmetric sequences of length 
N where N is odd. This has applications in fast Poisson 
solvers in which one boundary coincides with  grid points, 
while the opposite boundary is staggered at a half  grid 
spacing. 

We  now briefly  review the development of compact 
symmetric FFTs. A compact symmetric FFT known as 
Edson’s  algorithm has long  been available for real 
sequences. In [6], a compact symmetric FFT for real 
even sequences is introduced, but in the context of 
Clenshaw-Curtis quadrature. In  [3],  in-place compact 
symmetric FFTs are developed for real, even, odd, 
quarterwave even, and quarterwave odd symmetries. All 
in-place algorithms based on the splitting method require 
either the input or output sequence to be in a permuted 
order, referred to as bit-reversed order. These in-place 
algorithms require the input sequence in  physical space 
to be  in bit-reversed order, and produce the forward 
transform in natural order. From our discussion of the 
eigenvector expansion method, it  is clear that this is the 
opposite of what is desired. In  [7], analogous  algorithms 
are developed which accept the input sequence in physical 
space in natural order, and produce the forward transform 
in bit-reversed order. We  follow the general approach 
set forth in  [7]. A simple  modification of this approach 
using  additional storage space leads to out-of-place 
implementations which  allow both the input  and output 
sequence to be  in natural order. While this is  not 
necessary for applications to fast Poisson solvers, it does 
result in a software interface which is easier to understand. 
The software whose performance is  analyzed in Section 5 
is  an out-of-place implementation, and the additional 
storage space required does not exceed half  of the 
cache size on the IBM  RISC  System/6000@  (RS/6000) 
processor. 

5. Performance of symmetric  algorithms 
Before  discussing compact symmetric FFTs in more 
detail, we indicate the magnitude of the performance 
improvement offered by these algorithms in comparison to 
pre- and post-processing algorithms.  In [l], software is 
designed  and developed for the compact symmetric FFT 
for real, odd (RO) symmetric sequences (the sine 
transform). We  now compare the performance of this 
software to an implementation of the pre- and post- 
processing algorithm  for the sine transform which uses the 
real FFT from the IBM  Engineering/Scientific Subroutine 
Library (ESSL) on the IBM  RS/6000 processor. The FFT 
software in ESSL is very highly  optimized for the RS/6000 
processor, and  in order to make a fair comparison of the 
performance of these two  algorithms  we  used  similar 

B. L. BRADFORD IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 



Table 7 Timing data for 3D grid on the IBM RS/6000 
processor. 

N CINIT  CTRAN  PINIT  PTRAN  DELTIM 

32 0.000755 0.002703 0.000181 0.005246 48.5 
64 0.001540 0.023219 0.000108 0.034237 32.2 

128 0.006136 0.209906 0.000189 0.295097 28.9 
256 0.022428 2.105508 0.000358 2.778550 24.2 

N 
CINIT compact algorithm initialization time (seconds) 

length of the RO symmetric  sequence 

CTRAN compact algorithm transform time (seconds) 
PINIT pre- and post-processing algorithm initialization time (seconds) 
PTRAN pre- and post-processing algorithm transform time (seconds) 
DELTIM lOO(F’TRAN - CTRAN)/PTRAN 

coding techniques for the compact algorithm as well as the 
pre- and post-processing steps. The most important issues 
are cache management  and  facilitating the use of the 
floating-point  multiply/add (FMA) instruction. Our 
performance results are for the forward and inverse 
transform of a three-dimensional grid of size ( ~ 2 ) ~  
(N  is the length of the RO-symmetric sequence, and the 
computational domain  is 1 5 n I N / 2  - 1). That is, 
we perform two transforms of ( N / 2 ) *  RO-symmetric 
sequences of length N. The sequences being transformed 
are stored with a stride of one (column ordering in 
FORTRAN), and they are processed in blocks which fit 
within the cache size (64KEi for the RS/6000  Model 550 
processor). Assembly language listings were reviewed to 
ensure that the FMA (and FMS) instruction was used by 
the compiler whenever possible. The  timing data are 
summarized in Table 7. 

6. Details of compact  symmetric  algorithms 
Software for compact symmetric FFTs and FSTs is 
significantly  more complicated than that for pre- and post- 
processing algorithms. To give  an  idea of what is involved, 
we  now provide a high-level description of the compact 
symmetric FST for real, staggered even (RSE)-symmetric 
sequences of length N ,  where N is a power of 2 (referred 
to as radix = 2). A more  general  algorithm for any 
composite value of N is developed in detail in [l]. Given 
an RSE-symmetric sequence x, of length N ,  its DST X,  is 
real (R) and odd conjugate symmetric (OCS). These 
symmetries are defined in Table 8. We indicate that X,  
satisfies both of these symmetries by noting that X,  is 
ROCS-symmetric. We develop an algorithm for computing 
the IDST of Xk which requires that X,  be  input in a 
permuted order. The output of this algorithm  is x,, in 
natural order. By  algebraically inverting this algorithm 
for the IDST,  we obtain an algorithm for computing the 
DST of x,, which  allows x,, to be input in natural order. 

1 See [8-101 for the development of FFT algorithms for machines with  fused 
multiply/add instructions. Such algorithms might also be used as  a  starting point for 
the  developments in this paper and are an area  for  further  research. A real-input 
FFT for multiply/add machines is discussed explicitly in [9]. 

IBM 1. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 

The ROCS-symmetric sequence X,  is  split into two 
subsequences, consisting of the even-numbered terms and 
the odd-numbered terms. The subsequence of even terms 
is  ROCS-symmetric,  while the subsequence of odd terms is 
RSOCS-symmetric (see Table 8), both with  length N / 2 .  
Assume for the moment that we  know the IDST of these 
subsequences. We develop equations, referred to as 
combine equations, for obtaining the IDST of the parent 
sequence from the IDST of its subsequences. These 
combine equations are not developed here, but may  be 
found in [l]. The IDSTs of the subsequences are obtained 
by  splitting  them  and repeating the process. Eventually, 
subsequences of length 1 are obtained, for  which 
computing the IDST  is  trivial. This completes the 
algorithm. 

subsequences satisfy certain symmetries. This information 
is recorded in the “splitting tree” in Figure 1. Refer to 
Table 8 for  definitions of the symmetries appearing in the 
splitting tree. In the tables, p refers to a factor of N ,  while 
q identifies subsequences and satisfies 0 5 q 5 p - 1. 
At each stage of the algorithm,  we  must  fully exploit 
these symmetries in order to eliminate redundant data and 
computations. In a sense, the entire algorithm  is  embodied 
in the splitting tree. For reasonably general composite 
values of N ,  the splitting tree becomes significantly  more 
complicated than the example shown in Figure 1. In fact, 
the software implementation of this algorithm  must be 
capable of automatically generating the splitting tree for a 
given value of N ,  and then “reading” this splitting tree in 
order to execute the algorithm correctly. This has been 
accomplished  by  providing the software with a knowledge 
base which describes the symmetries of the subsequences 
resulting  from the splitting of a symmetric parent 
sequence. This  knowledge base must  include  all 
symmetries which appear at any stage of the algorithm, 
and  all factors of N which are allowed (usually 2,  3, 5, 7). 

may  lead to more  efficient implementations.2 For example, 
the software whose performance is analyzed in Section 5 
uses factors of 4 and 8 rather than 2. Each factor 
processed results in an access of  all  of the data. Thus, 
larger factors result in fewer data accesses provided that 
the target hardware has a sufficient  number of floating- 
point registers to process each factor without storing 
intermediate results. The  IBM  RS/6000 processor, having 
32 floating-point registers, is capable of processing factors 
larger than 8, but we have  not yet implemented this. 

The compact algorithms for composite symmetries are 
special cases of those for the more basic even  and  odd 
symmetries. As  an example, we  now describe the compact 

Each time a sequence is split, the resulting 

It should be noted that the use of composite factors of N 

2 See [4, 81 for a  performance analysis of the use of composite  factors  of N .  

B. L. BRADFORD 

125 



Table 8 Symmetries in the DST. 

Acronym Symmetry Sequence IDST 

ocs 

SOCS 

OCSIS 

SOCSIS 

R 

I 

ROCSZO 

ROCSZE 

IOCSZE 

IOCSZO 

Z 

Periodic 

Odd 
Conj 
SYm 

Stag 
Odd 
Conj 
SYm 

ocs 
Indcd 
Interseq 
Sym 

SOCS 
Indcd 
Interseq 
SYm 

Real 

Imag 

ROCS & zero 
Odd terms 
(N even) 

ROCS & zero 
Even terms 
(N even) 

IOCS & zero 
Even terms 
(N even) 

IOCS & zero 
Odd terms 
(N even) 

Zero 

= 

XN-,  = -x, 

x, = x, 

2, = -x, 

z, = x, 
x, = ( - l )kX,  

x, = x, 

x, = ( - l ) k f ' X ,  

2, = -x, 

x, = ( - l )k+'X,  

x, = -x, 

x, = ( - l ) k X ,  

Xk = 0 

xN-k = 

= 

xN-k = 

xN-k = 

xN+n = 

2" = x, 

- Yn,p-q-l - ONIp yn,q 
- ( n + 1 / 2 )  - 

algorithms for RSE-SE- and RSE-SO-symmetric FSTs. ROCSZO-symmetric. As before, we  develop  an algorithm 
Given an RSE-SE-symmetric sequence x, of length for  computing  the IDST of X, .  The ROCSZO-symmetric 
N = 2 ( u M  + l), its  DST X,  is real (R), odd conjugate sequence X, is split into two subsequences consisting of 
symmetric (OCS), with  zero  odd  terms (ZO). We indicate the  even-numbered  terms  and  the  odd-numbered terms. 

126 that X, satisfies all of these  symmetries by noting that Xk is The  subsequence of even  terms is  ROCS-symmetric,  while 

B. L. BRADFORD  IBM J .  RES. DEVELOP.  VOL. 38 NO. 2 MARCH 1994 



RSOCS 

RSOCSIS* 
ROCS 

RSOCS < RSOCSIS < 
R 

RSOCSIS* 

N = 16 N = 8  N = 4  N = 2  

Splitting tree for radix-2 RSE FST with N = 16. In Figures 1-3, 
an asterisk indicates a subsequence which is redundant because of 
an intersequence symmetry. 

the subsequence of odd terms is Z-symmetric (identically 
zero), both with  length 2M t 1. The IDST of a Z 
sequence is also a Z sequence, so this branch of the 
splitting tree requires no further processing. We continue 
splitting the other branch of the splitting tree as before. 
However, we note that N contains only one factor of 2, 
so all  remaining factors are odd. As an example, Figure 2 
shows the splitting tree for the first two factors of N, these 
being 2 and 3, respectively. 

Recall that the RSE-SE-symmetric FST is associated 
with NS-N boundary conditions. There is an alternative 
approach for NS-N boundary conditions which  highlights 
one of the advantages of compact algorithms over pre- and 
post-processing algorithms. From Figure 2, it is clear that 
we could  have started with an RSE-symmetric sequence 
of length 2M t 1 instead. Pre- and post-processing 
algorithms have the restriction that the length of a 
symmetric sequence must be even, so a compact algorithm 
is required to proceed further. We have chosen the 
approach of composite symmetries because it leads to a 
consistent approach for all nonsymmetric boundary 
conditions. For example, NS-D boundary conditions are 
associated with the RSE-SO FST. Given an RSE-SO- 
symmetric sequence x, of length N = 2(2M + l), 
its DST X,  is  real (R), odd conjugate symmetric (OCS), 
with zero even terms (ZE). We indicate that X,  satisfies 
all of these symmetries by noting that X,  is  ROCSZE- 
symmetric. The remainder of the algorithm for the 

""."l " ..."....."...." .. .. ~ 1 Splitting tree for RSE-SE-symmetric FST. 

ROCSZE < RSOCSIS(0) 

R S O C S G  RSOCS 
RSOCSIS*(O) 

1 Splitting tree for RSE-SO-symmetric FST. 

RSE-SO FST is analogous to that for the RSE-SE FST, 
and its splitting tree is shown in Figure 3. 

7. Estimate of software  package  size 
As is often the case with mathematical algorithms, there 
are some disadvantages as well as advantages associated 
with compact symmetric FFTs and FSTs. Pre- and post- 
processing algorithms require only a modest quantity of 
simple, straightforward software to supplement a library of 
real  and complex FFTs. On the other hand, software for 
compact algorithms  is complex, and  unique software is 
required for each of the basic transforms. We  now 
estimate the quantity of code required to implement all  of 
the compact symmetric FFTs and FSTs developed in [l]. 
There it was shown that 17 boundary conditions for the 
Poisson equation can be addressed by five basic transforms 
(R, RE, RO FFTs and RSE, RSO FSTs). By a basic 
transform we  mean both the forward and inverse 
directions, since one direction is  seldom  useful without the 
other. For each basic transform, we have identified a need 127 

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 B. L. BRADFORD 



for four factors of the sequence length N ,  namely 2, 3, 5 ,  7 
(for simplicity,  we are ignoring composite factors, as 
discussed in Section 6). If we  combine the independent 
options discussed above, we obtain at least 5 X 4 = 20 
variations of the basic transforms. From prototype 
software for the RO FFT, we estimate that each variation 
requires approximately 1800 lines of FORTRAN code 
(including comments). Thus, the entire package of  20 
variations requires approximately 36K lines of FORTRAN 
code. 

However, there is a great deal of similarity between 
the codes for these compact symmetric algorithms. 
More importantly, in [l] it  is shown how a symbolic 
computational tool such as Mathematica [l l]  can be 
used to automate the most labor-intensive steps in the 
implementation process. Specifically, Mathematica can 
be used to algebraically  simplify the general  combine 
equations for specific factors of the sequence length N ,  
and map the inputs and outputs to storage locations which 
allow the algorithm to be implemented in place. The 
Mathematica output can be inserted into a FORTRAN 
subroutine skeleton, compiled, and executed. Performance 
tuning  is still required for the target hardware. 

8. Summary 
For each of the boundary conditions in Tables 2,  3, and 4, 
an FFT or FST algorithm has been developed which 
computes the coefficients in the corresponding eigenvector 
expansion as efficiently as possible by eliminating all 
redundant computations which would occur in the full 
complex FFT, and without pre- or post-processing. We 
conclude by summarizing  how the algorithms presented at 
a high level in this paper, and in  much greater detail in [l], 
are related to previously published  algorithms. 

The algorithms in [7] were developed for radix-2 only. 
We have generalized all  of these to radix? for a general 
factorp, yielding  mixed radix  algorithm^.^ This  has 
resulted in a number of  new intermediate symmetries 
which occur in the course of the splitting method. After 
the combine equations are obtained for the inverse 
transform, they must be inverted to obtain those for the 
forward transform. For the radix-p algorithms, this 
requires the inversion of many systems of p equations in p 
unknowns. We have exploited the special nature of these 
systems of equations to invert them  in closed form. The 
real quarterwave even  and quarterwave odd transforms, 
which we refer to as the real staggered even (RSE) and 
real staggered odd (RSO) FFTs, have been used  for N-D 
and D-N boundary conditions, respectively. We have 
shown that the algorithms for these symmetries in  [7] are 
not in place. We have developed two  new compact 

Related work is included in [4, 51. The Good-Thomas FFT [4, 121 might also be 
used as a starting point for these developments, and may have advantages for the 
mixed radix case. This is an area for further research. 128 

B. L. BRADFORD 

symmetric FFTs, called  real composite even-odd (RE-0) 
and composite odd-even (RO-E)  for these boundary 
conditions. We have shown that these new  algorithms are 
in place  and obtain the goal of eliminating all redundant 
operations which  would occur in the full  complex FFT. 

For staggered grid boundary conditions, we have 
developed new  algorithms based on a variant of the DFT 
which we refer to as the discrete staggered transform 
(DST). In analogy  with the FFT, we have developed 
efficient  algorithms for computing the DST,  which  we refer 
to as the fast staggered transform (FST). Previously, the 
only known  algorithms for staggered grid boundary 
conditions were the real quarterwave even and 
quarterwave odd FFTs, and the pre- and post-processing 
algorithms in [13]. Although the real quarterwave even and 
quarterwave odd FFTs have been  used for NS-NS and 
DS-DS boundary conditions, respectively, the algorithms 
for these symmetries in [7] are not  in  place.  The pre- and 
post-processing algorithms  for NS-DS and DS-NS 
boundary conditions are less efficient than the new 
compact symmetric FSTs for the same general reasons 
discussed previously. 

new algorithms based on superimposing two symmetries. 
We refer to the resulting symmetries as composite 
symmetries. Previously, the only  known  algorithms for 
mixed  grid boundary conditions were the pre- and post- 
processing algorithms in  [13] for NS-D and D-NS 
boundary conditions. Again, the pre- and post-processing 
algorithms are less  efficient  than the new compact 
algorithms. Furthermore, we  have developed compact 
algorithms for six mixed  grid boundary conditions which 
previously could  not be treated by Fourier methods. 

For mixed  grid boundary conditions, we have developed 

Acknowledgments 
This work was generously supported by the IBM Federal 
Systems Company Resident Study Program. Larry Carter 
(Mathematical Sciences Department, IBM Research 
Division, Yorktown Heights, NY) provided suggestions for 
optimizing the software for the compact RO FFT for the 
IBM  RS/6000 processor. 

RISC System/6000 is a registered trademark of International 
Business  Machines  Corporation. 

References 
1. B. L. Bradford, “Fast Fourier  Transforms  for  Direct 

Solution of Poisson’s Equation,” Ph.D.  thesis,  University 
of Colorado at Denver,  1991. 

2. J. W.  Cooley, P. A. W. Lewis, and P. D.  Welsh,  “The 
Fast  Fourier  Transform Algorithm: Programming 
Considerations in the Calculation of Sine,  Cosine and 
Laplace  Transforms,” J. Sound Vibration 12, 315-337 
(1970). 

3. P. N. Swarztrauber,  “Symmetric FFTs,” Math. Comp. 
47, NO. 175,  323-346  (1986). 

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 



4. R. E. Blahut, Fast Algorithms for Dig’tal Signal 
Processing, Addison-Wesley Publishing Co., Reading, 
MA, 1986. 

5. P. Duhamel, “Implementation of ‘Split-Radix’ FFT 
Algorithms for Complex, Real,  and Real-Symmetric 
Data,” IEEE Trans. Acoust., Speech, Signal Process. 34, 
285-295 (1986). 

Quadrature: 11. Computing the Cosine Transformation,” 
Commun. ACM 15, No. 5, 343-346 (1972). 

7. W. L. Briggs, “Further Symmetries of In-Place FFTs,” 
S U A 4  J. Sci. Starfit. Comput. 8, No. 4, 644-654 (1987). 

8. E. Linzer and E. Feig, “Implementation of Efficient FFT 
Algorithms on Fused Multiply/Add Architectures,” IEEE 
Trans. Signal Process. 41, No. 1, 93-107 (1993). 

9. E. Linzer and E. Feig, “Modified FFTs for Fused 
Multiply/Add Architectures,” Math. Comp. 60, No. 201, 
347-361 (1993). 

10. C. Lu, J. W. Cooley, and R. Tolimieri, “Variants of the 
Winograd Multiplicative FFT Algorithms and Their 
Implementation on IBM RS/6000,” Proceedings of the 
IEEE International Conference on Acoustics, Speech, and 
Signal Processing, 1991, pp. 2185-2188. 

Mathematics by Computer, Addison-Wesley Publishing 
CO., Reading, MA, 1988. 

Fourier Analysis,” J. Roy.  Statist. SOC., Ser. B 20, 

6. W. M. Gentleman, “Implementing Clenshaw-Curtis 

11. S. Wolfram, Mathematica: A System for Doing 

12. I. J. Good, “The Interaction Algorithm  and Practical 

372-375 (1960). 
13. U. Schumann and  R.  A. Sweet, “Fast Fourier Transforms 

for Direct Solution of Poisson’s Equation with Staggered 
Boundary Conditions,” J. Comput. Phys. 75, No. 1, 
123-137 (1988). 

Received Februa y 19,  1993; accepted for publication 
August 16, 1993 

IBM J. RES. DEVELOP. VOL. 38 NO. 2 MARCH 1994 

Bert L. Bradford IBM Federal Systems Company, 6300 
Diagonal Highway, Boulder, Colorado 80301 (BRADFORD at 
BLDFW9, bradford@bldfim9.  vnet.ibm. corn). Dr. Bradford is 
an Advisory EngineedScientist in the Surveillance Algorithms 
Department at the Boulder facility. He holds a B.A. degree in 
mathematics and music from the University of North Texas, 
an M.A. degree in mathematics from the University of Texas 
at Austin, and a Ph.D.  in applied mathematics from the 
University of Colorado. His doctoral program was supported 
by the IBM Resident Study Program. He joined IBM  in 1979, 
and has worked in the areas of ground-based astrodynamics 
applications for the Space Shuttle as well as space-based 
infrared surveillance algorithms.  Dr. Bradford is a member 
of the Society for Industrial and  Applied Mathematics. 

129 

B. L. BRADFORD 


