SCISM:

A scalable
compound
Instruction set
machine

by S. Vassiliadis
B. Blaner
R. J. Eickemeyer

In this paper we describe a machine
organization suitable for RISC and CISC
architectures. The proposed organization
reduces hardware complexity in parallel
instruction fetch and issue logic by minimizing
possible increases in cycle time caused by
parallel instruction issue decisions in the
instruction buffer. Furthermore, it improves
instruction-level parallelism by means of
special features. The improvements are
achieved by analyzing instruction sequences
and deciding which instructions will issue

and execute in parallel prior to actual
instruction fetch and issue, by incorporating
preprocessed information for parallel issue
and execution of instructions in the cache, by
categorizing instructions for parallel issue and
execution on the basis of hardware utilization
rather than opcode description, by attempting
to avoid memory interlocks through the
preprocessing mechanism, and by eliminating
execution interlocks with specialized hardware.

Introduction
Improvements in the performance of computer systems
relate to circuit-level or technology improvements and to
organizational techniques such as pipelining, cache
memories, out-of-order execution, multiple functional
units, and exploitation of instruction-level parallelism. One
increasingly popular approach for exploiting instruction-
level parallelism, i.e., allowing multiple instructions to be
issued and executed in one machine cycle, is the so-called
superscalar machine organization [1]. A number of such
machines with varying degrees of parallelism have recently
been described {2, 3]. The increasing popularity of
superscalar machine organizations may be attributed to the
increased instruction execution rate such systems may
offer, concomitant with technology improvements that
have made their organizations more feasible.

Neither superscalar machines nor scalar machines,
i.e., machines that issue and/or execute a single instruction
per cycle, may necessarily exploit all of the potential
performance improvements that their organizations
promise. In superscalar machines, the level of parallelism
achieved may be less than anticipated for a variety of

©Copyright 1994 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM). RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

59

60

reasons, including data dependencies (interlocks), branch
instructions, and precise interrupt handling. Data
dependencies are particularly detrimental to superscalar
machines because they force serial instruction execution—
the superscalar machine reverts to scalar execution mode,
in which additional pipeline dead cycles (bubbles) that are
intrinsic in the underlying scalar implementation may be
incurred. Thus, much of the performance gain promised by
a superscalar organization may be lost [1, 4]. Furthermore,
implementing and, in particular, controlling multiple
functional units is not without cost—a cost that may not
be worth paying if little is to be gained.

To quantify this cost, consider a machine organization
designed to issue 7 instructions. Instructions are fetched
into an instruction stack (i-stack) or window, and at
instruction decode time (i.e., from the instruction stack or
window) a decision is reached as to whether or not a given
n-tuple or, simply, group of instructions may be executed
in parallel. This decision-making process, referred to as
Dpreprocessing, is based on the opcodes of the instructions,
which specify the hardware each of the n instructions
will utilize, and on the dependencies existing among the
instructions. (Typically, to avoid creating bubbles internal
to the group of instructions, no dependencies may exist if
the instructions are to be executed concurrently.) Then the
instructions are issued and executed. This organization has
the following characteristic: The amount of time required
to allocate n instructions to m appropriate functional units
(sometimes called ““instruction split™ [5]) during instruction
decoding increases as m increases. Yet at the same time it
may seem very desirable to increase m in order to increase
concurrency. For a complex instruction set architecture,
e.g., ESA/370™ [6], decoding and analyzing the
dependencies among two or more instructions takes
substantially more hardware and time than it would for a
simpler architecture,’ since the task is considerably more
difficult.

In some machines, preprocessing is based on the
instruction opcode description [2]. This implies that in
order to exploit the existing parallelism in an instruction
stream, it is necessary to implement a prohibitively large
number of rules to control parallel instruction issue.

To clarify this point, consider a superscalar machine
designed to execute at most two instructions in parallel.
Furthermore, assume that there are W instructions in the
machine instruction set. To maximally exploit instruction-
level parallelism, W X W rules must be implemented in
the instruction decode hardware to determine whether or
not a given pair of arbitrary instructions may be issued

in parallel. It is our contention that for a nontrivial

! In this paper, the term architecture denotes the attributes of a system as seen by
the programmer, i.e., the conceptual structure and functional behavior of the
machine, and is distinct from the organization of the dataflow and physical
implementation of the machine [7].

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

instruction set, implementing this number of rules

and using them to gate the issue/not-issue decision is
prohibitive with respect to hardware, circuit complexity,
and delay. Indeed, present-day superscalar machines using
this approach consider only a few combinations of
instructions for parallel execution. For example, the
superscalar machine presented in [2] considers only

38 x 53 rules, and it allows 38 and 53 specific instructions
out of the instruction set to be the first and the second
instructions, respectively, in an instruction pair issued in
parallel. Furthermore, some other superscalar machines, in
order to restrict the number of rules required for parallel
execution, may issue instructions in parallel only in very
specific circumstances [3)] and therefore do not exploit the
instruction-level parallelism present in most programs to
the highest degree possible. Additionally, in a group of n
instructions, where # is sufficiently large (perhaps 3 or
more), it is very likely that dependencies will exist
between instructions. These dependencies will prevent
concurrent execution, forcing a serial execution instead,
and will therefore limit the performance gain of the
superscalar machine.

In superscalar machines that are currently available,
preprocessing is a first-in-first-out (FIFO) operation, out
of the instruction buffer (also referred to as the instruction
stack or window), which attempts to decide ““on the fly,”
i.e., at instruction issue/decode time, whether two or more
(up to n) instructions may be issued and executed in
parallel. Consequently, the scope of preprocessing is
restricted to n. This too restricts parallelism, since certain
dependencies could be avoided if alternate groupings of
instructions could be considered. For example, a load-use
[8] may require a cycle of delay between the load from
memory and subsequent use. If we assume n = 2 and
FIFO preprocessing, the load and use are serialized
because of the required delay. Suppose, however, that
the scope of preprocessing is greater than n. Then the
possibility exists for a more optimal grouping, i.e., pairing
the load with the previous instruction and the use with the
instruction after it, thereby maintaining the required
load-use delay but replacing a bubble cycle with useful
work. While a larger scope of examination could
be postulated for a superscalar machine, there are two
consequences of increasing the scope that penalize
potential performance gains. The first is that to analyze
more instructions requires more time, i.e., circuit delay,
and therefore the machine cycle time may be increased
prohibitively, thus penalizing the execution of all
instructions. A second consequence, related to the first,
is that the time required may be so great that it may be
necessary to add an extra stage to the pipeline, which
penalizes the execution rate each time the pipeline is
drained, when, for example, the outcome of a branch
instruction is mispredicted. Thus, the effects of broadening

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

the scope of examination are diminished in the presence of
branch instructions.

The branch problem is well known, and a variety
of techniques have been developed to alleviate the
detrimental effects of branches on performance. These
techniques include various branch prediction schemes
[9, 10] and methods for early branch outcome
determination [11, 12]. In superscalar machines the
problem is magnified, since the frequency at which branch
instructions enter the pipeline is increased. To illustrate,
assume a superscalar machine designed to issue and
execute three instructions per cycle, and assume that
branch instructions comprise 25% of the instruction
stream. Clearly, it is of interest to issue three instructions
every cycle to maintain maximum performance. If it were
possible to sustain this rate of execution, which is not
unreasonable, then at this branch frequency a branch
would have to be processed every other cycle.
Consequently, an efficient branch-handling mechanism
would be needed to minimize pipeline disruptions. Even
with such a mechanism, once a group of instructions has
been executed, all information from preprocessing that
group is lost. Branches influence this loss in two instances.
First, consider the case in which the outcome of a branch
is mispredicted. Even if the correct sequence has been
executed previously, no information exists from previous
preprocessing. This implies that either the incoming
correct instruction stream is analyzed on the fly, thus
potentially lengthening the duration of the branch-induced
disruption, or the execution is serialized (instructions
starting from the first instruction of the correct stream are
issued one at a time until the rate of preprocessor output is
at least equal to the rate at which instructions are being
consumed). Depending on implementation, this point may
never be reached if the incidence of taken branches is
high. Second, consider the case in which a branch
instruction is correctly predicted. Furthermore, to possibly
avoid a cycle time increase and to maximize parallelism,
assume that some scheme has been employed to avoid
strict FIFO preprocessing, perhaps by preprocessing
instructions early in the i-stack. If no branches are
taken, the instruction text present in the i-stack can be
successfully preprocessed in advance. However, branches
are frequently taken, and, irrespective of prior executions,
the branch target instructions must be preprocessed again,
limiting the effectiveness of early preprocessing. The
conclusion to be drawn from these two cases is that
associating preprocessing with instruction fetching may
not result in the best possible performance, and the
former must somehow be detached from the latter.

In summary, currently available superscalar machines
may exhibit one or more of the following deficiencies that
limit their execution rates:

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

1. Increased cycle time caused by the additional circuit
delay required to allocate instructions to functional
units ““on the fly.”

2. Additional pipeline stages required to accommodate
instruction preprocessing.

3. Limited numbers of instructions that can be issued and
executed in parallel (in order to avoid increasing either
the cycle time or the number of pipeline stages).

4. Prohibitive circuit counts, hardware complexity, cycle
time growth, and/or a longer pipeline when more
comprehensive groupings of instructions are considered.

5. Pipeline bubbles induced by data dependencies.

6. Failure to overcome data dependencies by broadening
the preprocessing scope.

7. Continuous, nonpermanent preprocessing resulting in
performance degradation.

8. Potential loss of parallelism due to the higher incidence
of branch instructions entering the pipeline.

We present a new machine organization called a scalable
compound instruction set machine (SCISM), also referred
to as a compound instruction set machine’ and as a
superscalar compound instruction set machine, which
incorporates mechanisms that either solve or alleviate the
problems described previously. The proposed organization
results in improvements in performance and hardware
requirements when compared to existing superscalar
machines, and does so without precluding other
improvements that may result from out-of-order execution,
static scheduling, pipelining, etc. Additionally, the machine
organization may use compiler technology, e.g., instruction
scheduling [18], to further improve performance. Lastly,
the organization results in designs that are fully compatible
with any given architecture.

This paper is organized as follows. The Concepts section
presents the fundamental attributes of the SCISM
organization. The Organization section describes the
machine organization that employs these concepts. Finally,
the Evaluation section presents simulated performance
results for a SCISM processor.

Concepts

The discussion in this section and the sections to follow
presents some of the general concepts proposed in the
report cited by footnote 2 and describes in depth the
development of those concepts that resulted in an
experimental design in the IBM Glendale laboratory in
Endicott, New York. This section concentrates on the
categorization of instructions, dependency resolution, and
preprocessing—three fundamental mechanisms of the
SCISM organization.

2 S. Vassiliadis, “‘Compound Instruction Set Machines,”” private communication,

1989. 61

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

62

To avoid the rule limitation imposed by the approach
used in [2], the grouping of instructions that can be issued
and executed in parallel must be based on hardware
utilization rather than opcode description. This hardware
utilization basis is formed by the following characteristics:

1. Instructions are partitioned into categories.

2. All instructions in a category are viewed as “‘unique”
instructions.

3. Differences among members in a category are ‘“‘trivial”
and are resolved by the hardware.

4. An instruction may be in a particular category if and
only if it uses the same hardware units as all others in
that category.

All instructions that do not meet these definitions can
either be assigned to some number of individual categories
or be lumped together in a single category. The latter
simplifies the implementation of preprocessing by
minimizing the number of instruction categories.

An obvious implication of these definitions when applied
to a given instruction set is that the number of rules
required to group the instructions for parallel execution
depends on the number of categories into which the
instruction set has been partitioned, rather than on the
number of individual instructions in the instruction set.
The intuitive reasoning behind such partitioning is that
there are a limited number of functional units present
in an implementation and that such units operate on a
multiplicity of instructions. For example, an arithmetic
logic unit (ALU) executes all add, subtract, add logical,
compare, compare logical, logical AND, and logical OR
instructions, and so forth. Certainly these instructions
differ from one another, but nevertheless such differences
are trivial. (““Trivial’” in the context of this discussion
indicates that while there is a distinct operation associated
with each instruction, such a difference is resolved by
some simple control signal or by some minor modification
of the hardware to accommodate the operation. For
example, in two’s-complement arithmetic, an addition
differs from a subtraction in that the latter requires
inversion of the subtrahend and the addition of 1, typically
provided by injecting a ““hot 1°” carry-in to the ALU,
together with the control information indicating that a
subtraction is to be performed rather than the addition.)
Additional functional units that may be included in a
hardware implementation include the floating-point adder,
floating-point multiplier, branch unit, address generation
unit, shifter, etc. This implies that the definitions
postulated for instruction categorization will be successful
in reducing the complexity of instruction preprocessing,
since many instructions may be considered as a ““single”
instruction.

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

As indicated in the Introduction, performance gains in
superscalar machines can be lost to data dependencies
(interlocks) between instructions. We note here that such
dependencies can be divided into two categories, namely
execution interlocks and memory interlocks. Execution
interlocks occur within a functional unit, e.g., register
write-read interlocks, and memory interlocks occur
between a functional unit and memory, e.g., the load-use
interlock. To eliminate execution interlocks, an
implementation must incorporate both multiple execution
units and multi-operand execution units. The requirement
for multi-operand execution units necessitates the design of
units that produce architecturally correct results but do not
extend the cycle time or require prohibitive quantities of
hardware.

To illustrate the execution interlock elimination
mechanism, which we call interlock collapsing hardware,
we assume, with obvious generalizations, that the
instruction set is that of the IBM System/370™ architecture.
Furthermore, let the number of instructions that can be
executed by the interlock collapsing hardware unit be limited
to two. There are two reasons for this choice. First,
workload analysis has shown that the likelihood of
encountering in a program three or more adjacent
interlocking instructions that require the same hardware
unit is very small. Second, it has been proven that the
implementation of a two-instruction interlock collapsing
hardware unit does not extend machine cycle time [13].
While a cursory analysis suggests that general forms of
interlock collapsing hardware units, e.g., a unit that can
execute interlocked shift and add instructions, can cause
prohibitive circuit delays, the most frequent interlocking
instructions have simple operations that can be collapsed,
e.g., arithmetic operations, logical operations, register
transfer operations, address generation, and branch outcome
determinations. These simple operations are
the focus of the SCISM interlock collapsing hardware.

When considering the hardware necessary to perform
these simple operations, one might correctly conclude that
an interlock collapsing ALU would be more complex
by virtue of the sheer amount of function it must provide:
It operates with both two’s-complement numbers and
unsigned numbers, and performs arithmetic and logical
operations and register transfer operations with some of
the instructions, some (but not all) of which set condition
codes, cause overflows, and so on. Furthermore, although
many instructions utilize an ALU and may therefore be
lumped into one category, each instruction within the
category utilizes the ALU in a slightly different manner.
For example, in the IBM System/370 instruction set,
register-to-register fixed-point instructions that require
an ALU and have the same execution sequence can be
subdivided into the following groups:

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

¢ Arithmetic, e.g., AR, LPR.

» Arithmetic logical, e.g., ALR, SLR.
¢ Logical, e.g., XR, NR.

¢ Logical compare, e.g., CLR, CR.

e Load register, e.g., LR, LTR.

Instruction categorization as it has been defined previously
suggests that these five subcategories could be considered
as a unique SCISM category. This, however, is an
implementation choice: It may not be necessary for all of
these subcategories to be lumped into a single SCISM
category (depending on the frequency of individual
instructions in a program and the hardware constraints).
The assumption of pairwise instruction execution
dictates the existence of two ALUs that provide the
capability for concurrent execution of two instructions.
Given that two sequential instructions can have an
interlock only from the first instruction to the second, not
from the second to the first, the ALU that executes the
first instruction of the pair is a traditional 2-to-1 ALU.
Since the second instruction may be dependent on the
execution of the first instruction, in order to be able to
execute both instructions in parallel the second ALU must
be capable of performing 3-to-1 ALU operations. To
illustrate, consider the following instruction sequence:

SR R1,R2
AR R1,R3

Assuming that R/ denotes the content of register j, to
execute this instruction pair in parallel the first ALU must
perform the SR (subtract register) operation R1 = R1 — R2
and the second ALU must perform the AR (add register)
operation Rt = R1 + R3 = (R1 — R2) + RS, i.e., a 3-to-1
operation.’

Any design of a 3-to-1 ALU must be proven
architecturally correct and must be assessed as to its
feasibility as constrained by hardware and cycle time
considerations. For a set of 3-to-1 ALU operations, which
is defined by both the instructions included in the ALU
operations category and the permissible pairwise
operations the ALU may perform, the following two
statements hold true (and are proven elsewhere) [13-15]:

¢ A 3-to-1 ALU can be designed that guarantees
architectural compliance by producing the correct result,

3 Note the existence of a degenerate case requiring a 4-to-1 ALU. Consider the
instruction sequence

SR R1,R2
AR Rt,R1

For the pair of instructions to be executed in paralle! and with only one pass
through the ALU, the second ALU must perform the operation Rt = (R1 — R2)
+ (R1 - R2). Given the added hardware complexity and circuit delay required to
build such an ALU and the low frequency of such interlocks, little merit is found
for including such an ALU in an implementation. Note also that such operations
may not even require an interlock collapsing ALU for execution: In the example,
bit shifting and subtraction suffice.

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

correctly setting condition codes, and detecting overflow
for the locus of operations it performs [13, 14, 16].

¢ The design of the 3-to-1 ALU requires no more delay
than a 3-to-1 binary addition, and no more stages than
the design of a 2-to-1 ALU usually implemented to
perform fixed-point operations in RISC and CISC
architectures [13, 15, 16]. The implication here is that its
implementation does not increase the machine cycle time
[13, 15, 16].

The feasibility of the 3-to-1 ALU suggests that other,
adder-related, interlock coilapsing hardware is possible,“
e.g., address generation interlock collapsing units.
Regarding memory interlocks, it can be stated that in
general they cannot be feasibly resolved. While some
memory interlocks can be alleviated with the use of
techniques such as pipeline forwarding and out-of-order
execution, the problem still remains. In addition to these
techniques, the SCISM approach allows memory interlocks
to be avoided by using one of two additional mechanisms:
The first mechanism requires the design of a specialized
unit and the preprocessing of load instructions. (It is
described in [17] and is not discussed further here.)
The second mechanism involves grouping a memory-
referencing instruction with previous instructions when
possible. To accomplish this, preprocessing is removed
from the i-stack or window to one of several locations (to
be discussed later), allowing instructions to be analyzed
with a broad scope. As is shown in the next section, this
organization yields permanent, optimized preprocessing,
obviating the need for preprocessing at instruction
fetch/issue/decode time. By so doing, it is not only
possible to broaden the scope of preprocessing, but it also
becomes feasible to optimize preprocessing to achieve the
highest degree of instruction-level parallelism that can exist
in a given program, to avoid instruction-split cycle time
or pipeline penalties by preallocating instructions to
functional units, and to avoid the other limitations
associated with preprocessing at instruction
fetch/issue/decode time.

Organization

At its highest level of abstraction, the operation of the
SCISM machine organization incorporating the concepts
described previously can be represented by Figure 1.

In the figure, a ““program” is provided as an input to a

4 Clearly, other interlocks can be collapsed. For example, consider the following
sequence of System/370 floating-point instructions:

LDR R1,R2
MD R1,D2(X2,B2)

In the first operation, LDR, the second operand R2 is placed unchanged at the first
operand location R1. The second operation, MD, multiplies the operand contained
in register R1 with an operand contained in a memory location. Obviously, the
LDR is a register transfer instruction and the MD in effect operates on the operand
contained in register R2. Such an interlock can easily be recognized and eliminated.
The collapsing of this interlock, and others, is trivial when compared to the
interlock collapsing ALU and is not considered further.

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

63

64

“Program”

Compounding
rules

Compounding
facility

Compound
instruction
program

Execution

Abstract SCISM representation.

compounding facility (footnote 2). The compounding
facility or preprocessor examines the instruction stream
with an implementation-dependent predetermined scope
and produces a compound instruction program.

The compound instruction program is based on a set of
rules which reflect the system architecture, the hardware
organization, and the permissible parallel execution
between categories of instructions. These rules are
hereafter referred to as compounding rules. The program
produced by the compounding facility can then be
executed directly by a compound instruction execution
engine, which considers a compound instruction as a single
instruction. A compound instruction reflects the parallel
issue of instructions; it comprises some number of
independent instructions or interlocked instructions, the
latter provided that the interlocks are of a form that can
be collapsed by the execution hardware.

As indicated in the previous paragraph, the compound
instruction contains information pertinent to the parallel
issuing and execution of instructions. In general the
information, incorporated in the compound instruction in
the form of decoding or tagging, indicates that compound
instructions are ““free of hazards,” and that functional
units required for the execution of an instruction are
available when necessary. Instructions composing a
compound instruction need not be consecutive, allowing

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

Maximum compound instruction format for the compounding of at
most three instructions.

for out-of-order issue. Additional information, related for
example to branch prediction, functional unit allocation
and control, or routing information can also be
incorporated in the decoding or tagging of compound
instructions. We note here that the choice between
decoding instructions and tagging them depends entirely on
the architecture and the implementation constraints. For
reasons that become obvious later in this section, tagging
of instructions is mandatory for architectures that allow
variable-length instructions, or that allow data to be
intermingled with instructions. In the remainder of this
paper, we assume that the compounding information

is in the form of tags rather than decoding. Additional
discussion of the tags can be found in [18]. The tag
identifies the boundaries between single and compound
instructions. For example, Figure 2 shows the format of a
maximal compound instruction, if it is assumed that up to
three instructions may be included in a compound
instruction.

In the figure, the instruction / is in its original form
(implying full compatibility with the base architecture),
and T is the tag. As indicated earlier, the tag may contain
as little or as much additional information as deemed
efficacious for a particular implementation. In the rest of
the presentation, for simplicity of exposition, we discuss
only the information necessary to determine a compound
instruction. To determine the compounding of three
instructions, two bits are required, denoted as ¢, and t,.
These bits are required for delimiting compound
instructions, with 00 representing single instructions and
01 and 10 representing two- and three-instruction
compound instructions, respectively.

The two control tag bits ¢, and £, merit further
discussion. One of the fundamental properties of the
SCISM machine organization is that it enables
preprocessing to be detached from instruction
issue/decode. To do this, the compounding of instructions
must be “‘permanent,”” with permanence being dictated by
the location of the compounding facility. For example, the
compounding facility may be a software facility—perhaps a

IBM I. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 19%4

post compiler [19]—or it may be a hardware facility in the
form of a hardware preprocessor located, for example,
between the cache and the memory subsystems. In this
hardware preprocessor, the “program” to be compounded
is the stream of instruction text that is fetched during the
servicing of a cache miss and preprocessed to produce an
optimized stream of compound instructions, i.e., a stream
of instructions with their tags. The compounding
information in the tags remains intact as long as the line
resides in the cache, and is thus relatively ““permanent.”
If the line should be removed from the cache for any of a
number of reasons, the associated tags become invalid and
the line must be preprocessed again should it be required
at some later time.

As long as valid tags are available, the SCISM engine

1. Fetches and executes compound instructions.

2. Executes maximally # instructions in parallel, where
n is the degree of instruction-level parallelism the
hardware can support.

3. Maintains ““permanent’ compounding during sequential
and nonsequential (branches, interrupts) execution.

4. Produces correct results in the presence of certain
execution interlocks, e.g., proper two’s-complement
additions with detection of overflows as defined by
two’s-complement arithmetic.

5. Keeps intact the architectural behavior of the machine.

The permanence of compounding in SCISM during
execution is maintained with the help of the tags, since an
instruction is either executed sequentially or is a branch
target, and in either case the compounding remains intact.
The case in which an instruction is a branch target requires
further explanation, because typically there can be no
guarantee that a branch into the middle of a compound
instruction will not occur. This is readily handled by
hardware if, on a branch target instruction fetch, it

1. Fetches a number of bytes equal to the maximum-length
compound instruction.

2. Identifies the end of the branch target compound
instruction by locating the compound instruction
delimiter for the next compound instruction.

Figure 3 illustrates this situation. In this figure, the
maximum length of compound instructions (CI) is three,
and the T field associated with each instruction has been
reduced to the ¢, and ¢, bits only. Instructions within the

mth compound instruction, C/”, are denoted by /", where
r = 1 for the first instruction in CI™, r = 2 for the second
instruction in C!™, and r = 3 for the third instruction in
CI™. The second instruction of C/I' is a branch instruction,
B; , that, for simplicity, is considered to have two possible
target paths, @ and b. The a path branches to the middle of

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 19%

i |ro] 8] fo1] £ Joof & foof ¢ ¢ o
b
Y |
g 1ol £ lotf 4 ool £ Jot| . o
I fetch b |
| fetcha |

Branching to the ‘*middle’” of a compound instruction.

Cl, while the b path branches to the beginning of CI. If
the branch is to follow path a, the hardware fetches the
maximum-length compound instruction, i.e., three
instructions, then executes # and £ as a compound
instruction. The remainder of the fetch, I1k’ is recognized to
be the beginning of a new compound instruction and is
held in reserve while the rest of C/I* is fetched for

subsequent execution. If the branch instruction takes the b
path to the beginning of CF, the hardware again fetches the
maximum-length compound instruction, yielding, in this
case, a complete compound instruction, /, £, and /.
Execution of that compound instruction proceeds directly.
The width of the tag required for compounding and used in

this discussion is equal to log,#, n being the maximum

number of instructions that can potentially be compounded.

Other tagging mechanisms are also possible [19].

The compound facility or preprocessor can be located in
the software [19], in main memory [20], or in a cache. For
this discussion and for our System/370 SCISM design, we
have assumed that the preprocessor resides in the cache.
The cache preprocessor has the following interesting
properties:

1. Preprocessing occurs only at the cache miss rate and
is thus infrequent.

2. Overhead for tag storage is added only to the cache
memory and to the instruction fetch and issue
hardware.

3. Architectural idiosyncrasies (discussed later in detail)
such as writing into the instruction stream, data
intermingled with instructions, and variable-length
instructions can be handled inexpensively in terms of
hardware and performance.

A computing system comprising an instruction
compounding unit (ICU), a compound instruction cache

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

66

Memoty
Line fetch subsystem
requests
)
Buffer
Decode/ Branch and
analysis %gls? pipeline
unit analyzer
L‘—"t] Instniction
compounding
l__Compo-. under___] unit
compont | oo
fotch controller instruction cache
3
]
Instruction
fetch/issue

! !

Functional Functional -], 5 Functional
unit unit unit

SCISM with cache preprocessor.

(CIC), and a number of functional units is shown in Figure 4.
The preprocessing function is performed by the ICU in
combination with the compound instruction fetching
controller (CIFC) sequential machine, which oversees the
entire process of supplying compounded instructions to the
functional units, requesting line fetches from the memory
subsystem, and other tasks which are discussed later. The
ICU is further divided into a buffer, decode/analysis unit,
rules base, branch and pipeline analyzer, and compounder.
The buffer acts as a staging area between the memory
subsystem and the CIC. The ICU performs the
preprocessing function on instructions in the buffer,
ultimately producing a stream of instructions with their
tags. Clearly, the wider the buffer is in units of instruction
width, the wider the scope of preprocessing, and the more
opportunity there is for optimizing compounding across a
given number of instructions. For example, suppose the
buffer could contain two instructions, and at some point
contained instructions j and /, in one machine cycle and
then j, and i, in the next. Also assume that two instructions
may be compounded for parallel execution. Upon
analyzing i, and i,, the ICU determines that they cannot be

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

compounded and must therefore be written to the CIC as
noncompounded instructions. In the next cycle, the ICU
analyzes § and j, and makes the same determination.
Now suppose that the buffer can instead contain four

instructions, and can thus contain i, i, i, and i,
simultaneously. The ICU can now also consider i, and
for compounding, and if this pair does compound, the
result is a performance improvement over the former case.
The choices of buffer size and the form and extent of
scope are engineering decisions that must trade off the
advantages offered by a buffer of a particular size and a
scope having a particular form and extent against the cost
of implementation. Intuitively, the buffer size is a function
of the number of instructions that constitute a single
compound instruction and of the form and extent of the
scope of examination. The extent of scope may range
from a few instructions, to a whole cache line, to adjacent
cache lines. The form of scope may range from serial
examination, to a sliding window, to multiple passes, and
so on. It may be that increasing the buffer size beyond a
certain value or making the scope overly complex may
produce diminishing returns. The decode/analysis unit
actually decodes the instructions in the buffer with a
predefined scope of instruction examination, and it
determines what dependencies exist between them and
presents these results to the rules base and branch and
pipeline analyzer. These subfunctions assess the
““compoundability” of the incoming stream, and produce
as output the recommended compounding or
compoundings for the instructions in the buffer. The
compounder then actually translates this information

into compounded instructions with their tags.

When multiple compoundings are possible, the
compounder can be designed to give preference to

certain sequences of instructions, yielding more optimal
compounding. The rules base via the categorization
mechanism described earlier may contain rules for the
complete instruction set or for a subset (as long as the
subset is still a substantial part of the complete instruction-
set architecture). It may additionally contain further
information pertaining to the physical properties of the
functional units, facilitating the embedding of control
information in the tags. The rules base, though
implementable in hard-wired, random logic, may also be
implemented in some form of fast-access programmable
storage, thereby allowing for flexibility as more functional
units are added or removed, as more or fewer types of
compoundings are desired, or even as the computing
environment changes. For example, certain compoundings
may be more advantageous in a commercial environment
than in an engineering-scientific environment, or vice
versa. If the rules base were programmable, such decisions
could be made at machine configuration time. The
structure of the CIC is similar to traditional cache designs,

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

with the addition of the tag bits. Thus, all traditional cache
design techniques can also be applied to the CIC design.
The actual incorporation of the tag bits into the cache line
is an implementation issue and is not discussed further.
Regarding the delay associated with the preprocessing, our
System/370 implementation studies suggest that the delay
through the ICU will be less than one machine cycle.
Furthermore, our implementation studies suggest that this
additional delay, depending on how cache misses are
serviced, can be hidden in the cache miss service time.

Complex instruction set computer (CISC) architectures
pose a number of challenges to the ICU/CIC mechanism.
In brief, these challenges arise from variable-length
instructions, data intermingled with instructions, and self-
modifying code. It would seem that variable-length
instructions could lead to portions of a CIC line being
unanalyzed for compounding. Suppose an instruction fetch
to address A has occurred and has caused a cache miss.
Address A falls somewhere in a cache line other than
the first location, Q. Figure 5 illustrates the scenario.
Straightforward left-to-right compounding leaves
instructions in the range 0 to A unanalyzed, as depicted by
the shaded region in the figure. This becomes a problem if
an instruction fetch to the unanalyzed portion occurs. The
problem is not one of determinism (i.e., the instructions
can still be executed deterministically, as in any instruction
cache), but is rather one of performance—namely, the
instructions have not been compounded, and therefore
may not be executed in parallel. Note that this problem
does not arise in instruction-set architectures that have
uniform instruction lengths, such as the 801 [21} or MIPS
[22]. If instructions are always p bytes long, then, in the
example, the ICU would know that an instruction begins at
A - p, A - 2p, etc., and could analyze its way back to the
beginning of the cache line.

One further complication can arise with any
architecture, however: Unless cache lines are prefetched,
compounding cannot occur across cache lines. For
example, if two instructions can be compounded for
parallel execution and a single instruction remains to be
compounded at the end of a cache line, the last instruction
cannot be compounded because the next instruction is
unknown. The performance implications of this diminish as
cache line size increases. For typical line sizes for high-
performance systems, perhaps 64 bytes or greater, the
impact is minimal, since the line likely contains many
instructions that may have been successfully compounded.
Prefetching the next sequential cache line can eliminate the
problem because the next sequential instruction will be
known and can thus be considered for compounding with
the last instruction of the previous line. Additionally, the
problem can be solved with compounding across lines that
are already in the cache [23].

Unlike certain RISC architectures, CISC architectures

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

Unanalyzed Analyzed and compounded
instructions instructions

e N l

Address 0 A 1

% Unanalyzed instructions in a cache line.

|<-Instmctions —>f<-—Data-—>}<-—— Instructions ——>|
o WA | 121°]°] |
line

Address 0 A /=] 1
g

%
g Instructions and data intermingled.

like System/370 may not require an instruction stream to
be purely instructions. Data may reside anywhere between
instructions. Consider the scenario illustrated in Figure 6,
in which the ICU is instructed to begin analysis for
compounding at address A. As it processes from A to

the end of the cache line, it unknowingly compounds the
data and loses its reference point to the true instruction
boundaries, compounding datum a and instruction
fragment b into an erroneous instruction /', whereas the
true instruction, /, is composed of instruction fragments
b and ¢, and so on down the cache line. Later, a
nonsequential instruction fetch occurs to instruction /.
Consequently, the compoundings do not correspond to
actual instructions, and are therefore invalid.

Note that, depending on the permissible lengths of
instructions and data, not all architectures exhibit this
problem, even when they allow data to be intermingled
with instructions. Note also that the cache coherence
protocol must account for the presence of data in the
compound instruction cache when, for example, a store
into a data region that is in the cache occurs. A discussion
of cache coherence protocols is beyond the scope of this
paper. The reader is referred to [24-26] for further
consideration of these issues.

The solution to these problems is rooted in the degree
to which the boundaries between instructions and data

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

68

(abstractly called text) can be exactly known. There are
five distinct cases:

1. The text contains instructions only and the reference
point, i.e., the boundary or address of the first
instruction, is known.

2. The text contains instructions and data at known
boundaries.

3. The text contains instructions only but the reference
point is unknown.

4. The text contains instructions and data with partial
reference points known.

5. The text contains instructions and data with unknown
reference points.

The fifth case is the most general and worst-case scenario.
Clearly, if it can be solved, both the unanalyzed portions
of cache lines and data intermixed with instruction
problems are solved, since both problems hinge on
knowing a compounding reference point.’ One algorithm
that solves this case has the ICU examine each halfword
(two bytes) in the line as though it were an instruction;
i.e., each halfword is a potential instruction boundary.®
Then, assuming an n-way compounding scheme,
instructions are identified for a given halfword in the line
by determining instruction lengths from that halfword and
working to the right until # instructions have been
identified. The compoundability of these instructions is
then assessed, and a compounding tag is created for each
halfword comprising the n instructions. This is repeated for
every halfword in the line. When the process is complete,
the tags for each halfword are merged to form the tag
vector for the line (merging simply means selecting as the
tag for a given halfword the tag with the highest value of
all possible tags generated for that halfword). The validity
of this algorithm can be established as follows. Consider a
scheme that allows two-instruction compounding, as
shown in Figure 7. Assume for simplicity that the rules for
compounding indicate that 2- and 4-byte instructions are
compoundable but 6-byte instructions are not. A single tag
bit is required for each halfword: Let it be defined to be
equal to one when the instruction starting with that
halfword is compoundable with the next instruction to the
right, and equal to zero when the instruction is not
compoundable with the next instruction. In the figure it is
assumed for simplicity that the text is examined serially.
That is, a halfword is examined, and on the basis of its
length (that for the example is assumed to be the only
variable that determines compoundable instructions) a
decision is reached as to whether or not it compounds with
5 The solutions to the other cases can be found in [27, 28].

6 In System/370, instructions are two, four, or six bytes long and must begin on

halfword addresses. The first two bits of the first halfword of an instruction indicate
its length.

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

the next instruction; then the next halfword is considered
and the process is repeated until the end of the text is
reached. The text and the length associated with each
halfword are depicted in part (a). In part (b), each line
contains a pair of potential instructions on the left (TEXT),
and the resulting compounding bits on the right (TEXT
C-VECTOR). Moving down one line also advances the
text to the next halfword until all halfwords have been
examined and all possible C-vectors for the text have been
produced. In part (c), these C-vectors are then reduced
into a composite C-vector (CC-VECTOR), which is
obtained by merging all of the C-vectors as described
previously.

Note that only the first tag bit for an instruction in the
C-vector is relevant to compounding; e.g., for a 6-byte
instruction, there are three tag bits corresponding to the
first, second, and third halfwords of the instruction, of
which only the first bit is meaningful. Also note that
because for any given halfword the maximum
compounding may occur only when the halfword is
examined, the construction of the CC-vector is immediate.

During program execution, instructions are fetched from
the cache either sequentially or as branch targets, and
correct program behavior is maintained by branching
around data. Consequently, if an instruction is fetched
sequentially, its tag indicates all instructions that are
executable in parallel with that instruction and determines
the beginning of the next sequential compound instruction.
If any instruction in the compounded instructions is a
branch, all instructions constituting the group following the
branch are not executed if the branch is taken, but are
executed if the branch is not taken. If an instruction is a
branch target, its tag indicates the number of instructions
following it that are executable in parallel and treated as
the sequential instruction execution tag. If the text
contains data, the data portion is not executed, because
the branch preceding the data must be taken and the text
following the branch is not executed. Note that because
each halfword was examined as if it began an instruction,
the tags can indicate more than one sequence of compound
instructions depending on where the sequence begins.

In the example, if the instruction beginning at byte 2 is
accessed, either by sequential execution or as a branch
target, the tag indicates that this instruction is compounded
with the instruction at byte 4. Assuming no branches, the
next instruction is the compound pair beginning at bytes
8 and 10. If, on the other hand, an execution sequence
begins at byte 4, assuming for example that byte 4 is the
target of a branch instruction, the tag indicates that
instructions beginning at bytes 4 and 8 are executed in
parallel, followed (assuming no branching) by the parallel
execution of the instructions beginning at bytes 10 and 14.
This indicates that even though compounding does not
consider the dynamic instruction sequence when

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

LENGTHS [6 2 (4 |2 |2 |4 l4 IZ I6 l4 |2 IZ |2
BYTE 0 2 4 6 8 10 12 M4 16 18 20 22 24
(@)
TEXT TEXT C-VECTOR

[fo]o]
[o]0

[efefofo]

[o

CC-VECTOR

l

ofifefefofofofofofu]efrfol

©

LENGTHS = Instruction length code for each two bytes
BYTE = Text enumeration
C-VECTOR = Compounding bits for every two bytes of text under consideration

CC-VECTOR = Composite compounding bits for every two bytes of text

1 .
i Worst-case compounding example.

determining the tags, the actual compound instructions
executed are optimized for parallel execution for a given
sequence of instructions. This algorithm has the further
advantage of not requiring a reference point, which is
helpful when compounding cache lines that have been
rotated so that the instruction required by the instruction
fetch hardware is received first. Indeed, even backward
compounding can also be applied for this case. For

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

System/370, backward compounding requires examination
of the three halfwords preceding the halfword under
examination to verify consistent instruction boundaries
[28]. In any case, since the algorithm requires no reference
points, no portions of a cache line go unanalyzed, and the
presence of data in the line is irrelevant, since every
halfword in the line is treated as though it were an

instruction. Also note that although this algorithm hLas been 69

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

70

described in a sequential manner, there is nothing inherent
in the algorithm that precludes a parallel implementation.
One last idiosyncrasy, which few recently developed
architectures allow, is self-modifying code. (Data areas
that are frequently stored into and that are intermingled
with instructions also exhibit this problem.) As with the
other two architectural idiosyncrasies, a number of
solutions offer various trade-offs between performance and
complexity. Perhaps the most straightforward solution is
this: The CIFC monitors stores from the functional units
for stores into the instruction stream. When such a store
occurs, instruction execution is halted, the stored-into CIC
line is invalidated, and a fetch request for the modified
line is issued to the memory subsystem. The remaining
operations that must take place are identical to those that
occur when a CIC miss occurs. While such a solution is
straightforward, it assumes that stores to the instruction
stream and/or data intermingled with instructions are
infrequent. If this assumption does not hold true, other
schemes have been developed that do not degrade
performance when frequent stores are made into the
instruction stream and/or text containing instructions is
intermingled with data [29].

Earlier it was postulated that the performance-
diminishing effects of branch-induced pipeline disruptions
are even greater in superscalar processors than in scalar
processors. It was suggested that even with branch
prediction mechanisms in place, the disruptions may have
a significant impact on performance. To counter these
effects, the SCISM organization can employ a technique to
completely overlap the execution of the most frequent
kinds of branch instructions with other single or compound
instructions. This technique, described in [30], is based on
two principles, history-based branch prediction and early
branch processing. The instruction-fetching unit processes
instructions early with respect to the execution units. In
so doing, it is able to detect a branch instruction in the
incoming instruction stream, ascertain its predicted
outcome, and then overlay it with the first instruction of
the predicted stream, effectively removing the branch
instruction from the stream. The overlaying technique is
restricted to branch on condition (BC and BCR), the
prevailing branch instructions in System/370, since these
do not require a functional unit for their execution, but
rather depend on the prior execution result, i.e., the
condition code. It is then possible to completely overlap
BC and BCR with other instructions, single or compound,
that do require the execution units, provided that pipeline
synchronizing hardware is used to ensure that the branch
test is correlated with the proper execution results. A
mechanism is used to block executions when a branch is
mispredicted. A final important issue that requires further
discussion is precise interrupt handling. To guarantee
architectural compliance, provision must be made to

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

present interrupts created during the execution of a
compound instruction. For the SCISM machine
configuration, the results must be the same as would be
obtained had the members of the compound instruction
been executed serially. It has been shown that interrupts
for a compound instruction can be detected [14]. This is
necessary but not sufficient: It is then required to attribute
interrupts to the offending instruction. One means of doing
this is to provide checkpointing hardware, where snapshots
of the vital processor state are taken at predefined
intervals, together with hardware to nullify the results

of an entire compound instruction when an interrupt
condition is detected (this same hardware can be used

to block execution results when a branch instruction is
mispredicted, as described above). The processor state
may then be rolled back to the last known checkpoint and
placed in an execution mode where all instructions are
executed serially (i.e., parallel execution is disabled) until
the interrupt resurfaces. At that point, it is clear which
instruction caused the interrupt, and architectural
compliance has been achieved. Given that interrupts are
infrequent, this technique is attractive because of its
implementation simplicity and also because it utilizes
hardware that is already present in the implementation for
other reasons, i.e., nullification hardware for mispredicted
branches and checkpointing hardware for instruction retry.
However, it is entirely possible to implement various other
schemes for presenting architecturally precise interrupts;
see for example [31-34].

Evaluation

The SCISM machine organization has been evaluated by
trace-driven simulation using commercial workloads, since
these are more representative of the typical machine
execution environment than traditional benchmarks.
However, results for Dhrystone [35] are also presented,
since it seems to be a popular benchmark and is familiar
to many. We simulated a two-way compounding scheme,
maximum compounding of two instructions, to evaluate
whether such a scheme holds promise for potential
computer implementations. Other evaluations, including
the parallelism increase and the architectural effects of
RISC and CISC on parallelism using interlock collapsing
ALUs, are reported elsewhere [36, 37]. Still other
evaluations are entirely possible. In our evaluation,

we measure the number of instructions that would actually
be compounded in a hardware implementation of SCISM.
The instruction-set architecture for purposes of evaluation
was the IBM System/370 architecture. To avoid issues
that clearly affect the performance of the superscalar
machines but are entirely dependent on technology and
implementation constraints, €.g., the number of
instructions that can be paired and executed in parallel,
modeled results are compared to the maximum

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

performance of a theoretical superscalar machine
organization which issues and executes all instructions
as pairs.

The evaluation consists of dividing the instruction set
into categories and determining a set of compounding rules
to use in compounding instructions between any two
categories. Some assumptions on the processor hardware
structure are needed to determine the compounding rules
and categories. These are discussed in the section on
hardware assumptions. A program was written to process
the instruction trace by counting the number of compound
instructions and the number of individual instructions
actually executed. The compounding is performed
as follows: Two instructions are examined and the rules
are applied. If the instructions meet the rules, they are
considered a compound instruction, and the following
two instructions are then considered. If the instructions
cannot be compounded, an attempt is made to compound
the second with the next instruction. There are cases
in which two instructions can be paired in hardware but
the second is not executed; e.g., the first instruction is
a taken branch. The second instruction, on the not-taken
path, would be nullified in the CPU hardware. In
processing the trace, the second instruction is never
encountered, so the first executes singly and is counted
as an individual instruction.

Since obtaining overall performance measurements (¢.g.,
MIPS, cycles per instruction) depends greatly on the CPU
implementation, including areas not related to parallel
execution, the SCISM evaluation presented here is
described in terms of that improvement which is due
explicitly to parallel execution, independent of technology
or implementation. Improvements due to parallel execution
of instructions can be measured by the number of
instructions which may execute in zero time, denoted by
PZE (potential zero-cycle executions). The rationale
behind this measurement is the following: If one
instruction in a compound instruction pair executes in n
cycles and the other instruction executes in m < n cycles,
the instruction taking m cycles to execute appears to
execute in zero time. Because factors such as cache
size and branch prediction accuracy vary from one
implementation to the next, PZE measures the potential,
not the actual, rate of zero-cycle execution. Additionally,
note that zero-cycle instruction execution does not
translate directly to cycles per instruction (CPI) because all
instructions do not require the same number of cycles for
their execution. The PZE measure simply indicates the
number of instructions that potentially have been
“removed”” from the instruction stream during the
execution of a program. For two-way compounding, at
best half the instructions execute in zero time. Thus, for
the theoretical superscalar machine the PZE is 50%, since
it is assumed that every instruction is part of a pair. The

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

PZE as defined thus far does not account for removal
of branch instructions from the instruction stream as
discussed earlier. When branches are removed from the
instruction stream, they may also execute in zero time.
When this is the case, PZE is defined to be the number of
compound instruction pairs plus the number of branches
removed from the instruction stream, all divided by the
total number of instructions. In our evaluation, we
consider two SCISM organizations: one that does not
remove the branches from the instruction stream, denoted
by SCISM1; and one that does, denoted by SCISM2.
Given that branches are not always predicted correctly,
in order to include branch prediction success rate in the
results of the evaluation we first determine the PZE
of an instruction stream as if all the branches have been
predicted correctly. Consequently, if the branch instruction
is assumed to execute in zero time with correct prediction,
we decrease the PZE for 100% successful prediction of
branches by one for every incorrect branch prediction. The
rationale for this choice is as follows:

e A branch that is neither compounded nor removed from
execution is not included in the PZE for 100% prediction
accuracy, and no adjustment need be made for
misprediction. Note that in this case, while there is a
performance degradation of the machine, the number of
instructions that may execute as a pair (which is the
concern of this evaluation) remains unchanged.

A conditional branch removed from the execution stream
takes zero cycles to execute if correctly predicted;
however, if the prediction is incorrect, the branch stalls
the pipeline and thus no longer executes in zero cycles.
A compounded branch that is the first of a pair is
originally included in the PZE. This branch must take
the sequential path for it to have been compounded,
since the evaluation is trace-driven. However, the
branch may not be predicted correctly; in such a case,
the processor would have attempted to execute the
branch target rather than the sequential stream of the
trace, implying that the sequential instruction requires
execution cycles, i.c., not a zero-cycle execution for the
pair.

A compounded branch that is the second of a pair is also
originally included in the PZE. It is debatable in this
case whether the PZE should be adjusted. On one hand,
the execution of the first instruction in the pair is
overlapped by the branch, regardless of the prediction,
and it can be considered to execute in zero cycles. On
the other hand, the total time used for the execution of
this compound pair is increased by a wrong prediction.
Consequently, depending on which instruction is charged
for the pipeline stall, whether or not the PZE is adjusted
is a matter of charging either the parallel execution of
the instructions or the execution of the single branch

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

72

Table 1 1BM System/370 instruction set divided into categories.

Category Description Instructions Resources used
1 RR-format loads, logicals, arithmetics, LCR, LPR, LNR, LR, LTR, NR, OR, ALU
compares XR, AR, SR, ALR, SLR, CLR, CR
2 RS-format shifts SRL, SLL, SRA, SLA, SRDL, Shifter
SLDL, SRDA, SLDA
3 Branches on count and index BCT, BCTR, BXH, BXLE BU, ALU
4 Branches on condition BC, BCR BU
5 Branches and link BAL, BALR, BAS, BASR, BSM, BU, ALU
BASSM
6 Stores ST, STH, STC, STCM, MVI, STD, AU, DC, shifter
STE
7 Loads L,LH, LD, LE AU, DC
8 Load address LA AU
9 RX RS SI-format logicals, arithmetics, N, 0, X, A, AH, AL, S, SH, SL, IC, AU, DC, ALU
inserts, compares ICM, C, CH, CL, CLI, CLM
10 Test under mask ™ AU, DC, ALU
11 Control (no storage reference) LRA, SPM, SPKA, IPK Various
12 RR-format floating-point AER, ADR, AXR, AUR, AWR, CER, FPU
CDR, DER, DDR, DXR, HER, HD,
LER, LDR, LTER, LTDR, LCER,
LCDR, LNER, LNDR, LPER,
LPDR, LRER, LRDR, MER, MDR,
MXR, MXDR, SER, SDR, SXR,
SUR, SWR, DR, MR
13 RX-format floating-point AD, AE, AW, AU, CD, CE, DD, DE, AU, DC, FPU
MD, ME, SD, SE, SW,SU,D, M,
MH
14 Miscellaneous one-storage block NI, OI, XI, LM, STM, CVB, CVD, AU, ALU, shifter,
access EX, STNSM, STOSM, TPROT DC
15 Miscellaneous two-storage block NC, OC, XC, CLC, CLCL, MVC, AU, ALU, shifter,
access MVCL, MVCIN, MVN, MVO, DC
MVZ, MVCK, PACK, UNPK, TR,
TRT, AP, CP, DP, ED, EDMK,
MP, SRP, SP, ZAP
16 All other instructions Various Various

instruction. We chose to charge the parallel execution
rather than the branch execution and to decrease the

¢ One two-input ALU.

® One three-input ALU for dependency collapsing.

¢ Two shifters.

PZE count, because it reflects more accurately the actual
zero-cycle execution of instructions in a program, and
leads to a uniform treatment of incorrect branch
predictions.

® Hardware assumptions

The definitions for categorization of instructions suggest
that the CPU hardware in an implementation determines
the categorization of instructions and the rules for
compounding. The modeled SCISM implementation
consists of the following hardware assumptions:

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

¢ One three-input address unit (AU).

¢ One four-input address unit for dependency collapsing.
¢ One two-port data cache (DC).

¢ Onge floating-point unit (FPU).

¢ One branch unit (BU).

Clearly, in an actual implementation, cost-performance
trade-offs could be made by eliminating functions. For
example, if it is determined that the incidence of
compound shift instructions is rare, the second shifter

IBM I. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

Table 2 Compounding rules. Two-port cache, five-stage pipeline.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 Y A Y Y Y A Y Y Y Y A I Y Y Y Y

2 I I I I I I I I E I I I E E E E

3 Y A N N N A Y Y Y Y A I Y Y Y Y

4 Y Y N N N Y Y Y Y Y Y Y Y Y Y Y

5 Y A N N N A Y Y Y Y A Y Y Y Y Y

6 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

7 I I I I 1 I I I E 1 1 I E E E E

8 Y Y E I E E I 1 E Y E I E E Y E

9 Y I E i E I 1 I E I I I I I I I

10 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
11 1 I | I I 1 I 1 I 1 N N N N N N
12 I 1 I I I I I I i I N N N N N N
13 I I I I 1 1 1 I I I N N N N N N
14 1 I I I 1 1 I I I 1 N N N N N N
15 I I 1 1 I 1 I I 1 I N N N N N N
16 N N N N N N N N N N N N N N N N

Legend:

Y = yes, always compound

N = no, never compound

I = compound only if independent (no dependency)

E = compound if execution dependency or independent

A = compound if address-generation dependency or independent

could be eliminated with little loss in performance. Note
that since the focus of this study is on commercial
workloads, there is no attempt to execute two floating-
point instructions simultaneously, as indicated by the
presence of one non-interlock-collapsing floating-point
unit. In addition to the units listed, the CPU contains a
microcode controller and storage for the execution of
complex instructions. A separate instruction cache may be
advisable for performance, since there can be instances of
two data accesses at the same time instructions are being
fetched. This choice affects the hardware design but is not
relevant for the compounding measurements in this study.
Problematic circumstances generated by a member of a
compound instruction during instruction execution, e.g.,
store-load interlock in the two-port data cache, are
assumed to be handled by hardware and do not affect
compounding.

Obviously, the definition of the categories for SCISM, as
well as the particular compounding rules, depends on the
pipeline structure. For this study, we assume that the CPU
pipeline for single-execution-cycle instructions consists of
five stages: instruction fetch, instruction decode, address
generation, execution, and register put-away. For load and
store instructions, the cache access occurs in the execution
stage using the address determined in the preceding stage.
The memory address is computed from the addition of two
registers and a twelve-bit displacement in the address
generation cycle. An RR-format in System/370, for
example the add instruction, adds the content of one
register to the value in a second register during the
execution stage. A number of instructions require both

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

a cache access and a computation. An RX-format add,
for example, adds a four-byte value from memory to a
register. In this case, an extra execution stage is added
to the pipeline. Complex instructions may use multiple
execution stages, under control of microcode, which can
use a variety of functional units.

The System/370 instruction set was divided into 16
categories based on the hardware utilization of each
instruction. The 16 categories are listed in Table 1.

Refer to [6] for a detailed explanation of each of these
instructions. The conditional branches, Category 4, are
considered for removal from the execution pipeline
because they do not require use of execution-type
hardware (ALU). Other branches have execution cycles
and update registers in addition to performing a branch and
therefore remain in the compound instruction stream.

On the basis of the hardware assumptions, a set of
compounding rules was created which would be
implemented in the ICU. A summary of the rules appears
in Table 2. The table is read by finding the category of the
first instruction and reading across the row to the category
of the second instruction. The entry in the table indicates
whether the two instructions always compound (because
they have no dependency or because any dependency can
be collapsed); never compound (due to conflicting resource
requirements); compound only if there is no dependency;
can collapse an execution dependency but not an address
dependency; or can collapse an address dependency but
not an execution dependency. For example, the table
indicates that Category 8 (load address) and Category 7
(load) instructions must be independent. This is because

collapsing an address generation dependency would require 73

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

74

Table 3 Characteristics of instruction traces.

TSO IMS CICS VM RAMPC Dhrystone
Instructions 1363137 1349345 1362623 3404680 1361600 3735
Dependencies (%) 29.2 26.9 304 21.0 18.8 27.7
Category Instruction frequency and rank by category
1 137 3 13.8 3 122 4 10.4 4 10.4 4 18.7 1
2 1.2 13 1.0 13 0.8 13 1.8 12 1.1 11 0.8 9
3 2.7 10 1.1 12 0.6 14 3.0 10 0.4 13 0.3 10
4 21.2 1 21.5 1 22.1 1 25.4 1 28.8 1 18.2 2
5 25 11 2.8 10 27 10 2.7 11 2.7 10 4.8 7
6 9.1 5 9.0 5 8.9 5 7.3 6 6.4 7 10.4 5
7 15.9 2 18.2 2 17.0 2 13.2 2 11.4 2 9.9 6
8 4.8 9 5.4 8 5.1 7 8.1 5 5.8 8 18.1 3
9 11.7 4 9.5 4 12.8 3 10.9 3 10.6 3 16.6 4
10 5.7 6 6.0 6 5.7 6 6.1 7 10.1 5 0.0 14
11 0.4 14 0.3 15 0.3 15 0.1 15 0.1 16 0.0 14
12 0.1 16 0.1 16 0.1 16 0.1 16 0.1 15 0.1 12
13 0.2 15 0.5 14 1.3 11 0.3 14 0.2 14 0.3 10
14 55 7 5.8 7 4.7 8 59 8 39 9 1.6 8
15 4.2 8 3.7 9 4.6 9 4.0 9 7.2 6 0.1 12
16 1.3 12 1.4 11 1.1 12 0.7 13 0.9 12 0.0 14

a five-input adder for the load instruction,” which conflicts
with the hardware assumptions. Note that no execution
dependency can exist between these two instructions
because the load instruction reads registers only for
address generation, not for execution.

When the first of a potential pair requires more pipeline
stages than the second instruction (RX-format followed by
an instruction from one of several categories), the pipeline
of the second instruction may have been extended so that
the execution of the second instruction does not precede
the execution of the first instruction. This is not the case
if the Category 9 instruction is second in a pair. When
SCISM2 is considered, i.e., when conditional branches are
removed from the instruction stream, all Category 4 rules
indicate no compounding.

To further understand Table 2, consider a few examples.
Consider compounding two Category 1 instructions. Since
both require an ALU and any dependency could be
collapsed on the available hardware, these instructions
can always be compounded [except for the degenerate
case (see footnote 3) where the instructions are not
compounded and are counted by the model as instructions
executed serially]. Two Category 2 instructions can
compound only if independent, because a shifter cannot
collapse a dependency with another unit. Category 1 and
Category 2 could compound if there is a dependency in
address generation (calculation of shift amount), but not if
the dependency requires a compound add-shift. Category 2
and Category 1 can compound only if independent.
m be possible for the ICU to detect whether one or more address
inputs is zero in the two instructions, allowing the address dependency to be

collapsed with a four-input adder. However, this hardware capability was not
assumed, and the interlock cannot be collapsed.

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

Instructions in Categories 11-16 typically require multiple
cycles for execution. It is assumed, therefore, that they
cannot be compounded with one another and that they
can be first of a pair only if independent of the second
instruction. Category 16 instructions can never be first in a
pair because many of these instructions change the control
state of the processor.

® [nstruction traces and results
The basis for the measurement of programs comes from
the instruction traces of several workloads. Each trace
record gives the contents of the instructions, the addresses
of instructions and operands, and the contents of
operands. Compounding is determined first by observing
whether the two instructions are adjacent in memory, and
second by examining the instructions themselves,
determining what dependencies exist among the
instructions, and applying the compounding rules.

We used the following traces:

e TSO: representative workload.

o IMS: hierarchical database running on MVS.

¢ CICS: transaction processing running on MVS.

¢ VM: interactive user workload.

¢ RAMP-C: transaction processing benchmark.

® Dhrystone: synthetic benchmark [35], PL.8 compiler.

Table 3 lists the traces and some of their characteristics.
For each trace, the table shows the number of dynamically
consecutive instructions that have a register dependency.
The frequency of each instruction category is also listed.

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

Table 4 Potential zero-cycle execution instructions (%). SCISM PZE and fraction of theoretical best superscalar PZE for

various branch-prediction rates.

Benchmark Theoretical SCISM1 SCISM2 SCISM1 SCISM2 Branch
PZE PZE PZE + + prediction
Theoretical Theoretical accuracy
TSO 50.0 39.9 47.4 0.798 0.948 100
IMS 50.0 39.7 482 0.794 0.964 100
CICS 50.0 40.1 47.6 0.802 0.952 100
VM 50.0 38.9 48.2 0.779 0.964 100
RAMPC 50.0 40.4 49.0 0.808 0.980 100
Dhrystone 50.0 43.6 47.7 0.872 0.954 100
TSO 48.7 39.0 46.2 0.801 0.948 95
IMS 48.7 38.8 47.1 0.797 0.966 95
CICS 48.7 39.2 46.5 0.805 0.954 95
VM 48.4 38.0 46.8 0.784 0.966 95
RAMPC 48.4 39.2 47.5 0.810 0.981 95
Dhrystone 48.8 42.7 46.7 0.875 0.956 95
TSO 46.0 37.2 43.7 0.808 0.950 85
IMS 46.2 37.1 447 0.803 0.967 85
CICS 46.2 37.4 44.0 0.809 0.952 85
VM 453 36.1 44.0 0.796 0.971 85
RAMPC 45.2 36.9 44.4 0.816 0.982 85
Dhrystone 46.5 40.9 44.6 0.879 0.959 85
TSO 43.4 35.4 413 0.815 0.952 75
IMS 43.6 35.4 42.3 0.811 0.969 75
CICS 43.6 35.5 41.5 0.814 0.952 75
VM 42.2 34.2 41.2 0.809 0.976 75
RAMPC 42.0 34.6 41.3 0.823 0.984 75
Dhrystone 44.2 39.2 425 0.887 0.962 75

(Since Dhrystone consists of repetitions of the same large
loop, only a few iterations were used in the measurements.)
The compounding of instructions was simulated for the
traces. Compounding data were gathered for SCISM using

the compounding rules of Table 2. The results in Table 4
show the PZE for each trace when Category 4 branches
are compoundable, denoted ““SCISM1,”” and when they

are removed from execution, denoted ‘“SCISM2.”” The
table shows the PZE relative to a theoretical superscalar
computer. The effect of branch prediction accuracy on
PZE is shown for each case.

Several observations can be made from Table 4. First, it
can be noted that SCISM1 achieves roughly 78-88% of the
theoretical maximum performance. For SCISM2, 94-98%
of the theoretical maximum PZE is achieved. The three
MVS traces tend to be similar in the degree of parallel
execution of instructions.

Differences between traces can be understood by
examining Table 3. Several characteristics of programs are
important in determining the degree of compounding
success. Simpler instructions, where dependencies can be
collapsed, and instructions that do not modify registers
tend to be more ‘‘compoundable’” than other instructions.
Categories 1, 6, and 10 are examples of this. Referring to
the 100% prediction accuracy portion of the table, the
following can be verified: for SCISM1, Dhrystone has the

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

highest frequency of these three categories and has the
highest PZE (43.5), while VM has the lowest frequency
and the lowest PZE (38.9). While Table 3 does not show
frequencies of pairs of instructions or categories, there are
some well-known pairs in commercial System/370
programs. One example is the instruction sequence TM
followed by BC. This pair is always compoundable for
SCISM1, according to the rules in Table 2. RAMP-C has
the highest frequency of Category 10 (TM), and this
contributes to the high PZE for the trace. The frequency
of branches also contributes to the PZE. With more
branches, there are fewer nonbranching instructions
between branches. If those branches are taken, the lengths
of sequences of nonbranching instructions are shorter,
resulting in less compounding potential. Fewer branches
mean longer sequences not interrupted by a branch.
RAMP-C and VM have a high frequency of branches,
while Dhrystone has a low frequency. Finally, although
SCISM collapses register dependencies between
instructions, Table 2 indicates that this is not possible for
any arbitrary pair on the assumed hardware. RAMP-C has
a low number of dependencies, and CICS has a high
number. Thus, one expects more compounding in RAMP-C
than in CICS. While predicting the exact PZE from the

statistics may not be feasible, the statistics do give some 75

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

76

indication of which programs lead to better results on a
SCISM processor.

The same statistics are important for studying the
SCISM2 results. Here, however, the frequency of
Category 4 branches affects results differently. Because
of the removal of a percentage of instructions, the
compounding is reduced, but because of the zero-cycle
execution of branches, the PZE is increased. When
branches are not compoundable, those traces with a higher
frequency of branches do better. All of these removed
branches contribute to the PZE; when branches are
compoundable, those compounded contribute to the PZE,
while those not compounded are not part of the PZE. VM,
with a large number of branches, has the highest PZE,
while Dhrystone has the fewest branches, and nearly the
lowest PZE. This is a reversal of the results for SCISM1.
On the other hand, RAMP-C has a high PZE for both
SCISM1 and SCISM2. Perhaps conditional branches
compound frequently in SCISM1 because of the large
number of TM instructions. In SCISM2, those branches
are not compounded, but are removed from the instruction
stream.

As the branch-prediction parameter is set to lower
values, those traces with lower frequencies of branches
perform better than other traces. For example, Dhrystone
has the fourth highest PZE for SCISM2 and 100%
prediction, but the second highest PZE for SCISM2 and
75% prediction. The relationships between the columns
also change. The SCISM1 PZE decreases more slowly
than the SCISM2 PZE; for 75% prediction, the two are
closer in PZE than they were for 100% prediction. This
is because in SCISM2 all Category 4 branches are part
of the PZE and thus are subject to branch-prediction error
penalties. In SCISM1, some are not part of the PZE; thus,
an incorrect prediction does not affect the PZE. Also of
interest is the performance of SCISM compared to the
theoretical superscalar. Both SCISM1 and SCISM2
have better relative performance as prediction accuracy
decreases. This is indicative of the different ways in
which the two schemes handle branches. For superscalar
processors, correct prediction is necessary to pair a branch
with its target. For SCISM, branch performance is
achieved through static compounding and removal from
the instruction stream.

SCISM1 provides a significant portion of the theoretical
instruction-level parallelism in commercial programs. By
removing conditional branches from the instruction stream,
SCISM2 increases the relative PZE by about 8-23% over
SCISML. For realistic branch prediction, say 85%,
SCISM2 is roughly 95-98% and SCISM1 is roughly
79-87% of the best superscalar PZE. For all traces,
SCISM2 exceeds 95% and SCISM1 exceeds 77% paraliel
execution of instructions relative to the theoretical
superscalar machine.

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

Conclusions
On the basis of the assumption that no single mechanism

provides a significant performance enhancement in von
Neumann instruction-level parallel processors, we have
identified a number of problems that inhibit parallel
execution, and have presented a novel machine
organization, the scalable compound instruction set
machine (SCISM), which incorporates a number of
mechanisms that either solve or alleviate superscalar
machine deficiencies. In summary, SCISM comprises the
following concepts and mechanisms:

1. Instruction categorization by hardware utilization rather
than opcode description, which provides the capability
for improving the number of possible groupings of
instructions for parallel execution while avoiding
prohibitive hardware increases and loss of performance
due to increased cycle time and additional pipeline
stages in an implementation.

2. Interlock collapsing hardware that provides the
capability of parallel execution of interlocked
instructions.

3. A broader scope of instruction text examination than
instruction stack text examination, which provides the
capability for improving the degree of instruction-level
parallelism extracted from a program, and avoids
prohibitive hardware requirements, increased cycle
time, and FIFO preprocessing.

4. Mechanisms that avoid on-demand preprocessing
of the instruction text, maintain the preprocessing
“permanently,’” and perform ‘‘static’® preprocessing
in the cache.

5. A reduction of the amount of logic required for parallel
instruction fetch/issue/decode in the instruction stack.

6. Incorporation cf tagging or decoding mechanisms in the
cache that can facilitate the parallel issue/execution of
instructions, out-of-order execution, decoding of
instructions, branching, functional unit scheduling,
routing of operands to the functional units, and so forth.

7. Handling of architectural idiosyncrasies with negligible
loss of performance and avoidance of prohibitive
hardware requirements.

8. A flexible location for the preprocessing facility,
allowing implementation constraints and
performance/cost trade-offs to be accommodated.

The evaluation of the mechanisms using an instruction-
level parallel-execution machine capable of executing at
most two instructions against a theoretical superscalar
machine suggests that with an efficient branch handling
mechanism the proposed machine organization can
accomplish parallel execution of instructions that exceed
the 90% range of the theoretical machine. This is
accomplished despite instruction dependencies and with

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

less complexity than comparable traditional superscalar
designs, suggesting that SCISM represents a promising
new computer organization.

Regarding future research for SCISM or SCISM-like
processors, it may be of interest to explore the possibility
of expanding the complex CISC instructions to RISC-like
primitives and then possibly combining the RISC
primitives in compound instructions in hardware, using
an approach similar to that described by Silberman and
Ebcioglu in [38].

Acknowiedgments

The authors thank T. Jeremiah, J. Phillips, and W. Kelley
for valuable comments. Additionally, Stamatis Vassiliadis
thanks C. Conti, N. King, J. Roossien, and E. Shimp for
the support and encouragement they provided for the
development of the SCISM concepts.

ESA/370 and System/370 are trademarks of International
Business Machines Corporation.

References

1. N. P. Jouppi, ‘““The Nonuniform Distribution of
Instruction-Level and Machine Parallelism and Its Effect
on Performance,”” IEEE Trans. Computers 38, 1645-1658
(December 1989).

2. R. W. Horst, R. L. Harris, and R. L. Jardine, “Multiple
Instruction Issue in the NonStop Cyclone Processor,”
Proceedings of the 17th International Symposium on
Computer Architecture, IEEE Computer Society, Los
Alamitos, CA, May 1990, pp. 216-226.

3. IBM Journal of Research and Development, ‘“The IBM
RISC System/6000 Processor,”” Special Issue, Vol. 34,
No. 1, January 1990.

4. N. P. Jouppi and D. W. Wall, “‘Available Instruction-
Level Parallelism for Superscalar and Superpipelined
Machines,” Proceedings of ASPLOS IIl, ACM, 1989,
pp- 272-282.

5. J. E. Smith, ““Dynamic Instruction Scheduling and the

Astronautics ZS-1,” IEEE Computer 27, 21-35 (July 1989).

6. IBM Enrerprise System Architecture/370 Principles of
Operation, Order No. SA22-7200-0, 1989; available
through IBM branch offices.

7. A. Padegs, B. B. Moore, R. M. Smith, and W. Buchholz,
““The IBM System/370 Vector Architecture: Design
Considerations,”” IEEE Trans. Computers 37, No. 5,
509-520 (May 1988).

8. H. S. Warren, ““Instruction Scheduling for the IBM RISC
System/6000 Processor,”” IBM J. Res. Develop. 34, No. 1,
85-92 (January 1990).

9. J. K. F. Lee and A. J. Smith, ““Branch Prediction
Strategies and Branch Target Buffer Design,” IEEE
Computer 17, No. 1, 6-22 (January 1984).

10. J. E. Smith, ‘A Study of Branch Prediction Strategies,”
Proceedings of the 8th Annual Symposium on Computer
Architecture, IEEE Computer Society, Los Alamitos, CA,
May 1981.

11. M. Putrino and S. Vassiliadis, ‘‘Resolution of Branching
with Prediction,”” Int. J. Electron. 66, No. 2, 163-172
(February 1989).

12. S. Vassiliadis and M. Putrino, ““Condition Code Predictor
for Fixed-Point Arithmetic Units,”” Int. J. Electron. 66,
No. 6, 887-890 (June 1989).

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.
32.

33.

. S. Vassiliadis, J. E. Phillips, and B. Blaner, “Interlock
Collapsing ALUs,” IEEE Trans. Computers 42, 825-839
(July 1993).

S. Vassiliadis, J. E. Phillips, and B. Blaner, ‘“‘ICU Design
Considerations,” Technical Report TR-01.C114, IBM
Glendale Laboratory, Endicott, NY, October 1991, p. 22.
S. Vassiliadis and J. E. Phillips, “Interlock Collapsing
ALU Design,” Technical Report TR-01.C115, IBM
Glendale Laboratory, Endicott, NY, October 1991, p. 37.
J. E. Phillips and S. Vassiliadis, ‘“High Performance 3-1
Interlock Collapsing ALUS,” IEEE Trans. Computers,
accepted for publication.

R. J. Eickemeyer and S. Vassiliadis, ‘A Load Instruction
Unit for Pipelined Processors,”” IBM J. Res. Develop. 37,
547-564 (July 1993).

S. Vassiliadis, B. Blaner, R. J. Eickemeyer, J. Phillips,
and N. Malik, “In-Cache Pre-Processing and Decode
Mechanisms for Fine-Grain Parallelism in SCISM,”
Proceedings of the IEEE Phoenix Conference on
Computers and Communication, Phoenix, AZ,

March 1993, pp. 91-97.

S. Vassiliadis and B. Blaner, ““Concepts of the SCISM
Organization,” Technical Report TR-01.C209, IBM
Glendale Laboratory, Endicott, NY, January 1992, p. 14.
R. J. Eickemeyer, S. Vassiliadis, and B. Blaner, “An In-
Memory Preprocessor for SCISM Instruction-Level
Parallel Processors,”” Technical Report TR-01.C407, IBM
Glendale Laboratory, Endicott, NY, May 1992, p. 16.

G. Radin, ““The 801 Minicomputer,” IBM J. Res.
Develop. 27, No. 3, 237-246 (May 1983).

J. Hennessy, N. Jouppi, F. Baskett, and J. Gill, “MIPS: A
VLSI Processor Architecture,”” Proceedings of the CMU
Conference on VLSI Systems and Computations, Carnegie
Mellon University, Pittsburgh, PA, 1981.

B. Blaner and T. L. Jeremiah, ‘“Cross-Cache-Line
Compounding Algorithm for SCISM Processors,”” patent
pending, IBM U.S. Docket No. EN991129, 1992.

A. J. Smith, ““Cache Memories,” Computing Surv. 14,
No. 3, 473-530 (September 1982).

J. Archibald and J. L. Baer, ‘““Cache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model,”
ACM Trans. Computer Syst. 4, No. 4, 273-298 (November
1986).

J. L. Baer and W. H. Wang, “Multilevel Cache
Hierarchies: Organizations, Protocols, and Performance,”
J. Parallel & Dist. Computing 6, 451-476 (1989).

B. Blaner and S. Vassiliadis, ‘‘A Hardware Preprocessor
for Instruction-Level Parallel Processors,”” Technical
Report TR-01.C208, IBM Glendale Laboratory, Endicott,
NY, January 1992, p. 13.

R. J. Eickemeyer and S. Vassiliadis, ‘‘Compounding
Algorithms for SCISM Processors,” Technical Report
TR-01.C404, IBM Glendale Laboratory, Endicott, NY,
May 1992, p. 18.

R. J. Eickemeyer, S. Vassiliadis, and B. Blaner, “Memory
Management for Scalable Compound Instruction Set
Machines with in Memory Compounding,”” U.S. Patent
5,197,135, 1990.

B. Blaner, T. L. Jeremiah, and S. Vassiliadis, “A Branch
Instruction Processor for SCISM Architectures,”
Technical Report TR-01.C437, IBM Glendale Laboratory,
Endicott, NY, May 1992, p. 20.

S. G. Tucker, ““The IBM 3090 System: An Overview,”
IBM Syst. J. 25, No. 1, 4-19 (1986).

A.Y. Ngai and B. Blaner, ‘“‘Apparatus and Method for
Implementing Precise Interrupts on a Pipelined Processor
with Multiple Functional Units with Separate Address
Translation Means,”” U.S. Patent 5,003,462, March 1991.
W. W. Hwu and Y. N. Patt, “Checkpoint Repair for High-
Performance Out-of-Order Execution Machines,”” IEEE
Trans. Computers C-36, 1496-1514 (December 1987).

S. VASSILIADIS, B. BLANER, AND R. }. EICKEMEYER

77

78

34. H. C. Torng and M. Day, ‘“Interrupt Handling for Out-of-
Order Execution Processors,”” IEEE Trans. Computers 42,
No. 1, 122-126 (January 1993).

35. R. P. Weicker, “‘Dhrystone: A Synthetic Systems
Programming Benchmark,”” Commun. ACM 27, No. 10,
1013-1030 (October 1984).

36. N. Malik, R. J. Eickemeyer, and S. Vassiliadis, ‘‘Interlock
Collapsing ALU for Increasing Instruction Level
Parallelism,”” Conference Proceedings of the 25th Annual
International Symposium on Microarchitecture, Portland,
OR, December 1992, pp. 149-157.

37. N. Malik, R. J. Eickemeyer, and S. Vassiliadis,
“‘Architectural Effect on Dual Instruction Issue with
Interlock Collapsing ALUs,” Conference Proceedings of
the IEEE Phoenix Conference on Computers and
Communication, Phoenix, AZ, March 1993, pp. 42-48.

38. G. M. Silberman and K. Ebcioglu, ““An Architectural
Framework for Supporting Heterogeneous Instruction-Set
Architectures,”” IEEE Computer, pp. 39-56 (June 1993).

Received March 1, 1993; accepted for publication
January 6, 1994

Stamatis Vassiliadis IBM RISC System/6000 Division,
11400 Burnet Road, Austin, Texas 78758 (STAMOS at
AUSVMG6, stamatis@vnet.ibm.com). Dr. Vassiliadis received
the Dr.Eng. degree in electronic engineering from the
Politécnico di Milano, Milan, Italy, in 1978. He is currently
employed at the Advanced Workstations and Systems
Laboratory in Austin, Texas, after previous assignments at the
Mid-Hudson Valley Laboratory, IBM Poughkeepsie, and the
Glendale Laboratory, IBM Endicott, New York. His work
assignments include the development of new computer
organizations and architectures, high-level design and technical
leadership in the implementation of new computer systems,
and advanced research in a variety of computer-related fields.
Previous work included participation in the design of the IBM
9370 Model 60 computer system. Since joining IBM he has
received a number of awards, including 18 levels of the IBM
Publication Achievement Award, 13 levels of the IBM
Invention Achievement Award, and an IBM Qutstanding
Innovation Award for Engineering/Scientific Hardware Design
in 1989. In 1990 he was awarded the most patents in IBM. His
research interests include computer architecture, hardware
design and functional testing of computer systems, parallel
processors, computer arithmetic, EDFI for hardware
implementations, neural networks, fuzzy logic and systems,
and software engineering. Dr. Vassiliadis has been an Adjunct
Professor and a Visiting Professor in the School

of Electrical Engineering, College of Engineering, Cornell
University, Ithaca, New York, and in the Electrical
Engineering Department at the Thomas J. Watson School of
Engineering and Applied Science, State University of New
York (S.U.N.Y.), Binghamton, New York.

S. VASSILIADIS, B. BLANER, AND R. J. EICKEMEYER

Bart Blaner /BM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (BLANER at
BTVLABVM, blaner@vnet.ibm.com). Mr. Blaner is an
Advisory Engineer in the Microprocessor and Mwave Product
Development group at the IBM Burlington Laboratory. His
current assignment is digital signal processor design.
Previously he worked in the IBM Glendale Laboratory,
Endicott, New York, where he contributed to a variety of
processor projects ranging from dataflow computer research
to high-performance mainframe computer development.

His technical interests include processor design and
implementation, computer architecture, VLSI design, and
computer networks. Mr. Blaner received the B.S. degree in
electrical and computer engineering, with great distinction,
from Clarkson University in 1983. He holds five patents, has
attained four levels of the IBM Invention Achievement Award,
and is a member of Tau Beta Pi, Eta Kappa Nu, and Phi
Kappa Phi.

Richard J. Eickemeyer IBM Application Business
Systems, 3605 Hwy. 52 North, Rochester, Minnesota 55901
(RJE at RCHVMYV3, rje@vnet.ibm.com). Dr. Eickemeyer

is an Advisory Engineer in the IBM Rochester Laboratory
Hardware Design Center. His current assignment is
performance analysis of AS/400® processors. Prior to moving
to Rochester, he worked in the IBM Glendale Laboratory,
Endicott, New York, on system design and processor
performance. Dr. Eickemeyer received the B.S. degree in
electrical engineering from Purdue University and the M.S.
and Ph.D. degrees from the University of Ilinois at Urbana-
Champaign. His research interests are computer architecture,
parallel processing, and performance analysis. Since joining
IBM he has received awards which include two levels of the
IBM Publication Achievement Award and two levels of the
IBM Invention Achievement Award.

AS/400 is a registered trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994

