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In  this paper  we describe  a  machine 
organization  suitable for RlSC and ClSC 
architectures.  The  proposed  organization 
reduces  hardware  complexity in parallel 
instruction fetch  and  issue logic by  minimizing 
possible  increases in cycle  time  caused by 
parallel instruction issue  decisions in the 
instruction buffer.  Furthermore, it improves 
instruction-level  parallelism by means  of 
special features.  The  improvements  are 
achieved by analyzing instruction sequences 
and  deciding  which instructions will issue 
and  execute in parallel prior to actual 
instruction fetch  and  issue, by incorporating 
preprocessed  information  for  parallel  issue 
and  execution  of instructions in the cache, by 
categorizing instructions for parallel  issue and 
execution on the  basis  of  hardware utilization 
rather  than  opcode  description,  by  attempting 
to avoid  memory  interlocks  through  the 
preprocessing  mechanism,  and  by  eliminating 
execution  interlocks with specialized  hardware. 

Introduction 
Improvements in the performance of computer systems 
relate to circuit-level or technology improvements and to 
organizational techniques such as pipelining, cache 
memories, out-of-order execution, multiple functional 
units, and exploitation of instruction-level parallelism.  One 
increasingly popular approach for exploiting instruction- 
level  parallelism, Le., allowing  multiple instructions to be 
issued and executed in one machine cycle, is the so-called 
superscalar machine organization [l]. A number of such 
machines with varying degrees of parallelism have recently 
been described [2, 31. The increasing popularity of 
superscalar machine organizations may  be attributed to the 
increased instruction execution rate such systems may 
offer, concomitant with technology improvements that 
have  made their organizations more feasible. 

Neither superscalar machines nor scalar machines, 
i.e., machines that issue and/or execute a single instruction 
per cycle, may necessarily exploit all  of the potential 
performance improvements that their organizations 
promise. In superscalar machines, the level of parallelism 
achieved may  be less than anticipated for a variety of 
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reasons, including data dependencies (interlocks), branch 
instructions, and precise interrupt handling. Data 
dependencies are particularly detrimental to superscalar 
machines because they force serial instruction execution- 
the superscalar machine reverts to scalar execution mode, 
in  which additional pipeline dead cycles (bubbles) that are 
intrinsic in the underlying scalar implementation may be 
incurred. Thus, much of the performance gain  promised by 
a superscalar organization may be lost [l, 41. Furthermore, 
implementing and, in particular, controlling multiple 
functional units is  not without cost-a cost that may  not 
be worth paying if little is to be gained. 

To quantify this cost, consider a machine organization 
designed to issue n instructions. Instructions are fetched 
into an instruction stack (i-stack) or window,  and at 
instruction decode time  (i.e.,  from the instruction stack or 
window) a decision  is reached as to whether or not a given 
n-tuple or, simply, group of instructions may be executed 
in  parallel. This decision-making process, referred to as 
preprocessing, is based on the opcodes of the instructions, 
which specify the hardware each of the n instructions 
will  utilize,  and on the dependencies existing among the 
instructions. (Typically, to avoid creating bubbles internal 
to the group of instructions, no dependencies may exist if 
the instructions are to be executed concurrently.) Then the 
instructions are issued and executed. This organization has 
the following characteristic: The amount of time required 
to allocate n instructions to m appropriate functional units 
(sometimes called “instruction split” [5]) during instruction 
decoding increases as m increases. Yet at the same time  it 
may seem very desirable to increase m in order to increase 
concurrency. For a complex instruction set architecture, 
e.g., ESA/370TU [6] ,  decoding and analyzing the 
dependencies among  two or more instructions takes 
substantially more hardware and time than it  would for a 
simpler architecture,’ since the task is considerably more 
difficult. 

In some machines, preprocessing is based on the 
instruction opcode description [2 ] .  This  implies that in 
order to exploit the existing parallelism in an instruction 
stream, it is necessary to implement a prohibitively large 
number of rules to control parallel instruction issue. 
To clarify this point, consider a superscalar machine 
designed to execute at most two instructions in parallel. 
Furthermore, assume that there are W instructions in the 
machine instruction set. To maximally exploit instruction- 
level  parallelism, W X W rules must be implemented  in 
the instruction decode hardware to determine whether or 
not a given  pair of arbitrary instructions may be issued 
in  parallel. It is our contention that for a nontrivial 

In this paper, the term architecture denotes the attributes of a system  as  seen by 
the programmer, Le., the conceptual structure and functional behavior of the 
machine, and is distinct from the organization of the dataflow and physical 
implementation of the machine [7]. 
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instruction set, implementing this number of rules 
and  using  them to gate the issue/not-issue decision is 
prohibitive with respect to hardware, circuit complexity, 
and delay. Indeed, present-day superscalar machines using 
this approach consider only a few combinations of 
instructions for parallel execution. For example, the 
superscalar machine presented in [2] considers only 
38 X 53 rules, and  it  allows 38 and 53 specific instructions 
out of the instruction set to be the first and the second 
instructions, respectively, in an instruction pair  issued in 
parallel. Furthermore, some other superscalar machines, in 
order to restrict the number of rules required for parallel 
execution, may issue instructions in parallel only in very 
specific circumstances [3] and therefore do not exploit the 
instruction-level parallelism present in most programs to 
the highest degree possible.  Additionally,  in a group of n 
instructions, where n is sufficiently large (perhaps 3 or 
more), it is very likely that dependencies will exist 
between instructions. These dependencies will prevent 
concurrent execution, forcing a serial execution instead, 
and  will therefore limit the performance gain  of the 
superscalar machine. 

In superscalar machines that are currently available, 
preprocessing is a first-in-first-out (FIFO) operation, out 
of the instruction buffer (also referred to as the instruction 
stack or window),  which attempts to decide “on the fly,’’ 
i.e., at instruction issue/decode time, whether two or more 
(up to n) instructions may be issued  and executed in 
parallel. Consequently, the scope of preprocessing is 
restricted to n. This too restricts parallelism, since certain 
dependencies could be avoided if alternate groupings of 
instructions could be considered. For example, a load-use 
[8] may require a cycle of delay between the load  from 
memory and subsequent use. If we assume n = 2 and 
FIFO preprocessing, the load  and use are serialized 
because of the required delay. Suppose, however, that 
the scope of preprocessing is greater than n. Then the 
possibility exists for a more optimal  grouping,  i.e.,  pairing 
the load  with the previous instruction and the use with the 
instruction after it, thereby maintaining the required 
load-use delay but replacing a bubble cycle with  useful 
work. While a larger scope of examination could 
be postulated for a superscalar machine, there are two 
consequences of increasing the scope that penalize 
potential performance gains.  The  first is that to analyze 
more instructions requires more time, Le., circuit delay, 
and therefore the machine cycle time  may be increased 
prohibitively, thus penalizing the execution of  all 
instructions. A second consequence, related to the first, 
is that the time required may be so great that it may be 
necessary to add  an extra stage to the pipeline, which 
penalizes the execution rate each time the pipeline  is 
drained, when, for example, the outcome of a branch 
instruction is mispredicted. Thus, the effects of broadening 

IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994 



the scope of examination are diminished in the presence of 
branch instructions. 

The branch problem is well known, and a variety 
of techniques have been developed to alleviate the 
detrimental effects of branches on performance. These 
techniques include various branch prediction schemes 
[9, 101 and methods for early branch outcome 
determination [ll, 121. In superscalar machines the 
problem is magnified, since the frequency at which branch 
instructions enter the pipeline is increased. To illustrate, 
assume a superscalar machine  designed to issue and 
execute three instructions per cycle, and assume that 
branch instructions comprise 25% of the instruction 
stream. Clearly, it  is of interest to issue three instructions 
every cycle to maintain  maximum performance. If it were 
possible to sustain this rate of execution, which is  not 
unreasonable, then at this branch frequency a branch 
would have to be processed every other cycle. 
Consequently, an efficient branch-handling mechanism 
would be needed to minimize  pipeline disruptions. Even 
with such a mechanism, once a group of instructions has 
been executed, all information from preprocessing that 
group is lost. Branches influence this loss in two instances. 
First, consider the case in which the outcome of a branch 
is mispredicted. Even if the correct sequence has been 
executed previously, no  information exists from previous 
preprocessing. This implies that either the incoming 
correct instruction stream is analyzed on the fly, thus 
potentially lengthening the duration of the branch-induced 
disruption, or the execution is serialized (instructions 
starting from the first instruction of the correct stream are 
issued one at a time  until the rate of preprocessor output is 
at least equal to the rate at which instructions are being 
consumed). Depending on implementation, this point  may 
never be reached if the incidence of taken branches is 
high. Second, consider the case in  which a branch 
instruction is correctly predicted. Furthermore, to possibly 
avoid a cycle time increase and to maximize  parallelism, 
assume that some scheme has been employed to avoid 
strict FIFO preprocessing, perhaps by preprocessing 
instructions early in the i-stack. If no branches are 
taken, the instruction text present in the i-stack can be 
successfully preprocessed in advance. However, branches 
are frequently taken, and, irrespective of prior executions, 
the branch target instructions must be preprocessed again, 
limiting the effectiveness of early preprocessing. The 
conclusion to be drawn from these two cases is that 
associating preprocessing with instruction fetching may 
not result in the best possible performance, and the 
former must somehow be detached from the latter. 

In summary, currently available superscalar machines 
may exhibit one or more of the following  deficiencies that 
limit their execution rates: 
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1. Increased cycle time caused by the additional circuit 
delay required to allocate instructions to functional 
units “on the fly.” 

2. Additional  pipeline stages required to accommodate 
instruction preprocessing. 

3. Limited numbers of instructions that can be issued and 
executed in parallel (in order to avoid increasing either 
the cycle time or the number of pipeline stages). 

4. Prohibitive circuit counts, hardware complexity, cycle 
time growth, and/or a longer  pipeline  when  more 
comprehensive groupings of instructions are considered. 

5. Pipeline bubbles induced by data dependencies. 
6. Failure to overcome data dependencies by broadening 

7. Continuous, nonpermanent preprocessing resulting in 

8. Potential loss of parallelism due to the higher incidence 

the preprocessing scope. 

performance degradation. 

of branch instructions entering the pipeline. 

We present a new  machine organization called a scalable 
compound  instruction set machine (SCISM), also referred 
to as a compound instruction set machine* and as a 
superscalar compound instruction set machine,  which 
incorporates mechanisms that either solve or alleviate the 
problems described previously. The proposed organization 
results in improvements in performance and hardware 
requirements when compared to existing superscalar 
machines, and does so without precluding other 
improvements that may result from out-of-order execution, 
static scheduling, pipelining, etc. Additionally, the machine 
organization may use compiler technology, e.g., instruction 
scheduling [18], to further improve performance. Lastly, 
the organization results in designs that are fully compatible 
with any given architecture. 

This paper is organized as follows.  The Concepts section 
presents the fundamental attributes of the SCISM 
organization. The  Organization section describes the 
machine organization that employs these concepts. Finally, 
the Evaluation section presents simulated performance 
results for a SCISM processor. 

Concepts 
The discussion in this section and the sections to follow 
presents some of the general concepts proposed in the 
report cited by footnote 2 and describes in depth the 
development of those concepts that resulted in an 
experimental design in the IBM  Glendale laboratory in 
Endicott, New York. This section concentrates on the 
categorization of instructions, dependency resolution, and 
preprocessing-three fundamental mechanisms of the 
SCISM organization. 

2 S. Vassiliadis, “Compound Instruction Set Machines,” private communication, 
1989. 61 
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To avoid the rule  limitation  imposed by the approach 
used in  [2], the grouping of instructions that can be issued 
and executed in  parallel  must be based on hardware 
utilization rather than opcode description. This hardware 
utilization basis is  formed by the following characteristics: 

1. Instructions are partitioned into categories. 
2. All instructions in a category are viewed as “unique” 

3. Differences  among members in a category are “trivial” 

4. An instruction may be in a particular category if and 

instructions. 

and are resolved by the hardware. 

only if it uses the same hardware units as all others in 
that category. 

All instructions that do not meet these definitions can 
either be assigned to some number of individual categories 
or be lumped together in a single category. The latter 
simplifies the implementation of preprocessing by 
minimizing the number of instruction categories. 

to a given instruction set is that the number of rules 
required to group the instructions for parallel execution 
depends on the number of categories into which the 
instruction set has been partitioned, rather than on the 
number of individual instructions in the instruction set. 
The intuitive reasoning behind such partitioning is that 
there are a limited  number of functional units present 
in an implementation and that such units operate on a 
multiplicity of instructions. For example,  an arithmetic 
logic  unit (ALU) executes all add, subtract, add  logical, 
compare, compare logical,  logical  AND,  and  logical OR 
instructions, and so forth. Certainly these instructions 
differ  from one another, but nevertheless such differences 
are trivial. (“Trivial” in the context of this discussion 
indicates that while there is a distinct operation associated 
with each instruction, such a difference  is resolved by 
some simple control signal or by some minor  modification 
of the hardware to accommodate the operation. For 
example, in two’s-complement arithmetic, an addition 
differs  from a subtraction in that the latter requires 
inversion of the subtrahend and the addition of 1, typically 
provided by injecting a “hot 1” carry-in to the ALU, 
together with the control information indicating that a 
subtraction is to be  performed rather than the addition.) 
Additional functional units that may be included in a 
hardware implementation include the floating-point adder, 
floating-point  multiplier, branch unit, address generation 
unit, shifter, etc. This implies that the definitions 
postulated for instruction categorization will  be successful 
in reducing the complexity of instruction preprocessing, 
since many instructions may be considered as a ‘‘single” 

An obvious implication of these definitions when applied 

62 instruction. 

As indicated in the Introduction, performance gains in 
superscalar machines can be lost to data dependencies 
(interlocks) between instructions. We note here that such 
dependencies can be divided into two categories, namely 
execution interlocks and memory interlocks. Execution 
interlocks occur within a functional unit, e.g., register 
write-read interlocks, and  memory interlocks occur 
between a functional unit and memory,  e.g., the load-use 
interlock. To eliminate execution interlocks, an 
implementation must incorporate both multiple execution 
units and multi-operand execution units. The requirement 
for multi-operand execution units necessitates the design of 
units that produce architecturally correct results but do not 
extend the cycle time or require prohibitive quantities of 
hardware. 

To illustrate the execution interlock elimination 
mechanism,  which we call interlock collapsing hardware, 
we assume, with obvious generalizations, that the 
instruction set is that of the IBM  System/370m architecture. 
Furthermore,  let the number  of instructions  that  can  be 
executed by the interlock  collapsing  hardware  unit be limited 
to two.  There are two reasons for  this  choice. First, 
workload  analysis has shown  that the likelihood  of 
encountering in a program three or more  adjacent 
interlocking  instructions  that  require the same  hardware 
unit is very small.  Second,  it has been  proven  that  the 
implementation  of a two-instruction  interlock  collapsing 
hardware  unit  does  not  extend  machine  cycle  time  [13]. 
While a cursory analysis  suggests that general  forms of 
interlock  collapsing  hardware  units,  e.g., a unit  that  can 
execute  interlocked  shift  and  add  instructions,  can cause 
prohibitive  circuit  delays, the most  frequent  interlocking 
instructions  have  simple  operations that can be collapsed, 
e.g., arithmetic  operations, logical operations,  register 
transfer  operations, address generation,  and  branch  outcome 
determinations.  These  simple  operations are 
the  focus of the SCISM  interlock  collapsing  hardware. 

When considering the hardware necessary to perform 
these simple operations, one might correctly conclude that 
an interlock collapsing ALU would be more complex 
by virtue of the sheer amount of function it must  provide: 
It operates with both two’s-complement numbers and 
unsigned numbers, and performs arithmetic and  logical 
operations and register transfer operations with some of 
the instructions, some (but not  all) of which set condition 
codes, cause overflows,  and so on. Furthermore, although 
many instructions utilize  an ALU and may therefore be 
lumped into one category, each instruction within the 
category utilizes the ALU in a slightly  different manner. 
For example, in the IBM Systed370 instruction set, 
register-to-register fixed-point instructions that require 
an ALU and have the same execution sequence can be 
subdivided into the following groups: 
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Arithmetic, e.g., AR, LPR. 
Arithmetic logical,  e.g., ALR, SLR. 
Logical, e.g.,  XR, NR. 
Logical compare, e.g.,  CLR,  CR. 
Load register, e.g., LR, LTR. 

Instruction categorization as it has been defined previously 
suggests that these five subcategories could be considered 
as a unique SCISM category. This, however, is an 
implementation choice: It may  not be necessary for all  of 
these subcategories to be lumped into a single  SCISM 
category (depending on the frequency of individual 
instructions in a program  and the hardware constraints). 

The assumption of pairwise instruction execution 
dictates the existence of two ALUs that provide the 
capability for concurrent execution of two instructions. 
Given that two sequential instructions can have an 
interlock only  from the first instruction to the second, not 
from the second to the first, the ALU that executes the 
first instruction of the pair  is a traditional 2-to-1 ALU. 
Since the second instruction may be dependent on the 
execution of the first instruction, in order to be able to 
execute both instructions in parallel the second ALU must 
be capable of performing 340-1 ALU operations. To 
illustrate, consider the following instruction sequence: 

SR Rl,R2 
AR R 1 , R 3  

Assuming that R j  denotes the content of register j ,  to 
execute this instruction pair in parallel the first ALU must 
perform the SR (subtract register)  operation R1 = R1 - R2 
and the second ALU must  perform the AR (add register) 
operation R1 = R1 + R3 = (R1 - R2) + R3, Le., a 3-to-1 
~pera t ion .~  

architecturally correct and  must  be assessed as to its 
feasibility as constrained by hardware and cycle time 
considerations. For a set of 3-to-1 ALU operations, which 
is  defined  by both the instructions included in the ALU 
operations category and the permissible painvise 
operations the ALU may perform, the following two 
statements hold true (and are proven elsewhere) [13-151: 

A 3-to-1 ALU can be  designed that guarantees 

Any  design of a 3-to-1 ALU must be proven 

architectural compliance by producing the correct result, 

Note the existence of a degenerate case requiring a 4-to-1 ALU. Consider the 
instruction sequence 

SR R1 ,R2 
AR R1,Rl 
For the  pair  of instructions to be executed in  parallel  and with only  one pass 
through  the ALU, the second ALU must  perform the operation R1 = (R1 - R2) 

build such an ALU and  the low frequency of such interlocks, little merit is found 
+ (R1 - R2). Given the added  hardware complexity and circuit delay required to 

for including such an ALU in an implementation. Note also that such operations 
may not even require an interlock collapsing ALU for execution: In the example, 
bit shifting and subtraction suffice. 

correctly setting condition codes, and detecting overflow 
for the locus of operations it performs [13,  14,  161. 
The design of the 340-1 ALU requires no more delay 
than a 3-to-1 binary addition, and  no  more stages than 
the design of a 2-to-1 ALU usually  implemented to 
perform  fixed-point operations in RISC and CISC 
architectures [13,  15,  161. The implication here is that its 
implementation does not increase the machine cycle time 
[13,  15,  161. 

The feasibility of the 340-1 ALU suggests that other, 
adder-related, interlock collapsing hardware is possible,‘ 
e.g., address generation interlock collapsing units. 

Regarding  memory interlocks, it can be stated that in 
general they cannot be feasibly resolved. While some 
memory interlocks can be alleviated with the use of 
techniques such as pipeline  forwarding and out-of-order 
execution, the problem still remains. In addition to these 
techniques, the SCISM approach allows  memory interlocks 
to be  avoided by using one of two additional  mechanisms: 
The first  mechanism requires the design of a specialized 
unit  and the preprocessing of load instructions. (It is 
described in  [17] and is not discussed further here.) 
The second mechanism involves grouping a memory- 
referencing instruction with previous instructions when 
possible. To accomplish this, preprocessing is removed 
from the i-stack or window to one of several locations (to 
be discussed later), allowing instructions to be analyzed 
with a broad scope. As is shown in the next section, this 
organization yields permanent, optimized preprocessing, 
obviating the  need for preprocessing at instruction 
fetchlissueldecode time. By so doing,  it  is  not only 
possible to broaden the scope of preprocessing, but it also 
becomes feasible to optimize preprocessing to achieve the 
highest  degree of instruction-level parallelism that can exist 
in a given program, to avoid instruction-split cycle time 
or pipeline penalties by preallocating instructions to 
functional units, and to avoid the other limitations 
associated with preprocessing at instruction 
fetchlissueldecode time. 

Organization 
At its highest  level of abstraction, the operation of the 
SCISM  machine organization incorporating the concepts 
described previously can  be represented by Figure 1. 
In the figure, a “program” is provided as an input to a 

Clearly, other interlocks can be collapsed. For example, consider the following 
sequence of SystenV370 floating-point instructions: 
LOR Rl,R2 
MD Rl,O2(X2,B2) 

operand location R1. The second operation, MD, multiplies the operand contained 
In the  first operation, LOR, the second operand R2 is placed unchanged at the  first 

in register R1 with an operand contained in a memory location. Obviously, the 
LDR is a register transfer instruction and the MD in effect operates on the operand 
contained in register R2. Such an interlock can easily be recognized and eliminated. 
The collapsing of this interlock, and others, is trivial when compared to the 
interlock collapsing ALU and is not considered further. 63 
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compounding facility (footnote 2). The compounding 
facility or preprocessor examines the instruction stream 
with  an implementation-dependent predetermined scope 
and produces a compound  instruction program. 

rules which  reflect the system architecture, the hardware 
organization, and the permissible parallel execution 
between categories of instructions. These rules are 
hereafter referred to as compounding rules. The program 
produced by the compounding facility can then be 
executed directly by a compound instruction execution 
engine, which considers a compound instruction as a single 
instruction. A compound instruction reflects the parallel 
issue of instructions; it comprises some number of 
independent instructions or interlocked instructions, the 
latter provided that the interlocks are of a form that can 
be collapsed by the execution hardware. 

As indicated in the previous paragraph, the compound 
instruction contains information pertinent to the parallel 
issuing and execution of instructions. In general the 
information, incorporated in the compound instruction in 
the form of decoding or tagging, indicates that compound 
instructions are “free of hazards,” and that functional 
units required for the execution of  an instruction are 
available when necessary. Instructions composing a 

The compound instruction program  is based on a set of 

64 compound instruction need not be consecutive, allowing 

I is in original form I 
r=tag 

Maximum  compound  instruction  format for the  compounding of at 
most  three  instructions. 

for out-of-order issue. Additional information, related for 
example to branch prediction, functional unit allocation 
and control, or routing information can also be 
incorporated in the decoding or tagging  of compound 
instructions. We note here that the choice between 
decoding instructions and  tagging them depends entirely on 
the architecture and the implementation constraints. For 
reasons that become obvious later in this section, tagging 
of instructions is mandatory for architectures that allow 
variable-length instructions, or that allow data to be 
intermingled  with instructions. In the remainder of this 
paper, we assume that the compounding information 
is in the form of tags rather than decoding.  Additional 
discussion of the tags can be found  in [B]. The  tag 
identifies the boundaries between single  and  compound 
instructions. For example, Figure 2 shows the format of a 
maximal  compound instruction, if it is assumed that up to 
three instructions may be included in a compound 
instruction. 

In the figure, the instruction 4 is in its original  form 
(implying  full compatibility with the base architecture), 
and Tis the tag. As indicated earlier, the tag  may contain 
as little or as much additional information as deemed 
efficacious for a particular implementation.  In the rest of 
the presentation, for simplicity of exposition, we discuss 
only the information necessary to determine a compound 
instruction. To determine the compounding of three 
instructions, two bits are required, denoted as to and t, . 
These bits are required for delimiting compound 
instructions, with 00 representing single instructions and 
01 and 10 representing two- and three-instruction 
compound instructions, respectively. 

The two control tag bits to and t, merit further 
discussion. One of the fundamental properties of the 
SCISM machine organization is that it enables 
preprocessing to be detached from instruction 
issueldecode. To do this, the compounding of instructions 
must  be “permanent,” with permanence being dictated by 
the location of the compounding facility. For example, the 
compounding facility may be a software facility-perhaps a 

S. VASSILIADIS, B. BLANER, AND R. J .  EICKEMEYER IBM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1w4 



post compiler [19]-or it may  be a hardware facility in the 
form of a hardware  preprocessor  located, for example, 
between the  cache  and  the  memory  subsystems. In this 
hardware  preprocessor,  the  “program”  to  be  compounded 
is the  stream of instruction  text  that is fetched during the 
servicing of a cache miss and  preprocessed  to  produce  an 
optimized stream of compound  instructions, i.e., a stream 
of instructions  with their  tags. The compounding 7. e 

information in the  tags remains intact  as long as  the line 
resides in the  cache,  and is thus relatively “permanent.” 
If the line should be  removed  from  the  cache  for  any of a 
number of reasons,  the  associated tags become invalid and 

b-l 

I f e t c h  b- 

I f e t c h  B”--J 

the line  must be  preprocessed again  should  it be required 
at  some  later time. 

1. Fetches  and  executes  compound  instructions. 
2. Executes maximally n instructions in parallel, where 

n is the  degree of instruction-level  parallelism the 
hardware  can  support. 

3. Maintains “permanent” compounding  during  sequential 
and  nonsequential (branches, interrupts)  execution. 

4. Produces  correct  results in the  presence of certain 
execution interlocks, e.g., proper two’s-complement 
additions  with  detection of overflows as defined by 
two’s-complement  arithmetic. 

5 .  Keeps intact the  architectural  behavior of the machine. 

The  permanence of compounding in SCISM during 
execution  is maintained with  the help of the tags, since an 
instruction is either  executed sequentially or is a branch 
target, and in either  case  the compounding remains intact. 
The  case in which  an  instruction is a branch target requires 
further explanation, because typically there  can  be no 
guarantee  that a branch  into  the middle of a compound 
instruction will not  occur.  This is  readily  handled by 
hardware if, on a branch target instruction fetch,  it 

1. Fetches a number of bytes equal to the  maximum-length 
compound instruction. 

2. Identifies the  end of the  branch target compound 
instruction  by locating the  compound  instruction 
delimiter for  the  next  compound instruction. 

Figure 3 illustrates this situation. In this figure, the 
maximum  length of compound  instructions (CI)  is three, 
and  the Tfield associated with each instruction has  been 
reduced to the to and t, bits only. Instructions within the 
mth  compound instruction, Cl”, are  denoted  by I,”, where 
r = 1 for the first instruction  in CI”, r = 2 for the  second 
instruction in CI”, and r = 3 for  the third  instruction in 
CI”. The  second  instruction of CI‘ is  a branch instruction, 
Bi,  that, for simplicity, is considered  to  have  two possible 
target paths, a and b. The a path  branches  to  the middle of 

CI’, while the b path branches  to  the beginning of CI’. If 
the  branch is to follow path a, the  hardware  fetches  the 
maximum-length compound instruction, i.e., three 
instructions, then  executes I! and { as a compound 
instruction. The  remainder of the  fetch, I:, is recognized to 
be  the beginning of a new  compound instruction and is 
held in reserve while the  rest of CI’ is fetched  for 
subsequent execution. If the  branch instruction takes  the b 
path to  the beginning of CI’, the  hardware again fetches  the 
maximum-length compound instruction, yielding, in this 
case, a complete  compound instruction, I!, I:, and 4. 
Execution of that  compound instruction proceeds directly. 
The  width of the tag  required  for  compounding and used in 
this discussion  is  equal to  log,n, n being the maximum 
number of instructions  that  can potentially be  compounded. 
Other tagging mechanisms are  also possible [19]. 

The  compound facility or preprocessor  can  be located in 
the  software [19], in main memory [20], or in a  cache. For 
this discussion and  for our System/370 SCISM design, we 
have  assumed  that  the  preprocessor  resides in the  cache. 
The  cache  preprocessor  has  the following interesting 
properties: 

1. Preprocessing  occurs  only  at  the  cache miss rate  and 

2. Overhead for  tag  storage is added  only  to  the  cache 
is thus infrequent. 

memory  and  to  the instruction fetch  and  issue 
hardware. 

3. Architectural idiosyncrasies  (discussed  later in detail) 
such  as writing into  the  instruction  stream,  data 
intermingled with instructions, and variable-length 
instructions  can  be handled  inexpensively in terms of 
hardware  and performance. 

A computing system comprising  an instruction 
compounding  unit (ICU), a compound  instruction  cache (35 
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SCISM with cache  preprocessor. 

(CIC),  and a number  of functional  units  is  shown in Figure 4. 
The preprocessing function is  performed by the ICU in 
combination with the compound instruction fetching 
controller (CIFC) sequential machine, which oversees the 
entire process of supplying compounded instructions to the 
functional units, requesting line fetches from the memory 
subsystem, and other tasks which are discussed later. The 
ICU is further divided into a buffer, decode/analysis unit, 
rules base, branch and  pipeline analyzer, and compounder. 
The buffer acts as a staging area between the memory 
subsystem and the CIC.  The ICU performs the 
preprocessing function on instructions in the buffer, 
ultimately  producing a stream of instructions with their 
tags. Clearly, the wider the buffer is in units of instruction 
width, the wider the scope of preprocessing, and the more 
opportunity there is for optimizing compounding across a 
given  number of instructions. For example, suppose the 
buffer could contain two instructions, and at some point 
contained instructions i, and 4 in one machine cycle and 
then 4 and i4 in the next. Also assume that two instructions 
may be compounded for parallel execution. Upon 

66 analyzing i, and 4 ,  the ICU determines that they cannot be 
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compounded and  must therefore be written to the CIC as 
noncompounded instructions. In the next cycle, the ICU 
analyzes 4 and i, and  makes the same determination. 
Now suppose that the buffer can instead contain four 
instructions, and can thus contain i,, 4, 4 ,  and i, 
simultaneously. The ICU can now also consider 4 and & 
for  compounding, and if this pair does compound, the 
result is a performance improvement over the former case. 
The choices of buffer size and the form  and extent of 
scope are engineering decisions that must trade off the 
advantages offered by a buffer  of a particular size and a 
scope having a particular form  and extent against the cost 
of implementation. Intuitively, the buffer size is a function 
of the number of instructions that constitute a single 
compound instruction and of the form  and extent of the 
scope of examination. The extent of scope may  range 
from a few instructions, to a whole cache line, to adjacent 
cache lines.  The  form of scope may  range  from serial 
examination, to a sliding  window, to multiple passes, and 
so on. It may  be that increasing the buffer size beyond a 
certain value or  making the scope overly complex  may 
produce diminishing returns. The decodelanalysis unit 
actually decodes the instructions in the buffer  with a 
predefined scope of instruction examination, and it 
determines what dependencies exist between them  and 
presents these results to the rules base and branch and 
pipeline analyzer. These subfunctions assess the 
“compoundability” of the incoming stream, and produce 
as output the recommended  compounding or 
compoundings  for the instructions in the buffer. The 
compounder then actually translates this information 
into compounded instructions with their tags. 
When  multiple  compoundings are possible, the 
compounder can  be  designed to give preference to 
certain sequences of instructions, yielding  more  optimal 
compounding. The rules base via the categorization 
mechanism described earlier may contain rules for the 
complete instruction set or for a subset (as long as the 
subset is  still a substantial part of the complete instruction- 
set architecture). It may  additionally contain further 
information pertaining to the physical properties of the 
functional units, facilitating the embedding of control 
information in the tags. The rules base, though 
implementable in hard-wired, random  logic,  may also be 
implemented in some form of fast-access programmable 
storage, thereby allowing for flexibility as more functional 
units are added or removed, as more or fewer types of 
compoundings are desired, or even as the computing 
environment changes. For example, certain compoundings 
may be more advantageous in a commercial environment 
than in an  engineering-scientific environment, or vice 
versa. If the rules base were programmable, such decisions 
could be made  at  machine  configuration  time. The 
structure of the CIC is similar to traditional cache designs, 
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with the addition of the tag bits. Thus, all traditional cache 
design techniques can also be applied to the CIC design. 
The actual incorporation of the tag bits into the cache line 
is an implementation issue and  is  not discussed further. 
Regarding the delay associated with the preprocessing, our 
System/370 implementation studies suggest that the delay 
through the ICU will be less than one machine cycle. 
Furthermore, our implementation studies suggest that this 
additional delay, depending on  how cache misses are 
serviced, can be hidden  in the cache miss service time. 

Complex instruction set computer (CISC) architectures 
pose a number of challenges to the ICU/CIC mechanism. 
In brief, these challenges arise from variable-length 
instructions, data intermingled  with instructions, and self- 
modifying code. It would seem that variable-length 
instructions could  lead to portions of a CIC line  being 
unanalyzed for  compounding. Suppose an instruction fetch 
to address A has occurred and has caused a cache miss. 
Address A falls somewhere in a cache line other than 
the first location, 0. Figure 5 illustrates the scenario. 
Straightforward left-to-right compounding leaves 
instructions in the range 0 to A unanalyzed, as depicted by 
the shaded region  in the figure. This becomes a problem if 
an instruction fetch to the unanalyzed portion occurs. The 
problem is not one of determinism (i.e., the instructions 
can still be executed deterministically, as in any instruction 
cache), but is rather one of performance-namely, the 
instructions have not been compounded, and therefore 
may  not be executed in parallel. Note that this problem 
does not arise in instruction-set architectures that have 
uniform instruction lengths, such as the 801 [21] or MIPS 
[22].  If instructions are always p bytes long,  then,  in the 
example, the ICU would  know that an instruction begins at 
A - p, A - 2p, etc., and  could analyze its way back to the 
beginning of the cache line. 

architecture, however: Unless cache lines are prefetched, 
compounding cannot occur across cache lines. For 
example, if two instructions can be compounded for 
parallel execution and a single instruction remains to be 
compounded at the end of a cache line, the last instruction 
cannot be compounded because the next instruction is 
unknown. The performance implications of this diminish as 
cache line size increases. For typical  line sizes for high- 
performance systems, perhaps 64 bytes or greater, the 
impact is minimal, since the line  likely contains many 
instructions that may have been successfully compounded. 
Prefetching the next sequential cache line can eliminate the 
problem because the next sequential instruction will be 
known  and  can thus be considered for compounding with 
the last instruction of the previous line.  Additionally, the 
problem can be solved with compounding across lines that 
are already in the cache [23]. 

Unlike certain RISC architectures, CISC architectures 

One further complication can arise with any 

Unanalyzed  Analyzed and compounded 
instructions  instructions 

Address 0 A 1 

f Unanalyzed instructions in a cache  line. 

+Instructions 4 D a t a ~ I n S t n r c t i o n s - ~  
Cache 
line I a b c  I 

/ Instructions and data intermingled. 

like System/370  may  not require an instruction stream to 
be purely instructions. Data may reside anywhere between 
instructions. Consider the scenario illustrated in Figure 6, 
in which the ICU is instructed to begin analysis for 
compounding at address A. As it processes from A to 
the end of the cache line,  it  unknowingly compounds the 
data and loses its reference point to the true instruction 
boundaries, compounding datum a and instruction 
fragment b into an erroneous instruction i’, whereas the 
true instruction, i, is composed of instruction fragments 
b and C, and so on  down the cache line. Later, a 
nonsequential instruction fetch occurs to instruction i. 
Consequently, the compoundings do not correspond to 
actual instructions, and are therefore invalid. 

Note that, depending on the permissible lengths of 
instructions and data, not  all architectures exhibit this 
problem, even when they allow data to be  intermingled 
with instructions. Note also that the cache coherence 
protocol must account for the presence of data in the 
compound instruction cache when, for example, a store 
into a data region that is in the cache occurs. A discussion 
of cache coherence protocols is beyond the scope of this 
paper. The reader is referred to [24-261 for further 
consideration of these issues. 

The solution to these problems is rooted in the degree 
to which the boundaries between instructions and data 
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(abstractly called text) can  be  exactly known. There  are 
five distinct cases: 

1. The  text  contains  instructions  only  and  the  reference 
point, i.e., the  boundary  or  address of the first 
instruction,  is  known. 

2. The  text  contains  instructions  and  data  at known 
boundaries. 

3. The  text  contains  instructions  only but the  reference 

4. The  text  contains  instructions  and  data  with partial 

5. The  text  contains  instructions  and  data  with  unknown 

point is unknown. 

reference  points known. 

reference points. 

The fifth case is the most  general and  worst-case  scenario. 
Clearly, if it can  be  solved,  both  the unanalyzed portions 
of cache lines and  data intermixed with  instruction 
problems  are solved, since  both problems hinge on 
knowing a compounding reference  point.5  One algorithm 
that  solves  this  case  has  the  ICU examine each halfword 
(two bytes) in the line as though it were an  instruction; 
i.e., each halfword is a potential instruction  boundary.6 
Then, assuming an  n-way compounding scheme, 
instructions  are identified for a given halfword in the line 
by determining instruction lengths  from that halfword and 
working to  the right until n instructions  have  been 
identified. The compoundability of these  instructions is 
then  assessed,  and a compounding tag is created for each 
halfword  comprising the n instructions. This  is  repeated for 
every halfword in the line. When the  process is complete, 
the tags for  each halfword are merged to  form  the tug 
vector for  the line (merging simply means selecting as  the 
tag  for a given  halfword the  tag  with  the highest value of 
all possible  tags generated  for  that halfword). The validity 
of this algorithm can  be established as follows. Consider a 
scheme  that allows  two-instruction  compounding, as 
shown in Figure 7. Assume  for simplicity that  the  rules  for 
compounding  indicate that 2- and 4-byte instructions  are 
compoundable  but 6-byte instructions  are not. A single tag 
bit is required for  each halfword: Let it be defined to  be 
equal to  one  when  the  instruction  starting with that 
halfword is compoundable  with  the next  instruction to  the 
right, and  equal  to  zero  when  the instruction is not 
compoundable  with  the  next  instruction. In the figure it is 
assumed  for simplicity that  the  text is  examined  serially. 
That is, a halfword  is  examined,  and on the  basis of its 
length (that  for  the example is assumed  to  be  the  only 
variable  that  determines  compoundable  instructions) a 
decision  is reached  as  to  whether  or not  it compounds  with 

5 The solutions to the other cases can be found in [27, 281. 
6 In Systemi370, instructions are two, four, or six bytes long and  must begin on 
halfword addresses. The first two bits of the first halfword of an instruction indicate 
its length. 68 
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the  next instruction; then  the next  halfword is considered 
and  the  process  is  repeated until the  end of the  text is 
reached.  The  text  and  the length associated  with  each 
halfword are depicted in part (a). In part (b), each line 
contains a pair of potential instructions on the left (TEXT), 
and  the resulting  compounding bits on the right (TEXT 
C-VECTOR). Moving down  one line also  advances  the 
text  to  the  next halfword  until all halfwords  have been 
examined and all possible C-vectors  for  the  text have been 
produced.  In part (c), these  C-vectors  are  then  reduced 
into a composite  C-vector (CC-VECTOR),  which  is 
obtained  by merging all of the  C-vectors  as  described 
previously. 

Note  that  only  the first tag bit for an  instruction in the 
C-vector is relevant to compounding; e.g., for a 6-byte 
instruction, there  are  three  tag  bits  corresponding  to  the 
first, second,  and third  halfwords of the instruction, of 
which only  the first bit is meaningful. Also note  that 
because  for  any given halfword the maximum 
compounding may  occur  only  when  the halfword is 
examined,  the  construction of the  CC-vector is  immediate. 

During  program execution,  instructions  are  fetched  from 
the  cache  either sequentially or  as  branch targets, and 
correct program behavior  is maintained by branching 
around  data.  Consequently, if an instruction  is  fetched 
sequentially, its  tag  indicates all instructions  that  are 
executable in parallel with  that instruction  and determines 
the beginning of the  next  sequential  compound instruction. 
If any  instruction in the  compounded  instructions  is a 
branch, all instructions constituting the  group following the 
branch  are  not  executed if the  branch is  taken, but  are 
executed if the  branch is not  taken. If an  instruction is a 
branch target, its tag indicates  the  number of instructions 
following it that  are  executable in parallel and  treated  as 
the  sequential instruction execution tag. If the  text 
contains  data,  the  data  portion is not  executed,  because 
the  branch preceding the  data must be  taken  and  the  text 
following the  branch is not  executed.  Note  that  because 
each halfword was examined as if it  began an instruction, 
the tags can indicate more  than  one  sequence of compound 
instructions depending on where  the  sequence begins. 
In  the example, if the instruction beginning at  byte 2 is 
accessed,  either  by sequential execution  or  as a branch 
target, the  tag  indicates  that this instruction is compounded 
with the instruction at  byte 4. Assuming no branches,  the 
next instruction is the compound  pair beginning at  bytes 
8 and 10. If, on  the  other hand,  an execution  sequence 
begins at  byte 4, assuming for example that  byte 4 is the 
target of a branch instruction, the  tag indicates that 
instructions beginning at  bytes 4 and 8 are  executed in 
parallel, followed  (assuming no branching) by  the parallel 
execution of the  instructions beginning at  bytes 10 and 14. 
This indicates  that  even though  compounding does  not 
consider the  dynamic instruction sequence  when 
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6 2 4 2 2 4 4 2 6 4 2 2 2  

BYTE 0 2 4 6 8 10 12 14 16 18 20 22 24 

TEXT 

CC-VECTOR 

0 1 1 1 1 1 0 0 0 1 1 1 0  

LENGTHS = Instruction  length  code for each two bytes 
BYTE 
C-VFXXOR = Compounding  bits for every two bytes of text  under  consideration 

= Text  enumeration 

CC-VFXXOR = Composite  compounding  bits for every  two bytes of text 

determining the tags, the  actual  compound  instructions 
executed  are optimized for parallel execution for  a  given 
sequence of instructions.  This algorithm has  the  further 
advantage of not requiring  a reference point,  which  is 
helpful when compounding cache lines that  have  been 
rotated so that  the  instruction required by  the  instruction 
fetch  hardware is received first. Indeed,  even  backward 
compounding can  also  be applied  for this  case.  For 

System/370, backward compounding requires examination 
of the  three halfwords  preceding the halfword under 
examination to verify  consistent  instruction  boundaries 
[28]. In any  case,  since  the algorithm requires  no  reference 
points, no  portions of a cache line go unanalyzed, and  the 
presence of data in the line is irrelevant, since  every 
halfword in the line is treated  as though  it were an 
instruction. Also  note  that although  this  algorithm tias been 69 
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described in a sequential manner, there is  nothing inherent 
in the algorithm that precludes a parallel implementation. 
One last idiosyncrasy, which  few recently developed 
architectures allow,  is  self-modifying code. (Data areas 
that are frequently stored into and that are intermingled 
with instructions also exhibit this problem.) As with the 
other two architectural idiosyncrasies, a number of 
solutions offer various trade-offs between performance and 
complexity. Perhaps the most straightforward solution is 
this: The CIFC monitors stores from the functional units 
for stores into the instruction stream. When such a store 
occurs, instruction execution is halted, the stored-into CIC 
line  is invalidated, and a fetch request for the modified 
line  is  issued to the memory subsystem. The remaining 
operations that must take place are identical to those that 
occur when a CIC miss occurs. While such a solution is 
straightforward, it assumes that stores to the instruction 
stream and/or data intermingled  with instructions are 
infrequent. If this assumption does not hold true, other 
schemes have been developed that do not degrade 
performance when frequent stores are made into the 
instruction stream and/or text containing instructions is 
intermingled  with data [29]. 

diminishing effects of branch-induced pipeline disruptions 
are even greater in superscalar processors than in scalar 
processors. It was suggested that even with branch 
prediction mechanisms in  place, the disruptions may have 
a significant impact on performance. To counter these 
effects, the SCISM organization can employ a technique to 
completely overlap the execution of the most frequent 
kinds of branch instructions with other single or compound 
instructions. This technique, described in  [30],  is based on 
two principles, history-based branch prediction and early 
branch processing. The instruction-fetching unit processes 
instructions early with respect to the execution units. In 
so doing, it is able to detect a branch instruction in the 
incoming instruction stream, ascertain its predicted 
outcome, and then overlay it  with the first instruction of 
the predicted stream, effectively removing the branch 
instruction from the stream. The overlaying technique is 
restricted to branch on condition (BC and BCR), the 
prevailing branch instructions in Systeml370, since these 
do not require a functional unit for their execution, but 
rather depend on the prior execution result, i.e., the 
condition code. It is then possible to completely overlap 
BC  and  BCR  with other instructions, single or compound, 
that do require the execution units, provided that pipeline 
synchronizing hardware is used to ensure that the branch 
test is correlated with the proper execution results. A 
mechanism is used to block executions when a branch is 
mispredicted. A final important issue that requires further 
discussion is precise interrupt handling. To guarantee 

70 architectural compliance, provision must be made to 

Earlier it was postulated that the performance- 

present interrupts created during the execution of a 
compound instruction. For the SCISM  machine 
configuration, the results must be the same as would be 
obtained had the members of the compound instruction 
been executed serially. It has been shown that interrupts 
for a compound instruction can be detected [14]. This is 
necessary but not  sufficient: It is then required to attribute 
interrupts to the offending instruction. One means of doing 
this is to provide checkpointing hardware, where snapshots 
of the vital processor state are taken at predefined 
intervals, together with hardware to nullify the results 
of an entire compound instruction when an interrupt 
condition is detected (this same hardware can  be  used 
to block execution results when a branch instruction is 
mispredicted, as described above). The processor state 
may then be rolled back to the last known checkpoint and 
placed in an execution mode where all instructions are 
executed serially (i.e.,  parallel execution is disabled) until 
the interrupt resurfaces. At that point, it  is clear which 
instruction caused the interrupt, and architectural 
compliance has been achieved. Given that interrupts are 
infrequent, this technique is attractive because of its 
implementation simplicity and also because it utilizes 
hardware that is already present in the implementation for 
other reasons, i.e.,  nullification hardware for mispredicted 
branches and checkpointing hardware for instruction retry. 
However, it is entirely possible to implement various other 
schemes for presenting architecturally precise interrupts; 
see for example [31-341. 

Evaluation 
The  SCISM  machine organization has been evaluated by 
trace-driven simulation  using commercial workloads, since 
these are more representative of the typical  machine 
execution environment than traditional benchmarks. 
However, results for Dhrystone [35] are also presented, 
since it seems to be a popular benchmark and  is  familiar 
to many. We simulated a two-way compounding scheme, 
maximum  compounding of two instructions, to evaluate 
whether such a scheme holds promise for potential 
computer implementations. Other evaluations, including 
the parallelism increase and the architectural effects of 
RISC  and CISC on parallelism  using interlock collapsing 
ALUs, are reported elsewhere [36,  371. Still other 
evaluations are entirely possible. In our evaluation, 
we measure the number of instructions that would actually 
be compounded in a hardware implementation of SCISM. 
The instruction-set architecture for purposes of evaluation 
was the IBM  System/370 architecture. To avoid issues 
that clearly affect the performance of the superscalar 
machines but are entirely dependent on  technology  and 
implementation constraints, e.g., the number of 
instructions that can be paired  and executed in parallel, 
modeled results are compared to the maximum 
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performance of a theoretical superscalar machine 
organization which issues and executes all instructions 
as pairs. 

The evaluation consists of dividing the instruction set 
into categories and determining a set of compounding rules 
to use  in compounding instructions between any two 
categories. Some assumptions on the processor hardware 
structure are needed to determine the compounding rules 
and categories. These are discussed in the section on 
hardware assumptions. A program was written to process 
the instruction trace by counting the number of compound 
instructions and the number of individual instructions 
actually executed. The  compounding  is  performed 
as follows:  Two instructions are examined  and the rules 
are applied. If the instructions meet the rules, they are 
considered a compound instruction, and the following 
two instructions are then considered. If the instructions 
cannot be compounded, an attempt is  made to compound 
the second with the next instruction. There are cases 
in which two instructions can  be  paired  in hardware but 
the second is not executed; e.g., the first instruction is 
a taken branch. The second instruction, on the not-taken 
path, would  be  nullified  in the CPU hardware. In 
processing the trace, the second instruction is never 
encountered, so the first executes singly  and  is counted 
as an  individual instruction. 

Since obtaining overall performance measurements (e.g., 
MIPS, cycles per instruction) depends greatly on the CPU 
implementation, including areas not related to parallel 
execution, the SCISM evaluation presented here is 
described in terms of that improvement which  is due 
explicitly to parallel execution, independent of technology 
or implementation. Improvements due to parallel execution 
of instructions can be measured by the number of 
instructions which  may execute in zero time, denoted by 
PZE (potential zero-cycle executions). The rationale 
behind this measurement is the following: If one 
instruction in a compound instruction pair executes in n 
cycles and the other instruction executes in rn 5 n cycles, 
the instruction taking rn cycles to execute appears to 
execute in zero time. Because factors such as cache 
size and branch prediction accuracy vary from one 
implementation to the next, PZE measures the potential, 
not the actual, rate of zero-cycle execution. Additionally, 
note that zero-cycle instruction execution does not 
translate directly to cycles per instruction (CPI) because all 
instructions do not require the same number of cycles for 
their execution. The PZE measure simply indicates the 
number of instructions that potentially have been 
“removed” from the instruction stream during the 
execution of a program. For two-way  compounding, at 
best half the instructions execute in zero time. Thus, for 
the theoretical superscalar machine the PZE is 50%, since 
it  is assumed that every instruction is part of a pair. The 

PZE as defined thus far does not account for removal 
of branch instructions from the instruction stream as 
discussed earlier. When branches are removed from the 
instruction stream, they may also execute in zero time. 
When this is the case, PZE is defined to be the number of 
compound instruction pairs plus the number of branches 
removed from the instruction stream, all divided by the 
total number of instructions. In our evaluation, we 
consider two SCISM organizations: one that does not 
remove the branches from the instruction stream, denoted 
by SCISM1;  and one that does, denoted by SCISM2. 

Given that branches are not  always predicted correctly, 
in order to include branch prediction success rate in the 
results of the evaluation we  first determine the PZE 
of an instruction stream as if  all the branches have been 
predicted correctly. Consequently, if the branch instruction 
is  assumed to execute in zero time  with correct prediction, 
we decrease the PZE for 100% successful prediction of 
branches by one for every incorrect branch prediction. The 
rationale for this choice is as follows: 

A branch that is neither compounded nor removed from 
execution is not included  in the PZE for 100% prediction 
accuracy, and  no adjustment need be  made for 
misprediction. Note that in this case, while there is a 
performance degradation of the machine, the number of 
instructions that may execute as a pair  (which is the 
concern of this evaluation) remains unchanged. 

takes zero cycles to execute if correctly predicted; 
however, if the prediction is incorrect, the branch stalls 
the pipeline and thus no  longer executes in zero cycles. 

originally  included in the PZE. This branch must take 
the sequential path for it to have been compounded, 
since the evaluation is trace-driven. However, the 
branch may  not be predicted correctly; in such a case, 
the processor would have attempted to execute the 
branch target rather than the sequential stream of the 
trace, implying that the sequential instruction requires 
execution cycles, i.e.,  not a zero-cycle execution for the 
pair. 
A compounded branch that is the second of a pair  is also 
originally  included  in the PZE. It is debatable in this 
case whether the PZE should be adjusted. On one hand, 
the execution of the first instruction in the pair  is 
overlapped by the branch, regardless of the prediction, 
and  it  can  be considered to execute in zero cycles. On 
the other hand, the total time used for the execution of 
this compound  pair  is increased by a wrong prediction. 
Consequently, depending on  which instruction is charged 
for the pipeline stall, whether or not the PZE is adjusted 
is a matter of charging either the parallel execution of 
the instructions or the execution of the single branch 

A conditional branch removed  from the execution stream 

A compounded branch that is the first of a pair is 
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Table 1 IBM System/370 instruction set divided into categories. 

Category 

1 

2 

3 

4 

5 

6 

I 

8 

9 

10 

11 

12 

Description 

RR-format loads, logicals, arithmetics, 
compares 

RS-format shifts 

Branches on count and index 

Branches on condition 

Branches and link 

Stores 

Loads 

Load  address 

RX RS SI-format logicals, arithmetics, 
inserts,  compares 

Test  under mask 

Control (no storage reference) 

RR-format floating-point 

13 RX-format floating-point 

14 Miscellaneous one-storage block 
access 

15 Miscellaneous two-storage block 
access 

16 All other instructions 

~~~ ~ ~ 

Instructions 

LCR, LPR,  LNR, LR, LTR, NR, OR, 
XR, AR, SR,  ALR,  SLR,  CLR, CR 

SRL, SLL, SRA, SLA, SRDL, 
SLDL, SRDA, SLDA 

BCT, BCTR, BXH, BXLE 

BC, BCR 

BAL, BALR, BAS, BASR, BSM, 
BASSM 

ST, STH, STC, STCM, MVI, STD, 
STE 

L, LH, LD, LE 

LA 

N,O,X,A,AH,AL,S,SH,SL,IC, 
ICM, C, CH,  CL, CLI,  CLM 

TM 

LRA, SPM, SPKA, IPK 

AER, ADR, AXR, AUR, AWR, CER, 
CDR, DER, DDR, DXR, HER, HD, 
LER, LDR, LTER,  LTDR,  LCER, 
LCDR, LNER, LNDR, LPER, 
LPDR, LRER, LRDR, MER, MDR, 
MXR, MXDR, SER, SDR, SXR, 
SUR, SWR, DR, MR 

AD, AE, AW, AU, CD, CE, DD, DE, 
MD, ME,  SD, SE, SW, SU, D, M, 
MH 

NI, 01, XI, LM, STM, CVB, CVD, 
EX,  STNSM, STOSM, TPROT 

NC, OC, XC, CLC,  CLCL, MVC, 
MVCL, MVCIN, MVN, MVO, 
MVZ, MVCK, PACK, UNPK, TR, 
TRT, AP, CP, DP, ED, EDMK, 
MP, SRP,  SP, Z A P  

Various 

~ ~ 

Resources  used 

ALU 

Shifter 

BU, ALU 

BU 

BU, ALU 

AU, DC, shifter 

AU,  DC 

AU 

AU, DC, ALU 

AU, DC, ALU 

Various 

FPU 

AU, DC, FPU 

AU, ALU, shifter, 
DC 

AU,  ALU,  shifter, 
DC 

Various 

instruction. We chose to charge the parallel execution 
rather than the branch execution and to decrease the 
PZE count, because it reflects more accurately the actual 
zero-cycle execution of instructions in a program,  and 
leads to a uniform treatment of incorrect branch 
predictions. 

Hardware  assumptions 
The definitions for categorization of instructions suggest 
that the CPU hardware in  an implementation determines 
the categorization of instructions and the rules for 
compounding.  The  modeled  SCISM implementation 

I 72 consists of the following hardware assumptions: 

One two-input ALU. 
One three-input ALU for dependency collapsing. 
Two shifters. 
One three-input address unit (AU). 
One  four-input address unit  for dependency collapsing. 
One two-port data cache (DC). 
One  floating-point unit (FPU). 
One branch unit (BU). 

Clearly, in  an actual implementation, cost-performance 
trade-offs could  be  made by eliminating functions. For 
example, if it  is determined that the incidence of 
compound shift instructions is rare, the second shifter 
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Table 2 Compounding  rules.  Two-port  cache,  five-stage  pipeline. 

I 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I1 
12 
13 
14 
15 
16 

~~~~~ 

Y A Y Y Y A Y Y Y Y A I Y Y Y Y  
I I I I I I I I E I  I I E E E E  
Y A N N N A Y Y Y Y A J Y Y Y Y  
Y Y N N N Y Y Y Y Y Y Y Y Y Y Y  
Y A N N N A Y Y Y Y A Y Y Y Y Y  
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y  
I I I I I I I I E I  I I E E E E  
Y Y E I E E I I E Y E I E E Y E  
Y I E I E I I I E I  I I I I I I 
Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y  
1 1 1 1 1 1 1 1 1  I N N N N N N  
1 1 1 1 1 1 1 1 1  I N N N N N N  
I I I I I I I I I  I N N N N N N  
1 1 1  1 1 1 1 1 1  I N N N N N N  
I I I I I I I I I  I N N N N N N  
N N N N N N N N N N N N N N N N  

Legend: 
Y = yes, always compound 
N = no, never compound 
I = compound only if independent (no dependency) 
E = compound if execution dependency or independent 
A = compound if address-generation dependency or independent 

could  be  eliminated  with little loss in performance. Note 
that since the focus of this study is on commercial 
workloads, there is no attempt to execute two floating- 
point instructions simultaneously, as indicated by the 
presence of one non-interlock-collapsing floating-point 
unit. In addition to the units listed, the CPU contains a 
microcode controller and storage for the execution of 
complex instructions. A separate instruction cache may be 
advisable for performance, since there can be instances of 
two data accesses at the same time instructions are being 
fetched. This choice affects the hardware design but is  not 
relevant for the compounding measurements in this study. 
Problematic circumstances generated by a member of a 
compound instruction during instruction execution, e.g., 
store-load interlock in the two-port data cache, are 
assumed to be handled by hardware and do not  affect 
compounding. 

Obviously, the definition of the categories for SCISM, as 
well as the particular compounding rules, depends on the 
pipeline structure. For this study, we assume that the CPU 
pipeline  for single-execution-cycle instructions consists of 
five stages: instruction fetch, instruction decode, address 
generation, execution, and register put-away. For load  and 
store instructions, the cache access occurs in the execution 
stage using the address determined in the preceding stage. 
The memory address is computed from the addition of two 
registers and a twelve-bit displacement in the address 
generation cycle. An RR-format in System/370, for 
example the add instruction, adds the content of one 
register to the value in a second register during the 
execution stage. A number of instructions require both 

a cache access and a computation. An RX-format add, 
for example, adds a four-byte value from memory to a 
register. In this case, an extra execution stage is added 
to the pipeline. Complex instructions may  use  multiple 
execution stages, under control of microcode, which can 
use a variety of functional units. 

The System/370 instruction set was divided into 16 
categories based on the hardware utilization of each 
instruction. The 16 categories are listed in Table 1. 
Refer to [6] for a detailed explanation of each of these 
instructions. The conditional branches, Category 4, are 
considered for removal  from the execution pipeline 
because they do not require use of execution-type 
hardware (ALU). Other branches have execution cycles 
and update registers in addition to performing a branch and 
therefore remain in the compound instruction stream. 

On the basis of the hardware assumptions, a set of 
compounding rules was created which  would be 
implemented in the ICU. A summary of the rules appears 
in Table 2. The table is  read by finding the category of the 
first instruction and  reading across the row to the category 
of the second instruction. The entry in the table indicates 
whether the two instructions always compound (because 
they have no dependency or because any dependency can 
be collapsed); never compound (due to conflicting resource 
requirements); compound only if there is no dependency; 
can collapse an execution dependency but not an address 
dependency; or can collapse an address dependency but 
not an execution dependency. For example, the table 
indicates that Category 8 (load address) and Category 7 
(load) instructions must be independent. This is because 
collapsing  an address generation dependency would require 73 
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Table 3 Characteristics of instruction traces. 

TSO ZMS czcs V M  RAMPC Dhrystone 

Instructions 1363137 1349345 1362623 3404680 1361600  3735 
Dependencies (%) 29.2 26.9 30.4 21 .o 18.8 27.1 

Category 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Instruction frequency and  rank by category 

13.7  3 13.8  3  12.2  4  10.4  4  10.4  4  18.7 1 
1.2 13 1.0 13 0.8 13 1.8 12 1.1 11 0.8 9 
2.7  10 1.1 12 0.6 14  3.0 10  0.4 13 0.3 10 

21.2 1 21.5 1 22.1 1 25.4 1 28.8 1 18.2  2 
2.5 11 2.8 10 2.7  10  2.7 11 2.7  10  4.8  7 
9.1 5  9.0  5  8.9  5  7.3 6 6.4  7  10.4  5 

15.9  2 18.2  2  17.0  2  13.2 2 11.4  2  9.9  6 
4.8  9 5.4 8 5.1 7 8.1 5  5.8 8 18.1  3 

11.7  4 9.5  4  12.8  3 10.9  3  10.6  3 16.6  4 
5.7  6  6.0  6  5.7  6  6.1  7  10.1  5 0.0 14 
0.4 14  0.3  15  0.3  15 0.1 15  0.1  16 0.0 14 
0.1 16 0.1  16 0.1 16 0.1 16 0.1 15 0.1 12 
0.2 15  0.5 14  1.3 11 0.3  14  0.2 14 0.3 10 
5.5  7 5.8 7  4.7 8 5.9 8 3.9  9 1.6 8 
4.2 8 3.7  9  4.6  9  4.0  9  7.2  6  0.1 12 
1.3 12 1.4 11 1.1 12 0.7  13  0.9 12 0.0 14 

a five-input adder for the load instruction,’ which conflicts 
with the hardware assumptions. Note that no execution 
dependency can exist between these two instructions 
because the load instruction reads registers only for 
address generation, not for execution. 

When the first of a potential pair requires more pipeline 
stages than the second instruction (RX-format  followed by 
an instruction from one of several categories), the pipeline 
of the second instruction may have been extended so that 
the execution of the second instruction does not precede 
the execution of the first instruction. This is not the case 
if the Category 9 instruction is second in a pair.  When 
SCISM2  is considered, i.e.,  when conditional branches are 
removed from the instruction stream, all Category 4 rules 
indicate no compounding. 

Consider compounding two Category 1 instructions. Since 
both require an ALU and any dependency could  be 
collapsed on the available hardware, these instructions 
can always be compounded [except for the degenerate 
case (see footnote 3) where the instructions are not 
compounded and are counted by the model as instructions 
executed serially]. Two Category 2 instructions can 
compound only if independent, because a shifter cannot 
collapse a dependency with another unit. Category 1 and 
Category 2 could compound if there is a dependency in 
address generation (calculation of shift amount), but not if 
the dependency requires a compound add-shift. Category 2 
and Category 1 can compound only if independent. 

To further understand Table 2, consider a few examples. 

7 Note that it may be possible for the ICU to detect whether one or more address 
inputs is zero in the two instructions, allowing the address dependency to be 
collapsed with a four-input adder. However, this hardware capability was not 

74 assumed, and the interlock cannot be collapsed. 

Instructions in Categories 11-16 typically require multiple 
cycles for execution. It is assumed, therefore, that they 
cannot be compounded with one another and that they 
can be first of a pair only if independent of the second 
instruction. Category 16 instructions can never be  first  in a 
pair because many of these instructions change the control 
state of the processor. 

Instruction traces and results 
The basis for the measurement of programs comes from 
the instruction traces of several workloads. Each trace 
record gives the contents of the instructions, the addresses 
of instructions and operands, and the contents of 
operands. Compounding  is determined first by observing 
whether the two instructions are adjacent in  memory,  and 
second by examining the instructions themselves, 
determining what dependencies exist among the 
instructions, and applying the compounding  rules. 

We used the following traces: 

TSO: representative workload. 
IMS: hierarchical database running on MVS. 
CICS: transaction processing running  on MVS. 
VM: interactive user workload. 
RAMP-C: transaction processing benchmark. 
Dhrystone: synthetic benchmark [35], PL.8  compiler. 

Table 3 lists the traces and some of their characteristics. 
For each trace, the table shows the number of dynamically 
consecutive instructions that have a register dependency. 
The frequency of each instruction category is also listed. 
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Table 4 Potential zero-cycle  execution instructions (%). SCISM PZE and fraction of theoretical best superscalar PZE for 
various branch-prediction rates. 

Benchmark  Theoretical SCZSMl SCZSM2 SCISMI SCZSM2 Branch 
PZE  PZE  PZE - - prediction 

Theoretical  Theoretical accuracy 

TSO 50.0 39.9  47.4 0.798 0.948 100 
IMS 50.0 39.7 48.2  0.794 0.964 100 

VM 50.0 38.9 48.2  0.779 0.964 100 

Dhrystone 50.0 43.6 47.7  0.872 0.954 100 

TSO 48.7 39.0  46.2 0.801 0.948 95 
IMS 48.7 38.8  47.1 0.797 0.966 95 

CICS 50.0 40.1 47.6 0.802 0.952 100 

RAMPC 50.0 40.4 49.0  0.808 0.980 100 

CICS 48.7 39.2 46.5 0.805 0.954 95 
VM 48.4 38.0 46.8 0.784 0.966 95 
RAMPC 48.4  39.2 47.5  0.810 0.981 95 
Dhrystone 48.8 42.7 46.7 0.875 0.956 95 

TSO 46.0  37.2 43.7 0.808 0.950 85 
IMS 46.2 37.1 44.7 0.803 0.967 85 

VM 45.3 36.1 44.0 0.796 0.971 85 
RAMPC 45.2  36.9 44.4 0.816 0.982 85 
Dhrystone 46.5 40.9 44.6 0.879 0.959 85 

TSO 43.4 35.4  41.3 0.815 0.952 75 
IMS 43.6 35.4  42.3 0.811 0.969 75 

VM 42.2 34.2 41.2  0.809 0.976 75 
RAMPC 42.0 34.6 41.3  0.823 0.984 75 
Dhrystone 44.2 39.2 42.5 0.887 0.962 75 

CICS 46.2  37.4 44.0 0.809 0.952 85 

CICS 43.6 35.5 41.5 0.814  0.952 75 

(Since Dhrystone consists of repetitions of the same large 
loop, only a few iterations were used in the measurements.) 

The compounding of instructions was simulated for the 
traces. Compounding data were gathered for SCISM  using 
the compounding rules of Table 2. The results in Table 4 
show the PZE for each trace when Category 4 branches 
are compoundable, denoted “SCISMl,” and when they 
are removed from execution, denoted “SCISM2.” The 
table shows the PZE relative to a theoretical superscalar 
computer. The  effect of branch prediction accuracy on 
PZE is shown for each case. 

Several observations can be made  from Table 4. First, it 
can be noted that SCISMl achieves roughly  78-88% of the 
theoretical maximum performance. For SCISM2, 94-98% 
of the theoretical maximum PZE is achieved. The three 
MVS traces tend to be similar in the degree of parallel 
execution of instructions. 

Differences between traces can be understood by 
examining Table 3. Several characteristics of programs are 
important in determining the degree of compounding 
success. Simpler instructions, where dependencies can be 
collapsed, and instructions that do not  modify registers 
tend to be  more “compoundable” than other instructions. 
Categories 1, 6 ,  and 10 are examples of this.  Referring to 
the 100% prediction accuracy portion of the table, the 
following  can be verified: for SCISM1, Dhrystone has the 
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highest frequency of these three categories and has the 
highest PZE (43.5),  while VM has the lowest frequency 
and the lowest PZE (38.9).  While Table 3 does not show 
frequencies of pairs of instructions or categories, there are 
some well-known pairs in commercial System/370 
programs. One example is the instruction sequence TM 
followed by BC. This pair  is always compoundable for 
SCISM1, according to the rules in Table 2. RAMP-C has 
the highest frequency of Category 10 (TM), and this 
contributes to the high PZE for the trace. The frequency 
of branches also contributes to the PZE. With more 
branches, there are fewer nonbranching instructions 
between branches. If those branches are taken, the lengths 
of sequences of nonbranching instructions are shorter, 
resulting  in less compounding potential. Fewer branches 
mean  longer sequences not interrupted by a branch. 
RAMP-C  and VM have a high frequency of branches, 
while Dhrystone has a low frequency. Finally,  although 
SCISM collapses register dependencies between 
instructions, Table 2 indicates that this is  not possible for 
any arbitrary pair  on the assumed hardware. RAMP-C has 
a low  number of dependencies, and  CICS has a high 
number.  Thus, one expects more  compounding  in  RAMP-C 
than in CICS. While predicting the exact PZE from the 
statistics may  not be feasible, the statistics do give some 75 
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indication of which programs lead to better results on a 
SCISM processor. 

The same statistics are important for studying the 
SCISM2 results. Here, however, the frequency of 
Category 4 branches affects results differently. Because 
of the removal of a percentage of instructions, the 
compounding is reduced, but because of the zero-cycle 
execution of branches, the PZE is increased. When 
branches are not compoundable, those traces with a higher 
frequency of branches do better. All of these removed 
branches contribute to the PZE;  when branches are 
compoundable, those compounded contribute to the PZE, 
while those not compounded are not part of the PZE. VM, 
with a large  number of branches, has the highest PZE, 
while Dhrystone has the fewest branches, and nearly the 
lowest PZE. This is a reversal of the results for SCISM1. 
On the other hand, RAMP-C has a high PZE for both 
SCISMl and  SCISM2. Perhaps conditional branches 
compound frequently in SCISMl because of the large 
number of  TM instructions. In  SCISM2, those branches 
are not compounded, but are removed from the instruction 
stream. 

As the branch-prediction parameter is set to lower 
values, those traces with  lower frequencies of branches 
perform better than other traces. For example, Dhrystone 
has the fourth highest PZE for SCISM2  and  100% 
prediction, but the second highest PZE for  SCISM2  and 
75% prediction. The relationships between the columns 
also change.  The SCISMl PZE decreases more  slowly 
than the SCISM2  PZE; for 75% prediction, the two are 
closer in PZE than they were for 100% prediction. This 
is because in  SCISM2  all Category 4 branches are part 
of the PZE and thus are subject to branch-prediction error 
penalties. In  SCISM1, some are not part of the PZE; thus, 
an incorrect prediction does not  affect the PZE. Also of 
interest is the performance of SCISM compared to the 
theoretical superscalar. Both SCISMl and SCISM2 
have better relative performance as prediction accuracy 
decreases. This is indicative of the different ways in 
which the two schemes handle branches. For superscalar 
processors, correct prediction is necessary to pair a branch 
with its target. For SCISM, branch performance is 
achieved through static compounding and removal from 
the instruction stream. 

SCISMl provides a significant portion of the theoretical 
instruction-level parallelism in commercial programs. By 
removing conditional branches from the instruction stream, 
SCISM2 increases the relative PZE by about 8-23% over 
SCISM1. For realistic branch prediction, say 85%, 
SCISM2  is  roughly 95-98% and SCISMl is  roughly 
79-87% of the best superscalar PZE. For all traces, 
SCISM2 exceeds 95% and SCISMl exceeds 77% parallel 
execution of instructions relative to the theoretical 

76 superscalar machine. 

Conclusions 
On the basis of the assumption that no  single  mechanism 
provides a significant performance enhancement in von 
Neumann instruction-level parallel processors, we have 
identified a number of problems that inhibit  parallel 
execution, and have presented a novel  machine 
organization, the scalable compound instruction set 
machine (SCISM), which incorporates a number of 
mechanisms that either solve or alleviate superscalar 
machine  deficiencies. in  summary, SCISM comprises the 
following concepts and mechanisms: 

1. Instruction categorization by hardware utilization rather 
than opcode description, which provides the capability 
for  improving the number of possible groupings of 
instructions for  parallel execution while  avoiding 
prohibitive hardware increases and loss of performance 
due to increased cycle time  and additional pipeline 
stages in an implementation. 

2. Interlock collapsing hardware that provides the 
capability of parallel execution of interlocked 
instructions. 

3. A broader scope of instruction text examination than 
instruction stack text examination, which provides the 
capability for improving the degree of instruction-level 
parallelism extracted from a program,  and avoids 
prohibitive hardware requirements, increased cycle 
time,  and FIFO preprocessing. 

4. Mechanisms that avoid on-demand preprocessing 
of the instruction text, maintain the preprocessing 
“permanently,” and perform “static” preprocessing 
in the cache. 

5. A reduction of the amount of logic required for parallel 
instruction fetch/issue/decode in the instruction stack. 

6. Incorporation cf tagging or decoding mechanisms in the 
cache that can facilitate the parallel issue/execution of 
instructions, out-of-order execution, decoding of 
instructions, branching, functional  unit  scheduling, 
routing of operands to the functional units, and so forth. 

7. Handling of architectural idiosyncrasies with  negligible 
loss of performance and avoidance of prohibitive 
hardware requirements. 

8. A flexible location for the preprocessing facility, 
allowing  implementation constraints and 
performance/cost trade-offs to be accommodated. 

The evaluation of the mechanisms using an instruction- 
level parallel-execution machine capable of executing at 
most two instructions against a theoretical superscalar 
machine suggests that with an  efficient branch handling 
mechanism the proposed machine organization can 
accomplish  parallel execution of instructions that exceed 
the 90% range of the theoretical machine. This is 
accomplished despite instruction dependencies and  with 
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less complexity than  comparable traditional superscalar 
designs,  suggesting that SCISM represents a promising 
new computer organization. 

Regarding future  research for SCISM or SCISM-like 
processors, it may  be of interest  to  explore  the possibility 
of expanding  the  complex CISC instructions  to RISC-like 
primitives and  then possibly  combining the  RISC 
primitives in compound  instructions in hardware, using 
an  approach similar to  that  described  by Silberman and 
Ebcioglu in [38]. 
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