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The log-structured disk subsystem is a  new 
concept for the use of disk storage whose 
future application has enormous potential. 
In such a  subsystem, all writes are organized 
into a  log,  each entry of which is placed into 
the next available free  storage. A directory 
indicates the physical  location of  each logical 
object (e.g., each file  block  or track image)  as 
known to the processor originating the I/O 
request.  For those objects that have  been 
written more than once, the directory retains 
the location of the most recent copy.  Other 
work with log-structured disk subsystems has 
shown that they are  capable  of high write 
throughputs. However, the fragmentation of 
free storage due to the scattered locations of 
data that become out of date can become  a 
problem in sustained operation.  To control 
fragmentation, it is necessary to perform 
ongoing garbage collection, in which the 
location of stored data is shifted to release 
unused storage for re-use. This paper 
introduces a  mathematical model of  garbage 
collection, and shows how collection load 
relates to the  utilization of  storage and the 
amount of locality present in the pattern of 
updates. A realistic statistical model of 

updates,  based upon trace data  analysis, is 
applied. In addition, alternative policies are 
examined for determining which data  areas to 
collect. The key conclusion  of our analysis is 
that in environments with  the scattered update 
patterns typical of database I/O, the utilization 
of  storage must be controlled in order to 
achieve the high write throughput of which 
the subsystem is capable. In addition, the 
presence of data locality makes it important to 
take the past history of  data into account in 
determining the next area of storage to be 
garbage-collected. 

1. Introduction 
The log-structured disk subsystem is a new concept for the 
use of disk storage whose future application has enormous 
potential. In such a subsystem, all writes are organized 
into a log, each entry of which is placed into the next 
available free storage. A directory indicates the physical 
location of each logical object (e.g., each file block or 
track image) as known to the processor originating the I/O 
request. For those logical objects that have  been written 
more than once, the directory retains the location of the 
most recent copy. 
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Over  time, the older areas of the log  become 
fragmented, as individual data objects stored there are 
rendered out of date. A de-fragmenting process (prbage 
collection) is needed to consolidate still-valid data and to 
release unused storage for re-use. Understanding the 
requirements of the garbage-collection process is  among 
the interesting new challenges posed by log-structured disk 
technology. This paper investigates the amount of data 
movement which must be performed by the garbage- 
collection process, and how such data movement relates 
to the utilization of storage. 

A simple, abstract model of the garbage-collection 
process is introduced that provides for some flexibility  in 
the policy that identifies the specific data areas which 
should next be collected. Using this generation group 
model, we consider both the case in which the decision 
whether to collect a specific area of data is independent of 
the past history of the data, and the case in which this 
decision depends upon the number of times the data have 
previously been garbage-collected. 

(7) below, that relates garbage-collection load to the 
utilization of collected data areas, but not to the overall 
utilization of subsystem storage. The main contribution of 
the present paper is that, by  introducing a realistic  statistical 
description of the pattern of updates, we develop a method 
of analysis that ties garbage-collection load directly to 
overall storage utilization. In addition, this analysis 
approach is capable of examining both history-dependent 
and history-independent methods of garbage collection. 

The mathematical modeling of the present paper 
complements and adds to the understanding of earlier 
simulation results obtained by the authors just mentioned 
[l, 21. These include results addressing the behavior of 
garbage-collection load as well as the value of history- 
dependent garbage collection (although the exact form of 
history-dependent collection algorithm examined here is 
not identical). 

of a log-structured subsystem and the role that garbage 
collection plays in the concept. 

Section 3 then builds a framework for analysis by 
defining the generation group model. This section also 
explores the general properties of the model that apply 
regardless of the specific I/O workload. Unfortunately, the 
data movement required for garbage collection does 
depend upon the specific workload. 

Section 4 continues by making the simplest possible 
workload assumption (without regard to realism), which 
we  call the linear model. On the basis of the linear  model, 
Section 4 develops a very simple  formula for data 
movement due to garbage collection. This estimate shows 
that the load due to garbage collection depends critically 

Rosenblum and Ousterhout [l] obtain a result, similar to 

We start, in Section 2, by briefly  reviewing the concept 

48 upon the utilization of storage, and becomes unbounded as 

storage utilization approaches 100 percent. Only the 
history-independent method of segment selection is 
considered in Section 4. 

Section 5 tests the result of Section 4 by using a more 
realistic workload model. This model,  called hierarchical 
reuse, was introduced in  an earlier paper as a way to 
describe cache reference locality. Using the hierarchical 
reuse model, Section 5 shows that 

The history-independent garbage-collection scheme 
imposes a somewhat higher  level of garbage-collection 
activity than the linear model  would predict, but 
By using the history-dependent strategy the cost can be 
brought down to a range of results of which most tend 
to be  at or just below the linear prediction. 

Thus, the linear model, despite its somewhat arbitrary 
assumptions, appears to be serviceable as a “rule-of- 
thumb” estimate of the garbage-collection load. 

Finally, Section 6 concludes by considering the 
implications for using log-structured files to supplement a 
RAID-5 disk parity architecture. This strategy has recently 
been the focus of much attention because of its 
introduction into the high-end  disk marketplace. 

2. Overview of concepts 
The concept of a log-structured disk subsystem (also 
referred to as a log-structured file system, or LSF) 
was first proposed by Ousterhout and  Douglis [3] as a 
technique for improving the throughput of disk writes. The 
desire to improve write throughput was motivated by the 
observation that reads can often be serviced out of a cache 
memory, located either in the storage control or in the 
processor, without requiring a disk access; on the other 
hand, writes must eventually be  copied to the disk storage 
medium to ensure permanence, even if cache memory is 
used to temporarily delay making the copy. 

by locating the affected file block or track image  and 
replacing its contents, Ousterhout and  Douglis proposed 
that writes could  be organized into a log. An entry of the 
log  could  simply  be written into the next available storage, 
regardless of the previous location of the affected data 
object. A directory could then be used to keep track of the 
most recent copy of each data object. 

An excellent practical overview of the architecture of a 
log-structured file system (SPRITE) and of the associated 
design issues is  given by Rosenblum and Ousterhout [l]; 
extensive additional performance and other data for 
SPRITE are reported by Rosenblum [2]. To make possible 
the desired efficiency of writes, Rosenblum and Ousterhout 
group written data objects so that a reasonably large 
number can be transferred together to disk.  In keeping 
with [l], we adopt the term segment for the storage needed 

Rather than performing a write in the traditional manner, 
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to write one such group of data objects. A segment, then, 
is the smallest usable area of contiguous free space; the log 
is written to disk storage one segment at a time. 

Figure l(a) diagrams the process of writing the log. As 
the figure shows, each log entry consists of a reasonably 
large number of data objects (usually more than the four 
objects used for purposes of illustration), and is copied as 
a unit into an empty segment of storage. The entries of the 
log need not  be contiguous; instead, any empty segment 
can be selected to perform the next write (the exact choice 
of which empty segment is not important for our present 
purpose). 

The data objects of a given log entry may render 
previously written data objects out of date. This  is 
illustrated in the figure  by  using  an empty circle to denote 
an out-of-date object; filled marks denote objects that are 
still current. At the moment in  time presented by part (a) 
of the figure, one segment (the one most recently written) 
is filled completely with current data, two segments are 
half-filled,  and two segments are empty. A log entry can be 
made  only into one of the empty segments. In the example 
of the figure, the next entry (write D) will  be  placed into 
segment 4. 

Figure l(b) shows how write D might  be used, not to 
store new data, but to perform garbage collection. This 
write operation copies four existing data objects, taken 
from the two half-full segments, into a single empty 
segment. Of the three segments affected, one becomes full 
and two are emptied. 

As this example illustrates, garbage collection copies 
existing data in order to reduce the fragmentation of free 
space. The data copies made in performing  garbage 
collection have the effect of adding to the overall number 
of  log entries that must be  made. 

The modeling presented in this paper does not depend 
upon the specific type of data object going into a given 
segment, but we do assume that each segment contains 
a reasonably large number of data objects (large enough 
so that it makes sense to talk about this population in 
statistical terms). We also assume that there is no 
tendency for all  of the objects in a segment to be updated 
at the same time, as might occur in  an environment with 
mainly sequential files. Instead, the purpose of this paper 
is to examine the scattered update patterns typical of a 
database environment. 

The metric that we adopt for the purpose of assessing 
the impact of garbage collection is the number of times a 
given data object must  be  moved  during its lifetime.  Since 
the life  of each data object ends with a write operation that 
causes the object’s log entry to be superseded, this metric 
is  called  called movesper write. Note that in evaluating 
the moves per write, all data object moves are counted 
equally. The actual efficiency with which each move can 
be performed is not examined in the present paper. 
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3. Garbage-collection  process 
To study the  load  imposed by garbage collection, we 
must start with a specific model of the garbage-collection 
process. A description is  needed  which  is  simple but 
at the same time provides enough  flexibility to compare 
alternative collection strategies. To provide the needed 
model,  we adopt a simplified version of the age sort 
strategy as proposed in [l]. 

The  age sort scheme calls for collected data objects to 
be grouped into segments by age.  This is done by sorting 
the set of objects which are in the process of being moved, 
then subdividing the sorted list into segments. 

The generation group model tries to retain the spirit of 
the age sort, but avoids the analysis difficulties that arise 
from actually performing a sort. Rather than grouping by 
age, the generation group model instead organizes 
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1 
collected objects according to the number of times they 
have previously been garbage-collected. 

In the remainder of this section, we start  by fleshing out 
the rough outline just given of the generation group model. 
We then examine what the model suggests about garbage- 
collection load  and about the utilization of storage. 

Generation group model 
In the generation group model, collected data objects are 
organized into segments on the basis of the number of 
times they have already been moved. This is done 
according to the following scheme: 

When a data object is first written, it  belongs to 
generation 1; after the object is  moved for the first  time, 
it belongs to generation 2; and so forth. Thus, generation 
i z 1 consists of those data objects that have previously 
been  moved exactly i - 1 times. 

their generation i .  

segment is continually used and reused to store data 
objects from the same generation. 

9 There are n 2 1 generation “groups.” The generation 
group to which a data object in generation i belongs  is 
given by g = min(i, n).  

threshold that triggers segment collection as discussed 
below, are established by generation group. 

Data objects are grouped into segments on the basis of 

A steady state is assumed to exist in which a given 

Garbage-collection policies, such as the utilization 

Note that generation group n lumps together all the 
generations i z n.  Garbage-collection policies in this 
generation group do not take into account the actual 
generation of a given segment. Therefore, there are two 
important cases of the generation group model: 

1. If n = 1, the segment-collection policy is history- 

2. If n > 1, the segment-collection policy is history- 
independent. 

dependent. 

For purposes of simplicity, we often boil our results down 
to the cases n = 1 (history-independent) and n = 2 
(the simplest history-dependent case). 

In the analysis of the generation group model, we 
consider the utilization of storage to be the independent 
variable in terms of which the garbage-collection load can 
be described. For the multiple-group case, there is a 
storage utilization for each individual group, and these 
must “add up” to the correct overall utilization. 

Within a generation group, the selection of the next 
segment to collect is based on segment utilization; i.e., the 
least-occupied segments are collected first.  By increasing 
or decreasing the utilization  level at which a segment in a 

given generation group becomes a candidate for collection 
(the collection threshold), the utilization of the generation 
group can  be raised or lowered. This can only be done, 
however, within the constraints imposed by the actual 
impact of the threshold on the utilization of the generation 
group and by the storage utilization of the subsystem as a 
whole. If the utilization of one group is reduced, the 
utilization of some other group must be increased in order 
to maintain a consistent overall utilization. 

In the case of multiple generation groups, thresholds are 
used to achieve the desired combination of individual 
generation group utilizations, consistent with the 
constraints just described. 

In the analysis which follows, we assume that no spare 
segments are held  in reserve; i.e., all segments are in 
active use for data storage and  belong to some generation 
i = 1, 2, . This assumption is  made without loss of 
generality, since to analyze a subsystem with spare storage 
we need only limit the analysis to the subset of the storage 
that is actually in use. Note, however, that in a practical 
log-structured file at least a small  buffer of spare segments 
would need to be maintained. This  would reduce the 
utilization of storage that is achieved in practice to a level 
at least somewhat lower than that which we consider in 
the present analysis. 

Analysis of a generation group 
We now turn to the application of the generation group 
model as a way to explore garbage-collection loads. Our 
starting point is to understand the collection activity and 
storage utilization of each individual generation group. 
We then extend these results into an analysis of the overall 
subsystem. 

Collection activity 
The collection activity of a given generation group 
1 5 g I n is understood in terms of the following 
variables: 

w = the  rate  per  second at which  new data  objects  are 
written for  the first time to  the  disk medium after 
having been transferred from the host. 

wg = the  number of data  objects  per  second being 
introduced  into generation group g .  Note  that 
w 1  = w .  

b, = the  rate at  which free  storage in generation group 
g is reclaimed, expressed in terms of the number 
of data objects’ worth of storage  per  second. 

cg = the  number of data  objects  per  second being 
collected in generation group g. Although there is 
no generation group 0, we  also define c,, = w for 
convenience in writing some of the formulas 
below. 
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s = the number of data objects’ worth of storage 
available to  the subsystem. 

u = the  average  subsystem  storage utilization (the 
actual number of valid data  objects relative to s). 

uQ = the  average  storage utilization of the  segments 
belonging to generation  group g. 

fQ = the  average utilization of segments being  collected 
from generation group g. Also, the utilization 
threshold at  which segment  collection is triggered 
in group g. 

- - 
cQ 

bQ + CQ‘ 

When required, we also use the subscript i with some of 
the variables above, to indicate a specific generation i as 
opposed to a generation group g. The subscript n ,  or a 
numerical subscript 1, 2, etc., should always be taken to 
refer to the generation group; e.g., g = n or g = 2. Care 
has been exercised in the context of any such usage to 
make the intended meaning clear. 

We start our analysis by  noting that, since new data 
objects being added to a given generation come only from 
the immediately preceding generation, 

for all generation groups 1 I g s n (recall that, by 
convention, co = w). Also, assuming steady-state 
operation, the rate at which storage is demanded for  new 
data objects being added to any generation group must 
be the same as the rate at which storage is freed. In 
generations groups g < n, all storage in collected 
segments is freed, since any remaining data objects 
contained in these segments are passed to the next 
generation group. In generation group n ,  however, only 
the empty storage in collected segments is freed. Thus, 

l s g s n - 1 ,  

g = n .  

By the definition off, (2) means that 

l s g s n - 1 ,  

Repeated application of (1) and ( 3 )  now yields the 
following  formula  for the garbage-collection activity in 
generation group g: 

l s g s n - 1 ,  
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Storage utilization 
To study storage utilization, it  is necessary to sketch out 
the “life cycle” of a given data object. Let us therefore 
consider a time  line for the object. The time  line  begins, at 
time 0, when the object is written by a host application. 

medium, it may be buffered. This may occur either in the 
processor (a DB2@ deferred write, for example) or in the 
storage control. Let the average time at which the data 
object finally is written to the magnetic medium be called T ~ .  

The data object is next packaged into a succession of 
one or more segments that contain various generations i, 
i = 1, 2, * , of data objects. Let T, be the average time 
of collection of each such segment. Finally, the storage 
occupied by the object is released when it  is rendered out 
of date. Let Ti be the average lifetime of those objects that 
become out of date while they are in generation i, and let 
T be the overall average lifetime of  all data objects. 

In our analysis later in the paper, it  will be important to 
know how quickly data are written to disk relative to 
the overall lifetime of the data. We therefore define 

Before the object is stored on the magnetic disk 

d = -  7 0  

T ’  

The ratio d tends to be of the same order as the amount 
of cache storage that contains “dirty” data, relative to 
the amount of disk storage. It typically ranges from zero 
(no buffering of writes) up to a few tenths of a percent. 

belonging to generation i, we apply Little’s law. On one 
hand, the total number of data objects’ worth of storage 
in these segments, as given by Little’s law,  must  be 
wi(? - On the other hand, the population of data 
objects still  alive is 

To calculate the storage utilization of segments 

since a fraction 1 - & of the objects are rendered invalid 
before being collected. We can therefore divide the 
number of live objects by the number of objects’ worth 
of storage to obtain 

Note that (4) and (5 ) ,  taken together, dictate the 
relationship among garbage-collection load, storage 
utilization, and the actual workload running on the 
subsystem. The  timing  with  which the workload causes 
data objects to be rendered out of date determines, via (5), 
the segment collection threshold that yields the desired 
storage utilization. The collection threshold, in turn, 
determines garbage-collection load via (4). 

by generation must  still  be  lumped together into the 
Equation (5) applies to individual generations; the results 
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required generation groups. Luckily, both of the workload 
models investigated later in the paper-the  simple  linear 
model, as well as the more realistic hierarchical reuse 
model-make the lumping into generation groups very 
easy because of the forms that (5) assumes in these 
models. We therefore defer the application of (5) to 
generation groups until it can be examined in the context 
of these specific workload models. 

Analysis of the subsystem 
We now consider the analysis of the subsystem as a 
whole, making use of the results just obtained for each 
generation group. 

Moves per write 
The moves per write M for the subsystem as a whole are 
given by 

"-1 

+ 2 (ug - Un)Wg(Tg - Tg-J. 
g=1 

However, again  using Little's law, we find that the term in 
brackets is just s, the total number of objects' worth of 
storage. Since us = Tw, as discussed above, this means 
that 

' n  
n-1 

TW = - TW + 2 (Un - Ug)Wg(Tg - T g - l ) ,  
U 

g=1 

or, after rearrangement, 

1 "  
M = - ~ c ~ ,  

W 
g=l  

where the individual cg are given  by (4). For the purpose 
of this paper, there are two important special cases: 

For n = 1, 

The constraint (9) must be met by any garbage-collection 
strategy that involves more than one generation group. In 
particular, the history-dependent scheme introduced in 
Section 5 uses this constraint to relate the utilizations in 
generation groups 1 and 2. 

For n = 2, (6) simplifies to 

In either case, the moves per write become unbounded as 
the segment utilization  threshold approaches unity. 

Utilization 
To understand overall subsystem storage utilization, we 
must  now work out the precise meaning of the earlier 
statement that the storage utilizations of the individual 
generation groups must  "add up" to the storage utilization 
of the subsystem as a whole. 

Our starting point  is to note that by Little's law, the 
total population of up-to-date data objects in the subsystem 
is Tw. But by the reasoning of the subsection on storage 
utilization, we can also write this population by adding up 
the contribution of each generation group: 

B. McNUTI 

4. Linear  model 
We  now make the results derived above more concrete 
by working  them out in the case of a specific assumption 
about the pattern of updates. This assumption, the linear 
model, is chosen not for its realism but for its simplicity. 
Also for simplicity, we assume that there is  only a single 
generation group. 

Once the pattern of updates has been described, it is 
possible to relate garbage-collection load directly to the 
Utilization  of storage. It turns out that the general structure 
of the relationship that we are about to derive with the 
linear  model stands up  well, even when a more realistic 
update pattern is taken into account, as we do later in the 
paper. 

The key assumption of the linear  model is that the data 
objects in a given segment are superseded at a constant 
rate. A fixed  number of objects per unit of time are 
rendered out of date from the moment that the segment is 
first  filled  until  it  is collected. This means that the average 
lifetime of an object superseded during this period  is just 

From this it follows immediately by ( 5 )  that 

1 1 + &  
u, =& + -(1 -&) = - 2 2 .  
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The equation just stated gives the utilization for a 
specific generation i .  But since this depends only upon&, 
and since 

x = &  i z n ,  

the same equation applies to generation groups as well as 
to individual generations: 

or 

In the present analysis, there is exactly one generation 
group and u1 = u (since we have assumed that there are 
no spare segments). We can therefore plug (12) into (7) to 
obtain 

2u - 1  1 - 2(1 - u) 
M =  

1 - (2u - 1) 2(1 - u)  
- - 

or 

0.5 
1 - u  

M = - -  1. 

This  simple result provides an important point of 
comparison as we progress to the more realistic workload 
assumptions later in the paper. A plot of (13) is  included in 
Figures 3-5 of the next section. 

It should be noted that (13) is valid only for utilizations 
of at least 50 percent. For utilizations below 50 percent, 
the linear model predicts that at least some segments must 
necessarily play the role of spares (despite our earlier 
simplifying assumption), and that M = 0. 

Considering, then, the range of storage utilizations 
to which it applies, (13) predicts that as the subsystem 
approaches 100 percent full, the garbage-collection load 
becomes unbounded. This conclusion continues to stand 
up in the light  of our later, more detailed analysis. It 
suggests that a subsystem using log-structured files should 
not be pushed much above the range of 80 to 85 percent 
full. 

5. Hierarchical  reuse  model 
In the following section, we show that the hierarchical 
reuse model can be used to improve the realism and scope 
of the analysis just given. However, we do not  much alter 
the qualitative conclusions just obtained from the linear 
model. 

by the hierarchical reuse model and comparing these 
predictions to the actual patterns of updates seen in a 
number of traces. We then show how this model can be 
used to relate the utilization of each generation group to its 

We  begin  by  summarizing the update pattern predicted 
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collection threshold, in the same way that (11) does for the 
linear model. Finally, we examine the implications of this 
key relationship for both the case of a history-independent 
(n = 1) and a history-dependent (n = 2 )  garbage- 
collection algorithm. 

Model description 
The hierarchical reuse model was first introduced in a 
previous paper [2] as a way to describe cache reference 
locality. A more complete study of the model is presented 
in that paper. We  now summarize the model as it applies 
in the context of update activity. 

The model’s central assumption about updates is that 
they are caused by a series of hierarchically related 
processes. For example, repeated updates of a specific 
data object may occur within the same subroutine; within 
different routines called by the same transaction; or as part 
of an overall task that involves several transactions. 
Because of this hierarchical structure, we hypothesize that 
the probability of data reuse at long  time scales should 
mirror that at short time scales, once the time scale itself 
is taken  into account. 

For example, consider the pattern of updates to the 
tracks on a 3380 or 3390 device. Imagine two tracks: 

1. A short-term track, last updated five seconds ago. 
2. A long-term track, last updated twenty seconds ago. 

Hierarchical reuse probability, as applied to these two 
tracks, says that the short-term track has the same 
probability of being  updated  in the next five seconds as  the 
long-term track does of being updated in the next twenty 
seconds; and that the short-term track has the same 
probability of being updated in the next minute as the long- 
term track does of being updated in the next four minutes. 

To  state this formally, let the random variable U be the 
time  from the last update of a given track until the next 
update. Then we propose the following hierarchical reuse 
hypothesis: 

The conditional  distribution of the quantity 

U 
- I u > u o  
UO 

does not  depend  upon uo. Moreover, this distribution 
is independent  and  identical across periods 
following different references. 

The behavior just hypothesized is a special case of 
statistical self-similarity, a feature often seen in the study 
of fractals. Indeed, it  is shown in [5] that a random 
variable U which satisfies the conditions of the hypothesis 
above must  belong to the hyperbolic family  of 53 
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distributions. This means that for x large  enough to exceed 
some lower limit  on the time scale, U is characterized by 

P[U > x ]  = (14) 

for some constants a and 0. 
If update activity follows the example of most real 

processes that exhibit fractal behavior, we  must expect 
both a lower limit, as just mentioned, and  an  upper  limit 
on the applicable time scale. In the case of update 
patterns, the lower limit appears to be much less than 
any time  period of interest (less than one second). 
Unfortunately, there does not appear to be any good 
way to estimate the upper limit  on the basis of currently 
available data. Clearly, however, (14) cannot apply at time 
scales beyond of the life  of the device. 

If the probability predicted by (14) is shown as a 
function of x in a plot  with log-log axes, the result is a 
straight line. Figure 2 presents a check of this prediction 
against the disk volumes observed in eleven VM 
installations as part of the survey reported in [4]. All 
volumes at each installation were divided into rough 
groups, or “pools,” depending upon the predominant type 
of data contained on the volume. The  figure plots both the 
user data (general user and database storage) and the 
“KEY SYS” data as observed at each installation. 

Figure 2 comes strikingly close to being the predicted 
collection of straight lines. Therefore, (14) can be accepted 
as a realistic description of update patterns. Unfortunately, 
as discussed above, Figure 2 does not provide enough 

54 information to set an upper limit  on the applicable  time 

scale. In this paper, we therefore make a “leap of faith,” 
and assume that (14) applies at least up to the time scales 
that are relevant to garbage collection (from a few minutes 
to several weeks or months). 

Figure 2 also helps with the problem of what values of 0 
to assume (at least for data objects that are track images). 
The value of 0 is dictated by the slope that appears on the 
plot.  With remarkable consistency, the slopes presented in 
Figure 2 fall into the range 0.2 I 0 I 0.3. We therefore 
adopt 0 = 0.25 as a “middle-of-the-road” value to use  in 
evaluating some of the model results below. We also 
consider the values 0 = 0.2 and 0 = 0.3 in order to explore 
the sensitivity of these results with respect to 0. 

As Figure 2 makes clear, there is a strong tendency for 
updates to exhibit locality-i.e., updates to a given data 
object tend to be closely spaced in time.  This behavior 
contrasts sharply with the constant rate of invalidation 
assumed by the linear model. The vital contribution of 
the hierarchical reuse model to the analysis of garbage- 
collection loads is that it provides a way to account for 
such locality. We now  examine  how our earlier results can 
be  refined by applying the hierarchical reuse model. 

Storage group utilization 
The calculation of storage group utilizations based on (14) 
is performed by applying exactly the same steps  as for the 
equivalent calculation based on the linear  model. First, 
we obtain the average lifetime of data objects that are 
superseded while in generation i .  The average lifetime  is 
then plugged into (5). 

In the case of the hierarchical reuse model, these 
calculations are too lengthy to incorporate as part of the 
paper. Eventually, however, they yield the simple  and 
interesting result 

Note that this equation shares with the corresponding 
equation (11) of the linear model the property that the 
storage utilization depends upon the collection threshold in 
the same way regardless of the specific generation being 
examined. As in the case of the linear model, this property 
means that (15) applies equally well both to individual 
generations and to generation groups. 

The utilization  given by (15) also has an interesting 
quantitative relationship to the corresponding linear result. 
This is  made clear by writing the second-order expansion 
of (15) in the neighborhood off, = 1: 
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This gives a practical approximation for values off, 
greater than about 0.6. As a comparison of (16) and (11) 
suggests, the utilization predicted by the hierarchical reuse 
model  is always less than that given by the linear model, 
but the two predictions come into increasingly close 
agreement as the collection threshold approaches 
unity. 

History-independent collection 
Consider, now, the garbage-collection activity for a 
history-independent garbage-collection algorithm (n = 1). 
In this case, there is only one generation group. For any 
value off,, the moves per write in this  single generation 
group are given by (7). The utilization of the single 
generation group is given by (15). By  examining a 
succession of values f,, moves per write can therefore 
be plotted against storage utilization. 

Figure 3 presents the results of several such plots, 
showing a range of values 8. Also shown, for comparison, 
is the prediction given by the linear model. As Figure 3 
shows, the performance of the history-independent model 
is not strongly dependent on the exact value of 0 within 
the range of this parameter that seems to be  of interest. 
However, the hierarchical reuse model does increase our 
estimate of the moves per write compared to that obtained 
from the linear  model. Remarkably, the actual number of 
moves per write by which the estimate increases is roughly 
constant across the entire range of utilizations from 50 to 
95 percent and for all three plotted values of 0. Thus, we 
end  up  with  the  following  simple approximation of the 
hierarchical reuse result: 

=o.w 
"" 6=0.25 

8=0.30 A I  
6 6b f/ I .! , "J/ 1 
4 ;  

0 
0.5 0.6 0.7 0.8 0.9 1.0 

Storage utilization 

1 Results for history-independent garbage collection 
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Such a delay can only be practical if it  is  limited to 
recently written data; segments containing older data 
would take too long to empty because of the slowing rate 
of invalidation. Therefore, a history-dependent garbage- 
collection strategy is needed to implement this idea. In the 
following subsection, we experiment with the strategy just 
outlined by examining a garbage-collection scheme with 
two generation groups: group 1 to hold recently written 
data, and group 2 for older data. 

upon the quantities& due to (14): 
In the hierarchical reuse model, the values of 7, depend 

0.5 
1 - u  

M = - -  0.3. 
T~ = dT. 

Histo y-dependent collection 
Putting the result just stated into a nutshell, we have found 
that the presence of update locality creates a problem for 
history-independent garbage collection. Essentially, the 
reason is that the rate of rendering data objects in a 
segment out of date slows down as the segment  ages. This 
increases the longevity of empty storage that becomes out 
of date early in the life  of the segment, and reduces the 
utilization that can be achieved in  any  given generation 
group at any given cost in terms of moves per write. 

Update locality also creates an opportunity to improve 
the performance of garbage collection, however. Because 
of locality, data objects have a substantial probability of 
becoming out of date within a short time after they are 
written by the host. This suggests delaying collection of a 
segment that contains recently written objects until the 
segment is  mostly empty. Through such a delay, it may be 
possible to avoid ever moving objects that have short 
lifetimes. 

Thus, for the case n = 2 we can rewrite (9) as 

1 1  

u2 

To define a garbage-collection scheme with two 
generation groups, we must specify the values of four 
variables: fi, 6, u l ,  and u2.  These variables must satisfy 
(15) as it applies to each of the two generation groups, and 
must also satisfy (19). Within these constraints, they must 
also produce the smallest possible number of moves per 
write, as given by (8). We are confronted, therefore, by a 
minimization  problem  involving four unknowns, three 
equations, and an objective function. 

To explore the history-dependent strategy, iterative 
numerical techniques were used to perform the 
minimization just described. This was done for a range 
of storage utilizations, values 8, and ratios d = T ~ / T .  
The results of the iterative calculations are presented by 



0.5 0.6 0.7 0.8 0.9 1.0 

Storage  utilization 

History-dependent moves per write: sensitivity to 8. 
.”, ”” ”.. 
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11 I 
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History-dependent moves per write: sensitivity to d. 

Figures 4 and 5. For the purpose of these figures, the case 
0 = 0.25 and d = 0.002 is used as a starting point. Figure 
4 varies 0 around this case, while Figure 5 varies d. 

The two figures show clearly that history-dependent 
garbage collection performs better than history- 
independent garbage collection as presented in Figure 3. 
The amount of improvement depends upon the parameters 
0 and d ,  as well as on the utilization of the subsystem. 

utilizations higher than 85 percent. This operating range 
may  be too high for normal use, however, because of the 
very rapid increase in moves per write that occurs for 
utilizations over 85 percent. 

If utilizations in the range of  75 to 85 percent are 
considered, most of the results presented in Figures 4 and 

The potential improvement is most dramatic at 

5 appear to be at or a little below the number of moves per 
write predicted by the linear  model. For these storage 
utilizations, the linear model, as given by (13), appears to 
provide a serviceable “rule of thumb.” 

6. Summary  and  discussion 
The result just stated brings us full circle. Initially the 
estimate 

0.5 
1 - u  

M = - -  1 0 . 5 1 u < l  

was introduced on the grounds that it represented the 
simplest possible assumption about the pattern of updates 
in the workload. We have now concluded that as a “rule 
of thumb,” this estimate comes fairly close to the truth for 
environments with the scattered updates typical of database 
I/O-even after accounting for a much  more realistic model 
of the pattern of updates and after applying a sophisticated, 
history-dependent garbage-collection algorithm. 

Our other key conclusion is that in such environments, 
efficient operation of a log-structured disk subsystem 
demands that no  more than roughly 80 percent of available 
storage capacity must be utilized (minus at least a small 
buffer  of reserve segments, as discussed in the subsection 
on the generation group model). So long as storage 
utilization  is kept at this level or below, however, and so 
long as an effective history-dependent collection policy is 
adopted, log-structured subsystems should be capable of 
the high write throughput pointed to by [3] as the motive 
for the concept. Nevertheless, garbage  collection will affect 
the throughput achieved, by requiring  an  amount of data 
movement that is quantified  roughly by the above rule of 
thumb. 

It should be noted that traditional disk subsystems must 
also ensure that some free storage is available, so that it 
is always possible to allocate storage for new files (the 
amount of such storage depends upon the size of  ongoing 
file allocations). Also, since a log-structured subsystem 
writes all data objects into fresh segments, it can deal 
easily with variations in data object size when updating 
an  old copy of a given data object. Such a subsystem 
may therefore be capable of providing automatic data 
compression [7, 81. Thus, despite the effective loss of 
storage capacity needed to ensure efficient operation, log- 
structured disk subsystems may  still, on balance, improve 
upon the amount of data that can be stored on disk by 
traditional subsystems. 

It may be useful to conclude by considering the use of 
log-structured files to supplement a RAID-5 disk parity 
architecture. This scheme has recently been the focus of 
much attention because of its introduction into the high- 
end disk marketplace. 
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The concept of a disk subsystem architecture using 
Redundant Arrays of Independent Disks (RAID) was 
proposed in  1988 by Patterson, Gibson,  and Katz [9]. 
The key to the concept is the use of one or more disks to 
contain enough redundant data to reconstruct the contents 
of any disk should one fail. Several variations are defined 
in  [9], ranging  from mirrored disks (RAID-1) to the 
sophisticated rotating parity scheme of  RAID-5. For 
database or transaction-processing workloads, however, 
RAID-5 appears to be the most attractive of these 
variations. 

In its standard form, the RAID-5 scheme calls for 
several disks to be formed into a “parity group.” 
Corresponding locations of all parity group disks except 
one contain stored data. The same location on one, 
selected disk contains redundant (parity) information 
needed for data reconstruction in the event of any single 
disk failure. The various disks of the parity group rotate 
the job of carrying the parity information for a given 
corresponding location across the parity group, so as to 
avoid  placing too much  load on any one disk. 

The RAID-5 scheme for disk parity requires four 
operations in order to carry out a write requested by the 
host [9]: read data, read parity, write data, and write 
parity. This is necessary so that the parity disk can 
correctly account for the contents of  all disks in the parity 
group, including those not  affected  by the write. The fact 
that four operations are needed per data object written, 
compared with one operation in the case of a standard disk 
subsystem, is  called the RAID-5 write penalty. 

If a write is performed simultaneously to all the disks of 
a RAID-5 parity group, by contrast, the storage control 
needs no information from  disk to set parity correctly. 
Only a single operation is needed per data object written, 
plus one write for parity update that can be overlapped 
with the writes of the data objects. 

It has sometimes been argued, for this reason, that by 
building a log-structured file system on top of the RAID-5 
architecture it  is possible to eliminate the write penalty. 
To accomplish this, each segment  is  defined so that it 
includes corresponding areas on all disks of a parity group. 
Therefore, all write operations are performed across a full 
parity group and are free from the write penalty. 

As we have seen, however, there is a complication 
inherent in this idea. Although the write operation itself 
can be performed without penalty, a segment’s worth of 
free storage must  first be garbage-collected. The number of 
operations per write needed for garbage collection will 
depend, as described in the earlier sections of the paper, 
upon the workload  and the utilization of storage. 

for the middle case of Figure 4, at various storage 
Let us consider, then, the number of operations required 
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utilizations (where each read or write of a data object is 
counted as one “operation”): 

At a utilization of  70 percent, we require 0.87 moves per 
write. Each move requires one read and one write; so 
adding  in the initial write of the object we  get 2.74 
operations. This is a substantial improvement over the 
four operations required by the standard RAID5 design. 
At a utilization of 80 percent, we require 1.42 moves per 
write. This  gives 3.84 operations per write, about the 
same as RAID-5. (The rule-of-thumb estimate would 
yield four operations per write, exactly the same as 
RAID-5, for this utilization.) 

write. This gives 7.32 operations per write, almost 
double the requirements of RAID-5. 

At a utilization of  90 percent, we require 3.16 moves per 

In  making comparisons of this kind, it is important (but  not 
easy) to consider the efficiency of the operations. If reads 
and writes are performed on a segment-wide basis, and are 
not interrupted, a high efficiency can be achieved per data 
object read or written in the segment. On the other hand, 
segment-wide reads and writes for garbage collection 
should be interruptible because of their background nature 
and their long  times to completion. At  high subsystem 
loads, interruptions would be frequent and  would create 
the potential for large amounts of waste motion. 
Presumably, however, this effect  can  be controlled so as to 
ensure reasonable efficiency of background operations 
under high loads. 

In  any case, it  is clear that we cannot eliminate the write 
penalty of RAID-5 just by using a log-structured subsystem. 
We can only change its form.  At storage utilizations in the 
range of  80 percent, the use of a log-structured subsystem 
seems to have little effect one way or the other on the 
RAID-5 requirement of four operations per write. With 
suitable scheduling of background work, such files  may, 
however, improve the efficiency  with  which  it is possible 
to carry out the required operations. 

DB2 is a registered  trademark of International  Business 
Machines Corporation. 
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