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The log-structured disk subsystem is a new
concept for the use of disk storage whose
future application has enormous potential.

In such a subsystem, all writes are organized
into a log, each entry of which is placed into
the next available free storage. A directory
indicates the physical location of each logical
object (e.g., each file block or track image) as
known to the processor originating the I/O
request. For those objects that have been
written more than once, the directory retains
the location of the most recent copy. Other
work with log-structured disk subsystems has
shown that they are capable of high write
throughputs. However, the fragmentation of
free storage due to the scattered locations of
data that become out of date can become a
probiem in sustained operation. To control
fragmentation, it is necessary to perform
ongoing garbage collection, in which the
location of stored data is shifted to release
unused storage for re-use. This paper
introduces a mathematical model of garbage
collection, and shows how collection load
relates to the utilization of storage and the
amount of locality present in the pattern of
updates. A realistic statistical model of

updates, based upon trace data analysis, is
applied. In addition, alternative policies are
examined for determining which data areas to
collect. The key conclusion of our analysis is
that in environments with the scattered update
patterns typical of database I/O, the utilization
of storage must be controlled in order to
achieve the high write throughput of which
the subsystem is capable. in addition, the
presence of data locality makes it important to
take the past history of data into account in
determining the next area of storage to be
garbage-collected.

1. Introduction

The log-structured disk subsystem is a new concept for the
use of disk storage whose future application has enormous
potential. In such a subsystem, all writes are organized
into a log, each entry of which is placed into the next
available free storage. A directory indicates the physical
location of each logical object (e.g., each file block or
track image) as known to the processor originating the 1/O
request. For those logical objects that have been written
more than once, the directory retains the location of the
most recent copy.
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Over time, the older areas of the log become
fragmented, as individual data objects stored there are
rendered out of date. A de-fragmenting process (garbage -
collection) is needed to consolidate still-valid data and to
release unused storage for re-use. Understanding the
requirements of the garbage-collection process is among
the interesting new challenges posed by log-structured disk
technology. This paper investigates the amount of data
movement which must be performed by the garbage-
collection process, and how such data movement relates
to the utilization of storage.

A simple, abstract model of the garbage-collection
process is introduced that provides for some flexibility in
the policy that identifies the specific data areas which
should next be collected. Using this generation group
model, we consider both the case in which the decision
whether to collect a specific area of data is independent of
the past history of the data, and the case in which this
decision depends upon the number of times the data have
previously been garbage-collected.

Rosenblum and Ousterhout [1] obtain a result, similar to
(7) below, that relates garbage-collection load to the
utilization of collected data areas, but not to the overall
utilization of subsystem storage. The main contribution of
the present paper is that, by introducing a realistic statistical
description of the pattern of updates, we develop a method
of analysis that ties garbage-collection load directly to
overall storage utilization. In addition, this analysis
approach is capable of examining both history-dependent
and history-independent methods of garbage collection.

The mathematical modeling of the present paper
complements and adds to the understanding of earlier
simulation results obtained by the authors just mentioned
[1, 2). These include results addressing the behavior of
garbage-collection load as well as the value of history-
dependent garbage collection (although the exact form of
history-dependent collection algorithm examined here is
not identical).

We start, in Section 2, by briefly reviewing the concept
of a log-structured subsystem and the role that garbage
collection plays in the concept.

Section 3 then builds a framework for analysis by
defining the generation group model. This section also
explores the general properties of the model that apply
regardiess of the specific I/O workload. Unfortunately, the
data movement required for garbage collection does
depend upon the specific workload.

Section 4 continues by making the simplest possible
workload assumption (without regard to realism), which
we call the linear model. On the basis of the linear model,
Section 4 develops a very simple formula for data
movement due to garbage collection. This estimate shows
that the load due to garbage collection depends critically
upon the utilization of storage, and becomes unbounded as
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storage utilization approaches 100 percent. Only the
history-independent method of segment selection is
considered in Section 4.

Section 3 tests the result of Section 4 by using a more
realistic workload model. This model, called hierarchical
reuse, was introduced in an earlier paper as a way to
describe cache reference locality. Using the hierarchical
reuse model, Section 5 shows that

& The history-independent garbage-collection scheme
imposes a somewhat higher level of garbage-collection
activity than the linear model would predict, but

& By using the history-dependent strategy the cost can be
brought down to a range of results of which most tend
to be at or just below the linear prediction.

Thus, the linear model, despite its somewhat arbitrary
assumptions, appears to be serviceable as a “‘rule-of-
thumb”” estimate of the garbage-collection load.

Finally, Section 6 concludes by considering the
implications for using log-structured files to supplement a
RAID-5 disk parity architecture. This strategy has recently
been the focus of much attention because of its
introduction into the high-end disk marketplace.

2. Overview of concepts

The concept of a log-structured disk subsystem (also
referred to as a log-structured file system, or LSF)

was first proposed by Ousterhout and Douglis [3] as a
technique for improving the throughput of disk writes. The
desire to improve write throughput was motivated by the
observation that reads can often be serviced out of a cache
memory, located either in the storage control or in the
processor, without requiring a disk access; on the other
hand, writes must eventually be copied to the disk storage
medium to ensure permanence, even if cache memory is
used to temporarily delay making the copy.

Rather than performing a write in the traditional manner,
by locating the affected file block or track image and
replacing its contents, Ousterhout and Douglis proposed
that writes could be organized into a log. An entry of the
log could simply be written into the next available storage,
regardless of the previous location of the affected data
abject. A directory could then be used to keep track of the
most recent copy of each data object.

An excellent practical overview of the architecture of a
log-structured file system (SPRITE) and of the associated
design issues is given by Rosenblum and Ousterhout [1];
extensive additional performance and other data for
SPRITE are reported by Rosenblum [2). To make possible
the desired efficiency of writes, Rosenblum and Ousterhout
group written data objects so that a reasonably large
number can be transferred together to disk. In keeping
with [1], we adopt the term segment for the storage needed
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to write one such group of data objects. A segment, then,
is the smallest usable area of contiguous free space; the log
is written to disk storage one segment at a time.

Figure 1(a) diagrams the process of writing the log. As
the figure shows, each log entry consists of a reasonably
large number of data objects (usually more than the four
objects used for purposes of illustration), and is copied as
a unit into an empty segment of storage. The entries of the
log need not be contiguous; instead, any empty segment
can be selected to perform the next write (the exact choice
of which empty segment is not important for our present
purpose).

The data objects of a given log entry may render
previously written data objects out of date. This is
illustrated in the figure by using an empty circle to denote
an out-of-date object; filled marks denote objects that are
still current. At the moment in time presented by part (a)
of the figure, one segment (the one most recently written)
is filled completely with current data, two segments are
half-filled, and two segments are empty. A log entry can be
made only into one of the empty segments. In the example
of the figure, the next entry (write D) will be placed into
segment 4.

Figure 1(b) shows how write D might be used, not to
store new data, but to perform garbage collection. This
write operation copies four existing data objects, taken
from the two half-full segments, into a single empty
segment. Of the three segments affected, one becomes full
and two are emptied.

As this example illustrates, garbage collection copies
existing data in order to reduce the fragmentation of free
space. The data copies made in performing garbage
collection have the effect of adding to the overall number
of log entries that must be made.

The modeling presented in this paper does not depend
upon the specific type of data object going into a given
segment, but we do assume that each segment contains
a reasonably large number of data objects (large enough
so that it makes sense to talk about this population in
statistical terms). We also assume that there is no
tendency for all of the objects in a segment to be updated

at the same time, as might occur in an environment with
mainly sequential files. Instead, the purpose of this paper
is to examine the scattered update patterns typical of a
database environment.

The metric that we adopt for the purpose of assessing
the impact of garbage collection is the number of times a
given data object must be moved during its lifetime. Since
the life of each data object ends with a write operation that
causes the object’s log entry to be superseded, this metric
is called called moves per write. Note that in evaluating

the moves per write, all data object moves are counted

equally. The actual efficiency with which each move can
be performed is not examined in the present paper.
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To study the load imposed by garbage collection, we
must start with a specific model of the garbage-collection
process. A description is needed which is simple but

at the same time provides enough flexibility to compare
alternative collection strategies. To provide the needed
model, we adopt a simplified version of the age sort

strategy as proposed in [1].

The age sort scheme calls for collected data objects to
be grouped into segments by age. This is done by sorting
the set of objects which are in the process of being moved,

then subdividing the sorted list into segments.

The generation group model tries to retain the spirit of
the age sort, but avoids the analysis difficuities that arise
from actually performing a sort. Rather than grouping by

age, the generation group model instead organizes
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collected objects according to the number of times they
have previously been garbage-collected.

In the remainder of this section, we start by fleshing out
the rough outline just given of the generation group model.
We then examine what the model suggests about garbage-
collection load and about the utilization of storage.

® Generation group model

In the generation group model, collected data objects are
organized into segments on the basis of the number of
times they have already been moved. This is done
according to the following scheme:

& When a data object is first written, it belongs to
generation 1; after the object is moved for the first time,
it belongs to generation 2; and so forth. Thus, generation
i = 1 consists of those data objects that have previously
been moved exactly i — 1 times.

& Data objects are grouped into segments on the basis of
their generation i.

& A steady state is assumed to exist in which a given
segment is continually used and reused to store data
objects from the same generation.

* There are n = 1 generation ““groups.”” The generation
group to which a data object in generation i belongs is
given by g = min(i, n).

& Garbage-collection policies, such as the utilization
threshold that triggers segment collection as discussed
below, are established by generation group.

Note that generation group n lumps together all the
generations i = n. Garbage-collection policies in this
generation group do not take into account the actual
generation of a given segment. Therefore, there are two
important cases of the generation group model:

1. If n = 1, the segment-collection policy is history-
independent.

2. If n > 1, the segment-collection policy is history-
dependent.

For purposes of simplicity, we often boil our results down
to the cases n = 1 (history-independent) and n = 2
(the simplest history-dependent case).

In the analysis of the generation group model, we
consider the utilization of storage to be the independent
variable in terms of which the garbage-collection load can
be described. For the multiple-group case, there is 2
storage utilization for each individual group, and these
must “‘add up” to the correct overall utilization.

Within a generation group, the selection of the next
segment to collect is based on segment utilization; i.., the
least-occupied segments are collected first. By increasing
or decreasing the utilization level at which a segment in a
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given generation group becomes a candidate for collection
(the collection threshold), the utilization of the generation
group can be raised or lowered. This can only be done,
however, within the constraints imposed by the actual
impact of the threshold on the utilization of the generation
group and by the storage utilization of the subsystem as a
whole. If the utilization of one group is reduced, the
utilization of some other group must be increased in order
to maintain a consistent overall utilization.

In the case of multiple generation groups, thresholds are
used to achieve the desired combination of individual
generation group utilizations, consistent with the
constraints just described.

In the analysis which follows, we assume that no spare
segments are held in reserve; i.e., all segments are in
active use for data storage and belong to some generation
i=1,2,---. This assumption is made without loss of
generality, since to analyze a subsystem with spare storage
we need only limit the analysis to the subset of the storage
that is actually in use. Note, however, that in a practical

log-structured file at least a small buffer of spare segments
would need to be maintained. This would reduce the
utilization of storage that is achieved in practice to a level
at least somewhat lower than that which we consider in
the present analysis.

S Analysis of a generation group

We now turn to the application of the generation group
model as a way to explore garbage-collection loads. Our
starting point is to understand the collection activity and
storage utilization of each individual generation group.

We then extend these results into an analysis of the overall
subsystem.

Collection activity

The collection activity of a given generation group

1 < g < n is understood in terms of the following
variables:

w = the rate per second at which new data objects are
written for the first time to the disk medium after
having been transferred from the host.
w, = the number of data objects per second being
introduced into generation group g. Note that
w, = w.

= the rate at which free storage in generation group
g is reclaimed, expressed in terms of the number
of data objects® worth of storage per second.

b
g

¢, = the number of data objects per second being

collected in generation group g. Although there is
no generation group 0, we also define ¢, = w for

convenience in writing some of the formulas
below.
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s = the number of data objects” worth of storage
available to the subsystem.

u = the average subsystem storage utilization (the
actual number of valid data objects relative to s).

u, = the average storage utilization of the segments
belonging to generation group g.

f, = the average utilization of segments being collected
from generation group g. Also, the utilization
threshold at which segment collection is triggered
in group g.

=
b, +c,

When required, we also use the subscript i with some of
the variables above, to indicate a specific generation i as
opposed to a generation group g. The subscript n, or a
numerical subscript 1, 2, etc., should always be taken to
refer to the generation group; e.g., g = n or g = 2. Care
has been exercised in the context of any such usage to
make the intended meaning clear.

We start our analysis by noting that, since new data
objects being added to a given generation come only from
the immediately preceding generation,

wo=c,, 1)

for all generation groups 1 < g < n (recall that, by
convention, ¢, = w). Also, assuming steady-state
operation, the rate at which storage is demanded for new
data objects being added to any generation group must
be the same as the rate at which storage is freed. In
generations groups g < n, all storage in collected
segments is freed, since any remaining data objects
contained in these segments are passed to the next
generation group. In generation group »n, however, only
the empty storage in collected segments is freed. Thus,

b, +c, l=sg=<n-1,
W, = @
b g=mn.

g

By the definition of f, (2) means that

s
¢, =1 £ G)
w g = n.

1~f

Repeated application of (1) and (3) now yields the
following formula for the garbage-collection activity in
generation group g:

£y ooe fw

c = 1 4

! TTEQQJ...ﬁw

lsg=<n-1,

l<=g=sn-1,

<
]
&
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Storage utilization
To study storage utilization, it is necessary to sketch out
the ““life cycle” of a given data object. Let us therefore
consider a time line for the object. The time line begins, at
time 0, when the object is written by a host application.
Before the object is stored on the magnetic disk
medium, it may be buffered. This may occur either in the
processor (a DB2® deferred write, for example) or in the
storage control. Let the average time at which the data
object finally is written to the magnetic medium be called =,
The data object is next packaged into a succession of
one or more segments that contain various generations i,
i=1,2,---, of data objects. Let 7, be the average time
of collection of each such segment. Finally, the storage
occupied by the object is released when it is rendered out
of date. Let T, be the average lifetime of those objects that
become out of date while they are in generation i, and let
T be the overall average lifetime of all data objects.
In our analysis later in the paper, it will be important to
know how quickly data are written to disk relative to
the overall lifetime of the data. We therefore define
a=2
T
The ratio d tends to be of the same order as the amount
of cache storage that contains ““dirty”” data, relative to
the amount of disk storage. It typically ranges from zero
(no buffering of writes) up to a few tenths of a percent.
To calculate the storage utilization of segments
belonging to generation i, we apply Little’s law. On one
hand, the total number of data objects’ worth of storage
in these segments, as given by Little’s law, must be
w,(r, — 7._,). On the other hand, the population of data
objects still alive is

wi{f;(T,' - T,'_l) + (1 _f,‘)(]-: - T,'_l)}y

since a fraction 1 — f; of the objects are rendered invalid
before being collected. We can therefore divide the
number of live objects by the number of objects’ worth
of storage to obtain

i~ Tin
u=f+——0-1). (5)
T T Tia
Note that (4) and (5), taken together, dictate the
relationship among garbage-collection load, storage
utilization, and the actual workload running on the
subsystem. The timing with which the workload causes
data objects to be rendered out of date determines, via (5),
the segment collection threshold that yields the desired
storage utilization. The collection threshold, in turn,
determines garbage-collection load via (4).
Equation (5) applies to individual generations; the results
by generation must still be lumped together into the 51
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required generation groups. Luckily, both of the workload
models investigated later in the paper—the simple linear
model, as well as the more realistic hierarchical reuse
model—make the lumping into generation groups very
easy because of the forms that (5) assumes in these
models. We therefore defer the application of (5) to
generation groups until it can be examined in the context
of these specific workload models.

¢ Analysis of the subsystem

We now consider the analysis of the subsystem as a
whole, making use of the results just obtained for each
generation group.

Moves per write
The moves per write M for the subsystem as a whole are
given by

M=£Ecg, (6)

g=1

where the individual c, are given by (4). For the purpose
of this paper, there are two important special cases:

s Forn =1,

= ®

In either case, the moves per write become unbounded as
the segment utilization threshold approaches unity.

Utilization

To understand overall subsystem storage utilization, we
must now work out the precise meaning of the earlier
statement that the storage utilizations of the individual
generation groups must ““add up”’ to the storage utilization
of the subsystem as a whole.

Our starting point is to note that by Little’s law, the
total population of up-to-date data objects in the subsystem
is Tw. But by the reasoning of the subsection on storage
utilization, we can also write this population by adding up
the contribution of each generation group:

n-1
Tw=uw(r, —71,_)+ 2 uwlr, - Tg_l)
g=1
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n-1

- Tn-l) + Z Wg(Tg - Tg—l)

g=1

= un Wn(Tn+

n—1
+ 2 (w, ~ u")wg(fg - Tg—l)'
g=1

However, again using Little’s law, we find that the term in
brackets is just s, the total number of objects’ worth of
storage. Since us = Tw, as discussed above, this means
that

n-1
u
n
Tw = o Tw + 2 W, —upw(r, = 1,_),
g=1

or, after rearrangement,

1 1 u\w (r =
oy e CY G Y )
u u 2(1 un)w(T T ®

The constraint (9) must be met by any garbage-collection
strategy that involves more than one generation group. In
particular, the history-dependent scheme introduced in
Section 5 uses this constraint to relate the utilizations in
generation groups 1 and 2.

4. Linear model

We now make the results derived above more concrete
by working them out in the case of a specific assumption
about the pattern of updates. This assumption, the linear
model, is chosen not for its realism but for its simplicity.
Also for simplicity, we assume that there is only a single
generation group.

Once the pattern of updates has been described, it is
possible to relate garbage-collection load directly to the
utilization of storage. It turns out that the general structure
of the relationship that we are about to derive with the
linear model stands up well, even when a more realistic
update pattern is taken into account, as we do later in the
paper.

The key assumption of the linear model is that the data
objects in a given segment are superseded at a constant
rate. A fixed number of objects per unit of time are
rendered out of date from the moment that the segment is
first filled until it is collected. This means that the average
lifetime of an object superseded during this period is just

T+ T,

T,=——. (10)

From this it follows immediately by (5) that

1 1+f
ui=f,.+-2-(1—f,.)=——2—.
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The equation just stated gives the utilization for a
specific generation i. But since this depends only upon f,,
and since

=1 izn,

the same equation applies to generation groups as well as
to individual generations:

1+f,
u, = > (11)
or
f,=2u,- 1 (12)

In the present analysis, there is exactly one generation
group and u, = u (since we have assumed that there are
no spare segments). We can therefore plug (12) into (7) to
obtain

2u-1 1-2(1-u)
M= =
1-Qu-1) 2(1 — u)

or

0.5

M=
1—u

-1 (13)

This simple result provides an important point of
comparison as we progress to the more realistic workload
assumptions later in the paper. A plot of (13) is included in
Figures 3-5 of the next section.

It should be noted that (13) is valid only for utilizations
of at least 50 percent. For utilizations below 50 percent,
the linear model predicts that at least some segments must
necessarily play the role of spares (despite our earlier
simplifying assumption), and that M = 0.

Considering, then, the range of storage utilizations
to which it applies, (13) predicts that as the subsystem
approaches 100 percent full, the garbage-collection load
becomes unbounded. This conclusion continues to stand
up in the light of our later, more detailed analysis. It
suggests that a subsystem using log-structured files should
not be pushed much above the range of 80 to 85 percent
full.

5. Hierarchical reuse model

In the following section, we show that the hierarchical
reuse model can be used to improve the realism and scope
of the analysis just given. However, we do not much alter
the qualitative conclusions just obtained from the linear
model.

We begin by summarizing the update pattern predicted
by the hierarchical reuse model and comparing these
predictions to the actual patterns of updates seen in a
number of traces. We then show how this model can be
used to relate the utilization of each generation group to its
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collection threshold, in the same way that (11) does for the
linear model. Finally, we examine the implications of this
key relationship for both the case of a history-independent
(n = 1) and a history-dependent (n = 2) garbage-
collection algorithm.

® Model description

The hierarchical reuse model was first introduced in a
previous paper [2] as a way to describe cache reference
locality. A more complete study of the model is presented
in that paper. We now summarize the model as it applies
in the context of update activity.

The model’s central assumption about updates is that
they are caused by a series of hierarchically related
processes. For example, repeated updates of a specific
data object may occur within the same subroutine; within
different routines called by the same transaction; or as part
of an overall task that involves several transactions.
Because of this hierarchical structure, we hypothesize that
the probability of data reuse at long time scales should
mirror that at short time scales, once the time scale itself
is taken into account.

For example, consider the pattern of updates to the
tracks on a 3380 or 3390 device. Imagine two tracks:

1. A short-term track, last updated five seconds ago.
2. A long-term track, last updated twenty seconds ago.

Hierarchical reuse probability, as applied to these two
tracks, says that the short-term track has the same
probability of being updated in the next five seconds as the
long-term track does of being updated in the next twenty
seconds; and that the short-term track has the same
probability of being updated in the next minute as the long-
term track does of being updated in the next four minutes.

To state this formally, let the random variable U be the
time from the last update of a given track until the next
update. Then we propose the following hierarchical reuse
hypothesis:

The conditional distribution of the quantity

U

= | U>uy,

u()

does not depend upon u,. Moreover, this distribution
is independent and identical across periods
following different references.

The behavior just hypothesized is a special case of
statistical self-similarity, a feature often seen in the study
of fractals. Indeed, it is shown in [5] that a random
variable U which satisfies the conditions of the hypothesis
above must belong to the Ayperbolic family of
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distributions. This means that for x large enough to exceed
some lower limit on the time scale, U is characterized by

PlU>x]=ax"* (14)

for some constants a and 6.

If update activity follows the example of most real
processes that exhibit fractal behavior, we must expect
both a lower limit, as just mentioned, and an upper limit
on the applicable time scale. In the case of update
patterns, the lower limit appears to be much less than
any time period of interest (less than one second).
Unfortunately, there does not appear to be any good
way to estimate the upper limit on the basis of currently
available data. Clearly, however, (14) cannot apply at time
scales beyond of the life of the device.

If the probability predicted by (14) is shown as a
function of x in a plot with log-log axes, the result is a
straight line. Figure 2 presents a check of this prediction
against the disk volumes observed in eleven VM
installations as part of the survey reported in [4]. All
volumes at each installation were divided into rough
groups, or ““pools,” depending upon the predominant type
of data contained on the volume. The figure plots both the
user data (general user and database storage) and the
“KEY SYS” data as observed at each installation.

Figure 2 comes strikingly close to being the predicted
collection of straight lines. Therefore, (14) can be accepted
as a realistic description of update patterns. Unfortunately,
as discussed above, Figure 2 does not provide enough
information to set an upper limit on the applicable time
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scale. In this paper, we therefore make a “leap of faith,”
and assume that (14) applies at least up to the time scales
that are relevant to garbage collection (from a few minutes
to several weeks or months).

Figure 2 also helps with the problem of what values of 8
to assume (at least for data objects that are track images).
The value of 6 is dictated by the slope that appears on the
plot. With remarkable consistency, the slopes presented in
Figure 2 fall into the range 0.2 < 6 < 0.3. We therefore
adopt 8 = 0.25 as a ““middle-of-the-road”” value to use in
evaluating some of the model results below. We also
consider the values = 0.2 and = 0.3 in order to explore
the sensitivity of these results with respect to 6.

As Figure 2 makes clear, there is a strong tendency for
updates to exhibit locality—i.e., updates to a given data
object tend to be closely spaced in time. This behavior
contrasts sharply with the constant rate of invalidation
assumed by the linear model. The vital contribution of
the hierarchical reuse model to the analysis of garbage-
collection loads is that it provides a way to account for
such locality. We now examine how our earlier results can
be refined by applying the hierarchical reuse model.

% Storage group utilization

The calculation of storage group utilizations based on (14)
is performed by applying exactly the same steps as for the
equivalent calculation based on the linear model. First,
we obtain the average lifetime of data objects that are
superseded while in generation i. The average lifetime is
then plugged into (5).

In the case of the hierarchical reuse model, these
calculations are too lengthy to incorporate as part of the
paper. Eventually, however, they yield the simple and
interesting result

Lo
ug = m‘ 1—'_]‘—1/9 . (15)

g

Note that this equation shares with the corresponding
equation (11) of the linear model the property that the
storage utilization depends upon the collection threshold in
the same way regardless of the specific generation being
examined. As in the case of the linear model, this property
means that (15) applies equally well both to individual
generations and to generation groups.

The utilization given by (15) also has an interesting
quantitative relationship to the corresponding linear result.
This is made clear by writing the second-order expansion
of (15) in the neighborhood of f, = 1:

(1h 1+e ,
Wt T T U
1+f 1+6
=3 e 4 1)

IBM 1. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 19%4




This gives a practical approximation for values of f,
greater than about 0.6. As a comparison of (16) and (11)
suggests, the utilization predicted by the hierarchical reuse
model is always less than that given by the linear model,
but the two predictions come into increasingly close
agreement as the collection threshold approaches

unity.

® History-independent collection

Consider, now, the garbage-collection activity for a
history-independent garbage-collection algorithm (n = 1).
In this case, there is only one generation group. For any
value of f,, the moves per write in this single generation
group are given by (7). The utilization of the single
generation group is given by (15). By examining a
succession of values f,, moves per write can therefore

be plotted against storage utilization.

Figure 3 presents the results of several such plots,
showing a range of values 6. Also shown, for comparison,
is the prediction given by the linear model. As Figure 3
shows, the performance of the history-independent model
is not strongly dependent on the exact value of 8 within
the range of this parameter that seems to be of interest.
However, the hierarchical reuse model does increase our
estimate of the moves per write compared to that obtained
from the linear model. Remarkably, the actual number of
moves per write by which the estimate increases is roughly
constant across the entire range of utilizations from 50 to
95 percent and for all three plotted values of 8. Thus, we
end up with the following simple approximation of the
hierarchical reuse result:

0.5
M=——>-03 17

- u

® History-dependent collection
Putting the result just stated into a nutshell, we have found
that the presence of update locality creates a problem for
history-independent garbage collection. Essentially, the
reason is that the rate of rendering data objects in a
segment out of date slows down as the segment ages. This
increases the longevity of empty storage that becomes out
of date early in the life of the segment, and reduces the
utilization that can be achieved in any given generation
group at any given cost in terms of moves per write.
Update locality also creates an opportunity to improve
the performance of garbage collection, however. Because
of locality, data objects have a substantial probability of
becoming out of date within a short time after they are
written by the host. This suggests delaying collection of a
segment that contains recently written objects until the
segment is mostly empty. Through such a delay, it may be
possible to avoid ever moving objects that have short
lifetimes.
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Such a delay can only be practical if it is limited to
recently written data; segments containing older data
would take too long to empty because of the slowing rate
of invalidation. Therefore, a history-dependent garbage-
collection strategy is needed to implement this idea. In the
following subsection, we experiment with the strategy just
outlined by examining a garbage-collection scheme with
two generation groups: group 1 to hold recently written
data, and group 2 for older data.

In the hierarchical reuse model, the values of 7, depend
upon the quantities f; due to (14):

7 =fi_1/o7'i—1 i= 1: 2, Y (18)

T, = dT.
Thus, for the case n = 2 we can rewrite (9) as

1-l+d(1—lﬁ) -1 19
T 2=, (19

To define a garbage-collection scheme with two
generation groups, we must specify the values of four
variables: f,, f,, u,, and u,. These variables must satisfy
(15) as it applies to each of the two generation groups, and
must also satisfy (19). Within these constraints, they must
also produce the smallest possible number of moves per
write, as given by (8). We are confronted, therefore, by a
minimization problem involving four unknowns, three
equations, and an objective function.

To explore the history-dependent strategy, iterative
numerical techniques were used to perform the
minimization just described. This was done for a range
of storage utilizations, values 6, and ratios d = 7,/T.

The results of the iterative calculations are presented by
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Figures 4 and 5. For the purpose of these figures, the case
6 = 0.25 and d = 0.002 is used as a starting point. Figure
4 varies 8 around this case, while Figure 5 varies d.

The two figures show clearly that history-dependent
garbage collection performs better than history-
independent garbage collection as presented in Figure 3.
The amount of improvement depends upon the parameters
0 and d, as well as on the utilization of the subsystem.

The potential improvement is most dramatic at
utilizations higher than 85 percent. This operating range
may be too high for normal use, however, because of the
very rapid increase in moves per write that occurs for
utilizations over 85 percent.

If utilizations in the range of 75 to 85 percent are
considered, most of the results presented in Figures 4 and
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5 appear to be at or a little below the number of moves per
write predicted by the linear model. For these storage
utilizations, the linear model, as given by (13), appears to
provide a serviceable “rule of thumb.”

6. Summary and discussion
The result just stated brings us full circle. Initially the
estimate

0.5
M= -1
1-u

05=su<l1

was introduced on the grounds that it represented the
simplest possible assumption about the pattern of updates
in the workload. We have now concluded that as a “rule
of thumb,”” this estimate comes fairly close to the truth for
environments with the scattered updates typical of database
I/O—even after accounting for a much more realistic model
of the pattern of updates and after applying a sophisticated,
history-dependent garbage-collection algorithm.

Our other key conclusion is that in such environments,
efficient operation of a log-structured disk subsystem
demands that no more than roughly 80 percent of available
storage capacity must be utilized (minus at least a small
buffer of reserve segments, as discussed in the subsection
on the generation group model). So long as storage
utilization is kept at this level or below, however, and so
long as an effective history-dependent collection policy is
adopted, log-structured subsystems should be capable of
the high write throughput pointed to by [3] as the motive
for the concept. Nevertheless, garbage collection will affect
the throughput achieved, by requiring an amount of data
movement that is quantified roughly by the above rule of
thumb.

It should be noted that traditional disk subsystems must
also ensure that some free storage is available, so that it
is always possible to allocate storage for new files (the
amount of such storage depends upon the size of ongoing
file allocations). Also, since a log-structured subsystem
writes all data objects into fresh segments, it can deal
easily with variations in data object size when updating
an old copy of a given data object. Such a subsystem
may therefore be capable of providing automatic data
compression {7, 8]. Thus, despite the effective loss of
storage capacity needed to ensure efficient operation, log-
structured disk subsystems may still, on balance, improve
upon the amount of data that can be stored on disk by
traditional subsystems.

It may be useful to conclude by considering the use of
log-structured files to supplement a RAID-5 disk parity
architecture. This scheme has recently been the focus of
much attention because of its introduction into the high-
end disk marketplace.
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The concept of a disk subsystem architecture using
Redundant Arrays of Independent Disks (RAID) was
proposed in 1988 by Patterson, Gibson, and Katz [9].

The key to the concept is the use of one or more disks to
contain enough redundant data to reconstruct the contents
of any disk should one fail. Several variations are defined
in [9], ranging from mirrored disks (RAID-1) to the
sophisticated rotating parity scheme of RAID-5. For
database or transaction-processing workloads, however,
RAID-5 appears to be the most attractive of these
variations.

In its standard form, the RAID-5 scheme calls for
several disks to be formed into a ““parity group.”
Corresponding locations of all parity group disks except
one contain stored data. The same location on one,
selected disk contains redundant (parity) information
needed for data reconstruction in the event of any single
disk failure. The various disks of the parity group rotate
the job of carrying the parity information for a given
corresponding location across the parity group, so as to
avoid placing too much load on any one disk.

The RAID-5 scheme for disk parity requires four
operations in order to carry out a write requested by the
host [9]: read data, read parity, write data, and write
parity. This is necessary so that the parity disk can
correctly account for the contents of all disks in the parity
group, including those not affected by the write. The fact
that four operations are needed per data object written,
compared with one operation in the case of a standard disk
subsystem, is called the RAID-5 write penalty.

If a write is performed simultancously to all the disks of
a RAID-5 parity group, by contrast, the storage control
needs no information from disk to set parity correctly.
Only a single operation is needed per data object written,
plus one write for parity update that can be overlapped
with the writes of the data objects.

It has sometimes been argued, for this reason, that by
building a log-structured file system on top of the RAID-5
architecture it is possible to eliminate the write penalty.
To accomplish this, each segment is defined so that it
includes corresponding areas on all disks of a parity group.
Therefore, all write operations are performed across a full
parity group and are free from the write penalty.

As we have seen, however, there is a complication
inherent in this idea. Although the write operation itself
can be performed without penalty, a segment’s worth of
free storage must first be garbage-collected. The number of
operations per write needed for garbage collection will
depend, as described in the earlier sections of the paper,
upon the workload and the utilization of storage.

Let us consider, then, the number of operations required
for the middle case of Figure 4, at various storage
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utilizations (where each read or write of a data object is
counted as one ‘‘operation’”):

e At a utilization of 70 percent, we require 0.87 moves per
write. Each move requires one read and one write; so
adding in the initial write of the object we get 2.74
operations. This is a substantial improvement over the
four operations required by the standard RAID-5 design.

e At a utilization of 80 percent, we require 1.42 moves per
write. This gives 3.84 operations per write, about the
same as RAID-5. (The rule-of-thumb estimate would
yield four operations per write, exactly the same as
RAID-3, for this utilization.)

e At a utilization of 90 percent, we require 3.16 moves per
write. This gives 7.32 operations per write, almost
double the requirements of RAID-5.

In making comparisons of this kind, it is important (but not
easy) to consider the efficiency of the operations. If reads
and writes are performed on a segment-wide basis, and are
not interrupted, a high efficiency can be achieved per data
object read or written in the segment. On the other hand,
segment-wide reads and writes for garbage collection
should be interruptible because of their background nature
and their long times to completion. At high subsystem
loads, interruptions would be frequent and would create
the potential for large amounts of waste motion.
Presumably, however, this effect can be controlled so as to
ensure reasonable efficiency of background operations
under high loads.

In any case, it is clear that we cannot eliminate the write
penalty of RAID-5 just by using a log-structured subsystem.
We can only change its form. At storage utilizations in the
range of 80 percent, the use of a log-structured subsystem
seems to have little effect one way or the other on the
RAID-5 requirement of four operations per write. With
suitable scheduling of background work, such files may,
however, improve the efficiency with which it is possible
to carry out the required operations.

DB2 is a registered trademark of International Business
Machines Corporation.
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