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A &k, d )  hyperpyramid  is  a  level  structure  of k 
hypercubes,  where  the  hypercube  at  level i is 
of  dimension id, and  a  node  at  level i - 1 is 
connected  to  every  node  in  a  &dimensional 
subcube  at  level i, except  for  the  leaf  level k. 
Hyperpyramids  contain  pyramids  as propy 
subgraphs.  We  show  that a  hyperpyramid P(k, d )  
can  be  embedded in  a  hypercube  with  minimal 
expansion  and  dilation = d. The  congestion  is 
bounded  from  above  by  r(2‘ - l)/dl and  from 
below  by 1 + r(2‘ - d)/(kd + 1)1. We  also 
present  embeddings of a hyperpyramid &k, d )  
together  with 2d - 2 hyperpyramids &k - 1, d )  
such  that  only  one  hypercube  node  is  unused. 
The  dilation of the  embedding is d + 1, with a 
congestion of O(2‘). A corollary is that  a 
complete  mary  tree  can  be  embedded  in  a 
hypercube  with  dilation = max(2, [los, “1) and 
expansion = (2krlo02n1+1 )(n - l)/(d+‘ - 1). 

Introduction 
Processor utilization and communication  time are  two 
important  considerations in selecting data  structures  and 
algorithms for computer  systems assembled from a large 
number of parts.  Communication is one of the most 
expensive  resources  to  be  considered in such a system, 
and  its efficient utilization is imperative. In studying  the 
efficient utilization of the communication system,  one  can 
model the communication needs of the  computations  with 

a graph, which is referred to  as  the guest graph [l]. This 
graph  describes  the interaction between  the  data  elements 
of the  computation,  where a node  represents a process  and 
an  edge  represents a  communication  need between  the 
two  connected  processes. Similarly, the topology of the 
computer  system is captured  by  the host graph. Each  node 
represents a processor  with local storage,  and  each edge 
represents a  communication  link between  processors. For 
the  purpose of planning the  execution of a computation 
represented  by  guest graph G on a  host represented  by 
host  graph H ,  an  embedding functionf is used to  embed 
G into H .  These graphs, as well as  other items discussed 
in this  section,  are defined formally in later sections. 

The embedding  function f maps  each  node in the  guest 
graph G into a  unique  node in the host  graph H ,  and  each 
edge in G into a path in H .  Let V(X) and E ( X )  respectively 
denote  the  node  set  and  the edge set of a graph X .  Let 
IS1 denote  the cardinality of a set S .  The expunsion of the 
mappingf is defined as I V(H)l/lV(G)/. It is  a measure of 
processor utilization. The dilution of the mapping  is 
defined as  the maximum  length of pathf(e,) for all e,  E 
E(G) ,  where e,.is mapped into  the  pathf(e,) in H .  The 
congestion of the mapping is defined as  the maximum 
number of guest-graph edges  sharing an edge in the host 
graph.  The slowdown of nearest-neighbor  communication 
in the guest  graph caused  by  edges being “stretched”  into 
paths of length greater  than 1 is generally  a  function of the 
dilation and  the congestion. Thus,  the general  goal of 
graph  embeddings  is, given a guest graph G and a  host 
graph H ,  to find an  embedding  function f that minimizes 

“Copyright 1994 by International Business Machines Corporation. Copying in printed  form for private use is permitted without payment of royalty provided that (1) each 

this paper may he copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republirh any other 
reproduction is done without alteration and (2) the Journal reference and  IBM copyright notice are included on the  first page. The title and abstract, but no other portions, of 

portion of this paper must be obtained from  the Editor. 

IRM J. RES. DEVELOP. VOL. 38 NO. 1 JANUARY 1994 C-T. HO AND S. L. JOHNSSON 



the dilation  and congestion. In this paper, we discuss 
embedding of pyramids and hyperpyramids, to be defined 
later, into hypercubes, with  minimal expansion and 
improved dilation  and/or congestion over previous results. 
Minimal expansion means that the hypercube host graph is 
the smallest one that has as many nodes as the given guest 
graph. 

Related to the embedding of pyramids is the embedding 
of meshes and trees. Embedding of meshes into 
hypercubes has been studied in [2-71. Embedding of trees 
into hypercubes has been studied in [3, 8-18]. Several 
parallel algorithms that naturally lend themselves to a 
pyramid  topology are discussed, for instance, in [19-231. 
Multigrid  algorithms for partial differential equations [24] 
and certain algorithms for image processing [22] are 
specific examples. The  embedding of pyramids into 
hypercubes was first studied by Stout [25]. He proved that 
there exists an embedding  with  dilation = 1 of  an M-node 
pyramid into an N-node hypercube with N << M ,  if 
"IN pyramid nodes are mapped into every hypercube 
node. Stout also showed that for a one-to-one mapping 
from a pyramid to a hypercube, minimal expansion and 
dilation = 2 is possible. Lai and  White [26] gave  embedding 
algorithms  with  dilation = 2 and congestion = 3, or 
dilation = 3 and congestion = 2 (both with  minimal 
expansion). We  give  an embedding  with  dilation = 2, 
congestion = 2, and  minimal expansion. We also 

some of their properties. The section on embedding 
hyperpyramids into hypercubes contains the main results, 
and the final section summarizes the paper. 

Preliminaries 
Let 0" denote a string of m 0-bits, and let 1" denote a 
string of m 1-bits. Let j m  be the mth bit of the binary 
representation of j ,  with the least significant  bit  being the 
0th bit. Let x{") = x C3 lo", i.e., x with the mth bit 
complemented. We use (x ly)  to denote the concatenation 
of two strings x and y .  In the next two subsections, we 
define a few metrics used for graph embedding, and define 
a few relevant graphs and their related properties. 

Graph embeddings 

Definition 1 An embedding f of aguest graph, G ,  into a 
host graph, H ,  is a one-to-one mapping  from V(G)  to 
V(H), combined  with a mapping of the edges of E(G) into 
simple paths in E(H)  so that if e ,  = ( i ,  j )  E E(G) ,  then 
f (e,) is a simple  path in H with endpointsf(i)  andf ( j ) .  
The expansion of the embedding f is 

IVOI *,=- IV(G)I . 
Let E[f (e,)]  denote the set of edges in the pathf (e,) .  

generalize such an  embedding to embeddings of 
hyperpyramids into hypercubes with  minimal expansion 
and  with  dilation = d .  Hyperpyramids of order d are 

Definition 2 The dilation of  an edge e ,  E E(G) is the 
length of the path f (e,):  

graphs in which each nonleaf node has 2d children, and the dil (e ) = I E [f(e,)II. 
nodes at the same level  form a hypercube (instead of a 
mesh). The dilation of the embeddingf is 

~~ 

f G  

Lai and  White [27] also gave an  algorithm for embedding 
a pyramid  and two smaller pyramids (each with 
approximately a quarter of the size of the larger pyramid) 
into a hypercube, with expansion = 1, dilation = 3, and 
congestion = 6.  We improve the result to expansion = 1, 
dilation = 3, and congestion = 3.  The result is generalized 
to the embedding of one hyperpyramid with  minimal 
expansion, and the embedding of 2' - 2 smaller 
hyperpyramids into the same hypercube, with a total 
expansion = 1 and a dilation of d + 1. 

different  from that of Lai and  White  for both single  and 
multiple (hyper)pyramid embeddings. Furthermore, a 
recent work by Ziavras et al. [28, 291, who implemented 
on a CM-2TM parallel system various known embeddings of 
pyramids into hypercubes, including ours and that of Lai 
and  White, observed that a small improvement (such as 
from 3 to 2) in congestion or dilation sometimes implies 
significant improvement in performance. 

In the next section, we introduce the notation used in 
32 the paper, define pyramids and hyperpyramids, and  give 

Note that the technique used in our embeddings  is quite 

dilf(G) = max dilf(e,). 

We sometimes also consider dilation of a set of edges S as 

dilf(S) = max dilf(e,). 

Ve, E E(,) 

V e c € S  

Definition 3 The congestion of an  edge e, E E(H) ,  
cong, (e,), is the number of edges in G mapped to paths 
that include e,; i.e., 

cow,(e,) = 2 I{e,) n E [f(e,)Il. 
V e, E E(,) 

The congestion of the mapping f is 

cong, = max cong, (e,). 
V e, E E(H) 

Graph definitions 
A mesh  is a rectangular array of nodes, with edges 
connecting adjacent nodes. 
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Level 

Apex 0 

Base 

1 

2 

Intuitively,  a P(k,  I , ,  f , )  pyramid is made up of the 
graphs M(IP, I:) through M(Z:, I,"),  with  each  node having 
I ,  X f 2  children, except  nodes  at level k .  Node ( i ,  x,,  x 2 )  
E V [ P ( k ,  I , ,   I , ) ]  is at level i. The  node at  level 0, 
(0,  0, O), is called the apex, or  the root of the pyramid. The 
nodes  at level k are leaf nodes, and the mesh at level k ,  
M(Z:, I; ) ,  is the base of the pyramid.  Clearly, P(k,  I , ,  I , )  1 

is  isomorphic  to P ( k ,  I , ,   I , ) .  Figure 1 shows  the topology 
of the pyramid P(2,  2 ,   2 ) .  It  can  be  viewed  as a complete 
quad-tree  with  nodes  at  the  same level  being connected 1 

as a  mesh. 

0 

The number of nodes in a pyramid  is 0 

and  the  number of edges is 

,=l 

Definition 6 A d-dimensional hypercube,  denoted Q d ,  

has 2d nodes.  Each  node  can  be assigned  a binary string of 

they  are  determined in the  same  way. For clarity,  we  also 
omit edges of high dimensions in subsequent figures. 

length  d as a  unique address,  such  that  any two nodes  are 
connected through an edge if and  only if their addresses Definition 7 The k-level hyperpyramid of degree d ,  
differ in exactly  one bit. denoted P ( k ,  d ) ,  is defined recursively as follows. 

hypercube  nodes in subsequent figures are omitted, but  constructed from 2d hyperpyramids P(k  - 1, d)  by first 33 
Figure 2 shows  the  hypercube Q4. The  addresses  of P(0, d )  is the  root node. The hyperpyramid P(k ,  d )  is 
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interconnecting corresponding nodes in each of these 
hyperpyramids as d-dimensional hypercubes, and then 
creating a new root node  and connecting it to every root of 
the hyperpyramids P(k - 1, d ) .  

The nodes of hyperpyramid P ( k ,  d )  are given addresses 
( i ,  j )  such that i identifies the level (0 I i I k )  and j 
identifies one of the 2jd nodes at that level. Here, j is a 
binary number of length id. If i z 0, node (i, j )  connects 

34 to a parent node (i - 1, j 8 , - ,  j t d - 2  j,), and, if i f k ,  

to 2 ,  children nodes with addresses { ( i  + 1, j l * d - l  
* d - 2  * *,,)}, where *m = 0 or 1 for all 0 s m < d .  
(Recall that ‘‘ I ” is the concatenation operator.) The 
second argument of the parent address ( j t d - l  j id-2 - * * j,) is 
obtained by removing the d lowest-order bits fromj. The 
second arguments of the child addresses ( j l *d- ,  * d - 2  * * *,,) 
are obtained by appending d-bit binary strings to j .  These 
edges form the “tree edges” of the hyperpyramid. In 
addition there are id “cube edges” connecting node ( i ,  j )  
to nodes ( i ,  j c m ) )  for all 0 I rn < id. (Recall that j‘”’ is 
j with the mth bit complemented.) 

Figure 3(a) shows the topology of the hyperpyramid 
P ( 2 ,  2). Note that id bits are used for the second 
arguments of the node addresses at level i. The second 
argument of the root node is a null string, which  is 
represented by B. Figure 3(b) gives another view of the 
same hyperpyramid. 

We use the hyperpyramid as an intermediate graph in 
embedding a pyramid into a hypercube. For the purpose of 
embedding,  it  is  more convenient to assume that each 
mesh  plane of a pyramid is a hypercube. Note that 
introducing the intermediate graph does not increase the 
dilation of our embedding. Furthermore, for certain 
multilevel  algorithms  on a domain of three dimensions 
or higher, the guest graph can  be characterized by a 
hyperpyramid but not by a pyramid. Thus, hyperpyramid 
embeddings  give this flexibility. 

Proposition 1 A hyperpyramid P ( k ,  d) contains a 
pyramid P(k, 2’, 2 d ” ) ,  for all 0 s j 5 d ,  as a subgraph. 

Proof We  define a one-to-one mapping  from the node set 
of P(k,  2’, 2 ,”)  to the node set of P(k,  d) as follows. 
Each node ( i ,  xl, x2) in P(k,  2’, 2 ,”) ,  where 0 I i 5 k ,  
0 I xI < 2’, and 0 I x2 < 2d”,  is mapped to a unique 
node [i, g,(x,)1gd-j(x2)] in P ( k ,  d), where gj(x) is the 
binary-reflected Gray code of x in j bits. It is 
straightforward to verify that any two neighboring 
nodes in P(k,  2’,   2,”) are mapped to adjacent nodes 
in P(k,  d ) .  w 

pyramid P(k,  2 ,   2 )  as a subgraph. In the following  we 
consider only the embedding of hyperpyramids into 
hypercubes. 

We use Definition 7 in specifying embedding functions, 
f, and  proving  their properties with respect to dilation and 
congestion. Hyperpyramids can also be defined recursively 
by adding a hypercube Qkd to a hyperpyramid P ( k  - 1, d). 
The hyperpyramid P ( k ,  d) is obtained by connecting 
each node in Qkd to a (parent) node in the base of the 
hyperpyramid P ( k  - 1, d ) .  Such a definition emphasizes 
the fact that hyperpyramids can  be  viewed as a sequence 
of hypercubes of linearly increasing dimensions, with a 
tree structure connecting them. 

A corollaly is that a hyperpyramid P(k,  2 )  contains a 
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The number of nodes in a hyperpyramid P(k,  d) is 

and the number of edges is 

k k 

IE[P(k, d)]J = 2 id2'd" + 2id.  
i = l  ,=1 

In the formula for the number of edges, the first term 
accounts for the edges at the levels and the second term 
accounts for the edges between the levels. From Figures 1 
and 3(a), it  is clear that a pyramid P(2,  2,   2 )  with 
wraparound edges added to the mesh at level 2 is 
topologically equivalent to a hyperpyramid P(2 ,   2 ) .  This 
is because a 4 X 4 torus is topologically equivalent to the 
hypercube Q4 (and, in general, a d-dimensional torus of 
form 4 X 4 X X 4 is  topologically equivalent to the 
hypercube Q,) . 

Embedding hyperpyramids into hypercubes 
The main results of this paper are the following: 

1. A hyperpyramid P ( k ,  d), with d L 2, can be embedded 
into the hypercube Qkd+l,  with expansion <2 and 
dilation = d. The congestion is  bounded  from  below 
by 1 + [(2d - d)/(kd + 1)1 and  from above by 
[(2d - l)/d]. 

2. A hyperpyramid b(k, d )  together with (2d  - 2)  
hyperpyramids P(k - 1, d ) ,  d L 2, can  be  embedded 
into a hypercube Qkd+l with expansion = 1 (only one 
hypercube node is not used) and  dilation = d + 1. 
The congestion is at most 0 ( 2 d ) .  

These two embeddings are described in the next two 
subsections. For the purpose of  defining embeddings based 
on induction, we use a two-rooted hyperpyramid defined 
next. 

Definition 8 A two-rooted hyperpyramid &k, d) is a 
hyperpyramid P(k,  d) with  an  additional root node and 
additional edges between the additional node and  all nodes 
at level 1. The  two roots are denoted (0, E )  and ( O ' ,  E ) ,  

respectively. 
Since the two roots  are symmetrical, either one can 

serve as the root of the hyperpyramid. One of the two 
roots will be a node at level 1 after the induction step. This 
root is called the real root. The other root will either serve 
as one of the two  new roots or become  unused after the 
induction step. This root is called the spare root. There is 
no edge between the two roots according to Definition 8, 
but the embedding functions presented below  always  map 
the two roots to adjacent hypercube nodes. The  idea of 

using two roots for the recursive construction of tree 
structures has been  used before by Bhatt and Leiserson 
[30], for instance, in constructing a complete binary tree 
out of "chips" containing smaller trees, and  by Bhatt and 
Ipsen [12]  in embedding a complete binary tree into a 
hypercube. 

Embedding a hyperpyramid into a hypercube 
In this subsection, we  give an embedding of P(k,   d) into 
Qkd+l with  dilation = d and congestion = [ ( 2 d  - l)/dl. 
We also show some lower bounds in dilation  and 
congestion over all  possible  embeddings.  We  define the 
embedding by induction and prove the upper bounds on 
dilation  and congestion of our  embedding, also by 
induction. Although the upper  bound of dilation  itself  can 
be derived  using a much  simpler  proof, such as one based 
on Equation (l), which  is  given later, the inductive step in 
the next theorem is required for  proving the bound on 
congestion. 

Dilation 

Theorem 1 A hyperpyramid P(k, d), with d 2 2, can be 
embedded into a hypercube Qkd+l with  dilation = d .  

Proof Instead of considering the embedding of a 
hyperpyramid P(k, d ) ,  we consider the  embedding of the 
corresponding two-rooted hyperpyramid P(k,  d). The 
dilation  for the two-rooted hyperpyramid is an upper 
bound on the dilation for the corresponding hyperpyramid 
with a single root, as the latter is a subgraph of the 
former. We  define a function f k ,  which maps a two-rooted 
hyperpyramid P(k,  d) into hypercube Qkdtl, with  dilation 
= d, by a recursive construction on k and prove the 
theorem by induction. The induction hypothesis is that 
for k 5 n, a two-rooted hyperpyramid P(k,  d) can be 
embedded by fk into a hypercube Qkdtl with  dilation = d 
and the two roots mapped to adjacent hypercube nodes. 

Basis Fork = 0, the two-rooted hyperpyramid P(0, d), 
which consists entirely of the two root nodes, is mapped  to 
adjacent nodes in hypercube Q,: 

f&O, E )  = 0 and f,(O', E )  = 1 

Induction Assume that there exists an embedding 
functionfn that satisfies the induction hypothesis. In order 
to embed a two-rooted hyperpyramid P(n + 1, d) into a 
hypercube Q(n+l)d+l, we consider the hypercube Q ( n + , ) d + l  

to be composed of 2 d  copies of hypercube labeled 
0, 1, * , 2d - 1. Apply f, to the embedding of each 
two-rooted hyperpyramid P ( n ,  d) into a hypercube 
We use a superscript to  distinguish nodes of different  two- 
rooted hyperpyramids &, d) mapped to distinct 35 
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hypercubes The  following rules define the 
embedding functionfn,, in terms offn, for each hypercube, 
where 0 I e < 2d and j is a binary  string of length (i - 1)d. 

fn+l(O' E )  = f , [ (O ,  E)OI, 

fn+l(o" E )  = 4 2 d - 1 1 ,  

fntl(i ,  e1.d = f , [ ( i  - ~ J ' I  i > 1. 

The  first two equations define the two  new roots. [The  two 
roots can  be chosen from the spare roots of any two 
adjacent hypercubes. We choose hypercubes 0 and 2d" 
thus; the two roots are mapped to hypercube addresses 
(00 * * 0) and (10 . 0), respectively.] The  third equation 
defines nodes at level 1. The last equation defines nodes at 
lower levels, where e and j are binary strings of lengths d 
and i d ,  respectively. Figures 4 and 5 show the embeddings 
for P( 1, 2)  and p( 1, 3), respectively. 

Given any two binary strings x and y , let HA(x,  y) be 
the Hamming distance between x and y ,  and  let W(x) 
denote the number of 1-bits (Hamming weight) of x; i.e., 
W(x) = HA(x, 0). For all 0 I j < 2d and 0 I m < d ,  
we have the following properties: 

2. H A [ f n + l ( O ' ,  ~ ) , f " + ~ ( l ,  j ) ]  I d :  The  proof  follows the 

3. HA[fn+,(l, j ) ,  f,,,,(l, jc))] I 2: The distance is 1, 
preceding proof. 

except if m f d - 1 and j = 0 or 2d-' ,  for which the 
distance is 2. 

4. HA[f,,,(O, E ) ,  fn+l(o" 4 1  = 1. 
5. The Hamming distance between corresponding nodes of 

6. The  dilation of each edge in P ( n ,  d )  is  unchanged in the 
adjacent hypercubes is 1. 

new  embedding. 

The induction hypothesis follows  from these properties. 
By substituting fk recursively as defined by the induction 

rules, an explicit expression for f k  is obtained: 

("*"' 
i = 0, 

h ( i , j )  = lokd i = Of,  (1) 
j d ( k - 0 4  I s i l k ,  

where x = 1, if j d - 2  j d - 3  * * * j ,  = 0; and x = 0, otherwise. 
The expansion of the embedding function fk is less than 2 
(except for k = 0). Figure 6 shows the hypercube 
addresses of the nodes of the hyperpyramid 8(2 ,  2 ) .  

we  first  need a proposition on the diameter of k ( k ,   d ) .  
We  now derive a lower bound on the dilation; however, 

1. HA[f,,,(O, E ) ,  fntl(l, j ) ]  I d ,  demonstrated as follows: 
Proposition 2 The diameter of P ( k ,  d )  for d 2 2 is 2k. 

~ I f , + l ( O ~  E ) ,  f,+,(L j)l = 
Proof Any two nodes x and y in P ( k ,   d )  are within a 
distance of 2k, as one can define a path starting from x, 

I traversing up to the root node  and traversing down toy  
HA{&[(@ E)O1,f,[(o, E)']} = W ( j )  < d i f j  f 0 and  within 2k steps. Thus, the diameter is at most 2k. We  now 

j f 2d", show that the diameter is at least 2k. Consider the two 
I 

I " 4 { f , [ ( O ,  4°1,fnr(o', .)"I) = 1 i f j  = 0, nodesx = ( k ,  O k d )  and y = (k ,  l k d ) ,  which are at the 
bottom level of P(k ,  d ) .  Consider any path  between x and 

36 HA{&[(O, 4°17fn[(o', 42d-111 = 2 i f j  = zd". y ,  and let h be the number of the highest  level in P ( k ,   d )  
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that  the  path  has touched.  Clearly,  the  path must  contain 
at  least 2(k - h )  edges in traversing  up  and  down. 
Furthermore,  there  are hd hypercube  dimensions  that 
remain to  be  traversed, which requires  at  least hd edges. 
Thus  the  path  has a length of at  least 2(k - h )  + hd 
= 2k + h(d - 2) ,  which  is minimized to 2k when h = 0 
(recall that d 2 2 ) .  I 

Proposition 3 A lower bound for  the dilation of any 
embedding of a P ( k ,  d )  hyperpyramid  into  the smallest 
hypercube having  enough nodes, Q, ,  is d / 2 .  

Proof From Proposition 2, the  diameter of a 
hyperpyramid &k, d )  is 2k.  The smallest cube Q, that 
is  large  enough to hold a hyperpyramid P ( k ,  d )  has 
n = kd + 1 dimensions. Since  the  hyperpyramid  contains 
more  than 2"" nodes,  there exist two  hyperpyramid  nodes 
that  are mapped to  hypercube  nodes  at a distance of at 
least n - 1 in the  hypercube Q,.  Consider  any  shortest 
path  between  these  two hyperpyramid nodes. Let  the length 
of the path be e. Clearly, e 5 2k. Edges on the  path will be 
stretched in the embedding, so that all e edges  together are 
stretched  into  the  path of length 2 n - 1 in the hypercube 
Q,, Thus, at least one of these e edges  is  stretched with 
dilation 2 (n - l)/e P (n - 1)/2k = d/2.  I 

Congestion 
Here,  we  derive  upper  and lower bounds for the 
congestion. For  the  upper bound  derivation, we  need  the 
two  lemmas given  next. 

Lemma 1 There  exists a spanning tree in Q,  such  that 
each  subtree of the  root is of size  at  most C(2" - l)/n1. 

Proof Such a spanning  tree  is  constructed  by modifying 
the  spanning  balanced  n-tree in Q, ,  denoted T ,  defined in 
[15, 161. First, all cyclic  nodes in T, which are all leaf 
nodes, are removed. The remaining tree,  denoted T ' ,  has 
n subtrees isomorphic to  one  another. All the removed 
cyclic  nodes  are organized  according to  sets (degenerated 
necklaces) so that  two  nodes  are in the  same  set if the 
address of one  node  can  be derived by rotating the  address 
of the  other.  Then,  the cyclic nodes  are  added  back  to T', 
one  set  at a time  in a round-robin  manner, starting  from 
subtree 0. It is easy  to  show  that  any  degenerated  set of k 
nodes  can  be  added  to  any k consecutive  subtrees (in a 
cyclic manner) in T' so that  each  added  tree  edge  is  also a 
hypercube edge. Thus,  when all cyclic nodes  are  added 
back  to T' ,  each  subtree  has  at most r(2" - l)/nl 
nodes. I 

Lemma 2 A 2"-node flat tree (i.e., a root  with 2" - 1 
children) can  be  embedded in a hypercube Q ,  with 
congestion I ((2" - I)/nl. 
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Hypercube addresses of the nodes of an embedded hyperpyramid 

Proof Denote  the flat tree  by T and the  root of T by r .  
From  Lemma 1, one  can  create a spanning  tree, denoted 
T ' ,  in Q,  so that  each  subtree of the root has  at  most 
r(2" - l) /nl  nodes. Then,  embed  the flat tree T into 
the spanning tree T' , which in turn is mapped to Q ,  . 
Furthermore,  stretch  each  edge ( r ,  i )  in T into a path 
corresponding  to  the path in traversing from node r toward 
node i in T ' .  Thus,  the congestion of any edge in T is 
less  than  or equal to  the maximum number of nodes 
in any  subtree of the root in T ' ,  which is at  most 
[(2" - l)/n]. I 

We  are  now  ready  to give an upper bound on  the 
congestion. 

Theorem 2 An upper bound of the congestion  for an 
embedding of P ( k ,  d )  with dilation = d into Q k d + l ,  
f o r d  B 2,  is [ (2d - l)/d]. 

Outline ofproof The proof can  be performed by 
induction based  on  the following arguments. The maximum 
edge congestion is caused  by  the hyperpyramid edges 
between  the  root  node  and  its 2d children. (Note  that in 
considering the congestion, we  need  not  consider  the  spare 
root.) Among the 2d children, 2d - 2 are in a hypercube 
Q d .  The  other  two children are neighbors of the  two  roots 
but  are not contained in the  hypercube Q d .  The  two  roots 
are in the  same  hypercube Qd as  the 2d - 2 children. By 
Lemma 2, the congestion caused  by  the  edges  between 
the real  root and  its children in the  hypercube Qd is 
bounded from above  by r(2d - l ) / d ] .  We route  the 
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1 Basis for induction in Theorem 3: A two-rooted  hyperpyramid 
po(l, 2), a  hyperpyamid PJO, 2), and  hyperpyramid p , ( O ,  2) 
embedded in hypercube Q3, with dilation = 3. 

d - 1 paths with  length = 2 from node (1, 0) or ( 1 ,  2d") 
to its d - 1 neighbors through an unused hypercube node. 
The path between nodes (0, E)  and ( 1 ,  2d") is routed 
through  node ( 1 ,  0). Note that the congestion of the edges 
in the hypercube Qd does not increase during the next 
induction step. I 

A simple lower bound can be derived as follows. 

Proposition 4 A lower  bound of the congestion for any 
embedding of a hyperpyramid &k, d )  into a hypercube 
Qkdtl is 1 + [ (2d - d)/(kd + 1)1. 

Proof  The nodes at level k - 1 of a hyperpyramid 
p ( k ,   d )  have degree 1 + (k  - l )d  + 2 d .  The degree of a 
hypercube Qkdtl  is kd + 1. Thus, a lower bound of the 
congestion is 

1 k d + l  [ 2 d  - d ]  k d + l .  

1 + (k - 1)d + 
= 1 +  - I 

As a corollary of Theorem 2, we have an  embedding of 
b ( k ,  2 )  into Qzktl with  dilation = 2 and congestion = 2. 
As a comparison, the embeddings of pyramid P(k, 2 ,   2 ) ,  
which is a subgraph of hyperpyramid &k, 2 ) ,  into 
given in [26] have dilation = 2 and congestion = 3, or 
alternatively, dilation = 3 and congestion = 2.  

Embedding  multiple hypepyramids into a hypercube 
Even though  minimal expansion (i.e., expansion <2)  is 
achieved in the embedding described in the preceding 
subsection, 2d - 2 hypercube nodes are not used in each 
induction step. It is possible, however, to embed a k ( k ,   d )  
hyperpyramid and 2d - 2 smaller hyperpyramids 

38 P ( k  - 1, d )  into a hypercube Qkdtl at the same time, 

so that only one hypercube node is  not  used.  In this 
subsection, we present such an  embedding  with  dilation = 
d + 1 and congestion = 2d + [ (2d - l ) / d ]  + 1 .  As 
before, the inductive  construction  given in the  next  theorem 
is  mainly required for bounding the congestion later. 

Dilation 

Theorem 3 A hyperpyramid P ( k ,  d )  together with 
2d - 2 hyperpyramids &k - 1 ,  d ) ,  k 2 1 and d 2 2,  
can be embedded in Qtdtl with expansion = 1  (only one 
hypercube node is  not used) and  dilation = d + 1. 

Proof  In the following, the subscripts on B, P, 
and the node identifiers are used to identify different 
hyperpyramids and nodes therein. For notational 
convenience, we let (0, E)* denote (0', E ) ~ .  For the proof, 
we consider a two-rooted hyperpyramid p(k ,  d )  and 
2d - 2 hyperpyramids P(k - 1 ,  d )  (with  single roots). 
Let the embedding function be&. The proof is by 
induction, and the hypothesis is that the following two 
conditions hold for 1 < k I n:  

1. A two-rooted hyperpyramid po(k, d )  and 2d - 2 
hyperpyramids p j (k  - 1, d ) ,  2 I j < 2 d ,  k B 1 and 
d 2 2 ,  can be embedded in a Qkdtl hypercube, with 
dilation = d + 1. 

2. HA{fk[(O, ~ ) , ] , f k [ ( O ,  E ) ~ W ] }  = 1 for all 0 I x < 2 , 
0 I m < d ;  i.e.,  all  of the Z d  roots are mapped to a 
subcube Qd in the hypercube Qkdtl, and the two roots 
of Bo are mapped to adjacent hypercube nodes. 

d 

Basis For k = 1 ,  the two-rooted hyperpyramid 
po(l, d )  contains the roots (0, E ) ~  and (0, E),, and the 
base Qd [ ( l ,  j )  0 I j < 2 d ] .  For each of the 2d - 2 
hyperpyramids Px(O, d ) ,  x E (2 ,  3, * , 2d - I}, 
Px(O, d )  is the root node.  Define f, as 

6[(0, E ) ~ ]  = j J O  o I j < 2', 

~ [ ( l ,  j)o] = jll o I j < 2d.  

It is easily seen that fl satisfies the two conditions of 
the hypothesis. Figures 7 and 8 show the embedding for 
k = 1, with d = 2 and d = 3, respectively. 

0 '* 

Induction Assume that the mapping f, satisfies the above 
two conditions. Consider a hypercube Q(n+l)dtl with 
hyperpyramids embedded by the function fn in each of the 
2d copies of hypercube end+,. We definefntl in terms off, 
by the following rules, where 0 I t? < 2d and j is a binary 
string of length (i  - 1)d: 

R1: f,,,[(O, E ) ( ]  = f,[(o, E),$, 

R2: f , + J ( L  t)ol = f,[(07 4 1 ,  
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~ 3 :  W o 1  = f , [ ~  - 1 9 j ) 3   2 5 i s n + l ,  

R4: f , + l [ ( i ?  eIj),l =f ,[ ( i  - l,j):ay(e,,,] 1 5 i 5 + 1, 
2 5 x < 2d. 

The symbol @ represents the bitwise exclusive or. The 
d-bit string y(e, x) = ( y d - ,  yd-,  yo) is determined 
from e and x as follows: for 0 5 rn < d - 1, if ern = 0 
andxd-, xd-, * f 0, then y, = 1; otherwise 
y, = 0. The superscript e identifies nodes of different 
hyperpyramids mapped to distinct hypercubes end+,, as 
before. Thus,f,[(i, j),e] = elf ,[(i ,  j),]. By R1 of the 
recursive definition above, we select the root (0, E ) ~  of 
po(n, d)  to be the spare root. In the induction, 2d 
hypercubes with embedded hyperpyramids are used to 
form a new  embedding. The number of spare roots in the 
2' hypercubes is 2'. Two of them serve as the two new 
roots of po(n + 1, d), and the remaining 2' - 2 spare 
roots  serve as the new roots of the 2d - 2 hyperpyramids 
&, d), one for each. [For notational convenience, we 
choose the two new roots of p(n  + 1, d) from hypercubes 
0 and 1, instead of choosing from hypercubes 0 and 2d" 
as in the subsection on embedding a hyperpyramid into a 
hypercube.] By R2, we select (0, E), as the real root of the 
two-rooted hyperpyramid po(n, d) in each hypercube 
end+,; i.e.,  it becomes a node at level 1 of the 
hyperpyramid Po(. + 1, d). R3 moves nodes of po(n, d) 
at level i - 1 to nodes of p0(n + 1, d) at levels i 2 2. 
R4 moves nodes of the hyperpyramids p x ( n  - 1, d), 
2 5 x < 2 d ,  at level i - 1 to nodes of the hyperpyramids 
i),(n, d) at level i. Note that R4 is complicated by the 
exchange between adjacent hyperpyramids as defined by 
y. For example, ford = 3 and e = 0, y = 001, 001, 011, 
011, 011, 011 forx = 2, 3, 4, 5, 6, 7, respectively. 
The naive  embedding without exchange, i.e., y = 0, 
would have dilation = 2d  for some hyperpyramid. 

Figure 9 shows the induction step of the naive 
embedding (y  = 0), for d = 3. In general, the dilation 
ranges from d + 1 to 2d ,  depending on the hyperpyramid. 
With the exchanges defined  by y, the embedding is shown 
in Figure 10. The exchange is indicated by two-way 
arrows. 

We  now prove that the recursive definition  is  "well- 
defined,"  by  which  we  mean that iff,, l[(i, elj),] = 
fntl[(i', e'lj'),,],  thenx = x ' ,  i = i', e = e' ,  and j = j ' .  
This is obvious if y ( t ,  x) = 0. With y a nonzero function 
of e andx, it suffices to prove thatfn+l[(i, t ' ( j ) x , Y ( e , x ) ]  = 

fJ(i - 1, Axel. Fm"l R4, we havef,,[(i, ~ l i ) x , Y ( e , . ) l  = 

fA(i - 1, y(t ,  e YIe, x 8 y(e ,  4 1  }. Thus, we  simply prove 
that y(e, x) = y[e,  x @ y(e, x ) ] .  This  is true by  Lemma 
3, shown later. 

We  now prove that the recursive definition satisfies 
the induction hypotheses. Condition 2 of the induction 
hypotheses is preserved because of R1 in the definition  of 
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i Basis for induction in Theorem 3: A two-rooted  hyperpyramid 

$ ded in hypercube Q4, with dilation = 4. [Note that node (0, E ) ~  is 
I ~ 0 ( 1 ,  3) and six hyperpyramids pj(O, 3), j E (2, 3 ,  ..., 7}, embed- 

identical to node ( O ' ,  E ) ~ . ]  

f,,,. In order to prove that condition 1 holds for k = n + 1, 
we partition the newly  formed hyperpyramid edges into 
three disjoint sets, S,, S,, and S,, by a definition  similar to 
the one used in the proof  of Theorem 3. First, the dilation 
of edges in S, is preserved. We prove that the dilation of 
edges in S, is either 1 or 2 by considering the Hamming 
distance betweenfntl[(i, e(j),] andLtl[(i, e{m'(j),]: 

fnt1[(i9 elj).] =f,[(i - ~ j ) * 0 , ~ ~ ~ , ~ , ]  

= elf,[G - l,J)xer(e,XJ. 

. e04 
L+J(~? e{m'Ij)x~ = f,[(i - 1 

= e'm'lf,[(i - 1, j), , y(e{m), 

Let y (e ,  x) = y .  Then, from the definition of y(e,  x), one 
can derive y(e{" ' ,  x) = y or y c ) .  Thus, the dilation in S, 
is either 1 or 2. A dilation of 2 occurs when there is 
an exchange operation involved in one side of the 
hypercubes. To determine the edge  dilation in SI, we 
consider subsets SI,, the edges between nodes at level 1, 
and SI,, the edges between nodes at level 1 and the roots. 
The edge  dilation in S,, is either 1 or 2, for the same 
reasons the dilation of edges in the set S, is at most 2. 
For the edge  dilation in SI,, consider HA{f,,,[(O, E ) ~ ] ,  

fntl[(l ,  e),]} ,  which  is W(e) + 1 5 d + 1, i fx  = 0 or 1. 
For x f 0 and x f 1, f , , ,[(O, E),] = f , [ (O ,  E),"], and 

distance is W [x @ y (e, x)] + W(x @ e), which  is at most 
d + 1 by Lemma 4, shown  later. 

To complete the proof  of the above theorem, we 
prove the next two lemmas, which were used in the 
theorem. 39 

fn+1[(17 e),] = f , [ (o ,  ~ ) ~ ~ , y ( e , ~ ) ] -   ~ h u s ,  the Hamming 
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Induction step of the naive embedding ( y  = 0). for d = 3.  The dilation is 6 .  

Lemma 3 y ( e ,  x) = ?[e, X @ y(e, X ) ] .  . If ( X ~ - , X ~ - ~  * - x,,,) = 0, then ym = 0 and 

Proof Let y = y(C, x) and y' = y ( e ,  x @ y). Then, 
we  must prove that y: = y, for all 0 I m I d - 1. Let 
x' = x @ y. From the definition of y in the proof of 
Theorem 3, we  have the following: 

If ern = 1, thenyrn = y; = 0. ( X ; - , X ; - ~  * *x;+,) f 0. Thus, 7; = 1. Therefore, 

(yd-1 Yd-2 ' '  ' Y m + 1 )  = (x:-l xA-2  * 

= 0; i.e., y; = 0. Therefore, y, = 7;. . If (xd-lxd-z - * -x ,+ , )  f 0, then ym = 1. Let x, be 
the leading nonzero bit of x, where m + 1 5 r I 
d - 1. Then, y, = 0, andx; = x, @ y, = 1; i.e., 

40 If em = 0: Y, =r;. 
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Lemma 4 W[x @ y(e, x)] + W(x @ e)  5 d + 1, Let x, be  the leading nonzero bit of x (r = -1, if x = 0). 
where 2 5 x < 2 d ,  0 5 < 2 d .  Consider  any m such  that x, @ 8, = 1. There  are  three 

Proof We  prove  this lemma by showing that 
cases: 
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m = r: x, = x, = 1. Thus, e, = 0 and y, = 0 
(sincex,-,x,_, *xmtl = 0). We have (x, @ 7,) + 
(X, e,) = 2. 

(X, e,,,) = 1. 

m > r: x, = 0, since x, is  the leading nonzero  bit. 
Then, e, = 1, and y, = 0. We have (x, @ y,,,) + 

In summary, for any rn such  that x, @ e, = 1, we  have 
(x, @ 7,) + (x,,, @ e,) = 1, except  for m = r ,  for  which 
(x, @ 7,) + (x, @ em) = 2. For  any rn such  that 
x, @ e, = 0, we  have (x, @ y,) + (x, @ em) 5 1. 
Therefore, 

Congestion 
We  now  show  that  the congestion for  the embedding 
defined in Theorem 3 is at  most 2, + [(2d - l)/d] + 1. 
First,  we need the following  lemma. 

Lemma 5 A 2"-node  complete  graph  with all edges 
duplicated can  be  embedded  into a hypercube Q,, with 
congestion equal  to  2". 

Proof' Since all edges in the  complete graph are 
duplicated, one  can  decompose  the  edges of the  complete 
graph  into  sets E,, for 0 I i < 2", so that  the graph 
G, = (V, E,) forms a 2"-node flat tree  rooted  at  node i .  
(V is the node set of the  complete graph.) One  can  embed 
the flat tree G, into  the spanning binomial tree (SBT) [15] 

Peter F. Corbett, personal communication, IBM Research Division, October 7, 
1991. 

C:T. HO AND S. L. JOHNSON 

42 

rooted  at node i in Q,. (A spanning binomial tree  rooted 
at  node i in Q,is constructed  by running the well-known 
recursive doubling  algorithm  spanning hypercube 
dimensions in the  order 0, 1, * * * , n - 1.) It is easy  to 
show  that  any  edge in  dimension j has 2''' spanning trees 
passing  through  it, and  the  subtree  connected through the 
edge in each spanning tree  is of size 2""". Thus,  the 
congestion of any  edge in  dimension j is 21" X 2""" 
= 2". I 

Theorem 4 The  congestion for the embedding in Theorem 
3 with dilation = d + 1 is 2d + [(2d - l)/dl + 1. 
Outline ofproof For  the  sake of brevity, we give an 
outline of an  inductive  proof. We let  the  path from (0, E), 

to (1, j ) i  pass through an intermediate node (0, E ) ~ .  For 
example, in Figure 10, the path from (0, E ) ~  to (1, 4)3 is 
defined to  go through the  intermediate  node (0, c)~ .  For 
convenience, define S, to  be  the  set of paths from 
each  node (0, E),  to  each of its 2' intermediate nodes 
(0, E),. Also define S, to  be  the  set of paths from each 
intermediate  node (0, to  each  node (1, j ) , .  Note  that 
there  are 2, roots, which have  the  form (0, E ) ~ .  The  2d 
roots  are  the  same  set of nodes  as  the  2d intermediate 
nodes. The congestion of edges in SI is  the  same  as  that 
encountered  when embedding 2' flat trees, each of size 
2d  and  rooted  at a different node, in a hypercube Q,. By 
Lemma 5, this  congestion is  bounded from above  by  2d. 
For all edges in S,, the congestion is  the  same  as  that 
encountered  when  embedding a single flat tree in a 
hypercube Q,, which  is bounded from above  by 
[(2d - l ) / d ]  according  to  Lemma 2. The inductive 
hypothesis is that  the congestion of the  edges in the  new d 
hypercube dimensions (i.e., the  paths in S,) is at  most 2'. 
During an induction step,  congestions of the  edges of the d 
hypercube dimensions under consideration will increase  by 
at most [(2d - l)/d] + 1 (which accounts  for  the  paths in 
S, plus  the  edge  introduced  by  the  exchange  operation 7). 
Note  that  the  path assignment for  the  basis (see for 
example  Figure 8) can  be  done  such  that  the edge 
congestion  is 1 for  edges in dimension 0, and is at  most 
[(2d - l ) /d l  for  edges in  dimensions 1 to d.  I 

= 2d with congestion = 0(2d/d) [31]. Also, f o r d  = 2, it 
is possible to  achieve  an embedding of one hyperpyramid 
&k, 2) and two smaller hyperpyramids &k - 1, 2) with 
dilation = 3 and congestion = 3 [31], by fine-tuning the 
path assignments in the induction step.  This  improves  the 
result in [27], which has dilation = 3 and congestion = 6. 

Remarks 
When we include the  case d = 1 in Theorem 1, the 
theorem  becomes  the following: A hyperpyramid p ( k ,  d )  
can  be  embedded in a hypercube Qkdtl with dilation = 

Note  that it  is  possible to have  an  embedding of dilation 
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max(d, 2). As a corollary of this, a hyperpyramid 8 ( k ,  1) 
can be embedded in a hypercube Qkt, with  dilation = 2. 
Figure 11 shows a hyperpyramid 8(3 ,  1). Note that an 
X-tree [32] is isomorphic to a pyramid P(k, 2, l), which 
in turn is a subgraph of a hyperpyramid P(k, l),  by 
Proposition 1. (Figure 12 shows an example of a three-level 
X-tree.) Thus,  an X-tree can  be embedded in a hypercube 
with expansion < 2 and dilation = 2. 

Since a hyperpyramid p ( k ,  1) contains a complete 
binary tree  as a subgraph, our result degenerates to the 
following: A complete binary tree can be embedded in a 
hypercube  with  expansion 2: 1 and  dilation = 2. This  result 
was first  discovered by Nebeslj [9] and  rediscovered 
independently  in [ll], [12],  and  [14]. All embeddings 
except the one in [l l]  also  guarantee  that  only one of the 
tree edges is of  dilation = 2. Our  method  is the same as 
that of [ll], in which the edge to the left  child  of every 
nonleaf  node is of dilation = 1 and  the  edge to the  right 
child  is  of  dilation = 2. However, in our embedding  and 
the embedding in [ll], all nodes at the same  level  form a 
subcube and  therefore have additional  adjacencies (e.g., 
Figure 11). Our embedding  and the embedding  in [ll] are 
equivalent to labeling a complete  binary tree according to 
an  "inorder" traversal [33] with a starting  index of 0 or 1. 
Such an embedding was also  used  in [3, lo]. 

Notice that an  embedding of an X-tree with  dilation = 2 
can also be obtained by an inorder traversal, by 
interpreting the label as a binary-reflected Gray code [34], 
as observed by Bhatt', e.g., Figure 12. (This is because 
two binary-reflected Gray codes with a power of 2 
difference in their addresses are at most  Hamming distance 
2 apart [34].) However, the number of edges with  dilation 
= 2 is higher for such an  embedding than for our 
embedding. 

When the hypercube connections at level i are ignored 
for 0 s i 5 k, the hyperpyramid 8 ( k ,  d )  becomes a 
k-level complete (2d)-ary tree. A corollary of Theorem 1 
is that a k-level complete n-ary  tree can be embedded in a 
hypercube with dilation = max (2, Fog, nl) and expansion 

than 2 when n is a power of 2. The previous result by Wu 
[ l l ]  has dilation = Zpog, nl.  Similarly, a corollary of 
Theorem 3 is that a k-level complete n-ary tree together 
with 2kr10gz"1 - 2 complete n-ary trees of level k - 1 can 
be embedded in a hypercube of dimension kpog, n] + 1 
with  dilation = po&nl + 1. The expansion is 
approximately 1 when n is a power of 2. 

- - ( 2 k r ~ o g 2 n 1 + 1  )(n - l)/(n k t 1  - 1). The expansion is less 

Summary 
We have presented embeddings  from pyramids (the guest 
graph) into hypercubes (the host graph) with minimal 
expansion, dilation = 2, and congestion = 2. We have also 

2 Sandeep N. Bhatt,  personal communication, Dept. of Computer Science, Yale 
University, New Haven, C T ,  1987. 
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subcube xxxo '$ f 
0000  0010 0110  0100  1100  1110 1010 1000 

Topology of a three-level  X-tree. The dashed lines  represent 
edges of dilation 2. (a) The embedding is  derived by an "inorder" 
traversal. (b) The embedding  is  derived by interpreting the  label 
in part (a) as a binary-reflected Gray code. 

' 
1 1 

described embeddings  from hyperpyramids (the guest 
graph), i.e., pyramids in which each nonleaf node has 2' 
children interconnected as hypercubes, into hypercubes 
(the host graph) with  minimal expansion and  dilation = d .  
The congestion is bounded  from  below by 1 + 
[(2' - d)/(kd + 1)1 and  from above by [(2' - l)/d]. 

The expansion is asymptotically 1.5 for the embedding 
of pyramid P(k, 2, 2), and 2 for the embedding of 
hyperpyramid 8 ( k ,  d). In the first case, about a third of 
the hypercube nodes are unused, and  in the second, about 
half  of them are unused.  When two pyramids of height 
k - 1 are embedded together with a pyramid of height k ,  
the expansion becomes approximately 1. Lai and White 
[27] described such an  embedding  with  dilation = 3 and 
congestion = 6 .  We improved it to dilation = 3 and 
congestion = 3.  We then generalized it to an embedding 
of 2' - 2 hyperpyramids of height k - 1 together with a 
hyperpyramid of height k into a (kd + 1)-dimensional 
hypercube. Only one hypercube node is  not used in such an 
embedding, the dilation is d + 1, and the congestion is O(2'). 
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It follows from  the  hyperpyramid embeddings that a 
pyramid P(k,  2’ ,  2d”)  can  be  embedded in a hypercube 
with minimal expansion, dilation = d ,  and a congestion of 
at most [(2d - l)/d]. A pyramid and 2d - 2 smaller 
pyramids P(k, 2’,  2 d ” )  (possibly different i’s for different 
pyramids) can  be  embedded in a hypercube  with minimal 
expansion, dilation = d + 1, and congestion of at most 
0 ( 2 d ) .  The congestion can  be reduced by a factor of d if 
the dilation is  increased to 2d. A complete  n-ary  tree  can 
be  embedded in a hypercube  with minimal expansion  and 
dilation = max(2, [los,n]) when n is a power of  2. The 
best embedding known previously has dilation = 2 P o ~ n ]  
[ll]. Our  results  also provide  embeddings of degenerate 
hyperpyramids,  such  as  complete  binary  trees  and  X-trees, 
with minimal expansion  and dilation = 2. 
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