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A f’(k, d) hyperpyramid is a level structure of k
hypercubes, where the hypercube at level i is
of dimension id, and a node at level i — 1 is
connected to every node in a d-dimensional
subcube at level j, except for the leaf level k.
Hyperpyramids contain pyramids as proper
subgraphs. We show that a hyperpyramid P(k, d)
can be embedded in a hypercube with minimal
expansion and dilation = d The congestion is
bounded from above by [(2¢ — 1)/d] and from
below by 1 + |'(2 — d)/(kd + 1)]. We also
present embeddlngs of a hyperpyramid Bk, d)
together with 29 — 2 hyperpyramids P(k -1,d)
such that only one hypercube node is unused.
The dilation of the embedding is d + 1, with a
congestion of 0(2°). A corollary is that a
complete n-ary tree can be embedded in a
hypercube with dilation = max (2, [log, n]) and
expansion = (2*7°%*")(p — 1)/(n**" - 1).

Introduction

Processor utilization and communication time are two
important considerations in selecting data structures and
algorithms for computer systems assembled from a large
number of parts. Communication is one of the most
expensive resources to be considered in such a system,
and its efficient utilization is imperative. In studying the
efficient utilization of the communication system, one can
model the communication needs of the computations with

a graph, which is referred to as the guest graph (1]. This
graph describes the interaction between the data elements
of the computation, where a node represents a process and
an edge represents a communication need between the
two connected processes. Similarly, the topology of the
computer system is captured by the host graph. Each node
represents a processor with local storage, and each edge
represents a communication link between processors. For
the purpose of planning the execution of a computation
represented by guest graph G on a host represented by
host graph H, an embedding function f is used to embed
G into H. These graphs, as well as other items discussed
in this section, are defined formally in later sections.

The embedding function f maps each node in the guest
graph G into a unique node in the host graph A, and each
edge in G into a path in H. Let V(X) and E(X) respectively
denote the node set and the edge set of a graph X. Let
|S| denote the cardinality of a set S. The expansion of the
mapping f is defined as |V(H)|/[V(G)|. It is a measure of
processor utilization. The dilation of the mapping is
defined as the maximum length of path f(e;) for alle, €
E(G), where ¢-is mapped into the path f(e;) in H. The
congestion of the mapping is defined as the maximum
number of guest-graph edges sharing an edge in the host
graph. The slowdown of nearest-neighbor communication
in the guest graph caused by edges being ““stretched” into
paths of iength greater than 1 is generally a function of the
dilation and the congestion. Thus, the general goal of
graph embeddings is, given a guest graph G and a host
graph H, to find an embedding function f that minimizes
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the dilation and congestion. In this paper, we discuss
embedding of pyramids and hyperpyramids, to be defined
later, into hypercubes, with minimal expansion and
improved dilation and/or congestion over previous results.
Minimal expansion means that the hypercube host graph is
the smallest one that has as many nodes as the given guest
graph.

Related to the embedding of pyramids is the embedding
of meshes and trees. Embedding of meshes into
hypercubes has been studied in [2-7]. Embedding of trees
into hypercubes has been studied in [3, 8-18)]. Several
parallel algorithms that naturally lend themselves to a
pyramid topology are discussed, for instance, in [19-23].
Multigrid algorithms for partial differential equations [24]
and certain algorithms for image processing [22] are
specific examples. The embedding of pyramids into
hypercubes was first studied by Stout [25]. He proved that
there exists an embedding with dilation = 1 of an M-node
pyramid into an N-node hypercube with N << M, if
~M/N pyramid nodes are mapped into every hypercube
node. Stout also showed that for a one-to-one mapping
from a pyramid to a hypercube, minimal expansion and
dilation = 2 is possible. Lai and White [26] gave embedding
algorithms with dilation = 2 and congestion = 3, or
dilation = 3 and congestion = 2 (both with minimal
expansion). We give an embedding with dilation = 2,
congestion = 2, and minimal expansion. We also
generalize such an embedding to embeddings of
hyperpyramids into hypercubes with minimal expansion
and with dilation = d. Hyperpyramids of order d are
graphs in which each nonleaf node has 2¢ children, and the
nodes at the same level form a hypercube (instead of a
mesh).

Lai and White [27] also gave an algorithm for embedding
a pyramid and two smaller pyramids {each with
approximately a quarter of the size of the larger pyramid)
into a hypercube, with expansion = 1, dilation = 3, and
congestion = 6. We improve the result to expansion = 1,
dilation = 3, and congestion = 3. The result is generalized
to the embedding of one hyperpyramid with minimal
expansion, and the embedding of 2% —~ 2 smaller
hyperpyramids into the same hypercube, with a total
expansion = 1 and a dilation of d + 1.

Note that the technique used in our embeddings is quite
different from that of Lai and White for both single and
multiple (hyper)pyramid embeddings. Furthermore, a
recent work by Ziavras et al. [28, 29], who implemented
on a CM-2™ parallel system various known embeddings of
pyramids into hypercubes, including ours and that of Lai
and White, observed that a small improvement (such as
from 3 to 2) in congestion or dilation sometimes implies
significant improvement in performance.

In the next section, we introduce the notation used in
the paper, define pyramids and hyperpyramids, and give
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some of their properties. The section on embedding
hyperpyramids into hypercubes contains the main results,
and the final section summarizes the paper.

Preliminaries

Let 0" denote a string of m 0-bits, and let 1™ denote a
string of m 1-bits. Let j be the mth bit of the binary
representation of j, with the least significant bit being the
Oth bit. Let x™ = x @ 10", i.e., x with the mth bit
complemented. We use (x|y) to denote the concatenation
of two strings x and y. In the next two subsections, we
define a few metrics used for graph embedding, and define
a few relevant graphs and their related properties.

® Graph embeddings

Definition 1  An embedding f of a guest graph, G, into a
host graph, H, is a one-to-one mapping from V(G) to
V(H), combined with a mapping of the edges of E(G) into
simple paths in E(H) so that if e, = (i, j) € E(G), then
f(e,) is a simple path in H with endpoints f () and f (j)-
The expansion of the embedding f is

)
T ey
Let E[f (e,)] denote the set of edges in the path f {(e;).

Definition 2 The dilation of an edge e, € E(G) is the
length of the path f (e;;):

dllf(e(;) = |E [f(eg)]"
The dilation of the embedding f is
dil.(G) = max dil (e;).

Ve € EG)
We sometimes also consider dilation of a sct of edges S as

dil (S) = max dil,(e,).

Ve €S

Definition 3 The congestion of an edge e, € E(H),
cong,(ey), is the number of edges in G mapped to paths
that include e,;; i.e.,

cong,(e,) = 2

Yeg € EG)

Kext N ELf(er)]l-

The congestion of the mapping f is

cong. = max cong, (ey)-
Y ey € E(H)

® Graph definitions
A mesh is a rectangular array of nodes, with edges
connecting adjacent nodes.
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Definition 4 An !/, X I, mesh M(l,, 1) is a graph with
node set

VMU, D] ={x,x)0<x <1,0=<x, <L}
and edge set
E[M(, L)] = {(x, x)x = (x, x,), x" = (x], x;)
€ V[M(lp 12)]7 le - xﬂ + |x2 - x2,| = 1}'
Definition 5 A k-level pyramid P(k, I, 1,) is a graph

with node set
k

VIPK, 1, 1)] = U {6, x, x)lx, %) € VIMET, 1)}

i=0

and edge set
k

ElPt, 1, 1)1 = U G, %, x), G, x}, )]
i=0

l[( x), (x}, x)] € E[M(, 1)}
U U [[(z X5 X,), (i -1, [)ﬁJ, YEJ)
L1

lx,, x,) € V[M(l‘l, 1'2)]] .

Intuitively, aPk,[,1) pyramid is made up of the

graphs M(l1 , 2) through M(l1 , 2) with each node having

I, x I, children, except nodes at level k. Node (i, x,, x,)
€ V[P(k, [, )] is at level i. The node at level 0,

(0, 0, 0), is called the apex, or the root of the pyramid. The

nodes at level k are leaf nodes, and the mesh at level &,
M, I}), is the base of the pyramid. Clearly, P(k, I, I,

|

)

is isomorphic to P(k, [,, ). Figure 1 shows the topology
of the pyramid P(2, 2, 2). It can be viewed as a complete

quad-tree with nodes at the same level being connected

as a mesh.
The number of nodes in a pyramid is

k k+1
L) -1
VIPK, L, )] = >, () = 1L -1

i=0

and the number of edges is

k
ETPGK, 1, L)) = 3, 3¢ - I - L)
i=1

Definition 6 A d-dimensional hypercube, denoted Q,,

has 2¢ nodes. Each node can be assigned a binary string of
length d as a unique address, such that any two nodes are

connected through an edge if and only if their addresses
differ in exactly one bit.

Figure 2 shows the hypercube Q,. The addresses of
hypercube nodes in subsequent figures are omitted, but
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Level
Apex 0O

Base 2

Topology of the pyramid P(2, 2, 2).

Hypercube Q,, with node-addressing scheme used in this paper.

011

110

000 001

111

01

they are determined in the same way. For clarity, we also
omit edges of high dimensions in subsequent figures.

Definition 7 The k-level hyperpyramid of degree d,
denoted f’(k, d), is defined recursively as follows.

P(0, @) is the root node. The hyperpyramid P(k, d) is
constructed from 2 hyperpyramids P(k — 1, d) by first
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Two different views of the topology of the hyperpyramid P(2, 2).

interconnecting corresponding nodes in each of these
hyperpyramids as d-dimensional hypercubes, and then
creating a new root node and connecting it to every root of
the hyperpyramids P(k — 1, d).

The nodes of hyperpyramid P(k, d) are given addresses
(£, j) such that i identifies the level (0 < i < k) and §
identifies one of the 2 nodes at that level. Here, j is a
binary number of length id. If i # 0, node (i, j) connects

to a parent node (i — 1,j,_, j,, " j,), and, if i = k,
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to 2¢ children nodes with addresses {(i + 1, j|* it

%, , 0 %)}, where x =0orlforall0 <m <d.
(Recall that ““|”” is the concatenation operator.) The
second argument of the parent address (j,;_, ji;_, *** J,) is
obtained by removing the d lowest-order bits from j. The
second arguments of the child addresses (jl*,_, *, , <= *,)
are obtained by appending d-bit binary strings to j. These
edges form the ““tree edges”” of the hyperpyramid. In
addition there are id ““‘cube edges’’ connecting node (i, j)
to nodes (i, j ™) for all 0 = m < id. (Recall that j™ is

j with the mth bit complemented.)

Figure 3(a) shows the topology of the hyperpyramid
P(2, 2). Note that id bits are used for the second
arguments of the node addresses at level i. The second
argument of the root node is a null string, which is
represented by . Figure 3(b) gives another view of the
same hyperpyramid.

We use the hyperpyramid as an intermediate graph in
embedding a pyramid into a hypercube. For the purpose of
embedding, it is more convenient to assume that each
mesh plane of a pyramid is a hypercube. Note that
introducing the intermediate graph does not increase the
dilation of our embedding. Furthermore, for certain
multilevel algorithms on a domain of three dimensions
or higher, the guest graph can be characterized by a
hyperpyramid but not by a pyramid. Thus, hyperpyramid
embeddings give this flexibility.

Proposition 1 A hyperpyramid P(k, d) contains a
pyramid P(k, 2/, 2°7), for all 0 < j < d, as a subgraph.

Proof We define a one-to-one mapping from the node set
of P(k, 2/, 2% to the node set of P(k, d) as follows.
Each node (i, x,, x,) in P(k, 2/, 2°7), where 0 < i < k,
0=<x <2,and 0 < x, < 27, is mapped to a unique
node [, gj(xl)lgdAj(xZ)] in P(k, d), where g,(x) is the
binary-reflected Gray code of x in j bits. It is
straightforward to verify that any two neighboring

nodes in P(k, 2/, 2*7) are mapped to adjacent nodes

in Pk, d). m

A corollary is that a hyperpyramid P(k, 2) contains a
pyramid P(k, 2, 2) as a subgraph. In the following we
consider only the embedding of hyperpyramids into
hypercubes.

We use Definition 7 in specifying embedding functions,
f, and proving their properties with respect to dilation and
congestion. Hyperpyramids can also be defined recursively
by adding a hypercube Q,, to a hyperpyramid Pk - 1, d).
The hyperpyramid P(k, d) is obtained by connecting
each node in @, , to a (parent) node in the base of the
hyperpyramid P(k — 1, d). Such a definition emphasizes
the fact that hyperpyramids can be viewed as a sequence
of hypercubes of linearly increasing dimensions, with a
tree structure connecting them.
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The number of nodes in a hyperpyramid P(k, d) is

k 4 2(k+1)d -1
WVIPk, d)) = Y, 2" =

i=0

29-1 "
and the number of edges is

k k

E[B(k, )] = > id2" + > 2%,

i=1 i=1

In the formula for the number of edges, the first term
accounts for the edges at the levels and the second term
accounts for the edges between the levels. From Figures 1
and 3(a), it is clear that a pyramid P(2, 2, 2) with
wraparound edges added to the mesh at level 2 is
topologically equivalent to a hyperpyramid P(2, 2). This
is because a 4 X 4 torus is topologically equivalent to the
hypercube @, (and, in general, a d-dimensional torus of
form 4 X 4 X --- X 4 is topologically equivalent to the
hypercube Q,,).

Embedding hyperpyramids into hypercubes
The main results of this paper are the following:

1. A hyperpyramid P(k, d), with d = 2, can be embedded
into the hypercube Q, ,.,, with expansion <2 and
dilation = d. The congestion is bounded from below
by 1 + [(Zd — d)/(kd + 1)]and from above by
[(2¢ - 1)/d).

2. A hyperpyramid P(k, d) together with (2¢ — 2)
hyperpyramids P(k — 1, d), d = 2, can be embedded
into a hypercube Q,, , with expansion = 1 (only one
hypercube node is not used) and dilation = d + 1.

The congestion is at most O(29).

These two embeddings are described in the next two
subsections. For the purpose of defining embeddings based
on induction, we use a two-rooted hyperpyramid defined
next.

Definition 8 A two-rooted hyperpyramid P(k, d) is a
hyperpyramid P(k, d) with an additional root node and
additional edges between the additional node and all nodes
at level 1. The two roots are denoted (0, €) and (0, &),
respectively.

Since the two roots are symmetrical, either one can
serve as the root of the hyperpyramid. One of the two
roots will be a node at level 1 after the induction step. This
root is called the real root. The other root will either serve
as one of the two new roots or become unused after the
induction step. This root is called the spare root. There is
no edge between the two roots according to Definition 8,
but the embedding functions presented below always map
the two roots to adjacent hypercube nodes. The idea of
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using two roots for the recursive construction of tree
structures has been used before by Bhatt and Leiserson
[30], for instance, in constructing a complete binary tree
out of ““chips’ containing smaller trees, and by Bhatt and
Ipsen [12] in embedding a complete binary tree into a
hypercube.

o Embedding a hyperpyramid into a hypercube

In this subsection, we give an embedding of P(k, d) into
Q,,., with dilation = d and congestion = [(Zd - Lyd}.
We also show some lower bounds in dilation and
congestion over all possible embeddings. We define the
embedding by induction and prove the upper bounds on
dilation and congestion of our embedding, also by
induction. Although the upper bound of dilation itself can
be derived using a much simpler proof, such as one based
on Equation (1), which is given later, the inductive step in
the next theorem is required for proving the bound on
congestion.

Dilation

Theorem 1 A hyperpyramid P(k, d), with d > 2, can be
embedded into a hypercube @, ., with dilation = d.

Proof Instead of considering the embedding of a
hyperpyramid P(k, d), we consider the embedding of the
corresponding two-rooted hyperpyramid P(k, d). The
dilation for the two-rooted hyperpyramid is an upper
bound on the dilation for the corresponding hyperpyramid
with a single root, as the latter is a subgraph of the
former. We define a function f,, which maps a two-rooted
hyperpyramid P(k, d) into hypercube Q,, +1» with dilation
= d, by a recursive construction on k and prove the
theorem by induction. The induction hypothesis is that
for k < n, a two-rooted hyperpyramid P(k, d) can be
embedded by f, into a hypercube @, ., with dilation = d
and the two roots mapped to adjacent hypercube nodes.

Basis  For k = 0, the two-rooted hyperpyramid P(0, d),
which consists entirely of the two root nodes, is mapped to
adjacent nodes in hypercube Q,:

fo(()’ 8) =0 andfo(or, 8) = 1.

Induction  Assume that there exists an embedding
function f, that satisfies the induction hypothesis. In order
to embed a two-rooted hyperpyramid P(n + 1, d) into a
hypercube Q(,l s1as1> WE consider the hypercube Q(M]) a1
to be composed of 2¢ copies of hypercube Q... labeled
0,1, --,2=1. Apply [, to the embedding of each
two-rooted hyperpyramid P(n, d) into a hypercube Q, ., .
We use a superscript to distinguish nodes of different two-
rooted hyperpyramids P(n, d) mapped to distinct
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(1,3)

1

- - —--

,(0’,5) ,2)

(0,¢) (1,0)

Two-rooted hyperpyramid P(1, 2) embedded in hypercube Qs
with dilation = 2.

—

hypercubes Q
embedding function £, in terms of f,, for each hypercube,
where 0 < € < 2¢ and j is a binary string of length (i — 1)d.

41+ The following rules define the

(05 &) = £[0, £)'],

2d-1

£.0, ) =£[0, &) ], ‘

£, £)9 €=0o0r2"",
[, & = . .

110, )] otherwise,

fols €l) =fIG -1, i>1.

The first two equations define the two new roots. [The two
roots can be chosen from the spare roots of any two
adjacent hypercubes. We choose hypercubes 0 and 27
thus; the two roots are mapped to hypercube addresses
(00 - -+ 0) and (10 - - - 0), respectively.] The third equation
defines nodes at level 1. The last equation defines nodes at
lower levels, where € and j are binary strings of lengths d
and id, respectively. Figures 4 and 5 show the embeddings
for P(1, 2) and B(1, 3), respectively.

Given any two binary strings x and y, let HA(x, y) be
the Hamming distance between x and y, and let W(x)
denote the number of 1-bits (Hamming weight) of x; i.e.,
W(x) = HA(x, 0). Forall0 < j < 2°and 0 = m < d,
we have the following properties:

1. HA[f,,,(0, &), f,,,(1, )] < d, demonstrated as follows:

HA[, (0 ©), f,.,(1, )] =

HA{£[(0, &)°L, £(0, &)} = W(j) <d ifj = 0 and

j = 2d—1,
HA{£[(0, €)'}, £1(0', &)’} = 1 ifj =0,
HA{f[(0, &), £L(0, )* T = 2 ifj = 29",
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(1,3) R

(1, ¢

- ——=f---

A42) (476)

(0,¢) (1,0 (0',¢) (1,4)

Two-rooted hyperpyramid P(1, 3) embedded in hypercube 0,
with dilation = 3.

2. HA[f,, (0", &), f,,,(1, J)] = d: The proof follows the
preceding proof.

(1), £r,(1, i) < 2: The distance is 1,
exceptif m #d — 1andj = 0 or 2“”", for which the
distance is 2.

4. HA[f,, (0, &), f.,,(0", €)] = 1.

5. The Hamming distance between corresponding nodes of
adjacent hypercubes is 1.

6. The dilation of each edge in F(n, d) is unchanged in the
new embedding.

3. HA[f

The induction hypothesis follows from these properties. @l
By substituting f, recursively as defined by the induction
rules, an explicit expression for f, is obtained:

0kd+1 i=0,
.. kd . '
£,y =110 i=0, @
e ¥ 1 =<k,

where x = 1, ifj, ,j, , -+ j, = 0; andx = 0, otherwise.
The expansion of the embedding function f, is less than 2
(except for k = (). Figure 6 shows the hypercube
addresses of the nodes of the hyperpyramid (2, 2).

We now derive a lower bound on the dilation; however,
we first need a proposition on the diameter of P(k, d).

Proposition 2 The diameter of P(k, d) for d = 2 is 2k.

Proof Any two nodes x and y in P(k, d) are within a
distance of 2k, as one can define a path starting from x,
traversing up to the root node and traversing down to y
within 2k steps. Thus, the diameter is at most 2k. We now
show that the diameter is at least 2k. Consider the two
nodes x = (k, 0°) andy = (k, 1*%), which are at the
bottom level of P(k, d). Consider any path between x and
y, and let h be the number of the highest level in P(k, d)
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that the path has touched. Clearly, the path must contain
at least 2(k ~ h) edges in traversing up and down.
Furthermore, there are id hypercube dimensions that
remain to be traversed, which requires at least #d edges.
Thus the path has a length of at least 2(k — &) + Ad

= 2k + h(d — 2), which is minimized to 2k when 4 = 0
(recall thatd = 2). M

Proposition 3 A lower bound for the dilation of any
embedding of a P(k, d) hyperpyramid into the smallest
hypercube having enough nodes, @ , is d/2.

Proof From Proposition 2, the diameter of a
hyperpyramid P(k, d) is 2k. The smallest cube Q, that

is large enough to hold a hyperpyramid P(k, d) has

n = kd + 1 dimensions. Since the hyperpyramid contains
more than 2"”' nodes, there exist two hyperpyramid nodes
that are mapped to hypercube nodes at a distance of at
least n — 1 in the hypercube Q, . Consider any shortest
path between these two hyperpyramid nodes. Let the length
of the path be €. Clearly, € < 2k. Edges on the path will be
stretched in the embedding, so that all € edges together are
stretched into the path of length = n — 1 in the hypercube
O, Thus, at least one of these € edges is stretched with
dilation =2 (n - 1) =2 (n - 1)2k =d2. A

Congestion

Here, we derive upper and lower bounds for the
congestion. For the upper bound derivation, we need the
two lemmas given next.

Lemma 1  There exists a spanning tree in Q, such that
each subtree of the root is of size at most [(2" — 1)/n].

Proof Such a spanning tree is constructed by modifying
the spanning balanced n-tree in Q , denoted T, defined in
[15, 16]. First, all cyclic nodes in T, which are all leaf
nodes, are removed. The remaining tree, denoted 77, has
n subtrees isomorphic to one another. All the removed
cyclic nodes are organized according to sets (degenerated
necklaces) so that two nodes are in the same set if the
address of one node can be derived by rotating the address
of the other. Then, the cyclic nodes are added back to T”,
one set at a time in a round-robin manner, starting from
subtree 0. It is easy to show that any degenerated set of k
nodes can be added to any k consecutive subtrees (in a
cyclic manner) in T’ so that each added tree edge is also a
hypercube edge. Thus, when all cyclic nodes are added
back to T’, each subtree has at most [(2" — 1)/n]

nodes. W

Lemma 2 A 2"-node flat tree (i.e., a root with 2" — 1
children) can be embedded in a hypercube Q, with
congestion < [(2" — 1)/n].
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é Hypercube addresses of the nodes of an embedded hyperpyramid
i P2, 2).

Proof Denote the flat tree by T and the root of T by r.
From Lemma 1, one can create a spanning tree, denoted
T', in Q, so that each subtree of the root has at most
[(2" — 1)/n] nodes. Then, embed the flat tree T into
the spanning tree T', which in turn is mapped to Q. .
Furthermore, stretch each edge (r, i) in T into a path
corresponding to the path in traversing from node r toward
node i in T'. Thus, the congestion of any edge in T is
less than or equal to the maximum number of nodes
in any subtree of the root in T', which is at most
2" = /] W

We are now ready to give an upper bound on the
congestion.

Theorem 2 An upper bound of the congestion for an
embedding of P(k, d) with dilation = d into Qraerr
ford = 2, is[(2° - 1)/d).

Qutline of proof  The proof can be performed by
induction based on the following arguments. The maximum
edge congestion is caused by the hyperpyramid edges
between the root node and its 2¢ children. (Note that in
considering the congestion, we need not consider the spare
root.) Among the 2¢ children, 2¢ — 2 are in a hypercube
Q,. The other two children are neighbors of the two roots
but are not contained in the hypercube Q,. The two roots
are in the same hypercube @, as the 2% — 2 children. By
Lemma 2, the congestion caused by the edges between

the real root and its children in the hypercube Q, is
bounded from above by ]’(Zd ~ 1)/d]. We route the
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9e)s {1,3)

(0;6)0'= (O,e%i (1)

L en 11,2

©,&)0 (1,0

Basis for induction in Theorem 3: A two-rooted hyperpyramid

g Py1,2), a hyperpyamid P2(9, 2), and hyperpyramid 2.0, 2)
. embedded in hypercube Q,, with dilation = 3.

d — 1 paths with length = 2 from node (1, 0) or (1, 2°7")
to its d — 1 neighbors through an unused hypercube node.
The path between nodes (0, &) and (1, 2°™") is routed
through node (1, 0). Note that the congestion of the edges
in the hypercube Q, does not increase during the next
induction step. W

A simple lower bound can be derived as follows.

Proposition 4 A lower bound of the congestion for any
embedding of a hyperpyramid P(k, d) into a hypercube
Qupsr i8 1+ [2% = d)/(kd + 1)].

Proof The nodes at level & — 1 of a hyperpyramid
P(k, d) have degree 1 + (k — 1)d + 2. The degree of a
hypercube Q. is kd + 1. Thus, a lower bound of the
congestion is

[1+(k—1)d+2d1 [2“—d}
—_— =1+ . n

kd +1 kd +1

As a corollary of Theorem 2, we have an embedding of
P(k, 2) into Q,.., With dilation = 2 and congestion = 2.
As a comparison, the embeddings of pyramid P(k, 2, 2),
which is a subgraph of hyperpyramid P(k, 2), into 0, .,
given in [26] have dilation = 2 and congestion = 3, or
alternatively, dilation = 3 and congestion = 2.

® Embedding multiple hyperpyramids into a hypercube
Even though minimal expansion (i.e., expansion <2) is
achieved in the embedding described in the preceding
subsection, 2° — 2 hypercube nodes are not used in each
induction step. It is possible, however, to embed a P(k, d)
hyperpyramid and 2¢ — 2 smaller hyperpyramids

P(k — 1, d) into a hypercube Q,,., at the same time,
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so that only one hypercube node is not used. In this
subsection, we present such an embedding with dilation =
d + 1 and congestion = 2 + [(2¢ - 1)/d] + 1. As
before, the inductive construction given in the next theorem
is mainly required for bounding the congestion later.

Dilation

Theorem 3 A hyperpyramid P(k, d) together with

2% — 2 hyperpyramids P(k - 1, d), k = 1 andd = 2,
can be embedded in Q,,,, with expansion =1 (only one
hypercube node is not used) and dilation = 4 + 1.

Proof In the following, the subscripts on P, P,

and the node identifiers are used to identify different
hyperpyramids and nodes therein. For notational
convenience, we let (0, &), denote (0, &),. For the proof,
we consider a two-rooted hyperpyramid P(k, d) and

2% — 2 hyperpyramids P(k — 1, d) (with single roots).
Let the embedding function be f,. The proof is by
induction, and the hypothesis is that the following two
conditions hold for 1 < k < n:

1. A two-rooted hyperpyramid P,(k, d) and 2¢ - 2
hyperpyramids P(k — 1,d), 2 =j < 2, k = 1 and
d = 2, can be embedded in a Q,,,, hypercube, with
dilation = d + 1.

2. HA{£,[(0, €),], £,[(0, &),m]} = 1 forall 0 < x < 27,
0 < m < d; i.e., all of the 2“ roots are mapped to a
subcube Q, in the hypercube Q,,.,, and the two roots
of P, are mapped to adjacent hypercube nodes.

Basis  For k = 1, the two-rooted hyperpyramid

P (1, d) contains the roots (0, €), and (0, &),, and the
base Q, [(1, j),» 0 <j < 2“]. For each of the 2¢ — 2
hyperpyramids 2,(0, d), x € {2, 3, -+, 29 -1},

P (0, d) is the root node. Define f, as

£10, &) = jjo
L0 =it

1t is easily seen that f, satisfies the two conditions of
the hypothesis. Figures 7 and 8 show the embedding for
k =1, withd = 2 and d = 3, respectively.

0<j<29
0<j<2%

Induction  Assume that the mapping f, satisfies the above
two conditions. Consider a hypercube @, ,,;,, With
hyperpyramids embedded by the function £, in each of the
2¢ copies of hypercube Q,,,,. We define f,,, in terms of f,
by the following rules, where 0 < € < 2 andj is a binary

string of length (i — 1)d:
RL: f,, [0, )] = f[(O, &);],
R2: f,, [(1, €] = £1(0, &)]],
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R3: £ [G, €] = £IG - 1, )] 2<isn+1,

R4: f[G, €l)] = £IG -

Ligen] 1=isn+l,
2=x<2%
The symbol @ represents the bitwise exclusive or. The
d-bit string y(€, x) = (v,_, ¥,, *** V) is determined
from € and x as follows: for0 = m <d — 1,if €, =0
andx,  x, ,-'x,  #=0,theny =1, otherwise
¥,, = 0. The superscript € identifies nodes of different
hyperpyramids mapped to distinct hypercubes Q. ,
before. Thus, f,{(i, ] = € f.[( j),]- By Rl of the
recursive definition above, we select the root (0, ¢), of
P (n, d) to be the spare root. In the induction, 24
hypercubes with embedded hyperpyramids are used to
form a new embedding. The number of spare roots in the
2¢ hypercubes is 2%, Two of them serve as the two new
roots of P (n + 1, d), and the remammg 2% — 2 spare
1o0ts serve as the new roots of the 2° ~ 2 hyperpyramids
P(n, d), one for each. [For notational convenience, we
choose the two new roots of P(n + 1, d) from hypercubes
0 and 1, instead of choosing from hypercubes 0 and 2~
as in the subsection on embedding a hyperpyramid into a
hypercube.] By R2, we select (0, €), as the real root of the
two-rooted hyperpyramid P (n, d) in each hypercube
Q. i.€., it becomes a node at level 1 of the
hyperpyramid P,(n + 1, d). R3 moves nodes of P,(n, d)
at level i — 1 to nodes of Pi(n + 1, d) at levels i = 2.
R4 moves nodes of the hyperpyramids Px(” -1,4d),
2 <x < 2% atleveli — 1 to nodes of the hyperpyramids
Px(n, d) at level i. Note that R4 is complicated by the
exchange between adjacent hyperpyramids as defined by
v. For example, for d = 3 and € = 0, y = 001, 001, 011,
011, 011, 011 forx = 2, 3, 4, 5, 6, 7, respectively.
The naive embedding without exchange, i.e., y = 0,
would have dilation = 2d for some hyperpyramid.

Figure 9 shows the induction step of the naive
embedding (y = 0), for d = 3. In general, the dilation
ranges from d + 1 to 2d, depending on the hyperpyramid.
With the exchanges defined by v, the embedding is shown
in Figure 10. The exchange is indicated by two-way
arrows.

We now prove that the recursive definition is “‘well-
defined,” by which we mean that if £ _ [(i, €]j).] =
fo,l@, €, ), thenx =x',i =i, €=1¢,andj =j".
This is obvnous if y(€, x) = 0. With y a nonzero function
of € and x, it suffices to prove that f , [(i t’l])xéB wexl =
£l -1, ), ] From R4, we have f, ., [(i, €1/), g ¢ o] =
fie -1, j) £® 90, 2) @ +{6 x & 76, 1) ot Thus, we simply prove
that (€, x) = v[€, x & ¥(€, x)]. This is true by Lemma
3, shown later.

We now prove that the recursive definition satisfies
the induction hypotheses. Condition 2 of the induction
hypotheses is preserved because of Rl in the definition of
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(0,¢)s (1,3)o (0,¢)7 (1,7)o
(0’ 1 i (17 0 (0755 i (1’ 0
PO PO I
,55,5)2 1 2)o ('0’5) ,6)o
(076)0 (170)0 (035)4 (1s4)0

Basis for induction in Theorem 3: A two-rooted hyperpyramid

P,(1, 3) and six hyperpyramids P(O 3),j€{2,3, .-, 7}, embed-
ded in hypercube QA, with dllatlon 4. [Note that node 0, &), is
identical to node (0', €),.]

|
:
:
3
.

f,.,- In order to prove that condition 1 holds for k = 7 + 1,

we partition the newly formed hyperpyramid edges into
three disjoint sets, S|, S,, and S,, by a definition similar to
the one used in the proof of Theorem 3. First, the dilation
of edges in S, is preserved. We prove that the dilation of
edges in S, is either 1 or 2 by considering the Hammmg
distance betwcen f.lG, €)),] and £, [(, 6{'”)[]

.ﬁ,+1[(i’ el])x] =f;,[(l - 1’])::@ 7((,):)]

= €16 — L )gpe 0k

. m}| . o £
£ LG, €™ )] = £IG - Lnfg,(m,x,]

= €16 -

M, @ ye™, x)]

Let y(€, x) = y. Then, from the definition of y(€, x), one
can derive y(€™, x) = y or y*. Thus, the dilation in S,
is either 1 or 2. A dilation of 2 occurs when there is
an exchange operation involved in one side of the
hypercubes. To determine the edge dilation in §,, we
consider subsets S, , the edges between nodes at level 1,
and S,,, the edges between nodes at level 1 and the roots.
The edge dilation in §,, is either 1 or 2, for the same
reasons the dilation of edges in the set S, is at most 2.
For the edge dilation in S,,, consider HA{f, .,[(0, &),],
£, €1}, whichis W(€) + 1 =d + 1, ifx =0or 1.
Forx = 0 andx # 1, f+1[(0 £).] = 1,10, €);], and
fal, 0,1 = £10, e) ¢, )+ Thus, the Hamming
distance is W[x ® y (€, x)] + W(x @ ¢€), which is at most
d + 1 by Lemma 4, shown later. W

To complete the proof of the above theorem, we
prove the next two lemmas, which were used in the
theorem.
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(1,6)s (1,6)7 (1,7 (L,7)7
(1,6)% f (1,6) (1,725 E (1,74
,(,I,%)_[ | Ze)s ,('r#{)_‘t- 1 Zns
0, - (1,6 0, 1,7
aze qze e PO N S
(1’ 2 E (1, 3 (1, 2 E (la 3
T 5T
(0’5)2 (1’2)0 (055)3 (173)0
(1’4)6 (1,4)7 (1,5)6 (1,5)7
(1’ 2 E (1, 3 (19 2 |: (1, 3
PO - PO .
LI’4)4 74)5 ,(,I,5)4 ,5)5
0, 1,4 0, 1,5
(1,0% (1,0)7( €)a (1,4)o (1,1 (1’1)7( €)s (1,5)0
(11 2 E (la 3 (13 2 E (lv 3
PO - S -
,('Ia 0)4 ’ 0)5 /(’I’ 1)4 ’ 1)5
(0,6)0 (1,0)0 (0,6)1 (1,1)0

Lemma 3 y(€, x) = y[€, x ® y(£, x)].

Proof Lety = y(€,x)and ¥ = y(€,x & y). Then,
we must prove that y, =y forall0 = m <d — 1. Let
x' =x @y. From the definition of vy in the proof of
Theorem 3, we have the following:

cIfe,
cIfe,

1, theny =y, =0.
0:
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Induction step of the naive embedding (y = 0), for d = 3. The dilation is 6.

o If (xd_

«If(x,_ x

1%g-2 *°
Va1 Yas ** " Yit) = 0. Thus, (x)_, x; , %
= 0; i.e., v,, = 0. Therefore,y, = vy, .

41Xy, " X,,) = 0,theny = 1.Letx be
the leading nonzero bit of x, where m + 1 < r <
d — 1. Then,y, = 0, andx! =x, @y, = 1; i.e.,
(x¥y_1%y_5 **+x,,,) = 0. Thus, y' = 1. Therefore,

Yo =7, 1

*x,.,) =0, theny =0 and

' ’

m+1
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(1,6)7 (1,6)6 (1,76 (1,77

(1,6)3 E (1,65 (L, 7r E (L7
,(,I,‘g)—s__“",G)‘; ,(«15)1_‘———,7)5
0, 1,6 y ’
Y e @a B
w2 | (0,94 0,3 | (3%
,(15)_5"-",2)4 /613—4_"“,3)5
0, 1,2 . y
(0,¢)2 (1,2)o (1.4 (1,4)4(0 €)s (1,3) .5, 0.5
(1,4%5 i (1,4% (1,55 E (1,55
,(«I,X<)—7-_~_-,4)6 ,(«1,15)_6—*‘_-,5)7
o aol B ane aplr B
(1,05 E (1,09 (1, 1x E (1,15
) B R
,(,I, 0)- ,0)6 /(1, 1)e , 1)z
(0’5)0 (lvO)O (095)1 (1,1)0

? “Improved’’ embedding by performing an exchange described by y of the induction step, for 4 = 3, with dilation 4.

Lemma 4 W[x® €, x)]|+Wxd€ =d+1, Let x, be the leading nonzero bit of x (r = -1, ifx = 0).
where 2 < x < 2%, 0 < € < 29, Consider any m such thatx & € = 1. There are three
cases:

Proof We prove this iemma by showing that

d-1 em<r:Ifx =0,then€ =1landy, =0.Ifx, =1,
Sx, ®r,) +(x, ®e)=d+ 1 then €, = 0 and y, = 1. For both cases, (x,, ® v,) +
m=0 (xm @ Cm) = 1.
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Subcube 0111

Subcube x011

Subcube xx01

Subcube xxx0. -

P

Topology of hyperpyramid A(3, 1). The dashed lines represent
edges of dilation 2.

sm=rx, =x =

1. Thus, €, =0 and y, =0
(since x,_x, , '+ x,,, = 0). We have (x, & v,,) +
(x,®€,) =

sm > r:x, = 0, since x_is the leading nonzero bit.
Then, €, =1, and y, = 0. We have (x, & y,) +
(x, ®€,) =

In summary, for any m such thatx, @ €, = 1, we have
(x, @ v,) + (x, ® €, = 1, except for m = r, for which
(x, ®v,) + (x,® L) = 2. For any m such that

x, ®€ =0, wehave (x, ®v)+ (x,®€) =1
Therefore,

d-1

i, ®y,)+(x,6€)<d+1. &

m=0

Congestion

We now show that the congestion for the embedding
defined in Theorem 3 is at most 2 + [(2¢ — 1)/d] + 1.
First, we need the following lemma.

Lemma 5 A 2"-node complete graph with all edges
duplicated can be embedded into a hypercube Q , with
congestion equal to 2”.

Proof'  Since all edges in the complete graph are
duplicated, one can decompose the edges of the complete
graph into sets E,, for 0 < i < 2”, so that the graph

G, = (V, E,) forms a 2"-node flat tree rooted at node .
(V is the node set of the complete graph.) One can embed
the flat tree G, into the spanning binomial tree (SBT) [15]

1 Peter F. Corbett, personal communication, IBM Research Division, October 7,
1991.
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rooted at node i in Q. (A spanning binomial tree rooted
at node i in Q is constructed by running the well-known
recursive doubling algorithm spanning hypercube
dimensions in the order 0, 1, -+, n — 1.) It is easy to
show that any edge in dimension j has 2"’ spanning trees
passing through it, and the subtree connected through the
edge in each spanning tree is of size 2""' . Thus, the
congestion of any edge in dimension j is 2/*' x 2"7'7
=2".

Theorem 4 The congestion for the embedding in Theorem
3 with dilation = d + 1is 2* + [(27 ~ 1)/d] + 1.

Outline of proof For the sake of brevity, we give an
outline of an inductive proof. We let the path from (0, &),
to (1, j), pass through an intermediate node (0, ¢),. For
example, in Figure 10, the path from (0, &), to (1, 4), is
defined to go through the intermediate node (0, ¢),. For
convenience, define S, to be the set of paths from
each node (0, ), to each of its 2* intermediate nodes
(0, &), Also define S, to be the set of paths from cach
1ntermed1ate node (0, &), to each node (1, ), Note that
there are 2¢ roots, Wthh have the form (0 €),. The 2¢
roots are the same set of nodes as the 2 intermediate
nodes. The congestion of edges in S, is the same as that
encountered when embedding 2¢ flat trees, each of size
2% and rooted at a different node, in a hypercube Q,. By
Lemma 5, this congestion is bounded from above by 2
For all edges in §,, the congestion is the same as that
encountered when embedding a single flat tree in a
hypercube Q,, which is bounded from above by
[(2* - 1)/d] according to Lemma 2. The inductive
hypothesis is that the congestion of the edges in the new d
hypercube dimensions (i.e., the paths in S,) is at most 2°.
During an induction step, congestions of the edges of the d
hypercube dimensions under consideration will increase by
at most [(2‘1 ~ 1)/d] + 1 (which accounts for the paths in
S, plus the edge introduced by the exchange operation y).
Note that the path assignment for the basis (see for
example Figure 8) can be done such that the edge
congestion is 1 for edges in dimension 0, and is at most
[(2* — 1)/d] for edges in dimensions 1 tod. W

Note that it is possible to have an embedding of dilation
= 2d with congestion = 0(2/d) [31]. Also, for d = 2, it
is possible to achieve an embedding of one hyperpyramid
P(k, 2) and two smaller hyperpyramids P(k - 1, 2) with
dilation = 3 and congestion = 3 [31], by fine-tuning the
path assignments in the induction step. This improves the
result in [27], which has dilation = 3 and congestion = 6.

& Remarks

When we include the case d = 1 in Theorem 1, the
theorem becomes the following: A hyperpyramid P(k, d)
can be embedded in a hypercube Q,,., with dilation =
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max (d, 2). As a corollary of this, a hyperpyramid P(k, 1)
can be embedded in a hypercube Q, ., with dilation = 2.
Figure 11 shows a hyperpyramid P(3, 1). Note that an
X-tree [32] is isomorphic to a pyramid P(k, 2, 1), which
in turn is a subgraph of a hyperpyramid P(k, 1), by
Proposition 1. (Figure 12 shows an example of a three-level
X-tree.) Thus, an X-tree can be embedded in a hypercube
with expansion < 2 and dilation = 2.

Since a hyperpyramid P(k, 1) contains a complete
binary tree as a subgraph, our result degenerates to the
following: A complete binary tree can be embedded in a
hypercube with expansion = 1 and dilation = 2. This result
was first discovered by Nebesky [9] and rediscovered
independently in [11], [12], and [14]. All embeddings
except the one in [11] also guarantee that only one of the
tree edges is of dilation = 2. Our method is the same as
that of [11], in which the edge to the left child of every
nonleaf node is of dilation = 1 and the edge to the right
child is of dilation = 2. However, in our embedding and
the embedding in [11], all nodes at the same level form a
subcube and therefore have additional adjacencies (e.g.,
Figure 11). Our embedding and the embedding in [11] are
equivalent to labeling a complete binary tree according to
an “inorder” traversal {33] with a starting index of 0 or 1.
Such an embedding was also used in [3, 10].

Notice that an embedding of an X-tree with dilation = 2
can also be obtained by an inorder traversal, by
interpreting the label as a binary-reflected Gray code [34],
as observed by Bhatt’, e.g., Figure 12. (This is because
two binary-reflected Gray codes with a power of 2
difference in their addresses are at most Hamming distance
2 apart [34].) However, the number of edges with dilation
= 2 is higher for such an embedding than for our
embedding.

When the hypercube connections at level i are ignored
for 0 < i < k, the hyperpyramid P(k, d) becomes a
k-level complete (2%)-ary tree. A corollary of Theorem 1
is that a k-level complete n-ary tree can be embedded in a
hypercube with dilation = max (2, [log, n]) and expansion
= (2*Mee Tty _ 1)/n**! — 1). The expansion is less
than 2 when n is a power of 2. The previous result by Wu
[11] has dilation = 2[log, n}. Similarly, a corollary of
Theorem 3 is that a k-level complete n-ary tree together
with 2¢Teem) _ 2 complete n-ary trees of level k — 1 can
be embedded in a hypercube of dimension k[log, n] + 1
with dilation = [log,n] + 1. The expansion is
approximately 1 when n is a power of 2.

Summary

We have presented embeddings from pyramids (the guest
graph) into hypercubes (the host graph) with minimal
expansion, dilation = 2, and congestion = 2. We have also

2 Sandeep N. Bhatt, personal communication, Dept. of Computer Science, Yale
University, New Haven, CT, 1987.
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Subcube 0111

Subcube x011
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’
’
13’ g

1181
\

Subcube xx01

1081
AY [
14 Y 1d

0000 0010 0110 0100 1100 1110 1010 1000

Subcube xxx0

0000 0011 0110 0101 1100 1111 1010 1001

(b

Topology of a three-level X-tree. The dashed lines represent
edges of dilation 2. (a) The embedding is derived by an *‘inorder’’
traversal. (b) The embedding is derived by interpreting the label
in part (a) as a binary-reflected Gray code.

described embeddings from hyperpyramids (the guest
graph), i.e., pyramids in which each nonleaf node has 2¢
children interconnected as hypercubes, into hypercubes
(the host graph) with minimal expansion and dilation = 4.
The congestion is bounded from below by 1 +

[(2d - d)/(kd + 1)]and from above by [(2d = 1)/d).

The expansion is asymptotically 1.5 for the embedding
of pyramid P(k, 2, 2), and 2 for the embedding of
hyperpyramid P(k, d). In the first case, about a third of
the hypercube nodes are unused, and in the second, about
half of them are unused. When two pyramids of height
k — 1 are embedded together with a pyramid of height &,
the expansion becomes approximately 1. Lai and White
[27] described such an embedding with dilation = 3 and
congestion = 6. We improved it to dilation = 3 and
congestion = 3. We then generalized it to an embedding
of 2* — 2 hyperpyramids of height ¥ — 1 together with a
hyperpyramid of height k into a (kd + 1)-dimensional
hypercube. Only one hypercube node is not used in such an
embedding, the dilation is d + 1, and the congestion is O(2%).
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It follows from the hyperpyramid embeddings that a
pyramid P(k, 2°, 27’} can be embedded in a hypercube

with minimal expansion, dilation = d, and a congestion of

at most [(2'1 ~ 1)/d]. A pyramid and 24 — 2 smaller

pyramids P(k, 2, 29"} (possibly different i’s for different

pyramids) can be embedded in a hypercube with minimal
expansion, dilation = d + 1, and congestion of at most
0(2%). The congestion can be reduced by a factor of d if
the dilation is increased to 2d. A complete n-ary tree can
be embedded in a hypercube with minimal expansion and
dilation = max (2, [log,#]) when # is a power of 2. The
best embedding known previously has dilation = 2 [log, n]
[11]. Our results also provide embeddings of degenerate

hyperpyramids, such as complete binary trees and X-trees,

with minimal expansion and dilation = 2.
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