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A special-purpose load unit is proposed as
part of a processor design. The unit
prefetches data from the cache by predicting
the address of the data fetch in advance. This
prefetch allows the cache access to take place
early, in an otherwise unused cache cycle,

eliminating one cycle from the load instruction.

The prediction also allows the cache to
prefetch data if they are not already in the
cache. The cache-miss handling can be
overlapped with other instruction execution. It
is shown, using trace-driven simulations, that
the proposed mechanism, when incorporated
in a design, may contribute to a significant
increase in processor performance. The paper
also compares different prediction methods
and describes a hardware implementation for
the load unit.

Introduction

In pipelined processors, stalls in the pipeline cause
unwanted delays in program execution, thus causing the
performance of a computing system to deteriorate. Data
dependencies, cache misses, and branches are examples
of events that may stall the pipeline. Since superscalar

processors* [1-5] issue more than one instruction per
machine cycle, a pipeline stall has more effect in relative
terms on performance degradation in superscalar
processors than in scalar processors. This is because for
each cycle in which a pipeline is stalled, a greater number
of instructions could potentially execute in a superscalar
processor than in a scalar processor. This paper addresses
one of the causes of pipeline stalls related to the cache
access. In particular, we consider data cache fetches
because they make up a significant portion of all processor
instructions, especially in CISC (complex instruction-set
computing) processors. Specifically, this paper describes a
method of executing fetches in advance, making use of
otherwise idle cache cycles.

One of the factors delaying program execution is access
to storage. Caches [6] have been used to bridge the gap
from the inexpensive but slow main memory to the fast
processor by providing a level of storage that is
intermediate in both size and cost, but with a fast access.
Because of the locality in programs, keeping a relatively
small but relatively fast buffer allows most references to be
fast while keeping the cost affordable. When the requested
data are found in the cache, the effect is a fast response,
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typically one processor cycle. When the requested data are
not in the cache, the result is a cache miss, which requires
a memory access that can take many cycles. In one model
of cache behavior, cache misses are divided into three

types [7]:

¢ Compulsory: The data have not been referenced before,
so must be brought into the cache.

¢ Capacity: The cache is not large enough to hold all of
the data.

* Conflict: The cache organization prevents certain
combinations of data from being in the cache at the same
time.

Capacity and conflict misses can be reduced by increasing
the cache size and increasing the associativity,
respectively. Compulsory misses can be reduced to some
extent with the inherent prefetching of larger line sizes.
However, this can create more conflict misses when the
line is too large. Data prefetching can reduce compulsory
misses with minimal impact on conflict misses. If the
software or hardware can predict which addresses will be
referenced in the future, a cache miss can be handled
before it is demanded; therefore, that miss does not
contribute to the total execution time (i.e., the miss is
overlapped). In addition, prefetching can reduce other
types of misses. For example, prefetching can eliminate
the miss that occurs when a line is replaced because of
small capacity, and the line is later reused.

Prefetching can commonly be found in several different
forms, both in software, where the compiler inserts
prefetch instructions, and in hardware, where the
hardware determines when to prefetch. A number of new
architectures have prefetch instructions which allow the
compiler to specify a data prefetch in advance. The
prefetch can take the form of a special instruction that
specifies the prefetch of a block of memory [8] or specifies
the address of one datum, which may result in a cache-line
prefetch [9, 10]. For each of these cases, the hardware
must be able to process a cache miss while other
instructions execute. Since the prefetch instruction does
not actually use the data, e.g., store it in a register, a
normal load instruction is used to access the data. Any
exceptions generated by the prefetch are ignored; these
resurface when the load is executed.

A design technique similar to this, but without extra
prefetch instructions, is not to stall the processor on a load
miss [11-13]. If there is a miss, the register for which the
data are destined is marked to indicate that the register
value is not valid. When the datum returns from the cache,
it is stored in the register, and the register is marked valid.
The processor stalls only when the loaded register is
needed by a subsequent instruction. Instructions following
the load are not stalled, and can complete execution.

This approach has the advantage of not requiring new
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instructions to do the prefetch. To fully utilize this
method, the distance between the load and the use of the
data must be increased by having the compiler optimize
the instruction scheduling. The processor design is
complicated, however, by allowing instructions to
complete out of order.

Another form of prefetching is special hardware in the
cache to prefetch a cache line once a related cache line is
referenced. For example, a cache miss results in a fetch of
the requested line and also the next line, if it is not already
in the cache. Other improved schemes have been proposed
[6, 14]. Vector accesses and other code exhibiting regular
strides are ideal for this case [15, 16]. Most or all of the
prefetch proposals concentrate on numerical code, which
is dominated by sequential loops or vector instructions.
Often the working set of vector programs is too large to fit
in a cache, so a cache is not used and prefetching is very
important. In a vector processor, a vector load instruction
results in a data prefetch.

An issue similar to data prefetch is that of instruction
prefetch. The normal case for instruction fetching is to
fetch the next sequential instruction. This is disrupted
only when there is a taken branch, perhaps 10% of all the
instructions. Because of this sequential pattern, instruction
access patterns tend to be more regular than data access
patterns. There are two common methods of branch
prediction: dynamic prediction, using a branch history
table (BHT) or branch target buffer [17] in hardware, and
static prediction, using ‘‘hint’” bits in the instruction itself.
The BHT is typically a data structure, similar to a cache
directory, indexed by the branch instruction address. The
directory may contain one or more prediction bits and a
branch target address. The prediction bits maintain the
state of the branch instruction, i.e., whether it was last
taken or not taken. When a branch instruction is detected
by the hardware, the BHT is consulted to determine the
prediction. For example, Blaner et al. [18] describe a
branch unit that scans an instruction buffer looking for
branches. As soon as one is found, it is predicted, and if it
is predicted to be taken, the taken path is fetched and the
sequential path is discarded. Since the branch is processed
early and asynchronously, an instruction cache miss can
often be overlapped with other instruction executions. In
addition, branches that do not require computation or do
not modify registers do not appear in the regular processor
pipeline; therefore, they execute in zero machine cycles
[18]. Similar approaches are used in other processors with
a separate branch/instruction-fetch unit [3]. Dynamic
branch prediction accuracy can often exceed 80% [17].
Static prediction schemes can be implemented similarly,
but without the hardware required for a BHT. In this
case, the predicted branch direction is specified in the
instruction. The normal disruption of fetching by taken
branches can be greatly reduced with branch prediction.
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In this paper, a load-instruction unit applicable to
general processor designs is described. The load unit is
similar to the SCISM branch unit [18] in that the load
address is predicted dynamically, cache hits take zero
processor cycles, and cache misses can be partially or
completely overlapped. Since the frequency of load
instructions is usually higher than that of branch
instructions, and data cache miss rates are usually higher
than the miss rates of a similarly organized instruction
cache, prefetching data can offer a substantial performance
benefit. Store instructions are not addressed by this
technique, since they are often handled using a store
queue and do not stall the processor on a miss.

The paper is organized as follows. First, the general
concepts of the load unit are described. Second, we report
several experiments performed to evaluate different
options for predicting data addresses. Consequently, a
detailed performance study is reported, in order to
estimate the performance benefits. Finally, a load unit
design based on the results of the performance
experiments is presented. In this paper the IBM ESA/390™
[19] architecture is assumed, but the techniques can be
applied to other architectures as well.

Load address prediction
A load instruction typically operates as follows. A virtual
address is generated, denoted by AGEN, by adding one
or two registers and a constant displacement. In a cache
using real addresses, the virtual address is translated to a
real address which is used to access the cache. (This
process can be accelerated by using techniques such as
translation prediction [20], or avoided by allowing the
cache to use virtual addresses [21].) The cache directory is
checked, and if the addressed data are found in the cache
(a hit), the data are returned to the processor. When the
data are not found in the cache (a miss), the cache sends
the request to memory or to another level of cache to fetch
the data. A cache miss typically takes several cycles, and
it delays instruction execution.
The load-instruction processor proposed in this paper
is intended to improve the performance of processors
by detecting and processing load instructions early.
An overview of the load unit is shown in Figure 1.
(We describe the experiments used to determine the
performance of the design before giving the design details.)
Some information about the design is necessary in order
to understand the performance experiments. The general
concept is that the processor maintains a buffer of
prefetched instructions. Load instructions are detected in
this instruction buffer before they would normally begin
execution in the processor pipeline(s). The load unit
predicts the data address and issues a fetch from the data
cache. The predicted address and the data are saved in
another buffer, called the load queue, until the other
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instructions advance in the pipeline(s) to the point where
the load instruction would normally compute its address.
The address is then computed and compared to the
predicted address. If the predicted address is correct, the
load queue immediately supplies the data. This allows the
processor to store the data in a register without waiting for
the cache to provide the data. In the event of a cache
miss, the data are fetched using the predicted address, a
prefetch. If the prediction is made early enough, the miss
is overlapped with other instructions and the processor
receives the data as if there were a cache hit.

One of the impediments of the proposed load unit
relates to pipeline hazards—in particular, to register
dependencies. When an instruction modifies a register that
is used by a later instruction, that later instruction cannot
be executed until the register has been modified. When
such a register is used to compute an address, the
condition is termed an address-generation interlock (AGI).
In a typical pipelined processor with one pipeline, an AGI
can occur between two consecutive instructions, when one
instruction modifies a register and the second computes an
address with that register. When a load is processed early,
it is likely that the register used in AGEN has yet to be
modified. The modification could occur several instructions
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Table 1 Instruction counts in program traces.

SO

Pure load

RX-format load
SS-format load

Total load

Stores
ALU—modify regs
Other

Total instructions
IMS

Pure load
RX-format load
SS-format load

Total load

Stores
ALU—modify regs
Other

Total instructions
CICS

Pure load
RX-format load
SS-format load

Total load

Stores
ALU—modify regs
Other

Total instructions
RAMPC

Pure load
RX-format load
SS-format load

Total ioad

Stores
ALU—modify regs
Other

Total instructions

FPCI

Pure load
RX-format load
SS-format load

Total load
Stores
ALU—modify regs
Other

Total instructions

Count AGI Source
216626 64152 88057
108270 25126 27432
242546 76292 2
567442 165570 115491
138627 0 0
318435 0 49707
338633 0 372
1363137 165570 165570
Count AGI Source
245119 82407 97620
98834 28149 20055
223199 68394 2
567152 178950 117677
135096 0 0
310119 0 61266
336978 0 7
1349345 178950 178950
Count AGI Source
231445 69057 94734
136930 24378 19796
246001 80197 0
614376 173632 114530
131325 0 0
269929 0 59095
346993 0 7
1362623 173632 173632
Count AGI Source
153058 64858 91244
79701 24070 14286
342387 107109 568
575146 196037 106098
98097 0 0
258604 0 89939
429753 0 0
1361600 196037 196037
Count AGI Source
226671 61412 63857
99637 20934 28190
256855 170105 0
583163 252451 92047
203224 0 0
394169 0 151124
320349 0 9280
1500905 252451 252451
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before the load instruction, not just in the previous
instruction. Because load data addresses can vary and the
number of AGIs can be large, the address-prediction
algorithm is the key step in prefetching load data.

Given that the success of early load-instruction
processing can be directly related to the frequency of
AGQIs, it is imperative to answer the following two
questions:

1. How often does the address of a preprocessed load
instruction exhibit an AGI?

2. If the frequency of AGISs for preprocessed loads is
high, can the load address be predicted in a general
computing environment using a mechanism that is
relatively simple to implement?

In the sections that follow, these questions are answered,
beginning with the evaluation methodology and an
investigation of program characteristics with regard to
AGIs.

® Evaluation methodology and program characteristics

In order to answer the previously stated questions, the
evaluation uses the ESA/390 architecture as the example
architecture. Data were collected from several IBM
ESA/390 instruction traces. A SCISM* processor
performance model was modified to detect load
instructions early and collect statistics on prediction
algorithms and the cache miss rates of prefetches. The
performance model models the complete processor,
including instruction latencies, cache misses, branch
prediction, and cache trailing-edge effects. For this paper,
the load instructions in the ESA/390 architecture are
divided into three types. The ‘“‘pure” loads (L—load and
LH-—load halfword) load a register without using the
previous contents of the loaded register; RX-format loads
(IC—insert character, A—add, C—compare, SH—subtract
halfword, etc.) produce a result in a register by combining
the contents of the register with data from storage; and
SS-format loads and other instructions (MVC—move
character, CLI—compare logical immediate, AP—add
decimal, TM—test under mask, etc.) load from storage but
do not modify registers. Most instructions in the SS-format
load category typically load from one operand (operand 2)
and store to another operand (operand 1), but some of the
SS-format loads instead load from both operand 1 and
operand 2. In this paper, only the first word of operand 2,
the usual source, is considered for prefetching. Subsequent
words, when operand 2 specifies a long block of bytes, are
not prefetched explicitly, but since some of the other bytes
are in the same cache line, they can also be prefetched. All

*S. Vassiliadis, B, Blaner, and R. J. Eickemeyer, “‘SCISM: A Scalable Compound
Instruction Set Machine,”” IBM J. Res. Develop., submitted for publication.
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of the load instructions, as categorized above, perform a
common step, namely: Compute an address and fetch from
memory. Some instructions store the result in a register,
some use it for further computation, some store it in
memory, and some perform other memory operations.
Other instructions are divided into three more types:
stores (ST—store, STC—store character, MVI—move
immediate, etc.), ALU operations, including branches that
modify registers (AR—add register, SLL—shift left logical,
BCTR—branch on count, etc.), and other instructions
(branches not modifying registers, RR-format floating-point
instructions, very complex instructions, and privileged
instructions).

Data were collected from several program traces run on
IBM ESA/390 architecture:

e TSO: representative workload, MVS SP 2.1.7.

¢ IMS: hierarchical database running on MVS SP 2.2.

e CICS™: transaction processing running on MVS
SP 2.1.7.

¢ RAMP-C: transaction processing benchmark.

¢ FPC1: engineering workload.

Tables 1 and 2 show statistics gathered from the traces;
both raw counts and frequencies are shown. The tables
show the instruction frequencies for the three categories
of loads and the other three instruction categories. Loads
make up just over 40% of the executed instructions. The
third column of Table 1 and the second part of Table 2
show the number of AGIs for each type of instruction.
For each load-instruction category, the number of AGIs is
indicated. (No AGIs are shown for other instructions,
since they are not relevant to this paper.) The number of
AGIs is measured by assuming that the load data address
is computed early, by detecting the load in the instruction
buffer. This is similar to early branch-instruction detection
in the SCISM branch unit [18]. How early the address is
computed depends on instruction buffer size, branch-
prediction rate, instruction cache miss rate, and pipeline
stalls. Table 2 shows that an average of about 33% of loads
have AGIs. Slightly less than half of these are caused by
the instructions immediately preceding the load. The high
number of AGIs indicates that early load processing
cannot be ensured by using registers alone. The last
column of Table 1 and the bottom section of Table 2 also
show which instructions are the source of the AGI, i.e.,
which instructions modify a register used subsequently to
compute the load address. The majority of load AGIs are
caused by other load instructions, with a large number of
ALU instructions also causing AGIs. The AGI sources
from SS-format loads are due to the TRT instruction which
implicitly modifies a register.

Since the frequency of AGIs is high, handling only
non-AGI cases prevents many load addresses from being
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Table 2 Instruction frequencies in program traces.

Instruction type distribution (%)

7SO IMS CICS RAMPC FPCI

Pure load 159 18.2 17.0 11.2 15.1
RX-format load 7.9 7.3 10.0 5.9 6.6
SS-format load 17.8 16,5 18.1 25.1 17.1
Total load 41.6 420 45.1 42.2 38.9
Stores 10.2 10.0 9.6 7.2 13.5
ALU-—modify regs 23.4 230 19.8 19.0 26.3
Other 248 250 25.5 31.6 21.3

Load AGIs per instruction (%)

TSO IMS CICS RAMPC FPCl

Pure load 29.6 33.6 29.8 42.4 27.1
RX-format load 23.2 28.5 178 30.2 21.0
SS-format load 31,5 30.6 32.6 31.3 66.2
Total load 29.2 316 283 34.1 43.3

Load AGI source distribution (%)

7SO IMS CICS RAMPC FPCl1

Pure load 53.2 54.6 54.6 46.5 25.3
RX-format load 16.6 11.2 114 7.3 11.2
SS-format load 0.0 0.0 0.0 0.3 0.0
Total load 69.8 65.8 66.0 54.1 36.5
Stores 0.0 0.0 0.0 0.0 0.0
ALU—modify regs 30.0 342 34.0 45.9 59.9
Other 0.2 0.0 0.0 0.0 3.7

computed early. This suggests that predicting the data
addresses may be necessary. The following are the results
of experiments to compute the data addresses for load
instructions. The methods involve various combinations
of blind AGEN, detecting AGISs, and address prediction.
For the purpose of summarizing the concepts, results
are presented for a fixed hardware configuration unless
otherwise noted. The modeled system is assumed to have
separate instruction and data first-level caches and TLBs.
The second-level cache is shared. Except when indicated,
the data TLB has 256 entries, is two-way associative, and
supports 4096-byte pages. The first-level data cache is 64
kilobytes (KB), is four-way associative, and has 64-byte
lines. The second-level cache is 512 KB, is eight-way
associative, and has 128-byte lines. There is a BHT
containing 1024 entries, an instruction cache of 32 KB, and
a 24-byte instruction buffer, which holds approximately six
instructions.

® [oad address prediction by detecting AGls

In describing the various experiments, the format of the
results of each experiment is shown in an example. The
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Table 3 Prediction using AGEN.

7SO TLB miss L1 hit L2 hit L2 miss Total

@ % B %) (%)
Correct 0.38 67.29 1.92 1.23 70.82
Incorrect 6.29 18.38 2.72 1.78 29.17
Total predicted 6.67 85.67 4.64 3.01 100.00

No prediction 0.00%

simplest method of predicting the correct data address is to
compute the address with whatever values happen to be in
the registers when the load instruction is detected. This
prediction is correct if the registers are not modified before
the actual AGEN occurs, i.e., there is no AGI. Table 3
shows the results using TSO as an example. The various
possible results are divided into several categories:

& TLB miss (“TLB miss’).

& TLB hit and first-level cache hit (L1 hit™).

« TLB hit, first-level cache miss, and second-level cache
hit (L2 hit™).

« TLB hit, first-level cache miss, and second-level cache
miss (“L2 miss™).

« No prediction.

The results indicate how many predictions were correct or
incorrect and what level in the memory hierarchy was used
before the predicted address was satisfied. The predicted
virtual address is first converted to a real address by
consulting the TLB. In Table 3, 6.67% of the references
miss the TLB. Because few TLB miss predictions are
correct (0.38%), and because TLB miss handling is
expensive in machine cycles, no further processing is
performed on these references until the correct address is
known. Of the remaining references, 85.67% hit in the L1
cache; 67.29% of the total were correct, and the correct
data are prefetched, while 18.38% were incorrect. This
leaves 7.65% of the references that miss L1 and reference
L2; 4.64% are L2 hits, although the majority are incorrect
predictions. Of the total references, 3.01% are L2 misses;
again the majority are incorrect. It should be noted that
the sum of all the entries in the ““incorrect’ line is equal to
the AGI count in Table 2. Of all the L1 misses, however,
most are likely to be wrong predictions. Prefetching on

L1 misses may not be advisable in this case. For some
prediction methods, certain cases are assumed to be
probably wrong, and result in no prediction. If the
prediction is expected to be wrong, it is better to wait
than to create extra memory traffic.

An improvement in the prediction can be made if AGIs
are detected. If the AGI is known, the address is almost
certainly wrong, and no prediction should be made.
However, load instructions are processed in a special
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unit. It is desired to process the loads one per cycle when
possible. Since the load unit is detecting load instructions,
other nonload instructions can be skipped. Consequently,
if there is an AGI between an ALU instruction and a load,
the ALU instruction is not normally fully decoded, and the
AGI is not detected. Since most of the AGIs are caused by
loads, which are handled by the load unit, these AGIs can
be detected. If a previous load has been predicted but

not yet resolved, i.e., is still waiting to see whether the
predicted address is correct, the register modified by this
load is available to compare to newly predicted loads and
detect an AGI. This technique detects most of the AGIs.
The following instruction sequence shows an AGI caused
by an ALU instruction which modifies register R1:

L 16 50(R2 R3) ;Load R6from mem(R2 + R3 + 50)
AR R1,R6 :AddR1 =R1 + R6
L R9,20(R1,R4) :Load R9from mem(R1 + R4 + 26)

The AGI in the second load instruction is not detected,
since the load unit does not decode the add instruction.
However, if the first load instruction loaded register R1
instead of R6, the AGI in the second load would be
detected. Consequently, there are a few cases where an
AGI caused by a nonload instruction is detected. The
address-generation step for this algorithm consists of
reading the registers and checking for unresolved loads
that modify the needed registers. If there is no conflict,
assume that the current registers are valid, generate the
address, and issue the data fetch. Table 4 shows the results
of this algorithm. About 20% of the time no prediction is
made because of a detected AGI, which is only slightly
higher than the number of load-caused AGISs in Table 2.
The number of correct predictions is the same as when
addresses are computed without checking for AGIs. It
should be noted that the number of wrong predictions is
greatly reduced.

& Load address prediction using deltas
While detecting AGIs can eliminate many wrong
predictions, it does little to increase the number of correct
predictions. Many programs, especially scientific ones,
traverse atrays or other regular data structures. Since this
is usually accomplished by looping through the same code,
there is likely to be some repeated pattern which can be
detected and used to predict future accesses. Furthermore,
it is likely that in general-purpose computing, memory
locations are reserved for global or temporary values such
that the address does not change. The patterns form the
basis for a family of history-based prediction algorithms,
called delta algorithms, which attempt to detect addressing
patterns used by individual load instructions.

Each delta algorithm uses a load delta table (LDT),
which is a mechanism similar to a BHT. In the LDT, the
address of the load instruction is used to access the table.
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Figure 2 shows the formats for the algorithms discussed in
this paper. In addition to what is shown in the figure, each
entry contains an address tag for matching with a table-
lookup address and typical management information, such
as valid bit and replacement algorithm information. In this
section, the LDT is assumed to contain 4K entries with a
four-way set-associative organization.

The simplest load instruction to predict is one which
always (or nearly always) loads from the same address
(delta is zero). In this case, a BHT-like structure will
correctly predict the address. Each entry in the LDT
consists of a target address, which is the data address most
recently used for the instruction represented by the table
entry. The process of accessing the LDT is as follows. The
instruction address of the load (virtual address) is used to
access a table. The lower address bits select the entries in
the table, and the upper bits are matched against saved
upper bits for table entries, as in a BHT or a cache
directory. When there is a match, the target address is
read from the table entry and is used as the predicted
address. If there is no match, no prediction is available. To
update the table, a new entry is created on a miss, or the
target address is modified if it changed, or nothing is done
if the predicted address was correct. Experiments with this
algorithm indicate that in TSO approximately 50% of
addresses can be correctly predicted [22].

An improved algorithm assumes a constant delta. Each
entry in the LDT contains a target address and a delta
value. The target address is the last address used by this
load instruction. Delta is the difference between the last
address and the penultimate address. When an entry is first
created, the delta is set to zero, since zero is the most
common delta used, and a prediction to the same address
will almost always be a TLB and a cache hit. To predict
an address, the LDT is searched; if there is a hit, the
target and delta are added to form the predicted address.
(If there is not enough time to perform this add in an
implementation, the LDT can hold the target, delta, and
next predicted address. The next predicted address is
computed when the table is updated, when an extra
cycle is presumably not as critical.) If there is a miss, no
prediction is made. The LDT update process consists of
creating a new entry on a miss, with delta of zero. If there
was a hit, the target address is updated, and the new delta
is computed (if it changed) by subtracting the target
address from the actual address. This algorithm predicts
approximately 59% of addresses correctly in TSO [22].

Several other algorithms were studied on the basis of
observed addressing patterns [22, 23]. In this paper, an
algorithm is described that performs well at reasonable
cost. The algorithm uses an LDT entry consisting of a
target address, two delta fields (deltal and delta2), and one
bit indicating that the entry was recently initialized. The
algorithm is depicted using C-like code in Figure 3. This
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Algorithm 1
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Algorithm 2
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%

Table 4 Prediction using AGEN with AGI detection.

TLB miss LI hit L2 hit L2 miss Total
(%) (%) (%) (%) (%)

7SO
Correct 0.38 67.29 192 1.23 70.82
Incorrect 1.15 5.26 0.67 0.32 7.40
Total predicted 1.53 72.55 2.59  1.55 78.22
No prediction 21.78%

IMS
Correct 0.45 65.67 1.72  0.61 68.45
Incorrect 1.30 591 1.14 0.72 9.07
Total predicted 1.75 71.58 2.86 133 77.52
No prediction 22.50%

CICS
Correct 0.27 68.99 1.65 0.83 71.74
Incorrect 0.83 6.53 0.82 0.37 8.55
Total predicted 1.10 7552 247 120 80.29
No prediction 19.71%

RAMPC

Correct 0.14 63.76 098 1.03 65.91
Incorrect 0.22 1342 0.54 036 14.54
Total predicted 0.36 77.18 1.52 1.39 80.45
No prediction 19.55%

FPCI
Correct 0.03 52.61 092 3.15 56.71
Incorrect 0.75 20.21 0.57  3.37 24.90
Total predicted 0.78 72.82 149 6.52 81.61

No prediction 18.38%

algorithm does not change the delta every time there is a
wrong prediction, but only when the prediction is wrong
and the last two (wrong) deltas are the same. When an
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/* Representation of the correct LDT entry */
struct {

int TargetAddress : 32;

int Deltal : 8;

int Delta2 : 8;

int initial : 1;

} LDTentry;

/* prediction function; add target and deltat */
LDTprediction (int LoadInstrAddr)

{
if (LDThit(LoadinstrAddr))
return(LDTentry. TargetAddress + LDTentry.Deltat);
else
return(MISS);
}

/¥ update function: update target and delta2,
update deltal if delta2 matches actual delta */
LDTupdate (int LoadinstrAddr, int ActualAddress, int HitMiss)

{
if (HitMiss == MISS)
{
aliocateLDTentry(LoadInstrAddr);
LDTentry.TargetAddress = ActualAddress;
L.DTentry.Deltal = 0;
LDTentry.Delta2 = 0;
LDTentry.Initial = 1;
}
else /* HIT ¥/
{
int ActualDeita = ActualAddress — LDTentry.TargetAddress;
if (LDTentry.Initial == 1)
{
LDTentry.Deltal = ActualDelta;
LDTentry.Initial = 0;
}
else /* is not the initial entry */
{
if (ActualDelta == LDTentry.Delta2)
LDTentry.Deltal = ActualDelta;
}
LDTentry.TargetAddress = ActualAddress;
LDTentry.Delta2 = ActualDelta;
}
}

Two-delta address-prediction algorithm.
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entry is created, the target address is entered, both deltas
are set to zero, and the initial bit is one. A prediction is
the sum of the target address and deltal. On a correct
prediction, the target address is updated, but the other
fields are not changed. On an incorrect prediction, if the
entry was initialized on its most recent access, deltal is
set to the actual delta that occurred. The target address is
updated and delta2 is set to the actual delta. This algorithm
is successful when the access pattern is usually a constant
delta but there are occasional breaks in the sequence.

For example, when the processor is stepping through an
array and comes to the end, there is a jump back to the
beginning or to another array. The sequence of addresses
in these cases might be 100, 104, 108, 112, 100, 104, 108,
112, 100, - - - and 100, 104, 108, 112, 200, 204, 208, 212,
300, - - - . The two-delta method mispredicts the jump

in the sequence but does not change the delta used

for prediction, and it will be right on the next address
prediction. An algorithm with a single delta mispredicts the
jump and also mispredicts the next address after the jump.
Another accessing pattern is to alternate between two
addresses—for example, 100, 104, 100, 104, - - - . With a
single delta, all predictions are incorrect, but with two
deltas, half the predictions are correct.

The first part of Table 5 shows the results using this
method. The LDT organization used was 4K entries and
four-way set associative. The delta fields are each eight
bits. Overall, the prediction is correct just over 63% of the
time. The majority of incorrect predictions occur when no
prediction is made because of an LDT miss.

& Load address prediction using LDT and AGI detection
The prediction using LDT can be improved substantially
when it is combined with a normal AGEN and LDT is
used to track AGI history. The second part of Table 5
shows results when LDT is accessed in paraliel with a
normal AGEN. If there is an LDT hit, that prediction is
used; if it is a miss, the AGEN result is used. Now 79%
of addresses can be correctly predicted.

Finally, the third part of the table shows the case where
LDT tracks AGI history. This optimization was introduced
for branches in a BHT organization [24]. For the load unit,
the prediction uses both AGEN and LDT. If the prediction
was made using AGEN (an LDT miss) and it was correct,
no entry is created in LDT. If the AGEN prediction was
incorrect because of an AGI, an LDT entry is created.
Thus, the only LDT entries correspond to instructions
that once had an AGI. This reduces the size of the LDT
needed. Since the same instruction sequences may occur
more than once, if there is an AGI one time, there will
probably be an AGI the next time the same sequence is
executed. An LDT hit indicates that an AGI is very likely
for this instruction (whether caused by a load or another
instruction); therefore, the next best method to AGEN, the
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Table 5 Prediction using LDT and AGEN.

TLB miss L1 hit L2 hit L2 miss Total

7SO %) (%) (%) (%) (%)
LDT only
Correct 0.13 61.38 0.85 0.79 63.15
Incorrect 0.82 1341 0.50 042 15.15
Total predicted 095 7479 135 121 78.30
No prediction 21.71%
LDT and AGEN on miss
Correct 0.41 7533 1.92 132 78.98
Incorrect 238 1643 1.20 1.02 21.03
Total predicted 279 9176 3.12 234 100.00
No prediction 0.00%
LDT and AGEN, table entry only if AGI
Correct 0.51 82.40 2.34 151 86.76
Incorrect 1.72 9.83 0.88 0.81 13.24
Total predicted 223 9223 3.22 232 100.00

No prediction 0.00%

Table 6 Prediction using LDT, AGEN, and AGI detection
(LDT and AGEN, LDT entry only if AGI, detect load-load
AGI).

TLB miss L1 hit L2 hit L2 miss Total
% (B (B (%) (%)

7SO
Correct 0.51 82.40 234 1.51 86.76
Incorrect 1.01 8.13 055 050 10.19
Total predicted 1.52 90.53 2.89 2.01 96.95
No prediction 3.05%
IMS
Correct 0.63 82.10 233 0.83 85.89
Incorrect 1.36 9.73 099 0.44 12.52
Total predicted 1.99 91.83 3.32 1.27 98.41
No predicted 1.59%
CICS
Correct 0.45 83.99 2.22 1.00 87.66
Incorrect 0.80 948 0.86 0.19 11.33
Total predicted 1.25 93.47 3.08 1.19 98.99
No prediction 1.01%
RAMPC
Correct 0.24 82.72 1.87 1.14  85.97
Incorrect 0.61 11.63 123 029 13.76
Total predicted 0.85 9435 3.10 1.43 99.73
No prediction 0.27%
FPC1
Correct 0.04 84.04 3.14 5.66 92.88
Incorrect 0.03 5.55 036 0.87 6.81
Total predicted 0.07 89.59 350 6.53 99.69

No prediction 0.31%

LDT, should be used. The third part of Table 5 shows results

using this method. Prediction accuracy is now close to 87%.
The final improvement on this algorithm is to detect

AGIs caused by load instructions and to make no

prediction when the AGI is detected and there is an LDT

miss. Table 6 shows the results for each of the benchmark
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Table 7 Varying the LDT configuration (LDT and AGEN,
LDT entry only if AGI, detect load-load AGI).

7SO
Size = 1024, associativity = 2, delta size = 32 bits
TLB miss L1 hit L2 hit L2 miss Total
(%) (%) (%) () (%)

Correct 0.44 81.19 230 1.75 85.68
Incorrect 0.62 7.24 0.36 0.38 8.60
Total predicted 1.06 88.43 2.66 2.13 94.28

No prediction 5.72%

Size = 1024, associativity = 2, delta size = 8 bits
TLB miss L1 hit L2 hit L2 miss Total
(%) (B (B (%) (%)

Correct 0.42 81.08 2.18 1.45 85.13
Incorrect 0.61 7.87 036 0.29 9.13
Total predicted 1.03 88.95 2.54 1.74 94.26

No prediction 5.72%

Size = 4096, associativity = 4, delta size = 32 bits

TLB miss L1 hit L2 hit L2 miss Total
(%) (%) (%) (%) (%)

Correct 0.52 82.50 2.46 1.80 87.28
Incorrect 1.04 742 0.56 0.64 9.66
Total predicted 1.56 89.92 3.02 2.44 96.94

No prediction 3.05%

Size = 4096, associativity = 4, delta size = 8 bits

TLB miss L1 hit L2 hit L2 miss Total
(%) (%) () (%) (%)

Correct 0.51 82.40 2.34 1.51 86.76
Incorrect 1.01 8.13 0.55 0.50 10.19
Total predicted

No prediction 3.05% 1.52  90.53 2.89 2.01 96.95

programs. The prediction rates for TSO are the same

as before, but 3% of the formerly wrong predictions

now result in no prediction. Prediction accuracy for the
benchmarks ranges from about 86% to nearly 93%. In most
cases, on a TLB miss the address is usually wrong, and
the miss should not be processed. In going to L2 after an
L1 miss, the address is correct more than two thirds of the
time for some programs and nearly 90% of the time for
FPCL. These results indicate that prefetching L1 misses is
likely to result in a performance improvement. Fetching L2
misses also most often brings in the correct data. Recall
that about 33% of loads have an AGI, and about 19%

of loads have an AGI caused by another load. With the
combination AGI detection, AGEN, and LDT, only 1% of
loads result in no prediction. The LDT is effectively used
as an AGI history indicator, since load instructions

with AGIs are put in the LDT and the LDT

subsequently provides the prediction. Because of these
facts, it is observed that the majority of predictions

are made using a computed address rather than using

the LDT.
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® LDT configurations

Thus far, performance results have not considered LDT
size. Table 7 shows results for TSO using the combined
algorithm of LDT, AGEN, and AGI detection. The LDT
configuration is varied. The first two parts show a smaller
LDT of 1K entries. The larger LDT results in about 1.5%
more correct predictions, but also makes more wrong
predictions. The smaller LDT makes no prediction more
often, since there are more LDT misses. The algorithm
uses the LDT prediction if there is a hit, and uses the
load-load AGI detection results only on a miss. Because
most of the predictions are made using AGEN rather than
LDT, the prediction success rate is not very sensitive to
LDT size.

The table also shows how the size of the delta fields
affects predictions. To reduce the cost of the LDT, the full
32-bit delta need not be used. Previous results use eight-bit
delta fields. If the actual delta does not fit in eight bits,

a delta of zero is used. A larger delta results in a half
percent more correct predictions. A smaller delta results
in more cache and TLB hits, since nearby addresses

are more likely to be in the cache or TLB. More than
eight delta bits results in little performance gain. The
performance drops significantly when the number of bits
goes below eight [22].

® Performance improvement

The results above suggest some implementation options for
using the prediction. The majority of predicted addresses
are found in both the TLB and the first-level data cache.
As described below, this allows the load, which is
processed early, to get its data from the cache early. On a
TLB or cache miss, the processor cancels the prefetch
(there is a ““prefetch’ signal to the TLB and cache and a
““miss”” signal back to the processor). Assuming that there
is at least one available cache cycle between the time the
cache would be accessed with the predicted address and
the time the cache would be accessed when the correct
address is known with certainty, the cache can be
accessed early and one pipeline stage can be eliminated
from normal sequential processing. Since about 40% of all
instructions in the benchmarks are loads, and one cycle
can be eliminated with each correct prediction on a cache
hit, about 32% of instructions may execute in one fewer
cycle. Therefore, the number of cycles per instruction
(CPI) is expected to be reduced by 0.32.

Another policy is to prefetch data on a miss. The
prediction on a TLB miss is more often wrong than right.
Also, a TLB miss usually requires a large number of
cycles to handle. For these reasons, if the predicted
address results in a TLB miss, no further actions should be
taken. When the correct address is determined, the access
is attempted again. If there is still a TLB miss, it is
handled then. A first-level cache miss is typically only a
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few cycles in penalty. The prediction is usually correct for
an L1 cache miss and an L2 cache hit. Therefore, a design
option is to process the L1 cache miss early. A second-
level cache miss often involves a longer penalty. Since

the prediction is usually correct, L2 misses can also be
processed early. To estimate the benefits of prefetching,
the number of cycles between the prefetch and the fetch
when there has been no prefetch was measured. This
provides an indication of the number of cycles available
for prefetching. On average, the prefetch happens about
12 cycles eatlier than the fetch when there is no prefetch.
This is enough overlap for an L2 hit, but probably not
enough for an L2 miss to be completely overlapped.

The overall performance improvement, as measured
in cycles per instruction (CPI), was calculated for each
benchmark. The benefit calculation assumes a single-cycle
access for an L1 hit, a five-cycle L1 latency for an L2
hit, and a 25-cycle latency on an L2 miss. For each load
instruction, the time available for prefetching is determined
by observing the number of cycles between the time when
the prefetch starts and the time when the load actually
executes. The average prefetch time in each case was used
to determine how many cycles were saved on a correct
prediction and how many cycles were lost on an incorrect
prediction.

Table 8 shows the estimated CPI improvement for each
of the three prefetch policies for prediction using delta
table, AGEN, and AGI detection. Combinations of some
or all of the three policies can be implemented. The total
CPI savings range from 0.42 to 0.53. This estimate does
not take into account several second-order effects that
reduce the possible improvement. Among these are bus
conflicts, cache utilization, stores into prefetched data,
and prefetches from pending stores. It is not expected
that these issues will reduce the prefetching benefit
substantially. Implementation aspects are discussed below.

The benefit of actual prefetching is fairly small, because
most predictions result in a cache hit in the large cache
modeled. If the cache is reduced in size, prefetching is
more significant. Table 9 shows the different prediction
rates for various L1 cache sizes for TSO as the L2 cache
size is constant. As the cache size decreases, there are
fewer hits; consequently, fewer instructions can prefetch
directly from L1. The proportion of all references that
reach L2 increases. Since the difference between
correct and incorrect predictions that hit L2 increases
substantially, it is more useful to prefetch from L2 when
the L1 cache is small. Figure 4 shows CPI improvement on
TSO for different prefetch policies. The curves show the
CPI relative to a 64KB cache without prefetching. For
example, the upper curve shows that a 4KB cache with no
prefetching has a CPI about 0.33 greater than a 64KB
cache with no prefetching, and the lowest curve shows
that the CPI for a 4KB cache with prefetching on L2

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

Table 8 Estimated CPI improvement.

L1 hit L2 hit L2 miss Total
TSO 0.343 0.049 0.029 0.421
IMS 0.345 0.049 0.064 0.458
CICS 0.379 0.050 0.039 0.468
RAMPC 0.349 0.039 0.097 0.485
FPC1 0.327 0.061 0.150 0.538

Table 9 Prediction using LDT, AGEN, and AGI detection
for various L1 cache sizes.

SO TLB miss L1 hit L2 hit L2 miss Total
(%) (%) (%) (%) (%)

64KB data cache

Correct 0.51 82.40 2.34 1.51 86.76
Incorrect 1.01 8.13 055 0.50 10.19
Total predicted 1.52 90.53 2.89 2.01 96.95

No prediction 3.05%

32KB data cache

Correct 0.51 81.39 337 1.48 86.75
Incorrect 1.01 7.79 090 050 10.20
Total predicted 1.52 89.18 4.27 1.98 96.95

No prediction 3.05%

16KB data cache
Correct 0.51 79.81 4.87 1.52 86.71
Incorrect 1.02 731 140 050 10.23
Total predicted 1.53 87.12 6.27 2.02 96.94
No prediction 3.06%

8KB data cache

Correct 0.51 77.55 7.16 1.48 86.70
Incorrect 1.02 6.83 1.8 051 10.24
Total predicted 1.53 84.38 9.04 199 96.94

No prediction 3.07%

4KB data cache

Correct 0.51 74.12 10.51 1.55 86.69
Incorrect 1.02 6.21 250 0.51 10.24
Total predicted 1.53 80.33 13.01 2.06 96.93

No prediction 3.08%

misses is 0.24 less than for a 64KB cache without
prefetching, and that the total improvement due to
prefetching for a 4KB cache is 0.57 CPI. Prefetching on

an L1 hit is shown by the second curve. The prefetching
improves CPI by 0.31-0.34 from a 4KB cache to a 64KB
cache. The third curve adds prefetching on an L1 miss and
an L2 hit, and shows further improvement from 0.22-0.05
CPI. The fourth curve includes prefetching on an L2 miss
and shows improvement from 0.04-0.03 CPI. As expected,
with smaller caches there are fewer hits, so there is less
saving possible with the L1-hit prefetch policy. For the
same reason, prefetching on an L1 miss results in bigger
gains when the cache size is small. Prefetching on an L2
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miss is roughly constant for variations in L1 size, since the
L2 size was not varied. The differences appear in the

““L1 hit” and “L2 hit” curves. The opportunity to
prefetch increases, and the difference between correct and
incorrect predictions on a miss also increases. It is clear
from the graph that a small cache with prefetching is more
effective than a large cache without prefetching. For larger
L1 caches, the benefit of prefetching is less, as expected.
However, there is always some benefit to prefetching the
data on an L1 hit in order to reduce the load instruction to
zero-cycle execution.

® QOther performance issues

Since the load prefetch adds another requestor for cache
services, in addition to normal loads and stores, there are
performance issues to consider. An additional cache port
for prefetching reduces many performance concerns, but
may be an unnecessary expense. As long as the cache
utilization is low enough, the extra traffic for prefetching
may not be significant. A correct prefetch does not
increase the cache bandwidth requirements; it only shifts
the time of the fetch. For some instructions, no prediction
is made, which imposes no additional bandwidth
requirements. Incorrect prefetches do increase the
workload on the cache, but this applies to only about 10%
of load instructions and, considering stores and multiword
operations, accounts for about 5% of all data memory
references.
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On a typical sequential machine, when there is a cache
miss, all instructions must wait. When loads can be
processed out of order, it is beneficial to allow loads to
access the cache while a cache miss from an earlier
instruction is in progress. If the subsequent cache access is
a hit, it can be processed. If it is a miss, it must wait until
the first miss is completed. The load unit accesses the
cache when it can find available cache cycles. If there
are none available, the prefetch is delayed until it is in
sequential order. When a cache miss blocks all other cache
access, this may happen enough times to make prefetch
less useful, since there may be few available cycles in
which to prefetch. If this is the case, a cache that allows
other accesses during a miss results in much better
performance. Similarly, a miss on a prefetch locks out
correct fetches unless the cache can respond while the
miss is in progress.

Several issues were not modeled in the performance
section. On a first-level cache miss, it is assumed that the
requested word is provided first. Additional cycles are
required for the remainder of the cache line. This effect
can prevent other cache misses from being processed,
since the bus is busy. If needed, there are techniques to
reduce this penalty. A store queue access to the cache
happens on available free cycles, but prefetching also uses
some of these cycles. Therefore, the store queue may fill
more often, resulting in lost cycles. The priority for the
cache should generally be that a full store queue has
highest priority, then normal fetches, then prefetches, then
stores. Store queue and load queue matches were not
counted. A store followed by a load from the same address
can result in either the load queue or store queue detecting
the address match in the other queue, as discussed in more
detail below. Typically, the load queue prefetch must be
invalidated, which affects performance. A prefetch to the
wrong location, resulting in a cache miss, causes another
line to be replaced. Should the replaced line be needed
again, another miss will occur (which could be prefetched).
This is more significant with lower-associativity (e.g.,
direct-map) caches. Each of these issues lowers the
expected performance gain of prefetches. However,
prefetching improves performance very significantly; even
with some reduction in this improvement, substantial
benefits remain.

Load unit implementation

This section describes hardware that might be used

to implement the load unit with prefetching. The
implementation described in this section uses an LDT for
prediction, together with the AGEN unit and load-load
AGI detection. All instructions which fetch data from
storage as their first storage operation are handled in

the load unit, except for certain complex or privileged
instructions, as described previously. Only one operand is
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prefetched, and only one prefetch is made for the operand.
In the ESA/390 architecture, operand 2 is usually a fetch
and is the only operand that is prefetched. Should an
operand span many sequential bytes of storage, the
prefetch of the first bytes prefetches a cache line which
effectively prefetches many additional bytes. As described
in this section, prefetch includes first-level cache hits and
first-level cache misses that hit or miss in the second-level
cache. There are subsets of this prefetching strategy which
could also be implemented. A TLB miss resulting from a
prefetch is not processed from the load unit.

Instructions in the instruction buffer are scanned by
the load unit. Typically there are several instructions
waiting in the instruction buffer at any time. When a load
instruction is found, it is processed by the load unit. If the
instruction is a pure load, the required actions are to fetch
from storage and write to a register. Since this is typically
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a one-cycle operation, the instruction is executed entirely
in the load unit. The main processor pipeline does not
process the load instruction, but it does track the presence
of the load. The prefetched data are held in the load queue
until the prefetch prediction can be verified; then the
register is modified and the load queue entry is removed.
For load instructions that require additional actions, such
as a computation on the fetched data, storing the data to a
different storage location, or further fetches and stores,
the remaining execution is handled in the main pipeline.
The prefetched data are held until the prediction can be
verified; then the data are available for the remainder of
the instruction execution. The first fetch does not appear
in the main pipeline, resulting in a reduction in the total
cycles for the instruction.

Figure 5 shows the hardware for prediction and the
formatting of a load queue entry. The load queue consists
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Fetch:
Predict;

compute AGEN
detect load-load AGI

detect load instruction in instruction buffer
predict address for the prefetch:
compute address from LDT

if LDT hit, predicted address is from LDT

else if detected AGI; no prediction is made

else predicted address is from AGEN
Prefetch: access TLB and cache with predicted address

Queue;

save load instruction, addresses, and data from cache in load queue

Load test: compute correct AGEN and compare to predicted virtual address in queue
if wrong prediction; fetch from correct address

update LDT if necessary
Put-away: store data in register or use in additional computations

Refetch:

Load unit pipeline description.

of some number of entries determined by performance and
cost constraints. The processor execution rate, instruction
buffer size, and cache timings determine the optimal size
of the load queue. It is expected that approximately four
entries is an appropriate size to use for the processor
configuration used here. Each entry in the load queue
contains the virtual address of the load instruction and

the fields of the instruction used in prediction: opcode,
base register (B), index register (X), displacement (D),
and target register (R). Not all fields are used by all
instructions. The B, X, and D fields are zero when not
used, as specified in ESA/390 architecture. The R field
contains an extra bit to indicate whether or not it is used,
since all register numbers are valid. The load queue also
contains the virtual address and real address predicted for
the prefetch, the data returned from the cache, and two
status bits: prefetch (P) and valid (V). When a prefetch is
to be made, P is set to one. In cases where no prediction
is made, P is zero. In the event of a TLB miss on a
prefetch, P is set to zero, canceling the prefetch. The real
address is returned from the TLB and is used for data
consistency checking. For a TLB miss, no real address is
needed. The V bit is set to one when the data are received
from the cache.
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Figure 6 summarizes the pipeline stages for the load unit
shown in Figure 5. When a load has been detected in the
instruction buffer, processing begins in the load unit. The
address is predicted from the LDT and AGEN. If there is
a hit in the LDT, that prediction is used. The registers
used to compute the address are compared to modified
registers of loads already in the load queue—those loads
prefetched but not yet verified. For an LDT miss and a
detected load-load AGI, no prefetch is made. If no AGI
is detected in this case, the AGEN address is used for
prediction. When a prediction is made, the address is
sent to the TLB and cache, and the “‘prefetch” signal is
raised. This indicates to the TLB that a miss is not to be
processed. Also, if the implementation does not prefetch
an L1 or L2 cache miss, the signal is used by the
appropriate cache. A prefetch that misses TLB (or a
cache, if implemented) returns a ““miss” signal to cancel
the prefetch in the load queue. When the cache responds
with the data, the data are aligned according to the
predicted address, stored in the load queue, and marked
valid. Note that, if there is time, prediction is improved
slightly if unaligned data are stored and the alignment is
performed on exit from the load queue using the correct
address to control the alignment. There are some cases
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where the predicted delta is very close; e.g., if the bus is
64 bits wide and the instruction is predicted to load 32 bits,
sometimes the other 32 bits are the correct ones.

A pure load is not processed by the main pipeline;
however, there is a bit in the pipeline corresponding to the
previous instruction to indicate that a load was present in
the instruction stream. Other prefetched loads do appear
in the main pipeline. However, the extra pipeline bit is
still used. When the load bit in the pipeline reaches the
execution cycle, this triggers the load test stage in the load
unit. An AGEN is computed for the load and compared to
the predicted address. If the prediction is correct, the
prefetched data are available in the next cycle for register
put-away or use in computations in the load instruction.
After a wrong prediction or no prediction, the correct
address is used to fetch the correct data. Should the load
have a register dependency on the previous instruction, as
indicated by the standard register scoreboard or a similar
technique, the load test cycle is delayed for one cycle.
However, without the load unit, the AGEN and cache
access together require two cycles.

Figures 7(a)-(d) show examples of four cases for a
“pure” load instruction. On the left are examples where
the load instruction uses the main pipeline, as do most
instructions. On the right is the timing when a load uses
the load unit pipeline. Each example consists of one
instruction per line. Each character represents one cycle.
The most common case, that of a correct prediction
without an AGI on the previous instruction, is shown
first. The prefetch occurs earlier than in the left column.
Load test is coordinated with execution of the previous
instruction. Since the prediction is correct, the data are
stored in the put-away cycle. The next instruction executes
one cycle earlier than without the load pipeline. When
there is an AGI, both main pipeline and load pipeline are
delayed, but the load pipeline still saves a cycle. For
incorrect predictions, no cycles are saved. The prefetch is
early, but another fetch is needed for the correct data.
This fetch corresponds to the same cycle as when there is
no load pipeline.

Figure 7(e) shows the most common case for an RX-
format load instruction. The load pipeline handles the
prefetch, which passes the data to the main pipeline to
complete the instruction. In the case shown, the data from
the fetch are used for one cycle of computation before a
register is modified. For other loads requiring more execution
cycles, additional execution stages are added in the main
pipeline. These stages may fetch from or store to storage.
Each load instruction uses both the load pipeline and the
main pipeline. The load pipeline operation is identical to
that of a pure load instruction. The main pipeline is
similar to that of the instruction following a pure load.

Figures 7(f)—(g) show timing examples for a pure load
when there is a cache miss on the prefetch. Some or all

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

of the cache miss is overlapped with the main pipeline
operation. The first example shows a cache miss on a
correct prediction that is completely overlapped, resulting
in six fewer cycles. One cycle is from removing the load
from the main pipeline, and the other five are the
overlapped cache miss penalty. The second example
represents a level-two cache miss which requires many
cycles. Some overlap occurs, saving five cycles. Had the
prediction been incorrect, the L1 miss and L2 hit would
have been completely overlapped. There is no saving in
this case, but with the load instruction detected sufficiently
early, there is no penalty. For an L2 miss, some cache
cycles may not be overlapped, resulting in a performance
loss. However, this represents the rare worst case which
results when both an incorrect prediction and an L2 miss
occur. The positive results of prefetching occur much more
frequently, resulting in a net increase in performance.

Architectural issues in load unit
implementation
Several issues must be addressed in the implementation
of the load unit to maintain architectural consistency and
good performance. Typical high-performance processors
have a store queue. Store instructions create a store queue
entry, and the stores are reflected in the cache whenever
cache cycles are available. This reduces cache contention
between reads and writes and prevents pipeline stalls on
store misses. In addition, the store queue helps maintain
the required appearance of sequential instruction execution
even when instructions are actually executed out of order.
Two issues arise when there are both a store queue and a
load queue. A load may prefetch from an address that is
also in the store queue. Therefore, all load prefetches must
search the store queue for matches. The other case is a
store to an address that is already in the load queue.
Therefore, all stores must search the load queue for
matches. In both cases, the correct value for the prefetch
is in the store queue and may not yet be in the cache.
There are several solutions to these issues. First, the
architecture may specify that the store data cannot be
passed to the load unit. In ESA/390, for example, in a
multiprocessor configuration all processors must observe
the store at the same time. The load prefetch violates this
rule. When the store is to a load queue entry, the load
queue entry could be marked to inhibit prefetch. The fetch
would then occur normally and use the standard rules for
this situation. When the load is from a store queue entry,
prediction could be inhibited, or the load prefetch could
be delayed until the store occurred or the actual fetch was
reached. In other cases, the architecture might allow the
load prefetch to use the data from the store queue, or the
store might update the load queue entry.

In many architectures there are some instructions that
serialize execution. This typically means that all preceding
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Without Toad pipeline With load pipeline Cycles saved

(a) Correct prediction, no AGI

F--DAEU F--DAEU

L: F---DARU FPTQQLU 1
F----DAEU F---DAEU

{b) Correct prediction, AGI
F--DAEU F~-DAEV

L: F---D. ARU FPTQQQLU 1
Foemm- DAEU F---D. AEU

{c) Incorrect prediction, no AGI
F--DAEY F--DAEU

L: F---DARU FPTQQLRU ]
F----DAEU F---D. AEU

(d) Incorrect prediction, AGI
F--DAEU F--DAEU

L: F---D.ARU FPTQQ Q LRU 0
F--num DAEU F---D . ,AEU

(e) Correct prediction, no AGI
F--DAEU F--DAEU

RX:  F--~DAREU /- FPTQQLU 1

\ F---DAEU

Foeemw DAEU F----DAEU

(f) Correct prediction, no AGI, L1 miss, L2 hit
Fommm- DAEU R DAEU

L: e DArrrrrRU FPrrrrrTlLU 6
Fommmana D.....AEU F--«- -<DAEU

(g) Correct prediction, no AGI, L1 miss, L2 miss
Fomum- DAEU Foummm DAEU

L Feusme DArrrrrrrrrerrerrreerrrrrrrrRU FPrrrrrereerrerreerreerrrerrerer TLU 5
Fesomumn Divivnnnnn c v eeeee vevnsessdAEU . Famemnn D...vss R eersses o AEU

F - instruction fetch

- waiting in instruction buffer

D instruction decode

A address generation

E-  execution (nonload)

R cache read

r cache read miss delay

W cache write

U register update

P predict load address

T target fetch of load data

Q  waiting in Toad queue

L load-test

pipeline stall

Load pipeline timing examples.
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instructions must complete before such an instruction can
be processed. The simple implementation is to flush all
prefetch buffers (instruction buffer, load queue, and any
others, such as a branch queue). The instructions after the
serializing instruction are then fetched again. The load unit
processes them again with the normal prediction, prefetch,
and enqueue operations. More complex solutions are to
detect which entries must be flushed and which can
remain.

Another area of concern with prefetching is that a
correct prefetch can occur before the refetch for an
instruction that prefetched incorrectly. That is, the correct
fetches are performed out of order. This is a concern in a
mulitiprocessor configuration, in that incorrect behavior can
result if another processor is storing to the same addresses
but prediction results in a different access order. The
fetches must appear to be in order from the perspective
of another processor. This is important only if the other
processor stores to the address of one of the fetches. For
caches, there are a variety of algorithms to maintain the
consistency of data [25]; these must be extended to the
load queue. The straightforward solution is for the load
queue to respond to stores from other processors. This
may create a large amount of traffic for load queue
checking. In caches, a duplicate directory is often
maintained for this reason. A duplicate of the load queue
(data real addresses only) can be maintained by the cache.
To avoid excessive coordination between the cache and
load queue, the load queue does not signal the cache when
an entry is removed from the load queue. Since the cache
copy of the load queue is the same size as the actual load
queue, entries are removed from the cache copy when the
queue is full. Whenever the cache detects a store matching
a cache load queue entry, it can either signal the load
queue to change all entries to no prefetch, or it can send
the address to the load queue for it to check for an exact
match. The cache copy of the load queue is affected by
more stores than the real load queue would be, because it
reflects stores to addresses which may no longer be
present in the real queue, but it filters out most stores, and
net traffic to the real load queue is reduced.

Conclusions

A new hardware technique has been presented for
improving processor performance. In the proposed
mechanism, load instructions are processed early, fetching
from a predicted address. This approach provides the
potential to make significant performance improvements.
By fetching the data early, a cycle is removed from the
normal execution of many instructions. The prefetch
allows cache misses to be overlapped with other
execution, also improving performance. Experimentation
strongly suggests that the techniques described in this
paper result in approximately 0.45 CPI reduction.
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