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A special-purpose  load  unit  is  proposed  as 
part  of a  processor  design.  The  unit 
prefetches  data  from  the  cache  by  predicting 
the  address  of  the  data  fetch  in  advance.  This 
prefetch  allows  the  cache  access  to  take  place 
early,  in  an  otherwise  unused  cache  cycle, 
eliminating  one  cycle  from  the  load  instruction. 
The  prediction  also  allows  the  cache  to 
prefetch  data if they  are  not  already  in  the 
cache.  The  cache-miss  handling  can  be 
overlapped  with  other  instruction  execution.  It 
is shown,  using  trace-driven  simulations,  that 
the  proposed  mechanism,  when  incorporated 
in  a  design,  may  contribute  to  a  significant 
increase  in  processor  performance.  The  paper 
also  compares  different  prediction  methods 
and  describes  a  hardware  implementation  for 
the  load  unit. 

Introduction 
In  pipelined processors, stalls in the pipeline cause 
unwanted delays in program execution, thus causing the 
performance of a computing system to deteriorate. Data 
dependencies, cache misses, and branches are examples 
of events that may stall the pipeline. Since superscalar 

processors* [l-51 issue more than one instruction per 
machine cycle, a pipeline stall has more  effect  in relative 
terms on performance degradation in superscalar 
processors than in scalar processors. This  is because for 
each cycle in which a pipeline  is stalled, a greater number 
of instructions could potentially execute in a superscalar 
processor than in a scalar processor. This paper addresses 
one of the causes of pipeline stalls related to the cache 
access. In particular, we consider data cache fetches 
because they make up a significant portion of  all processor 
instructions, especially in CISC (complex instruction-set 
computing) processors. Specifically, this paper describes a 
method of executing fetches in advance, making use of 
otherwise idle cache cycles. 

to storage. Caches [6] have been used to bridge the gap 
from the inexpensive but slow  main  memory to the fast 
processor by providing a level of storage that is 
intermediate in both size and cost, but  with a fast access. 
Because of the locality in programs, keeping a relatively 
small but relatively fast buffer  allows  most references to be 
fast while  keeping the cost affordable.  When the requested 
data are found in the cache, the effect is a fast response, 

One of the factors delaying  program execution is access 
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not  in the cache, the result is a cache miss,  which requires 
a memory access that can take many cycles. In one model 
of cache behavior, cache misses are divided into three 
types [7]: 

Compulsory: The data have not been referenced before, 

Capacity: The cache is not  large  enough to hold  all of 

Conflict: The cache organization prevents certain 

so must  be brought into the cache. 

the data. 

combinations of data from  being in the cache at the same 
time. 

Capacity and conflict misses can be reduced by increasing 
the cache size and increasing the associativity, 
respectively. Compulsory misses can be reduced to some 
extent with the inherent prefetching of larger  line sizes. 
However, this can create more  conflict  misses  when the 
line  is too large.  Data prefetching can reduce compulsory 
misses with  minimal impact on  conflict misses. If the 
software or hardware can predict which addresses will be 
referenced in the future, a cache miss can be handled 
before it  is demanded; therefore, that miss does not 
contribute to the total execution time  (i.e., the miss  is 
overlapped). In addition, prefetching can reduce other 
types of misses. For example, prefetching can  eliminate 
the miss that occurs when a line is replaced because of 
small capacity, and the line  is later reused. 

forms, both in software, where the compiler inserts 
prefetch instructions, and in hardware, where the 
hardware determines when to prefetch. A number of new 
architectures have prefetch instructions which allow the 
compiler to specify a data prefetch in advance. The 
prefetch can take the form of a special instruction that 
specifies the prefetch of a block of memory [8] or specifies 
the address of one datum, which  may result in a cache-line 
prefetch [9, 101. For each of these cases, the hardware 
must be able to process a cache miss  while other 
instructions execute. Since the prefetch instruction does 
not actually use the data, e.g., store it  in a register, a 
normal  load instruction is  used to access the data. Any 
exceptions generated by the prefetch are ignored; these 
resurface when the load is executed. 

A design technique similar to this, but without extra 
prefetch instructions, is  not to stall the processor on a load 
miss  [ll-131. If there is a miss, the register for  which the 
data are destined is marked to indicate that the register 
value is  not valid. When the datum returns from the cache, 
it  is stored in the register, and the register is marked valid. 
The processor stalls only when the loaded register is 
needed by a subsequent instruction. Instructions following 
the load are not stalled, and can complete execution. 

Prefetching can commonly be found in several different 

548 This approach has the advantage of not  requiring  new 

method, the distance between the load  and the use of the 
data must  be increased by having the compiler optimize 
the instruction scheduling. The processor design  is 
complicated, however, by allowing instructions to 
complete out of order. 

Another form of prefetching is special hardware in the 
cache to prefetch a cache line once a related cache line  is 
referenced. For example, a cache miss results in a fetch of 
the requested line and also the next  line, if it  is  not already 
in the cache. Other improved schemes have been proposed 
[6,  141. Vector accesses and other code exhibiting regular 
strides are ideal for this case [15, 161. Most  or all  of the 
prefetch proposals concentrate on  numerical code, which 
is dominated by sequential loops or vector instructions. 
Often the working set of vector programs  is too large to fit 
in a cache, so a cache is  not used and prefetching is very 
important. In a vector processor, a vector load instruction 
results in a data prefetch. 

An issue similar to data prefetch is that of instruction 
prefetch. The normal case for instruction fetching  is to 
fetch the next sequential instruction. This is disrupted 
only when there is a taken branch, perhaps 10%  of  all the 
instructions. Because of this sequential pattern, instruction 
access patterns tend to be more  regular than data access 
patterns. There are two common methods of branch 
prediction: dynamic prediction, using a branch history 
table (BHT) or branch target buffer  [17]  in hardware, and 
static prediction, using “hint” bits in the instruction itself. 
The BHT is typically a data structure, similar to a cache 
directory, indexed by the branch instruction address. The 
directory may contain one or more prediction bits and a 
branch target address. The prediction bits maintain the 
state of the branch instruction, i.e., whether it was last 
taken or not taken. When a branch instruction is detected 
by the hardware, the BHT is consulted to determine the 
prediction. For example,  Blaner et al. [18] describe a 
branch unit that scans an instruction buffer  looking for 
branches. As soon as one is  found,  it  is predicted, and if it 
is predicted to be taken, the taken path  is fetched and the 
sequential path  is discarded. Since the branch is processed 
early and asynchronously, an instruction cache miss can 
often be overlapped with other instruction executions. In 
addition, branches that do not require computation or do 
not  modify registers do not appear in the regular processor 
pipeline; therefore, they execute in zero machine cycles 
[18]. Similar approaches are used in other processors with 
a separate branch/instruction-fetch unit  [3].  Dynamic 
branch prediction accuracy can often exceed 80% [17]. 
Static prediction schemes can be implemented  similarly, 
but without the hardware required for a BHT.  In this 
case, the predicted branch direction is  specified in the 
instruction. The normal disruption of fetching by taken 
branches can be greatly reduced with branch prediction. 
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In this paper, a load-instruction unit applicable to 
general processor designs is described. The  load  unit  is 
similar to the SCISM branch unit [18] in that the load 
address is predicted dynamically, cache hits take zero 
processor cycles, and cache misses can be partially or 
completely overlapped. Since the frequency of load 
instructions is usually higher than that of branch 
instructions, and data cache miss rates are usually  higher 
than the miss rates of a simjlarly organized instruction 
cache, prefetching data can  offer a substantial performance 
benefit. Store instructions are not addressed by this 
technique, since they are often handled using a  store 
queue and do not stall the processor on a miss. 

concepts of the load  unit are described. Second, we report 
several experiments performed to evaluate different 
options for predicting data addresses. Consequently, a 
detailed performance study is reported, in order to 
estimate the performance benefits. Finally, a load  unit 
design based on the results of the performance 
experiments is presented. In this paper the IBM ESA/390TM 
[19] architecture is assumed, but the techniques can be 
applied to other architectures as well. 

The paper is organized as follows. First, the general 

Load  address  prediction 
A load instruction typically operates as follows. A virtual 
address is generated, denoted by AGEN, by adding one 
or two registers and a constant displacement. In a cache 
using real addresses, the virtual address is translated to a 
real address which is used to access the cache. (This 
process can be accelerated by using techniques such as 
translation prediction [20], or avoided by allowing the 
cache to use virtual addresses [21].) The cache directory is 
checked, and if the addressed data are found in the cache 
(a hit), the data are returned to the processor. When the 
data are not found in the cache (a miss), the cache sends 
the request to memory or to another level of cache to fetch 
the data. A cache miss typically takes several cycles, and 
it delays instruction execution. 

The load-instruction processor proposed in this paper 
is intended to improve the performance of processors 
by detecting and processing load instructions early. 
An overview of the load  unit is shown in Figure 1. 
(We describe the experiments used to determine the 
performance of the design before giving the design details.) 

Some information about the design is necessary in order 
to understand the performance experiments. The  general 
concept is that the processor maintains a buffer of 
prefetched instructions. Load instructions are detected in 
this instruction buffer before they would  normally  begin 
execution in the processor pipeline(s). The  load unit 
predicts the data address and issues a fetch from the data 
cache. The predicted address and the data are saved in 
another buffer, called the load queue, until the other 

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993 

Pipeline(s) 

7 

Data 
cache 

7 
Load queue 

1 
Check  prediction 

4 I 
I 

instructions advance in the pipeline(s) to the point where 
the load instruction would  normally compute its address. 
The address is then computed and compared to the 
predicted address. If the predicted address is correct, the 
load queue immediately supplies the data. This allows the 
processor to store the data in a register without waiting  for 
the cache to provide the data. In the event of a cache 
miss, the data are fetched using the predicted address, a 
prefetch. If the prediction is  made early enough, the  miss 
is overlapped with other instructions and the processor 
receives the data as if there were a cache hit. 

One  of the impediments of the proposed load  unit 
relates to pipeline hazards-in particular, to register 
dependencies. When  an instruction modifies a register that 
is used by a later instruction, that later instruction cannot 
be executed until the register has been modified.  When 
such a register is  used to compute an address, the 
condition is termed an address-generation interlock (AGI). 
In a typical  pipelined processor with one pipeline, an AGI 
can occur between two consecutive instructions, when one 
instruction modifies a register and the second computes an 
address with that register. When a load is processed early, 
it  is  likely that the register used in AGEN has yet to be 
modified. The modification  could occur several instructions 
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Table 1 Instruction counts in  program traces. 

TSO 

Pure load 
RX-format load 
SS-format load 

Total load 

Stores 
ALU-modify regs 
Other 

Total instructions 

IMS 

Pure load 
RX-format load 
SS-format load 

Total load 

Stores 
ALU-modify regs 
Other 

Total instructions 

CICS 

Pure load 
RX-format load 
SS-format load 

Total load 

Stores 
ALU-modify regs 
Other 

Total instructions 

RAil4PC 

Pure load 
RX-format load 
SS-format load 

Total load 

Stores 
ALU-modify regs 
Other 

Total instructions 

FPCl 

Pure load 
RX-format load 
SS-format load 

Total load 

Stores 
ALU-modify regs 
Other 

550 
Total instructions 

Count AGI Source 

216626 64152 88057 
108270 25126 27432 
242546 76292 2 

567442  165570  115491 

138627 0 0 
318435 0 49707 
338633 0 372 

1363137  165570  165570 
”- 

Count AGZ Source 

245119 82407 97620 
98834 28149 20055 

223199 68394 2 
567152  178950  117677 

135096 0 0 
310119 0 61266 
336978 0 7 

1349345  178950  178950 
“- 

Count  AGI Source 

231445 69057 94734 
136930 24378 19796 
246001 80197 0 
614376  173632  114530 

131325 0 0 
269929 0 59095 
346993 0 7 

1362623  173632  173632 
”- 

Count AGI Source 

153058 64858 91244 
79701 24070 14286 

342387 107109 568 
575146  196037  106098 

98097 0 0 
258604 0 89939 
429753 0 0 

1361600  196037  196037 
”- 

Count AGZ Source 

226671 61412 63857 
99637 20934 28190 

256855 170105 0 

583163  252451  92047 

203224 0 0 
394169 0 151124 
320349 0 9280 

1500905  252451  252451 
-“ 
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before the load instruction, not just in the previous 
instruction. Because load data addresses can vary and the 
number of AGIs can be large, the address-prediction 
algorithm is the key step in prefetching load data. 

Given that the success of early load-instruction 
processing can be directly related to the frequency of 
AGIs, it  is imperative to answer the following two 
questions: 

1. How often does the address of a preprocessed load 
instruction exhibit  an AGI? 

2. If the frequency of AGIs for preprocessed loads is 
high, can the load address be predicted in a general 
computing environment using a mechanism that is 
relatively simple to implement? 

In the sections that follow, these questions are answered, 
beginning with the evaluation methodology and  an 
investigation of program characteristics with regard to 
AGIs. 

Evaluation methodology and program charactehtics 
In order to answer the previously stated questions, the 
evaluation uses the ESA/390 architecture as the example 
architecture. Data were collected from several IBM 
ES41390 instruction traces. A SCISM* processor 
performance model was modified to detect load 
instructions early and collect statistics on prediction 
algorithms and the cache miss rates of prefetches. The 
performance model models the complete processor, 
including instruction latencies, cache misses, branch 
prediction, and cache trailing-edge effects. For this paper, 
the load instructions in the ESA/390 architecture are 
divided into three types. The “pure” loads (L-load and 
LH-load halfword)  load a register without using the 
previous contents of the loaded register; RX-format loads 
(IC-insert character, A-add, Ccompare ,  SH-subtract 
halfword, etc.) produce a result in a register by combining 
the contents of the register with data from storage; and 
SS-format loads and other instructions (MVC-move 
character, CLI-compare  logical immediate, “add 
decimal, TM-test under mask, etc.)  load  from storage but 
do not  modify registers. Most instructions in the SS-format 
load category typically load  from one operand (operand 2) 
and store to another operand (operand l), but some of the 
SS-format loads instead load  from both operand 1 and 
operand 2. In this paper, only the first word of operand 2, 
the usual source, is considered for prefetching. Subsequent 
words, when operand 2 specifies a long block of bytes, are 
not prefetched explicitly, but since some of the other bytes 
are in the same cache line, they can also be prefetched. All 

* S .  Vassiliadis, B. Blaner, and  R. J. Eickemeyer, “SCISM A Scalable  Compound 
Instruction Set Machine,” IBM J. Res. Develop., submitted  for  publication. 
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of the load instructions, as categorized above, perform a 
common step, namely: Compute an address and fetch from 
memory. Some instructions store the result in a register, 
some use it for further computation, some store it in 
memory,  and some perform other memory operations. 
Other instructions are divided into three more types: 
stores (ST-store,  STC-store character, MVI-move 
immediate, etc.), ALU operations, including branches that 
modify registers (AR-add register, SLGshi f t  left logical, 
BCTR-branch  on count, etc.), and other instructions 
(branches not modifying registers, RR-format  floating-point 
instructions, very complex instructions, and  privileged 
instructions). 

IBM ESN390 architecture: 
Data were collected from several program traces run  on 

TSO: representative workload, MVS SP 2.1.7. 
IMS: hierarchical database running  on  MVS SP 2.2. 
CICSm: transaction processing running on MVS 

RAMP-C: transaction processing benchmark. 
FPC1:  engineering workload. 

SP 2.1.7. 

Tables 1 and 2 show statistics gathered from the traces; 
both raw counts and frequencies are shown. The tables 
show the instruction frequencies for the three categories 
of loads and the other three instruction categories. Loads 
make up just over 40% of the executed instructions. The 
third column of Table 1 and the second part of Table 2 
show the number of AGIs for each type of instruction. 
For each load-instruction category, the number of AGIs is 
indicated. (No AGIs are shown for other instructions, 
since they are not relevant to this paper.) The number of 
AGIs is measured by assuming that the load data address 
is computed early, by detecting the load  in the instruction 
buffer. This is similar to early branch-instruction detection 
in the SCISM branch unit [18]. How early the address is 
computed depends on instruction buffer size, branch- 
prediction rate, instruction cache miss rate, and  pipeline 
stalls. Table 2 shows that an average of about 33%  of loads 
have AGIs. Slightly less than half  of these are caused by 
the instructions immediately preceding the load. The high 
number of AGIs indicates that early load processing 
cannot be ensured by using registers alone. The last 
column of Table 1 and the bottom section of Table 2 also 
show which instructions are the source of the AGI, i.e., 
which instructions modify a register used subsequently to 
compute the load address. The majority of load AGIs are 
caused by other load instructions, with a large number of 
ALU instructions also causing AGIs. The  AGI sources 
from SS-format loads are due to the TRT instruction which 
implicitly  modifies a register. 

Since the frequency of AGIs is high,  handling only 
non-AGI cases prevents many  load addresses from  being 

Table 2 Instruction  frequencies in program traces. 

Instruction type distribz&on [ %) 

TSO IMS CICS RAMPC FPCl 

Pure  load 15.9 18.2 17.0 11.2 15.1 
RX-format  load 7.9 7.3 10.0 5.9 6.6 
SS-format load 17.8 16.5 18.1 25.1 17.1 

Total load 41.6  42.0 45.1 42.2  38.9 

Stores 10.2 10.0 9.6 7.2 13.5 
ALU-modify  regs 23.4 23.0 19.8 19.0 26.3 
Other 24.8 25.0 25.5 31.6 21.3 

Load AGIs per instruction (%) 

TSO IMS CICS RAMPC FPCl 

Pure  load 
RX-format  load 
SS-format  load 

Total load 

29.6 33.6 29.8 42.4 27.1 
23.2 28.5 17.8 30.2 21.0 
31.5 30.6 32.6 31.3 66.2 

29.2 31.6 28.3 34.1 43.3 

Load AGI source distribution (%) 

Pure load 

TSO IMS CICS M P C  FPCl 

53.2 54.6 54.6 46.5 25.3 
RX-format load 16.6 11.2 11.4 7.3 11.2 
SS-format load 0.0 0.0 0.0 0.3 0.0 

Total load 69.8 65.8 66.0 54.1 36.5 

Stores 0.0 0.0 0.0 0.0 0.0 
ALU-modify  regs 30.0 34.2 34.0 45.9 59.9 
Other 0.2 0.0 0.0 0.0 3.7 

computed early. This suggests that predicting the data 
addresses may be necessary. The following are the results 
of experiments to compute the data addresses for load 
instructions. The methods involve various combinations 
of  blind AGEN, detecting AGIs, and address prediction. 

For the purpose of summarizing the concepts, results 
are presented for a fixed hardware configuration unless 
otherwise noted. The modeled system is assumed to have 
separate instruction and data first-level caches and TLBs. 
The second-level cache is shared. Except when indicated, 
the data TLB has 256 entries, is two-way associative, and 
supports 4096-byte  pages. The first-level data cache is 64 
kilobytes (KB), is four-way associative, and has 64-byte 
lines. The second-level cache is 512 KB, is  eight-way 
associative, and has 128-byte lines. There is a BHT 
containing 1024 entries, an instruction cache of 32 KB, and 
a 24-byte instruction buffer,  which holds approximately six 
instructions. 

Load address prediction by detecting AGIs 
In describing the various experiments, the format of the 
results of each experiment is shown in an example. The 

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993 R. .I. EICKEMEYER AND S. VASSILIADIS 



Table 3 Prediction  using AGEN. 

TSO TLB miss LI hit L2 hit L2 miss Total 
@I @) (%I (%I @) 

Correct 0.38  67.29  1.92  1.23  70.82 
Incorrect 6.29  18.38  2.72  1.78  29.17 
Total  predicted 6.67  85.67  4.64  3.01 100.00 
No prediction 0.00% 

simplest  method of predicting the correct data address is to 
compute the address with whatever values happen to be in 
the registers when the load instruction is detected. This 
prediction is correct if the registers are not  modified before 
the actual AGEN occurs, i.e., there is no AGI. Table 3 
shows the results using  TSO as an example. The various 
possible results are divided into several categories: 

TLB miss (“TLB miss”). 
TLB hit  and first-level cache hit (“Ll hit”). 
TLB hit, first-level cache miss,  and second-level cache 

TLB hit, first-level cache miss,  and second-level cache 

No prediction. 

hit (“L2 hit”). 

miss (“L2 miss”). 

The results indicate how many predictions were correct or 
incorrect and what level  in the memory hierarchy was used 
before the predicted address was satisfied. The predicted 
virtual address is  first converted to a real address by 
consulting the TLB. In Table 3,  6.67%  of the references 
miss the TLB. Because few TLB miss predictions are 
correct (0.38%), and because TLB miss  handling is 
expensive in machine cycles, no further processing is 
performed on these references until the correct address is 
known. Of the remaining references, 85.67% hit in the L1 
cache; 67.29%  of the total were correct, and the correct 
data are prefetched, while 18.38% were incorrect. This 
leaves 7.65%  of the references that miss L1 and reference 
L2; 4.64% are L2 hits, although the majority are incorrect 
predictions. Of the total references, 3.01% are L2 misses; 
again the majority are incorrect. It should be noted that 
the sum of  all the entries in the “incorrect” line  is equal to 
the AGI count in Table 2.  Of  all the L1 misses, however, 
most are likely to be wrong predictions. Prefetching on 
L1 misses  may  not be advisable in this case. For some 
prediction methods, certain cases are assumed to be 
probably wrong, and result in no prediction. If the 
prediction is expected to be wrong, it is better to wait 
than to create extra memory  traffic. 

are detected. If the AGI is known, the address is  almost 
certainly wrong, and no prediction should be made. 
However, load instructions are processed in a special 

An improvement in the prediction can be made if AGIs 

unit. It is desired to process the loads one per cycle when 
possible. Since the load  unit  is detecting load instructions, 
other nonload instructions can be skipped. Consequently, 
if there is an AGI between an ALU instruction and a load, 
the ALU instruction is  not  normally  fully decoded, and the 
AGI is not detected. Since most of the AGIs are caused by 
loads, which are handled by the load unit, these AGIs can 
be detected. If a previous load has been predicted but 
not yet resolved, i.e.,  is still waiting to see whether the 
predicted address is correct, the register modified by this 
load is available to compare to newly predicted loads and 
detect an AGI. This technique detects most of the AGIs. 
The  following instruction sequence shows an AGI caused 
by an ALU instruction which  modifies register R1: 

L R6,5E)(R2, R3) ; Load R6from mem(R2 + R3 + 50)  
AR R1, R6 ;AddRl  =R1  +R6 
L R9, WR1, R4) ; Load R9 from  mem(R1 + R4 + 2Q) 
The  AGI in the second load instruction is  not detected, 
since the load  unit does not decode the add instruction. 
However, if the first  load instruction loaded register R1 
instead of  R6, the AGI  in the second load  would be 
detected. Consequently, there are a few cases where an 
AGI caused by a nonload instruction is detected. The 
address-generation step for this algorithm consists of 
reading the registers and checking for unresolved loads 
that modify the needed registers. If there is  no  conflict, 
assume that the current registers are valid, generate the 
address, and issue the data fetch. Table 4 shows the results 
of this algorithm. About 20%  of the time no prediction is 
made because of a detected AGI, which is only slightly 
higher than the number of load-caused AGIs in Table 2. 
The number of correct predictions is the same as when 
addresses are computed without checking for AGIs. It 
should be noted that the number of wrong predictions is 
greatly reduced. 

Load address prediction using deltas 
While detecting AGIs can eliminate many wrong 
predictions, it does little to increase the number of correct 
predictions. Many programs, especially scientific ones, 
traverse arrays or other regular data structures. Since this 
is  usually  accomplished by looping  through the same code, 
there is  likely to be some repeated pattern which can be 
detected and used to predict future accesses. Furthermore, 
it is likely that in general-purpose computing,  memory 
locations are reserved for global  or temporary values such 
that the address does not change. The patterns form the 
basis for a family of history-based prediction algorithms, 
called delta algorithms,  which attempt to detect addressing 
patterns used by  individual  load instructions. 

Each delta algorithm uses a load delta table (LDT), 
which  is a mechanism  similar to a BHT. In the LDT, the 
address of the load instruction is used to access the table. 
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Figure 2 shows the formats for the algorithms discussed in 
this paper. In  addition to what is shown in the figure, each 
entry contains an address tag for matching  with a table- 
lookup address and typical  management information, such 
as valid bit  and replacement algorithm  information.  In this 
section, the LDT is assumed to contain 4K entries with a 
four-way set-associative organization. 

The simplest load instruction to predict is one which 
always (or nearly always) loads from the same address 
(delta is zero). In this case, a BHT-like structure will 
correctly predict the address. Each entry in the LDT 
consists of a target address, which is the data address most 
recently used for the instruction represented by the table 
entry. The process of accessing the LDT is as follows. The 
instruction address of the load (virtual address) is  used to 
access a table. The lower address bits select the entries in 
the table, and the upper bits are matched against saved 
upper bits for table entries, as in a BHT or a cache 
directory. When there is a match, the target address is 
read from the table entry and  is used as the predicted 
address. If there is no match, no prediction is  available. To 
update the table, a new entry is created on a miss, or the 
target address is  modified if it changed, or nothing  is done 
if the predicted address was correct. Experiments with this 
algorithm indicate that in TSO approximately 50% of 
addresses can be correctly predicted [22]. 

entry in  the LDT contains a target address and a delta 
value. The target address is the last address used by this 
load instruction. Delta  is the difference between the last 
address and the penultimate address. When  an entry is  first 
created, the delta is set to zero, since zero is the most 
common delta used, and a prediction to the same address 
will  almost always be a TLB and a cache hit. To predict 
an address, the LDT is searched; if there is a hit, the 
target and delta are added to form the predicted address. 
(If there is not  enough  time to perform this add in an 
implementation, the LDT can hold the target, delta, and 
next predicted address. The next predicted address is 
computed when the table is updated, when  an extra 
cycle is presumably not as critical.) If there is a miss, no 
prediction is made. The LDT update process consists of 
creating a new entry on a miss,  with delta of zero. If there 
was a hit, the target address is updated, and the new delta 
is computed (if it changed) by subtracting the target 
address from the actual address. This algorithm predicts 
approximately 59% of addresses correctly in TSO [22]. 

Several other algorithms were studied on the basis of 
observed addressing patterns [22, 231. In this paper, an 
algorithm is described that performs well at reasonable 
cost. The algorithm uses an LDT entry consisting of a 
target address, two delta fields (delta1 and delta2), and one 
bit indicating that the entry was recently initialized. The 
algorithm  is depicted using  C-like code in Figure 3. This 

An improved algorithm assumes a constant delta. Each 

Algorithm 0 

1 
Algorithm 1 

Target Deltal 

Algorithm 2 

Target Deltal Delta2 S 

Table 4 Prediction using AGEN with AGI detection. 

Correct 
Incorrect 
Total  predicted 
No prediction 21.78% 

IMS 
Correct 
Incorrect 
Total  predicted 
No prediction 22.50% 

CICS 
Correct 
Incorrect 
Total  predicted 
No prediction 19.71% 

RAMPC 
Correct 
Incorrect 
Total  predicted 
No prediction 19.55% 

FPCl 
Correct 
Incorrect 
Total predicted 
No prediction 18.38% 

0.38 
1.15 
1.53 

0.45 
1.30 
1.75 

0.27 
0.83 
1.10 

0.14 
0.22 
0.36 

0.03 
0.75 
0.78 

TLB miss Ll  hit L2 hit L2 miss Total 

TSO 
(%) (%) (%) (%) (%) 

67.29 1.92 1.23 70.82 
5.26 0.67 0.32 7.40 

72.55 2.59 1.55 78.22 

65.67  1.72  0.61  68.45 
5.91  1.14  0.72  9.07 

71.58  2.86  1.33  77.52 
~~~ ~ 

68.99 1.65 0.83 71.74 
6.53 0.82 0.37 8.55 

75.52 2.47 1.20 80.29 

63.76 0.98 1.03 65.91 
13.42 0.54 0.36 14.54 
77.18 1.52 1.39 80.45 

52.61 0.92 3.15 56.71 
20.21 0.57 3.37 24.90 
72.82 1.49 6.52 81.61 

algorithm does not change the delta every time there is a 
wrong prediction, but only when the prediction is wrong 
and the last two (wrong) deltas are the same. When  an 553 
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/* Representation  of the  correct  LDT  entry */ 
struct { 

int TargetAddress : 32; 
int  Delta1 : 8; 
int  Delta2 : 8; 
int  Initial : 1 ; 
} LDTentry; 

/* prediction  function;  add  target  and deltal */ 
LDTprediction  (int  LoadlnstrAddr) 

if (LDThit(Load1nstrAddr)) 

else 

{ 

return(LDTentry.TargetAddress + LDTentry.Delta1); 

return(M1SS); 
1 
I* update  function:  update  target  and  delta2, 

LDTupdate  (int  LoadlnstrAddr, int ActualAddress,  int  HitMiss) 
update deltal if  delta2  matches  actual  delta *I 

{ 
if (HitMiss == MISS) 
{ 

allocateLDTentry(LoadlnstrAddr); 
LDTentry.TargetAddress = ActualAddress; 
LDTentry.Delta1 = Q; 
LDTentry.Delta2 = Q; 
LDTentryhitial = 1; 

1 

{ 
else /* HIT */ 

int  ActualDelta = ActualAddress - LDTentry.TargetAddress; 
if (LDTentryJnitial == 1) 
{ 

LDTentry-Delta1 = ActualDelta; 
LDTentryhitial = 8; 

I 

{ 
else /* is not the  initial entry */ 

if  (ActualDelta = = LDTentry.Delta2) 
LDTentry.Delta1 = ActualDelta; 

I 
LDTentry.TargetAddress = ActualAddress; 
LDTentry.Delta2 = ActualDelta; 

1 
I 
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entry is created, the target address is entered, both deltas 
are set  to zero, and the initial  bit is one. A prediction is 
the sum of the target address and deltal. On a correct 
prediction, the target address is updated, but the other 
fields are not changed. On an incorrect prediction, if the 
entry was initialized on its most recent access, deltal is 
set to the actual delta that occurred. The target address is 
updated and delta2 is set to the actual delta. This algorithm 
is successful when the access pattern is usually a constant 
delta but there are occasional breaks in the sequence. 
For example, when the processor is stepping through an 
array and comes to the end, there is a jump back to the 
beginning or to another array. The sequence of addresses 
in these cases might be 100,  104,  108,  112,  100,  104,  108, 
112,  100, - - and  100,  104,  108,  112,  200,  204,  208,  212, 
300, * . The two-delta method mispredicts the jump 
in the sequence but does not change the delta used 
for prediction, and  it  will be right on the next address 
prediction. An algorithm with a single delta mispredicts the 
jump and also mispredicts the next address after the jump. 
Another accessing pattern is to alternate between two 
addresses-for example, 100,  104,  100,  104, * - - . With a 
single delta, all predictions are incorrect, but with two 
deltas, half the predictions are correct. 

The first part of Table 5 shows the results using this 
method. The LDT organization used was 4K entries and 
four-way set associative. The delta fields are each eight 
bits. Overall, the prediction is correct just over 63%  of the 
time. The majority of incorrect predictions occur when no 
prediction is made because of an LDT miss. 

Load address prediction using  LDT  and AGI detection 
The prediction using LDT can be  improved substantially 
when it is combined with a normal AGEN and LDT is 
used to track AGI history. The second part of Table 5 
shows results when LDT is accessed in parallel with a 
normal AGEN. If there is an LDT hit, that prediction is 
used; if it  is a miss, the AGEN result is used. Now 79% 
of addresses can be correctly predicted. 

Finally, the third part of the table shows the case where 
LDT tracks AGI history. This optimization was introduced 
for branches in a BHT organization [24]. For the load unit, 
the prediction uses both AGEN and LDT. If the prediction 
was made using AGEN (an LDT miss) and it was correct, 
no entry is created in  LDT. If the AGEN prediction was 
incorrect because of  an AGI,  an LDT entry is created. 
Thus, the only LDT entries correspond to instructions 
that once had an  AGI. This reduces the size of the LDT 
needed. Since the same instruction sequences may occur 
more than once, if there is an AGI one time, there will 
probably be an AGI the next time the same sequence is 
executed. An LDT hit indicates that an AGI  is very likely 
for this instruction (whether caused by a load or another 
instruction); therefore, the next best method to AGEN, the 
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Table 5 Prediction  using  LDT and AGEN. 

TLB miss LI  hit L2 hit L2 miss Total 
TSO (%) (%I  (%I 

LDT  only 
Correct 0.13 61.38 0.85 0.79 63.15 
Incorrect 0.82 13.41 0.50 0.42 15.15 
Total  predicted 0.95 74.79  1.35  1.21 78.30 
No prediction 21.71% 

LDT and AGEN on miss 
Correct 0.41 75.33 1.92 1.32 78.98 
Incorrect 2.38 16.43 1.20 1.02 21.03 
Total  predicted 2.79 91.76 3.12 2.34 100.00 
No prediction 0.00% 

LDT and AGEN, table  entry  only if AGI 
Correct 0.51 82.40 2.34 1.51 86.76 
Incorrect 1.72 9.83 0.88 0.81 13.24 
Total  predicted 2.23 92.23 3.22 2.32 100.00 
No prediction 0.00% 

Table 6 Prediction  using  LDT, AGEN, and AGI detection 
(LDT and AGEN, LDT entry only if AGI, detect load-load 
AGI). 

TLB miss LI  hit L2 hit L2 miss Total 

TSO 
(%) (%)  (%) (%) (%) 

Correct 
Incorrect 
Total  predicted 
No prediction 3.05% 

IMS 
Correct 
Incorrect 
Total  predicted 
No predicted 1.59% 

CICS 
Correct 
Incorrect 
Total  predicted 
No prediction 1.01% 

RAMPC 
Correct 
Incorrect 
Total  predicted 
No prediction 0.27% 

FPCl 
Correct 
Incorrect 
Total  predicted 
No prediction 0.31% 

0.51 
1.01 
1.52 

0.63 
1.36 
1.99 

0.45 
0.80 
1.25 

0.24 
0.61 
0.85 

0.04 
0.03 
0.07 

82.40 2.34 1.51 86.76 
8.13 0.55 0.50 10.19 

90.53 2.89 2.01 96.95 

82.10 2.33 0.83 85.89 
9.73 0.99 0.44 12.52 

91.83 3.32 1.27 98.41 

83.99 2.22 1.00 87.66 
9.48 0.86 0.19 11.33 

93.47 3.08 1.19 98.99 

82.72 1.87 1.14 85.97 
11.63 1.23 0.29 13.76 
94.35 3.10 1.43 99.73 

84.04 3.14 5.66 92.88 
5.55 0.36 0.87 6.81 

89.59 3.50 6.53 99.69 

LDT, should be used. The third part of Table 5 shows results 
using this method. Prediction accuracy is  now close to 87%. 

The final improvement on this algorithm  is to detect 
AGIs caused by load instructions and to make no 
prediction when the AGI  is detected and there is an LDT 
miss. Table 6 shows the results for each of the benchmark 
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Table 7 Varying the LDT  configuration  (LDT and AGEN, 
LDT entry only if AGI, detect load-load  AGI). 

TSO 
Size = 1024, associativity = 2, delta sue = 32 bits 

TLB miss Ll  hit L2 hit L2 miss Total 
(%) (a) @) (%) (%I 

Correct 0.44 81.19 2.30 1.75 85.68 
Incorrect 0.62  7.24 0.36 0.38  8.60 
Total  predicted 1.06 88.43 2.66 2.13 94.28 
No prediction 5.72% 

Sue = 1024, associativity = 2, delta  size = 8 bits 
TLB miss LI hit L2 hit L2 miss Total 

(%I (%) 

Correct 0.42 81.08 2.18 1.45 85.13 
Incorrect 0.61  7.87  0.36 0.29 9.13 
Total  predicted 1.03 88.95 2.54  1.74 94.26 
No prediction 5.72% 

Size = 4096, associativity = 4, delta sue = 32 bits 
TLB miss Ll  hit L2 hit L2 miss Total 

(%) W )  (%I (%) (%I 
Correct 0.52 82.50 2.46  1.80 87.28 
Incorrect 1.04 7.42 0.56 0.64 9.66 
Total  predicted 1.56 89.92 3.02 2.44 96.94 
No  prediction 3.05% 

Size = 4096, associativity = 4, delta size = 8 bits 
TLB miss Ll  hit L2 hit L2 miss Total 

(%) (%) (%) 

Correct 0.51  82.40 2.34 1.51 86.76 
Incorrect 1.01 8.13 0.55 0.50 10.19 
Total  predicted 
No prediction 3.05% 1.52 90.53 2.89  2.01 96.95 

programs. The prediction rates for TSO are the same 
as before, but 3% of the formerly wrong predictions 
now result in no prediction. Prediction accuracy for the 
benchmarks ranges from about 86% to nearly 93%. In  most 
cases, on a TLB miss the address is usually wrong, and 
the miss should not be processed. In going to L2 after an 
L1 miss, the address is correct more than two thirds of the 
time for some programs and nearly 90%  of the time for 
FPC1. These results indicate that prefetching L1 misses  is 
likely to result in a performance improvement. Fetching L2 
misses also most often brings in the correct data. Recall 
that about 33% of loads have an AGI, and about 19% 
of loads have an AGI caused by another load.  With the 
combination AGI detection, AGEN, and LDT, only 1% of 
loads result in no prediction. The LDT is  effectively used 
as an AGI history indicator, since load instructions 
with AGIs are put in the LDT and the LDT 
subsequently provides the prediction. Because of these 
facts, it is observed that the majority of predictions 
are made using a computed address rather than using 
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LDT configurations 
Thus far, performance results have not considered LDT 
size. Table 7 shows results for TSO using the combined 
algorithm of LDT, AGEN, and AGI detection. The LDT 
configuration is varied. The first two parts show a smaller 
LDT of 1K entries. The larger LDT results in about 1.5% 
more correct predictions, but also makes more wrong 
predictions. The smaller LDT makes no prediction more 
often, since there are more LDT misses.  The  algorithm 
uses the LDT prediction if there is a hit, and uses the 
load-load AGI detection results only on a miss. Because 
most of the predictions are made  using AGEN rather than 
LDT, the prediction success rate is  not very sensitive to 
LDT size. 

The table also shows how the size of the delta fields 
affects predictions. To reduce the cost of the LDT, the full 
32-bit delta need not be used. Previous results use eight-bit 
delta fields. If the actual delta does not fit  in eight bits, 
a delta of zero is used. A larger delta results in a half 
percent more correct predictions. A smaller delta results 
in more cache and TLB hits, since nearby addresses 
are more  likely to be  in the cache or TLB. More than 
eight delta bits results in little performance gain. The 
performance drops significantly when the number of bits 
goes  below  eight [22]. 

Pegonnance improvement 
The results above suggest some implementation options for 
using the prediction. The majority of predicted addresses 
are found  in both the TLB and the first-level data cache. 
As described below, this allows the load,  which  is 
processed early, to get its data from the cache early. On a 
TLB or cache miss, the processor cancels the prefetch 
(there is a “prefetch” signal to the TLB and cache and a 
“miss” signal back to the processor). Assuming that there 
is  at least one available cache cycle between the time the 
cache would  be accessed with the predicted address and 
the time the cache would  be accessed when the correct 
address is  known  with certainty, the cache can be 
accessed early and one pipeline stage can be eliminated 
from  normal sequential processing. Since about 40% of  all 
instructions in the benchmarks are loads, and one cycle 
can be  eliminated  with each correct prediction on a cache 
hit, about 32%  of instructions may execute in one fewer 
cycle. Therefore, the number of cycles per instruction 
(CPI) is expected to be reduced by 0.32. 

Another policy is to prefetch data on a miss. The 
prediction on a TLB miss  is  more often wrong than right. 
Also, a TLB miss usually requires a large number of 
cycles to handle. For these reasons, if the predicted 
address results in a TLB miss, no further actions should be 
taken. When the correct address is determined, the access 
is attempted again. If there is still a TLB miss, it is 
handled then. A first-level cache miss  is  typically  only a 
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few cycles in penalty. The prediction is usually correct for 
an L1 cache miss and an L2 cache hit. Therefore, a design 
option is to process the L1 cache miss early. A second- 
level cache miss often involves a longer penalty. Since 
the prediction is usually correct, L2 misses can also be 
processed early. To estimate the benefits of prefetching, 
the number of cycles between the prefetch and the fetch 
when there has been no prefetch was measured. This 
provides an indication of the number of cycles available 
for prefetching. On average, the prefetch happens about 
12 cycles earlier than the fetch when there is no prefetch. 
This is enough overlap for an L2 hit, but probably not 
enough for an L2 miss to be completely overlapped. 

The overall performance improvement, as measured 
in cycles per instruction (CPI), was calculated for each 
benchmark. The benefit calculation assumes a single-cycle 
access for an L1 hit, a five-cycle L1 latency for an L2 
hit, and a 25-cycle latency on an L2 miss. For each load 
instruction, the time available for prefetching is determined 
by observing the number of cycles between the time when 
the prefetch starts and the time when the load actually 
executes. The average prefetch time  in each case was used 
to determine how many cycles were saved on a correct 
prediction and  how many cycles were lost on  an incorrect 
prediction. 

Table 8 shows the estimated CPI improvement for each 
of the three prefetch policies for prediction using delta 
table, AGEN, and AGI detection. Combinations of some 
or all  of the three policies can be implemented. The total 
CPI savings range from 0.42 to 0.53. This estimate does 
not take into account several second-order effects that 
reduce the possible improvement. Among these are bus 
conflicts, cache utilization, stores into prefetched data, 
and prefetches from pending stores. It is not expected 
that these issues will reduce the prefetching benefit 
substantially. Implementation aspects are discussed below. 

The benefit of actual prefetching is  fairly  small, because 
most predictions result in a cache hit in the large cache 
modeled. If the cache is reduced in size, prefetching is 
more  significant. Table 9 shows the different prediction 
rates for various L1 cache sizes for TSO as the L2 cache 
size is constant. As the cache size decreases, there are 
fewer hits; consequently, fewer instructions can prefetch 
directly from L1. The proportion of  all references that 
reach L2 increases. Since the difference between 
correct and incorrect predictions that hit L2 increases 
substantially, it is more useful to prefetch from L2 when 
the L1 cache is small. Figure 4 shows CPI improvement on 
TSO for different prefetch policies. The curves show the 
CPI relative to a 64KB cache without prefetching. For 
example, the upper curve shows that a 4KB cache with no 
prefetching has a CPI about 0.33 greater than a 64KB 
cache with no prefetching, and the lowest curve shows 
that the CPI for a 4IU3 cache with prefetching on L2 

Table 8 Estimated CPI improvement. 

LI hit L2 hit L2 miss Total 

TSO 0.343 0.049 0.029 0.421 

IMS 0.345 0.049 0.064 0.458 

CICS 0.379 0.050 0.039 0.468 

RAh4PC 0.349 0.039 0.097 0.485 

FPCl 0.327 0.061 0.150 0.538 

Table 9 Prediction using LDT, AGEN, and AGI detection 
for various L1 cache sizes. 

TSO TLB miss LI hit L2 hit L2 miss Total 
@I  (%I  (%I  (%I (%I 

64KB data cache 
Correct 
Incorrect 
Total predicted 
No prediction 3.05% 

32KB data cache 
Correct 
Incorrect 
Total predicted 
No prediction 3.05% 

16KB data cache 
Correct 
Incorrect 
Total predicted 
No prediction 3.06% 

8KB data cache 
Correct 
Incorrect 
Total predicted 
No prediction 3.07% 

4KB data cache 
Correct 
Incorrect 
Total predicted 
No prediction 3.08% 

0.51 
1.01 
1.52 

0.51 
1.01 
1.52 

0.51 
1.02 
1.53 

0.51 
1.02 
1.53 

0.51 
1.02 
1.53 

82.40 
8.13 

90.53 

81.39 
7.79 

89.18 

79.81 
7.31 

87.12 

77.55 
6.83 

84.38 

74.12 
6.21 

80.33 

2.34 
0.55 
2.89 

3.37 
0.90 
4.27 

4.87 
1.40 
6.27 

7.16 
1.88 
9.04 

10.51 
2.50 

13.01 

1.51 
0.50 
2.01 

1.48 
0.50 
1.98 

1.52 
0.50 
2.02 

1.48 
0.51 
1.99 

1.55 
0.51 
2.06 

86.76 
10.19 
96.95 

86.75 
10.20 
96.95 

86.71 
10.23 
96.94 

86.70 
10.24 
96.94 

86.69 
10.24 
96.93 

misses is 0.24 less than for a 64KB cache without 
prefetching, and that the total improvement due to 
prefetching for a 4KB cache is 0.57 CPI. Prefetching on 
an L1 hit is shown by the second curve. The prefetching 
improves CPI by 0.31-0.34 from a 4KJ3 cache to a 64KB 
cache. The third curve adds prefetching on  an L1 miss and 
an L2 hit,  and shows further improvement from 0.22-0.05 
CPI. The fourth curve includes prefetching on an L2 miss 
and shows improvement from 0.04-0.03 CPI. As expected, 
with smaller caches there are fewer hits, so there is less 
saving possible with the L1-hit prefetch policy. For the 
same reason, prefetching on  an L1 miss results in  bigger 
gains when the cache size is small. Prefetching on an L2 

I 
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1 Effect of L1 cache size and prefetch policy. 

miss  is  roughly constant for variations in L1 size, since the 
L2 size was not varied. The differences appear in the 
"L1 hit" and "L2  hit" curves. The opportunity to 
prefetch increases, and the difference between correct and 
incorrect predictions on a miss also increases. It is clear 
from the graph that a small cache with prefetching is  more 
effective than a large cache without prefetching. For larger 
L1 caches, the benefit of prefetching is less, as expected. 
However, there is always some benefit to prefetching the 
data on  an L1 hit  in order to reduce the load instruction to 
zero-cycle execution. 

Other pegomzance issues 
Since the load prefetch adds another requestor for cache 
services, in addition to normal loads and stores, there are 
performance issues to consider. An additional cache port 
for prefetching reduces many performance concerns, but 
may be an unnecessary expense. As long as the cache 
utilization is  low  enough, the extra traffic for prefetching 
may  not be significant. A correct prefetch does not 
increase the cache bandwidth requirements; it  only shifts 
the time of the fetch. For some instructions, no prediction 
is  made,  which imposes no additional bandwidth 
requirements. Incorrect prefetches do increase the 
workload on the cache, but this applies to only about 10% 
of load instructions and, considering stores and  multiword 
operations, accounts for about 5% of all data memory 
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On a typical sequential machine, when there is a cache 
miss,  all instructions must wait. When loads can be 
processed out of order, it is beneficial to allow loads to 
access the cache while a cache miss  from  an earlier 
instruction is in progress. If the subsequent cache access is 
a hit,  it can be processed. If it  is a miss,  it  must  wait  until 
the first  miss is completed. The load unit accesses the 
cache when it can find available cache cycles. If there 
are none available, the prefetch is delayed until  it  is in 
sequential order. When a cache miss blocks all other cache 
access, this may  happen  enough times to make prefetch 
less useful, since there may be few available cycles in 
which to prefetch. If this is the case, a cache that allows 
other accesses during a miss results in  much better 
performance. Similarly, a miss  on a prefetch locks out 
correct fetches unless the cache can respond while the 
miss  is  in progress. 

Several issues were not  modeled  in the performance 
section. On a first-level cache miss,  it  is  assumed that the 
requested word  is provided first.  Additional cycles are 
required for the remainder of the cache line.  This  effect 
can prevent other cache misses from  being processed, 
since the bus is busy. If needed, there are techniques to 
reduce this penalty. A store queue access to the cache 
happens on available free cycles, but prefetching also uses 
some of these cycles. Therefore, the store queue may fill 
more often, resulting  in lost cycles. The priority for the 
cache should generally be that a full store queue has 
highest priority, then normal fetches, then prefetches, then 
stores. Store queue and load queue matches were not 
counted. A store followed by a load  from the same address 
can result in either the load queue or store queue detecting 
the address match in the other queue, as discussed in more 
detail below.  Typically, the load queue prefetch must be 
invalidated, which affects performance. A prefetch to the 
wrong location, resulting in a cache miss, causes another 
line to be replaced. Should the replaced line  be  needed 
again, another miss  will occur (which could be prefetched). 
This  is  more  significant  with lower-associativity (e.g., 
direct-map) caches. Each of these issues lowers the 
expected performance gain  of prefetches. However, 
prefetching improves performance very significantly; even 
with some reduction in this improvement, substantial 
benefits  remain. 

Load  unit  implementation 
This section describes hardware that might be used 
to implement the load unit with prefetching. The 
implementation described in this section uses an LDT for 
prediction, together with the AGEN unit  and  load-load 
AGI detection. Al l  instructions which fetch data from 
storage as their  first storage operation are handled in 
the load unit, except for certain complex or privileged 
instructions, as described previously. Only one operand is 
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prefetched, and only one prefetch is  made for the operand. 
In the ESN390 architecture, operand 2 is  usually a fetch 
and is the only operand that is prefetched. Should an 
operand span many sequential bytes of storage, the 
prefetch of the first bytes prefetches a cache line  which 
effectively prefetches many additional bytes. As described 
in this section, prefetch includes first-level cache hits and 
first-level cache misses that hit or miss in the second-level 
cache. There are subsets of this prefetching strategy which 
could also be implemented. A TLB miss resulting from a 
prefetch is  not processed from the load  unit. 

Instructions in the instruction buffer are scanned by 
the load  unit. Typically there are several instructions 
waiting in the instruction buffer at any time. When a load 
instruction is found, it  is processed by the load  unit. If the 
instruction is a pure load, the required actions are to fetch 
from storage and write to a register. Since this is typically 

a one-cycle operation, the instruction is executed entirely 
in the load  unit. The main processor pipeline does not 
process the load instruction, but  it does track the presence 
of the load. The prefetched data are held  in the load queue 
until the prefetch prediction can be verified; then the 
register is  modified  and the load queue entry is removed. 
For load instructions that require additional actions, such 
as  a computation on the fetched data, storing the data to a 
different storage location, or further fetches and stores, 
the remaining execution is  handled in the main  pipeline. 
The prefetched data are held  until the prediction can be 
verified; then the data are available for the remainder of 
the instruction execution. The  first fetch does not appear 
in the main  pipeline, resulting in a reduction in the total 
cycles for the instruction. 

Figure 5 shows the hardware for prediction and the 
formatting of a load queue entry. The load queue consists 559 
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Load unit pipeline description. 

of some number of entries determined by performance and 
cost constraints. The processor execution rate, instruction 
buffer size, and cache timings determine the optimal size 
of the load queue. It is expected that approximately four 
entries is an appropriate size to use for the processor 
configuration used here. Each entry in the load queue 
contains the virtual address of the load instruction and 
the fields of the instruction used in prediction: opcode, 
base register (B), index register (X), displacement (D), 
and target register (R). Not all  fields are used by all 
instructions. The B, X, and D fields are zero when not 
used, as specified in ESN390 architecture. The R field 
contains an extra bit to indicate whether or not it is used, 
since all register numbers are valid. The  load queue also 
contains the virtual address and real address predicted for 
the prefetch, the data returned from the cache, and two 
status bits: prefetch (P) and valid (V). When a prefetch is 
to be made, P is set  to one. In cases where no prediction 
is made, P is zero. In the event of a TLB miss on a 
prefetch, P is set to zero, canceling the prefetch. The real 
address is returned from the TLB and is used for data 
consistency checking. For a TLB miss, no real address is 
needed. The V bit is set to one when the data are received 

560 from the cache. 

Figure 6 summarizes the pipeline stages for the load unit 
shown in Figure 5. When a load has been detected in the 
instruction buffer, processing begins in the load  unit. The 
address is predicted from the LDT and AGEN. If there is 
a hit  in the LDT, that prediction is used. The registers 
used to compute the address are compared to modified 
registers of loads already in the load  queue-those loads 
prefetched but not yet verified. For an LDT miss  and a 
detected load-load AGI, no prefetch is made. If no AGI 
is detected in this case, the AGEN address is  used for 
prediction. When a prediction is made, the address is 
sent to the TLB and cache, and the “prefetch” signal  is 
raised. This indicates to the TLB that a miss is not to be 
processed. Also, if the implementation does not prefetch 
an L1 or L2 cache miss, the signal  is used by the 
appropriate cache. A prefetch that misses TLB (or a 
cache, if implemented) returns a “miss” signal to cancel 
the prefetch in the load queue. When the cache responds 
with the data, the data are aligned according to the 
predicted address, stored in the load queue, and marked 
valid. Note that, if there is time, prediction is improved 
slightly if unaligned data are stored and the alignment  is 
performed on exit from the load queue using the correct 
address to control the alignment. There are some cases 
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where the predicted delta is very close; e.g., if the bus is 
64 bits wide and the instruction is predicted to load 32 bits, 
sometimes the other 32 bits are the correct ones. 

A pure load is not processed by the main  pipeline; 
however, there is a bit in the pipeline corresponding to the 
previous instruction to indicate that a load was present in 
the instruction stream. Other prefetched loads do appear 
in the main  pipeline. However, the extra pipeline bit is 
still used.  When the load  bit in the pipeline reaches the 
execution cycle, this triggers the load test stage in the load 
unit. An AGEN is computed for the load and compared to 
the predicted address. If the prediction is correct, the 
prefetched data are available in the next cycle for register 
put-away or use in computations in the load instruction. 
After a wrong prediction or no prediction, the correct 
address is used to fetch the correct data. Should the load 
have a register dependency on the previous instruction, as 
indicated by the standard register scoreboard or a similar 
technique, the load test cycle is delayed for one cycle. 
However, without the load unit, the AGEN and cache 
access together require two cycles. 

Figures  7(a)-(d) show examples of four cases for a 
“pure” load instruction. On the left are examples where 
the load instruction uses the main  pipeline, as do most 
instructions. On the right is the timing when a load uses 
the load unit pipeline. Each example consists of one 
instruction per line. Each character represents one cycle. 
The most  common case, that of a correct prediction 
without an  AGI on the previous instruction, is shown 
first. The prefetch occurs earlier than in the left column. 
Load test is coordinated with execution of the previous 
instruction. Since the prediction is correct, the data are 
stored in the put-away cycle. The next instruction executes 
one cycle earlier than without the load  pipeline.  When 
there is an AGI, both main  pipeline  and  load  pipeline are 
delayed, but the load  pipeline still saves a cycle. For 
incorrect predictions, no cycles are saved. The prefetch is 
early, but another fetch is needed for the correct data. 
This fetch corresponds to the same cycle as when there is 
no load  pipeline. 

Figure 7(e) shows the most  common case for an RX- 
format load instruction. The  load  pipeline handles the 
prefetch, which passes the data to the main  pipeline to 
complete the instruction. In the case shown, the data from 
the fetch are used for one cycle of computation before a 
register  is modified. For other loads requiring  more  execution 
cycles, additional execution stages are added in the main 
pipeline. These stages may fetch from or store to storage. 
Each load instruction uses both the load  pipeline  and the 
main  pipeline. The load  pipeline operation is identical to 
that of a pure load instruction. The main  pipeline  is 
similar to that of the instruction following a pure load. 

Figures 7(f)-(g) show timing examples for a pure load 
when there is a cache miss on the prefetch. Some or all 
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of the cache miss is overlapped with the main pipeline 
operation. The first example shows a cache miss on a 
correct prediction that is completely overlapped, resulting 
in six fewer cycles. One cycle is  from  removing the load 
from the main  pipeline,  and the other five are the 
overlapped cache miss penalty. The second example 
represents a level-two cache miss which requires many 
cycles. Some overlap occurs, saving five cycles. Had the 
prediction been incorrect, the L1 miss  and L2 hit  would 
have been completely overlapped. There is no saving in 
this case, but with the load instruction detected sufficiently 
early, there is no penalty. For an L2 miss, some cache 
cycles may  not be overlapped, resulting in a performance 
loss. However, this represents the rare worst case which 
results when both an incorrect prediction and  an L2 miss 
occur. The positive results of prefetching occur much  more 
frequently, resulting in a net increase in performance. 

Architectural  issues in load unit 
implementation 
Several issues must be addressed in the implementation 
of the load  unit to maintain architectural consistency and 
good performance. Typical high-performance processors 
have a store queue. Store instructions create a store queue 
entry, and the stores are reflected in the cache whenever 
cache cycles are available. This reduces cache contention 
between reads and writes and prevents pipeline stalls on 
store misses.  In addition, the store queue helps maintain 
the required appearance of sequential instruction execution 
even when instructions are actually executed out of order. 
Two issues arise when there are both a store queue and a 
load queue. A load  may prefetch from  an address that is 
also in the store queue. Therefore, all load prefetches must 
search the store queue for matches. The other  case is a 
store to an address that is already in the load queue. 
Therefore, all stores must search the  load queue for 
matches. In both cases, the correct value for the prefetch 
is in the store queue and  may not yet be in the cache. 
There are several solutions to these issues. First, the 
architecture may specify that the store data cannot be 
passed to the load  unit.  In ESN390, for example, in a 
multiprocessor configuration all processors must obsenre 
the store at the same time. The load prefetch violates this 
rule. When the store is to a load queue entry, the load 
queue entry could be  marked to inhibit prefetch. The fetch 
would then occur normally  and use the standard rules for 
this situation. When the load is from a store queue entry, 
prediction could be inhibited, or the load prefetch could 
be delayed  until the store occurred or the actual fetch was 
reached. In other cases, the architecture might  allow the 
load prefetch to use the data from the store queue, or the 
store might update the load queue entry. 

In many architectures there are some instructions that 
serialize execution. This typically means that all preceding 
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instructions must complete before such an instruction can 
be processed. The simple implementation is to flush  all 
prefetch buffers (instruction buffer,  load queue, and any 
others, such as a branch queue). The instructions after the 
serializing instruction are then fetched again. The load  unit 
processes them  again  with the normal prediction, prefetch, 
and enqueue operations. More complex solutions are to 
detect which entries must  be  flushed and which  can 
remain. 

Another area of concern with prefetching is that a 
correct prefetch can occur before the refetch for an 
instruction that prefetched incorrectly. That is, the correct 
fetches are performed out of order. This is a concern in a 
multiprocessor configuration, in that incorrect behavior can 
result if another processor is storing to the same addresses 
but prediction results in a different access order. The 
fetches must appear to be in order from the perspective 
of another processor. This is important only if the other 
processor stores to the address of one of the fetches. For 
caches, there are a variety of algorithms to maintain the 
consistency of data [25]; these must  be extended to the 
load queue. The straightforward solution is for the load 
queue to respond to stores from other processors. This 
may create a large  amount of  traffic for load queue 
checking. In caches, a duplicate directory is often 
maintained for this reason. A duplicate of the load queue 
(data real addresses only) can be maintained by the cache. 
To avoid excessive coordination between the cache and 
load queue, the load queue does not signal the cache when 
an entry is removed from the load queue. Since the cache 
copy of the load queue is the same size as the actual load 
queue, entries are removed from the cache copy when the 
queue is  full. Whenever the cache detects a store matching 
a cache load queue entry, it can either signal the load 
queue to change all entries to no prefetch, or it can send 
the address to the load queue for it to check for an exact 
match. The cache copy of the load queue is  affected by 
more stores than the real load queue would be, because it 
reflects stores to addresses which may  no  longer  be 
present in the real queue, but it  filters out most stores, and 
net traffic to the real load queue is reduced. 

Conclusions 
A new hardware technique has been presented for 
improving processor performance. In the proposed 
mechanism, load instructions are processed early, fetching 
from a predicted address. This approach provides the 
potential to make significant performance improvements. 
By fetching the data early, a cycle is removed from the 
normal execution of many instructions. The prefetch 
allows cache misses to be overlapped with other 
execution, also improving performance. Experimentation 
strongly suggests that the techniques described in this 
paper result in approximately 0.45 CPI reduction. 
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