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This paper considers procurement and
allocation policies in a manufacturing
environment where common components are
assembled into various products that have
stochastic demands. The components are
allocated to the assembly of a product at a
time when product demand is still uncertain
(assemble to forecast, ATF). The special case
of one component shared by N different
products is analyzed, and insights into the
general problem are obtained for the situation
in which the common component can be
reallocated to different products as product
demands change. An allocation policy is
developed for general distributions and prices
in an ATF environment. The policy first
addresses anomalies in the state of the system
and then, for a feasible state, minimizes the
expected excess finished-goods inventory. A
procurement level that is nearly optimal is
obtained from a Monte Carlo simulation in

which the probability of satisfying all of the
random product demands simuitaneously is
considered relative to this allocation policy.
Numerical studies indicate that the total
component and finished-goods inventory is
significantly reduced by an allocation policy
that incorporates risk pooling while still
fulfilling service-level requirements.

Introduction

Multiplant coordination involves correlating needs in a
chain of facilities in which upstream facilities supply parts
consisting of components and subassemblies to
manufacturing facilities downstream. At the final assembly
facility, these parts are assigned to particular products and
then released into an assembly process to meet a demand
for a particular finished product. These releases into the
final assembly process are determined to satisfy or service
the probable demand requirements for a set of products
that will exist at the end of this stage. An appropriate
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policy must be devised to determine how parts are
allocated toward finished products of a particular type and
released into the final assembly process. If an assembly
cycle time is long, these product demands are unknown at
the time the release is made, but a probability distribution
may be known and utilized. Suppose the cycle or lead time
is four weeks for the final assembly process and the
demand for finished products must be satisfied 90% of the
time. The releases must be determined now to meet the
currently unknown demand. Sufficient finished goods must
be available four weeks from now to satisfy or service

the random demand with the given probability. This
probability of 0.9 is often referred to as the service level.

To satisfy stochastic demand requirements with a certain
probability, it is necessary to maintain inventories at
various levels. The overall objective is to minimize the
total inventory in the system that is required to achieve a
desired service level. The total inventory is the sum of the
value of the unsold finished products along with the value
of the unutilized components/subassemblies. This
inventory is often composed of components that are
common to a set of distinct products. For example, the
same microprocessor is used in a variety of different
personal computer models. Components common to
various products and an appropriate allocation policy can
be exploited to reduce the total inventory in such systems.
A common component procured for the probable demand
of one product can be allocated to another distinct
product, if a shift in the demand patterns is discerned prior
to actual release into the final assembly process. This is
referred to as risk pooling.

Two different production environments occur in
manufacturing. The first is an assembly facility in which
the final assembly process is long enough to require the
releases to be made before the actual demand for the
product is known with certainty. The allocation policy
must explicitly address the complexity arising from this
uncertainty. This mode of manufacturing is commonly
referred to as ““assembling to forecast” (ATF). In the
other environment, because an assembly operation is
short, it is possible to observe the actual demand and
assemble to order (ATO). The available parts are allocated
and then released to meet these known demands for the
various products. The number of components/
subassemblies allocated to a particular product equals the
number required to exactly meet the known demand for
that product. However, if the procurement lead times for
parts are significantly long, it will be necessary in both of
these production environments to order these components
or begin fabrication of the subassemblies well in advance
of the time when these parts are to be released into the
final assembly process.

The electronics industry provides an example of a
multiplant coordination problem. A typical electronics
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manufacturing process can be roughly divided into three
stages of production. To start with, there is semiconductor
manufacturing, where chips are fabricated from wafers.
Printed circuit boards are then assembled in card assembly
plants. At the final stage, the boards are assembled into
system units to meet actual customer demands. The
manufacturing cycle times vary for the three processes.
Chip fabrication is in the range of three to six months.

For various manufacturers, the cycle time for assembling
printed circuit cards or system units can range from
several days to several weeks for each of these processes.
In some large electronics firms, the three manufacturing
processes are done at different sites, which introduces lead
times for transportation. The raw materials or parts at all
three stages of production may have to be procured to
forecast if the procurement lead time is long. The assembly
of system units may be done upon realization of market
demands if the cycle time for assembly is short. The chip
manufacturing plants have to assemble to forecast to
address their significant cycle times.

In these multiplant manufacturing networks where
demand is unknown at the time of procurement and
release, exploiting commonality, improving serviceability,
and reducing inventories while respecting lead times are
strategically important goals in many industries, but very
difficult problems to address. Current practice ignores
commonality and does not explicitly address demand
uncertainty, resulting in excessive finished-goods inventory
for some products but significant backlogs for others.
Even with expensive inventories at both the parts and
finished-product level, poor serviceability is often
realized.

Much insight into these general questions can be gained
by restricting consideration to a single manufacturing
facility. The process of procuring parts and their
subsequent allocation to different products, where both
decisions have significant lead times associated with them,
also arises in this context. Henceforth these questions will
be pursued from the perspective of a single manufacturing
facility. In such a plant, the components arrive after a
certain lead time and they are then released to be
assembled into various products. Because the cycle time
for product assembly may be significant, products must be
assembled so as to meet a currently unknown demand.
The procurement and allocation decisions must be made so
that the demand for finished products is met with a certain
service level and the total cost of the inventory in the
system is simultaneously reduced. The demand for the
products is random, but its marginal probability
distribution is known. There is a high degree of
commonality of components among the products. Once
again the risk-pooling effects of component commonality
and an appropriate allocation policy are to be exploited to
reduce the total inventory.
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An ATO environment having /N products with one
common component and special pricing and distribution
restrictions has been considered previously [1-4]. Recently
the ATO problem has been addressed in the presence of
general product structure, prices, multiple time periods,
and independent product demands [5]. In this paper, the
setting of N products with one common component,
general pricing structures, and general distributions is
addressed in an ATF environment in order to obtain
further insights into risk-pooling effects. An allocation
policy is developed which assesses current inventory levels
and respects the cycle time required for the assembly
process. The allocation policy is then coupled with a
simulation technique to implicitly address serviceability.
Numerical implementation and integration into a simulation
experiment suggest the potential for significant inventory
reductions from risk pooling in this ATF environment.

The remaining sections are organized as follows. The
next section considers the overall planning problem for the
ATF environment. The formulation considers multiple
products, components, and time periods relative to an
aggregate service measure. An aggregate service measure
reflects the probability of meeting the random demands for
all products simultaneously. To assess the significance
of inventory reductions resulting from commonality of
components and an appropriate allocation policy, a special
case of the general formulation is considered in detail. This
special case, which considers a single component to be
used in several products, is addressed in the section on
the single-component problem. An allocation policy is
developed which first examines the state of the system for
any anomalies, then assesses feasibility concerns, and
subsequently makes an optimal allocation when a feasible
state exists. When a feasible solution exists, an iterative
algorithm based on nonlinear optimality criteria is used
to determine how to release assemblies into the
manufacturing process relative to some as yet unknown
demand. Expected excess finished-goods inventory is the
objective minimized. The algorithm is applicable to a
single-stage model with N products and one common
component, general pricing structure, and arbitrary
distributions of finite support or truncated distributions.
Relative to this allocation policy, a Monte Carlo simulation
procedure to determine a near-optimal order-up-to level for
the common component is then developed in the section
entitled ‘““Order-up-to by simulation.”” The order-up-to
level is the quantity of parts on hand at the beginning of
each period. All of these parts need not be allocated to
specific products, but they are all available for allocation.
Enough parts are then procured to bring the amount on
hand back up to this level for availability in the next
period. A procedure to obtain the order-up-to level when
N unique components are used instead of a common
component is also discussed in this section. In the section
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Schematic representation of a two-stage production system.

on computational study, the numerical results of
experiments to assess the reduction in total inventory
levels obtainable by exploiting component commonality
and an appropriate allocation policy are presented for a
varying number of products, demand distributions, service
levels, and prices. Insights into risk-pooling effects
suggested by these numerical results are also discussed.

A summary discussion is provided in the section on
conclusions, and the proof of optimality of the solution to
the allocation problem is presented in the Appendix.

A general problem formulation

This section formulates the problem of determining
component procurement and product release levels in the
presence of significant lead times and demand uncertainty
in a two-stage production system (Figure 1). The
formulation presented considers several products,
components, and time periods. This general formulation
provides the overall context for the multiple-products,
single-component, and single-period problem that is
actually solved in the next section. Further, the general
formulation presented here is new and has not been
presented before. The two stages shown in Figure 1
involve component procurement/fabrication and release
into the assembly process. Components are procured from
vendors or fabricated in internal plants. The lead time for
component procurement is assumed to be the same for all
components. When the components arrive, they are stored
in the warehouse, and quantities required subsequently are
released into the assembly process. This release is based
on allocation decisions made by considering the current
state of the system, the service level, and the inventory
cost objectives. The assembly cycle time is assumed to be
the same for all of the products. The finished products
arrive at the output buffer from which demand is serviced.
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All procurement and allocation decisions are made at the
beginning of time periods. Demand for a period is realized
during that time period and is completely known at the end
of that time period, i.e., the beginning of the next time
period.

The following notation is utilized in the formulation:

index set for products
index set for components
manufacturing cycle time for all products

J

I

€

L procurement lead time for all components
u, usage count of component i in product j
g,

net inventory/backlog of product j at the
beginning of period #

Q, net inventory of component i at the beginning of
period #

c; cost of component i

h; holding cost of product j

d random variable representing the demand for
product j in period ¢ realized during period ¢,
known completely at the beginning of period

t + 1.

B, service level for period #

S, state of the system known at time ¢ before
allocation and procurement decisions are
made;

={0,@,7=t-1,-,t-€+1),0

-1

(w0, 7=t—-1,"++,¢t- L)}

The decision variables for allocation and procurement are
represented by

g,  allocation decision for product j to be released at
the beginning of period ¢ toward finished goods
in period ¢t + €

, procurement decision for component i made at

it
the beginning of period ¢ for delivery at the
beginning of period r + L

In the formulation given below, the objective function
minimizes the new inventory investment to be made at the
beginning of period ¢ so that the demands for products in
period ¢ + € + L, including backlogs, are met with a
probability of 8,,, , . The minimization is done over the
procurement decisions, o, made at ¢ relative to an
allocation policy, g(+), to be specified. This allocation
policy will be employed in periods ¢, «--, ¢ + L. The
result of the allocation done at ¢ = 7 is the set of releases
g;,» for all j. Equation (3) and Equation (4) are inventory
balance equations.
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min E Cw, » (1)
such that
Pr {ijt+€+L = dj,t+€+L’ vz Biier s @
er = Qj,7'1 + qj,-r—é’ - dj""_l,

Vij,r=t-,t+€+1L, )

Q=0 +to._ - 2 ;9.
i

Vijr=t- -, t+€+1L, @)
g, =98, 7=t ,t+L, (5)
where g(-) is an allocation policy that is specified.
Q,0,9,20, Vi VjVr (6)

In this formulation, S, is known, and one set of
procurement decisions, w,, is made at ¢. Also, the
allocation policy, g(*), to be employed in periods ¢, ++ -,
t + L is specified at . However, only the current
allocation decisions, q,, are made at ¢; the remaining
allocation decisions, q,T=1t+ 1, --,t+ L, are
made at 7. This problem may be reformulated as a
stochastic dynamic program with L + 1 stages. However,
the problem is inherently difficult to solve as a
consequence of three features being present together:

(a) the stochastic nature of the demands for products,
(b) allocations being made at multiple stages (time
periods), and (c) component commonality.

Before attempting to solve this problem, it is desirable
to understand how significant these features of the problem
are. This facilitates the choice of features to retain and to
omit from the formulation. The stochastic nature of the
product demands cannot be ignored. The allocation
decisions must be made dynamically, i.e., in multiple
stages, because the backlogs or excess inventories accrued
up to a certain point in time are an important factor to be
considered in determining what to release into the
assembly process at that time. Furthermore, these
allocation decisions must be made when the product
demands are still unknown, as contrasted with an ATO
situation where allocation decisions are made after
demands are known with certainty. This aspect of
allocation needs full consideration. The effect of
component commonality on safety stock reductions
in ATO systems has been studied [1-5]. Empirical
studies in [5] show a significant reduction in the required
procurement levels compared to the levels required when
commonality is ignored. Such studies have not been done
in the case of ATF systems in the presence of service-level
constraints. The objective in the following sections is to
determine the reduction in total inventory obtainable from
component commonality and an appropriate allocation
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policy in the ATF environment. The methodology
developed there is applicable to general pricing structures
and arbitrary distributions for product demands. On the
basis of the significance of the reductions that may be
achieved, recommendations on whether component
commonality should be explicitly considered in the general
formulation presented in this section will be made.

Single-component problem

Risk-pooling effects are assessed in an ATF environment
from studies of a single common component and N
products. In this regard, the optimization in (1) and the
service requirement (2) are addressed by use of a Monte
Carlo simulation relative to a specific allocation policy g(-)
to be developed in the section which follows. This single-
component problem requires the determination of the
procurement and subsequent allocation to the N products.
The allocation problem is addressed first and is followed
by a determination of an order-up-to level.

The allocation policy g(-) uniquely determines the
releases into the final assembly process to satisfy an
as-yet-unrealized demand. To determine this policy, four
distinct cases must be considered. Case one addresses an
anomaly that may arise from the current state of the
system; cases two and three assess whether or not the
state of the system is feasible. With a priori knowledge
that a feasible state exists, case four subsequently
determines an optimal allocation relative to expected
excess finished-goods inventory.

& Allocation problem

First, the policy of optimally allocating a known order-up-
to quantity €} to the N different products is considered.
The cases assessing anomalies in the state of the system
are discussed after an optimal allocation is formulated. The
component index i is not needed for the single-common-
component problem. The component usage rates u; are
assumed equal to unity, and the time index is dropped.
The component index i and time index ¢ are also dropped
from all the variables. With these simplifying assumptions,
the notation is reduced to the following:

Q order-up-to quantity or amount of the common
component available

d unknown demand for product j
d,  maximum realizable demand for product j
f(*) marginal density function for demand for

product j

F(-) marginal cumulative distribution function for
demand for product §

The procedure is to determine g;, the amount of the
common component released into the manufacturing
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process toward demand for product j; g, is used in place
of O, to emphasize the fact that this is a known quantity
as far as this allocation procedure is concerned.

Only finished-goods inventories are considered. That is,
this part of the allocation policy assumes that all of the
available common components, {2, will be released into the
system and allocated to some product j. The formulation
permits arbitrary price relationships and unrelated
distributions for the different products. However, it is
assumed that the density functions, representing product
demands, are positive on the domain of interest, i.e.,

>0V z€(0,d] (M)

The objective is to determine allocations g, for each
assembly j so that the expected excess finished-goods
inventory costs are minimized. Since the expectation of a
sum of random variables is equal to the sum of the
expectations of the individual random variables, we have

N
min E) > k- [q, + g, — d]"

% j=t

N

=min Y h-E(g +§ ~d)").

g =1

As discussed in the Appendix, the expectation of excess
inventory for product j can be computed by using the
marginal density function. Thus, the optimization problem
to be solved is as follows:

N
R Gt
min 54+ [+ q - 415, ®
g et 0
subject to
N
24=9 ©
j=1

[—ququsij—qj j=1,2,+-+,N, (10)
where E(x) is the expected value of x and [x]* = max {0, x}.

Before proceeding, the cases addressing anomalies in the
state of the system and feasibility concerns are motivated
and then specified.

First, it is possible that the net inventory in the system
for product j already exceeds the maximum demand which
can be realized. Thus, one would not want to release
additional assemblies into the pipeline toward demand for
product j. In this instance, product j would be dropped
from the formulation, and the reformulation for the
remaining N — 1 products would be addressed:

Iftd <g, theng’= 0 and reformulate. (11)
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Second, it is possible that the existing backlogs cannot
be met with available resources. In this instance, the
policy would be to reduce all existing backlogs by an equal
percentage. That is,

N
if > [-4]" = Q,
j=t

-1

N
theng'=Q-| > [-4]"| - [-4]". (12)
j=1

Third, it may arise that an excess supply of components
accumulates. In this instance, the policy is to bring the
finished-goods inventory up to the maximum demand
levels for all products. That is,

N
if > @-4)<Q theng'=d-g Vi (13)

j=1

The remaining components are then held as component
inventory, and the procurement for the next period is
appropriately reduced in order once again to have the
order-up-to quantity () available for release in the next
period.

Finally, if none of these instances arises, the policy
is determined by the optimal solution to the feasible
nonlinear optimization problem (8)-(10), which is closely
related to the following general form:

N
max Y, ®(y), (14)
¥ i=1
subject to
N
>y =8, (15)
j=1
0=y fori=1,--+,N. (16)

As noted by Zipkin [6], this form arises in a variety of
applied contexts, including the distribution of search effort,
marketing, portfolio selection, capital budgeting, reliability,
and health care. Luss and Gupta [7] developed an
algorithm which is applicable to four specific forms of
return functions @,(-):R — R. This approach subsumed
several previous results. Zipkin presented these ranking
methods in a unified framework applicable whenever
®,(*):R — R are continuously differentiable and strictly
concave. In addition to enhancing the breadth of
applicability, Zipkin’s approach in [6] also achieves a
significant computational advantage. It requires only a
single numerical inversion after termination of the iterative
part of the procedure, as opposed to one being required at
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each iteration. In extending the methodology to the case
where upper bounds are also imposed on the variables,

fori=1,+-+, N, amn

their technique requires that several related problems of
the form (14)-(16) must be solved. The justification is
based on a special type of relaxation method. However, by
using a sequence of unbounded-variables problems to solve
the bounded-variables problem, one is again faced with the
possibility of N numerical inversions being required.

The method to be developed here directly addresses the
Karush-Kuhn-Tucker conditions, with the upper bound
constraints (17) present. As a consequence, it is able to
extend to the bounded case the property that only a single
numerical inversion need be performed after the iterative
portion of the procedure has terminated. This is the
calculation required by the step

find A* € [~7,,,, —7) D Z(A*) = Q (18)

in the procedure specified below.

This allocation policy is employed repeatedly in the
determination of the order-up-to level in the next section.
For each estimate of the order-up-to level €}, the allocation
subroutine must be invoked 2500 times. Suppose the
search to determine Q requires ten distinct estimates.
Then, for N = 50 products, the potential of 1 250 000
numerical inversions (18) is reduced to 25 000 by the
enhancements developed here. The allocation policy must
also be applicable to general distributions—for example,
distributions of finite support and truncated distributions.
Therefore, the assumptions that $,(-):R - R are %' and
strictly concave everywhere will not be satisfied. This
additional complexity is also addressed by the
methodology presented here.

The fact that the Hessian of the objective function (8) is
a positive semidefinite matrix is verified in the Appendix,
implying that the objective function is a convex function.
Thus, the Karush-Kuhn-Tucker conditions are sufficient to
determine globally optimal allocations. Consequently, a
solution to the following set of equations and inequalities is
to be determined:

Yisbh

i+1?

heFg+g)+A-X+p4=0 j=1,2-,N,
19

N
0-Y4g=0, (20)

j=1
qj_[_q]‘]+20 j=132".'3N9 (21)
d-(@+4)20 j=1,2-,N, (22)
Ao ~[-410=0 j=1,2-,N, (23)
B-d-g-4)=0 j=12,---,N, (24)
A unrestricted in sign, (25)
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INITIALIZE

i=mn, TERM =0

WHILE TERM = 1
IF

Q=< 2 gj(—‘yl'.pl) = Zi(—‘yi+1)

i1

THEN
FOR j=1,--,i
IF )l*>—-hj
THEN
*_ Y
9=F\"%

find A* € [-v,,,, —%) D Z,(A") = Q and set TERM = 1

~§=¢(A"andA’=0and B]=0

ELSEIF \* < —h,

THEN

q’'=d -4 ={(A)andA’=0and B'= —A*- h,

ENDIF
ENDFOR

FOR j=i+1,--

-, N

qj*z 0 and )\Jf’= A+ h - F(g,) and B}.*—-: 0

ENDFOR
ELSE

i<i+1

ENDIF
ENDWHILE

Iterative procedure for generating solution to Equations (19)—(26).

A,Bz0 j=1,2-,N. (26)

Before the iterative procedure to generate a solution to
conditions (19)-(26) is presented, several additional
definitions are developed to facilitate the exposition. The
set N = {1, 2, -+, N} is partitioned into two sets,

I"={eNgs0,
I'"={j EN: g >0} 27

The quantities n = ["| and » = —max {h.: j € N} are
also required, as are the following parameters:

forjerl” define y, = 0,
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and

forjET"  define y, = b, - F(q). (28)

For ease of exposition and without loss of generality,
assume that these quantities occur in the natural order,

Yv= TV E Yy

(29)

0570=71="'=7n<71,+1"'5

The procedure iteratively considers the subintervals

v, =y [=v =% ] =7, 0

of the corresponding partition of the interval [v, 0], and
makes use of the following functional forms:

S. J. GROTZINGER ET AL.
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Estimate of ()

WHILE service level is unsatisfied
Initialize procurement to ()
Setg, =0V

Initialize component inventory and aggregate service to 0
Initialize all individual product service levels to 0
FOR periodsi = 1,2, ---, 2500
Procured components arrive bringing available components up to

level O

Determine allocations q;‘ with respect to
) and the current state of the system

Release g;’s

Update component inventory

Calculate procurement for next period

Generate random demands d;

Ascertain whether demand was satisfied for each product

Update §;’s
ENDFOR

Calculate average component inventory and aggregate service
Calculate average product inventory and individual service level

for all products
Modify order-up-to level Q0
ENDWHILE

-A
{A) = F}.‘1 min {1, il 4, (30

7

k —-A k
> F;’(min 1, )—qj =X . @y
j=t j=t

i

Z(»)

Note that the iterative procedure shown in Figure 2 is
initiated at i = 7. This gives an advanced start relative to
the algorithms employed in [6] and [7], which are always
initialized at { = 1.

The proof that the procedure presented in Figure 2
terminates and then generates the global optimum solution
to the problem (8)-(10) after at most N — n + 1 iterations
is verified in the Appendix. This allocation policy must
now be coupled with an order-up-to level. The
determination of a nearly optimal level by a heuristic
search procedure is developed in the next section.

S. J. GROTZINGER ET AL.

® Order-up-to by simulation

The order-up-to level () that satisfies a given aggregate
service level B is determined through Monte Carlo
simulation. A brief description of the experimental
framework (Figure 3) is first presented to facilitate
following the steps in the framework. The value of () that
achieves the specified aggregate service level is determined
by a bisection procedure. This is the outer WHILE loop in
the experiment. For each iteration of this bisection
procedure, the aggregate service achieved is estimated
through simulation of the procurement and allocation
procedure over a horizon of 2500 periods. The bisection
procedure is initialized with an estimate, which can be the
sum of mean demands of all the products, for example.

In each period in the simulation, allocation of the {2
components is done to the N products considering the
current state of the system according to the allocation
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policy described in the previous section. The current state
of the system is described by the backlog or excess
preduct inventory of all of the products. After release of
the allocated components, the procurement decision for
the component is made to bring up to € the level of the
components available for the next period. At the end of
the period, the releases become available and are added to
the product inventory. Then the demand for the products
is realized. The excess product inventory or backlog for
each product is updated. For each of the products, a
record is kept of whether or not demand was met. The
simulation then steps into the next time period. At the
beginning of the next period, the component procurement
arrives. This set of events is repeated over the entire
horizon. At the end of the simulation, the aggregate
service achieved is computed as the fraction of all the time
periods in which there was no backlog for any product.
The bisection procedure continues until the service
achieved equals the target aggregate service within a
specified tolerance.

When commonality is not considered, the process of
procurement and allocation is modeled separately for each
product. Components procured for a product are allocated
only to that product. In this case, if the demands for the
products are independent of one another, the event
of satisfaction of demand for each product is also
independent of that of the others. The same is not true
when commonality is considered; the allocation procedure
introduces a correlation among the demand satisfaction
events. Therefore, in order to meet an aggregate service
level of B, the service B, for product j on each of the
individual products should be such that 8,8, - -+ 8, = B.
If the product prices and demand distributions are identical
for all products, then 8, = B, = +++ = B, = g".
Consequently, the procurement and allocation problem for
N products can be decomposed into NV identical problems.
It is therefore sufficient to solve one of them and obtain
the inventory costs for the N products by simply
multiplying the results by N. Each individual problem is
then solved using the experimental framework presented
earlier in this section by setting N to 1. In this case, the
allocation procedure reduces to a simple policy of releasing
components up to the difference between maximum
demand for the product and the excess inventory/backlog
for the product.

® Computational study

A computational study was conducted of the performance
of the method that considers component commonality and
the one that does not. Several experiments were performed
in the study by varying the number of products, target
aggregate service level, and type of demand distributions.
The number of products was varied from 2 to 44 for a
given target service level. The set of experiments was then
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repeated for service levels ranging from 0.5 to 0.9 for a
given number of products. Symmetric triangular
distribution characterized by low product demand of 0
units with probability of 0, medium product demand of 500
with the maximum probability, and high product demand
of 1000 with probability 0 was used. Uniform distribution
of the same range, i.e., 1 to 1000, was then used to repeat
the same set of experiments. Each experiment was then
run for a horizon of 2500 periods.

During each of the experiments, the component
inventory after releases, the leftover product inventory or
backlog, and the total inventory in the system (the sum of
component and product inventories) were tracked in order
to compute averages over the horizon. For each period, it
was determined whether demand was satisfied for each of
the products in order to compute the aggregate service and
individual product service achieved over the horizon.

Total inventory as a function of target aggregate service
level is graphed in Figure 4 for 2, 20, and 44 products
with triangular distributions for product demands. Tables
1, 2, and 3 contain the data used in these graphs and a
breakdown of the total inventory into component inventory
and product inventory.

Several empirical observations are made from the trends
indicated by the data. The reduction in total inventory is
significant, ranging from 12 to 37%. This reduction
decreases in most situations when the target used for
aggregate service is increased, since the individual service
rapidly approaches 1 as the aggregate service increases.
For example, when aggregate service is 0.5 and N = 20,
the individual service level measured is 0.82; when the
aggregate service is 0.8 and N = 20, the individual service
measured is 0.97. Therefore, the releases into the final
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Table 1 Reduction in total inventory (I), finished-goods
inventory (I X II), and component inventory (I x III) when
N = 2 and demand follows triangular distribution.

Aggregate  Total  Finished Component IXII IxIII

service  inventory goods  inventory
@ (I (1
%) (%)
0.5 26.29 82.01 17.99 2156 4.73
0.6 25.29 78.12 21.88 19.76  5.53
0.7 19.73 69.93 30.07 13.8 5.93
0.8 15.72 59.30 40.7 932 6.4
0.9 12.99 43.09 56.9 5.6 7.39

Table 2 Reduction in total inventory (I), finished-goods
inventory (I x II), and component inventory (I x III) when
N = 20 and demand follows triangular distribution.

Aggregate  Total  Finished Component [xII IxIll

service  inventory  goods inventory
() (I (i
(%) (%)
0.5 37.38 64.29 35.71 24.03 13.35
0.6 30.61 54.92 45.08 16.81 13.8
0.7 24.6 41.24 58.76 10.15 14.45
0.8 22.8 31.1 68.9 7.09 15.71
0.9 19.86 15.65 84.35 3.11 16.75

Table 3 Reduction in total inventory (I), finished-goods
inventory (I x II), and component inventory (I x III) when
N = 44 and demand follows triangular distribution.

Aggregate  Total  Finished Component IxII IxIII

service inventory  goods inventory

I (1) (I

(%) (%)
0.5 31.24 50.67 49.33 15.83 15.41
0.6 28.73 42.88 57.12 12.32  16.41
0.7 25.07 31.53 68.47 79 1717
0.8 22.77 21.56 78.44 491 17.86
0.9 24.57 13.57 86.43 3.33 21.24

assembly process in both approaches are made such that
the probability of meeting the maximum demand for each
of the products is very close to 1. In this instance, the
reduction in excess finished-goods inventory decreases in
significance. Therefore, the difference between the two
approaches arises mainly from a decrease in the
component inventory.

It is interesting to note that even at high levels of
service, the reduction in total inventory between the two
approaches remains significant. The reduction is more
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significant when the number of products is high. For
example, when N = 44 and aggregate service is equal to
0.9, the reduction in total inventory is 24.6% (refer to
column 1 in Table 3). This is explained as follows. At high
levels of service, as argued in the previous paragraph, both
approaches release to meet the maximum demand with a
probability very close to 1, resulting in a significant
amount of leftover product inventory. However, in the
approach that considers commonality, the sum of product
inventories has a coefficient of variation that is much less
than that of the other approach, which considers each
product separately. For the problem under study, the
coefficient of variation for the approach that considers
commonality is roughly of the order of 1/V/N of that of the
other approach. Consequently, the variability in the total
release for N products, where commonality is considered,
is insignificant when N is large. However, in the single-
product case the variability remains significant. Higher
component inventory must therefore be maintained to
respond to this uncertainty. Thus, even in an ATF system
there is considerable potential for component inventory
reduction from risk pooling.

To summarize, the following observations were made.
There is significant reduction in total inventory when
commonality is considered. There are two parts to the
total inventory, the finished-goods inventory and the
component inventory. The reduction in finished-goods
inventory decreases as aggregate service level increases
(column 5 of Tables 1-3). The reduction in component
inventory increases as aggregate service level or number of
products increases (column 6 of Tables 1-3). These two
effects are counteracting.

The above observations help explain two anomalies. In
the graph corresponding to N equal to 44 in Figure 4, the
percentage reduction in total inventory decreases for
aggregate service levels up through 0.8 and then increases
at a service level of 0.9. The reduction in total inventory
increases as N increases to 20 and then decreases when N
is increased to 44 for some service levels (column 1 of
Tables 1-3).

For the case of uniform distributions for product
demands, the reduction in total inventory as a function
of aggregate service level is graphed in Figure 5. The
reduction in total inventory decreases as a function of
aggregate service level in this case also. However, the
reduction in total inventory goes up as N increases from
2 to 20 and also to 44, unlike the case of triangular
distributions.

Conclusions

The risk-pooling and allocation policy effects in the context
of procuring and assembling to forecast were investigated
in the special case where one component is used in N
different products under the requirement of an aggregate
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service level. The empirical results obtained in this study
indicate significant potential for savings in total inventory
levels. Contributions to the savings by finished-goods
inventory and component inventory were analyzed. While
the individual contributions of these two quantities seem to
vary in opposite directions as a function of aggregate
service, the total savings are still significant at high levels
of aggregate service. The actual problem to be solved in
the industry would typically involve hundreds of
components being used in tens of products. The savings in
procurement in such cases may not be directly estimated
from the results obtained here. However, the significant
savings reported here strongly suggest that component
commonality should be explicitly incorporated in the
formulation of the procurement planning problem. Also,
the results reported here may be applicable to products
that share a single expensive component. This would be
the case, for instance, in a personal computer where the
microprocessor is very expensive compared to the rest of
the components. Careful planning for the procurement of
the microprocessor alone may achieve significant benefits.

Appendix

An explanation is provided here to support the assertion
made in arriving at the objective function (8). The
expression

N
E\ X b lg+4-d]

j=t
can be rewritten as

N

> k- E(g + g -d)"),

j=t

since in general the expectation of the sum of a set of
random variables is equal to the sum of expectations of
each of the random variables. This can be expanded as

j=1
u, uy

f‘f (g +q —d] fd, - ,dydd --dd,,
0 0

which can also be rewritten using Bayes’ theorem as

N

u u
Eh,»'f f 4+ - d]
j=1 0 0

fd) fdy, -, dyld)dd, - -dd

N

where u, = g, + g;. This is equal to

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

35
S Gu......
2 30 ."'\;2: ------- Sreerreeres Oereererenn o)
g 1 T o
e Al 4
R
E
=]
g 20
=}
=}
g L
2 15
&
10 1 | | | |
0.4 0.5 0.6 0.7 0.8 0.9 1

Aggregate service level
N =44
LRy O wen

N=2 N=2
—8— i

Service vs. inventory reduction for uniform distribution.

N

S "G g -9
j=1 0
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The conditional probability term has the value one;
therefore, the above expression is equal to

N
S [+ g -4 fd)ad,
j= 0

The fact that the Hessian of the objective function (8) is
a positive semidefinite matrix is now established. In this
regard, recall the formula for differentiating an integral of
the following form:

itho) = | Fe,y) dx, (A1)

Aly)

then

y) dB d4
=fBY),y) - - fAY),y) —

ra dy dy
. Jsm aof (x,y) o
Aly) ay
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For the objective function,

N
I6y= Y b+ E(g + g, - d]")

i=1

N
Gtq
=Sh [+ - ara. #2)
j=t

This implies

ol B G+ _ N
P h - fd)dd =h - F( + q),
j 0
Py oI
=0= ’
3q,q; 99,94
a1

37y @ =N NGt g =0
)

This concludes the verification.

The proof that the procedure presented in the section on
the allocation problem terminates and then generates the
global optimum solution to problem (8)—(10) after at most
N — n + 1 iterations is now pursued. First recall that if
the optimality procedure is required, the current state of
the system has failed to satisfy the conditional (12) and
thus is initialized with the assurance that

n L] N
ZO= Y F'0-4]=> (-9 = -4]" <
j=1 j=1 j=1

Thus, if

Z(-v,,)29,

then, by the continuity of Zn(-),
I re[-vy -—yn)BZn(A*) =qQ,

n+1?

which may be obtained via binary search restricted to this
interval. Otherwise, we continue with the knowledge that

Zﬂ+1(—yn+1) = Zﬂ(_7ﬂ+1) < Q’

since

Z, (=700

- . Yo+t N
= Zn(_yqﬂ) + [Fnil(mln [1’ hﬂ+ ]) _ q,,ﬂ]
7+l

=Z(~7,.) +0,

since

Va4 AN - . Va1 .

v = F..4,.,) implies Fnil(mm {1, h" -g,,=0.
n+1 7+l
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Proceeding in this manner, either one obtains
Z(-7,)zQ (A3)

for some ¢ < N, or after at most N ~ 5 + 1 iterations
arrives at the valid conditional

) [ max{hj:jEN}] ]
Fjl(min 1,——11.—- )—qj

}

N

Zv) =,

j=1

N N
=>F'D-41=2@-9=0
j=1 j=1
since the conditional (13) failed to be satisfied prior to
initiating the optimization process.
Assuming that the conditional (34) is satisfied at the
i = ¢" iteration, then again by the continuity of Z()

Az el-y,,-7)3ZA)=Q,

c+1?
which may be obtained by numerical inversion. Let us first

consider the capacity constraint (20) required by the
Karush-Kuhn-Tucker conditions,

N ¢
2 q'= > {AY) =Z (%) =Q
j=t j=1
by construction.

We proceed to verify the additional conditions by
considering the indices

l<j<c3A*>-h.

The gradient relationships (19) of the Karush-
Kuhn-Tucker conditions become

A*
-1 ~ ~ .
hJF](FI (—-};-) —qj+qj) +A*~0+0=0.
J
For the lower bound constraint (21), we need to consider
the two cases. First, forj € I'” we have
A*
*x_— -1 s P At
g =F, (—7;) -§=0-¢g=[-4l,
]
and forj € T'" we have
/\*
*® -1 A _ ATt
q]'=Fj (_7) “‘1,-20=[—qj] s

]
since
A* < —y < - = —hj-Fj(qj) VjscandjeTl",

The upper bound constraints (22) are easily seen to be
satisfied, since

/\*
— -1 IS 3 A
a=F (——h,) ~4=d-4
7
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The complementarity conditions (23) and (24), along
with the nonnegativity requirements (26), are obviously
satisfied, since A;‘ =0= B;.".

We now consider the indices 1 <j < ¢ 3 A* = —hj.
The gradient relationships (19) are now

hF@)+A* =0+ (-A* — k)
=h1+A* =0+ (=A% —h)=0.

For the lower bound constraint (21), we need to consider
the two cases. First, forj € I'” we have

q]* EEj_QjZO-‘?jE[_‘Z]+’

and for j € T'" we have

q;‘ = g} - q)' z0= [_q]']+7

since by reformulation, if necessary, we were assured that
the inequality (11) was not satisfied for any j. The upper
bound constraints (22) are now satisfied with equality

d - (g + ¢,) = 0. This equality immediately implies
that the complementarity conditions (24) are satisfied, and
A]’.“ = 0 validates the complementarity equations (23) along
with the nonnegativity requirements (26) for the A,
multipliers, while A* < —h, immediately implies
nonnegativity for the g multipliers B;" = —A* = h;, which
completes the verification for this set of indices.

It remains to validate the Karush—-Kuhn-Tucker
conditions for the indicesj = ¢ + 1, -+, N. First
observe that for this set of indices, we have thatj > 7,
implying thatj € T " and that g; > 0. Also observe that if
¢ = N, this FOR loop would never have been initiated and
the procedure would have terminated. The gradient
relationships (19) now become

h FO+q)+ A% —[A* +h - F@)]+0=0.

The lower bound constraint (21) is now satisfied with
equality, since forj € T'" we have g7 = 0 = [-g]",

and thus the complementarity conditions (23) for the A,
multipliers are also satisfied. Again, by reformulation if
necessary, we were assured that the inequality (11) was
not satisfied for any j. Therefore, the upper bound
constraints (22) ‘7; — (0 + g;) = 0 are satisfied. Since

B;‘ = (), the complementarity equations (23), along with the
nonnegativity requirements (26) for the g, multipliers, are
apparent. The expressions

YINES Yy S S Y ad AT €y, -

immediately imply nonnegativity for the A, multipliers
* . A
A= A% 4 F@),

which completes the verification for this set of indices and
consequently for the procedure as a whole. Thus, these
values of g A, /\j, and B, are optimal for the convex
programming problem.
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