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This paper considers  procurement  and 
allocation policies in a  manufacturing 
environment  where  common  components  are 
assembled into various  products  that have 
stochastic demands.  The  components  are 
allocated to the  assembly  of  a  product  at  a 
time when product demand is  still uncertain 
(assemble to forecast,  ATF).  The  special  case 
of  one  component  shared  by N different 
products is analyzed,  and insights into the 
general  problem  are  obtained for the  situation 
in which  the  common  component  can  be 
reallocated to different  products as product 
demands  change.  An allocation policy is 
developed for general distributions and prices 
in an  ATF  environment.  The policy first 
addresses  anomalies in the  state  of  the  system 
and  then, for a  feasible  state,  minimizes  the 
expected  excess  finished-goods  inventory.  A 
procurement  level  that is nearly  optimal is 
obtained from a Monte  Carlo  simulation in 

which  the  probability  of satisfying all of  the 
random  product  demands  simultaneously is 
considered  relative to this allocation  policy. 
Numerical  studies  indicate  that  the total 
component  and  finished-goods  inventory is 
significantly reduced  by  an  allocation policy 
that  incorporates risk pooling while still 
fulfilling sewice-level  requirements. 

Introduction 
Multiplant  coordination involves correlating needs in a 
chain  of  facilities in which  upstream facilities supply parts 
consisting  of  components and subassemblies to 
manufacturing facilities  downstream. At  the  final  assembly 
facility, these parts  are assigned to particular  products  and 
then  released  into an assembly process to  meet  a demand 
for a particular  finished  product. These releases into  the 
final assembly process are  determined  to satisfy or service 
the  probable  demand  requirements  for  a set of  products 
that  will exist at  the  end  of this stage. An appropriate 

513 



policy must be devised to determine how parts are 
allocated toward finished products of a particular type and 
released into the final assembly process. If  an assembly 
cycle time  is  long, these product demands are unknown at 
the time the release is made, but a probability distribution 
may be known and utilized. Suppose the cycle or lead time 
is four weeks for the final assembly process and the 
demand for finished products must be  satisfied 90% of the 
time.  The releases must be determined now to meet the 
currently unknown  demand.  Sufficient  finished goods must 
be available four weeks from  now to satisfy or service 
the random  demand  with the given probability. This 
probability of 0.9 is often referred to as the service level. 

probability, it is necessary to maintain inventories at 
various levels. The overall objective is to minimize the 
total inventory in the system that is required to achieve a 
desired service level. The total inventory is the sum of the 
value of the unsold  finished products along  with the value 
of the unutilized  components/subassemblies. This 
inventory is often composed of components that are 
common to a set of distinct products. For example, the 
same microprocessor is used in a variety of different 
personal computer models. Components common to 
various products and an appropriate allocation policy can 
be exploited to reduce the total inventory in such systems. 
A common component procured for the probable demand 
of one product can be allocated to another distinct 
product, if a shift in the demand patterns is discerned prior 
to actual release into the final assembly process. This  is 
referred to as riskpooling. 

manufacturing. The first is an assembly facility in which 
the final assembly process is long  enough to require the 
releases to be made before the actual demand for the 
product is  known  with certainty. The allocation policy 
must explicitly address the complexity arising  from this 
uncertainty. This mode of manufacturing is commonly 
referred to as “assembling to forecast” (ATF). In the 
other environment, because an assembly operation is 
short, it is possible to observe the actual demand  and 
assemble to order (ATO). The available parts are allocated 
and then released to meet these known demands for the 
various products. The number of components/ 
subassemblies allocated to a particular product equals the 
number required to exactly meet the known  demand for 
that product. However, if the procurement lead  times for 
parts are significantly  long,  it  will be necessary in both of 
these production environments to order these components 
or begin fabrication of the subassemblies well in advance 
of the time when these parts are to be released into the 
final assembly process. 

The electronics industry provides an example of a 

To satisfy stochastic demand requirements with a certain 

Two different production environments occur in 
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manufacturing process can be roughly  divided into three 
stages of production. To start with, there is semiconductor 
manufacturing, where chips are fabricated from wafers. 
Printed circuit boards are then assembled in card assembly 
plants. At the final stage, the boards are assembled into 
system units to meet actual customer demands. The 
manufacturing cycle times vary for the three processes. 
Chip fabrication is in the range of three to six months. 
For various manufacturers, the cycle time for assembling 
printed circuit cards or system units can range  from 
several days to several weeks for each of these processes. 
In some large electronics firms, the three manufacturing 
processes are done at different sites, which introduces lead 
times for transportation. The raw materials or parts at all 
three stages of production may have to be procured to 
forecast if the procurement lead  time  is  long. The assembly 
of system units may be done upon realization of market 
demands if the cycle time for assembly is short. The chip 
manufacturing plants have to assemble to forecast to 
address their significant cycle times. 

In these multiplant manufacturing networks where 
demand is unknown at the time of procurement and 
release, exploiting commonality, improving serviceability, 
and reducing inventories while respecting lead times are 
strategically important goals in  many industries, but very 
difficult problems to address. Current practice ignores 
commonality and does not explicitly address demand 
uncertainty, resulting  in excessive finished-goods inventory 
for some products but significant backlogs for others. 
Even with expensive inventories at both the parts and 
finished-product level, poor serviceability is often 
realized. 

Much  insight into these general questions can be gained 
by restricting consideration to a single manufacturing 
facility. The process of procuring parts and their 
subsequent allocation to different products, where both 
decisions have significant  lead  times associated with them, 
also arises in this context. Henceforth these questions will 
be pursued from the perspective of a single manufacturing 
facility. In such a plant, the components arrive after a 
certain lead  time  and they are then released to be 
assembled into various products. Because the cycle time 
for product assembly may be significant, products must be 
assembled so as to meet a currently unknown demand. 
The procurement and allocation decisions must be made so 
that the demand for finished products is  met  with a certain 
service level and the total cost of the inventory in the 
system is simultaneously reduced. The demand for the 
products is random, but its marginal probability 
distribution is  known. There is a high degree of 
commonality of components among the products. Once 
again the risk-pooling effects of component commonality 
and  an appropriate allocation policy are to be exploited to 
reduce the total inventory. 
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An AT0 environment having N products with one 
common component and special pricing  and distribution 
restrictions has been considered previously [l-41. Recently 
the AT0 problem has been addressed in the presence of 
general product structure, prices, multiple  time periods, 
and independent product demands [5 ] .  In this paper, the 
setting of N products with one common component, 
general pricing structures, and  general distributions is 
addressed in  an ATF environment in order to obtain 
further insights into risk-pooling effects. An allocation 
policy is developed which assesses current inventory levels 
and respects the cycle time required for the assembly 
process. The allocation policy is then coupled with a 
simulation technique to implicitly address serviceability. 
Numerical implementation and integration into a simulation 
experiment suggest the potential for significant inventory 
reductions from risk pooling  in this ATF environment. 

The  remaining sections are organized as follows. The 
next section considers the overall planning  problem for the 
ATF environment. The formulation considers multiple 
products, components, and  time periods relative to an 
aggregate service measure. An aggregate service measure 
reflects the probability of meeting the random demands for 
all products simultaneously. To assess the significance 
of inventory reductions resulting from commonality of 
components and an appropriate allocation  policy, a special 
case of the general formulation  is considered in detail. This 
special case, which considers a single component to be 
used in several products, is addressed in the section on 
the single-component problem. An allocation policy  is 
developed which  first examines the state of the system for 
any anomalies, then assesses feasibility concerns, and 
subsequently makes an  optimal  allocation  when a feasible 
state exists. When a feasible solution exists, an iterative 
algorithm  based on nonlinear optimality criteria is used 
to determine how to release assemblies into the 
manufacturing process relative to some as  yet unknown 
demand. Expected excess finished-goods inventory is the 
objective minimized. The algorithm  is  applicable to a 
single-stage  model with N products and one common 
component, general pricing structure, and arbitrary 
distributions of finite support or truncated distributions. 
Relative to this allocation policy, a Monte Carlo simulation 
procedure to determine a near-optimal order-up-to level for 
the common component is then developed in the section 
entitled “Order-up-to by simulation.” The order-up-to 
level  is the quantity of parts on hand at the beginning of 
each period. Al l  of these parts need  not  be allocated to 
specific products, but they are all available for allocation. 
Enough parts are then procured to bring the amount on 
hand back up to this level for availability in the next 
period. A procedure to obtain the order-up-to level  when 
N unique components are used instead of a common 
component is also discussed in this section. In the section 

i! Schematic representation of a two-stage production system. 

on computational study, the numerical results of 
experiments to assess the reduction in total inventory 
levels obtainable by exploiting component commonality 
and an appropriate allocation policy are presented for a 
varying number of products, demand distributions, service 
levels, and prices. Insights into risk-pooling effects 
suggested by these numerical results are also discussed. 
A summary discussion is provided in the section on 
conclusions, and the proof  of optimality of the solution to 
the allocation problem  is presented in the Appendix. 

A general  problem  formulation 
This section formulates the problem of determining 
component procurement and product release levels in the 
presence of significant  lead times and demand uncertainty 
in a two-stage production system (Figure 1). The 
formulation presented considers several products, 
components, and  time periods. This general formulation 
provides the overall context for the multiple-products, 
single-component, and single-period problem that is 
actually solved in the next section. Further, the general 
formulation presented here is new  and has not been 
presented before. The two stages shown in Figure 1 
involve component procurement/fabrication and release 
into the assembly process. Components are procured from 
vendors or fabricated in internal plants. The lead  time  for 
component procurement is assumed to be the same for all 
components. When the components arrive, they are stored 
in the warehouse, and quantities required subsequently are 
released into the assembly process. This release is based 
on allocation decisions made by considering the current 
state of the system, the service level,  and the inventory 
cost objectives. The assembly cycle time is assumed to be 
the same for all  of the products. The  finished products 
arrive at the output buffer  from  which  demand  is seniced. 525 
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All procurement and allocation decisions are made at the 
beginning of time periods. Demand for a period is realized 
during that time  period  and is completely known at the end 
of that time period, i.e., the beginning of the next time 
period. 

The  following notation is  utilized  in the formulation: 

index  set for products 
index  set for components 
manufacturing cycle time  for all products 
procurement lead  time for all components 
usage count of component i in product j 
net  inventorybacklog of product j at the 

beginning of period t 
net  inventory of component i at the beginning of 

period t 
cost of component i 
holding cost of product j 
random variable  representing the demand for 

product j in period t realized  during  period t ,  
known  completely at  the beginning of period 
t + 1. 

service level for period t 
state of the  system known at time t before 

allocation and  procurement decisions are 
made; 

= {Qj,, (q,,, T = t - 1, * * , t - e + I), ai,,-, , - 

(Wir' T = t - 1, * * - , t - L)} 

The decision variables for allocation and procurement are 
represented by 

qjf allocation  decision  for product j to  be released at 
the beginning of period t toward finished goods 
in period t + e 

wjf procurement decision for  component i made  at 
the beginning of period t for delivery  at the 
beginning of period t + L 

In the formulation given  below, the objective function 
minimizes the new inventory investment to be made at the 
beginning of period t so that the demands for products in 
period t + e + L ,  including  backlogs, are met  with a 
probability of &+e+L.  The minimization is done over the 
procurement decisions, oil, made at t relative to an 
allocation policy, g(.), to be specified. This allocation 
policy  will be employed  in periods t ,  - , t + L .  The 
result of the allocation done at t = T is the set of releases 
q,,, for all j .  Equation (3) and Equation (4) are inventory 

526 balance equations. 
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such that 

V j ,  T = t , . . .   , t  + e + L,  

V j ,  T = t ; . .   , t  + e + L, (4) 

qj, = g ( S , j ) ,  7 = t ,  * - * , t + L ,  (5)  

where g ( . )  is an allocation policy that is specified. 

ai,, oiT, qj, 2 0, V i, V j ,  V T. (6) 

In this formulation, St is  known,  and one set of 
procurement decisions, oif, is made at t .  Also, the 
allocation policy, g(*), to be employed  in periods t ,  * , 
t + L is specified at t .  However, only the current 
allocation decisions, q,,, are made at t ;  the remaining 
allocation decisions, qj,, T = t + 1, * , t + L ,  are 
made at T. This problem  may be reformulated as a 
stochastic dynamic program with L + 1 stages. However, 
the problem  is inherently difficult to solve as a 
consequence of three features being present together: 
(a) the stochastic nature of the demands for products, 
(b) allocations being  made at multiple stages (time 
periods), and (c) component commonality. 

Before attempting to solve this problem, it  is desirable 
to understand how  significant these features of the problem 
are. This facilitates the choice of features to retain and to 
omit  from the formulation. The stochastic nature of the 
product demands cannot be ignored. The allocation 
decisions must  be  made  dynamically,  i.e.,  in  multiple 
stages, because the backlogs or excess inventories accrued 
up to a certain point in time are an important factor to be 
considered in determining what to release into the 
assembly process at that time. Furthermore, these 
allocation decisions must be made when the product 
demands are still unknown, as contrasted with an AT0 
situation where allocation decisions are made after 
demands are known with certainty. This aspect of 
allocation needs full consideration. The effect of 
component commonality on safety stock reductions 
in AT0 systems has been studied [l-51. Empirical 
studies in [5] show a significant reduction in the required 
procurement levels compared to the levels required when 
commonality is  ignored. Such studies have not been done 
in the case of ATF systems in the presence of service-level 
constraints. The objective in the following sections is to 
determine the reduction in total inventory obtainable from 
component commonality and  an appropriate allocation 
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policy in the ATF environment. The methodology 
developed there is applicable to general pricing structures 
and arbitrary distributions for product demands. On the 
basis of the significance of the reductions that may  be 
achieved, recommendations on whether component 
commonality should be explicitly considered in the general 
formulation presented in this section will be made. 

Single-component  problem 
Risk-pooling effects are assessed in an ATF environment 
from studies of a single  common component and N 
products. In this regard, the optimization in (1) and the 
service requirement (2) are addressed by use of a Monte 
Carlo simulation relative to a specific allocation policy g(* )  
to be developed in the section which follows. This single- 
component problem requires the determination of the 
procurement and subsequent allocation to the N products. 
The allocation problem  is addressed first and is followed 
by a determination of an order-up-to level. 

The allocation policy g(-)  uniquely determines the 
releases into the final assembly process to satisfy an 
as-yet-unrealized demand. To determine this policy, four 
distinct cases must be considered. Case one addresses an 
anomaly that may arise from the current state of the 
system; cases two and three assess whether or not the 
state of the system is feasible. With a priori knowledge 
that a feasible state exists, case four subsequently 
determines an optimal allocation relative to expected 
excess finished-goods inventory. 

Allocation problem 
First, the policy of optimally allocating a known order-up- 
to quantity Cl to the N different products is considered. 
The cases assessing anomalies in the state of the system 
are discussed after an optimal allocation is formulated. The 
component index i is not needed for the single-common- 
component problem.  The component usage rates uj are 
assumed equal to unity, and the time index is dropped. 
The component index i and time index t are also dropped 
from  all the variables. With these simplifying assumptions, 
the notation is reduced to the following: 

Cl order-up-to quantity  or amount of the common 
component available 

dj unknown  demand  for product j 
4 maximum  realizable demand  for  product j 

4(*) marginal density  function for  demand  for 

Fj(.) marginal cumulative  distribution  function for 
product j 

demand for  product j 

The procedure is to determine qj, the amount of the 
common component released into the manufacturing 

process toward demand for product j ;  Qj is used in  place 
of Q ,  to emphasize the fact that this is a known quantity 
as far as this allocation procedure is concerned. 

Only finished-goods inventories are considered. That is, 
this part of the allocation policy assumes that all  of the 
available common components, a, will be released into the 
system and allocated to some product j .  The formulation 
permits arbitrary price relationships and unrelated 
distributions for the different products. However, it  is 
assumed that the density functions, representing product 
demands, are positive on the domain of interest, i.e., 

The objective is to determine allocations qj for each 
assembly j so that the expected excess finished-goods 
inventory costs  are minimized. Since the expectation of a 
sum of random variables is equal to the sum of the 
expectations of the individual random variables, we have 

min E C hj . [qj + Q~ - djlt 
4, I N  j = l  I 

N 

= min 2 hj - E([q, + Qj - dj]'). 
4, j=1 

As discussed in the Appendix, the expectation of excess 
inventory for product j can be computed by using the 
marginal density function. Thus, the optimization problem 
to be solved is as follows: 

N 
4,f? 

min x hj - 1 [Qj + qj - 41 f (4.)d dj , 
41 j=1 

subject to 

N 

q j  = a, 
j=1 

[-QjIt 5 q. d d. - 4;. j = 1, 2, - , N, 
J J  

- 

where E(x) is the expected  value of x and [x]' = max (0, x}. 
Before proceeding, the cases addressing anomalies in the 

state of the system and feasibility concerns are motivated 
and then specified. 

First, it is possible that the net inventory in the system 
for product j already exceeds the maximum demand which 
can  be  realized. Thus, one would not want to release 
additional assemblies into the pipeline  toward  demand for 
product j .  In this instance, product j would  be dropped 
from the formulation, and the reformulation for the 
remaining N - 1 products would be addressed: 

If 4 < 4;. , then qJ*= 0 and reformulate. 
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Second, it  is possible that the existing backlogs cannot 
be met with available resources. In this instance, the 
policy would be to reduce all existing backlogs by an equal 
percentage. That is, 

r N  1 -l 

then q,!= * [-ljj]' * [-4j]+. J 
Third, it  may arise that an excess supply of components 

accumulates. In this instance, the policy is to bring the 
finished-goods inventory up to the maximum  demand 
levels for all products. That is, 

N 

if ]c (4 - i j j )  < a, then q,*= 4 - l j j  V j .  (13) 
j=1 

The remaining components are then held as component 
inventory, and the procurement for the next period is 
appropriately reduced in order once again to have the 
order-up-to quantity available for release in the next 
period. 

Finally, if none of these instances arises, the policy 
is determined by the optimal solution to the feasible 
nonlinear optimization problem (8)-(lo), which is closely 
related to the following general form: 

subject to 

N 

2 Yi = B, 
j=l 

0 s y i  f o r i = l ; * . , N .  (16) 

As noted by Zipkin [6], this form arises in a variety of 
applied contexts, including the distribution of search effort, 
marketing, portfolio selection, capital budgeting, reliability, 
and health care. Luss and Gupta [7] developed an 
algorithm which is applicable to four specific forms of 
return functions Qi(.) : R + R. This approach subsumed 
several previous results. Zipkin presented these ranking 
methods in a unified framework applicable whenever 
Qi(*) : R +. R are continuously differentiable  and strictly 
concave. In  addition to enhancing the breadth of 
applicability, Zipkin's approach in [6] also achieves a 
significant computational advantage. It requires only a 
single numerical inversion after termination of the iterative 

528 part of the procedure, as opposed to one being required at 

each iteration. In extending the methodology to the case 
where upper bounds are also imposed on the variables, 

y, 5 b, for i = 1, * - , N,  (17) 

their technique requires that several related problems of 
the form (14)-(16) must be solved. The justification is 
based on a special type of relaxation method. However, by 
using a sequence of unbounded-variables problems to solve 
the bounded-variables problem, one is again  faced  with the 
possibility of N numerical inversions being required. 

The method to be developed here directly addresses the 
Karush-Kuhn-Tucker conditions, with the upper bound 
constraints (17) present. As a consequence, it is able to 
extend to the bounded case the property that only a single 
numerical inversion need be performed after the iterative 
portion of the procedure has terminated. This  is the 
calculation required by the step 

find A *  E [ - Y ~ + ~ ,  -yi) 3 ZJA*) = SZ (18) 

in the procedure specified  below. 
This allocation policy is employed repeatedly in the 

determination of the order-up-to level in the next section. 
For each estimate of the order-up-to level a, the allocation 
subroutine must be invoked 2500 times. Suppose the 
search to determine requires ten distinct estimates. 
Then, for N = 50 products, the potential of 1  250 000 
numerical inversions (18) is reduced to 25 000 by the 
enhancements developed here. The  allocation policy must 
also be applicable to general distributions-for example, 
distributions of finite support and truncated distributions. 
Therefore, the assumptions that Qi(-) : R + R are @ and 
strictly concave everywhere will  not be satisfied. This 
additional complexity is also addressed by the 
methodology presented here. 

a positive semidefinite matrix is verified  in the Appendix, 
implying that the objective function is a convex function. 
Thus, the Karush-Kuhn-Tucker conditions are sufficient to 
determine globally optimal allocations. Consequently, a 
solution to the following set of equations and inequalities is 
to be determined: 

The fact that the Hessian of the objective function (8) is 

N 

a- 2 q j = o ,  
j=l 
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INITIALIZE 
i = q,  TERM = 0 

WHILE TERM# 1 
IF 

I 

n 5 Lj(--Yi+J = Zi(--Yl+J 
j = l  

THEN find A* E [-x+,, - y i )  3 Zi(A*) = and set TERM = 1 
FOR j = 1 ; - . , i  

IF A* > -hj 
THEN 

A* 
q,?= Fil( -7) - 4; = h(A*) and A,?= 0 and a,?= 0 

ELSEIF A* I -hi 
THEN 

- 
q,*= dj - 4, = l j ( A * )  and A;= 0 and a,*= - A * -  h. 

ENDIF 
ENDFOR 
FOR j = i + 1, e . . ,  N 

ql*= 0 and A,!= A * +  hj .F,(Qj) and a,?= 0 

ENDFOR 
ELSE 

i + i + l  

ENDIF 
ENDWHILE 

A j , / ? ] ? 0  j = l , 2 ; . . , N .  (26) and 

Before the iterative procedure to generate a solution to for j E r' define rj e hj * F,(Gj). (28) 
conditions (19)-(26) is presented, several additional 
definitions are developed to facilitate the exposition. The that these quantities occur in the natural order, 
set X E (1, 2, - - * , N }  is partitioned into two sets, 

For ease of exposition and without loss of generality, 

The quantities 11 E 1r-l and v = -max {hi : j E X }  are [ v ,  - yN]  [ - r i ,  - y i - l ]  - - [-y,+l , 01 
also required, as  are the following parameters: 

of the corresponding partition of the interval 
for j E r- define y j  = 0, makes use of the following functional forms: 

(27) The procedure iteratively considers the subintervals 

[v, 01, and 
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Order-up-to by simulation 

service level /3 is determined through Monte Carlo 
(30) The order-up-to level R that satisfies a given  aggregate 

k simulation. A brief description of the experimental 
f;.(A). (31) framework (Figure 3) is first presented to facilitate 

j =1  following the steps in the framework. The value of that 
Note that the iterative procedure &own in figure 2 is achieves the specified  aggregate service level is determined 

initiated at i = 71. This  gives an advanced start relative to by a bisection procedure. This is the Outer WHILE loop in 
the algorithms employed in [6] and [7], which are always the experiment. For each iteration Of this bisection 
initialized at i = 1. procedure, the aggregate service achieved is estimated 

The proof that the procedure presented in Figure 2 through simulation of the procurement and allocation 
terminates and then generates the global  optimum solution procedure over a horizon of 2500 periods. The bisection 
to the problem @)-(lo) after at most N - 17 + 1 iterations procedure is  initialized  with  an estimate, which can be the 
is verified in the Appendix. This allocation policy  must  sum of mean demands of  all the products, for example. 
now be coupled with an order-up-to level. The In each period in the simulation, allocation of the R 
determination of a nearly optimal level by a heuristic components is done to the N products considering the 
search procedure is developed in the next section. current state of the system according to the allocation . 
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policy described in the previous section. The current state 
of the system is described by the backlog or excess 
product inventory of  all  of the products. After release of 
the allocated components, the procurement decision for 
the component is made to  bring  up to i2 the level of the 
components available for the next period. At the end of 
the period, the releases become available and are added to 
the product inventory. Then the demand for the products 
is realized. The excess product inventory or backlog for 
each product is updated. For each of the products, a 
record is kept of whether or not  demand was met. The 
simulation then steps into the next time period. At the 
beginning of the next period, the component procurement 
arrives. This set of events is repeated over the entire 
horizon. At the end of the simulation, the aggregate 
service achieved is computed as the fraction of all the time 
periods in  which there was no  backlog for any product. 
The bisection procedure continues until the service 
achieved equals the target aggregate service within a 
specified tolerance. 

When commonality is not considered, the process of 
procurement and allocation  is  modeled separately for each 
product. Components procured for a product are allocated 
only to that product. In this case, if the demands for the 
products are independent of one another, the event 
of satisfaction of demand for each product is also 
independent of that of the others. The same is not true 
when commonality is considered; the allocation procedure 
introduces a correlation among the demand satisfaction 
events. Therefore, in order to meet an aggregate service 
level of p, the service pi for product j on each of the 
individual products should be such that PIP, ' - PN z p. 
If the product prices and  demand distributions are identical 
for all products, then p, = pz = * - = pN = pl'N.  
Consequently, the procurement and allocation problem for 
N products can be decomposed into N identical problems. 
It is therefore sufficient to solve one of  them and obtain 
the inventory costs for the N products by simply 
multiplying the results by N .  Each individual  problem  is 
then solved using the experimental framework presented 
earlier in this section by setting N to 1. In this case, the 
allocation procedure reduces to a simple  policy of releasing 
components up to the difference between maximum 
demand for the product and the excess inventorybacklog 
for the product. 

Computational study 
A computational study was conducted of the performance 
of the method that considers component commonality and 
the one that does not. Several experiments were performed 
in the study  by varying the number of products, target 
aggregate service level, and type of demand distributions. 
The number of products was varied from 2 to 44 for a 
given target service level.  The set of experiments was then 

40 

c 35- 
h 

x 
'\ 
'\\ 

10 
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"" 4 0.9 1 
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N = 2  N = 2 0  N=44 
"-g "-A"- . . .o..  . . 

I Service vs. inventory reduction for triangular distribution 

repeated for service levels ranging  from 0.5 to 0.9 for a 
given  number of products. Symmetric triangular 
distribution characterized by low product demand of 0 
units with probability of 0, medium product demand of 500 
with the maximum probability, and  high product demand 
of 1000 with probability 0 was used.  Uniform distribution 
of the same range, i.e., 1 to 1000, was then used to repeat 
the same set of experiments. Each experiment was then 
run for a horizon of 2500 periods. 

inventory after releases, the leftover product inventory or 
backlog, and the total inventory in the system (the sum of , 
component and product inventories) were tracked in order 
to compute averages over the horizon. For each period, it 
was determined whether demand was satisfied for each of 
the products in order to compute the aggregate service and 
individual product service achieved over the horizon. 

Total inventory as a function of target aggregate service 
level is graphed in Figure 4 for 2, 20, and 44 products 
with triangular distributions for product demands. Tables 
1, 2, and 3 contain the data used in these graphs and a 
breakdown of the total inventory into component inventory 
and product inventory. 

Several empirical observations are made from the trends 
indicated by the data. The reduction in total inventory is 
significant,  ranging  from 12 to 37%.  This reduction 
decreases in most situations when the target used for 
aggregate service is increased, since the individual service 
rapidly approaches 1 as the aggregate service increases. 
For example, when aggregate service is 0.5 and N = 20, 
the individual service level measured is 0.82; when the 
aggregate service is 0.8 and N = 20, the individual service 
measured is 0.97. Therefore, the releases into the final 531 

During each of the experiments, the component 
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Table 1 Reduction  in  total  inventory (I), finished-goods 
inventory (I X II), and  component  inventory (I X 111) when 
N = 2 and demand  follows  triangular distribution. 

Aggregate Total Finished Component I X II I X III 
service inventory goods inventory 

(4 

0.5 26.29 82.01 17.99 21.56 4.73 
0.6 25.29 78.12 21.88 19.76 5.53 
0.7 19.73 69.93 30.07 13.8 5.93 
0.8 15.72 59.30 40.7 9.32 6.4 
0.9 12.99 43.09 56.9 5.6 7.39 

Table 2 Reduction in total inventory (I), finished-goods 
inventory (I X 11), and component  inventory (I X 111) when 
N = 20 and  demand  follows triangular distribution. 

Aggregate Total 
service inventory 

(I) 

0.5  37.38 
0.6 30.61 
0.7  24.6 
0.8  22.8 
0.9  19.86 

Finished 
goods 
(14 
(%I 

64.29 
54.92 
41.24 
31.1 
15.65 

Component I X II I X ZII 
inventory 

(%I 
35.71 24.03 13.35 
45.08 16.81 13.8 
58.76 10.15 14.45 
68.9 7.09 15.71 
84.35 3.11 16.75 

Table 3 Reduction  in total  inventory (I), finished-goods 
inventory (I X 11), and component  inventory (I X 111) when 
N = 44 and demand  follows  triangular  distribution. 

Aggregate 
service 

0.5 
0.6 
0.7 
0.8 
0.9 

Total Finished 
inventory goods 

(4 VI) 
(%I 

31.24 50.67 
28.73 42.88 
25.07 31.53 
22.77 21.56 
24.57 13.57 

Component Z X  II I X  IIZ 
inventoiy 

w4 
(%I 

49.33 15.83 15.41 
57.12 12.32 16.41 
68.47 7.9 17.17 
78.44 4.91 17.86 
86.43 3.33 21.24 

assembly process in both approaches are made such that 
the probability of meeting the maximum  demand for each 
of the products is very close to 1. In this instance, the 
reduction in excess finished-goods inventory decreases in 
significance. Therefore, the difference between the two 
approaches arises mainly  from a decrease in the 
component inventory. 

service, the reduction in total inventory between the two 
It is interesting to note that even at high levels of 

532 approaches remains significant.  The reduction is more 

significant when the number of products is high. For 
example, when N = 44 and aggregate service is equal to 
0.9, the reduction in total inventory is 24.6% (refer to 
column 1 in Table 3). This is explained as follows.  At  high 
levels of service, as argued in the previous paragraph, both 
approaches release to meet the maximum  demand with a 
probability very close to 1, resulting in a significant 
amount of leftover product inventory. However, in the 
approach that considers commonality, the sum of product 
inventories has a coefficient of variation that is much less 
than that of the other approach, which considers each 
product separately. For the problem under study, the 
coefficient of variation for the approach that considers 
commonality is  roughly of the order of l / f i  of that of the 
other approach. Consequently, the variability in the total 
release for N products, where commonality is considered, 
is  insignificant when N is large. However, in the single- 
product case the variability remains significant. Higher 
component inventory must therefore be maintained to 
respond to this uncertainty. Thus, even in  an ATF system 
there is considerable potential for component inventory 
reduction from risk pooling. 

There is  significant reduction in total inventory when 
commonality is considered. There are two parts to the 
total inventory, the finished-goods inventory and the 
component inventory. The reduction in  finished-goods 
inventory decreases as aggregate service level increases 
(column 5 of Tables 1-3). The reduction in component 
inventory increases as aggregate service level or number of 
products increases (column 6 of Tables 1-3). These two 
effects are counteracting. 

The above observations help  explain two anomalies. In 
the graph corresponding to N equal to 44 in Figure 4, the 
percentage reduction in total inventory decreases for 
aggregate service levels up through 0.8 and then increases 
at a service level of 0.9. The reduction in total inventory 
increases as N increases to 20 and then decreases when N 
is increased to 44 for some service levels (column 1 of 
Tables 1-3). 

For the case of uniform distributions for product 
demands, the reduction in total inventory as a function 
of aggregate service level  is  graphed in Figure 5. The 
reduction in total inventory decreases as a function of 
aggregate service level in this case also. However, the 
reduction in total inventory goes up as N increases from 
2 to 20 and also to 44, unlike the case of triangular 
distributions. 

To summarize, the following observations were made. 

Conclusions 
The risk-pooling and allocation policy  effects in the context 
of procuring and assembling to forecast were investigated 
in the special case where one component is used  in N 
different products under the requirement of  an aggregate 

S. J. GROTZINGER ET AL IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993 



service level. The empirical results obtained in this study 
indicate significant potential for savings in total inventory 
levels. Contributions to the savings by finished-goods 
inventory and component inventory were analyzed. While 
the individual contributions of these two quantities seem to 
vary in opposite directions as a function of aggregate 
service, the total savings are still significant at high levels 
of aggregate service. The actual problem to be solved in 
the industry would  typically  involve hundreds of 
components being used in tens of products. The savings in 
procurement in such cases may  not be directly estimated 
from the results obtained here. However, the significant 
savings reported here strongly suggest that component 
commonality should be explicitly incorporated in the 
formulation of the procurement planning  problem. Also, 
the results reported here may be  applicable to products 
that share a single expensive component. This  would  be 
the case, for instance, in a personal computer where the 
microprocessor is very expensive compared to the rest of 
the components. Careful  planning for the procurement of 
the microprocessor alone may achieve significant  benefits. 

Appendix 
An explanation is provided here to support the assertion 
made in arriving at the objective function (8). The 
expression 

N 

hj [q, + 4, - dj]' 

can  be rewritten as 

N 

j = l  

since in general the expectation of the sum  of a set of 
random variables is equal to the sum of expectations of 
each of the random variables. This can be expanded as 

c h, 

N 

j=1 

- . . . [Gj + q, - d,] * f ( d l ,  - , dN)d dl * * * d d N ,  

which can also be rewritten using Bayes' theorem as 

N 

2 hj * 1"' - J"" [Gj + q, - 4.1 
i= l  0 0 

where uj = ijl + ql. This is  equal to 

35 

h 

4.2: .... ""."O. .... . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
""h """_ -*""-""A 

H 15 

10 I I I I I I I 
0.4 0.5 0.6 0.7  0.8 0.9 1 

Aggregate  service  level 
N = 2   N = 2 0  N = 4 4  
--" "4"- ...e. .. 

Service vs. inventory  reduction for uniform  distribution. 

N 

The conditional probability term has the value one; 
therefore, the above expression is  equal to 

hi 

The fact that the Hessian of the objective function (8) is 
a positive semidefinite matrix is  now established. In this 
regard, recall the formula  for  differentiating an integral of 
the following  form: 

then 
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For the objective function, 

N 

I(*) hj * E([QJ + qj - dj]') 
j=l 

N 

= hi - 1(" (4;. + qj - di,$(dJd dj . 
j=1 0 

This  implies 

az *+e 
- = hj lo $(d)d dj = hj F,(Qj + qi,, 
aqj 

a 'I a 'r 
" - o = -  
aqiaqj aqjaqi ' 

- (q,.) = hj $(Qj + qi) L 0. 
a '4j 

a 'I 

This concludes the verification. 
The proof that the procedure presented in the section on 

the allocation problem terminates and then generates the 
global  optimum solution to problem (8)-(10) after at most 
N - 17 + 1 iterations is now pursued. First recall that if 
the optimality procedure is required, the current state of 
the system has failed to satisfy the conditional (12) and 
thus is initialized  with the assurance that 

7) '1 N 

Zq(0)  E 2 [Ff:'(0) - QjJ = (-Qj) 2 [-Qj]' < 0. 
j = 1  j=l j=l 

Thus, if 

Z,(-Yqtl) 2 0, 

il A *  E r-Y'l+l, -7J 3 ZT(A*) = a, 

then, by the continuity of Zq(-), 

which may  be obtained via binary search restricted to this 
interval. Otherwise, we continue with the knowledge that 

zqtl(-Y'l+l) = Zg(-Y7)+J < n7 

Z7)tl("Yq+1) 

since 

= zq(-Y'ltl) + 0, 

since 

- = F (Qqtl) implies Fi:l 
Y,+1 

534 hq+l 
?+I  

Proceeding in this manner, either one obtains 

Zc(-Yc,J 2 (A3) 
for some c < N ,  or after at most N - 7 + 1 iterations 
arrives at the valid conditional 

N N 

= [FJJ1) - Qj] = (4 - Qj) L n, 
J=1 j=l 

since the conditional (13) failed to be  satisfied prior to 
initiating the optimization process. 

Assuming that the conditional (34) is satisfied at the 
i = cfh iteration, then again by the continuity of Zc(.) 

which  may be obtained by numerical inversion. Let us first 
consider the capacity constraint (20) required by the 
Karush-Kuhn-Tucker conditions, 

N C 

j=l  j=l 

by construction. 

considering the indices 

1 1 j 1 c 3 A * > - h ~ .  

We proceed to verify the additional conditions by 

The gradient relationships (19)  of the Karush- 
Kuhn-Tucker conditions become 

h. J I  * F.(FLl( - ;) - Qj + Q j )  + A* - 0 + 0 = 0. 

For the lower bound constraint (21),  we need to consider 
the two cases. First, for j E r -  we have 

q * ~  , F-' , ( -- ;;) - Qj L 0 - Qj 1 [ -Qj] ' ,  

and for j E r + we have 

since 

A* < -y ,  5 - y j  = -hi - F.(Q.) V j I c and j E r+. 
J f  

The upper bound constraints (22) are easily seen to be 
satisfied, since 
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The  complementarity  conditions (23) and (24), along 
with  the nonnegativity requirements (26), are  obviously 
satisfied, since AI* E 0 P*. 

The gradient relationships (19) are  now 
We  now  consider  the indices 1 I j 5 c 3 A *  I -h.. I 

h, * F,(<) + A *  - 0 + ( -A* - h,) 

= h, * 1 + A *  - 0 + ( -A*  - h,) = 0. 

For the lower bound  constraint (21), we need to  consider 
the two cases.  First,  for j E r- we  have 

4. = d.  - $ 2 0 - $. [-4.]’, 
I I 1  
* - -  

and  for j E r + we  have 

q* E z, - $. 2 0 E [-4.]’, 
I I J  

since  by reformulation, if necessary,  we  were  assured  that 
the inequality (11) was not  satisfied for  any j .  The  upper 
bound  constraints (22) are  now satisfied with  equality 
4 - (ql* + 4,) = 0. This  equality immediately  implies 
that  the  complementarity  conditions (24) are satisfied, and 
AI* = 0 validates  the  complementarity  equations (23) along 
with  the nonnegativity requirements (26) for  the A, 
multipliers,  while A* I -hi immediately  implies 
nonnegativity for  the 6. multipliers PI* t -A* - h,, which 
completes  the verification for  this  set of indices. 

It  remains  to  validate  the Karush-Kuhn-Tucker 
conditions  for  the  indices j = c + 1, * , N .  First 
observe  that  for  this  set of indices, we have that j > 77, 
implying that j E T c  and  that 4, > 0. Also observe  that if 
c = N ,  this FOR loop would  never  have  been initiated  and 
the  procedure would have  terminated.  The gradient 
relationships (19) now  become 

hj F , ( O  + 4,) + A *  - [ A *  + hj * ?($,)I + 0 = 0. 

The  lower  bound  constraint (21) is  now satisfied with 
equal i ty ,s incefor jEr+wehaveq*=O=[-cj]’ ,  
and  thus  the  complementarity  conditions (23) for  the A, 
multipliers are  also satisfied. Again, by reformulation if 
necessary,  we  were  assured  that  the inequality (11) was 
not satisfied for  any j .  Therefore,  the upper bound 
constraints (22) 4 - (0 + Q1) 2 0 are satisfied. Since 
PI* = 0, the  complementarity  equations (23), along with  the 
nonnegativity requirements (26) for  the Pj multipliers, are 
apparent.  The  expressions 

-7, I -7N-1 ‘ ’ ‘  * -7,+1 and A *  E [-Y,+l, -7,) 

immediately  imply  nonnegativity for  the A, multipliers 

which  completes  the verification for  this  set of indices  and 
consequently  for  the  procedure  as a  whole. Thus,  these 
values of q,, A, A,, and P, are optimal for  the  convex 
programming  problem. 
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