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Rule-based  systems  have  been  used to 
produce  fast,  flexible  simulation  models  for 
semiconductor  manufacturing  lines.  This  paper 
describes  such  a  rule-based  simulator  for  a 
semiconductor  manufacturing  line,  and  the 
language in which it is written.  The  simulator is 
written in a  rule-based  declarative  style  that 
uses  a  single-rule  “template” to move 
thousands  of  product lots through  various 
process  steps;  the  rule is customized  as 
needed with data for each  step,  route,  lot,  tool, 
manpower  skill,  etc.  Since line or  product 
changes  require  only  reading  new  data  from  a 
database, without  reprogramming, this provides 
a  modeling  environment  that is simple,  flexible, 
and  maintainable.  The  model is implemented in 
ECLPS  (Enhanced  Common Lisp  Production 
System), also  known  as  a  knowledge-based  or 

expert  systems  language. It handles  very  large 
models  (thousands  of  data  elements,  or  more) 
well  and is very  fast.  Subsequent  changes 
improved  the  speed  several  orders  of  magnitude 
over  that  of  an  older  version  of  the  model, 
primarily  through  use  of  a  preprocessor to 
eliminate  duplicate  and  redundant  data,  and by 
enforcing  data  typing to take  advantage  of 
special  techniques  for  very  fast  processing  of 
extremely  large  matches  (hashed  indices). 
ECLPS  also  provides  a built-in  simulated  time 
clock  and  other  constructs to simplify  simulation 
applications.  The  model runs  daily  at  the IBM 
semiconductor  manufacturing  plant in Yasu, 
Japan,  where it has  been in use for many  years, 
currently on three  different  semiconductor 
manufacturing  lines. 
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Introduction 
While computer simulation of manufacturing lines is  not a 
recent development, the past few years have witnessed 
renewed interest in simulations of semiconductor 
manufacturing lines. Semiconductor manufacturing systems 
typically include machine tools that are expensive, may be 
used  for a wide variety of operation steps, and  must be 
reconfigured between different uses. This highly reentrant 
flow  of the routing means that a wafer lot  may be 
processed many times on a single machine, with  many 
setup changes on the equipment, such as changes in the 
recipe, temperature, and process time of a wafer batch. 
The complexity and cost of semiconductor manufacturing 
lines are also due to their sheer size, such as the number 
of steps necessary to produce a wafer (hundreds), length of 
production turnaround time (months), cost of work in 
progress (millions of dollars), value of manufacturing tools 
(millions of dollars), and the variety of employee skill 
levels required to operate the machine tools. Thus, it is 
difficult to assess the effect of different manufacturing 
techniques and  managerial strategies on the manufacturing 
line. A very small change in productivity can  mean a big 
difference  in the total value of the output. Product 
contamination is  more apt to occur during production line 
delays, reducing yields and thus increasing costs. 

Because of the large size of semiconductor computer 
models, their complexity has led to difficulties in 
accurately describing the complex processes that occur at 
each step of the manufacturing process and  how they are 
handled, difficulties in generating accurate input and 
keeping it up-to-date, and  difficulties in analyzing the large 
amount of output and  finding  meaning  in its results. For 
example, the body of input data can be extremely large 
and complex, such as the WIP (work in progress) data. 
Since the turnaround time for a single  lot of wafers (total 
time to manufacture a lot, start to finish, in real time) can 
be months, there is obviously a large amount of WIP  in the 
line at any point in time. Any model used for accurate 
predictions must be able to accurately input the actual 
WIP at any point in time  in order for the model to be used 
on  real manufacturing line data. 

Traditional simulation languages, such as GPSS (General 
Purpose Simulation System [l]), construct a detailed 
model, require a detailed description of each step, in a 
sequential manner, and thus are difficult to construct 
accurately, and especially difficult to maintain as 
operations change. Each step in the manufacturing line  is 
several “lines of code,” and there are many blocks of 
similar procedural descriptions making up the entire 
manufacturing line. Understanding this, at a high level, or 
even making changes to small parts, is  more  difficult as the 
size and complexity of the manufacturing line increase. 
Even if the process can be documented in a model, the 
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reasonable amount of time (say, a few minutes or e 
hours). In addition, the original authors of the mod 
traditional simulation  languages (such as GPSS) difl 
use where the initial state of the model  included ac 
WIP data. The  simulation  could not start with  emp 
queues. 

Newer computers and  simulation tools offer  incrc 
capacity of models,  but the real problem is being a1 
accurately describe how the manufacturing line ope 
in the language of the model. A secondary problem 
being able to make a simulation run in a short time 
Ideally, a run should take a few minutes or less, so 
“what if” scenarios can be  played out in order to 
determine the effect of different manufacturing stra 
However, it is  not unusual for even hours of CPU 
be considered acceptable in most simulation tools. 
tools use graphics and animation to show the opera 
a simulation model  and its results, but still fail to a1 
the issues of size and complexity. 

Other tools also utilize a separation of data and I 

assist in changes, as in another IBM semiconducto~ 
manufacturing model [2], but still require the consic 
expertise of a programmer to make any changes otl 
to the data. Another IBM model [3] uses a modulal 
structure that consists of a number of precompiled 
FORTRAN subroutines describing different specific 
operating strategies. This increases efficiency  and a 
algebraic computation, which is  not available in  the 
modeling  language.  The user picks from  among the 
modules to construct a larger model.  This can requ 
reprogramming if operating strategies other than thl 
foreseen by the original authors are encountered, b 
restricts the reprogramming to those areas needing 

This paper describes a simple, easy-to-understan 
technique for  modeling a semiconductor manufactu 
line. A single-rule “template” is  used to move tho1 
of product lots through various process steps; the r 
customized by the different  input data needed  for e 
step. Because the actual details of the line are read 
input  from a database, the number of machines, m: 
skills and their availability, work in progress, wafel 
etc. are dynamic input to the model  and do not  req 
reprogramming. A declarative style of programminl 
known as rule-based programming,  is used rather tl 
more traditional procedural style. A skeleton “mod 
consisting of input, process, and output, is  simply 
described in a rule, and the input  is varied to simul 
many  different processes with the same rule, or a r 
small  number of rules. The language used in this m 
ECLPS (Enhanced Common Lisp Production Syste 
It is a rule-based language  which was originally bas 
OPS5 [5], but offers  many improvements in  flexibili 
expressiveness, and performance. Very large  mode 
easily described in ECLPS (Figure l), and they are 
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efficiently executable because of the performance strengths 
of ECLPS, which are described in this paper. The 
simulation model  is currently in use for three different 
semiconductor manufacturing lines at the IBM plant in 
Yasu, Japan. It is used daily for a variety of planning 
purposes. Because of its success, it  is currently being 
adapted for use by a customer’s semiconductor 
manufacturing lines as well. The current model is based on 
one originally developed by Keiji  Ohmori [6] and written 
in YES/OPS [7], an  OPSS-like  language  with specific 
extensions for a built-in simulated clock and  timed events 
for simulation models,  and a predecessor of ECLPS. 
Subsequent modifications in ECLPS have simplified  and 
improved the performance over that of the original 
simulation model. 

Why the ECLPS rule-based  language? 
When the original  model [6] was constructed, three criteria 
were used for tool selection: 

Ability to provide detailed description of the 
semiconductor log. 
Flexibility for making changes to routes, products, 
tools, etc. 
Connectivity to the data collection system and basic 
database tools. 

Some conventional simulation tools were tried, but none 
met the above requirements [8] for the anticipated 
production volume increases of the Yasu semiconductor 
manufacturing line. 

ECLPS offers many features to make it a good choice 
for the simulation as a modeling technique in general, and 
for large  models in particular. Based on  compiled  Common 
Lisp, it is  an  efficient  language in terms of execution time. 
The rules allow for a declarative style of programming, and 
the built-in simulated (or real) time clock makes simulation 
straightforward. ECLPS can be used to model events that 
are scheduled to execute at a specific time in the future 
(either real or simulated time), via the timer queue, or 
trigger on specific events (e.g.,  machine  and manpower 
availability) via rule  matching. Unlike many other rule- 
based languages, however, ECLPS is completely 
integrated with its underlying procedural language  (in 
this case, Lisp). Because of this, it can easily be used to 
code procedural constructs, such as dynamic algebraic 
calculation of time required on a particular machine, as 
well as the rule-based declarative constructs, such as the 
description of  how lots move  from one step to the next. 
Another feature of the improved version of the model (see 
the section on simulator performance improvements) is the 

because they were interpreted instead of compiled. Today’s Lisp compilers rival 
1 Older versions of Lisp have a  bad reputation for being slow in execution time, 

other modem programming languages in  their efficiency. 509 
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1 A simple step:  input, process, and  output via buffer. Process P 
takes  input, processes it using tool T, then  puts  the  output  into 

. , . . . . . . -. .. , . . _””.. 

Pa P4 T 

How rules  model  production  line  steps 
Each step in the semiconductor manufacturing line (or 
other assembly or production line) can be modeled by a 
single  rule.  (In very complex cases, more than one rule 
may be used.) All steps of the same basic type can be 
modeled by one rule. The data about each step are fed into 
the rule, causing it to act differently for each particular 
step, and customizing the parameters for that specific step, 
route, machine, operator skill, etc. 

There are several types of production steps, of which 
a few  simple ones  are described here. Because of the 
flexibility  of ECLPS, even very complex steps can be 
described by matching routelstep and product lot data with 
a different type of rule(s). 

Basic  rule types 
A simple production step takes input, say a wafer’ lot, 
from a buffer (a holding place for lots awaiting processing), 
waits for machine and manpower resources to become 
available, matches those items together in a rule,  and then 
fires (executes) that rule by utilizing the resources for the 
appropriate amount of time, then putting the product lot in 
the buffer for the next process and freeing the resources 
for other operations. Figure 2 shows a diagram of a simple 

51 0 2 A wafer is a unit of semiconductor manufacturing. 
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step: A lot comes in, it is processed using  tool T (and also 
other resources such as manpower, not shown), and then 
goes into the output buffer B to wait for the next step. 

While  most of the semiconductor manufacturing rules 
are processes that are applied to lots, as opposed to 
assembly of multiple parts into a larger unit, assembly and 
disassembly are also easily expressible. Figure 3 shows 
such a step. Input could come from, say, two sources and 
be combined into a single output, or vice versa. 

Several simple process steps can be chained together to 
form a small  line, as shown in  Figure 4. By limiting the 
buffer sizes between the steps, this manages the amount 
of work in process (WIP)  and thus is a simple  form of 
kanban, or control of in-process inventory. The product 
lot  leaving the buffers is used as the “pull” signal to the 
previous step, telling  it to-~ontinue.~ Manpower resource 
(not shown) is also required, and may vary at each step 
with respect to both amount of time needed and operator 
skill. 

Many production steps need not wait for a particular 
tool, but can be served by one of many. This is modeled 
by allowing the production step to use one of any number 
of tools in a tool group. Since tools are flexible, some tools 
can be a member of more than one tool group. Figure 5 
diagrams this situation. 

model these situations. 
We next demonstrate how ECLPS rules can be used to 

ECLPS basics 
The ECLPS language,  in  which the simulator is written, 
consists of three parts: 

Data (known as working  memory elements, or WMEs). 
WMEs each have a class and any number of attributes 
(like a record with any number of fields  within the 
record). Attribute names  begin  with  an asterisk (*). For 
example, class product may  have attributes *lot-num and 
*route. 

actions to perform (right-hand sides). 

data (WMEs)  with rule patterns (left-hand sides), 
determines the order in  which rules are fired, and 
executes the rules’ actions. 

Rules,  with patterns to match (left-hand sides) and 

The inference engine, the part of ECLPS that matches 

In the factory simulator, WME data are entered for 

Product lots (both for start-to-build and work-in- 

Tools. 
progress). 

3 In  pure kanban, by some descriptions, the step must also wait for a separate pull 
signal from the step ahead in order to go ahead and process a lot at the current 
step. In the case of this simple model, a buffer with available capacity is considered 

has pulled lots out of a buffer is a signal to put more lots into the buffer. 
to be the “signal” to initiate a process step. That is, the fact that a succeeding step 
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Three processes, each using a single tool and buffer. Limiting buffer sizes manages the WIP and thus is a simple form of kanban. 

1 buffers are maintained both by tool (Bt) and by process step (Bp), so a lot will sit in both Bp  and  the appropriate Bt after being processed in 
$ step P2. Neither buffer may accept a lot if its maximum capacity is filled. This manages the WIP as in Figure 4 but for multiple equivalent 

Tool groups of functionally equivalent tools. 
Manpower quantities available by hour, by skill level. 

(Buffers  and lists of the route steps are described later.) 

ECLPS rules 
ECLPS rules can use these data structures to model the 
simple processes described earlier. Figure 6 shows a very 
simple ECLPS rule that would handle the steps for simple 
single-tool processes, such as those in Figure 4. 

The basic steps (buffers are added later) are as follows. 
The parentheses indicate what the ECLPS inference engine 
does at each step. 

1. Wait for lot, machine tool, and manpower resources (match). 
2. Utilize the machine  and manpower resources to process 

3. Free the machine and manpower resources after the 
the lot  (fire). 

appropriate amount of time  (timed events scheduled for 
a later time). 
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4 group  required  by  a lot to one instance of a tool group, that of a 3 specific tool whose id is saved  in  variable <t>. Then  variable <t> 
4 matches the tool  with  that id, as in  a  database join operation. 

Steps 2 and 3, rule firing and timed-events scheduling, are 
discussed later. Here we concentrate on describing how 
patterns are written, and the match process. 

a product lot of some lot number <L> which requires a 
certain tool (matched by variable <t>) and  an operator 
skill of type csk>, and a tool of that type and the 
appropriate manpower are available, the rule  “fires.” The 
<x> designates an ECLPS variable. The first  time it is 
encountered, it binds to any value, but for subsequent 
uses, it must match data with the same value, effecting a 
join across data elements with the matching attribute 
values. Variables can also be used to do comparison tests 
between attributes in the same data W E ,  or across 
different  WMEs (the join operation), as in the third  line 

Read the rule  in Figure 6 as follows:  When there exists 

51 2 below: 
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(product-lot  *lot-num <L> *tool c t>  *skill <sk>) 
(tool  *id <t> *status ready) 
(manpower *skill csk> * m a  cmp> *in-use < cmp>) 

In this case, the manpower value <mp> is bound to the 
maximum available manpower of a certain skill, and a test 
is performed to ensure that the amount of manpower of 
that skill currently in use is less than that amount. 

from a group of tools. 

When there exists 

a product-lot of some lot-number <L> which requires a 
tool of some tool group ctg> and  an operator skill of 
type <sk>, 
and there exists a tool in tool group <tg> named <t>, 
and  tool <t> is available and ready for use, 
and there is at least one of the appropriate manpower 

Now let us add the ability to choose any available tool 

Read the rule shown in Figure 7 as follows: 

available ( * m a  is the number currently staffed; *in-use is 
the number currently being utilized, and thus not 
available for other work), 

then the rule can fire. 
When a rule fires,  it marks the tool as busy, marks the 

manpower in use (increments the number  in use), waits an 
appropriate amount of time (explained in more detail later), 
then releases the tool and manpower. (This part is coded 
after the then symbol  in the rule and is described fully 
later.) 

Each product lot utilizes this rule4 at each step. Notice 
how the values that are matched by the variables state the 
particulars of the step to be processed. These values are 
contained in the input data. Some samples are shown, 
beginning  with Figure 8. 

Adding buffers 
Actually, the kanban implementation limits WIP data by 
restricting the sizes of the buffers between the steps. When 
the buffer testing is added, the basic steps become the 
following: 

1. Wait for lot, machine, and manpower resources. The 
machine’s output buffer  must have available capacity 
left. 

2. Take the lot out of the previous machine’s  buffer and 
use the machine  and manpower resources to process 
the lot. 

3. Free the machine and manpower resources after the 
appropriate amount of time.  Put the lot into the output 
buffer of the machine just used. 

4 In this  simple case where  the same basic algorithm is used to move lots from one 
step to the next, a  single rule handles most steps. In more  complicated cases, many 
rules could compete for handling each process step, dynamically  computing  the 
“hest-fit” of each potential way to handle  the step, by each different rule. 
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ROUTE:  Route1 
OPER(step)  TOOL  NUCT-OPER(step)  SKILL-REQUIRED 

Q (start) - 1 
1 t l  2  skilla 
2 tg1 3 skillb 
3 SHIP - skilla 

STEP-BUFFERS: 
FOR(route)  STEP  SKILLID  QUANTITY 
routel Q (start) Q 
routel 1  skilla Q 
routel 2 skillb 0 
routel 3 skilla Q 

TOOLGROUP: tgl (contains 3 tools) 
TOOLID 

t2 
t3 
t4 

TOOLS: 
RESOURCE NUMBER OCCUPIED? STATUS 
t l  1 no ready 
t2 1 no ready 
t3 1 no ready 
t4 1 no ready 

TOOL-BUFFERS: 
RESOURCE  BUF-SIZE  TOT-BUF-SIZE  QUANTITY 
t l  6 6 0 
t2 3 9 Q 
t3 3 9 Q 
t4 3 9 Q 

PRODUCT: 

1234  buffer routel Q 1 
5678  buffer routel Q 1 

Manpower  (at  model  startup. Will hold  skills/quuntities  available, 

LOT-NUM  PLACE  ROUTE  OPER  NEXT-OPER 

and  number in use,  at  any  time) 
SKILLID  MAX-MP  IN-USE 
skilla Q Q 
skillb Q Q 

MANPOWER-SCHEDULE  (indicates  CHANGES  to  skill  levels,  and  times) 
Utiliies timer-queue to modify  MANPOWER  wme to show  current  staffing  level  at  any  time 

SKILLID  DATE  TIME(H0UR)  NUMBER-AVAILABLE 
skilla 7/1/92 8:W  6 
skilla 7/1/92 9:QQ 8 
skilla 7/1/92 12:QQ 18 

skillb 7/1/92 8:QQ 4 
skillb 7/1/92 1Q:QQ 4 
skillb 7/1/92 1l:W 6 

Sample  data  for  a  four-step  route.  Data  are  matched  with rules to  simulate  the  actions  that  occur  at each process step. 

..  .. .. 51 3 
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The production line is modeled by combining  and  building 
upon these simple building blocks. 

The next section describes more fully  how the actual 
rules work, including  how the route/step information is 
added. Some sample data that fit the problem are also 
shown. 

How  the ECLPS rule-based  factory  floor 
simulator  works 
We  now describe in more detail how the actual model 
works. As discussed earlier, the factory simulator includes 
WME data entered for 

Product lots (both for start-to-build and work-in- 

Tools. 
Tool groups of functionally equivalent tools. 
Manpower quantities available by hour, by skill  level. 
Routes (lists of operations through which a type of 

Buffers (both by route/operation step and by tool). 

progress). 

product lot progresses). 

(The latter two were not described previously.) 
A few start-up rules take the initial data (product lots 

and manpower quantities) and utilize the ECLPS timed- 
event feature to put events on the timer queue that will 
execute when an event must be processed. For example, 
at a certain time, a manpower quantity for a certain skill 
may have to be changed. At another time, a new product 
lot  may have to be available for start-to-build. A simulated 
clock within ECLPS keeps track of the time  within the 
model. 

Once these events are on the timer queue, six rules 
handle the basic running of the model, for a line with 
simple input-process-output types of operations. There are 
three types of rules: 

1. Rules that take a start-to-build product lot and  wait for 
the resources required for the first operation to be 
available (not shown; fires once per lot). 

2. Rules that move a product lot from one step to the 
next, using kanban techniques. The majority of the 
product lot movement is the result of this and similar 
rules. 

3. Rules that move a product lot from the last step and 
remove it  from the model (completion, or shipping). 

For each of these three rule types, there are two versions 
of the rule: one for unique tools, and one for tool groups. 
Tool groups are sets of functionally equivalent tools. Thus, 
a lot may be waiting in a buffer for a specific tool, or it 
may be waiting for any one tool that is a member of a 
specific tool group. The conflict resolution of ECLPS (the 

51 4 ordering of which rules, with which matching data, fire  in 
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what order) determines the order in which the rules fire, 
which is the order in which the lots are processed from 
one tool to the next. If several lots are ready and have all 
resources available, which one receives the (limited) 
resources first? (In this model, such events are controlled 
in detail by dynamic rule priorities based on the product 
lot  and other data.) When the rule  fires, the initial work on 
the RHS (right-hand side, or action part of the rule) marks 
the tools and manpower as “in use,” then adds events to 
the timer queue to remove the lot when the process is 
complete, mark the tool and manpower free to be utilized 
by other lots, and  put the lot into buffers for the next tool 
and operation step. 

Route/step sequencing 
The actual steps that each lot type goes through are 
described via a set of route WMEs.  One  WME 
corresponds to each step, and each WME contains a 
pointer to the next step. Each of these contains 
information about the tool (or tool group) required by the 
lot at this step. Some examples are shown in Figure 8 and 
Figure 9. 

How the timer queue schedules events 
The ECLPS timer queue is  used to schedule events to take 
place at some predetermined time in the future, which  is 
independent of the rules firing. For example, the 
manpower WMEs  hold, at any point  in  time, information 
on the manpower available, by skill, at that time. In order 
to accomplish  this, the manpower schedule, hour by hour, 
is input at the start of the model, and an event is 
scheduled for each change  of manpower available, by 
skill. At each rule  firing cycle, the timer queue is checked 
to see whether any events are ready to execute; if so, they 
are executed before the next rule  fires. Thus, there could 
be hundreds (or more) of elements of manpower schedule 
changes, each eventually represented by a single  WME 
that automatically reflects the right manpower available at 
the right  time.  The manpower changes are scheduled on 
the timer queue to ensure that they are processed at the 
right  time. 

Putting items on the ECLPS timer queue consists of 
specifylng the time (relative or absolute) and the action to 
take place. Some examples are shown in Figure 10. 

Detailed rule, with actions 
A typical rule for moving lots between process steps is 
now described in more detail. The basic type of rule in the 
factory simulator is one whose patterns (left-hand side) 
match a product lot waiting  in a buffer,  along  with the tool 
and manpower needed to perform the next production 
step. The patterns also wait for the availability of buffers 
that have available capacity. There are actually two logical 
buffers in which the product lots sit after each step: buffers 
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; Routes: 3 steps,  start,  1,  2(toolgroup),  end 
: (Note:  skill-id  required  for  the  step is stored in the  corresponding  step-buffer) 
(MAKE route  *r-name routel *oper Q *next-oper  1) 
(MAKE route  *r-name routel *oper 1  *tool t l  *next-oper  2) 
(MAKE route  *r-name routel *oper 2  *tool tgl *next-oper  3) 
(MAKE route  *r-name routel *oper 3  *tool  ship 1 

(MAKE step-buffer  *for routel *step 0 *quantity Q) 
(MAKE step-buffer  *for routel *step  1  *skillid  skilla  *quantity (3) 
(MAKE step-buffer  *for routel *step  2  *skillid  skillb  *quantity Q) 
(MAKE step-buffer  *for routel *step  3  *skillid  skilla  *quantity Q) 

; Step-buffers: 

; Toolgroup:  tools  t2,t3,t4  are  equivalent  tools in toolgroup tgl 
(MAKE toolgroup  *tool-group-id tgl *tool-id t2 ) 
(MAKE toolgroup  Yool-group-id tgl *tool-id  t3 ) 
(MAKE toolgroup  Yool-group-id  $1  Yool-id t4 ) 

(MAKE tool  *id t l  *num 1 *occupied  no  *status  ready) 
(MAKE tool  *id t2 *num 1 *occupied  no  *status  ready) 
(MAKE tool  *id  t3  *num  1  *occupied  no  *status  ready) 
(MAKE tool *id t4 *num 1 *occupied  no  *status  ready) 

(MAKE tool-buffer *id t l  *buf-size  6  *tot-buf-size 6 *quantity 0 ) 
(MAKE tool-buffer *id t2 *buf-size  3  *tot-buf-size  9  *quantity 8 ) 
(MAKE tool-buffer *id t3 *buf-size  3  *tot-buf-size  9  *quantity 8 ) 
(MAKE tool-buffer  *id  t4  *buf-size  3  *tot-buf-size  9  *quantity 8 ) 

; Tools: 

; Tool-buffers: 

: Product  lots: 
(MAKE product  *tot-num  1234  *place  buffer  *route routel *oper 8 *next-oper 1 ) 
(MAKE product  *lot-num  5678  *place  buffer  *route routel *OpW (3 *next-Oper 1 ) 

; Manpower  at  startup - will  contain  info  for  current  time,  by  skill 
(MAKE manpower  *skillid  skilla  *max-mp Q *in-use 0) 
(MAKE manpower  *skillid  skillb  *max-mp 8 *in-use 0) 

; Manpower  schedule  for  three  hours,  beginning 8:QQAM on  7lQ1192 
(MAKE manpower-schedule  *skillid  skilla  date  19928701  Yime 8 *number-available  6) 
(MAKE manpower-schedule  *skillid  skilla  date  1992Q701  Yime 9 *number-available  8) 
(MAKE manpower-schedule  *skillid  skilla  date  1992Q7Q1  *time  12  *number-available 1Q) 

(MAKE manpower-schedule  *skillid  skillb  date  19928781  *time 8 *number-available  4) 
(MAKE manpower-schedule  *skillid  skillb  date  19920781  *time  18  *number-available 5) 
(MAKE manpower-schedule  *skillid  skillb  date  1992Q781  Yime  11  *number-available  2) 
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4 English version of a rule. 

by tool, and buffers by process step. These are output along to the next step. The rule fires, causing the right- 
buffers, which hold lots that have completed the associated hund-side actions to be performed: decrementing the buffer 
tool and step. Only  when both buffers are not too full can quantities, marking the lot, tool, and manpower as in- 
the product lot move through the next step (a form  of process (in use), and scheduling the release of these 
kanbun control policy). When these rule patterns find a resources and then the incrementing of the subsequent 
complete set of data to match (product, tool, not-too-full buffers, in which the lot waits for the next step. Figure 11 

51 6 buffers, manpower, etc.), the product lot  is ready to move shows an  English rendition of a sample rule,  and Figure 12 
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; Sample ECLPS rule  to  move  product lot through  one  step:  from  buffer  to  process  and  back 
; <x> indicates  an ECLPS variable 

(DEFRULE transdB2 WHEN 
<prod> (product  *lot-num clot> *place  buffer  *route <r> *next-oper cop> *c-priority ccp> 

*tool-buffer-wme cprev-tb> *step-buffer-wme  <prev-sb>) 

<route> (route  *r-name c r >  *oper cop> *tool  <cur-tool-grp>  *next-oper  <next-op>) 

<tg> (toolgroup  Yool-group-id  <cur-tool-grp>  Yool-id  <cur-tool>) 

<tool>  (tool  *id ccur-tool> *num <toohum> *occupied  no  *status  ready) 

<tb> (tool-buffer  *resource  <cur-tool>  *buf-size  <step-max>  Yot-buf-size ctool-max> 
*quantity  <tb-quan> & <tool-max>) 

csb> (step-buffer  *for cr> *step cop> *skillid <sk> *quantity  <sb-quan> & c <step-max>) 

cmp> (manpower *skillid csk> *max-mp <mm>  *in-use cac> & c <mm>  *status  current ) 

(task  *task-id  usual  *priority cpr>) 

(run  *go  on  *from <tm> *start-shop csts>) 

THEN  PRIORITY (Q - (cpr> + <cp>)) ;Rule  priority  based  on  values  matched  above  (task & lot) 

(MODIFY <prod>  *place  process  *oper cop> *next-oper cnext-op> 
*tool-buffer-wme <tb> *step-buffer-wme  <sb>) 

(decrement-tool-buffer-quantity cprev-tb>) 
(decrement-step-buffer-quantity  <prev-sb>) 

(MODIFY <tool>  *occupied  yes  *status  busy) 

(MODIFY cmp> *in-use ( c a w  + 1) ) ;increment  manpower  counter 

; Set  temporary  variables  for  manpower  time  and tool  time  required 
(LET ((emtime> (calculation-of-manpower-time  <prod>  <route>)) 

(<Rime>  (calculation-of-tool-time  <prod>  <route>))) 
; Release  manpower  after  attended  operation  time 
(IN “cmtime> minutes”  do  (decrement-manpower-counter <mp>)) 
; Release tool  and  put it into  appropriate  output  buffers 
(IN “cttime> minutes”  do 

(MODIFY <tool> *occupied  no  *status  ready) 

(MODIFY <prod>  *place  buffer ) 
(increment-step-buffer-quantity csb>) 
(increment-tool-buffer-quantity ctb>))) 

;; put  lot  back in buffer  (priority  computation  omitted) 

1 



(defrule  remove-dups  when 
<Cl  > (step-buffer  *for  <route>  *step <s> *skillid <k> *wme-time-tag <tt>) 
<c2> (step-buffer  *for <route>  *step <s> *skillid <k> *wme-time-tag > ea>) 

then  priority 99999 
(remove-wme <c2>)) 

An ECLPS rule used to detect and remove duplicate buffers. This rule detects the existence of two step-buffers for the same  step,  same  oper 1 skill,  and different timetag (to assume uniqueness) and removes the second one. 

the actual ECLPS rule. Note that the entire simulation 
(moving lots from step to step) can be modeled by this one 
rule (or two rules if a special-case rule for tools not 
belonging to a tool group is used). In this case, the same 
basic algorithm is used to move each lot from step to step, 
using the data from the lot and the step to determine the 
details of each step. 

The RHS (right-hand side, or action part of the rule- 
after the THEN symbol-contains the actions that are to 
take place when the LHS patterns are all matched 
consistently and the rule is chosen to fire. Typical actions 
are make,  modify, or remove of working memory elements 
(data, often those matched by the LHS patterns). 
Scheduling events to occur in the future, via the timer 
queue, is also typical for an RHS action in a rule. Other 
actions can include calculations, such as  the algebraic 
calculation of time required for the attended and 
nonattended portion of the process step, or any arbitrary 
procedural statements. Since ECLPS is based on  Common 
Lisp, this means that any Lisp code may be included in 
the RHS actions and is executed when the rule  fires. This 
allows for extreme flexibility  in rule action expression. 
Additionally, external functions can be called, even those 
written in other programming  languages. Match 
statements, which allow on-demand pattern matching of 
ECLPS patterns with WME data, may be included. 

Simulator performance improvements 
The original translation of one of the versions of the model 
from the earlier YES/OPS language to ECLPS did  not 
meet the expectations for improvement in performance, 
primarily because of a combinatorial explosion in the 
match process. Thousands of data elements matched with 
a dozen or more rule patterns and created a huge 

51 8 combinatorial explosion of possible matches for each rule. 

The model’s performance was analyzed and some changc 
were made. The most  significant changes made were the 
following: 

1. Several short Lisp functions and ECLPS rules were 
written that acted as preprocessor programs, sorted 
through the data, and allowed  identification of duplica 
or otherwise redundant or unnecessary data. (The 
amount of data was so large that the model was diffia 
to analyze.) Elimination of these data greatly reduced 
the combinatorial complexity of the rule matching. 
Actually, ECLPS rules themselves are a natural way 1 

express data redundancy checks, and are quite useful 
for this task. Figure 13 is  an example of an ECLPS ru 
used to detect and remove duplicate buffers. It match1 
any two different step-buffers for the same route, step 
and skill id, and removes one of them. By testing 
the uniqueness of the timetag attribute (the built-in 
*wme-time-tag attribute is always unique), the rule 
ensures that the step-buffer is not matching  itself. 

2. Type information was added to the data, and the data 
types that could be used within the data attributes we 
only slightly restricted, thus enabling  hashing of indic 
for speeding up the veT large matches (as in this 
model). This EQ-hashing is a specific enhancement tl: 
ECLPS added to the original RETE algorithm [9]. Th 
RETE algorithm is the essential pattern-matching 
algorithm part of ECLPS [lo], making the matching 
(of many patterns with large amounts of data) efficien 
Figure 14 shows how this is made possible with the 
:type keyword of the data structure declaration, 
defwme. 

These two changes resulted in  large (but expected) 
performance improvements. Other, more subtle, change$ 

B. R. TIBBITTS IBM J. RES. DEVELOP.  VOL. 37 NO. 4 JULY 



(defwme  route  *r-name (:type symbol) ; name of  route 
*oper (: type fixnum) ; step  (operation)  number 
*next-oper (: type  fixnum) ; next  step  number 
*tool (: type  symbol) ; resource  (toolhoolgroup) 
) 

(defrule  detect-stuck-lots 
when 
<p> (product  *lot-num ern> *route cr> *place  buffer  *next-oper cop>) 

then  priority 99999 
- (step-buffer  *for cr>  *step <op>) 

(say  “Step-buffer  missing  for  route” <r> “step” cop>)) 

reduced the amount of matching done by moving some 
matches to the RHS of the rule, or eliminating the 
matching altogether by simply storing pointers to the 
values that must be tracked and  modified. This is a well- 
known  programming technique, but it  is  not available in 
many rule-based languages. A variety of measurement 
tools were used to find data redundancies, artificial 
bottlenecks in the model, and other criteria that were hard 
to see,  and measure otherwise. Figure 15 is an example of 
an  artificial bottleneck (missing buffers) that appeared as 
“stuck lots” in the model  and was detected with the 
ECLPS rule shown. 

original body of data was expanded to include more of 
the actual manufacturing line. Because of the original 

The model execution speed improved so much that the 
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slowness, only about half of the steps of each of the routes 
had been included in the old  model, which added to the 
estimates of the time required to account for the omitted 
steps. With the increased capacity, this was expanded to 
reflect the actual operations more accurately. 

Improvement, while impressive, is difficult to measure 
exactly. Because the original  model was so slow, 
significant detail had been removed in order to obtain even 
a rough estimate of the factory line’s function encoded into 
the model,  and run. Yasu has been very satisfied  with the 
results, but has not, to our knowledge,  run the exact same 
data on the old and new versions of the model in order to 
have a direct comparison. 

In summary, however, the new  model is approximately 
10 times faster, for 15 times as many product lots, three 51 9 
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A’ITEMPTED: 
Product  lots 42 641 
Route  operation  steps 554  1602 
Simulation days 3 15 

Summary: New problem  being run is  much larger 
(several orders of magnitude) than 
previously run. 

COMPUTING 
RESOURCES  USED: 

Type of CPU 3090 30s 3090 20E 
MIPS  (CPU  speed) 55.5 MIPS 31.3 MIPS 

CPU time 45:37  (2737 sec) 8:28 (508 sec) 

CPU MIPS information from Cornpurer Price Watch, Computer Information 
Resources, P.O. Box 13176, Arlington, TX 76094. 

times as many route operation steps, and  five times as 
many simulated days. The details are shown in Figure 16. 
The improved  model  is  now in daily operation in the 
Yasu  plant. Since the successful operation of this model, 
Yasu manufacturing support personnel have converted 
another line to the ECLPS model, for a total of three 
semiconductor manufacturing lines being  modeled  with 
the ECLPS simulator at the Yasu  plant. A version of 
the model  is currently being developed to model the 
semiconductor manufacturing line of a customer as well. 

The results of simulated lot completion, WIP,  and tool 
and manpower utilization data are used to optimize lot 
start allocations in each process, as well as the general 
management of WIP, tools, and manpower. Simulation 
results are stored in local databases and are available for 

520 analysis and report by a variety of other tools. 

Conclusion 
Large complex simulation models, such as those needed 
for semiconductor manufacturing lines, require a modeling 
environment that supports a large  number of elements 
(steps, lots, machine tools, etc.) and is easily maintainable. 
This  model, with its declarative rule-based style, encodes 
the part of the system that describes the daily changes 
(lot starts, WIP,  machine and manpower availability) in the 
datu read  from  existing manufacturing database files. It 
handles a very large amount of data efficiently,  and is easy 
to modify by reading in the appropriate data describing 
the appropriate line at any point.  While the Yasu  model 
consists mostly of simple input-process-output rules, much 
more complex rules5 could be modeled because of the 
flexibility of ECLPS and its underlying  language, Lisp. 
Procedural calculations can be done directly in Lisp from 
ECLPS, or external language subroutines can be called if 
necessary. The built-in simulated clock and timed events 
queue make  it a very powerful  and  flexible simulation 
language. 

Our experiences in  improving the performance of 
this particular ECLPS simulation model stressed the 
importance of being able to take advantage of even 
more pattern-matching efficiencies in large models by 
understanding how ECLPS pattern-matching works, and 
by using measurements to find sources of inefficiencies in 
rule-based (and other) systems. A variety of measurement 
tools were used, some for Lisp, others for ECLPS, still 
others for this specific application. All are useful  in 
targeting the source of performance problems. 

“Expert system” tools are traditionally suited for 
encoding of “human expertise” that is  not easily described 
in procedural languages. ECLPS is also good for 
describing procedural, but combinatorially complex, 
combinations of possibilities, such as that found  in the 
semiconductor manufacturing line  model. Its ability to 
describe and run very large models, with simplicity and 
maintainability, in a reasonable amount of time, makes it a 
powerful  tool for the simulation model. 
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