Flexible
simulation

of a complex
semiconductor
manufacturing
line using a
rule-based
system

by B. R. Tibbitts

Rule-based systems have been used to
produce fast, flexible simulation models for
semiconductor manufacturing lines. This paper
describes such a rule-based simulator for a
semiconductor manufacturing line, and the
language in which it is written. The simulator is
written in a rule-based declarative style that
uses a single-rule “template” to move
thousands of product lots through various
process steps; the rule is customized as
needed with data for each step, route, lot, tool,
manpower skill, etc. Since line or product
changes require only reading new data from a
database, without reprogramming, this provides
a modeling environment that is simple, flexible,
and maintainable. The model is implemented in
ECLPS (Enhanced Common Lisp Production
System), also known as a knowledge-based or

expert systems language. It handies very large
models (thousands of data elements, or more)
well and is very fast. Subsequent changes
improved the speed several orders of magnitude
over that of an older version of the model,
primarily through use of a preprocessor to
eliminate duplicate and redundant data, and by
enforcing data typing to take advantage of
special techniques for very fast processing of
extremely large matches (hashed indices).
ECLPS also provides a built-in simulated time
clock and other constructs to simplify simulation
applications. The model runs daily at the IBM
semiconductor manufacturing plant in Yasu,
Japan, where it has been in use for many years,
currently on three different semiconductor
manufacturing lines.

©Copyright 1993 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royaity provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royaity free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

B. R. TIBBITTS

507

508

Introduction

While computer simulation of manufacturing lines is not a
recent development, the past few years have witnessed
renewed interest in simulations of semiconductor
manufacturing lines. Semiconductor manufacturing systems
typically include machine tools that are expensive, may be
used for a wide variety of operation steps, and must be
reconfigured between different uses. This highly reentrant
flow of the routing means that a wafer lot may be
processed many times on a single machine, with many
setup changes on the equipment, such as changes in the
recipe, temperature, and process time of a wafer batch.
The complexity and cost of semiconductor manufacturing
lines are also due to their sheer size, such as the number
of steps necessary to produce a wafer (hundreds), length of
production turnaround time (months), cost of work in
progress (millions of dollars), value of manufacturing tools
(millions of dollars), and the variety of employee skill
levels required to operate the machine tools. Thus, it is
difficult to assess the effect of different manufacturing
techniques and managerial strategies on the manufacturing
line. A very small change in productivity can mean a big
difference in the total value of the output. Product
contamination is more apt to occur during production line
delays, reducing yields and thus increasing costs.

Because of the large size of semiconductor computer
models, their complexity has led to difficulties in
accurately describing the complex processes that occur at
each step of the manufacturing process and how they are
handled, difficulties in generating accurate input and
keeping it up-to-date, and difficulties in analyzing the large
amount of output and finding meaning in its results. For
example, the body of input data can be extremely large
and complex, such as the WIP (work in progress) data.
Since the turnaround time for a single lot of wafers (total
time to manufacture a lot, start to finish, in real time) can
be months, there is obviously a large amount of WIP in the
line at any point in time. Any model used for accurate
predictions must be able to accurately input the actual
WIP at any point in time in order for the model to be used
on real manufacturing line data.

Traditional simulation languages, such as GPSS (General
Purpose Simulation System [1}), construct a detailed
model, require a detailed description of each step, in a
sequential manner, and thus are difficult to construct
accurately, and especially difficult to maintain as
operations change. Each step in the manufacturing line is
several “lines of code,” and there are many blocks of
similar procedural descriptions making up the entire
manufacturing line. Understanding this, at a high level, or
even making changes to small parts, is more difficult as the
size and complexity of the manufacturing line increase.
Even if the process can be documented in a model, the
sheer size of the result often makes it difficult to run in a

B. R. TIBBITTS

reasonable amount of time (say, a few minutes or even
hours). In addition, the original authors of the model found
traditional simulation languages (such as GPSS) difficult to
use where the initial state of the model inctuded actual
WIP data. The simulation could not start with empty
queues.

Newer computers and simulation tools offer increased
capacity of models, but the real problem is being able to
accurately describe how the manufacturing line operates,
in the language of the model. A secondary problem is
being able to. make a simulation run in a short time.
Ideally, a run should take a few minutes or less, so that
““‘what if”> scenarios can be played out in order to
determine the effect of different manufacturing strategies.
However, it is not unusual for even hours of CPU time to
be considered acceptable in most simulation tools. Some
tools use graphics and animation to show the operation of
a simulation model and its results, but still fail to address
the issues of size and complexity.

Other tools also utilize a separation of data and rules to
assist in changes, as in another IBM semiconductor
manufacturing model [2], but still require the considerable
expertise of a programmer to make any changes other than
to the data. Another IBM model [3] uses a modular
structure that consists of a number of precompiled
FORTRAN subroutines describing different specific
operating strategies. This increases efficiency and allows
algebraic computation, which is not available in the base
modeling language. The user picks from among these
modules to construct a larger model. This can require
reprogramming if operating strategies other than those
foreseen by the original authors are encountered, but it
restricts the reprogramming to those areas needing change.

This paper describes a simple, easy-to-understand
technique for modeling a semiconductor manufacturing
line. A single-rule ““template” is used to move thousands
of product lots through various process steps; the rule is
customized by the different input data needed for each
step. Because the actual details of the line are read as
input from a database, the number of machines, manpower
skills and their availability, work in progress, wafer starts,
etc. are dynamic input to the model and do not require
reprogramming. A declarative style of programming, also
known as rule-based programming, is used rather than the
more traditional procedural style. A skeleton ““module,”
consisting of input, process, and output, is simply
described in a rule, and the input is varied to simulate
many different processes with the same rule, or a relatively
small number of rules. The language used in this model is
ECLPS (Enhanced Common Lisp Production System) [4].
It is a rule-based language which was originally based on
OPSS5 [5], but offers many improvements in flexibility,
expressiveness, and performance. Very large models are
easily described in ECLPS (Figure 1), and they are

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

efficiently executable because of the performance strengths
of ECLPS, which are described in this paper. The
simulation model is currently in use for three different
semiconductor manufacturing lines at the IBM plant in
Yasu, Japan. It is used daily for a variety of planning
purposes. Because of its success, it is currently being
adapted for use by a customer’s semiconductor
manufacturing lines as well. The current model is based on
one originally developed by Keiji Ohmori [6] and written
in YES/OPS [7], an OPS5-like language with specific
extensions for a built-in simulated clock and timed events
for simulation models, and a predecessor of ECLPS.
Subsequent modifications in ECLPS have simplified and
improved the performance over that of the original
simulation model.

Why the ECLPS rule-based language?
When the original model [6] was constructed, three criteria
were used for tool selection:

1. Ability to provide detailed description of the
semiconductor log.

2. Flexibility for making changes to routes, products,
tools, etc.

3. Connectivity to the data collection system and basic
database tools.

Some conventional simulation tools were tried, but none
met the above requirements [8] for the anticipated
production volume increases of the Yasu semiconductor
manufacturing line.

ECLPS offers many features to make it a good choice
for the simulation as a modeling technique in general, and
for large models in particular. Based on compiled Common
Lisp, it is an efficient language in terms of execution time. '
The rules allow for a declarative style of programming, and
the built-in simulated (or real) time clock makes simulation
straightforward. ECLPS can be used to model events that
are scheduled to execute at a specific time in the future
(either real or simulated time), via the timer queue, or
trigger on specific events (e.g., machine and manpower
availability) via rule matching. Unlike many other rule-
based languages, however, ECLPS is completely
integrated with its underlying procedural language (in
this case, Lisp). Because of this, it can easily be used to
code procedural constructs, such as dynamic algebraic
calculation of time required on a particular machine, as
well as the rule-based declarative constructs, such as the
description of how lots move from one step to the next.
Another feature of the improved version of the model (see
the section on simulator performance improvements) is the

1 Older versions of Lisp have a bad reputation for being slow in execution time,
because they were interpreted instead of compiled. Today’s Lisp compilers rival
other modern programming languages in their efficiency.

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

Line A" Line B
Total number of WMEs (data elements) 4647 2233
Route steps 3218 428
Number of routes 148 38
Average number of steps/route 22 25*
Number of lots 727 162
Tool groups 203 51
Tools 276 497
Manpower schedule changes 1259 6
Number of rule firings 6479 5340
Typical run time: 12 min 8 min

*Not including rework steps

Scope of size of the model. Data for models of two different Yasu
semiconductor manufacturing lines. (WME = working memory
element).

RS

linking up of routing steps by the use of data pointers
stored directly in the data elements. This enables the
linking of the routing steps, for example, without requiring
run time matching to find the next step. While this is a
common practice in many languages, this feature, which
is totally supported in Lisp, a well-known rule-based
language for artificial intelligence applications, is not
available in many other rule-based languages, which
restrict the types of objects to numbers, symbols, strings,
etc. ;

ECLPS, like other rule-based languages, provides for a
division between the rules and data. This was exploited
by coding the operation/dispatching knowledge as rules,
and the specific layout, routing, and status of the
manufacturing floor as data. This allows great flexibility in
being able to change routes, numbers of tools and their
logical grouping, manpower allocation, etc. without
changing the rules (source code). The input data were
simply updated.

The pattern matching of ECLPS rules is used to match
product lots with the necessary tool, manpower, etc.
required at each process step. ECLPS rule priorities are
used to sequence and to resolve conflict among the lots in
contention for available resources.

ECLPS provides a good interface to the database, in
which the manufacturing line data and results are stored,
and are easily accessible by other tools for analysis both
before and after the ECLPS simulation model is run. Users
have access to both the input data and the forecasting
result of the model, including the actual event log, in
database form. Finally, ECLPS is designed so that only a
limited knowledge of Lisp is required to get started.

B. R. TIBBITTS

509

510

2]

Input T > Output

-

A simple step: input, process, and output via buffer. Process P

:
% takes input, processes it using tool T, then puts the output into
buffer B before proceeding to the next step.

§ Assembly and disassembly steps.

How rules model production line steps
Each step in the semiconductor manufacturing line (or
other assembly or production line) can be modeled by a
single rule. (In very complex cases, more than one rule
may be used.) All steps of the same basic type can be
modeled by one rule. The data about each step are fed into
the rule, causing it to act differently for each particular
step, and customizing the parameters for that specific step,
route, machine, operator skill, etc.

There are several types of production steps, of which
a few simple ones are described here. Because of the
flexibility of ECLPS, even very complex steps can be
described by matching route/step and product lot data with
a different type of rule(s).

& Basic rule types

A simple production step takes input, say a wafer” lot,
from a buffer (a holding place for lots awaiting processing),
waits for machine and manpower resources to become
available, matches those items together in a rule, and then
fires (executes) that rule by utilizing the resources for the
appropriate amount of time, then putting the product lot in
the buffer for the next process and freeing the resources
for other operations. Figure 2 shows a diagram of a simple

2 A wafer is a unit of semiconductor manufacturing.

B. R. TIBBITTS

step: A lot comes in, it is processed using tool T (and also
other resources such as manpower, not shown), and then
goes into the output buffer B to wait for the next step.

While most of the semiconductor manufacturing rules
are processes that are applied to lots, as opposed to
assembly of multiple parts into a larger unit, assembly and
disassembly are also easily expressible. Figure 3 shows
such a step. Input could come from, say, two sources and
be combined into a single output, or vice versa.

Several simple process steps can be chained together to
form a small line, as shown in Figure 4. By limiting the
buffer sizes between the steps, this manages the amount
of work in process (WIP) and thus is a simple form of
kanban, or control of in-process inventory. The product
lot leaving the buffers is used as the ““pull’” signal to the
previous step, telling it to_c:ontinue.3 Manpower resource
(not shown) is also required, and may vary at each step
with respect to both amount of time needed and operator
skill.

Many production steps need not wait for a particular
tool, but can be served by one of many. This is modeled
by allowing the production step to use one of any number
of tools in a ool group. Since tools are flexible, some tools
can be a member of more than one tool group. Figure §
diagrams this situation.

We next demonstrate how ECLPS rules can be used to
model these situations.

% ECLPS basics
The ECLPS language, in which the simulator is written,
consists of three parts:

& Data (known as working memory elements, or WMES).
WMESs each have a class and any number of attributes
(like a record with any number of fields within the
record). Attribute names begin with an asterisk (*). For
example, class product may have attributes *lot-num and
*route.

% Rules, with patterns to match (left-hand sides) and
actions to perform (right-hand sides).

& The inference engine, the part of ECLPS that matches
data (WMESs) with rule patterns (left-hand sides),
determines the order in which rules are fired, and
executes the rules’ actions.

In the factory simulator, WME data are entered for

% Product lots (both for start-to-build and work-in-
progress).
% Tools.

3 In pure kanban, by some descriptions, the step must also wait for a separate pull
signal from the step ahead in order to go ahead and process a lot at the current
step. In the case of this simple model, a buffer with available capacity is considered
to be the ‘‘signal’ to initiate a process step. That is, the fact that a succeeding step
has pulled lots out of a buffer is a signal to put more lots into the buffer.

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

Pl

R L1 = Y

P1 P3
|B| IBtl Bp IBI

Tl - T3 - TS |-

Y

T4 7

Three processes, the second process utilizing a tool from a tool group. Process P2 may utilize any of three tools from a tool group. Logical
buffers are maintained both by tool (Bt) and by process step (Bp), so a lot will sit in both Bp and the appropriate Bt after being processed in
step P2. Neither buffer may accept a lot if its maximum capacity is filled. This manages the WIP as in Figure 4 but for multiple equivalent
tools.

¢ Tool groups of functionally equivalent tools. The basic steps (buffers are added later) are as follows.

e Manpower quantities available by hour, by skill level. The parentheses indicate what the ECLPS inference engine
does at each step.

(Buffers and lists of the route steps are described later.)
1. Wait for lot, machine tool, and manpower resources (match).

® ECLPS rules 2. Utilize the machine and manpower resources to process

ECLPS rules can use these data structures to model the the lot (fire).

simple processes described earlier. Figure 6 shows a very 3. Free the machine and manpower resources after the

simple ECLPS rule that would handle the steps for simple appropriate amount of time (timed events scheduled for

single-tool processes, such as those in Figure 4. a later time). 511

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993 B. R. TIBBITTS

512

(defrule simple-step
when
(product-iot *lot-num <L> *tool- <t> *skill <sk>)
(tool *id <t> *status ready)
(manpower *skill <sk>)
then
Soare)

Fie

! Simple ECLPS rule production step — product lot, tool, and
§ manpower.

(defrule sample-toolgroup
when
(product-lot *lot-num <L> *tool <tg> *skill <sk>)
(toolgroup *id <tg> *tool <t>)
(tool *id <t> *status ready)
{manpower *skill <sk> *max <mp> *in-use < <mp>)
then

Production step with tool group. -Variable <tg> matches the tool

group required by a lot to one instance of a tool group, that of a
specific tool whose id is saved in variable <t>. Then variable <t>
matches the tool with that id, as in a database join operation.

— -

Steps 2 and 3, rule firing and timed-events scheduling, are
discussed later. Here we concentrate on describing how
patterns are written, and the match process.

Read the rule in Figure 6 as follows: When there exists
a product lot of some lot number <L> which requires a
certain tool (matched by variable <t>) and an operator
skill of type <sk>, and a tool of that type and the
appropriate manpower are available, the rule ““fires.”” The
<x> designates an ECLPS variable. The first time it is
encountered, it binds to any value, but for subsequent
uses, it must march data with the same value, effecting a
Jjoin across data elements with the matching attribute
values. Variables can also be used to do comparison tests
between attributes in the same data WME, or across
different WMES (the join operation), as in the third line
below:

B. R. TIBBITTS

(product-lot *lot-num <L> *tool <t> *skill <sk>)
(tool *id <t> *status ready)
{manpower *skill <sk> *max <mp> *in-use < <mp>)

In this case, the manpower value <mp> is bound to the
maximum available manpower of a certain skill, and a test
is performed to ensure that the amount of manpower of
that skill currently in use is less than that amount.

Now let us add the ability to choose any available tool
from a group of tools.

Read the rule shown in Figure 7 as follows:
When there exists "

¢ a product-lot of some lot-number <L> which requires a
tool of some tool group <tg> and an operator skill of
type <sk>,

e and there exists a tool in tool group <tg> named <t>,

e and tool <t> is available and ready for use,

e and there is at least one of the appropriate manpower
available (*max is the number currently staffed; *in-use is
the number currently being utilized, and thus not
available for other work),

then the rule can fire.

When a rule fires, it marks the tool as busy, marks the
manpower in use (increments the number in use), waits an
appropriate amount of time (explained in more detail later),
then releases the tool and manpower. (This part is coded
after the then symbol in the rule and is described fully
later.)

Each product lot utilizes this rule* at each step. Notice
how the values that are matched by the variables state the
particulars of the step to be processed. These values are
contained in the input data. Some samples are shown,
beginning with Figure 8.

® Adding buffers

Actually, the kanban implementation limits WIP data by
restricting the sizes of the buffers between the steps. When
the buffer testing is added, the basic steps become the
following:

1. Wait for lot, machine, and manpower resources. The
machine’s output buffer must have available capacity
left.

2. Take the lot out of the previous machine’s buffer and
use the machine and manpower resources to process
the lot.

3. Free the machine and manpower resources after the
appropriate amount of time. Put the lot into the output
buffer of the machine just used.

4 In this simple case where the same basic algorithm is used to move lots from one
step to the next, a single rule handles most steps. In more complicated cases, many
rules could compete for handling each process step, dynamically computing the
“‘best-fit” of each potential way to handle the step, by each different rule.

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

ROUTE: Routet
OPER(step) - TOOL NEXT-OPER(step) SKILL-REQUIRED

0. (start) - 1

1 t1 2 skilla
2 tg1 3 skillb
3 SHIP - skilla
STEP-BUFFERSs:

FOR(route) STEP SKILLID QUANTITY
route1 0 (start) - <]
routet 1 skilla <)
route1 2 skillb (¢]
route1 3 skilla [¢]

TOOLGROUP: tg1 (contains 3 tools)

TOOLID
tz |
3 ‘
t4
TOOLS:
RESOURCE NUMBER OCCUPIED? STATUS
1 1 no ready
2 1 no ready
3 1 no ready
t4 1 no ready
TOOL-BUFFERs:
RESOURCE BUF-SIZE TOT-BUF-SIZE QUANTITY
f 6 6 c]
2 3 9 <}
3 3 9 0
t4 3 9 0
PRODUCT:
LOT-NUM PLACE ROUTE OPER NEXT-OPER
1234 bufter route1 <] 1
5678 butfer route1 0 1

Manpower (at model startup. Will hold skilis/quantities available,
and number in use, at any time)

SKILLID MAX-MP IN-USE

skilla <] c]

skillb <] <]

MANPOWER-SCHEDULE (indicates CHANGES to skill levels, and times)
Utilizes timer-queue to modify MANPOWER wme to show current staffing level at any time
SKILLID DATE TIME(HOUR) NUMBER-AVAILABLE

skila 7/1/92 8:60 6
skita 7/1/92 9:00 8
skila 7/1/92 12:00 10
skilb 7/1/92 8:.00 4
skilb 7/1/92 10:00 4
skilb 7/1/92 11:60 6

% Sample data for a four-step route. Data are matched with rules to simulate the actions that occur at each process step.

513

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993 B. R. TIBBITTS

514

The production line is modeled by combining and building
upon these simple building blocks.

The next section describes more fully how the actual
rules work, including how the route/step information is
added. Some sample data that fit the problem are also
shown.

How the ECLPS rule-based factory floor
simulator works

We now describe in more detail how the actual model
works. As discussed earlier, the factory simulator includes
WME data entered for

& Product lots (both for start-to-build and work-in-
progress).

« Tools.

& Tool groups of functionally equivalent tools.

» Manpower quantities available by hour, by skill level.

« Routes (lists of operations through which a type of
product lot progresses).

& Buffers (both by route/operation step and by tool).

(The latter two were not described previously.}

A few start-up rules take the initial data (product lots
and manpower quantities) and utilize the ECLPS timed-
event feature to put events on the timer queue that will
execute when an event must be processed. For example,
at a certain time, a manpower quantity for a certain skill
may have to be changed. At another time, a new product
lot may have to be available for start-to-build. A simulated
clock within ECLPS keeps track of the time within the
model.

Once these events are on the timer queue, six rules
handle the basic running of the model, for a line with
simple input-process-output types of operations. There are
three types of rules:

1. Rules that take a start-to-build product lot and wait for
the resources required for the first operation to be
available (not shown; fires once per lot).

2. Rules that move a product lot from one step to the
next, using kanban techniques. The majority of the
product lot movement is the result of this and similar
rules.

3. Rules that move a product lot from the last step and
remove it from the model (completion, or shipping).

For each of these three rule types, there are two versions
of the rule: one for unique tools, and one for tool groups.
Tool groups are sets of functionally equivalent tools. Thus,
a lot may be waiting in a buffer for a specific tool, or it
may be waiting for any one tool that is a member of a
specific tool group. The conflict resolution of ECLPS (the
ordering of which rules, with which matching data, fire in

B. R. TIBBITTS

what order) determines the order in which the rules fire,
which is the order in which the lots are processed from
one tool to the next. If several lots are ready and have all
resources available, which one receives the (limited)
resources first? (In this model, such events are controlled
in detail by dynamic rule priorities based on the product
lot and other data.) When the rule fires, the initial work on
the RHS (right-hand side, or action part of the rule) marks
the tools and manpower as ““in use,”” then adds events to
the timer queue to remove the lot when the process is
complete, mark the tool and manpower free to be utilized
by other lots, and put the lot into buffers for the next tool
and operation step.

& Route/step sequencing

The actual steps that each lot type goes through are
described via a set of route WMEs. One WME
corresponds to each step, and each WME contains a
pointer to the next step. Each of these contains
information about the tool (or tool group) required by the
lot at this step. Some examples are shown in Figure 8 and
Figure 9.

& How the timer queue schedules events
The ECLPS timer queue is used to schedule events to take
place at some predetermined time in the future, which is
independent of the rules firing. For example, the
manpower WMEs hold, at any point in time, information
on the manpower available, by skill, at that time. In order
to accomplish this, the manpower schedule, hour by hour,
is input at the start of the model, and an event is
scheduled for each change of manpower available, by
skill. At each rule firing cycle, the timer queue is checked
to see whether any events are ready to execute; if so, they
are executed before the next rule fires. Thus, there could
be hundreds (or more) of elements of manpower schedule
changes, each eventually represented by a single WME
that automatically reflects the right manpower available at
the right time. The manpower changes are scheduled on
the timer queue to ensure that they are processed at the
right time.

Putting items on the ECLPS timer queue consists of
specifying the time (relative or absolute) and the action to
take place. Some examples are shown in Figure 10.

& Detailed rule, with actions

A typical rule for moving lots between process steps is
now described in more detail. The basic type of rule in the
factory simulator is one whose patterns (left-hand side)
match a product lot waiting in a buffer, along with the tool
and manpower needed to perform the next production
step. The patterns also wait for the availability of buffers
that have available capacity. There are actually two logical
buffers in which the product lots sit after each step: buffers

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

; Routes: 3 steps, start, 1, 2(toolgroup), end
: (Note: skill-id required for the step is stored in the corresponding step-buffer)

(MAKE route *r-name route1 *oper 6 *next-oper 1)

(MAKE route *r-name routei *oper 1 *tool 1 *next-oper 2)

(MAKE route *r-name routel1 *oper 2 *tool tg1 *next-oper 3)

(MAKE route *r-name route1 *oper 3 *tool ship)
; Step-buffers:

(MAKE step-buffer *for route1 *step 0 *quantity 0)

(MAKE step-buffer *for route1 *step 1 *skillid skilla *quantity 0)
(MAKE step-buffer *for route1 *step 2 *skillid skillb *quantity)
(MAKE step-buffer *for route1 *step 3 *skillid skilla *quantity)

; Toolgroup: tools t2,t3,t4 are equivalent tools in toolgroup tg1
(MAKE toolgroup *tool-group-id tg1 *tool-id t2)
(MAKE toolgroup *tool-group-id tg1 *tool-id {3)
(MAKE toolgroup *tool-group-id tg1 *tool-id t4)

; Tools:
(MAKE tool *id t1 *num 1 *occupied no *status ready)
{MAKE tool *id t2 *num 1 *occupied no *status ready)
(MAKE tool *id t3 *num 1 *occupied no *status ready)
(MAKE tool *id t4 *num 1 *occupied no *status ready)

; Tool-buffers: A
(MAKE tool-buffer *id t1 *buf-size 6 *tot-buf-size 6 *quantity ©)
(MAKE tool-buffer *id t2 *buf-size 3 *tot-buf-size 9 *quantity 0)
(MAKE tool-buffer *id t3 *buf-size 3 *tot-buf-size 9 *quantity 0)
(MAKE tool-buffer *id t4 *buf-size 3 *tot-buf-size 9 *quantity 0)

; Product lots:
(MAKE product *lot-num 1234 *place buffer *route route1 *oper 0 *next-oper 1)
(MAKE product *lot-num 5678 *place buffer *route route1 *oper 0 *next-oper 1)

: Manpower at startup - will contain info for current time, by skill
(MAKE manpower *skillid skilla *max-mp @ *in-use 0)
(MAKE manpower *skillid skillb *max-mp 0 *in-use 0)

; Manpower schedule for three hours, beginning 8:66AM on 7/01/92
(MAKE manpower-schedule *skillid skilla date 19920701 *ime 8 *number-available 6)
(MAKE manpower-schedule *skillid skilla date 19920701 *ime 9 *number-available 8)
(MAKE manpower-schedule *skillid skilla date 19920701 *time 12 *number-available 10)

(MAKE manpower-schedule *skillid skillo date 19926701 *time 8 *number-available 4)
(MAKE manpower-schedule *skillid skillb date 19920701 *time 10 *number-available 5)
(MAKE manpower-schedule *skillid skillb date 19920701 *time 11 *number-available 2)

§ ECLPS statements to create data described in previous figure. Other information is also stored in each of the data elements (working memory
i elements), but is omitted here for simplicity’s sake. Examples are priorities, times for the steps, etc.

— s 135

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993 B. R. TIBBITTS

515

516

(at "3:00.pm 7/1/92" do (make manpower *skillid skilla *quantity 3))
{in "4 hours” do {make product *lot-num 1234 ...))

Samples of putting events on the ECLPS timer queue. At the specified times (absolute at or relative in), the actions will take place and will be
included in subsequent matching and actions in the model.

%

;. Sample rule—BUFFER to PROCESS and back
When

there’is a waiting product with a next-operation-step
and that next-operation-step of the route needs a tool of a certain tool group
and there is a tool of that tool group available
and the buffer for this tool is not full (tool-buffer, for all steps requiring the tool)
and the buffer for-this step is not full (step-buffer, one per step)
and the correct skill of manpower is available
Then

Mark the lot as:in-process
Decrement the quantities in the step-buffer and tool-buffer
Mark the tool as busy
Mark one person (of the correct skill of manpower) as in use
Calculate the amount of operator attended time
Calculate the amount of machine-in-use time
Schedule the following events to occur:

Release of manpower after operator attended time is over

Release the tool (mark it not-busy) when step is complete

Mark: the product as waiting for-the next step

Increment the next buffers in which product will wait

(tool-buffer and step-buffer)

by tool, and buffers by process step. These are output along to the next step. The rule fires, causing the right-
buffers, which hold lots that have completed the associated hand-side actions to be performed: decrementing the buffer
tool and step. Only when both buffers are not too full can quantities, marking the lot, tool, and manpower as in-

the product lot move through the next step (a form of process (in use), and scheduling the release of these
kanban control policy). When these rule patterns find a resources and then the incrementing of the subsequent
complete set of data to match (product, tool, not-too-full buffers, in which the lot waits for the next step. Figure 11
buffers, manpower, etc.), the product lot is ready to move shows an English rendition of a sample rule, and Figure 12

B. R. TIBBITTS

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

; Sample ECLPS rule to move product lot through one step: from buffer to process and back
7 <x> indicates an ECLPS variable

(DEFRULE transde2 WHEN
<prod> (product ‘*lot-num <lot> *place buffer *route <r> *next-oper <op> *c-priority <cp>
*tool-buffer-wme <prev-tb> *step-buffer-wme <prev-sb>)
<route> (route *r-name <r> *oper <op> *tool <cur-tool-grp> *next-oper <next-op>)
<tg> (toolgroup *tool-group-id <cur-tool-grp> *tool-id <cur-tool>)

<tool> (tool *id <cur-tool> *num <toolnum> *occupied no *status ready)

<tb> (tool-buffer *resource <cur-tool> *buf-size <step-max> *tot-buf-size <tool-max>
*quantity <tb-quan> & < <tool-max>)

<sb> (step-buffer *for <r> *step <op> *skillid <sk> *quantity <sb-quan> & < <step-max>)
<mp> (manpower *skillid <sk> *max-mp <mm> *in-use <ac> & < <mm> *status current)
(task *task-id usual *priority <pr>)

(run *go on *from <tm> *start-shop <sts>)

THEN PRIORITY (@ - (<pr> + <cp>)) ;Rule priority based on values matched above (task & lot)

{(MODIFY <prod> *place process *oper <op> *next-oper <next-op>
*tool-buffer-wme <tb> *step-buffer-wme <sb>)

(decrement-tool-buffer-quantity <prev-th>)
(decrement-step-buffer-quantity <prev-sb>)

(MODIFY <tool> *occupied yes *status busy)
(MODIFY <mp> *in-use (<ac> + 1)) ;increment manpower counter

;- Set temporary variables for manpower time and tool time required
(LET ((<mtime> (calculation-of-manpower-time <prod> <route>))
(<ttime> (calculation-of-tool-time <prod> <route>)))

; Release manpower after attended operation time

(IN “<mtime> minutes” do (decrement-manpower-counter <mp>))

; Release tool and put it into appropriate output buffers

(IN “<ttime> minutes” do

(MODIFY <tool> *occupied no *status ready)

;» put lot back in buffer (priority computation omitted)
(MODIFY <prod> *place buffer)
(increment-step-buffer-quantity <sb>)
(increment-tool-buffer-quantity <tb>)))

gure |

ECLPS version of a rule.

¢
:

517

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993 B. R. TIBBITTS

518

(defrule remove-dups when

<c1> (step-buffer *for <route> *step <s> *skillid <k> *wme-time-tag <tt>)
<c2> (step-buffer *for <route> *step <s> *skillid <k> *wme-time-tag > <tt>)

then priority 99999
(remove-wme <c2>))

E An ECLPS rule used to detect and remove duplicate buffers. This rule detects the existence of two step-buffers for the same step, same operator
. skill, and different timetag (to assume uniqueness) and removes the second one.

the actual ECLPS rule. Note that the entire simulation
(moving lots from step to step) can be modeled by this one
rule (or two rules if a special-case rule for tools not
belonging to a tool group is used). In this case, the same
basic algorithm is used to move each lot from step to step,
using the data from the lot and the step to determine the
details of each step.

The RHS (right-hand side, or action part of the rule—
after the THEN symbol—contains the actions that are to
take place when the LHS patterns are all matched
consistently and the rule is chosen to fire. Typical actions
are make, modify, or remove of working memory elements
(data, often those matched by the LHS patterns).
Scheduling events to occur in the future, via the timer
queue, is also typical for an RHS action in a rule. Other
actions can include calculations, such as the algebraic
calculation of time required for the attended and
nonattended portion of the process step, or any arbitrary
procedural statements. Since ECLPS is based on Common
Lisp, this means that any Lisp code may be included in
the RHS actions and is executed when the rule fires. This
allows for extreme flexibility in rule action expression.
Additionally, external functions can be called, even those
written in other programming languages. Match
statements, which allow on-demand pattern matching of
ECLPS patterns with WME data, may be included.

Simulator performance improvements

The original translation of one of the versions of the model
from the earlier YES/OPS language to ECLPS did not
meet the expectations for improvement in performance,
primarily because of a combinatorial explosion in the
match process. Thousands of data elements matched with
a dozen or more rule patterns and created a huge
combinatorial explosion of possible matches for each rule.

B. R. TIBBITTS

The model’s performance was analyzed and some changes
were made. The most significant changes made were the
following:

1. Several short Lisp functions and ECLPS rules were
written that acted as preprocessor programs, sorted
through the data, and allowed identification of duplicate
or otherwise redundant or unnecessary data. (The
amount of data was so large that the model was difficult
to analyze.) Elimination of these data greatly reduced
the combinatorial complexity of the rule matching.
Actually, ECLPS rules themselves are a natural way to
express data redundancy checks, and are quite useful
for this task. Figure 13 is an example of an ECLPS rule
used to detect and remove duplicate buffers. It matches
any two different step-buffers for the same route, step,
and skill id, and removes one of them. By testing
the uniqueness of the timetag attribute (the built-in
*wme-time-tag attribute is always unique), the rule
ensures that the step-buffer is not matching itself.

2. Type information was added to the data, and the data
types that could be used within the data attributes were
only slightly restricted, thus enabling hashing of indices
for speeding up the very large matches (as in this
model). This EQ-hashing is a specific enhancement that
ECLPS added to the original RETE algorithm [9]. The
RETE algorithm is the essential pattern-matching
algorithm part of ECLPS [10], making the matching
(of many patterns with large amounts of data) efficient.
Figure 14 shows how this is made possible with the
;type keyword of the data structure declaration,
defwme.

These two changes resulted in large (but expected)
performance improvements. Other, more subtle, changes

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

(defwme route *r-name

(: type symbol)
*oper (:type fixnum)
*next-oper (:type fixnum)

; name of route
; step (operation) number
; next step number

*tool (: type symbol) ; resource (tool/toolgroup)

)

(defrule detect-stuck-lots
when
<p>- (product *lot-num <m> *route <r> *place buffer *next-oper <op>)
- (step-buffer *for <r> *step <op>)
then priority 99999
(say “Step-buffer missing for route” <r> “step” <op>))

B

% ECLPS rule to detect an artificial bottleneck (stuck lots). This rule finds missing buffers — that is, whenever a product is in a buffer, such that there
does not exist (the **-*’ sign) a step-buffer for the next step in that route, a message is displayed. The high priority of this rule (999999) ensures that
the warning is displayed promptly after the condition appears.

reduced the amount of matching done by moving some
matches to the RHS of the rule, or eliminating the
matching altogether by simply storing pointers to the
values that must be tracked and modified. This is a well-
known programming technique, but it is not available in
many rule-based languages. A variety of measurement
tools were used to find data redundancies, artificial
bottlenecks in the model, and other criteria that were hard
to see and measure otherwise. Figure 15 is an example of
an artificial bottleneck (missing buffers) that appeared as
“stuck lots’ in the model and was detected with the
ECLPS rule shown.

The model execution speed improved so much that the
original body of data was expanded to include more of
the actual manufacturing line. Because of the original

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

slowness, only about half of the steps of each of the routes
had been included in the old model, which added to the
estimates of the time required to account for the omitted
steps. With the increased capacity, this was expanded to
reflect the actual operations more accurately.

Improvement, while impressive, is difficult to measure
exactly. Because the original model was so slow,
significant detail had been removed in order to obtain even
a rough estimate of the factory line’s function encoded into
the model, and run. Yasu has been very satisfied with the
results, but has not, to our knowledge, run the exact same
data on the old and new versions of the model in order to
have a direct comparison.

In summary, however, the new model is approximately
10 times faster, for 15 times as many product lots, three

B. R. TIBBITTS

519

520

Old New
PROBLEM SIZE
ATTEMPTED:
Product lots 42 641
Route operation steps 554 1602
Simulation days 3 15

Summary: New problem being run is much larger
(several orders of magnitude) than
previously run.

COMPUTING

RESOURCES USED:
Type of CPU 3090 30S 3090 20E
MIPS (CPU speed) 55.5 MIPS '31.3 MIPS

CPU time 45:37 (2737 sec) 8:28 (508 sec)

Time*MIPS 151,903 15,900
Summary: - New model is approximately
10-times faster, for
15 times as many product lots,
3 times as many route opetation steps,

5 times as many simulated days.

CPU MIPS information from Computer Price Watch, Computer Information
Resources, P.0. Box 13176, Arlington, TX 76094,

i Summary of improvements made to the factory simulator.

times as many route operation steps, and five times as
many simulated days. The details are shown in Figure 16.
The improved model is now in daily operation in the
Yasu plant. Since the successful operation of this model,
Yasu manufacturing support personnel have converted
another line to the ECLPS model, for a total of three
semiconductor manufacturing lines being modeled with
the ECLPS simulator at the Yasu plant. A version of
the model is currently being developed to model the
semiconductor manufacturing line of a customer as well.

The results of simulated lot completion, WIP, and tool
and manpower utilization data are used to optimize lot
start allocations in each process, as well as the general
management of WIP, tools, and manpower. Simulation
results are stored in local databases and are available for
analysis and report by a variety of other tools.

B. R. TIBBITTS

Conclusion

Large complex simulation models, such as those needed
for semiconductor manufacturing lines, require a modeling
environment that supports a large number of elements
(steps, lots, machine tools, etc.) and is easily maintainable.
This model, with its declarative rule-based style, encodes
the part of the system that describes the daily changes

(lot starts, WIP, machine and manpower availability) in the
data read from existing manufacturing database files. It
handles a very large amount of data efficiently, and is easy
to modify by reading in the appropriate data describing

the appropriate line at any point. While the Yasu model
consists mostly of simple input-process-output rules, much
more complex rules’ could be modeled because of the
flexibility of ECLPS and its underlying language, Lisp.
Procedural calculations can be done directly in Lisp from
ECLPS, or external language subroutines can be called if
necessary. The built-in simulated clock and timed events
queue make it a very powerful and flexible simulation
language.

Our experiences in improving the performance of
this particular ECLPS simulation model stressed the
importance of being able to take advantage of even
more pattern-matching efficiencies in large models by
understanding how ECLPS pattern-matching works, and
by using measurements to find sources of inefficiencies in
rule-based (and other) systems. A variety of measurement
tools were used, some for Lisp, others for ECLPS, still
others for this specific application. All are useful in
targeting the source of performance problems.

“Expert system’” tools are traditionally suited for
encoding of “human expertise” that is not easily described
in procedural languages. ECLPS is also good for
describing procedural, but combinatorially complex,
combinations of possibilities, such as that found in the
semiconductor manufacturing line model. Its ability to
describe and run very large models, with simplicity and:
maintainability, in a reasonable amount of time, makes it a
powerful tool for the simulation model.

Acknowledgments

Many thanks to Keiji Ohmori, who developed the original
model in 1986, and Mitsuru Takahara, who currently
continues to improve and adapt the model to other
semiconductor manufacturing lines. Both discussed the
model and answered many questions over E-mail for this
paper. The work on the performance improvements could

5 While there is only one basic control rule in the model as described here, the
dynamic calculation of (ECLPS rule) priorities for firing the rules (which in effect
orders the lots that are handled by the) includes calculations based on
product type, due date, most work remaining, shortest process time, etc. This uses
the same basic algorithm, or rule (template) to handle many situations in a similar
manner. More rules could be written to handle very diverse cases, and specific data
in the product lot information, or route/step information, could be used such that
the rules would “compete” for the best next-step or next-machine possibility. The
rule that ““won’” would exclude the alternatives as the product lot continued along
the production line.

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

not have been done without the cooperation and assistance
of Takeo Matsuura of IBM Yasu, Japan, who maintained
the model at that time. Thanks also to others who have
maintained various versions of the Yasu models and have
provided their insight, including Yuko Fujii and Yoshinori
Hirohata. Additional thanks also to Marshall Schor for
much discussion about the model improvements and the
internals of ECLPS, and to Marshall Schor and John
Kastner for proofreading the initial manuscript for this

paper.

References

1. Thomas J. Schriber, Simulation using GPSS, Wiley, New
York, 1974.

2. David J. Miller, ““Simulation of a Semiconductor
Manufacturing Line,” Commun. ACM 33, No. 10, 98-108
(1990).

3. Sarah Jean Hood, Amy E. B. Amamoto, and Antonie T.
Vandenberge, ‘A Modular Structure for a Highly Detailed
Model of Semiconductor Manufacturing >’ Proceedings of
the 1989 Winter Simulation Conference, American
Statistical Association, Washington, DC, pp. 811-817.

4. ECLPS (Enhanced Common Lisp Production System):
Enhanced Common Lisp Production System User’s Guide
and Reference, Order No. SC38-7016 (formerly IBM
Licensed Program 5685-063, now available from Lucid,
Inc., 707 Laurel St., Menlo Park, CA 94025). For
information about ECLPS, contact Lucid at (415) 329-8400
or E-mail: sales@lucid.com.

5. Charles Forgy, OPS5 User’s Manal, Department of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1981.

6. Keiji Ohmori, ‘‘Simulator for Event-driven System,”
Proceedings of the 1986 Japan-USA Symposium on
Flexible Automation, Osaka, Japan, July 14-18, 1986,
pp- 517-520. Sponsored by the Japan Association of
Automatic Control Engineers and the American Society
of Mechanical Engineers.

7. Marshall Schor, Timothy Daly, Ho Soo Lee, and Beth R.
Tibbitts, ““Advances in RETE Pattern Matching,”
Conference Proceedings of AAAI-86 (American
Association of Artificial Intelligence), Philadelphia, PA,
1986, pp. 226-232.

8. Mitsuru Takahara, IBM Yasu, Japan, ‘‘Floor Operation
Planning and Simulation,” Technical Report TR-81.0113
(in Japanese); presented at the IBM Manufacturing
Symposium, Thornwood, NY, May 1989.

9. Ho Soo Lee and Marshall 1. Schor, “Match Algorithms
for Generalized Rete Networks,” Arrif. Intell. 54, No. 2,
249-274 (1992).

10. Charles Forgy, ‘““Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem,”” Artif.
Intell. 19, 17-37 (1982).

Received March 19, 1992; accepted for publication
February 29, 1993

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

Beth R. Tibbitts IBM Programming Systems, 250 W. Main
St., Lexington, Kentucky 40507 (BETH at LEXVMK,
btibbitts@vnet.ibm.com). Ms. Tibbitts is currently an
Advisory Programmer for IBM Programming Systems,
Lexington, Kentucky, working on object-oriented debuggers
and other programming tools in C++. At the time this work
was done, she was a member of the IBM Research Division at
the IBM Thomas J. Watson Research Center in Yorktown
Heights, New York, in the Environments for Expert Systems
group (1985-1992). This group developed ECLPS (Enhanced
Common Lisp Production System), an expert systems
language based on Lisp, the language on which the simulator
in this paper is based. Ms. Tibbitts received a B.S. in
computer science and mathematics from Western Kentucky
University in 1977. She joined IBM in 1977 and was a
programmer, analyst, and manager in IBM Lexington,
Kentucky, before transferring to Research in 1985. At
Research she was part of ECLPS development and taught
many classes on ECLPS and its forerunner, YES/OPS. She
was also active in marketing and promotion of ECLPS both
inside and outside IBM, wrote most of the ECLPS product
manuals, and has advised and assisted users in working with
ECLPS and other expert systems tools in various applications.
She joined Lexington Programming Systems in 1992 and is
now a member of a group implementing a C+ + class library
for debuggers and other programming tools. Ms. Tibbitts’
interests include object-oriented tools and design, interactive
languages and environments, and expert systems. She was
chairman of the IBM Corporate APL ITL (Interdivisional
Technical Liaison) Committee from 1983 to 1985 and was
active in the use and promotion of APL. She is a member of
the Association for Computing Machinery, the IEEE
Computer Society, and the American Association for Artificial
Intelligence.

B. R. TIBBITTS

521

