Statistical
modeling in
manufacturing:
Adapting a
diagnostic tool
to real-time
applications

by B. E. Osborn

This paper describes a process for
constructing a statistical model to automate
the analysis of data from complex diagnostic
tools. The method is demonstrated on data
taken from an optical emission spectrometer
(OES), one of the most powerful tools used in
semiconductor manufacturing for detecting the
chemical composition and impurity levels in
plasma processes. The analysis of OES data
currently requires hours of manual effort by an
expert spectroscopist, rendering it ineffective
for real-time monitoring and control. However,
through the use of statistical modeling, the
analysis can be performed automatically on a
personal computer in a matter of seconds. The
process of model construction is examined

in general, and methods are developed for
demonstrating how information from an expert
can be combined with information from the
data in order to provide a statistical basis for

analysis. The effectiveness of the model is
demonstrated on data from typical plasma
processes.

Introduction

® Background
One of the most effective ways of influencing the quality of
our products is to ensure consistency and reproducibility
in the manufacturing environment. This is especially true
in semiconductor manufacturing, where small variations in
the plasma processes for etching and deposition can have
drastic effects on the quality of what is produced.
Statistical process control (SPC) [1] is a valuable tool
for accomplishing this objective by comparing present
performance with the past and by differentiating between
normal statistical variation and process alteration.
Unfortunately, many of the sophisticated tools used to
diagnose problems in the manufacturing environment do
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Table 1 Sample OES peaks for helium.

Wavelength Relative
(nm) intensity
388.865 500
396.4729 20
402.6191 50
447.1479 200
501.5678 100
587.562 500
587.597 100
667.815 100

not lend themselves to classical SPC techniques. For
example, optical emission spectroscopy (OES), residual
gas analysis (RGA), Fourier transform infrared
spectroscopy (FTIR), and laser-induced fluorescence
(LIF) are all examples of analytical tools which have
strong potential for use as monitors in plasma processes,
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each providing important information about the chemical
environment. However, the analysis of data produced by
these tools requires expertise and can be a time-consuming
process that limits the tool’s value for real-time process
control applications.

This paper describes a methodology for automating this
data analysis process. The focus is on OES because of
its relative simplicity and its usefulness in detecting
process and tool contamination during semiconductor
manufacturing (see [2-4] for a description of how
OES works and its applicability to plasma-processing
diagnostics). The statistical techniques that are introduced
are generally applicable and can be used to analyze data
from other spectroscopic tools.

® Description of the problem

OES monitors light emitted in the visible region of the
spectrum from electronic transitions of atoms and
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molecules with a series of calibrated photodiodes, each
measuring the intensity at a specific wavelength. A
spectrum taken from a helium gas bottle obtained with a
calibrated OES spectrometer is displayed in Figure 1. The
data are obtained from a low-resolution OES spectrometer
in which the wavelengths assigned to diodes differ by
intervals of about 0.6 nm. Higher-resolution OES
spectrometers require longer processing times which

limit their practical use for many real-time applications.
Although the analysis described below is also applicable to
interpretation of high-resolution OES spectra, we focus on
analysis of low-resolution OES data.

A particular gas is identified from its OES spectrum by
correlating wavelengths at which peaks appear with
previously reported wavelengths tabulated for the gaseous
species. Part of the tabulation for spectral lines of helium
gas (from [5]) is shown in Table 1. The relative peak
intensities can vary in a particular spectrum, depending on

IBM J. RES. DEVELOP. VOL. 37 NO. 4 JULY 1993

S

¢ OES spectrum taken during a reactive ion etching process involving a CF,/CHF;/He plasma.

factors which include the power level, the relative
concentration of the excited species, the presence of other
gases, and variations in the optics. For example, in Figure 1
the peak intensity at 501.5678 is greater than that at
667.815, but both have the same relative intensity in
Table 1.

This paper discusses a procedure to build a system that
automates the work of an expert OES spectroscopist so
that the gas peaks in OES spectra can be properly
identified.

® Previous work

One of the simplest methods of automating OES data
interpretation is by direct comparison with tabulated data.
A ““table-lookup”” procedure is used to identify the species
present in an OES spectrum obtained from a RIE tool
which utilizes a CF,/CHF,/He plasma during
semiconductor manufacturing (see Figure 2). A gas is

B. E. OSBORN

493




494

assigned to a particular peak if it is located within 0.6 nm
of a corresponding table entry. The table values for 23
gases were used in this process, with 5-79 table entries
associated with each gas. The results are not satisfactory.
The 0.6-nm tolerance used in this algorithm causes overlap
between the tabulated wavelength values and, as a result,
every gas is found at least once.

Improvements in this technique were made using a
specially designed library of waveform peaks
corresponding to the individual chemical species [6]. This
method takes into consideration the multiplicity of peaks
associated with each species and their specific shape in
addition to wavelength location. A cross-correlation
function is used to determine which library entries are the
best matches for peaks in the spectra under investigation.
However, variations may arise when the technique is
implemented on different spectrometers under various
process conditions. In addition, this method fails to
consider the user’s prior knowledge concerning the
presence of various species.

Researchers are currently investigating more
sophisticated models employing expert systems [7] and
neural networks (8] for species identification. An expert
system approach involves coding a set of rules which
attempt to duplicate the expertise used by the
spectroscopist. An artificial neural network model
“learns” to interpret OES data after being exposed to
a large number of properly interpreted spectra. Each
technique models one important characteristic of the
problem: in the case of an expert system, the prior
knowledge of the expert, and in the case of the
neural network, the need to learn with experience.
However, neither approach adequately incorporates
both.

® Designing an appropriate model
An ideal model for solving the problem of interpreting
OES data should incorporate

1. Any prior knowledge concerning which gases are most
likely to be present.

2. The expert’s knowledge of the problem.

3. The inherent uncertainty in the problem leading to
the model’s ability to indicate the likelihood of the
results.

4. The knowledge that has been gained through
experience.

This paper introduces a new statistical methodology for
approaching this problem which effectively meets these
model criteria. It begins with a simple Bayesian
formulation of the problem similar to that used in other
pattern-recognition problems [9], adding complexity to
construct the desired model.
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Components of the statistical model

® Bayesian pattern recognizer

Consider a mixture which may contain any combination
of N gaseous species. Let G, = 1 indicate that the ith
gaseous species is present and let G, = 0 indicate that it is
absent. Also, let p, = 1 or 0 be used to indicate whether
the jth table entry for this gas is present or absent in the
graph (j = 1, - -+, m). First assume that we are dealing
with a high-resolution OES spectrum in which peaks
correspond exactly to the appropriate table entry values.
We later relax this assumption to consider an actual low-
resolution OES spectrum. From the Bayesian theorem,

1
PIGlp,py, P, = ZP[pl’pz’ e ’pmlGi] xPGL (1)

where P[-|] indicates conditional probability; P[G ] is the
a priori probability that the gas is present or absent; and Z
is the normalization constant. The conditional probability
that certain peaks will be observed in the graph given that
the gas is present should depend on the tabulated relative
intensities. It is much more likely that we will observe a
peak with a relative intensity value of 500 than one with a
relative intensity of 10. An appropriate assumption is that

Plp, py -, P,IG] = PIp|G] X P{p,|G}
X+ x PIp,|G], @

where each P| pj|Gi = 1] is some function of the relative
intensity for table entry j. The conditional probability
that a particular peak would be detected even if the
corresponding gas were not present (i.e., P[p, = 1|G, = 0]
is a small constant based on noise in the system. The
specific value of this constant can be determined by using
maximum-likelihood or similar parameter-estimation
techniques on a set of learning data in a system in which
the gases present are known.

Once the parameters have been estimated and there
exists an unknown gas mixture, the Bayesian classifier
determines the presence of the gas in question if

PG =1lp,p, - ,p,] > PG =0p,p, - ,p,) (3)

Combining Equations (1) and (2) results in the equivalent
expression:

PIp|G, = 1] x P[p)G, = 1] X ++* X P[p,|G, = 1]

x P[G, = 1] > P[p,|G, = 0] X P[p,|G; = 0]

X+ X Pp |G = 0] x P[G, = 0]. (3b)
® Pattern theory model
The above model would be appropriate if there existed a

perfect high-resolution OES where each peak could be
observed at its exact wavelength. In real systems, this is
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not the case. If the peak associated with the jth table entry
were present in the graph, it could be observed at a
wavelength different from the one tabulated. This
difference would depend on the level of resolution of the
OES spectrometer and the accuracy of the instrument
calibration procedure. In addition, other gases in the
system affect which peaks of the gas under study are
detected. It is extremely difficult to consider all of the
complexities involved, since these effects relate to the
basic physics of the OES process. However, a more
realistic and accurate model can be constructed.

From a statistical point of view, the issues raised in the
preceding paragraph can be summarized by saying that the
values p, p,, *** , p,, cannot be observed directly.
Instead, the peaks in the graph represent some deformed
image of these values. For simplicity, consider two types
of deformation mechanisms that alter the p;’s:
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Graphical representation of the general pattern model used to analyze OES data.

1. A simple shift in the wavelength. For example, if
p; = 1, the peak is not observed at its true wavelength,
but rather at another wavelength.

2. A blurring effect, in which two distinct peaks at
wavelengths A, and A, are observed as a single peak at
wavelength a.

A model which takes all of the above [including Equations
(1)~(3)] into consideration is represented graphically in
Figure 3. This is an example of a pattern theory model
whose general structure is detailed by Grenander [10, 11].
The circles in Figure 3 are referred to as sites, and the

line connecting the circles are referred to as segments.
There are four levels of sites displayed. At the top level
are the G sites associated with the gases that may exist in
the mixture under study. (For simplicity, only two G sites
are shown.) The sites at the second level are the p sites
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associated with the table values for these gases. The sites
at the third level are the D sites and are the result of the
first distortion mechanism. Finally, the B sites at the fourth
level are the result of the second distortion mechanism and
are associated with the observed peaks in the graph.

The G sites take values of 1 or 0 depending on whether
the associated gas is present or absent. Similarly, each of
the p sites takes a value of 1 or 0 depending on whether or
not the peak associated with the particular table entry is
present or absent in the graph. The D sites at the third
level and the B sites at the fourth level all take values from
the positive real line.

Asite D; connects to a site B if le — B| < L, where o,
is the wavelength of the table entry associated with p; and
L is a constant. We note that if L is less than the level of
resolution of the graph (i.e., the distance between adjacent
diodes), each D site connects to, at most, one B site, since
at least three diodes are required to define a peak.

When a B site connects to more than one D site, the B
site represents a ‘‘blurred’” wavelength that results from
distortion mechanism (2). Note that this blurring
deformation occurs only if wavelengths of corresponding
peaks are sufficiently close. In the case where a B
site connects to only a single D site, both of the sites have
the same value, and no blurring distortion occurs. Finally,
if a D site does not connect to a B site, the value of the
D site is fixed at 0 [hence, D, € {0, (@, = L, w, + L)}].
In the example displayed in Figure 2, the Kth table entry
associated with the first gas is close to the wavelength for
the K + 1th table entry associated with the second gas.

Therefore, the problem of interpreting OES data (e.g.,
Figure 2) using this model reduces to a statistical problem
of determining the G, p, and hidden D sites given the
values of the B sites.

As one might have concluded from the above
formulation, the segments in the graph represent
relationships between the connecting sites. More precisely,
the segments indicate the conditional probabilities inherent
in the pattern theory model. Specifically, the conditional
probability of the value of any site, given the values of all
other sites in the graph, is equal to the conditional
probability of the value of the site, given the values of just
those sites which are directly connected to the subject site.
For example, considering the site p,, which is connected
to the sites G, and D,

P[p|all other sites in the graph] = P[p,|G,, D,]. 4)

This is called the Markovian relationship, and
mathematical structures which possess such a relationship
are Markov random fields [12].

Model construction

The general probability measure for pattern models is
described in [11]. In our case, the probability density
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function for the general model having N gases and
(M, — M,_)) table entries for gas i, and where the number
of B sites is designated by S, is given by

f[Gl’-..,GN,pl’-‘. D B '..’BS]

s Pmy T

s Do Dot

A
=211 II 44»,G) x Hp, D)
=L j=M;_y+
N
x[10®,--,D,,B), (5a)

t=1

where sites D, , -+, le(t) connect to site B,, M, = 0, and
Z is the appropriate normalizing constant.

If there were no multiply connected B sites, Equation
(5a) would simplify to

f[Gl"..’GN’pl".-,pMN,Dl,.'.’DMN’BI,-.-’BS]

f[Gv""GN’Pp""PMN’DV""DMN]

forB,=D,t=1,-,85,

0 otherwise,

where

f[Gl’""GN’pl’""pMN’Dl""’DMN]

M,

i

N
IT I1 A4p.G) x Hwp, D) (5b)
i=1

J=M;_+1

N o=

and Z is the appropriate normalizing constant.

The functions A(:, *), H(®, *), and Q,(, * -+, *) are
called acceptor functions, and the G, p, D, and B
variables are referred to as generators which take values
from some set of generator spaces. In this case, G, -+,
Gyandp, -, Pun take values from discrete generator
spaces, and D, * -, DMN and B, -+, B; take values
from continuous generator spaces. Generators are
associated with the sites in the graph, and acceptor
functions are associated with the segments in the graph.

We are dealing with a pattern model of a partially
homogeneous graph [11], since it contains unique acceptor
functions [4,(-, ) and Q,(-, - **, )] and a repeated
acceptor function H(, +). In the next section we discuss
the restrictions necessary for identifying the acceptor
functions. However, two restrictions can be introduced
here:

1. The parameters in Equation (5) must be specified in
such a way that the probability is positive for all
possible configurations, i.e., all possible values of
Gy GysPps*** s Pyys Dps *+ s Dy By -+, B).
This is referred to as the positivity condition [13].
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2. We wish to construct our model in such a way as to
favor configurations for which D, # 0 when p; # 0 and
disfavor configurations for which D, # 0 when p, = 0.
It is therefore required that

H(1, 0) < H(1, D) and H(0, D) < H(0, 0)
VDe (wj -L,w + L).

If we define P as a particular configuration of the B sites
and C as a particular configuration of the G, p, and D
sites, the statistical problem is to find the value of C which
maximizes

flcp]

Ef[Gl’""GN’pv""pMn’Dl’""DMN|BP""BS]'
(6)
This maximizing value is referred to as C_, (P).

The classical method for finding C_,_(P) is through
stochastic relaxation [14]. Basically, this method involves
visiting each of the hidden sites in turn and updating their
values by choosing a random number from the respective
conditional probability distribution. As this process is
continued, a distribution of configurations is generated in
which the most likely configurations appear most
frequently. Stochastic relaxation is a computationally
intensive procedure and, if used on this problem, would
require several hours of computing time on a personal
computer. To overcome this difficulty, we introduce an
alternative method which proves to be more efficient when
certain restrictions are introduced. First, however, we
discuss the problem of parameter identification.

Model implementation

® Parameter identification
In order to implement the model, the acceptor functions
in Equation (5) must be identified. We use general
information concerning the parameters in pattern theory
models [11] and knowledge about the structure and physics
of the OES system (“‘expert” knowledge) to assist us in
this procedure.

We begin with the acceptor function Q,(-, - -+, ). We
introduce a simple restriction to simplify our problem.

Theorem 1  For each B,, let A, represent some
deterministic function of the values of the k(z) connecting
D sites, and let

AB,++,B)={C:B,= A,V 1.

1,..

Furthermore, define Cm(A) as the value of C which
maximizes Equation (5b) subject to C € A(B,, *++, By).
Then, if Q, is defined as
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_ qt(Bt) if Bt = A' s
oD, ,D,.,B)= {r,(D“, “++,D,,B) otherwise,
()
such that
4B ®)
rt(D,l, Y Dtk(l)’ B,)
where
H({0, 0) H(1,x)
r =
MaX | 5, x)* H(1, 0)

maximized for x € (wl. - L, o, + L),
then
C. P =C_(d).
The proof of Theorem 1 is in the Appendix.

Theorem 1 tells us that under certain conditions the
problem of finding the configuration which maximizes
Equation (5a) reduces to the much simpler problem of
finding the configuration which maximizes Equation (5b).
As a typical implementation of the model, we select the
value of Q so that B, represents a weighted average of
connecting D sites. For example, consider

L 10)
Y. D, x I x{D, = 0}

=4

A= ; ©)

L0)

2 I x {D, = 0}

=n
where 7, is the intensity value for the table entry associated
with the jth peak, and where {-} is the indicator function
which equals 1 if the enclosed expression is true and

equals 0 otherwise.
Next consider the acceptor function H(:, +). When

P = 1, DI. represents a shift in the observed value of the
wavelength due to noise that is present in the system.

This is observed during the calibration process, when the
spectrum for a known gas is produced and the peaks are
associated with known tabulated data by using a regression
procedure. Since the resulting residual error represents the
sum of many factors, the central limit theorem suggests
that the error distribution is normal. Therefore,

fID, = x|p, = 1]
1 x - )
X exp _T forx € (wj - L,
\2mo w, + L),
K forx =0, (10

where K is the normalizing constant. Without loss of
generality, we can choose K = eb/(l + eb); K therefore
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equals the probability that we do not observe the peak in
the graph even though it should be present (i.e., p, = 1).
This may be due to a number of reasons, the most likely
of which is that it is outside our region of interest, i.e.,
outside (w, — L, o, + L). For example, if we choose
L to be 30, the probability that D, will fall outside the
region is 0.0026, and therefore b = —5.95. In addition,
experimental results indicate that an appropriate value for
ois 0.2.

In the case where p; = 0, D, would take on nonzero
values because of statistical uncertainties such as noise
in the system and stray peaks from gases not being
considered. It is reasonable to assume that these nonzero
values of D; would be uniformly distributed over the region
of interest; hence, we can write this conditional probability
density function as

f1D, = lp, = 0]
ea

2XL X (1+e9

=)

For a noise level of 10% we would choose 2 = —2.197.
With this information and the fact that conditions on

identifiability restrict H(0, 0) = 1 [11], we find that

Equations (10) and (11) imply :

] forx € (wl. - L, w; + L),

forx = 0. (11)

H(0,0) =1,
H(@1,0) = ¢,

ea
HO.x) = {337

1+e° (x — w)?
X exp | - ——= forx = 0.

H(l,x) = (\/-2;0_ >

forx = 0,

2X o
(12)
Two restrictions are necessary on A,C, ) 01
A,0,0) =1 and A,0,1) =1forj = 1.
Without loss of generality we can define
A40,0 =1,
A4(1,0) = e,
et ifj=1,
4,40,1) =
1 otherwise,
e81+sj+/} lf_] = 1’
A, 1) = 13
! e otherwise. 1)
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The resulting conditional probability is given by

M,

exp | d, + 2 P, X

j=M;_1+1

P[Gi = 1IPM,--1+1’ tee 9PM,.] =

M

l+exp|8,+ > pxf

J=M;_i+1
(14)
Here, there is a term f; associated with each table entry

value. This will be some function of the relative intensity
value. One that works quite well in practice is

f; = 7.3244 + (0.018847 x K),
where

I if ; < 100,

100 if100 = I < 150,
if 150 < I, < 250,
225 if I = 250.

There is also a term 8, associated with each gas which, as
soon becomes apparent, need not be estimated to solve
our problem.

Using Equations (12) and (13), we find that the
conditional probability of p; given D, is given by

_exp [ej + (G, % j;)]
C+exple + (G xf)

Plp, = 1|G]
where

1+e°
C

1+¢

When G, = 0, we would expect the probability that p, = 1
to be extremely small. Furthermore, we would expect this
type of “‘noise’’ term to be independent of the particular
gas or peak under consideration. This implies that & = ¢,
V j. By choosing & = —6.8, we ensure that P[P, = 1|G, = 0]
= 0.001.

We conclude this section by stating the following
proposition, which provides further information on the
values of the D sites.

Theorem 2 Under the conditions of Equations (9) and
(10), for each B,, the values of the connecting D sites in

C,..(8) are either zero or have the form
A X
D=0+ ——, (16a)
%(e)
> I x {D, = 0}

i=ty
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where
I X o, x {D, = 0} 5
(B‘_EEI.X{D.¢O} (X 1% D, = o)
M= 3 I x{D, = 0}

(16b)

and all sums are betweeni = ¢, and i = Ly
The proof of Theorem 2 is in the Appendix.

& Model solution

To solve the model, we introduce a variation on the
stochastic relaxation algorithm. We make use of the
following identity, which follows directly from the Markov
property (4) and from Equation (5):

f[Gp""GN’PV""PMN’DP""DMN]

=II II fIplp} x PIp|G] x PIG]. (17)

i=1 j=M_;+1
We now propose the following algorithm.
Theorem 3 (selective stochastic relaxation algorithm)

Assume the conditions of Theorems 1 and 2, and define
the following four sets:

Q={M_+1)=sj=sM}
’ tk(,)) = Q}’

where D“, see, le , are the sites which connect to site
B,, and ¢ indicates the null set;

Io=A{¢, -, tkm): B € 0},
NG) ={GU =i): 1L, N O =2}

0,={B:0 0N @,

Define G, as the G site which connects to site p;, G as a
particular configuration of the G sites, and D/(G) and p,(G)
as the sites which maximize f [Dl} p;] for G, € G. Then,
the most frequently occurring configuration will be C_,_(P),
when the graph is updated using the following algorithm
for determining the values of the G, p, and D sites:

1. Initialize the values of (D, - -+, D,, ) by assigning the
value of each B site to the connecting D site whose
corresponding w, is closest to the value of the B site.
For example, if sites D|, D,, and D, are connected to
B, and if |w, — B| < |w, — B| < |w, — B|, then assign
D, = Band D, = D, = 0 (in the case of a tie, simply
choose one to be “closest™).

2. Find the values of the G and p sites which maximize
Equation (17).

3. Update each G, p;, and D, site where j € II, U (),
as follows: Determine two sets of the p; and D; sites
(j € II, U £,) such that Equation (16) holds and
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a. In the first set, maximize Equation (17) for G, = 0.
b. In the second set, maximize Equation (17) for G, = 1.

Select the set with which to update the graph according
to whether G, = 0 or G, = 1 when it is chosen as a
random number from the conditional distribution:

®@GG, Gy Gypp 5 Gy)
IT fi0G)lp (6N x Pp(@)iG,] < [T AIG]

JELUG; GENG)

2 I1 fo©)Ip©1 % Pp©)G,1 x [ PGl

G;=0 jell, U, GEN()

(18)

4. Once this procedure is repeated on all of the G sites,
record the configuration and return to step 3.

The proof of Theorem 3 is in the Appendix.

This method is called selective stochastic relaxation
because only G sites are updated. By calculating the
relative frequency of each configuration encountered, the
relative probability that each configuration of the G sites
will occur can be estimated. The word “‘relative’ is
stressed because the distribution ®(G) only deals with a
subset of the total possible set of configurations of the G,
p, and D sites.

& Examples

CF /CHF [He plasma analysis

This algorithm has been implemented in software, it has
been tested extensively using OES data collected under
various conditions both in the laboratory and in the
manufacturing environment, and a patent application for its
implementation has been filed. Twenty-three of the
gaseous species most relevant to semiconductor
manufacturing processing have been included, with 10-80
table entries associated with each gas. A copyrighted
version of the software implemented in C is available from
the author.

The model runs sufficiently fast for real-time response in
the manufacturing environment. For example, less than
five seconds are required on a PC with a 486
microprocessor to perform 1000 iterations of the stochastic
relaxation algorithm on the data displayed in Figure 2.

Figure 4 shows a graphical view of the model applied to
the data displayed in Figure 2. To make the figure more
comprehensible, only 12 of the 23 gases are displayed. The
x symbols located within the G sites in Figure 4 designate
the most frequently occurring configuration that results
from the application of the selective stochastic relaxation
algorithm. From the algorithm, five gases were found: He,
H, CF,, CO, and F. This result corresponds to the
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conclusion of an expert spectroscopist. The resulting peak
assignments and the relative probabilities of each of the
relevant gases are shown in Figure 5.

Detecting process impurities

One of the important applications of OES is to detect
impurities in the plasma. It is not uncommon to have
impurities present during the etching and deposition
process, detracting from product quality. At best, these
process impurities reduce yield but produce product which
can be reworked. At worst, the impurities remain
undetected, and the product performs inadequately when
integrated into a final system.

Impurities are often introduced through leaks in a
system. An air leak is most easily detected by the presence
of nitrogen in the OES trace. Figure 6 is an OES spectrum
to test for reproducibility of the plasma shown in Figure 5.
Figure 6 shows that the model has clearly detected

B. E. OSBORN

Optical emission spectra

nitrogen. When installed in a manufacturing system, this
model would detect this “out of control”” condition and
would automatically stop the process to prevent further
damage of the product.

Figure 7 illustrates how a nitrogen contaminant was
identified in a helium gas bottle guaranteed to be of high
purity. This model can be used to qualify gas cylinders
before they are connected to manufacturing tools.

Model evaluation
The model meets the model selection criteria defined
earlier in the following ways:

1. Prior knowledge concerning which gases are most likely
to be present is represented in the a priori probabilities
P[G].

2. The expert’s knowledge has been incorporated in the
positioning of sites and segments. In addition, actual
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values of the conditional probabilities are derived from
an understanding of the calibration procedure and the
meaning of the tabulated relative intensity values.

3. The inherent uncertainty in the problem has been taken
into account in the stochastic structure of the model.
The selective stochastic relaxation algorithm enables the
user to determine the relative probability of the possible
solutions.

4. Knowledge from experience can be incorporated into
the model through updating the conditional probability
in Equations (10), (11), and (15).

The model has some shortcomings. First, it is very
dependent on which table entries are included. If too few
entries for a certain gas are included, recognition of that
gas may be difficult in certain instances; if too many
entries are included, additional peaks must be detected in
order to conclude that a gas is present. As a result, building
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these tables requires OES expertise and some degree of
experimentation. Fortunately, practice has shown the
model to be very robust in that gases are recognized fairly
easily despite variations in the specification of the
parameters and inclusion or exclusion of specific table
values. Experiments so far have revealed that the model is
more robust for helium-based plasmas than for those with
an argon base. This disadvantage is easily overcome
through experimentation and through updating the
conditional probabilities (i.e., Bayesian learning [9]) as the
model is exposed to spectra under various conditions.

A second disadvantage is the fact that fairly precise
calibration is necessary before the model can be executed.
For the type of low-resolution spectra that are examined, a
difference of 0.6 nm can have a drastic effect on the output
of the model. One method for solving this problem is
through a technique of dynamic calibration, in which the
model is first run with a larger value of o, with a specified

B. E. OSBORN




502

N2

Intensity

co

bili

N, . >0.997
€O+ ->0997
He 0.838
H 0.706

Wavelength . (nm)

gas which is known to be present (e.g., helium for the data
shown in Figure 2), and with only a few of the major peaks
in the graph considered (e.g., the five most intense peaks).
For this run, the prior probability of the specified gas is set
to 1.0 and the others are set to zero. Once these first few
peaks have been identified, the data are calibrated and the
process is continued with all of the peaks (or with a larger
subset of the peaks) and with o restored to its original
value (or perhaps some intermediate value). The data are
then recalibrated on the basis of the additional peaks
identified. Finally, everything is restored to its original
value, and the model is run on the now-calibrated data.
This method of using successively smaller values of o

and an increasing number of peaks is reminiscent of the
method of sieves [15]. This method has been tried for
various spectra, and has been shown to be most effective
when the calibrating gas produces distinct peaks
throughout the spectrum (as helium does in Figure 2).
When peaks for the gas exist in only one portion of the

B. E. OSBORN

% Results of applying the pattern model to OES data taken from a CF,/CHF,/He mixture in the laboratory with a nitrogen leak.

spectrum, the resulting calibration may be biased. This
technique is currently undergoing further refinement.

Concluding remarks and current work
A statistical model for interpreting optical emission
spectroscopy data is described. The method involves
combining the expertise of the spectroscopist with
knowledge gained from data to determine which gases
are present. Because the model is stochastic in nature,
probabilities can be assigned to the results, enabling the
user to determine the amount of confidence that should be
placed in the output. By utilizing standard statistical
techniques, the model can use its own output to learn from
experience. Examples are also presented from actual
manufacturing OES traces and from a laboratory
experiment showing the effectiveness of the model in
determining gas composition.

The accuracy of the model can be improved by modifying
the definition of the p and D sites. In the description above,
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% Results of applying the pattern model to OES data taken from a helium bottle which contains a nitrogen contaminant.

5

the p and D sites contain only information concerning Proof of Lemma 1 For any C € A(B, -, By),
peak locations. Other information can also be contained N u s

in these sites, including the relative intensity and the .

shape of the peak. This latter characterization would help H H Ai(p, G) x H(p, D) x H 4B,

. . o . . i=1 j=M,_,+1 t=1
in differentiating between atomic and molecular species. i

Finally, the modeling techniques described above are N M
no‘t restrlct.ed tq the 1ntfarpretat10n of OES data. With some > H H A(p, G) X H(p, D)
minor modifications, this model can be used to analyze i=1 j=M,_+1
data from other complex diagnostic tools in order to

ensure quality through real-time monitoring and control in s X0
the manufacturing environment. Such work is in progress. X H ™r®Dy -+, D, B)

=1
Appendix NooM

= (p, G) x H(p, D) x

Proof of Theorem 1  To prove Theorem 1, the following E ]_J{_IH “(p, G) (5, D) I
auxiliary proposition is required. !

s
Lemma I  If conditions (7) and (8) hold, then x [T, -+, D, B)-
C...[P) EAB,, -+, By). =1
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Forp, = 0,

H(0, 0)
H(0, D) x T =z H(0, D) x HO.D) - H(0, 0).

7

Similarly, for p; = 1,

H(1, x)
H(1, D) X T = H(1, D) X max | s

= H(1, Dj) X

H(L, D) x max [H(1, x)]

= max [H(L, x)],
where x € (o, — L, w; + L). Therefore,
H(p]" D]) xT'z H(Pj, D) vV De {0’ ((1)]. - L’ ll)j + L)}9

which implies, for any set of D sites (D,, - +*, D, ) such
that the configuration
(Gls S GN,PI, te 5PMN,D17 e ’DMN) € A(Bp “',Bs)

and any set of D sites (d,, * -+
configuration

Gy s Gppp

that

» dyy,) such that the

,PMN, dl’ Tt dMN) ¢ A(Bp Tt Bs),

N

A,'i(Pj, G,) X H(pj, [)]) X H Qt(D“, -+, D )

N

H l—[ (o)
i=1 j=M;_+1 =1

NooM

> 11 11

i=1 j=M;_;+1

Afp, G) X H(p,, d)

X H 0, ,d,);

t=1

hence, the maximizing configuration lies in
AB,, -+, By). QED. of Lemmal

Our problem is therefore to maximize Equation (6)
subject to C € A(B,, -+ - , By). By the multiplication rule
of conditional probability, Equation (6) can be written as

fIGy =+, GoPy*** s Pyys Dis++ s Dy B, -+, B

_f[Gp N’pl’.'.

X f[Dly Tt DMN|B1’ Tt Bs]s (Al)

which by the Markov property (4) is equal to

fIGy s G Py ** s PPy +* 5 Dy, ]

X fIDy, ** s Dy B, -+, Bgl. (A2)

B. E. OSBORN

5pMN‘D1; MN’ 17 Tt Bs]

The first term in (A2) is equivalent to
f[Gp Tty GN’pp tee ,pMN|Dp s DMNL

and if we assume C € A(B
can be written as

» ', By), the second term

M

fo, -+, b, xZx [] 4(B)

=1

/4

where

j,-(P,-, G,)

ISR

Gy Pt 5PMy - i=1 j=Mi_(+1

X H(p, D) % ]‘[ oD, %),B)]dD,, -,dD,, .

t=1

Therefore, for C € A(B,
written as

f[Gl"“’GN’pl"“’pMN’Dl"”’DMNlBI"..’Bs]
=FIGy s Gy Pyt * s Py Do+ Dy
x K(B,, "+, By). (A3)
€ (). QED.of

-+, By), Equation (6) can be

Equation (A3) implies that C__(P) =
Theorem 1

Proof of Theorem 2 With the structure of f [D, | p,] as
defined in (10), the optimal value of D, minimizes

ety

S ©- )0, % 0)

j=t

subject to Equation (9). The result is found by using
Lagrange multipliers. Q.E.D. of Theorem 2

Proof of Theorem 3 Define the following probability
measure:

®(G) = (G, -+, Gy

=11 H FID(G)|p(G)]
x P{p(G)|G,;] x P[G)

My

= 5 [1/1G)pG)]

¢}1

N
x Pp(G)G,,] x [T PG}, (A%)
i=1
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where

Z,= > > [1fIDG)p(G)]

Gy Jj=1

N

x Pp(@)G,,) x [T AG].
i=1

Since ®(G) > 0 V G, Equation (A4) defines a new Markov
random field on the G sites. It follows from Equation (17)
that the most probable configuration of the G sites under
®(G) (with corresponding p and D sites) is the most
probable configuration of the graph whose probability
density function is given by (5b).

The neighborhood structure of this new Markov random
field is given by the set N(i). This becomes apparent if we
rewrite Equation (A4) as follows:

1
®@G, -+, G =5 [] fID©GIp(G)]
® jerug
x Pp(G)G,) x [T AG]
GENG)

x [1 7ID(G)lp(6)]

JELUG,

x Plp(G)IG,] x [] PG,
GEN(D)
and note that the conditional probability distribution is
given by Equation (18).

We note that the updating algorithm described above is
nothing more than the stochastic relaxation algorithm on
this new Markov random field. When this algorithm is
applied, the configuration which occurs most frequently
coincides with the most probable configuration as given by
(17). Since this value for G with the associated p and D
sites is Cm(A), which by Theorem 1 equals C__ (P),
Theorem 3 is proved. Q.E.D. of Theorem 3

(AS)
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