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modeling  in 
manufacturing: 
Adapting a 
diagnostic tool 
to real-time 
applications 

This paper  describes  a  process  for 
constructing a statistical model to automate 
the  analysis  of data from  complex  diagnostic 
tools.  The  method is demonstrated on data 
taken  from  an optical emission  spectrometer 
(OES), one  of  the  most  powerful tools used in 
semiconductor  manufacturing for detecting  the 
chemical  composition  and impurity levels in 
plasma  processes.  The  analysis  of OES data 
currently requires  hours  of  manual effort by an 
expert  spectroscopist,  rendering it ineffective 
for real-time monitoring and  control.  However, 
through the  use  of statistical modeling,  the 
analysis  can  be  performed  automatically  on  a 
personal  computer in a  matter  of  seconds.  The 
process  of  model construction is examined 
in general,  and  methods  are  developed for 
demonstrating  how  information  from  an  expert 
can  be  combined  with information from the 
data in order to provide  a statistical basis  for 

analysis. The effectiveness of the  model is 
demonstrated  on  data  from typical plasma 
processes. 

Introduction 

Background 
One of the most  effective ways of influencing the quality of 
our products is to ensure consistency and reproducibility 
in the manufacturing environment. This is especially true 
in semiconductor manufacturing, where small variations in 
the plasma processes for etching and deposition can have 
drastic effects on the quality of what is produced. 

Statistical process control (SPC) [l] is a valuable tool 
for accomplishing this objective by comparing present 
performance with the past and by differentiating between 
normal statistical variation and process alteration. 
Unfortunately, many of the sophisticated tools used to 
diagnose problems in the manufacturing environment do 
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Table 1 Sample OES peaks for helium. 

Wavelength  Relative 
(nm) intensity 

388.865 500 
396.4729 20 
402.6191 50 
447.1479  200 
501.5678 100 
587.562 500 
587.597  100 
667.815  100 

not  lend themselves to classical SPC techniques. For 
example, optical emission spectroscopy (OES), residual 
gas analysis (RGA), Fourier transform infrared 
spectroscopy (FTIR), and laser-induced fluorescence 
(LIF) are all examples of analytical tools which have 

492 strong potential for use as monitors in plasma processes, 

each  providing important information about the chemical 
environment. However, the analysis of data produced by 
these tools requires expertise and can be a time-consuming 
process that limits the tool’s value for real-time process 
control applications. 

data analysis process. The focus is on OES because of 
its relative simplicity  and its usefulness in detecting 
process and  tool contamination during semiconductor 
manufacturing (see [2-41 for a description of  how 
OES works and its applicability to plasma-processing 
diagnostics). The statistical techniques that are introduced 
are generally applicable and can be used to analyze data 
from other spectroscopic tools. 

This paper describes a methodology for automating this 

Description of the problem 
OES monitors light emitted in the visible region  of the 
spectrum from electronic transitions of atoms and 
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molecules with a series of calibrated photodiodes, each 
measuring the intensity at a specific wavelength. A 
spectrum taken from a helium  gas bottle obtained with a 
calibrated OES spectrometer is displayed in Figure 1. The 
data are obtained from a low-resolution OES spectrometer 
in which the wavelengths assigned to diodes differ by 
intervals of about 0.6 nm. Higher-resolution OES 
spectrometers require longer processing times  which 
limit their practical use for  many real-time applications. 
Although the analysis described below  is also applicable to 
interpretation of high-resolution OES spectra, we focus on 
analysis of low-resolution OES data. 

A particular gas  is  identified  from its OES spectrum by 
correlating wavelengths at which peaks appear with 
previously reported wavelengths tabulated for the gaseous 
species. Part of the tabulation for spectral lines of  helium 
gas (from [5]) is shown in Table 1. The relative peak 
intensities can vary in a particular spectrum, depending on 

factors which include the power  level, the relative 
concentration of the excited species, the presence of other 
gases,  and  variations  in  the  optics. For example, in Figure 1 
the peak intensity at 501.5678 is greater than that at 
667.815, but both have the same relative intensity in 
Table 1. 

This paper discusses a procedure to build a system that 
automates the work of  an expert OES spectroscopist so 
that the gas peaks in OES spectra can be properly 
identified. 

Previous  work 
One of the simplest methods of automating OES data 
interpretation is by direct comparison with tabulated data. 
A “table-lookup’’ procedure is used to identify the species 
present in  an OES spectrum obtained from a RIE tool 
which utilizes a CF,/CHF,/He  plasma  during 
semiconductor manufacturing (see Figure 2). A gas  is 
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assigned to a particular peak if it  is located within 0.6  nm 
of a corresponding table entry. The table values for 23 
gases were used in this process, with 5-79 table entries 
associated with each gas. The results are not satisfactory. 
The 0.6-nm tolerance used in this algorithm causes overlap 
between the tabulated wavelength values and, as a result, 
every gas is found at least once. 

specially designed library of waveform peaks 
corresponding to the individual chemical species [6]. This 
method takes into consideration the multiplicity of peaks 
associated with each species and their specific shape in 
addition to wavelength location. A cross-correlation 
function is used to determine which library entries are the 
best matches for peaks in the spectra under investigation. 
However, variations may arise when the technique is 
implemented on different spectrometers under various 
process conditions. In addition, this method fails to 
consider the user’s prior knowledge concerning the 
presence of various species. 

Researchers are currently investigating more 
sophisticated models employing expert systems [7] and 
neural networks [8] for species identification. An expert 
system approach involves coding a set of rules which 
attempt to duplicate the expertise used by the 
spectroscopist. An artificial neural network model 
“learns” to interpret OES data after being exposed to 
a large  number of properly interpreted spectra. Each 
technique models one important characteristic of the 
problem: in the case of an expert system, the prior 
knowledge of the expert, and in the case of the 
neural network, the need to learn with experience. 
However, neither approach adequately incorporates 
both. 

Improvements in this technique were made  using a 

Designing  an appropriate model 
An ideal  model for solving the problem of interpreting 
OES data should incorporate 

1. Any prior knowledge concerning which gases are most 

2. The expert’s knowledge of the problem. 
3. The inherent uncertainty in the problem  leading to 

the model’s  ability to indicate the likelihood of the 
results. 

likely to be present. 

4. The knowledge that has been gained  through 
experience. 

This paper introduces a new statistical methodology for 
approaching this problem which effectively meets these 
model criteria. It begins  with a simple Bayesian 
formulation of the problem  similar to that used in other 
pattern-recognition problems [9], adding complexity to 

494 construct the desired model. 
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Components of the statistical  model 

Bayesian pattern recognizer 
Consider a mixture which may contain any combination 
of N gaseous species. Let Gi = 1 indicate that the ith 
gaseous species is present and let Gi = 0 indicate that it is 
absent. Also, let pi = 1 or 0 be used to indicate whether 
thejth table entry for this gas is present or absent in the 
graph ( j  = 1, * , m). First assume that we are dealing 
with a high-resolution OES spectrum in which peaks 
correspond exactly to the appropriate table entry values. 
We later relax this assumption to consider an actual low- 
resolution OES spectrum. From the Bayesian theorem, 

P[GiLp,, pZ,  * , P,] = q P , ,  p2.  ~,lG,l X qGi19 ( 1 )  

where P[.l-] indicates conditional probability; P[Gi] is the 
a priori probability that the gas is present or absent; and Z 
is the normalization constant. The conditional probability 
that certain peaks will be observed in the graph  given that 
the gas is present should depend on the tabulated relative 
intensities. It is much more likely that we will observe a 
peak with a relative intensity value of  500 than one with a 
relative intensity of 10. An appropriate assumption is that 

1 

q p , ,  P2, - * 9 PmlGil = qP,lGil x qP,lGiI 

X * * x qP,lGil, (2) 

where each P[p,lG, = 11 is some function of the relative 
intensity for table entry j. The conditional probability 
that a particular peak would be detected even if the 
corresponding  gas were not  present  (i.e., P b j  = lIGi = 01) 
is a small constant based on noise in the system. The 
specific value of this constant can be determined by using 
maximum-likelihood or similar parameter-estimation 
techniques on a set of learning data in a system in which 
the gases present are known. 

Once the parameters have been estimated and there 
exists an  unknown  gas mixture, the Bayesian classifier 
determines the presence of the gas in question if 

P[Gi = llpl, p2, * * , p,I > P[Gi = Ob,, p2, P,]. (3a) 

Combining Equations ( 1 )  and (2) results in the equivalent 
expression: 

qpl lGi  = 11 X qpZlGi = 11 X * * x qP,lGi = 11 

X P[Gi = 13 > P[pllGi = 01 x P[p21Gi = 01 

X * * X qpmlGi = 01 X 4 G L  = 01. (3b) 

Pattern theory model 
The above model  would be appropriate if there existed a 
perfect high-resolution OES where each peak could be 
observed at its exact wavelength. In real systems, this is 
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. . .  

1 Graphical  representation of the general pattern model used to analyze OES data. 

not the case. If the peak associated with the jth table entry 
were present in the graph, it could be observed at a 
wavelength different  from the one tabulated. This 
difference would depend on the level of resolution of the 
OES spectrometer and the accuracy of the instrument 
calibration procedure. In addition, other gases in the 
system affect which peaks of the gas under study are 
detected. It is extremely difficult to consider all of the 
complexities involved, since these effects relate to the 
basic physics of the OES process. However, a more 
realistic and accurate model can be constructed. 

From a statistical point of view, the issues raised in the 
preceding paragraph can be summarized by saying that the 
values p,,  pz, - - , p, cannot be observed directly. 
Instead, the peaks in the graph represent some deformed 
image of these values. For simplicity, consider two types 
of deformation mechanisms that alter the pj's: 

1. A simple  shift  in the wavelength. For example, if 
pj = 1, the peak is not observed at its true wavelength, 
but rather at another wavelength. 

wavelengths A, and h, are observed as a single  peak at 
wavelength a. 

2. A blurring effect, in which two distinct peaks at 

A model which takes all of the above [including Equations 
(l)-(3)] into consideration is represented graphically in 
Figure 3. This is  an  example of aputtem theory model 
whose general structure is detailed by Grenander [lo,  111. 

The circles in Figure 3 are referred to as sites, and the 
line connecting the circles are referred to as segments. 
There are four levels of sites displayed. At the top level 
are the G sites associated with the gases that may exist in 
the mixture under study. (For simplicity, only two G sites 
are shown.) The sites at the second level are thep  sites 495 
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2. We wish to construct our model in such a way as to 
favor configurations for which Dj f 0 when pj it 0 and 
disfavor configurations for which Dj f 0 whenp, = 0. 
It is therefore required that 

H(1, 0) < H(1, D) and H(0, D )  < H(0, 0) 

V D E (wj  - L,  wj + L).  

If we define P as  a particular configuration of the B sites 
and C as  a particular configuration of the G, p, and D 
sites, the statistical problem is to find the value of C which 
maximizes 

f [ @ P I  
= f [GI, * * , GN, pl, * , pM,, Dl, * * , DM,Bl ,  * * B,I. 

(6) 
This maximizing value is referred to as Cmax(P). 

stochastic relaxation [14]. Basically, this method involves 
visiting each of the hidden sites in turn and updating their 
values by choosing a random number  from the respective 
conditional probability distribution. As this process is 
continued, a distribution of configurations is generated in 
which the most likely configurations appear most 
frequently. Stochastic relaxation is a computationally 
intensive procedure and, if used on this problem,  would 
require several hours of computing  time  on a personal 
computer. To overcome this difficulty,  we introduce an 
alternative method which proves to be more  efficient when 
certain restrictions are introduced. First, however, we 
discuss the problem of parameter identification. 

The classical method for finding Cmm(P) is through 

Model implementation 

Parameter identification 
In order to implement the model, the acceptor functions 
in Equation (5) must be identified. We use general 
information concerning the parameters in pattern theory 
models [ll] and  knowledge about the structure and physics 
of the OES system (“expert” knowledge) to assist us in 
this procedure. 

introduce a simple restriction to simplify our problem. 
We  begin with the acceptor function e,(*, * * , e ) .  We 

Theorem 1 For each B,, let A, represent some 
deterministic function of the values of the k ( t )  connecting 
D sites, and  let 

A(Bl, * , B,) = {C: B, = A, V t}.  

Furthermore, define Cmm(A) as the value of C which 
maximizes Equation (5b) subject to C E A(Bl, - , B,) .  
Then, if Q, is  defined as 

such that 

if B, = A, , 
otherwise, 

(7) 

(8) 

1 
maximized forx E (wj - L ,  wj + L) ,  

then 

Cmax(P) = C,,(A). 
The  proof of Theorem 1 is in the Appendix. 

Theorem 1 tells us that under certain conditions the 
problem of  finding the configuration  which  maximizes 
Equation (5a) reduces to the much  simpler  problem of 
finding the configuration  which  maximizes Equation (5b). 
As a typical implementation of the model,  we select the 
value of Q so that B, represents a weighted average of 
connecting D sites. For example, consider 

%ti 

Dj x 5 x {Dj f 0) 

5 x {Dj f 0) 
j=r ,  

where Z, is the intensity value for the table entry associated 
with the jth peak, and where { e }  is the indicator function 
which equals 1 if the enclosed expression is true and 
equals 0 otherwise. 

Next consider the acceptor function H ( . ,  a ) .  When 
p j  = 1, Dj represents a shift in the observed value of the 
wavelength due to noise that is present in the system. 
This is observed during the calibration process, when the 
spectrum for a known  gas  is produced and the peaks are 
associated with  known tabulated data by using a regression 
procedure. Since the resulting residual error represents the 
sum of many factors, the central limit theorem suggests 
that the error distribution is  normal. Therefore, 

f [ D j  = x[pj = 11 

where K is the normalizing constant. Without loss of 
generality, we can choose K = e ’/( 1 + e ’)); K therefore 497 
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equals the probability that we do not observe the peak in 
the graph even though it should be present (i.e.,pj = 1). 
This may be due to a number of reasons, the most likely 
of which is that it is outside our region of interest, i.e., 
outside ( wj - L ,  oj + L ) .  For example, if we choose 
L to be 3u, the probability that Dj will  fall outside the 
region is 0.0026, and therefore b = -5.95. In addition, 
experimental results indicate that an appropriate value for 
u is 0.2. 

In the case where pj = 0, Dj would take on nonzero 
values because of statistical uncertainties such as noise 
in the system and stray peaks from gases not  being 
considered. It is reasonable to assume that these nonzero 
values of Dj would be uniformly distributed over the region 
of interest; hence, we can write this conditional probability 
density function as 

f [ D j  = x[pj = 01 

e" 

2 X L X (1 + e") I forx E (mi - L,  oj + L) ,  
- - 

forx = 0. 

For a noise level of  10% we would choose a = -2.197. 
With this information and the fact that conditions on 

identifiability restrict H(0,  0) = 1 [ll], we find that 
Equations (10) and (11) imply 

H(0, 0) = 1, 

H(I,O) = eb, 

forx z 0, 

Two restrictions are necessary onAji(., e )  [ll]: 

Aji(O, 0) = 1 andAji(O, 1) = 1 fo r j  # 1. 

Without loss of generality we can define 

Ajj0, 0) = 1, 

Aji(l, 0) = eEj, 

1 est if, = I, 

1 otherwise, 
Aji(0, 1) = 

e4+~,+4 i f j  = 1, 
Aji(l, 1) = 

498 eEl+J otherwise. 

The resulting conditional probability is given by 

I 

(14) 
Here, there is a term4 associated with each table entry 
value. This will be some function of the relative intensity 
value. One that works quite well  in practice is 

4 = 7.3244 + (0.018847 X q.), 
where 

K. = 

<, if f. < 100, 

100  if  100 I 4 < 150, 

150  if  150 I 4 < 250, 

225 iff .  2 250. 

There is also a term Si associated with each gas  which, as 
soon becomes apparent, need not be estimated to solve 
our problem. 

Using Equations (12) and (13), we find that the 
conditional probability of pj given Dj is given by 

exp [cj + (Gi x 4)l 
C + exp [ E ~  + (Gi x 4)] ' 4pj = 1IGJ = 

where 

When  Gi = 0, we would expect the probability that pj = 1 
to be extremely small. Furthermore, we  would expect this 
type of "noise" term to be independent of the particular 
gas or peak under consideration. This implies that E = 
V j .  By choosing E = -6.8,  we ensure that P[Pj = llGi = 01 
= 0.001. 

We conclude this section by stating the following 
proposition, which provides further information on the 
values of the D sites. 

Theorem 2 Under the conditions of Equations (9) and 
(lo),  for each B,, the values of the connecting D sites in 
c,,,JA) are either zero or have the form 

2 4 x {Di z 0} 
i=fl 
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where 

and  all sums are between i = t ,  and i = tk(,?. 
The proof of Theorem 2 is  in the Append=. 

Model solution 
To solve the model, we introduce a variation on the 
stochastic relaxation algorithm.  We make use of the 
following identity, which  follows directly from the Markov 
property (4) and from Equation (5): 

Theorem 3 (selective stochastic relaxation algorithm) 
Assume the conditions of Theorems 1 and 2, and define 
the following four sets: 

ai = G: (Mi-1 + 1) 5 j I Mi), 

q = {B,: at n (t l ,  - , tkcr,) f a, 
where D,,, * , Drk(*) are the sites which connect to site 
B,, and 0 indicates the null set; 

ni = * - , tk(,)): B, E @J, 

N(i) = {G,(1 # i ) :  rI; n a, # rzr). 

Define G,j, as the G site which connects to site pi ,  G as a 
particular configuration of the G sites, and Dj(G) andpj(G) 
as the sites which maximizef[DjIpj] for G,j, E G.  Then, 
the most frequently occurring configuration  will be Cm,(P), 
when the graph  is updated using the following  algorithm 
for determining the values of the G ,  p ,  and D sites: 

1. Initialize the values of ( D l ,  . * , DMN) by assigning the 
value of each B site to the connecting D site whose 
corresponding 9 is closest to the value of the B site. 
For example, if sites D l ,  D,, and D, are connected to 
B ,  and if Iw, - BI < Iw, - BI < lo1 - BI, then assign 
D, = B and D ,  = D, = 0 (in the case of a tie,  simply 
choose one to be “closest”). 

2. Find the values of the G andp sites which maximize 
Equation (17). 

3. Update each G,,  p j ,  and D, site where j E r I i  U ai 
as follows: Determine two sets of thepj and D, sites 
( j  E rI, U ai) such that Equation (16) holds and 
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a.  In the first set, maximize Equation (17) for Gi = 0. 
b.  In the second set, maximize  Equation (17) for G, = 1. 

Select the  set with which to update the graph according 
to whether Gi = 0 or Gi = 1 when  it is chosen as a 
random  number  from the conditional distribution: 

@(GiIG,, * * * , Gi-1, G;+l, * 9 GN) 

n f[Dj(G)[pj(G)l x P[P,(G)IG(~,I x n P[GI 
j W J n ,  GEN(i)  - - 

1 

2 n f[D,(G)lpi(G)I x P[pj(G)IGo,l x n P[GI 

(18) 

C,=O j€n ,  un, G€N(i) 

4. Once this procedure is repeated on  all of the G sites, 
record the configuration and return to step 3. 

The proof  of Theorem 3 is in the Appendix. 
This method is called selective stochastic relaxation 

because only G sites are updated. By calculating the 
relative frequency of each configuration encountered, the 
relative probability that each configuration of the G sites 
will occur can be estimated. The word “relative” is 
stressed because the distribution @(G) only deals with a 
subset of the total possible set of configurations of the G ,  
p ,  and D sites. 

Examples 

CF,ICHF,IHe plasma analysis 
This algorithm has been implemented in software, it has 
been tested extensively using OES data collected under 
various conditions both in the laboratory and in the 
manufacturing environment, and a patent application for its 
implementation has been filed. Twenty-three of the 
gaseous species most relevant to semiconductor 
manufacturing processing have been included, with 10-80 
table entries associated with each gas. A copyrighted 
version of the software implemented in C is available from 
the author. 

The model runs sufficiently fast for real-time response in 
the manufacturing environment. For example, less than 
five seconds are required on a PC with a 486 
microprocessor to perform 1000 iterations of the stochastic 
relaxation algorithm  on the data displayed in Figure 2. 

Figure 4 shows a graphical view of the model applied to 
the data displayed in Figure 2. To make the figure  more 
comprehensible, only 12 of the 23 gases are displayed. The 
x symbols located within the G sites in Figure 4 designate 
the most frequently occurring configuration that results 
from the application of the selective stochastic relaxation 
algorithm. From the algorithm,  five gases were found: He, 
H, CF,, CO, and F. This result corresponds to the 
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He H 0 CF CF, CO  SiF 0: F AI 

Optical  emission spectra 

conclusion of an expert spectroscopist. The resulting peak 
assignments and the relative probabilities of each of the 
relevant gases are shown in Figure 5. 

Detecting process impurities 
One of the important applications of OES is to detect 
impurities in the plasma. It is not uncommon to have 
impurities present during the etching and deposition 
process, detracting from product quality. At best, these 
process impurities reduce yield but produce product which 
can be reworked. At worst, the impurities remain 
undetected, and the product performs inadequately when 
integrated into a final system. 

system. An air leak is  most easily detected by the presence 
of nitrogen  in the OES trace. Figure 6 is an OES spectrum 
to test for reproducibility of the plasma shown in Figure 5. 

Impurities are often introduced through leaks in a 

500 Figure 6 shows that the model has clearly detected 

nitrogen.  When installed in a manufacturing system, this 
model  would detect this “out of control” condition and 
would automatically stop the process to prevent further 
damage of the product. 

Figure 7 illustrates how a nitrogen contaminant was 
identified  in a helium  gas bottle guaranteed to be  of  high 
purity. This  model can be  used to qualify  gas cylinders 
before they are connected to manufacturing tools. 

Model  evaluation 
The  model meets the model selection criteria defined 
earlier in the following ways: 

1. Prior knowledge concerning which gases are most  likely 
to be present is represented in the a priori probabilities 
P[GiI. 

2. The expert’s knowledge has been incorporated in the 
positioning of sites and segments. In addition, actual 
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Gas Probability 
D 
I 

He >0.997 
CF2 >0.997 

, F 0.988 
CO >0.997 

H 0.732 

I 

L 

8 J 
I 

Wavelength (nm) 

values of the conditional  probabilities are derived  from 
an  understanding of the calibration procedure  and  the 
meaning of the tabulated  relative intensity values. 

3. The  inherent  uncertainty in the problem has  been  taken 
into  account in the  stochastic  structure of the model. 
The  selective  stochastic relaxation  algorithm enables  the 
user  to  determine  the relative  probability of the possible 
solutions. 

4. Knowledge  from  experience  can  be  incorporated  into 
the model through updating the conditional  probability 
in Equations (lo), (ll), and (15). 

The model has  some shortcomings. First, it  is very 
dependent  on which table  entries  are included. If too few 
entries  for a certain  gas  are included,  recognition of that 
gas  may  be difficult in certain  instances; if too  many 
entries  are included,  additional peaks  must  be  detected in 
order  to conclude  that  a  gas  is  present. As a result, building 

these  tables  requires OES expertise  and  some degree of 
experimentation. Fortunately,  practice  has  shown  the 
model to  be  very  robust in that  gases  are recognized  fairly 
easily despite  variations in the specification of the 
parameters  and inclusion or exclusion of specific table 
values.  Experiments so far  have revealed that  the model is 
more  robust  for helium-based  plasmas than  for  those with 
an argon base.  This  disadvantage is  easily overcome 
through experimentation  and through  updating the 
conditional  probabilities (i.e., Bayesian learning [ 9 ] )  as  the 
model is exposed  to  spectra  under  various  conditions. 

A second  disadvantage is the  fact  that fairly precise 
calibration is necessary  before  the model can  be  executed. 
For  the  type of low-resolution spectra  that  are examined,  a 
difference of 0.6 nm can  have a drastic effect on  the  output 
of the model. One method for solving  this  problem  is 
through  a technique of dynamic calibration, in  which the 
model  is first run  with a  larger value of u, with a specified 501 
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1 Results of applying  the  pattern  model  to OES data  taken  from  a  CF,/CHF,/He  mixture  in  the  laboratory  with  a  nitrogen leak. 

gas which is known to be present (e.g., helium for the data 
shown in Figure 2), and with only a few of the major peaks 
in the graph considered (e.g., the five most intense peaks). 
For this run, the prior probability of the specified gas is set 
to 1.0 and the others are set  to zero. Once these first  few 
peaks have been identified, the data are calibrated and the 
process is continued with  all of the peaks (or with a larger 
subset of the peaks) and  with u restored to its original 
value (or perhaps some intermediate value). The data are 
then recalibrated on the basis of the additional peaks 
identified.  Finally, everything is restored to its original 
value, and the model is run on the now-calibrated data. 
This method of using successively smaller values of u 
and an increasing number of peaks is reminiscent of the 
method of sieves [15]. This method has been tried for 
various spectra, and has been shown to be most  effective 
when the calibrating gas produces distinct peaks 
throughout the spectrum (as helium does in Figure 2). 

502 When peaks for the gas exist in only one portion of the 

spectrum, the resulting calibration may be biased. This 
technique is currently undergoing further refinement. 

Concluding  remarks  and  current  work 
A statistical model for interpreting optical emission 
spectroscopy data is described. The method involves 
combining the expertise of the spectroscopist with 
knowledge  gained  from data to determine which gases 
are present. Because the model is stochastic in nature, 
probabilities can be assigned to the results, enabling the 
user to determine the amount of confidence that should be 
placed  in the output. By utilizing standard statistical 
techniques, the model can use its own output to learn from 
experience. Examples are also presented from actual 
manufacturing OES traces and from a laboratory 
experiment showing the effectiveness of the model  in 
determining gas composition. 

The accuracy of the model can be improved by modifymg 
the definition of thep and D sites. In the description above, 
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the p and D sites contain only information concerning 
peak locations. Other information can also be contained 
in these sites, including the relative intensity and the 
shape of the peak. This latter characterization would  help 
in  differentiating between  atomic  and  molecular  species. 

Finally, the modeling techniques described above are 
not restricted to the interpretation of OES data. With some 
minor  modifications, this model can be used to analyze 
data from other complex diagnostic tools in order to 
ensure quality through real-time monitoring  and control in 
the manufacturing environment. Such work is in progress. 

Appendix 

Proof  of Theorem 1 To prove Theorem 1, the following 
auxiliary proposition is required. 

Lemma 1 If conditions (7) and (8) hold, then 
qJ9 E - 9 Bs) .  

Proof  of Lemma 1 For any C E A(Bl, , Bs),  

N M ,  S n n Aji(Pj, Gi) x MPj9 9.1 x n 4,(B,) 
i= l  j=M,_I+l f = 1  
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Forp, = 0, The first  term in (A2) is equivalent to 

f[G1, * > GN7 PI, * 9 P M , J ~ ~ ,  * * 9 D ~ J ,  

and if we assume C E A(Bl, , Bs) ,  the second term 
can be written as Similarly, for pJ = 1, 

H(1, D,) X r 2 H(1, 0,) X max 
S 

FIDl, * , DMJ x z X n r = l  q,(B,) 

W 
9 

where 

Proof of Theorem 2 With the structure off [DJ1p,] as 
defined  in (lo), the optimal value of DJ minimizes 

2 (D, - o,)*{D, f 0} 

subject to Equation (9). The result is found by using 
Lagrange multipliers. Q.E.D. of Theorem 2 

'kit) 

j = r ,  
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where 

MN 

z, = . * ’  nf[Dj(G)bj (G) l  

x P[pp)IG(j)l x n P[GiI. 

GI GN J=1 

N 

i = l  

Since @(G) > 0 V G, Equation (A4) defines a new  Markov 
random field on the G sites.  It follows from  Equation (17) 
that  the most probable configuration of the G sites  under 
@(G) (with correspondingp  and D sites)  is the most 
probable configuration of the graph whose probability 
density function is given by (5b). 

The neighborhood structure of this  new  Markov  random 
field is given by  the  set N(i) .  This  becomes  apparent if we 
rewrite  Equation (A4) as follows: 

1 
@(GI, * 7 G N )  = - n f [D,(G)lp,(G)I 

” JEQ’J4 

x PIPj(G)IG(j)l x n P[GI 

x n f[4.(G)bJ(G)1 

x PIPJ(G)IG,j)l x n P[GI, (M) 

GEN( i )  

iZW4 

and  note  that  the conditional  probability  distribution  is 
given by  Equation (18). 

nothing more  than  the  stochastic relaxation  algorithm on 
this  new  Markov  random field. When  this  algorithm  is 
applied, the configuration which  occurs  most  frequently 
coincides with the  most  probable configuration as given by 
(17). Since this value for G with  the  associatedp  and D 
sites is Cm,(A), which by  Theorem 1 equals C,,,,(P), 
Theorem 3 is  proved. Q.E.D. of Theorem 3 

We  note  that  the updating  algorithm described  above is 
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