The quartz
resonator:
Electrochemical
applications

by K. K. Kanazawa
O. R. Melroy

Since the discovery that the oscillations of
resonating quartz crystals can be sustained
in a liquid environment, such crystals have
quickly found use as a sensitive microbalance
in electrochemistry, making possible in situ
measurements of mass changes at the
electrochemical interface. The early
contributions of the IBM Almaden Research
Center to this exciting field of development are
sketched. The principles of operation are
detailed, with emphasis on an intuitive
description to permit considerations of new
applications. Mass density changes of the
order of 10 nanograms per square centimeter
(ng/cm?) are routinely detectable as changes
in the resonant frequency of about a hertz.
The mass density of a monolayer of material
ranges from a few tens of ng/cm? for
polymeric materials to a few hundreds of
ng/cm? for metals. Detailed analysis of the
electrical behavior of the resonator in liquid
media shows that the resonant frequency, the
quality factor of the resonance, and the
admittance at resonance are all sensitive to
the viscoelastic properties of the contacting
liquid, having implications in the study of the
behavior of non-Newtonian fluids, including
polymeric films.

introduction

The piezoelectric quartz resonator has been used since the
1960s for monitoring film deposition and growth in vacuum
deposition systems. A general discussion of the properties
of quartz crystals as used in resonators can be found in the
review by Brice [1]. The resonator consists of a particular
cut of a single crystal of quartz (the AT cut is popular for
these applications) and takes the form of a flat circular disk
having metallized electrodes on the two opposing surfaces,
as shown in Figure 1. The electrodes are typically gold or
platinum layers of the order of a few thousand Ain
thickness. In its most common implementation, this
electromechanical resonator is used as the frequency-
determining element of an electronic oscillator, and the
changes in the oscillation frequency are recorded. The
resonant frequency is generally of the order of several
MHz. Mass uptake or removal on the electrode surface is
reflected by a change in its resonant frequency. This
relationship was first quantified by Sauerbrey [2], showing
that the frequency decreased linearly with mass uptake.
Subsequent studies have shown the validity of this
relationship for thin metallic films; with increasing film
thickness, however, important deviations were found.
Additional studies extended the thickness range [3-6]. The
identification of the key source for the failure of the linear
relationship as the elastic behavior of the overlying film
was made by Miller and Bolef [7]. A useful formulation of
this model was presented by Lu and Lewis [8], who
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Sketch of a typical quartz transducer used as a resonator for gravi-
metric measurements. The electrodes are paddle-shaped and are
shown with unequal radii. Associated shear motions occur in the
plane of the disk in a direction chosen to be along the direction of
the handle of the paddles.

developed a concise expression for the frequency change
including the elastic properties of the film.

During the late 1970s, the quartz microbalance provided
a key measurement capability as a film deposition monitor.
Several investigators had considered the use of the
resonator in liquid media, but had discarded the idea on
the grounds that liquids would completely dampen the
mechanical resonance. In 1980, Nomura [9] constructed a
microbalance system and showed that despite the
conceptual objections, the oscillations of the quartz
resonator could be maintained in a liquid. He has since
used improved versions of the systems for a great variety
of analytical measurements [10-13]. Also reported in 1980
was the use of such resonators as detectors in liquid
chromatography [14]. These accomplishments spurred the
continually increasing use of the microbalance for studies
in electrochemical environments.

To most successfully use the properties of the resonator
in a liquid environment and to expand its range of
applications requires a fairly detailed understanding of its
behavior in such an environment. An intuitive description
of the behavior is given, not only to provide a useful basis
for working with the resonator, but also to give a more
concrete meaning to the mathematical descriptions to
follow. It is assumed that use is made of AT-cut quartz
crystals. The direction normal to the planar faces of the
disk is assumed to be the z direction. As indicated in
Figure 1, the two electrodes are assumed to be of unequal
areas. An electrical potential across the piezoelectric
quartz crystal creates a shear strain parallel to an x axis
which lies in the planar face. If the potential is made
alternating, bulk shear waves propagating in the z direction
are excited. These waves reflect from the upper and lower
surfaces. At certain critical frequencies of excitation, the
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waves interfere constructively, giving rise to
electromechanical resonances. Values for the quality
factor, or Q, of these resonances (the ratio of the resonant
frequency to the full width in frequency at half the
maximum amplitude of the conductance) are quite high.
Typical values for the resonators in our laboratory
routinely run in the range of many tens of thousands. At
these resonances, standing sinusoidal shear waves are
created in the bulk of the quartz having antinodes

(points of maximum amplitude) at the exposed surfaces.
Considerations of symmetry show that for the
symmetrically loaded quartz resonator, only the
fundamental and its odd harmonics can be excited. The
shear motions on the upper and lower surfaces are in
opposite directions. The amplitude of the shear vibration
depends upon the applied potential and the quality factor
of the resonator, but can be calculated to be as small as
angstroms with voltages of the order of a volt. Despite the
small amplitude of this vibration, the forces applied to a
film deposited on the surface of the resonator (and vice
versa) are very large, being proportional to the
acceleration, which increases as the square of the applied
frequency. The forces acting on such an overlying film
amount to tens of thousands of g. The large acceleration
of the surface is the source of the extraordinary mass
sensitivity of the microbalance.

As previously mentioned, the free surfaces of the
resonator are antinodes of vibration; this property gives
rise to an important simplification. The acoustic shear
waves generated in the quartz crystal are coupled to any
overlying film, of course. But in the case of a ““thin” film
having thickness negligible compared to the wavelength of
the coupled shear wave, it is essentially unstrained
because the film lies in an antinodal region. Its effect on
the resonant frequency of the resonator is then
independent of its acoustical properties and dependent
only on its mass density. This is the basis for the linear
relation between the mass density and frequency change,
as expressed by Sauerbrey. The difference between the
initial unloaded frequency f,; and the frequency when
loaded with the film f, is Af = f,, — f,, and is given by

2

Af = — ’ 1
\f \/p—ol:;m (1)

where f is the resonant frequency of the unloaded
resonator, m’ is the mass density, p, is the density of the
quartz crystal, and g, is its elastic shear modulus. With
the sensitivity as described by Equation (1), applications
were quickly extended from the vacuum environment to
analytical chemical areas [15, 16]. As the film thickness
increases, an increasing fraction of the shear wave
occupies the film, and the quartz with its overlayer must
be considered as a compound resonator. The shear waves
reflect not only from the free surfaces of the quartz and
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the overlying film, but also from the interfacial boundary.
The influence of a finite film thickness was studied in some
detail by Miller and Bolef [7] for elastic (loss-free) films
and was cast in an elegant form by Lu and Lewis [8]. It
was found that the simple linear relationship of Sauerbrey
was valid up to frequency changes of about 2%; beyond
that region a closed analytical expression was obtained
which included not only the density of the film but its
elastic shear modulus as well.

If the film is not perfectly elastic, but also exhibits
viscosity, the resulting frictional dissipation absorbs energy
from the waves. Losses in the film profoundly change the
behavior of the resonator. The statement that “liquids
cannot support a shear wave’” is common and underlies
the earlier belief that the acoustic shear waves coupled
from a resonator into an interfacing liquid would suffer
such large losses that the resonance would be lost. The
work of Nomura, showing the continued oscillation of the
quartz resonator in liquid, prompted a reexamination of
this matter; it was shown that the losses incurred by
coupling the shear wave into the liquid were limited by the
very fact that shear waves are not supported in the liquid.
The amplitude of the coupled shear waves decreases
exponentially with distance, and the finite depth of
penetration limits the loss. The frequency of the resonator
is, however, decreased because of the additional mass, and
the losses of the resonator are substantially increased,
reflecting the viscous slippage of the shear waves in the
liquid. Theoretical calculations for a typical 5-MHz
resonator with a Q of 1.3 x 10° predict a frequency
decrease by 700 hertz and a drop in Q to 3.5 x 10 if one
of its faces is exposed to water. In practice, one often
finds that the observed frequency decrease is larger than
this value. This has been ascribed to the roughness of the
surface, entraining some liquid in surface “‘pockets’ and
causing an additional frequency decrease because of the
mass of the trapped liquid.

The quartz surface at the liquid interface is very close to
being an antinode for liquids which are Newtonian, e.g.,
most common solvents. The principal effect of the liquid is
a decrease in the Q of the resonator and an additional
constant offset in its resonant frequency. The sensitivity to
deposited mass remains unchanged.

The foregoing qualitative discussion was intended to
provide an intuitive understanding of the operation of the
quartz resonator. A more quantitative treatment is required
to provide quantitative analysis of experimental data, to
provide predictive capabilities for new applications, and to
provide a means of assessing sensitivity to possible
interfering mechanisms.

Quantitative description

The fundamental equations and boundary conditions which
are invoked to derive quantitative relations for the

IBM J. RES. DEVELOP. VOL. 37 NO. 2 MARCH 1993

g 2=l e
Overlayer 3\
¢ z=d
\‘\
\\\
Quartz .
crystal AN
\\\
N
LY
‘\
. z2=0

Geometry assumed for compound resonator analysis. Shear dis-
placement during resonance is indicated by the dotted line.

resonating system not only provide a clear view of the
approximations made, but also direct attention to those
aspects of implementation of the technique to which
particular care must be given. For these reasons, the
mathematical descriptions are sketched in the following
section, which is not prerequisite for an initial general
reading of the applications, but provides a basis for a more
in-depth approach.

The quartz resonator coupled to an overlayer forms a
two-layer compound resonator in the general case. This
two-layer structure is sketched in Figure 2. The origin of
the z axis (z = 0) is assumed to lie in the plane of the
lower free surface of the quartz; the thickness of the
quartz is designated as €, and the thickness of the
overlying film is designated as e. The dashed line
designates the transverse shear amplitude, u(z, t). Two
methods of proceeding under these guidelines are possible.
In what we call the “mechanical model,” the electrical
properties of the quartz are not specifically included, and
the problem is treated purely as the mechanical resonance
induced by the constructive interference of the shear
waves in the quartz crystal and the overlayer. The
piezoelectric property of the crystal can be included in a
somewhat ad hoc manner, knowing that the principal effect
of its piezoelectric property on its mechanical shear motion
is to make it appear to have a larger shear modulus. An
effective “stiffened” value is used to describe the shear
modulus in the stress—strain relation for the crystal. This
simplified mechanical model has the virtue that an
analytical expression can be obtained for the resonant
frequency. The solution, however, describes only the
resonant frequency.

A more general, ““‘complete’ solution can be obtained
by specifically including the electrical properties of the
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quartz crystal and the attendant electrical boundary
conditions. A complete solution to the problem was first
given by Benes [17] and applied to the important problem
of the harmonic behavior of resonators with elastic
overlayers. An alternate physically based approach was
taken by Reed et al. [18], who specifically treated the case
of the viscoelastically loaded resonator. This type of
treatment obtains as a solution the electrical admittance of
the compound resonator at arbitrary frequencies. From the
admittance, both the resonant (series) and antiresonant
(parallel) frequencies can be determined for the
fundamental resonance as well as for the harmonics. In
addition, other parameters such as the resonant Q and the
resonant resistance can also be determined. This ability to
determine the effect of the overlayer’s mechanical
properties on several measurable resonator parameters
suggests that admittance studies, or, equivalently,
impedance studies of these resonators have the potential
for providing additional information concerning overlayer
effects.

® Mechanical model

The results of such an analysis have been briefly described
earlier [19], but the physical basis that underlies it was not
included. Here we trace the development of the analysis,
starting with the general mechanical stress—strain relation

ou(z, t) vz, t)

= + . 2
o T )

where IT is the shear force applied to the material in N/m’,
w is the elastic shear modulus in N/m’, u(z, ) is the
spatial displacement in shear of the material on the plane z
at time ¢ in meters, n is the shear viscosity of the material
in N+s/m®, and v(z, t) is the velocity of the spatial
displacement, viz., v(z, t) = du(z, t)/dt in m/s. The
strains are assumed to be linearly dependent on the stress,
and the viscosity of the quartz is assumed to be zero.
When Equation (2) is used to describe the quartz, p takes
on the effective value of the shear modulus By = 2.947 X
10" N/m”®. This value for the effective shear modulus is
obtained from the value for the so-called frequency
constant of 1670 kHz-mm given in Sauerbrey’s original
paper [2]. It is assumed that the quartz crystal is
essentially lossless. When Equation (2) is used to describe
the overlayer, the values for the overlayer, 4, and 7, , are
used. The relation can be used for pure Newtonian liquids
where u, = 0 or for the general viscoelastic material.

In addition to the stress-strain relations for the two
materials, it is also necessary to use Newton’s second law
via the net force per unit area applied to a slab of material
of thickness dz; thus,

oll du(z, t)
—dz = pdz
0z ot

3)
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The stress-strain relations, coupled with Newton’s law,
are sufficient to show that in the harmonic approximation,
where we restrict our attention to variables which are
varying as e, the solutions for the displacement u(z, )
take the form of shear waves traversing the media,
undamped in the case of quartz where the viscosity had
been assumed to be zero, and strongly damped in the case
of Newtonian liquids. The relations take the general form

u(z’ t) = [17+ev(jk+a)z + U~e+(jk+a)2]eju)l’ (4)

where U, and U _ are the wave amplitudes traveling in the
+2z and —2z directions, respectively, k is the propagation
constant for the shear wave, and « is its decay constant.
Precise forms for k and « are given in the Appendix. They
are both functions of the density of the medium and its
shear modulus and viscosity. For the overlayer, « tends
toward zero as the viscosity decreases, vanishing for

n = 0.

To find the resonant frequencies, however, it is
necessary to invoke the mechanical boundary conditions
which must be satisfied. The two free surfaces, the
uncoated face of the quartz crystal and the free surface of
the overlayer, are presumed to be unconstrained. That is,
no stress is assumed to be applied to these surfaces.
Defining the free surface of the quartz to be at z = 0 and
that of the overlayer to be at z = € + &, on those two
planes, IT = 0. At the interface between the quartz and the
overlayer located at z = €, the following conditions apply:
First, the stress across the interface must be continuous,
namely

Hle(e) _ HFilm(e). (5)

Finally, the so-called ““no-slip”” condition is assumed to
apply; that is, the displacement across the interface is
assumed to be continuous. Thus,

quZ(e) =u Film(e). (6)

By requiring that the waves in the media meet these
boundary conditions, one is led to an equation in complex
variables which must be satisfied. Both the real part and
the imaginary part cannot be simultaneously satisfied. In a
simplified approach (referred to as the “mechanical
model”” approach), it is assumed that the solution
corresponds to satisfying the real part of this equation.
This leads to a frequency described by

Aw
—@yPoit tan 77:
0

1 - e—4zxs

= (pa - wk
(,ua (& 7’) 1+ e—4as + 28—4015 cos 2ke

) .
2e """ sin 2ke
e 4 + 2¢ 7% cos 2ke

+ (uk +
(p wan)1+
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Here, w, is the initial unloaded frequency of the resonator
and Aw is the frequency change with respect to that
unloaded frequency. The assumed satisfaction of only the
real part of this equation is a crucial approximation in this
model, but comparisons with the results from a more
complete model, to be described next, show excellent
agreement. It is felt that this is a consequence of the fact
that the Q value of the compound resonator continues to
be high, even when the overlayer is a liquid.

® Complete model
By using a more rigorous model (referred to as the
““complete model’’), the result is obtained in the form of
the electrical admittance of the compound resonator as a
function of the applied frequency. As stated earlier, a
sinusoidally varying electrical potential applied across the
electrodes of the quartz portion of the compound resonator
is assumed to generate shear waves in the quartz which
are then coupled into any overlayer. At particular
frequencies, the shear waves will interfere constructively,
giving rise to the resonances. An electrical current is also
induced by the rf voltage, and the phase and magnitude of
this current relative to the exciting voltage e reflect the
mechanical behavior of the compound resonator. This
current-voltage relationship is essentially linear and can be
described by the relation i = Ye_, where ¥ is the
admittance, the inverse of the impedance. In the following
description, we have borrowed heavily from the formal
descriptions given by Tiersten [20].

The stress—strain relation for the overlayer continues to
be described by Equation (2), but the stress-strain relation
for the quartz takes the form

ou(z, t)

66 3z

ov(z, t) ad

+ e, —
dz % 9z’

8)

M=c + Mg
where ¢, is the mechanical shear modulus for the quartz,
7, is the “viscosity™ of quartz, e, is the piezoelectric
constant appropriate for the AT-cut quartz (¢, = 2.901

x 10" N/m®, and e,, = —0.095 C/m®. The quartz
““viscosity’’ is purely an empirical constant and is included
to give the unloaded resonator a finite loss. We have found
that a value of 5, = 0.007 N-s/m” yields a theoretical loss
for unloaded resonators which approximates the losses in
our crystals. In addition to this mechanical stress-strain,
the constitutive electrical equation is described by

ad
D, = eyu(z,1) - &, 2 &)

where D, is the electrical displacement in the quartz and
£,, is the quartz dielectric constant appropriate to this
geometry. This equation specifically couples the
mechanical and electrical variables. This set of equations
again describe shear waves having the same form as given
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in Equation (4), with the difference being that for quartz,
the expressions for the propagation constant k,, and the
decay constant a, differ in detail, as shown in the
Appendix.

The boundary conditions are the same as those imposed
for the mechanical model, and in addition, two electrical
boundary conditions are imposed, namely that the
potentials at the surfaces of the quartz crystal are given by

60, 1) = ¢ (10a)
and
B, 1) = — e’ (10b)

Detailed means for obtaining the admittance from these
equations are presented elsewhere [18] and not reproduced
here. However, since an attempt is made here to convey
the physical bases of the development, the procedure for
calculating the admittance is described. Since the
admittance is the current-to-voltage ratio, an expression
for the current density must be obtained. Following
Tiersten, the current density is taken as the time derivative
of the surface charge density, which in turn is the integral
of the electric displacement at the surface. For any given
frequency w, the admittance Y is a complex function of the
assumed parameters. We indicate this dependency by
writing

Y = ¥, pgs ¢ Ng» € €10 € PLs> By M5 €)s (11)

where the variables containing the subscript L represent
values for the overlayer. The specific relationships that
apply are given in the Appendix. This formulation was
obtained using a conceptually simple physically based
model. We have shown that the earlier study by Benes [17]
using equivalent circuit methods yields the identical result
when his solution is generalized for a viscoelastic
overlayer.

A very useful visual presentation of the information
contained in the admittance function is provided by the
admittance diagram. The real part of the admittance, the
conductance G, is plotted along the abscissa, and the
imaginary part, the susceptance B, is plotted along the
ordinate. For the sake of illustration, the admittance
diagram for frequencies in the neighborhood of the third
harmonic resonance of a 5-MHz AT-cut quartz crystal in
contact with water is shown in Figure 3. The locus of
points traces a circular pattern, traversing in a clockwise
fashion with increasing frequency. The effects of the
indicated materials parameters on the quartz resonator can
be characterized by such an admittance diagram. The
frequency f; is the ““intrinsic”” resonant frequency of the
resonator. This ““intrinsic’’ frequency is defined as that
frequency where the conductance is a maximum.
Frequencies at which the admittance is real (where the
phase is zero) are of interest, since an ideal electronic
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Admittance diagram for the third harmonic resonance of a 5-MHz
crystal having one face immersed in water. Frequency increases
in the clockwise direction. The three principal resonances are
shown and described in the text.

circuit can be designed to oscillate there. These are the
““series-resonant’ frequency f; and the “‘parallel-resonant”’
frequency f,, in analogy with an equivalent electrical
circuit. Another characteristic which summarized the
resonant behavior is the value of the conductance at f].
This inverse of this conductance is the resistance of the
compound resonator at its intrinsic resonance, R = 1/G__,
and characterizes the losses in the resonator. The quality
of the resonance is characterized by the quality factor Q,
representing the ratio of the peak energy stored in the
energy-storing elements to the energy dissipated per cycle
during the resonance. The value of Q is given by the ratio
of the resonant frequency to the frequency interval
between those frequencies at which the conductance is half
its peak value. The radius of the circle is 1/2R. As the
losses increase, the radius of the circle decreases.

The ordinate of the center of the circle is not located on
the abscissa, but has the same value as the ordinate of the
point f,. This displacement of the center along the ordinate
results from the capacitance between the electrodes of the
device and includes not only the dielectric capacitance of
the quartz, but also the external wiring and circuit
capacitances, C, . The ordinate has the value «C, . The
capacitance C, , takes on a special significance in the case
of lossy overlayers, because as the losses increase, the
circle radius is expected to decrease. It is clear that if the
losses increase such that R increases toward the value
120C,, fs and f, approach one another; additionally, if
R exceeds this value, the circle will no longer intersect the
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abscissa. In the case of an oscillating circuit, the phase can
no longer attain the null value required for constructive
feedback, and oscillations should cease. Thus, the
importance of keeping the wiring and circuit capacitances
to a minimum when using the resonator with lossy media
such as liquids cannot be overstated.

The measured quantities for most experiments are the
resonant frequencies and their changes. To quantitate the
results with the help of the theoretical calculations, the
data must be compared with the appropriate resonance.
This section is concluded by demonstrating that results
obtained by using the mechanical calculation, while not
rigorous, are in excellent quantitative agreement with the
intrinsic resonance calculations of the more complete
model. To make these comparisons, the frequency from
the mechanical model, labeled f,,, and those from the
complete model, f,, f;, and f,, are determined both for the
unloaded resonator and for the resonator loaded with a
variety of overlayers. The changes of the resonant
frequency Af,,, Af;, Af;, and Af, are then calculated and
compared. These calculations are computed both for the
fundamental resonance and for the third harmonic.

Before examining the results of those calculations, it is
instructive to examine two situations which demonstrate
that the mechanical resonant frequency f,, is most closely
related to the parallel resonant frequency f,. This is
perhaps not surprising, since at parallel resonance the
admittance is nearly at a minimum, and the current is
consequently negligibly small—close to the case for the
freely vibrating resonator. For the free mechanical
resonances at the fundamental and third harmonic, one
would expect exactly a factor of three in the ratio of the
frequencies. This is, in fact, true for f,, and for f,. In
contrast, for f; and f;, the ratios are 3.00843. Also, for an
elastic overlayer, e.g. a 20-um-thick layer of copper, the
changes Af,; and Af, are both found to be —799 610 Hz,
while the changes Af; and Af; are found to be —798 010 Hz.
The connection between the two sets of resonances is
clearly established by these results; the percentage
difference in the frequency changes between the two sets
is less than a tenth of a percent.

The changes incurred when the overlayer is a thick
liquid layer are quite different. The responses to three
liquids have been calculated, and the results are tabulated
in Table 1. The surprising result is that for the case of
liquids, Af,, mirrors f; rather than f,. In the case of
mercury, the viscosity is large enough that no series or
parallel resonance was expected to exist for the third
harmonic. From these calculations, it can be concluded
that the mechanical model is quite applicable and that the
convenience of its analytical form can be used when only
the frequency change is of interest.

A shear wave coupled to a liquid has only a finite depth
of penetration, limiting the loss of energy into the liquid.
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This depth is of some interest to electrochemists, since it
is useful to compare it with hydrodynamic boundary
layers, diffusion layers, electrical double layers, etc. In
liquids, the propagation constant and the decay constant
have the same value. A depth of penetration & can be
defined by the inverse of the decay constant,

27
6= ‘/——L. (12)
wp,

For water, this is about 2400 A at 5 MHz. In mercury, this
depth is quite small, about 850 A. For acetonitrile and
dimethyl formamide, it is 1700 and 2400 A, respectively.
Depths can be larger, e.g., 6400 A for n-hexanol. In
general, they are of the order of a few thousands of A.
Changes in the liquid properties within this depth should
result in changes in frequency and/or Q. A pictorial
representation of a shear wave coupled into water from a
5-MHz resonator is given in Figure 4. The normalized
displacement is shown as a function of distance into the
water at various times, over a half-period interval. The
strong predicted damping of the wave amplitude is evident.

Non-electrochemical applications

A feature common to the use of the quartz resonator in the
electrochemical environment is the interfacing of the
crystal with a liquid or other lossy environment. Before
illustrating some electrochemical applications, we describe
examples of related studies at the IBM Almaden Research
Center on the behavior of the resonator in liquids and
other lossy media. During the development of the
theoretical descriptions for the resonator behavior, several
studies were carried out to find empirical support for the
descriptions. Experiments were conducted in the classical
manner (that is, with the crystal forming part of an
oscillating circuit), and changes recorded in the oscillation
frequency. In a group of early studies, one face of the
quartz crystal was in contact with a simple liquid [21]. The
calculations involved were equivalent to those for the
mechanical model with a purely viscous overlayer. The
frequency change was related to the density p, and
viscosity 7, of the liquid through the relation

[ P
AfM = —fg/z Wpo (13)

The system, consisting of a mixture of ethanol and water,
provided a stringent test for these calculations, since the
p_m, product for the mixture passes through a maximum in
the neighborhood of a 40% ethanol-water mixture. In
Figure 5, we show a comparison between the calculations
using Equation (13) and the measured values, shown as
open circles. The frequency of the resonator with pure
ethanol was taken as the reference frequency. The
agreement was quite good, providing a quantitative
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Three-dimensional plot of the predicted propagation of a shear
wave into water. The vertical axis represents the normalized dis-
placement, the time axis represents a half period of the wave, and
the distance axis represents the distance into the liquid.

Table 1 Comparative changes in resonant frequencies.

Liquid Harmonic  Af; Af Af, Afy
(Hz) (Hz) (Hz) (Hz)
Water 1 -697 —651 -729 -697
3 —-1206 —-942 1590 -—-1207
o-nitrotoluene 1 —1285 -1200 -—-1391 -—1285
3 —2223 —1756 -—3759 ~2225
Mercury 1 —3290 —2630 —4009 3288
3 -5691 nores. nores. —5696

agreement and also reflecting the maximum density
viscosity product. Equation (13) was also compared to the
behavior of glucose mixtures [22]; the expected monotonic
behavior with increasing sugar concentration was found.
The frequency shifts for resonators interfaced with liquids
have been observed and reported for a large number of
solvents by Nomura et al. [23, 24] and by Yao and Zhou
[25]. While these shifts are not discussed in any detail
here, their observed shifts are found to be consistent with
(13), when surface roughness is taken into account.

When the liquid studies were extended to very viscous
fluids, such as the perfluoropolyethers, serious
discrepancies between the predictions of theory and the
observed shifts were noted [18]. For these studies, the
crystal was treated as a passive element, and its
admittance spectrum was recorded using an impedance
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Frequency change " (Hz)

Percent EtOH

Comparison of observed frequency changes for a water—ethanol
mixture (circles) with the quantitative predictions for a Newtonian
fluid (solid line).

analyzer. A series of six fluids with molecular weights
ranging from 1200 to 6500 g/mol were studied, and the
associated frequency changes and resonant resistances
were recorded. From the published values for the density
and dc viscosity of the fluids, best-fit curves were used to
obtain values for the density and viscosity of the fluids as

Frequency change (kHz)

2000 4000 6000 8000

Molecular weight ‘(gz/mol)

Comparisons of the observed frequency changes for a non-
Newtonian fluid (circles) with the quantitative predictions for a
Newtonian fluid (dashed line) and Maxwellian fluid (solid line).
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a function of molecular weight. In this initial treatment, the
fluids were considered to be Newtonian; that is, it was
assumed that they could be characterized solely by a
frequency-independent viscosity. By using these values,
theoretical predictions were obtained for the frequency
change and resistance of the resonator. The predictions are
indicated by dashed lines in Figures 6 and 7. The empirical
data are shown as circles. For both the frequency change
and the resistance, the discrepancy is obvious. These
discrepancies were resolved by recognizing that at the
frequencies used, the fluid exhibits elastic as well as
viscous behavior. One model for such behavior is
contained in the Maxwell model, in which the viscosity
and shear modulus are assumed to be frequency-
dependent. For that model,

By 1

+j L= ——
(R (1 +jwr)?’

(14)
where 7, is the dc viscosity, 7 is an empirically determined
relaxation time and is related to the molecular weight, and
B is an empirical coefficient sometimes interpreted as
reflecting a distribution of relaxation times. When the fluid
is treated as a viscoelastic Maxwellian fluid, the complete
model yields the solutions given by the solid lines in the
figures. No protracted effort was made to find a “good”
fit. The Maxwellian description modifies the Newtonian
description in a manner that brings both the frequency and
resistance values much closer to the observed values. The
quartz resonator is sensitive to both the viscosity and
elasticity of the overlayers, and the predictions of the

Resistance (k)

Comparisons of the observed resistance changes for a non-
Newtonian fluid (circles) with the quantitative predictions for a
Newtonian fluid (dashed line) and Maxwellian fluid (solid line).
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complete model are in semiquantitative agreement with
experiment. It appears that the resonator can fill a role in
studies of the viscoelastic properties of thin films, but
much more quantitative work must be done in this area.

Another study involved examining the use of the
resonator to measure the uptake of solvent into a polymer
film coated on its surface. The related study by Moylan
et al. [26] reported on the sorption of water in polyimide
films. The weight changes were measured both during
sorption and desorption. The initial portions of the curves
were linear with the square root of time, providing
evidence that simple diffusion as described by Fickian
processes dominated the process. From the desorption
curve, diffusion constants for water in the polyimides
studied were found to range from 1 x 107" to
5 x 107 cm’s.

In another study, a lithographic polymer film for use
in aqueous developers was cast onto the surface of the
crystal using a spray-coating technique. The solvent for
the polymer was removed by drying the film at 80°C in
vacuum. It will be recalled that the acoustic properties of
the cast film can be disregarded when the thickness is
negligible with respect to the wavelength of the shear
wave. To test whether this approximation was appropriate,
the thickness of the film was measured with profilometry
and compared to the thickness calculated using the thin-
film approximation [Equation (1)], neglecting the acoustic
properties of the polymer film. The agreement at a
thickness of 3 um indicated that at least for films of this
thickness, the thin-film approximation was appropriate.
One face of the crystal was placed in contact with distilled
water, and the frequency change was recorded as a
function of time. The mass percent change was calculated
using (1), and the time dependence obtained is shown in
Figure 8. Use was made of a log-log plot in order to
distinguish between Type I and Type 11 diffusions. Type I
diffusion is characterized with a t'> dependence, while
Type II diffusion obeys a ¢ dependence. Sorption
characterized by values for the exponent of time between
1/2 and 1 is referred to as ‘““anomalous.”” A linear
regression fit neglecting the last four data points yields an
uptake proportional to ¢"*’, very close to Type I Fickian
behavior.

An example of the sensitivity and accuracy of the quartz
resonator in a liquid environment has been provided by
Hinsberg et al. [27, 28], who used the resonator to monitor
the dissolution of a lithographic polymer. A 1.25-um-thick
commercial aqueous-based lithographic polymer was cast
onto a 5-MHz resonator and exposed to monochromatic
radiation. The resulting interference fringes resulted in a
spatially periodic exposure of the polymer, with the
regions of constructive interference being highly exposed
and the regions of destructive interference only slightly
exposed. The polymer was then dissolved in a developer.
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Thickness of a photolithographic polymer film during dissolution
after irradiation with monochromatic light. The periodic exposure
resulting from the interference of the incident and reflected radia-
tion is evident from the periodic rate of dissolution.

Again by using the linear approximation, the time
dependence of the polymer thickness was obtained, as
shown in Figure 9. The regions of large and small cross-
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Frequency change (kHz)

Time - (s)

Observed nonlinear frequency shifts during the galvanostatic depo-
sition of copper from an acid—copper solution, indicated by the
circles. The solid line represents predicted frequency changes
assuming a 100% Faradaic efficiency.

linking are clearly reflected in the dissolution rate, and the
1300-A spacing is consistent with the index of refraction of
this polymer at the exposure wavelength.

Electrochemical applications

Recently the uses of the quartz resonator as a
microbalance in electrochemistry have been reviewed [29].
The focus here is not only on relevant electrochemical
investigations taking place at the IBM Almaden Research
Center, but also on the development of the technique
itself. For electrochemical applications, one of the

metal films serving as an electrode for the quartz

crystal also serves as the working electrode. During
adsorptive/desorptive, deposition/stripping, and
oxidation/reduction processes, both the charge and the
mass involved in the process can be determined. These
two measurements are quite accurate, provided that they
are properly decoupled. In principle, the mass per charge
of the species involved can be measured. This marks a
significant addition to the battery of techniques available to
the electrochemist. To ensure that the electrochemical
fields and the radio-frequency fields are decoupled, it is
necessary that the working electrode be connected to a
true ground. The rf fields are thus constrained to be within
the quartz, and the electrochemical fields within the
electrolyte. For this reason, homemade potentiostats of the
Wenking type having the working electrode at true ground
are frequently used, although commercial instrumentation
can be employed with modification [30].
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An additional experimental precaution is needed because
of the sensitivity of the quartz crystal on the radial
distance from the center of its circular electrodes.
Measurements of the radial sensitivity in liquid have
recently been reported [31-33], and the same
nonuniformity is observed. However, despite this
nonuniformity, the relations based on models which
assume the use of quartz resonators of infinite lateral
extent have been applied successfully to characterize the
frequency shifts. To keep the geometry as nearly circular
as possible, the electrodes are made asymmetric, with one
electrode having a diameter 1.5 times the other. The larger
electrode is chosen as the electrochemical working
electrode to ensure that the resonator is not sensitive to
the edge regions of the working electrode, where current
concentration is likely.

In electrochemical applications to date, the quartz
resonator has been used to measure mass changes on a
surface. Some investigators have determined the mass
sensitivity of the microbalance empirically, while others
have used the equations developed for vacuum uses, as
expressed in the mechanical model. Since mass is the
principal quantity of interest, it is appropriate to present
some evidence in support of the straightforward use of the
theoretical models, without calibration. For these studies,
copper was electrolytically deposited onto one face of a
quartz microbalance from a solution of 0.5 M H,SO,,

0.5 M CuSO 5H,0, and 1.1 M EtOH. The deposition was
conducted at a constant current of 5 mA on a surface area
of 0.39 cm”. The uncertainty in the area was 5%. The
Faradaic efficiency of acid copper deposition is known to
be virtually unity. The frequency change as a function of
time is shown in Figure 10, in which the circles represent
experimental data points. The time dependence is
nonlinear, with the rate of change decreasing with time.
At first glance, this may seem surprising, since deposition
at constant current should imply a constant rate of
deposition; the linear Sauerbrey relation should predict a
linear time dependence. The frequency change is well over
10% of the fundamental frequency, indicating a large
deposit thickness, where the thickness of the copper is no
longer negligible with respect to the wavelength of the
shear wave. If the mechanical model is particularized to
elastic films, the relatively simple relation first described
by Lu and Lewis [8] is obtained, namely

Ip p
Pokg tan (w€0 ”—Q ) = —y/p i tan (wS\/’;—: ) (15)
Q L

The left-hand side of the equation contains the quartz
crystal parameters, while the right-hand side contains
overlayer parameters, which include the acoustic shear
modulus of the overlayer. Assuming a Faradaic efficiency
of 100%, the frequency change resulting from a constant
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deposition current of 5 mA can be calculated according to
Equation (15), and is shown as the solid line of Figure 11.
Conversely, the observed frequency changes can be used
to calculate the copper thickness &; these results are
plotted as circles in Figure 11. The thickness increases
linearly with time, as anticipated. These results show that
even for thick copper films, the mechanical model can be
used without a calibrating factor.

Thus, it appears that for thin films, the resonator can
function as a microbalance, using the Sauerbrey relation
[Equation (1)]. In one of the early applications of the
microbalance, Kaufman et al. [34] studied the oxidation
and reduction of the conducting polymer, polypyrrole. A
quasi-equilibrium technique was employed to apply a
stepwise potential to a polymer. After the application of a
step of potential, the current was allowed to decrease to
below a certain minimum set point before the next step
was applied. The charge was obtained by integration of the
current, and the mass changes were determined from the
observed frequency change. An insulator-to-metal
transition was believed to result from the incorporation of
anions (ClO, ) during oxidation and their subsequent
reversible removal upon reduction. Although a reductive
charge was measured during the reduction, surprisingly the
mass was observed to increase. This unusual behavior was
attributed to the influx of cations (Li") during the
reduction. This work illustrated a case for which the
application of the microbalance provided dramatic
evidence for a result which would not have been
anticipated strictly from charge measurements.

Examples of the capability of the electrochemical quartz
microbalance as a sensitive device to measure charge-to-
mass ratios are provided by the studies of monolayer
underpotential deposition (UPD) of metals and the
adsorption of halogens. In this process, the metal ions in
solution are deposited on a foreign metal substrate at
potentials anodic of the equilibrium Nernst potential of the
depositing metal. The initial UPD work [35] was similar to
the earlier work of Bruckenstein and Shay [36]. Whereas
Bruckenstein and Shay used 10-MHz resonators, Melroy
et al. used the third harmonic of 5-MHz resonators. The
use of harmonic modes to increase mass sensitivity was
demonstrated. Deakin and Melroy [37] illustrated in a
dramatic fashion the accuracy of the microbalance when
they predicted the current that would be necessary to
account for the observed mass, assuming an
electrosorption valency of 2 for the deposition of lead on
gold from a perchloric acid solution. That predicted
current was compared to the current measured, and
the two curves were shown to superpose, as shown in
Figure 12. Direct demonstration of the determination of
electrosorption valency has been provided by the work of
Deakin et al. [38], not only in metal UPD processes, but in
the adsorption of bromine and iodine anions as well.
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Copper film thickness calculated from the data of Figure 10, using
a model that includes the acoustic properties of the copper
(circles), compared to predictions based on an assumed 100%
Faradaic efficiency (solid line).
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Calculated current density inferred from mass uptake during the
underpotential deposition of lead on gold, assuming an electro-
sorption valency of 2 (solid line), compared with the current den-
sity measured during a cyclic scan of potential (dashed line).
From [37], adapted with permission.

A different but instructive example of the use of the
quartz resonator in electrochemical applications is
provided from the evidence for surface reconstruction
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Idealized roughened surface, indicating how fluid may be trapped
in wells on the surface, causing a frequency shift.

during electrochemical redox cycles [39, 40]. It illustrates
the phenomenon of entrapped fluids mentioned in the
Introduction. The polycrystalline gold film which served as
an electrode in the work also served as the working
electrode in an electrochemical cell. The frequency change
and the current were recorded as the electrode was
oxidized and then reduced in neutral and alkaline
solutions. In both cases, the frequency change observed
was greater than that expected from the oxidation of the
gold. The effect was much more pronounced in the alkaline
(NaOH) solution. The additional frequency change was
attributed to the entrapment of the solvent in pockets or
wells created on the surface during the oxidation. This
concept is illustrated in the idealized diagram shown in
Figure 13. The wells are idealized as being homogeneous,
rectangular, and uniformly distributed. This is highly
idealized, of course, but illustrates the concept. Such
oxidative roughening was verified directly by scanning
electron micrography, and its reversible nature was
supported by capacitance studies. The net mass of the
trapped fluid can be calculated using the Sauerbrey
equation. If the net mass and the density of the fluid are
known, an average depth & can be calculated. Given this
roughness, the additional frequency shift due to the
entrapped fluid can be expressed by

' %,
(8f drovon = _\/_ p.8.
Poltq

This cotrection becomes important when (8f )poycy 18
comparable to the frequency change induced by deposition
or stripping. In continuous plating applications, although
the topography of the deposit can change from that of the
smooth gold electrode to some steady-state roughness, the

(16)
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frequency change induced by the plated metal far exceeds
that due to the roughness.

Just as the quartz resonator has served as a deposition
monitor for the vacuum industry, it is now also used as a
deposition monitor for the electrochemical industry. The
impetus toward the development of such an instrument
was provided by the application of the quartz resonator as
a deposition monitor for electroless NiP deposition [41].
For that purpose, the quartz crystal was placed in a holder
of polyvinyl chloride, mounted with an O-ring seal in order
to expose only one face to the solution. The oscillator
circuitry was placed in this same probe, directly under the
crystal. The durability of the crystal, its electrodes, the
seals, and the associated electronic circuitry was
demonstrated. By using two modified vacuum-deposition
rate monitors and the same algorithm for the deposition
of the NiP alloy as used for vacuum deposition, 3%
agreement was found between the deposition thickness
calculated from the frequency change data and that from
the average thickness determined using a B-backscattering
technique. This not only demonstrated the utility of the
quartz resonator as an electrochemical deposition rate
monitor, but also demonstrated that the deposition
sensitivity is unaffected by immersion in a fluid.

Unanswered questions

The quartz resonator is being successfully applied in an
increasing number of ways, placing its behavior in liquid
and other lossy media under increasing scrutiny. There
have been a number of unresolved issues. The nonuniform
sensitivity across the surface has already been mentioned.
The evidence is clear that for the basic resonant mode, the
sensitivity is bell-shaped across the surface. The shape of
this distribution has been measured in vacuum [31, 32] and
has recently been determined in a liquid environment [33].
For localized depositions, account must be taken of this
variation. Although it is not universally accepted that the
theoretical sensitivity [42] can be used for uniform
deposition in electrochemical applications, the evidence
presented in the examples above indicates that that
sensitivity can be used. This area continues to be of
substantial interest [43-45].

The no-slip boundary condition which has been assumed
in the theoretical treatments has recently come under
question. There appears to be evidence that under certain
conditions partial slip can occur at the interface [46, 47].
This is a fascinating result which can have important
consequences in electrochemical studies when the surface
may be such that slippage can occur. An appropriate new
boundary condition will have to be determined for the
interface and new solutions generated.

From the intuitive understanding of the behavior of the
quartz resonator in a liquid, one would expect that changes
in the average mass density to a depth of about 1000 A
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should be detectable. Changes in densities of the double
layer which extend only to tens or hundreds of A should
be observable. Specifically, the use of an electrolyte
asymmetric in cationic and anionic mass should show a
variation with potential. In a perchloric acid solution, for
example, one would expect a frequency decrease in going
from a cathodic bias to an anodic bias. Preliminary
experiments have not shown any measurable change. This
may be due to the fact that the experimental potentials
were not sufficiently close to the potential of zero charge
(PZC), the potential at which the net charge on the
electrode vanishes.

Frequency changes associated with potential-dependent
electroacoustic effects related to the motions induced in
the ionic atmosphere in solution have been reported [48].
This would be a very serious additional contribution to the
frequency shift; it would have to be understood in order to
preserve the quantitative interpretation of frequency shift
data. To the authors’ knowledge, such an effect has not
had to be included in the reduction of electrochemical
data. And we have not personally observed effects
attributable to such a phenomenon in our electrochemical
studies. However, the importance of this possible
contribution requires that it be addressed.

The possible behavior of viscoelastic overlayers has
been discussed. This area is rich with possibilities,
permitting the determination of changes in the acoustic
shear properties of such films with changes in their
physical and chemical behavior, such as their sol-gel
behavior, cross-linking, and the onset of conductivity
(in conducting polymer films). The experimental technique
needed would require the use of electrical admittance
(impedance) methods, an area which is receiving increasing
attention [49-52]. From the complete theory, the predicted
behavior of the frequency change and the resonant
resistance as a function of the thickness of a viscoelastic
film are shown in Figure 14. The density was assumed to
be 1200 kg/m3, the shear modulus assumed to be 5 x 107
N/m?, and the viscosity assumed to be 1.59 N-s/m’. The
frequency initially decreases with increasing thickness, but
for thickness exceeding 10 um, there is a region over
which the frequency increases with increasing thickness.
The losses associated with the overlayer, as indicated by
the resistance, rise rapidly to a maximum near a thickness
of 13 um. The losses there would be too large to sustain
oscillation, but should be measurable using impedance
techniques.

Concluding remarks

The efforts at the IBM Almaden Research Laboratory in
the application of the quartz resonator to electrochemistry
have been quite diverse and have demonstrated its use in a
variety of applications. It has been used primarily as a
microbalance, using the classical quartz oscillator
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Predicted electrical behavior of a 5-MHz resonator as a function of
the thickness of an overlying non-Newtonian viscoelastic film.

technique. A clear understanding of the behavior of the
resonator is required for its successful implementation and
for an associated analysis of data. Although the use of the
mechanical model has been found to be adequate for
characterizing resonant frequency changes, use of the
complete model in conjunction with admittance
measurements may be needed for a more complete
characterization—for example, for the characterization of
viscoelastic films. The activities described above indicate
the major activities of this laboratory in the applications of
the quartz resonator. Clearly there exists a large and
growing activity in this field in the electrochemical
community. As examples of the types of innovative
applications being attempted, the work in the use of the
quartz resonator as a rotating disk clectrode [53] is
exciting, and the use of ac gravimetry for kinetic studies
[54] is fascinating.

Appendix
Using Equation (3) in Equation (2), the general wave
equation for shear waves in a viscoelastic medium is
d'u o'u ’u
—S=u—+n175—. Al
vl R R e avy (A1)
In the harmonic approximation, for which solutions are
restricted to those having a time dependence of the form
e’ the two terms on the right-hand side of Equation (A1)
can be combined in terms of a complex viscosity f,
namely & = u + jwn. The wave equations in (4) are the

solutions of the wave equation (A1) in the harmonic
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approximation. The values for the associated propagation
constant k and the decay constant « are given by

p 2 2 2 172
k=wv—————-(/.¢ + o+ u) A2
2(#2 + 0)27]2) ( )

and

a= \/2(“ rapem )(\/M +w'n’ - p)". (A3)

If these relations are used in the mechanical model, in the
elastic approximation (assuming 7, to be zero), it follows
that

Pokq
ky=wo - (A4)
and
.= 0. (AS)

Here u,, is the “‘effective stiffened shear modulus™ for
quartz (the semi-empirical value of 2.947 x 10 N/m’ is
used).

For the complete model, the wave equation for the
quartz differs in detail from Equation (A1). Knowing that
there is no free charge in the quartz, Laplace’s equation
can be written 6D,/dz = 0. By using Equation (9), a
relation between the displacement u and the potential ¢
can be formulated, namely

2 2
B €y 0'u

== A6
oz’ £, 8z’ (A6)

By applying Newton’s equations (3) to (8), and using the
expression above for 3°¢/dz°, the wave equation for
elastic quartz is obtained:

3’u e\ ou
pg= (C66+£—22)g. (A7)
In comparing Equation (A1) as applied to lossless
quartz with Equation (A7), it is clear that the “‘effective
stiffened shear modulus™ w, is replaced by the term
fcg T (6226/822)], designated as €. This is the predicted
““piezoelectrically stiffened shear modulus’ and has a
value of 2.924 x 10" N/m®. This value differs from the
semi-empirical value by 0.8%.

The explicit form for the admittance Y can be written as

N

iwe

S 2
Y =
¢ D +D,-D’ (A8)
where
N = kg sin (k€) + k i, tan (k £) cos (ko €)s

D, = kC sin (ky€),

D, = k i, tan (K ¢) cos (kf),
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and

23,
D, = 822{ 1 — cos (ky6)
k iy
2k ¢,

066

+

tan (k, &) sin (k &) sin (k£) | -
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