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resonator: 
Electrochemical 
applications 

Since the discovery that the oscillations of 
resonating quartz crystals can be sustained 
in a liquid environment, such crystals have 
quickly found use as  a sensitive microbalance 
in electrochemistry, making possible in  situ 
measurements of mass  changes at the 
electrochemical interface.  The early 
contributions of the IBM  Almaden  Research 
Center to  this exciting field of development  are 
sketched.  The principles of operation are 
detailed, with emphasis on an intuitive 
description to permit considerations of new 
applications. Mass density changes  of the 
order of 10 nanograms  per  square  centimeter 
(ng/cm2) are routinely detectable  as  changes 
in the resonant frequency of about a  hertz. 
The  mass density of  a  monolayer  of material 
ranges from a  few tens of ng/cm2 for 
polymeric materials to a  few hundreds of 
ng/cm2 for metals.  Detailed analysis of the 
electrical behavior of the resonator in liquid 
media shows that the resonant frequency, the 
quality factor of the resonance,  and the 
admittance at resonance  are all sensitive to 
the viscoelastic properties of the contacting 
liquid, having implications in the study of the 
behavior of nowNewtonian fluids, including 
polymeric films. 

Introduction 
The piezoelectric quartz resonator has been used since the 
1960s for  monitoring film deposition and  growth in vacuum 
deposition systems. A general discussion of the properties 
of quartz crystals as used in resonators can be found in the 
review  by  Brice [l]. The resonator consists of a particular 
cut of a single crystal of quartz (the AT cut is popular for 
these applications) and takes the form  of a flat circular disk 
having  metallized electrodes on the two opposing surfaces, 
as shown in Figure 1. The electrodes are typically gold or 
platinum layers of the order of a few thousand 8, in 
thickness. In its most  common implementation, this 
electromechanical resonator is used as the frequency- 
determining element of  an electronic oscillator, and the 
changes in the oscillation frequency are recorded. The 
resonant frequency is generally of the order of several 
MHz.  Mass uptake or removal on the electrode surface is 
reflected by a change in its resonant frequency. This 
relationship was first  quantified  by Sauerbrey [2], showing 
that the frequency decreased linearly with mass uptake. 
Subsequent studies have shown the validity of this 
relationship for thin  metallic  films;  with increasing film 
thickness, however, important deviations were found. 
Additional studies extended the thickness range [3-61. The 
identification of the key source for the failure of the linear 
relationship as the elastic behavior of the overlying film 
was made  by  Miller  and  Bolef [7]. A useful formulation of 
this model was presented by Lu and Lewis [8], who 
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Sketch of a typical quartz transducer used as a  resonator for gravi- 
metric measurements. The electrodes are paddle-shaped and  are 
shown with  unequal radii. Associated shear motions occur in  the 
plane of the disk in  a direction chosen to be along the direction of 
the  handle of the paddles. 

developed a concise expression for the frequency change 
including the elastic properties of the film. 

During the late 1970s, the quartz microbalance provided 
a key measurement capability as  a film deposition monitor. 
Several investigators had considered the use of the 
resonator in liquid  media, but had discarded the idea on 
the grounds that liquids  would completely dampen the 
mechanical resonance. In 1980, Nomura [9] constructed a 
microbalance system and showed that despite the 
conceptual objections, the oscillations of the quartz 
resonator could be maintained in a liquid. He has since 
used improved versions of the systems for a great variety 
of analytical measurements [lo-131. Also reported in 1980 
was the use of such resonators as detectors in liquid 
chromatography [14]. These accomplishments spurred the 
continually increasing use of the microbalance for studies 
in electrochemical environments. 

To most successfully use the properties of the resonator 
in a liquid environment and to expand its range of 
applications requires a fairly detailed understanding of its 
behavior in such an environment. An intuitive description 
of the behavior is  given,  not only to provide a useful basis 
for  working  with the resonator, but also to give a more 
concrete meaning to the mathematical descriptions to 
follow. It is assumed that use  is  made of AT-cut quartz 
crystals. The direction normal to the planar faces of the 
disk is assumed to be the z direction. As indicated in 
Figure 1, the two electrodes are assumed to be  of unequal 
areas. An electrical potential across the piezoelectric 
quartz crystal creates a shear strain parallel to an x axis 
which  lies in the planar face. If the potential is  made 
alternating, bulk shear waves propagating in the z direction 
are excited. These waves reflect  from the upper  and  lower 
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waves interfere constructively, giving  rise to 
electromechanical resonances. Values for the quality 
factor, or Q, of these resonances (the ratio of the resonant 
frequency to the full width  in frequency at half the 
maximum  amplitude of the conductance) are quite high. 
Typical values for the resonators in our laboratory 
routinely run in the range of many tens of thousands. At 
these resonances, standing sinusoidal shear waves are 
created in the bulk of the quartz having antinodes 
(points of  maximum amplitude) at the exposed surfaces. 
Considerations of symmetry show that for the 
symmetrically loaded quartz resonator, only the 
fundamental and its odd harmonics can be excited. The 
shear motions on the upper and  lower surfaces are in 
opposite directions. The amplitude of the shear vibration 
depends upon the applied potential and the quality factor 
of the resonator, but can be calculated to be as small as 
angstroms with voltages of the order of a volt. Despite the 
small  amplitude of this vibration, the forces applied to a 
film deposited on the surface of the resonator (and vice 
versa) are very large, being proportional to the 
acceleration, which increases as the square of the applied 
frequency. The forces acting on such an overlying film 
amount to tens of thousands of  g. The  large acceleration 
of the surface is the source of the extraordinary mass 
sensitivity of the microbalance. 

As previously mentioned, the free surfaces of the 
resonator are antinodes of vibration; this property gives 
rise to an important simplification.  The acoustic shear 
waves generated in the quartz crystal are coupled to any 
overlying film,  of course. But in the case of a  “thin” film 
having thickness negligible compared to the wavelength of 
the coupled shear wave, it  is essentially unstrained 
because the film lies in  an antinodal region. Its effect on 
the resonant frequency of the resonator is then 
independent of its acoustical properties and dependent 
only on its mass density. This is the basis for the linear 
relation between the mass density and frequency change, 
as expressed by Sauerbrey. The difference between the 
initial  unloaded frequency fu and the frequency when 
loaded  with the film fL is Af = fu - f,, and  is  given by 

Af = -- 2f m’,  
G (1) 

where fo is the resonant frequency of the unloaded 
resonator, m’ is the mass density, po is the density of the 
quartz crystal, and CL, is its elastic shear modulus.  With 
the sensitivity as described by Equation (l) ,  applications 
were quickly extended from the vacuum environment to 
analytical chemical areas [15, 161. As the film thickness 
increases, an increasing fraction of the shear wave 
occupies the film, and the quartz with its overlayer must 
be considered as  a compound resonator. The shear waves 
reflect  not only from the free surfaces of the quartz and 
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the overlying film, but also from the interfacial boundary. 
The influence of a finite film thickness was studied in some 
detail by Miller  and  Bolef [7] for elastic (loss-free) films 
and was cast in  an elegant form  by Lu and Lewis [SI. It 
was found that the simple linear relationship of Sauerbrey 
was valid  up to frequency changes of about 2%; beyond 
that region a closed analytical expression was obtained 
which  included  not only the density of the film but its 
elastic shear modulus as well. 

If the film is not perfectly elastic, but also exhibits 
viscosity, the resulting frictional dissipation absorbs energy 
from the waves. Losses in the film profoundly change the 
behavior of the resonator. The statement that “liquids 
cannot support a shear wave” is common  and underlies 
the earlier belief that the acoustic shear waves coupled 
from a resonator into an interfacing liquid  would  suffer 
such large losses that the resonance would  be lost. The 
work of Nomura, showing the continued oscillation of the 
quartz resonator in liquid, prompted a reexamination of 
this matter; it was shown that the losses incurred by 
coupling the shear wave into the liquid were limited  by the 
very fact that shear waves are not supported in the liquid. 
The amplitude of the coupled shear waves decreases 
exponentially with distance, and the finite depth of 
penetration limits the loss. The frequency of the resonator 
is, however, decreased because of the additional mass, and 
the losses of the resonator are substantially increased, 
reflecting the viscous slippage of the shear waves in the 
liquid. Theoretical calculations for a typical  5-MHz 
resonator with a Q of 1.3 X lo5 predict a frequency 
decrease by 700 hertz and a  drop in Q to 3.5 X lo3 if one 
of its faces is exposed to water. In practice, one often 
finds that the observed frequency decrease is larger than 
this value. This has been ascribed to the roughness of the 
surface, entraining some liquid  in surface “pockets” and 
causing an additional frequency decrease because of the 
mass of the trapped liquid. 

The quartz surface at the  liquid interface is very close to 
being  an antinode for liquids  which are Newtonian, e.g., 
most  common solvents. The  principal  effect of the liquid  is 
a decrease in the Q of the resonator and  an  additional 
constant offset in its resonant frequency. The sensitivity to 
deposited mass remains unchanged. 

The foregoing qualitative discussion was intended to 
provide an intuitive understanding of the operation of the 
quartz resonator. A more quantitative treatment is required 
to provide quantitative analysis of experimental data, to 
provide predictive capabilities for new applications, and to 
provide a means of assessing sensitivity to possible 
interfering mechanisms. 

Quantitative  description 
The fundamental equations and boundary conditions which 
are invoked to derive quantitative relations for the 

Geometry assumed for compound resonator analysis.  Shear dis- 
placement during resonance is indicated by the dotted line. 

resonating system not  only provide a clear view of the 
approximations made, but also direct attention to those 
aspects of implementation of the technique to which 
particular care must be given. For these reasons, the 
mathematical descriptions are sketched in the following 
section, which  is  not prerequisite for an initial general 
reading of the applications, but provides a basis for a more 
in-depth approach. 

The quartz resonator coupled to an overlayer forms a 
two-layer compound resonator in the general case. This 
two-layer structure is sketched in Figure 2. The origin of 
the z axis ( z  = 0) is assumed to lie  in the plane of the 
lower free surface of the quartz; the thickness of the 
quartz is designated as e, and the thickness of the 
overlying film is  designated as E. The dashed line 
designates the transverse shear amplitude, u ( z ,  t ) .  Two 
methods of proceeding under these guidelines are possible. 
In what we  call the “mechanical model,” the electrical 
properties of the quartz are not  specifically included, and 
the problem  is treated purely as the mechanical resonance 
induced by the constructive interference of the shear 
waves in the quartz crystal and the overlayer. The 
piezoelectric property of the crystal can be  included in a 
somewhat ad hoc manner, knowing that the principal  effect 
of its piezoelectric property on its mechanical shear motion 
is to make  it appear to have a larger shear modulus. An 
effective “stiffened” value is used to describe the shear 
modulus in the stress-strain relation for the crystal. This 
simplified mechanical model has the virtue that an 
analytical expression can be obtained for the resonant 
frequency. The solution, however, describes only the 
resonant frequency. 

by  specifically  including the electrical properties of the 
A more general, “complete” solution can be obtained 
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quartz crystal and the attendant electrical boundary 
conditions. A complete solution to the problem was first 
given  by Benes [17] and  applied to the important problem 
of the harmonic behavior of resonators with elastic 
overlayers. An alternate physically based approach was 
taken by  Reed et al. [18], who specifically treated the case 
of the viscoelastically loaded resonator. This type of 
treatment obtains as  a solution the electrical admittance of 
the compound resonator at arbitrary frequencies. From the 
admittance, both the resonant (series) and antiresonant 
(parallel) frequencies can be determined for the 
fundamental resonance as well as for the harmonics. In 
addition, other parameters such as the resonant Q and the 
resonant resistance can also be determined. This ability to 
determine the effect of the overlayer's mechanical 
properties on several measurable resonator parameters 
suggests that admittance studies, or, equivalently, 
impedance studies of these resonators have the potential 
for providing additional information concerning overlayer 
effects. 

Mechanical model 
The results of such an analysis have been briefly described 
earlier [19], but the physical basis that underlies it was not 
included. Here we trace the development of the analysis, 
starting with the general mechanical stress-strain relation 

au(z, t )  av(z, t) 
n = P T  + q a , ,  (2) 

where II is the shear force applied to the material in N/m2, 
p is the elastic shear modulus in N/m2, u(z,  t )  is the 
spatial displacement in shear of the material on the plane z 
at  time t in meters, q is the shear viscosity of the material 
in N.s/m2, and v(z ,  t )  is the velocity of the spatial 
displacement, viz., v ( z ,  t )  = au(z, t)/at in  m/s. The 
strains are assumed to be linearly dependent on the stress, 
and the viscosity of the quartz is  assumed to be zero. 
When Equation (2) is used to describe the quartz, p takes 
on the effective value of the shear modulus pQ = 2.947 X 

10'' N/m2. This value for the effective shear modulus  is 
obtained from the value for the so-called frequency 
constant of 1670 kHz.mm given  in Sauerbrey's original 
paper [2]. It is assumed that the quartz crystal is 
essentially lossless. When Equation (2) is  used to describe 
the overlayer, the values for the overlayer, h and qL, are 
used.  The relation can be used for pure Newtonian liquids 
where = 0 or for the general viscoelastic material. 

In addition to the stress-strain relations for the two 
materials, it is also necessary to use Newton's second law 
via the net force per  unit area applied to a slab of material 
of thickness dz;  thus, 

an M z ,  t) 

az at 160 
-dz=pdz-. (3) 

The stress-strain relations, coupled with Newton's law, 
are sufficient to show that in the harmonic approximation, 
where we restrict our attention to variables which are 
varying as ej&, the solutions for the displacement u ( z ,  t) 
take the form of shear waves traversing the media, 
undamped  in the case of quartz where the viscosity had 
been assumed to be zero, and strongly damped in the case 
of Newtonian liquids. The relations take the general form 

u(z, t) = [~+e"k+""  + u-e+(ik+a)z]eIol  , (4) 

where ut and u- are the wave amplitudes traveling in the 
+z and -z directions, respectively, k is the propagation 
constant for the shear wave, and a is its decay constant. 
Precise forms for k and a are given in the Appendix. They 
are both functions of the density of the medium  and its 
shear modulus  and viscosity. For the overlayer, a tends 
toward zero as the viscosity decreases, vanishing for 

To find the resonant frequencies, however, it  is 
necessary to invoke the mechanical boundary conditions 
which  must  be  satisfied. The two free surfaces, the 
uncoated face of the quartz crystal and the free surface of 
the overlayer, are presumed to be unconstrained. That is, 
no stress is assumed to be applied to these surfaces. 
Defining the free surface of the quartz to be at z = 0 and 
that of the overlayer to be at z = e + E ,  on those two 
planes, II = 0. At the interface between the quartz and the 
overlayer located at z = e ,  the following conditions apply: 
First, the stress across the interface must be continuous, 
namely 

q = 0. 

nQ"(e) = nFilm(e). (5) 

Finally, the so-called  "no-slip'' condition is assumed to 
apply; that is, the displacement across the interface is 
assumed to be continuous. Thus, 

uQt2(e) = uFiIm(e). (6) 

By requiring that the waves in the media meet these 
boundary conditions, one is led to an equation in complex 
variables which  must be satisfied. Both the real part and 
the imaginary part cannot be simultaneously satisfied. In a 
simplified approach (referred to as the "mechanical 
model" approach), it is assumed that the solution 
corresponds to satisfying the real part of this equation. 
This leads to a frequency described by 

--o popQ tan 7 - d- ( 3  
1 - e-4"" 

1 + e-4aE + 2 ~ ~ " "  cos %E 
= ( p a  - w k q )  

2e -2ur sin UCE 

+ (Pk  + - o w )  + e-4"" + 2e-2"E cos %E . 
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Here, wo is the initial  unloaded frequency of the resonator 
and Ao is the frequency change with respect to that 
unloaded frequency. The assumed satisfaction of only the 
real part of this equation is a crucial approximation in this 
model, but comparisons with the results from a more 
complete model, to be described next, show excellent 
agreement. It is felt that this is a consequence of the fact 
that the Q value of the compound resonator continues to 
be high,  even when the overlayer is a liquid. 

Complete  model 
By  using a more rigorous model (referred to as the 
“complete model”), the result is obtained in the form of 
the electrical admittance of the compound resonator as a 
function of the applied frequency. As stated earlier, a 
sinusoidally varying electrical potential applied across the 
electrodes of the quartz portion of the compound resonator 
is assumed to generate shear waves in the quartz which 
are then coupled into any overlayer. At particular 
frequencies, the shear waves will interfere constructively, 
giving rise to the resonances. An electrical current is also 
induced by the rf voltage, and the phase and  magnitude of 
this current relative to the exciting voltage e, reflect the 
mechanical behavior of the compound resonator. This 
current-voltage relationship is essentially linear and  can be 
described by the relation T = yerf ,  where y is the 
admittance, the inverse of the impedance. In the following 
description, we have borrowed heavily from the formal 
descriptions given by Tiersten [20]. 

The stress-strain relation for the overlayer continues to 
be described by Equation (2), but the stress-strain relation 
for the quartz takes the form 

where c66 is the mechanical shear modulus for the quartz, 
vQ is the “viscosity” of quartz, eZ6 is the piezoelectric 
constant appropriate for the AT-cut quartz (c66 = 2.901 
X 10” N/mZ, and eZ6 = -0.095 C/m2. The quartz 
“viscosity” is purely an  empirical constant and  is  included 
to give the unloaded resonator a finite loss. We have found 
that a value of vQ = 0.007 N.s/m2 yields a theoretical loss 
for unloaded resonators which approximates the losses in 
our crystals. In addition to this mechanical stress-strain, 
the constitutive electrical equation is described by 

in Equation (4), with the difference  being that for quartz, 
the expressions for the propagation constant kQ and the 
decay constant ~ y a  differ  in detail, as shown in the 
Appendix. 

for the mechanical model,  and  in addition, two electrical 
boundary conditions are imposed, namely that the 
potentials at the surfaces of the quartz crystal are given by 

The boundary conditions are the same as those imposed 

and 

4( t ,  t )  = -40e’”‘. (lob) 

Detailed means for obtaining the admittance from these 
equations are presented elsewhere [18] and  not reproduced 
here. However, since an attempt is  made  here to convey 
the physical bases of the development, the procedure for 
calculating the admittance is described. Since the 
admittance is the current-to-voltage ratio, an expression 
for the current density must  be obtained. Following 
Tiersten, the current density is taken as the time derivative 
of the surface charge density, which in turn is the integral 
of the electric displacement at the surface. For any given 
frequency o, the admittance is a complex function of the 
assumed parameters. We indicate this dependency by 
writing 

where the variables containing the subscript L represent 
values for the overlayer. The specific relationships that 
apply are given  in the Appendix. This formulation was 
obtained using a conceptually simple physically based 
model. We have shown that the earlier study by Benes [17] 
using equivalent circuit methods yields the identical result 
when  his solution is generalized for a viscoelastic 
overlayer. 

A  very useful visual presentation of the information 
contained in the admittance function is provided by the 
admittance diagram.  The real part of the admittance, the 
conductance G, is plotted along the abscissa, and the 
imaginary part, the susceptance B ,  is plotted along the 
ordinate. For the sake of illustration, the admittance 
diagram for frequencies in the neighborhood of the third 
harmonic resonance of a 5-MHz AT-cut quartz crystal in 
contact with water is shown in Figure 3. The locus of 
points traces a circular pattern, traversing in a clockwise 

84 
D, = e2,u(z, t )  - E , ~  - 

az ’ 

where D, is the electrical displacement in the quartz and frequency6 is the “intrinsic” resonant frequency of the 
sZz is the quartz dielectric constant appropriate to this resonator. This “intrinsic” frequency is  defined as that 
geometry. This equation specifically couples the frequency where the conductance is a maximum. 
mechanical and electrical variables. This set of equations Frequencies at which the admittance is  real (where the 
again describe shear waves having the same form as given phase is zero) are of interest, since an  ideal electronic 

fashion with increasing frequency. The effects of the 
(9) indicated materials parameters on the quartz resonator can 

be characterized by such an admittance diagram.  The 
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Admittance  diagram  for  the  third  harmonic  resonance of a 5”Hz 
crystal  having one face immersed  in  water.  Frequency  increases 
in  the clockwise direction. The three  principal resonances are 
shown and  described  in  the text. 

circuit can be designed to oscillate there. These are the 
“series-resonant” frequencyf, and the “parallel-resonant’’ 
frequencyf,, in analogy  with  an equivalent electrical 
circuit. Another characteristic which summarized the 
resonant behavior is the value of the conductance at f,. 
This inverse of this conductance is the resistance of the 
compound resonator at its intrinsic resonance, R = 1/Gmm, 
and characterizes the losses in the resonator. The quality 
of the resonance is characterized by the quality factor Q, 
representing the ratio of the peak energy stored in the 
energy-storing elements to the energy dissipated per cycle 
during the resonance. The value of Q is given by the ratio 
of the resonant frequency to the frequency interval 
between those frequencies at which the conductance is half 
its peak value. The radius of the circle is 1/2R. As the 
losses increase, the radius of the circle decreases. 

The ordinate of the center of the circle is not located on 
the abscissa, but has the same value as the ordinate of the 
point f,. This displacement of the center along the ordinate 
results from the capacitance between the electrodes of the 
device and includes not only the dielectric capacitance of 
the quartz, but also the external wiring  and circuit 
capacitances, Ctota,. The ordinate has the value d t o t a l .  The 
capacitance C,,, takes on a special significance in the case 
of lossy overlayers, because as the losses increase, the 
circle radius is expected to decrease. It is clear that if the 
losses increase such that R increases toward the value 
1/20C~,~,~, f, and f, approach one another; additionally, if 

162 R exceeds this value, the circle will no longer intersect the 
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abscissa. In the case of  an oscillating circuit, the phase can 
no longer attain the null value required for constructive 
feedback, and oscillations should cease. Thus, the 
importance of keeping the wiring  and circuit capacitances 
to a minimum  when  using the resonator with lossy media 
such as liquids cannot be overstated. 

The measured quantities for most experiments are the 
resonant frequencies and their changes. To quantitate the 
results with the help of the theoretical calculations, the 
data must  be compared with the appropriate resonance. 
This section is concluded by demonstrating that results 
obtained by  using the mechanical calculation, while  not 
rigorous, are in excellent quantitative agreement with the 
intrinsic resonance calculations of the more complete 
model. To make these comparisons, the frequency from 
the mechanical model,  labeled f,, and those from the 
complete model,f,,f,, andf,, are determined both for the 
unloaded resonator and  for the resonator loaded  with a 
variety of overlayers. The changes of the resonant 
frequency Af,, Af,, Af,, and Af, are then calculated and 
compared. These calculations are computed both for the 
fundamental resonance and for the third  harmonic. 

Before examining the results of those calculations, it is 
instructive to examine two situations which demonstrate 
that the mechanical resonant frequencyf, is  most closely 
related to the parallel resonant frequencyf,. This  is 
perhaps not surprising, since at parallel resonance the 
admittance is nearly at a minimum,  and the current is 
consequently negligibly  small-close to the case for the 
freely vibrating resonator. For the free mechanical 
resonances at the fundamental and  third  harmonic, one 
would expect exactly a factor of three in the ratio of the 
frequencies. This is, in fact, true forf, and forf,. In 
contrast, forf, andf,, the ratios are 3.00843. Also, for an 
elastic overlayer, e.g. a 20-pm-thick layer of copper, the 
changes AfM and Af, are both found to be -799 610 Hz, 
while the  changes A& and A& are  found to be -798 010 Hz. 
The connection between the two sets of resonances is 
clearly established by these results; the percentage 
difference in the frequency changes between the two sets 
is less than a tenth of a percent. 

The changes incurred when the overlayer is a thick 
liquid layer are quite different. The responses to three 
liquids have been calculated, and the results are tabulated 
in Table 1. The surprising result is that for the case of 
liquids, Af, mirrorsf, rather thanf,. In the case of 
mercury, the viscosity is  large  enough that no series or 
parallel resonance was expected to exist for the third 
harmonic. From these calculations, it can be concluded 
that the mechanical  model  is quite applicable and that the 
convenience of its analytical form can be  used when only 
the frequency change is of interest. 

A shear wave coupled to a liquid has only a finite depth 
of penetration, limiting the loss of energy into the liquid. 
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This depth is of some interest to electrochemists, since it 
is  useful to compare it  with hydrodynamic boundary 
layers, diffusion layers, electrical double layers, etc. In 
liquids, the propagation constant and the decay constant 
have the same value. A depth of penetration S can be 
defined  by the inverse of the decay constant, 

S = /?. 
For water, this is about 2400 8, at 5 MHz. In mercury, this 
depth is quite small, about 850 A. For acetonitrile and 
dimethyl formamide, it  is 1700 and 2400 A, respectively. 
Depths can be larger, e.g., 6400 A for n-hexanol. In 
general, they are of the order of a few thousands of A. 
Changes in the liquid properties within this depth should 
result in changes in frequency and/or Q. A pictorial 
representation of a shear wave coupled into water from a 
5"Hz resonator is given  in Figure 4. The normalized 
displacement is shown as a function of distance into the 
water at various times, over a half-period interval. The 
strong predicted damping of the wave amplitude is evident. 

Non-electrochemical  applications 
A feature common to the use of the quartz resonator in the 
electrochemical environment is the interfacing of the 
crystal with a liquid or other lossy environment. Before 
illustrating some electrochemical applications, we describe 
examples of related studies at the IBM  Almaden Research 
Center on the behavior of the resonator in liquids and 
other lossy media. During the development of the 
theoretical descriptions for the resonator behavior, several 
studies were carried out to find empirical support for the 
descriptions. Experiments were conducted in the classical 
manner (that is,  with the crystal forming part of  an 
oscillating circuit), and changes recorded in the oscillation 
frequency. In a group of early studies, one face of the 
quartz crystal was in contact with a simple  liquid [21]. The 
calculations involved were equivalent to those for the 
mechanical model  with a purely viscous overlayer. The 
frequency change was related to the density 4. and 
viscosity q, of the liquid through the relation 

The system, consisting of a mixture of ethanol and water, 
provided a stringent test for these calculations, since the 
6 q L  product for the mixture passes through a maximum in 
the neighborhood of a 40% ethanol-water mixture. In 
Figure 5, we show a comparison between the calculations 
using Equation (13) and the measured values, shown as 
open circles. The frequency of the resonator with pure 
ethanol was taken as the reference frequency. The 
agreement was quite good,  providing a quantitative 

Three-dimensional plot of the  predicted  propagation of a shear 
wave  into  water.  The  vertical axis represents  the  normalized dis- 
placement,  the  time axis represents a half  period of the wave, and 
the  distance axis represents  the  distance  into  the liquid. 

Table 1 Comparative  changes in resonant  frequencies. 

Liquid Harmonic Af,  Afs  Afp  AfM 
(Hz) (Hz) (Hz) (Hz) 

Water 1 
3 

-697 -651 -729 -697 
-1206  -942  -1590  -1207 

o-nitrotoluene 1 
3 

-1285  -1200  -1391  -1285 
-2223 -1756 -3759  -2225 

Mercury 1 
3 

-3290  -2630  -4009  -3288 
-5691 no res.  no  res. -5696 

agreement and also reflecting the maximum density 
viscosity product. Equation (13) was also compared to the 
behavior of glucose mixtures [22]; the expected monotonic 
behavior with increasing sugar concentration was found. 
The frequency shifts for resonators interfaced with liquids 
have been observed and reported for a large  number of 
solvents by Nomura et al. [23, 241 and by Yao and  Zhou 
[25]. While these shifts are not discussed in any detail 
here, their observed shifts are found to be consistent with 
(13), when surface roughness is taken into account. 

When the liquid studies were extended to very viscous 
fluids, such as the perfluoropolyethers, serious 
discrepancies between the predictions of theory and the 
observed shifts were noted [MI. For these studies, the 
crystal was treated as  a passive element, and its 
admittance spectrum was recorded using  an impedance 
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Comparison of observed frequency changes for a water-ethanol 
mixture (circles) with  the  quantitative  predictions  for a Newtonian 
fluid (solid line). 

analyzer. A series of six fluids  with  molecular weights 
ranging  from 1200 to 6500 g/mol were studied, and the 
associated frequency changes and resonant resistances 
were recorded. From the published values for the density 
and dc viscosity of the fluids, best-fit curves were used to 
obtain values for the density and viscosity of the fluids as 

a function of molecular weight. In this initial treatment, the 
fluids were considered to be Newtonian; that is,  it was 
assumed that they could be characterized solely by a 
frequency-independent viscosity. By  using these values, 
theoretical predictions were obtained for the frequency 
change and resistance of the resonator. The predictions are 
indicated by dashed lines in Figures 6 and 7. The  empirical 
data are shown as circles. For both the frequency change 
and the resistance, the discrepancy is obvious. These 
discrepancies were resolved by recognizing that at the 
frequencies used, the fluid exhibits elastic as well as 
viscous behavior. One  model for such behavior is 
contained in the Maxwell  model, in which the viscosity 
and shear modulus are assumed to be frequency- 
dependent. For that model, 

where q,, is the dc viscosity, T is an empirically determined 
relaxation time  and is related to the molecular weight,  and 
p is an empirical  coefficient sometimes interpreted as 
reflecting a distribution of relaxation times. When the fluid 
is treated as a viscoelastic Maxwellian  fluid, the complete 
model yields the solutions given by the solid lines in the 
figures. No protracted effort was made to find a “good” 
fit.  The  Maxwellian description modifies the Newtonian 
description in a manner that brings both the frequency and 
resistance values much closer to the observed values. The 
quartz resonator is sensitive to both the viscosity and 
elasticity of the overlayers, and the predictions of the 
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complete model are in semiquantitative agreement with 
experiment. It appears that the resonator can fill a role in 
studies of the viscoelastic properties of thin  films, but 
much  more quantitative work must  be done in this area. 

Another study involved  examining the use of the 
resonator to measure the uptake of solvent into a polymer 
film coated on its surface. The related study by Moylan 
et al. [26] reported on the sorption of water in polyimide 
films. The weight changes were measured both during 
sorption and desorption. The initial portions of the curves 
were linear  with the square root of time,  providing 
evidence that simple  diffusion as described by Fickian 
processes dominated the process. From the desorption 
curve, diffusion constants for water in the polyimides 
studied were found to range  from 1 X 10”’ to 
5 X 10-~  cm2/s. 

In another study, a lithographic polymer film for use 
in aqueous developers was cast onto the surface of the 
crystal using a spray-coating technique. The solvent for 
the polymer was removed by drying the film at 80°C in 
vacuum. It will be recalled that the acoustic properties of 
the cast film can be disregarded when the thickness is 
negligible  with respect to the wavelength of the shear 
wave. To test whether this approximation was appropriate, 
the thickness of the film was measured with  profilometry 
and compared to the thickness calculated using the thin- 
film approximation [Equation (l)], neglecting the acoustic 
properties of the polymer film. The agreement at a 
thickness of 3 pm indicated that at least for films  of this 
thickness, the thin-film approximation was appropriate. 
One face of the crystal was placed in contact with  distilled 
water, and the frequency change was recorded as a 
function of time.  The mass percent change was calculated 
using (1), and the time dependence obtained is shown in 
Figure 8. Use was made of a log-log plot  in order to 
distinguish between Type I and Type I1 diffusions. Type I 
diffusion is characterized with a t ‘’* dependence, while 
Type I1 diffusion obeys a t dependence. Sorption 
characterized by values for the exponent of time between 
1/2  and 1 is referred to as “anomalous.” A linear 
regression fit neglecting the last four data points yields an 
uptake proportional to very close to Type I Fickian 
behavior. 

An example of the sensitivity and accuracy of the quartz 
resonator in a liquid environment has been provided by 
Hinsberg et al. [27, 281, who  used the resonator to monitor 
the dissolution of a lithographic polymer. A 1.25-pm-thick 
commercial aqueous-based lithographic polymer was cast 
onto  a 5-MHz resonator and exposed to monochromatic 
radiation. The resulting interference fringes resulted in a 
spatially periodic exposure of the polymer, with the 
regions of constructive interference being  highly exposed 
and the regions of destructive interference only slightly 
exposed. The polymer was then dissolved in a developer. 
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Log-log plot of the  observed  change  in  the  mass of a  lithographic 
polymer exposed to distilled water.  The solid line represents  a lin- 
ear  regression to the  points and  has  a slope of 0.57, close to  the 
value of 0.5 characterizing  Type I (Fickian) diffusion. 

Tune (s) 

Thickness of a  photolithographic  polymer film during dissolution 
after  irradiation  with  monochromatic light. The  periodic  exposure 
resulting  from  the  interference of the incident  and  reflected  radia- 
tion is evident  from the periodic rate of dissolution. 

Again by using the linear approximation, the time 
dependence of the polymer thickness was obtained, as 
shown in Figure 9. The regions of large  and  small cross- 
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Observed  nonlinear  frequency  shifts  during  the  galvanostatic depo- 
sition of copper  from an acid-copper solution, indicated  by  the 
circles. The solid line represents predicted frequency changes 
assuming  a 100% Faradaic efficiency. 

linking are clearly reflected  in the dissolution rate, and the 
1300-A spacing is consistent with the index of refraction of 
this polymer at the exposure wavelength. 

Electrochemical  applications 
Recently the uses of the quartz resonator as  a 
microbalance in electrochemistry have  been reviewed [29]. 
The focus here is not  only  on relevant electrochemical 
investigations taking  place at the IBM  Almaden Research 
Center, but also on the development of the technique 
itself. For electrochemical applications, one of the 
metal  films serving as an electrode for the quartz 
crystal also serves  as the working electrode. During 
adsorptive/desorptive, deposition/stripping, and 
oxidation/reduction processes, both the charge and the 
mass involved in the process can be determined. These 
two measurements are quite accurate, provided that they 
are properly decoupled. In principle, the mass per charge 
of the species involved  can  be measured. This marks a 
significant addition to the battery of techniques available to 
the electrochemist. To ensure that the electrochemical 
fields  and the radio-frequency fields are decoupled, it  is 
necessary that the working electrode be connected to a 
true ground. The rf fields are thus constrained to be within 
the quartz, and the electrochemical fields  within the 
electrolyte. For this reason, homemade potentiostats of the 
Wenking type having the working electrode at true ground 
are frequently used, although  commercial instrumentation 
can be employed with  modification [30]. 

An additional experimental precaution is needed because 
of the sensitivity of the quartz crystal on the radial 
distance from the center of its circular electrodes. 
Measurements of the radial sensitivity in  liquid  have 
recently been reported [31-331, and the same 
nonuniformity is observed. However, despite this 
nonuniformity, the relations based on models which 
assume the use of quartz resonators of infinite lateral 
extent have been applied successfully to characterize the 
frequency shifts. To keep the geometry as nearly circular 
as possible, the electrodes are made asymmetric, with one 
electrode having a diameter 1.5 times the other. The  larger 
electrode is chosen as the electrochemical working 
electrode to ensure that the resonator is not sensitive to 
the edge  regions of the working electrode, where current 
concentration is likely. 

In electrochemical applications to date, the quartz 
resonator has been used to measure mass changes on a 
surface. Some investigators have determined the mass 
sensitivity of the microbalance empirically,  while others 
have  used the equations developed for vacuum uses, as 
expressed in the mechanical model. Since mass is the 
principal quantity of interest, it  is appropriate to present 
some evidence in support of the straightforward use of the 
theoretical models, without calibration. For these studies, 
copper was electrolytically deposited onto one face of a 
quartz microbalance from a solution of  0.5 M  H2S0,, 
0.5 M CuSO 5%0, and 1.1 M EtOH. The deposition was 
conducted at a constant current of 5 mA  on a surface area 
of  0.39 cm2. The uncertainty in the area was 5%. The 
Faradaic efficiency of acid copper deposition is  known to 
be virtually unity. The frequency change as a function of 
time  is shown in Figure 10, in which the circles represent 
experimental data points. The time dependence is 
nonlinear, with the rate of change decreasing with  time. 
At  first glance, this may  seem surprising, since deposition 
at constant current should imply a constant rate of 
deposition; the linear Sauerbrey relation should predict a 
linear  time dependence. The frequency change is  well over 
10% of the fundamental frequency, indicating a large 
deposit thickness, where the thickness of the copper is no 
longer  negligible  with respect to the wavelength of the 
shear wave. If the mechanical model  is particularized to 
elastic films, the relatively simple relation first described 
by Lu and Lewis [SI is obtained, namely 

The left-hand side of the equation contains the quartz 
crystal parameters, while the right-hand side contains 
overlayer parameters, which  include the acoustic shear 
modulus of the overlayer. Assuming a Faradaic efficiency 
of loo%, the frequency change resulting  from a constant 
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deposition current of 5 mA can be calculated according to 
Equation (15),  and  is shown as the solid  line of Figure 11. 
Conversely, the observed frequency changes can be used 
to calculate the copper thickness E; these results are 
plotted as circles in Figure 11. The thickness increases 
linearly with  time, as anticipated. These results show that 
even for thick copper films, the mechanical model can be 
used without a calibrating factor. 

Thus, it appears that for  thin  films, the resonator can 
function as a microbalance, using the Sauerbrey relation 
[Equation (l)]. In one of the early applications of the 
microbalance, Kaufman et al. [34] studied the oxidation 
and reduction of the conducting polymer, polypyrrole. A 
quasi-equilibrium technique was employed to apply a 
stepwise potential to a polymer. After the application of a 
step of potential, the current was allowed to decrease to 
below a certain minimum set point before the next step 
was applied. The charge was obtained by integration of the 
current, and the mass changes were determined from the 
observed frequency change. An insulator-to-metal 
transition was believed to result from the incorporation of 
anions (Clod-) during oxidation and  their subsequent 
reversible removal  upon reduction. Although a reductive 
charge was measured during the reduction, surprisingly the 
mass was observed to increase. This unusual behavior was 
attributed to the influx  of cations (Li') during the 
reduction. This work illustrated a case for which the 
application of the microbalance provided dramatic 
evidence for a result which  would  not  have been 
anticipated strictly from charge measurements. 

microbalance as  a sensitive device to measure charge-to- 
mass ratios are provided by the studies of monolayer 
underpotential deposition (UPD) of metals and the 
adsorption of halogens.  In this process, the metal ions in 
solution are deposited on a foreign  metal substrate at 
potentials anodic of the equilibrium Nernst potential of the 
depositing metal. The initial  UPD work [35] was similar to 
the earlier work of Bruckenstein and Shay [36]. Whereas 
Bruckenstein and Shay used  10-MHz resonators, Melroy 
et al. used the third harmonic of 5-MHz resonators. The 
use of harmonic modes to increase mass sensitivity was 
demonstrated. Deakin  and  Melroy [37] illustrated in a 
dramatic fashion the accuracy of the microbalance when 
they predicted the current that would be necessary to 
account for the observed mass, assuming an 
electrosorption valency of 2 for the deposition of lead  on 
gold  from a perchloric acid solution. That predicted 
current was compared to the current measured, and 
the two curves were shown to superpose, as shown in 
Figure 12. Direct demonstration of the determination of 
electrosorption valency has been provided by the work of 
Deakin et al.  [38],  not  only  in metal UPD processes, but in 
the adsorption of bromine and iodine anions as well. 

Examples of the capability of the electrochemical quartz 

T i e  (s) 

0 

Copper film thickness calculated  from  the  data of Figure 10, using 
a model that includes the acoustic  properties  of the copper 
(circles), compared to predictions based on an assumed 100% 
Faradaic efficiency (solid line). 

Voltage (mV vs. SSCE) 

Calculated current density inferred  from  mass  uptake  during  the 
underpotential deposition of lead on gold, assuming an electro- 
sorption valency of 2 (solid line), compared  with  the  current  den- 
sity measured during a cyclic scan of potential (dashed line). 
From [37], adapted  with permission. 

A different but instructive example of the use of the 
quartz resonator in electrochemical applications is 
provided from the evidence for surface reconstruction 
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Idealized roughened surface, indicating how fluid may be trapped 
in wells on the surface, causing a frequency shift. 

during electrochemical redox cycles [39, 401. It illustrates 
the phenomenon of entrapped fluids mentioned in the 
Introduction. The polycrystalline gold  film which served as 
an electrode in the work also served as the working 
electrode in an electrochemical cell. The frequency change 
and the current were recorded as the electrode was 
oxidized and then reduced in neutral and alkaline 
solutions. In both cases, the frequency change observed 
was greater than that expected from the oxidation of the 
gold.  The  effect was much  more pronounced in the alkaline 
(NaOH) solution. The additional frequency change was 
attributed to the entrapment of the solvent in pockets or 
wells created on the surface during the oxidation. This 
concept is illustrated in the idealized  diagram shown in 
Figure 13. The wells are idealized as being homogeneous, 
rectangular, and  uniformly distributed. This is highly 
idealized, of course, but illustrates the concept. Such 
oxidative roughening was verified directly by scanning 
electron micrography,  and its reversible nature was 
supported by capacitance studies. The net mass of the 
trapped fluid can be calculated using the Sauerbrey 
equation. If the net mass and the density of the fluid are 
known, an average depth S can be calculated. Given this 
roughness, the additional frequency shift due to the 
entrapped fluid can be expressed by 

2f; 
('f)RO"GH = " 6 pLS. 

(16) 

This correction becomes important when (Sf )ROUGH is 
comparable to the frequency change induced by deposition 
or stripping. In continuous plating applications, although 
the topography of the deposit can change from that of the 

168 smooth gold electrode to some steady-state roughness, the 

frequency change induced by the plated  metal far exceeds 
that due to the roughness. 

Just as the quartz resonator has served as  a deposition 
monitor for the vacuum industry, it  is  now also used as a 
deposition monitor for the electrochemical industry. The 
impetus toward the development of such an instrument 
was provided by the application of the quartz resonator as 
a deposition monitor for electroless NiP deposition [41]. 
For that purpose, the quartz crystal was placed in a holder 
of polyvinyl chloride, mounted with  an  O-ring seal in order 
to expose only one face to the solution. The oscillator 
circuitry was placed  in this same probe, directly under the 
crystal. The durability of the crystal, its electrodes, the 
seals, and the associated electronic circuitry was 
demonstrated. By using two modified vacuum-deposition 
rate monitors and the same algorithm for the deposition 
of the NIP alloy as used for vacuum deposition, 3% 
agreement was found between the deposition thickness 
calculated from the frequency change data and that from 
the average thickness determined using a p-backscattering 
technique. This not only demonstrated the utility of the 
quartz resonator as an electrochemical deposition rate 
monitor, but also demonstrated that the deposition 
sensitivity is  unaffected by immersion in a fluid. 

Unanswered  questions 
The quartz resonator is  being successfully applied in an 
increasing number of ways, placing its behavior in liquid 
and other lossy media  under increasing scrutiny. There 
have been a number of unresolved issues. The  nonuniform 
sensitivity across the surface has already been mentioned. 
The evidence is clear that for the basic resonant mode, the 
sensitivity is bell-shaped across the surface. The shape of 
this distribution has been measured in vacuum [31,  321 and 
has recently been determined in a liquid environment [33]. 
For localized depositions, account must be taken of this 
variation. Although it is  not universally accepted that the 
theoretical sensitivity [42] can be used for uniform 
deposition in electrochemical applications, the evidence 
presented in the examples above indicates that that 
sensitivity can be  used. This area continues to be  of 
substantial interest [43-451. 

in the theoretical treatments has recently come under 
question. There appears to be evidence that under certain 
conditions partial slip can occur at the interface [46,  471. 
This  is a fascinating result which can have important 
consequences in electrochemical studies when the surface 
may be such that slippage can occur. An appropriate new 
boundary condition will have to be determined for the 
interface and new solutions generated. 

From the intuitive understanding of the behavior of the 
quartz resonator in a liquid, one would expect that changes 
in the average mass density to a depth of about 1000 A 

The no-slip boundary condition which has been assumed 
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should be detectable. Changes  in densities of the double 
layer which extend only to tens or hundreds of 8, should 
be observable. Specifically, the use of an electrolyte 
asymmetric in cationic and anionic mass should show a 
variation with potential. In a perchloric acid solution, for 
example, one would expect a frequency decrease in  going 
from a cathodic bias to an anodic bias. Preliminary 
experiments have not shown any measurable change. This 
may be due to the fact that the experimental potentials 
were not  sufficiently close to the potential of zero charge 
(PZC), the potential at which the net charge on the 
electrode vanishes. 

electroacoustic effects related to the motions induced in 
the ionic atmosphere in solution have been reported [48]. 
This would  be a  very serious additional contribution to the 
frequency shift; it  would have to be understood in order to 
preserve the quantitative interpretation of frequency shift 
data. To the authors' knowledge, such an  effect has not 
had to be included in the reduction of electrochemical 
data. And we have not personally observed effects 
attributable to such a phenomenon in our electrochemical 
studies. However, the importance of this possible 
contribution requires that it be addressed. 

The possible behavior of viscoelastic overlayers has 
been discussed. This area is  rich  with possibilities, 
permitting the determination of changes in the acoustic 
shear properties of such films  with changes in their 
physical and chemical behavior, such as their sol-gel 
behavior, cross-linking, and the onset of conductivity 
(in conducting polymer films).  The experimental technique 
needed would require the use of electrical admittance 
(impedance) methods, an area which is  receiving increasing 
attention [49-521. From the complete theory, the predicted 
behavior of the frequency change and the resonant 
resistance as  a function of the thickness of a viscoelastic 
film are shown in Figure 14. The density was assumed to 
be 1200 kg/m3, the shear modulus assumed to be 5 X lo7 
N/m*, and the viscosity assumed to be 1.59 N-s/m*. The 
frequency initially decreases with increasing thickness, but 
for thickness exceeding 10 pm, there is a region over 
which the frequency increases with increasing thickness. 
The losses associated with the overlayer, as indicated by 
the resistance, rise  rapidly to a maximum near a thickness 
of 13 pm. The losses there would  be too large to sustain 
oscillation, but should be measurable using impedance 
techniques. 

Frequency changes associated with potential-dependent 

Concluding  remarks 
The efforts at the IBM Almaden Research Laboratory in 
the application of the quartz resonator to electrochemistry 
have been quite diverse and have demonstrated its use  in a 
variety of applications. It has been used  primarily as a 
microbalance, using the classical quartz oscillator 
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Predicted electrical behavior of a 5-MHz resonator as a function of 
the thickness of  an overlying non-lrlewtonian viscoelastic film. 

technique. A clear understanding of the behavior of the 
resonator is required for its successful implementation and 
for an associated analysis of data. Although the use of the 
mechanical model has been found to be adequate for 
characterizing resonant frequency changes, use of the 
complete model in conjunction with admittance 
measurements may  be  needed for a more complete 
characterization-for example, for the characterization of 
viscoelastic films. The activities described above indicate 
the major activities of this laboratory in the applications of 
the quartz resonator. Clearly there exists a large  and 
growing activity in this field  in the electrochemical 
community. As examples of the types of innovative 
applications being attempted, the work in the use of the 
quartz resonator as  a rotating disk electrode [53] is 
exciting, and the use of ac gravimetry for kinetic studies 
[54] is fascinating. 

Appendix 
Using Equation (3) in Equation (2), the general wave 
equation for shear waves in a viscoelastic medium  is 

a2u  a2u a 3~ 

P x = P - T + q T -  at az a zat ('41) 

In the harmonic approximation, for  which solutions are 
restricted to those having a time dependence of the form 
eio', the two terms on the right-hand side of Equation (Al) 
can be combined in terms of a complex viscosity i;, 
namely f i  = p + j w q .  The wave equations in (4) are the 
solutions of the wave equation (Al) in the harmonic 
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approximation.  The  values  for  the  associated propagation 
constant k and  the  decay  constant a are given by 

and 

If these  relations  are used  in the mechanical  model, in the 
elastic approximation  (assuming qa to  be  zero), it  follows 
that 

and 

aa = 0. 

Here pa is the "effective stiffened shear modulus"  for 
quartz (the  semi-empirical value of 2.947 X 10" N/m2 is 
used). 

For  the  complete model, the  wave  equation  for  the 
quartz differs in detail  from Equation (Al). Knowing that 
there  is  no  free  charge in the  quartz,  Laplace's  equation 
can  be  written aD21dz = 0. By using Equation (9), a 
relation between  the displacement u and  the potential 4 
can  be  formulated, namely 

a24 e2, azu 

az2 - az2 
"" 

By applying Newton's  equations (3) to (8), and using the 
expression  above  for a241az2, the  wave  equation for 
elastic  quartz is  obtained: 

In comparing Equation (Al) as applied to  lossless 
quartz  with  Equation (A7), it is clear  that  the "effective 
stiffened shear modulus" pa is  replaced by  the  term 
[c,, + designated as C,,. This is the  predicted 
"piezoelectrically  stiffened shear modulus" and  has a 
value of 2.924 X 10" N/m2.  This  value differs from the 
semi-empirical value  by 0.8%. 

The explicit  form  for the  admittance Y can  be  written  as 

- imEU N y =  - e D, + D, - D, ' 

where 

N = kaC6, sin (kat)  + kLGL tan (kLE) cos (kata), 

Dl = kaC6 sin (kat) ,  

170 D2 = kLGL tan (K,E) cos (kat'), 

and 

k&L +- tan (kLE) sin (kLE) sin (kat)  . 
%2'66 1 
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