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simulation 
of resist-patterned 
electrodeposition 

A numerical simulation of resist-patterned or include magnetic recording _ _  
“through-mask” electroplating has been 
performed to investigate shape evolution at 
the scale of small lithographic features. 
Shape evolution and step coverage  have  a 
significant influence on the shapes  of such 
microelectronic structures as conductor lines, 
vias,  and magnetic pole pieces.  The simulation 
and associated analysis are  based on a 
model for the rate distribution of the 
electrodeposition reaction that includes the 
depletion of the depositing metal ions and the 
inhibiting  action of leveling agents. A stagnant 
boundary layer is assumed to be  present,  and 
the diffusion theory of leveling with a  one- 
parameter description of kinetic inhibition is 
employed.  The results show that when the 
geometry of a  feature cavity makes possible 
the occurrence of concentration-field effects 
(such as radial diffusion), an uneven metal-ion 
flux should cause nonuniform growth at high 
fractions of the limiting current, and leveling 
agents should exert an opposing effect,  even 
causing a strong reverse nonuniformity in 
some  cases. 

Introduction 
The use of patterned electrodeposition in electronic 
microfabrication is widespread and  growing. Applications 

- - heads [l], masks for X-ray 
lithography [2] ,  thin-film  wiring  on  multichip  packaging 
modules [3], bumps and solder balls for chip connection 
[4], and  flexible packages [5]. One reason why 
electroplating has been achieving importance among 
methods for depositing thin  metal films is the recent trend 
toward the use of copper in thin-film  wiring structures [6]; 
copper plating  is a relatively fast and inexpensive process. 
Of equal importance is the increased recognition of the 
extraordinary pattern-transfer capabilities of electroplating 

Typically, resist-patterned electrodeposition is carried 
[71. 

out by the following steps: 

1. Deposit a thin conductive seed layer by evaporation or 

2. Apply, expose, and develop the resist, leaving  openings 

3. Electrodeposit metal,  which  fills the cavities and 

4. Strip the resist and remove the nonplated portions of 

sputtering. 

or cavities. 

replicates the resist pattern. 

the seed layer by etching. 

The above procedure, often called “through-mask’’ 
plating, was pioneered by  Romankiw  and coworkers [8]. 

In  most applications of through-mask plating, a flat 
profile  is desired. For example, in thin-film  wiring  for 
packaging or device interconnection, one would  like  each 
conducting line to have the highest  possible cross-sectional 
area without exceeding width or height  ground rules. A flat 
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profile (rather than a crowned or sunken one) best satisfies 
this preference. Furthermore, flatness may be necessary in 
fabricating multilayered structures by repeated patterned 
plating. Flatness is generally desirable in fabricating 
magnetic pole pieces for recording heads. Also, one 
usually expects bonding pads to have flat  and regular 
surfaces. Bumps and solder balls  used  for chip joining  may 
not require flat  profiles, but their shapes should at least be 
uniform  and  regular. It can be reasoned that two nearby 
features of different sizes would be more  likely to grow to 
the same height under conditions that would produce a flat 
rather than a humped or sunken profile. 

In general, electronic components must be fabricated 
with high precision. Uniformity and yield  must be 
extremely high for each manufacturing step in order for 
processes involving hundreds of steps to be economically 
viable. The corresponding need  for quality and control in 
electronic microfabrication calls for clear knowledge of 
process behavior, parametric dependencies, safe operating 
windows, and process limits. Whether or not a flat  profile 
is sought, most applications of electrodeposition in 
microelectronic fabrication call for high-precision, uniform, 
predictable behavior. The capability to predict feature 
shape evolution and the associated gain  in understanding 
are of considerable potential value to those who design 
devices and fabrication processes. 

electrodeposition was conducted by Hume, Deen, and 
Brown [9]. This investigation, which was briefly reviewed 
by this author in [lo], treated shape evolution in 
rectangular trench filling  in a nonleveling system; the 
influences of metal-ion depletion and concentration-field 
effects were examined. 

A noteworthy numerical investigation of resist-patterned 

The investigation described here consisted of numerical 
simulations of profile evolution in through-mask 
electroplating. Its purpose was to learn how and to what 
extent such effects as metal-ion depletion and  radially 
enhanced inhibitor transport can influence the ultimate 
shape of small structures fabricated by through-mask 
plating. 

Behavior was studied in terms of departures from a 
central set of conditions, or “base case.” This set of 
conditions was chosen to correspond to copper plating 
from an acid-sulfate  bath into sparsely placed 10-pm-wide 
cavities defined  by a 5-pm-thick resist layer. It was 
realized early that a more interesting and illustrative study 
would ensue if the base case were chosen so that the 
fraction of limiting current was higher than typically 
encountered in through-mask plating. Hence, we chose a 
rather high current density (50 mA/cmZ), low  metal-ion 
concentration (100 millimolar),  and thick boundary layer 
(40 pm). At more moderate values of the above three 
parameters, depletion of the metal  ion plays an 

126 insignificant role, and, in the absence of leveling agents, 

the resulting profiles  would be extremely flat. (This 
important characteristic of through-mask plating  is further 
discussed in the Conclusions section.) Finally, the resist 
wall was assumed to be vertical in the base case, and the 
inhibiting  effect of the leveling  agent was ignored. The 
base values of  all the constants and dimensionless groups 
used are listed at the end of the paper. 

Theory  and  mathematical  model 
During the course of electrodeposition, the surface of the 
electrode gradually advances into the space previously 
occupied by the electrolyte. The rate of advance may vary 
with position, since the local rate of electrodeposition, 
usually proportional to the local current density, is dictated 
by electrochemical transport phenomena and electrode 
kinetics. The dominant  mode of transport of the depositing 
ions and inhibitors at the 10-pm scale and  below  is 
diffusion.  Highly  nonuniform  diffusive  fluxes can arise 
from geometric concentration-field effects. Hence, the 
current distribution can be strongly affected by the 
geometry of the electrode surface and the surrounding 
resist structure. In turn, the electrode shape is gradually 
affected by the current distribution. The resulting shape- 
evolution behavior can be quite complicated. The final 
shape embodies the cumulative record of a succession of 
instantaneous reaction-rate distributions. Our aim was to 
simulate the shape evolution numerically by solving for the 
current distribution at each in a succession of time steps 
and  using this solution to advance the boundary 
incrementally. We began by making a series of 
assumptions to express the problem in a manageable form. 

Assumptions 
The electrolyte was considered to be  uniformly conductive 
despite the depletion of the depositing ions near the 
electrode surface. Under this assumption, valid  for  most 
plating baths (which contain excess supporting electrolyte), 
the potential obeys the Laplace equation. 

concentration of any species is  confined to a concentration 
boundary layer near the electrode surface. We considered 
the outer edge of this layer to be flat,  even  though the 
resist-patterned electrode surface is topographic. We 
considered transport within the concentration boundary 
layer to be by diffusion alone; i.e.,  we assumed a stagnant 
diffusion layer. This  common approximation greatly 
simplified the problem by obviating a detailed treatment of 
convection. Both the depositing metal  ion species and the 
leveling  agent were assumed to obey Fick‘s second law  of 
diffusion  within the concentration boundary layer. The 
instantaneous concentration fields were assumed to be 
pseudo-steady; this is a safe assumption, since the time 
scale for boundary motion greatly exceeds that for 
relaxation of the concentration field [ll]. The outer edge of 

We assumed that any departure from the bulk 
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the diffusion layer  was not considered  to  advance  as  the 
deposit grows; the  error  introduced  by this assumption  for 
the  case  treated, pertaining to films growing to a thickness 
one  tenth  that of the diffusion layer, is likely to  be small. 

Current efficiency was  assumed  to  be 100 percent, which 
is nearly  true  for  copper deposition  but not universally true 
in electrodeposition. 

We  assumed  that, in the  absence of leveling, the kinetics 
of electrodeposition are  dictated  by  the Butler-Volmer 
equation,  with  the exchange current  density depending on 
reagent  concentration as described  by  Newman [12]. 
We  used  the  common  expression  for  concentration 
overpotential given by  Newman [13]. 

theory of leveling  applies [14, 151. According to this 
theory,  the leveling  agent  is continuously  consumed  at  the 
cathode surface. It is transported  to  the  surface  by 
convective diffusion; within the  mass-transfer  boundary 
layer, diffusion is the  predominant mode of transport. 
While adsorbed  to  the  surface,  the leveler  and/or  its 
reaction  products  act  to inhibit  metal  deposition.  Since  a 
higher surface  concentration of inhibiting adsorbates is 
expected  at  points  on the electrode  that  are  exposed  to a 
high diffusive flux of leveler, the  rate of metal  deposition 
is selectively  suppressed  at  such points. Hence,  as  the 
electrode profile advances,  protrusions tend to  attenuate 
and  cavities tend to fill. 

It  was  assumed  that  the widely  recognized diffusion 

The  above mechanism is well accepted  for  many 
electroplating systems [14, 161. Further, it has been proven 
that  the leveling agent is consumed  at its diffusion-limited 
rate in several  systems of importance [17]. 

Dukovic  and  Tobias [ll] have argued that  the  usual 
dependence of current  density i on  surface  overpotential 7, 
for  a  nonleveling system, 

i = i(v,), (1) 

can  be applied to a leveling system if modified to include 
only  one  more  independent variable, the flux of the 
leveling  agent N,, namely 

i = i (vs,  NA). 

This functional dependence is consistent with the rotating- 
disk  polarization data of Kruglikov et al. [18] for  coumarin 
in a Watts nickel plating bath. 

Jordan  and  Tobias [19] have  shown  that an even simpler 
relationship can  be used. In a  given system  at a given 
overpotential,  the  current  density  is lower when  the 
leveling  agent is present  than  when it is absent  by a factor 
that  depends  on  the  ratio of the leveling-agent  flux to  the 
metal-ion flux NA/NM, namely 

1 

where il;& and ir;:;;; are  the  current  densities in the 
presence and absence of the leveling  agent.* This 
dependence  was derived by  Jordan  and  Tobias from  an 
area-blockage treatment  by  Krichmar [20], which was  later 
extended  by  Roha  and  Landau [21, 221. Jordan  and  Tobias 
have  shown  that  the  above  dependence  produced a  good fit 
to  the polarization data of Kruglikov et al. [18] for the 
nickel-coumarin system. 

Equation (3) permits a convenient  separation of 
functional dependencies;  the leveling effect can  be 
described relative to  the additive-free  kinetic behavior, 
which is independent of the action of leveling additives: 

A further  advantage of Equation (3) is that  the function of 
NA/NM involves only  one  parameter, k,,,. 

Although the  above  one-parameter  description isF 
certainly  an oversimplification of real  leveling systems, it 
does  describe  the essential behavior of leveling by a 
diffusion-limited inhibitor. Such a  simple treatment is 
appropriate  for  the  study  undertaken.  In  future simulations 
involving  specific systems or requiring high predictive 
power, more complicated or empirical  functional 
dependencies  can  be  substituted. 

Mathematical model 
Figure 1 shows  the  assumed  geometry of the  system  and a 
concise  statement of the mathematical  model  used. The 
model combines  three different field problems in the 
potential 4, the metal-ion concentration cM, and  the 
leveling-agent concentration cA. In  the figure, the 
superscript ' denotes  the normal  derivative. The  three field 
problems  are coupled at  the  electrode  boundary only. The 
next three  paragraphs  describe  the field problems. 

The domain of the potential  problem extends fully from 
the  surface of the  patterned  electrode  to a  constant-flux 
boundary far  away. The potential is assumed  to  obey  the 
Laplace  equation, 

v24 = 0. 

The  current  density is related to  the potential by Ohm's 
law, i = - K V ~ .  The  boundary  conditions  on  Equation (5 )  
are  as follows. The normal component of the  potential 
gradient is assumed  to  be  zero at all insulating and 
symmetry  boundaries: 

V4 * n = 0; (6) 

these  boundaries include the resist surface,  the  symmetry 
axis that divides the  feature in two, and  the  symmetry axis 
between adjacent features.  At  the  boundary far away  from 

"Nomenclature different from that used by Jordan  and Tobias is used in this 
equation. 



The coupled boundary-value  problem  treated  in  this  paper  [Equations (5)-(15) and (23); some equations are  abbreviated]  and  the geometric 
configuration of the problem. Concentration  domain - light-blue region; potential  domain - pink  and light-blue regions; photoresist - 
red region; substrate - lavender region; seed layer for electrodeposition - yellow strip. Geometric parameters  are  indicated  in  purple. 

the electrode surface, the normal derivative of potential is densities differ, however, according to the ratio of surface 
set to a constant value. This value is chosen to be that areas, w/p .  Thus, 
necessary to supply an average current density of r to the 
exposed surface of the cathode at time zero. The total 
currents at the cavity and at the far boundary are forced to K P  . 
balance by the boundary value problem; the current At the electrode surface, the potential obeys an equation 

- 
iw v 4 .  n = " (7) 
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relating its normal derivative (which  is proportional to the 
reaction rate) to the potential difference acting across the 
electrode surface (the driving force for electrodeposition). 
The potential of the electrode itself  is arbitrarily taken to 
be zero; hence the value of potential within the electrolyte 
at the electrode surface represents the negative of the total 
overpotential, 4 = -qtot. The relation between reaction 
rate and potential difference  is stated below as Equation 
(23); since this involves the other two field variables cM 
and cA, it  is described later. Also at the electrode surface, 
the normal derivative of potential is related to the normal 
derivative of metal-ion concentration by the flux-matching 
condition [Equation (ll)] described below. 

The concentration of metal ions varies within a smaller 
domain, that of the concentration boundary layer. Within 
this domain, Fick's second law results in the Laplace 
equation: 

V'C, = 0. 

Again, there is  no  normal gradient (no flux) at the resist 
surface or at either symmetry boundary. Thus, 

Vc, . n = 0. (9) 

At the outer edge of the boundary layer, the metal-ion 
concentration is assumed to be held  at its bulk value: 

m 
CM = CM . 
At the electrode surface, the  normal derivatives of cM and 
4 are proportional, since the flow  of current is entirely due 
to electrochemical reaction of the metal ions, which are 
transported only  by  diffusion. Thus, 

nFD,Vc, n = K V ~  * n. (11) 

The third  field  problem involves the leveling agent, 
whose concentration again varies only within a diffusion 
boundary layer. (The two boundary layers are assumed for 
simplicity to have the same thickness, although this may 
not be strictly true.) In this domain, the Laplace equation 
applies once again: 

v'c, = 0. 

Again,  no  flux  is  allowed across any  insulating or 
symmetry boundary: 

VcA n = 0. (13) 

As for the metal ions, the leveling-agent concentration is 
set to its bulk value at the outer edge of the boundary 
layer: 

CA = CA 

Since the leveling  agent is being consumed at its transport- 
limited rate, its concentration is zero at the electrode 
surface: 

c* = 0. 

The  leveling-agent field problem can be solved 
independently of the metal-ion and potential problems. 
However, the overpotential expression contains the 
leveling-agent flux, as was described in the previous 
section. 

There are two boundary conditions at the electrode 
surface that link the three field problems together. The  first 
is Equation (ll), which equates the ohmic  and  diffusive 
expressions for the electrode current. The second is the 
overpotential expression, which is rather complicated 
because it includes surface overpotential, concentration 
overpotential, and the dependence of the rate constant on 
both metal-ion concentration and  leveling-agent  flux. This 
equation, the rate expression for electrodeposition, is 
derived in the following paragraph. 

4 is related to the total overpotential qtnt by  an arbitrary 
additive constant &: 

The potential of the electrolyte at the electrode surface 

4 = 4 E  - q,o t  . 
Setting 4E equal to zero and  resolving the overpotential 
into its two components yields 

where q, is the surface overpotential and qc is the 
concentration overpotential. The concentration 
overpotential arises because the metal-ion concentration 
near the electrode surface cM differs  from the bulk 
concentration c;: 

RT cM 
nF cM 

q, = -In ,. 

The surface overpotential q,, associated with the activation 
energy of the electrode reaction, is  related to the current 
density i. The present analysis is based on the widely  used 
Butler-Volmer equation of electrode kinetics, 

The exchange current density io is assumed to depend on 
the metal-ion concentration, as described by Newman [12]: 

Further, the exchange current density is assumed to 
depend on the leveling-agent  flux according to Equation 
(3), namely 
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The  last  equation  can  be  rephrased  by  expressing  the 
metal-ion flux in terms of current density, NM = i /nF: 

Finally, substitution of Equations (17), (18), (20), and (22) 
into  Equation (19) produces  the  overpotential  boundary 
condition, which  relates  the  values of i, 4, cM, and N,  
at  the  electrode  surface: 

1 

1 + kLE,nF T 

Dimensionless problem  statement 
The  three-way coupled field problem stated  above is  made 
dimensionless  according to  the following scheme.  Lengths 
are made  relative to  the  feature width w .  Concentrations 
are referred to their  bulk  values. Current  densities  are 
nondimensionalized with  respect  to  the average current 
density  at  the initial feature  surface T. Potentials are related 
to  the  quantity T W / K .  The fluxes of metal ion and leveling 
agent are divided by D,c,lw and D,c,/w, respectively. 
The resulting set of dimensionless equations follows. 
(Asterisks are used to signify dimensionless  quantities and 
operators.) 

Within the  electrolyte, 

v*24* = 0. 

Far  away from the  cathode, 

V*4* n = w/p. 

Within the  concentration  boundary layer, 

v*zc; = 0 

VL2CT, = 0. 

c ;  = 1 

CT, = 1. 

and 

At  the  outer edge of the  boundary layer, 

and 

130 At  the resist surface and symmetry boundaries, 

V * 4 * .  n* = 0, 

V*c: n* = 0, 

and 

V*c; * n* = 0. 

At  the  cathode  surface, 

c; = 0, 

V*c; * n* = Sh V*4* - n*, 

and 

- exp [ - -  I: ( - ;:r + -Inc;)]. : 

(33) 

(34) 

The  above  set of equations  contains  seven  independent 
dimensionless  groups. Three of these involve only  kinetic 
parameters  that  were  already dimensionless: aJq, aJn, 
and y. The  other four groups  are referred to  by special 
names.  Two  are forms of the Wagner number [lo]: the 
Tafel  form, 

RTK 

acFTw ’ War = - 

and  the linear  form, 

(24) 
Another  group  can  be  considered a Shenvood number, 

- 
i w  

(37) 

Finally, the dimensionless leveling parameter is defined as 

(39) 

(27) Method of solution 
The  advancement of the  electrode profile over time was 
treated  stepwise via  a succession of time  intervals. At  each 

(28) interval, the  above  system of equations  was solved for  the 
corresponding profile geometry using an  iterative  numerical 
scheme.  The resulting  distribution of current  at  the 

compliance  with Faraday’s law. 
(29) electrode  surface  was used to  advance  the  boundary in 
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Iterative scheme 
The  starting point at  each  time interval was  to  solve  the 
field equation  for  the leveling-agent concentration assuming 
an initially uniform current density. A profile of metal-ion 
concentration  derivatives  was  then calculated  using 
Equation (11) (flux matching). By using the  latter profile as 
a boundary condition, the  Laplace  equation  was  solved. 
The resulting surface-concentration profile was  substituted 
into  the  overpotential  expression  [Equation (23)] along 
with  the leveling-agent flux profile. By using the most 
recent  current-density profile, an overpotential profile was 
calculated. Next,  these  surface  potentials  were used  as  a 
boundary condition to  solve  the  Laplace  equation for 
potential. A new  current-density profile was  thereby 
calculated. A residual,  consisting of the difference between 
the  new  and old current-density profiles, was  evaluated. 
The multivariate  Newton-Raphson method  was used with 
this  residual to  obtain a better  estimate of the  current- 
density profile. The  cycle  was  repeated until the largest 
relative change in current  density  at  any point on  the 
profile was smaller than  In  most  cases no more  than 
five iterations  were required  for convergence.  The 
boundary-element method with  quadratic  elements [23] 
was  used  to  solve  the individual field equations,  as in an 
earlier work [24]. 

Movingboundary algorithm 
The method  used for moving the  boundary  was similar to 
one previously reported [ l l ] ,  with  one major  difference: It 
was  necessary in the  present  work  to  treat  growth along an 
insulating wall. This is not  straightforward when  the wall is 
not  vertical.  Furthermore,  since  the  side wall goes from 
being entirely  bare  to being  mostly covered  with metal, the 
number of nodes used to  represent this boundary must be 
changed  over  the  course of the simulation in order  to 
prevent  extreme local  differences in element size. To this 
end, a scheme  was devised  for  distributing nodes along the 
resist wall that roughly preserves their original spacing by 
letting the  number of nodes  on  the  segment  decrease  over 
time. A similar node redistribution scheme  was used on 
the  segment of the  boundary describing the  electrode 
surface. In this case,  the number of nodes could increase 
or  decrease depending  on whether  the  exposed  area  was 
increasing or decreasing. 

The following approach  to  growth along the resist  wall 
was  taken.  We refer to  the  node  at  the  intersection of the 
electrode profile and  the  resist wall as  the “two-phase’’ 
node.  After  the preliminary  relocation of the  nodes 
according  to  Faraday’s law, a test  was  conducted  to  see 
whether the two-phase node  had been relocated  within the 
resist (i.e., beyond  the region where metal  deposition is 
allowed). If so, a new  quadratic element was formed along 
with  the  two  nearest false electrode  nodes,  and  the 
intersection of this false  element  with the resist  wall was 

located  by marching  along the  element  and testing at  each 
point. The  two-phase  node  was then relocated  to this 
intersection point. If the  two-phase  node  had been 
originally relocated within the  cavity but off the resist  wall, 
it was  relocated  to a  point  equidistant  from its origin but 
lying on the resist  wall. With these  exceptions,  the false 
surface  was  constructed and measured  exactly  as in [ll].  
Next,  the  number of elements  to  be  used in the  boundary- 
element  representation of the  new profile and their arc 
lengths were  determined, using an  algorithm that  preserves 
both  the relative  lengths and  the  approximate  absolute 
lengths of the  elements. Finally, the  nodes  were 
repositioned on  the false surface,  as in [l l] .   No artificial 
smoothing of the profiles was  performed. 

In  the  base-case problem (described below), 76 nodes 
were used to  describe  the potential  domain; 74 nodes 
described  the  concentration domains. Both  numbers 
decreased  as  the simulation proceeded. 

During each time  interval, the  volume of the  deposit 
grows  by  the  same  increment.  This growth increment  was 
defined so that, in the  case of unidirectional even growth, 
the profile would advance  by  one  percent of the  feature 
width w in each time step. 

Scheme of investigation 
As already indicated, behavior  was studied in terms of 
departures from  a central  set of conditions, or  “base 
case.”  At  the  base  case,  the  seven dimensionless 
groups  were  assumed  to have the following base values: 
Sh = 0.5, KLEV = 0, Wa, = 520, Wa, = 6500, g / q  = 3, 
y = 0.6, and ac/n = 0.25.  The five geometric  parameters 
were  assumed  to have the following base  values: 
h/w = 0.5, 0 = 90°, S/w = 4, p / w  = 10,  and SIW = 50. 
The  base  case  corresponds  to  (but is not  restricted  to) 
copper plating at 50 mA/cm2 from  a  100-mM-Cu2+ bath 
with a  40-pm-thick diffusion boundary layer into a 
10-pm-wide cavity with vertical walls. 

were varied: current  density (T, reflected in Sh and Wa,); 
boundary-layer thickness ( S / w ) ;  resist thickness (hiw); 
wall angle (0); and  leveling parameter (KLEV). Also, a 
comparison  was  made of the  growth in a  cylindrical cavity 
and a semi-infinite trench. 

It should be noted that  the  current flowing to the cavity 
(rather  than  the  current  density)  was fixed throughout  each 
simulation. This  was  done  by fixing the  current  density  at 
a boundary far away  from  the  electrode, ifar, namely, 

In  the  parametric investigation,  the following parameters 

w:  

P 
lfar = - 1 ,  (40) 

where  rrefers  to  the  average initial current  density  at  the 
feature  surface. As growth proceeds,  the  electroactive  area 
of the  feature usually changes; in such  cases,  the actual 

IBM J. RES. DEVELOP. VOL. 37 NO. 2 MARCH 1993 J. 0. DUKOVIC 



Sh=0.5 K,,,=O, Wa,=520. WaL=6500. u,/a,=3, ~0.6, adn=0.25 

h/w=O 5, 8=90°, 6/w=4, p/w=lO. s/w=50, (75% Of ILIM at t=O) 

Shape evolution predicted for the base case. 

instantaneous  average  current  density  at  the  feature 
surface  varies in inverse  proportion  to  the  electroactive 
area. 

We have chosen  to  characterize  the  extent of deposition 
in terms of the mean height g of the profile of the  deposit. 
(More strictly,  we refer t o g *  = g/w, since all lengths 
were made  dimensionless with  respect  to  the  feature width 
w.) The mean was  calculated  as follows: the height of a 
flat-profiled deposit of equal  volume  to  the  deposit in 
question. 

profile of a deposit  can  be  expressed  as follows: 
The nonuniformity or  departure from  flatness of the 

whereycente, is the height of the  deposit  at  the  center  and 
y,,,,, is defined as  the  opposite  extreme in profile height,  an 
extreme which does  not  necessarily  occur  at  the  very  edge 
of the profile (as in the 7W-wall case discussed later). 
As defined, the magnitude of N reflects the  degree of 
nonuniformity, and its sign indicates whether  the profile 
is higher at  the  center (negative) or at the  sides 
(positive). 

comparing the nonuniformities in different cases.  We 
compare  values of N at the  same  value of glw . 
Specifically, we define N,, as  the  value of N when  the 
mean thickness glw of the  deposit  reaches 90 percent of 
the resist thickness hlw. 

It should be  noted  that  the  analysis  was limited to 
growth within the resist  walls. Each simulation was halted 
just  before  growth would have  extended  over  the  top of 
the resist layer  (“overgrowth”  or “mushrooming”). 

It  was  necessary  to  choose a  rational  basis for 

132 However,  the resulting final profile for each  case generally 
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corresponded  to a different mean profile height jjlw, since 
the  shape of each profile was different. The most 
meaningful comparison of nonuniformity from  case  to  case 
was  to  compare  the  values of N,,. 

expressed  as gFL, is a  well-known parameter of importance 
in determining the  impact of transport nonuniformities on 
current distribution. It  may therefore appear desirable to 
attempt  direct  comparisons  between different cases  at  the 
same fraction of limiting current.  However, this is not 
practical for  two  reasons.  First,  the limiting current  does 
not remain constant  as  the profile advances,  since  the 
problem geometry is not  constant.  Second,  even  the 
limiting current  at time zero  cannot  be known a priori; it 
must be  computed numerically  for each problem geometry. 
Matching the initial limiting currents  between  two 
problems of different geometry would require  at  least  one 
other  parameter of the model to  be  set  to unequal  values. 
Such a procedure would be  somewhat  arbitrary  and  would 
require  another level of iteration in the problem. In  view of 
the  above  arguments, it was decided, for this  work,  to 
conduct a  straightforward  analysis based  on  the  geometric 
parameters and  dimensionless groups  and  to  report  the 
initial fraction of limiting current parenthetically. 

The fraction of the limiting current, which can  be 

Results  and  discussion 
The  results of the  analysis  are  presented in two  types of 
plots. “Shape  history plots,” such  as Figure 2, show a 
series of electrode profiles as light-blue curves.  The resist 
is  shown  in red,  the  substrate in dark blue, and  the 
conductive  seed layer in yellow. The height and width 
dimensions  are  shown in true  proportion.  Each  growth 
step  corresponds  to a fixed increment in electrode  volume 
or in time, since  the  total  current  to  the  feature  was held 
constant during each simulation. The profile corresponding 
to a  mean deposit height that is approximately 90 percent 
of the resist height is highlighted as a dashed purple curve. 
Beneath  each plot, the  values of the  seven dimensionless 
physico-chemical parameters  are indicated on  one line, and 
the  values of the five geometric  parameters  are indicated 
on  the  next line (along with  the initial fraction of the 
limiting current in parentheses).  The  parameters  that 
depart  from  the  base-case  values  are highlighted in red. 

The  other  type of plot, for example that of Figure 3, 
shows  the relative  nonuniformity in the profile height N as 
a  function of the  average height g to which the profile has 
grown. Such “nonuniformity plots”  compare  several 
different cases.  Each  curve is labeled with  the number 
of the figure in which the  shape  history is shown.  For 
example, Curve 2 in any nonuniformity  plot corresponds 
to Figure 2 (the  base case). A dashed  vertical line 
corresponds  to 90 percent of the resist  wall height; the 
value of N,, can  be read  from the  intercept of a curve  with 
this line. 
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One  other  result is reported for each  case in the 
discussion  that follows: the fraction of the limiting current 
density  at time zero, qFL. It  was calculated from  the 
solution of the coupled boundary-value problem for  the 
first time  interval. The limiting flux of metal ions  was not 
calculated directly; instead,  it was  determined  from  the 
identity  between  the dimensionless c i  and c: fields, 
leading to  the  expression 

The integrals were  evaluated numerically  using the 
boundary-element interpolation  functions. The  value  for 
i / i ,  is indicated in parentheses for each  shape-history plot. 
It  should  be emphasized that  this  value  was  not  treated  as 
an independent  variable in the  system.  Rather,  the  value of 
i / i ,  was uniquely determined  by  the  seven dimensionless 
variables and five geometric  parameters  described earlier. 

" 

" 

Base case 
Figure 2 shows  the  shape evolution predicted for the  base 
case  described in the  previous  section. As can  be  seen 
from the figure, the  growth-rate distribution is fairly 
uniform throughout  the time of deposition. Growth is 
slightly faster  near  the resist  walls,  especially as  the 
deposit  thickness  approaches  the  resist thickness.  When 
the profile has grown to an average height that is 90 
percent of the resist height, the  sides of the  deposit  are 
4.5 percent higher than  the  center (i.e., N,, = 4.5%). The 
evolution of profile nonuniformity is shown  as  Curve 2 in 
Figure 3. It is apparent from both  Figures 2 and 3 that  the 
nonuniformity arises primarily toward  the  end of the 
growth period. This  occurs  because  the resist  walls exert 
less of a collimating effect on  the diffusive flux as  the 
cavity fills, and radially enhanced diffusion causes slightly 
higher current  density  toward  the walls. This  trend  was 
pointed out  by  Hume, Deen, and Brown [9]. 

Half  current density 
This  case and all remaining cases  studied  were simple 
departures, usually of only  one  parameter,  from  the  base 
case. Figure 4 shows  the  shape  history  that  results  when 
the  deposit is  grown at half of the  base  current  density 
(half of the  base deposition rate).  This plating rate 
corresponds  to 38 percent of the diffusion-limited current. 
The resulting  nonuniformity,  which is also  reflected by 
Curve 4 in Figure 3, is  quite mild: N,, = 1.3%. This 
illustrates  that  at a  low or  modest fraction of the limiting 
current,  there is little basis  for nonuniformity caused  by 
uneven depletion of the depositing  ions. This is because 
the  component of overpotential  due  to  the  departure from 

10 I I '  

I 
I 

0.0 0.5 YY(, ' .o 1.5 

Average height, i 

Predicted relative nonuniformity as a function of the height of the 
electrodeposited film. Curve numbers correspond to figure num- 
bers. For the cases covered here, it  is assumed that the wall angle 
is 90" and that there is no leveling. Nonuniformity for growth un- 
der the conditions of the base case (curve 2); for growth at  half 
the base current density (curve 4); for growth in a round cavity 
(curve 5 ) ;  for growth under strong agitation (curve 6); and for 
growth at half the base photoresist thickness (curve 7). 

sh=0.25, K,,,=O. waT=io40, WaL=6500, uJa,=3, ~ 0 . 6 .  adn=0.25 

hiw=0.5. e=9o0. 6/w=4, p/w=iO. s/w=50, (38% of iLIM at t=O) 

conditions otherwise). 

bulk concentration is so small in absolute terms  that no 
appreciable refative differences can arise to  cause 
nonuniform  deposition. 

Round cavity (rather than trench) 
A simulation  performed for  the  case of a round  cavity of 
diameter equal to  the width of the  trench in the base case 

IBM J. RES, DEVELOP. VOL. 31 NO. 2 MARCH  1993 J. 0. DUKOVIC 



Sh=O 5. KLEv=O, WaT=520. Wa.=6500. a,/a,=3, j=O 6. u@=O 25 

h/w=0.5. 0=90°. 6:w-4. a,~w=io. s/w=50. (45'% of I~~~~ at t=o) 

Shape evolution predicted for  a round cavity (axisymmetric prob- 
lem) rather than a semi-infinite trench (base conditions otherwise). 

Shape evolution predicted at half the base value of the diffusion- 
layer thickness (base conditions otherwise). 

Shape evolution predicted at half the base resist thickness (base 
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produced  the  shape  history in Figure 5. This is the  only 
case in which the problem was  treated in cylindrical rather 
than  Cartesian  coordinates.  The domain was  bounded  by a 
cylindrical no-flux boundary of diameter do equal to  the 
interfeature  spacingp used in all the  other  cases  studied. 
It should be recognized that this case is special because 
spherical diffusion is well known  to  be  stronger  than radial 
(i.e., cylindrical) diffusion. Consequently,  the limiting 
current  to a  round cavity should be high; this case involves 
a  lower  fraction of the initial limiting current (45%) than 
for the  base  case (75%). As a  result, mild uniformities 
should be  expected  from  the argument given above  for  the 
case of half current density. One is therefore not surprised 
to find that  the nonuniformity is significantly less  than in 
the  base  case, N,, = 1.8%. (Figure  3 permits a  clear 
comparison.) Again, this  difference exists  because 
spherical diffusion is stronger  than radial diffusion. At a 
lower overall fraction of the limiting current, spatial 
nonuniformity in mass  transfer accessibility has  less 
impact. This effect actually defeats  the  tendency for the 
round cavity  to  attract  more diffusive flux to its  walls than 
would  a trench. 

Strong agitation (half boundary-layer thickness) 
The  shape  history resulting  from halving the diffusion- 
boundary-layer  thickness is shown in Figure 6. The 
uniformity  improves, as is  evident  from  Figure 3; N,, 
decreases from 4.5 to 3.5 percent.  The main cause of this 
improvement is that  the fraction of the limiting current  has 
decreased from 75% to 63%. Again, differences in metal- 
ion  depletion from point to point can  only  cause 
nonuniform  growth to  the  extent  that  the overall  level of 
depletion  is high. 

Half resist thickness 
The simulation of growth confined by a  resist  layer half as 
thick as in the  base  case resulted in the  shape  history of 
Figure 7. The evolution of the relative  nonuniformity  is 
shown in Curve 7 of Figure 3. Although the  absolute 
difference in height from side  to  center (as  a percentage of 
w, for example) is less  than in the  base  case,  the difference 
relative to mean height is significantly greater; i.e., N,, is 
7.6% for  the thin resist, compared  to 4.5% for  the  base 
case.  It is more meaningful to  compare  two profiles of the 
same  average height,  most appropriately 90 percent of the 
thinner  resist. While N is 7.6% at this  point for  the thin 
resist, N is only 2.0% at  the  same point in time  for the full- 
thickness  resist.  This  can  be explained as follows: In a 
shallow cavity,  the  cavity walls exert  less of a collimating 
effect on diffusive flux. Thus,  the radial enhancement is 
higher than for  a deep  cavity.  Hume, Deen, and  Brown [9] 
have  referred to this effect. This result  suggests that  one 
strategy  for achieving  nearly flat profiles is to  use a  resist 
somewhat thicker than the intended thickness of the deposit. 
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Sh=O 5. KLEv=O, WaT=520, WaL=6500, a$o,=3, -,=O 6, a,ln=0.25 

h/w=0.5. 6=70°, 6/w=4, p/w=10, s/w=50. (68% of lLIM at t=O) 

Wall  angle of 70" 
The  cases  discussed so far have pertained to  vertical resist 
walls ( 0  = 90"). In Figure 8, the predicted growth  history 
at a 70" wall angle is shown.  Curve 8 in Figure 9 indicates 
nonuniformity  at all profile heights. It should be 
remembered  that  the total current  to  the  cavity is held 
constant  over  time; hence, the  rate of advance  declines 
gradually as  the profile widens. The resulting profile has an 
interesting shape.  The lowest  point on  the profile is  the 
center,  and  the highest points  are  not at the walls  but 
slightly  inward from them. The informal expression "rabbit 
ears"  is sometimes used to refer to  this  type of profile, 
especially when inspected by profilometry,  which 
exaggerates  the  vertical dimension. This  shape  results from 
the  increased accessibility of the  sides  by  the diffusing 
metal  ions, because of the obtuse angle formed  by  the 
resist  wall  and the  surface of the  deposit.  In this case, 
N,, is 7.8%. 

Wall  angle of 110" 
Figure 10 shows a  simulation for a reentrant  cavity. At 
each time step,  the  electroactive  area is smaller;  hence, the 
rate of advance  increases  over time. It  takes significantly 
less time and  less metal to fill such a cavity than the  one 
described above. The resulting profile is highest  at the 
center  and  has a  "crowned" or mounded  shape.  The  acute 
angle between resist wall and  the  electroactive  surface 
causes  increased local  depletion of metal ions  at  the walls 
(as  a  result of the field nature of diffusion). Also, the 
limiting current is lower for this  narrow  cavity  than for 
lower  wall  angles. The initial fraction of limiting 
current is 89 percent.  For  this  case, N,, is -9.5%. The 
nonuniformity is plotted as  Curve 10 in Figure 9; N, by 

.., ' O I..."*......""""".& I n  K) 

*t'" ....... ' ;  
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0.0 0.5 yw 1.0 1.5 

Average height, 7 

Sh.0.5. K ~ ~ " = o ,  WaT=520. WaL=6500, aB/a,=3. ~ 0 . 6 ,  aJn=0.25 

hiw.o.5, 8=t too. 6iw=4, piw=to, s/w=50, (89% of lLIM at t=O) 

definition, has a  negative value for  a crowned profile. 
Toward  the beginning of growth, N is large and negative 
for  two reasons: The fraction of limiting current is very 
high (89%), and  the wall angle causes a strong field effect, 
leading to  severe depletion in the  corners.  As  the  cavity 
fills, the fraction of limiting current rises,  and there is 
increased  transport at the walls by radial diffusion; both 
factors  cause  the magnitude of nonuniformity to  decrease. 
Figure 9 compares  three  cases  that differ only in wall 
angle. 

1 
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Sh=0.5, KLEv=l, War=520, WaL=6500, a$a,=3. p0.6. aJn.0.25 

h/w=0.5. 8=9O0. S/w=4, p/w=lO, siw=50, (75% of iLiM at t=O) 

Sh=0.5, K,~~=0.5,  WaT=520, WaL=6500, a$a,=3, p0.6, adn=0.25 

h/w=0.5. fk90". s/w=4, p/w=lO, s/w=50, (75% of lLIM at t=O) 

Shape evolution predicted under strong leveling (KLEv = 1, base 
conditions otherwise). 

Shape evolution predicted under moderate leveling (KLEV = 0.5, 
base conditions otherwise). 

10 I 

11 
-30 I I 
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0.0 0.5 Go 1.0 1.5 

Average  height, j 

Predicted relative nonuniformity as a function of the height of the 
deposited film at three different values of the leveling parameter: 
KLEV = 0 (curve 2); KLEV = 0.5 (curve 13); KLEV = 1 (curve 
11); base conditions otherwise. 

9 Strong  leveling 
In  the simulations described so far,  the leveling parameter 
was  set  to  zero. Figure 11 shows  the result of plating at 
base  conditions  but with K,, set  to'1.0.  There is a 
dramatic  reversal in the  shape  history  from  the  case of no 
leveling. The  deposit is crowned, i.e., is  highest at  the 
center  and  lowest  at  the two sides. The  associated 
nonuniformity is shown  as  Curve 11 of Figure 12. 

Electrodeposition is preferentially  inhibited at  the  sides, 
where  transport of the leveling  agent is radially enhanced. 
In this case, N,, is -10.9%. It is interesting to  note  that 
the  rate of advance along the resist  wall decelerates  greatly 
near  the  top of the cavity. This is because  there is higher 
geometric accessibility by diffusion as  the profile 
advances. 

It is worth mentioning that, although  it is diffusion that 
causes  both  the antileveling and leveling  effects, there  are 
some  key differences in the two effects. First,  the leveling 
agent  is assumed  to  be  entirely diffusion-controlled,  a 
condition at which severe  geometric  enhancements  can 
result (even infinite in  magnitude for  certain  geometric 
cases, although  kinetic influence would prevent this); the 
metal ions  cannot  deposit at  their diffusion limit without 
ruining the quality of the  deposit.  Second,  the  rate 
expression involves only  the gradient of the leveling-agent 
concentration, while it primarily  involves the  concentration 
of the metal  ions. 

Moderate  leveling 
Figure 13 shows  that  when  the leveling parameter is 
set  to 0.5 rather  than 1, the crowning effect is reduced 
significantly; in this case, N,, changes from -10.9% to 
-4.4%. (Compare  Curves 11 and 13 in Figure 12.) Very 
roughly, one could say  that  the effect is nearly linear 
(bearing in mind that N,, is +4.5% when K,, = 0). Figure 
12  compares two cases  with leveling (Curves 11 and 13) to 
the  base  case (Curve 2). The slight discontinuity in Curves 
11 and 13 is most  likely  a  numerical  artifact associated 
with  the  discrete  representation of the  boundary  and  the 
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Shape  evolution predicted under strong  leveling  and  a 70" wall 
angle (KLEV = 1 ,  0 = 70", base conditions otherwise.) 

extreme  variation of leveling-agent flux with profile-to-wall 
angle in the vicinity of 90". 

Strong leveling, 70" wall angle 
The impact of the leveling agent is quite prominent when 
the wall angle is  such  that radial enhancement  to  the  sides 
is important  throughout growth. Figure 14 shows  the 
growth predicted for a  leveling parameter of 1 and a  wall 
angle of 70". The nonuniformity is the highest of any  case 
treated in this  study: N,, = -29.9%.  The  associated 
nonuniformity  is  plotted as  Curve 14 of Figure 15. 

Moderate leveling, 70" wall  angle 
Figure 16 shows  growth  under  the  same  conditions  as 
above  except  that KLEV was  assumed  to  be 0.5 instead of 
1. The degree of nonuniformity, N,, = - 20.5%, is  lower 
than  for K,,, = 1, but is still among the highest 
considered.  (See  Curve 16 in Figure 15.) 

Mild  leveling, 70" wall angle 
A still lower value of KLEv, 0.2, produces  yet a milder 
effect, as  shown in Figure 17. In that  case, N,, = 
- 10.1%,  but  the leveling power is still sufficiently strong 
to  cause a full reversal of the "rabbit  ears" trend  predicted 
under  the  same  conditions in the  absence of leveling 
(KLEV = 0). (See Curve 17 in Figure 15.) Figure 15 
compares  the nonuniformity-vs.-thickness behavior  for 
four  cases with  a 70" wall angle. Curves 8, 17, 16, and 14 
are  for increasing values of K,,, ranging from 0 to 1. 
Figures 16 and 17 show  some numerical  instability  toward 
the  end of the  growth period,  an apparent failure of the 
numerical  method to  describe  the  intense inhibition in 
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Predicted relative nonuniformity as a function of the height of the 
deposited  film  at  a 70" wall angle  and  four  different  values of 
the leveling parameter: KLEV = 0 (curve 8); KLEV = 0.2 (curve 
17); KLEV = 0.5 (curve 16); KLEv = I (curve 14); base condi- 
tions otherwise. 

Sh=O 5. KLEV=O 5, WaT=520, WaL=6500, aa/a,=3. ~0 6 .  aJn=0.25 

h/w=O 5, H=70°, 6/w=4, p/w=lO. s/w=5@. (68% of lLIM at t=O) 

Shape evolution predicted under moderate leveling and a 70" wall 
angle (KLEv = 0.5, 0 = 70", base conditions otherwise). 

growth  at  the walls as  the profile advances  toward  the  top 
of the  cavity.  The N,, data  were determined  from shape- 
history  data  generated  before  the  onset of this instability. 

Strong  leveling, 110" wall  angle 
For closed wall angles under leveling, one might expect 
the  opposite of the crowning behavior  predicted in the 
absence of leveling, since leveling acts  to  reverse  the  sense 
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f Shape evolution predicted under  mild  leveling and a 70" wall angle 1 (K,,, = 0.2, 0 = 70", base conditions  otherwise). 

Sh=O 5. KLEV=l, WaT=520, WaL=6500, a,/a,=3. ~ 0 . 6 ,  adn=0.25 

hlw=O5, H=llOO. Fiw=4, p/W=lO, S/W=50. (89% Of ILIM a1 1=0) 

of the nonuniformity  for open wall angles. Interestingly, 
however,  such a  reversal is not  predicted  by  the model. 
Rather, Figure 18 shows  that  even  strong leveling, KLEv = 1, 
does not cause  the sides to grow higher than  the  center. 
The  degree of nonuniformity  is milder than  when  no 
leveling agent is present:  In this case, N,, is -3.6% rather 
than -9.5%. (Ironically,  this is the first case for  which the 
term ''leveling'' seems  to apply.) Curve 18 in Figure 19 
shows  that  the relative  nonuniformity,  always  negative, 
passes through  a minimum in magnitude at approximately 

138 75 percent of the height of the resist and  then  becomes 

strongly  negative as  the profile becomes increasingly 
exposed  to favorable diffusion toward  the  mouth of the 
cavity. 

Moderate leveling, 110" wall  angle 
When KLEV is set  to an intermediate  value of 0.5 rather 
than 1 or 0, an intermediate  degree of nonuniformity 
results: N,, = -5.4% rather  than -3.6% or -9.5%. 
Figure 20 shows  the  corresponding  shape history; the wall 
angle is again 110". Again it appears  that  the  impact  on 
N,, is roughly proportional  to  the  value of the leveling 
parameter  over  the range  investigated.  Figure 19 compares 
three different cases with  a 110" wall  angle, each  with 
different assumed  values of KLEv ranging from 0 (Curve 10) 
to 1 (Curve 20). In  each  case, N is negative  throughout; 
and  the leveling action causes a  lessening of the 
nonuniformity due  to metal-ion depletion, but  does  not 
cause a complete  reversal in the sign of N. 

Conclusions 
Some  predictions of a  practical nature  that  are suggested 
by  the analysis are  the following: 

At low or  moderate  fractions of the limiting current, 
there  should  be  very little tendency for a 1O-Km feature 
created  by through-mask  electrodeposition  without 
additives  to  deviate  from a flat profile. In  order  to 
produce profiles that could be visually  recognized as 
non-flat, it was  necessary  to  choose a high fraction of the 
limiting current, which would  rarely  be  appropriate in 
actual fabrication. 
At a high fraction of the limiting current, in the  absence 
of leveling  agents, non-flat profiles should  result  from the 
uneven  transport of metal ions (which causes  an uneven 
overpotential along the  feature surface). 

When the resist  walls are  vertical  and high, they should 
guide  metal-ion diffusion along parallel  lines,  which 
should increase uniformity. However,  this collimating 
effect is expected  to  be reduced when  the resist is thin, 
and it should  gradually vanish  as  the  deposit  grows  to 
the height of the resist wall. As this happens, radial or 
spherical diffusion to  the  periphery of the  feature 
should  gradually become more important,  and  the 
result  should be dishing or the  appearance of "rabbit 
ears."  Accordingly, the  rate at  which the profile 
becomes nonuniform  should accelerate  as  the  deposit 
thickness  approaches  the resist  thickness. Another 
factor  that should cause  such an  acceleration is that  the 
increasingly non-flat profile geometry should cause 
further nonuniformity in the metal-ion flux. It  may 
therefore  be  appropriate  to use  resist layers  that 
exceed  the  desired  thickness of the  electrodeposit  by 
an appropriate margin. 
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The  tendency  for  the  appearance of "rabbit  ears" 
described  above should be  stronger  for a round  cavity 
10  pm in diameter  than  for a  long trench 10 pm in 
width.  This is because  the  spherical  enhancement in 
axisymmetric  geometries is  predicted to  be  stronger 
than  the radial enhancement in two-dimensional 
geometries. 
When  the  resist wall makes an obtuse angle with the 
feature  surface (0  > 90"), there should be a tendency 
from the beginning toward geometrically enhanced 
diffusion to  the  periphery,  and  the formation of "rabbit 
ears." 
When  the  resist wall makes  an  acute angle  with the 
feature  surface (0  < 90'7, there should be a steady 
tendency  toward higher depletion of metal  ions  at  the 
periphery,  which should  lead to crowning. 

The  analysis  predicts  that in the  presence of agents 
which act in accordance  with  the diffusion theory of 
leveling, the  natural  tendency  for flat microprofiles seen 
in nonleveling systems  can  be upset. This is so chiefly 
because a resist-patterned  surface is highly nonuniform 
from  the  standpoint of accessibility to  the  electroactive 
portions  by diffusing species.  Leveling  agents,  which 
operate  at their diffusion-limited fluxes, are  very 
sensitive  to  such nonuniformities.  (Although the metal 
ions  are similarly  sensitive, they  are normally far from 
their diffusion limits and  exert little effect.) 

As a  general  rule, strong leveling  should cause 
relatively slower  growth in regions affected by 
geometrically enhanced diffusion, and growth  should 
be  faster in those regions to  which diffusion is 
geometrically  disfavored. Hence,  structures  that 
produced  rabbit  ears in nonleveling baths  at high 
current  density should  generally produce  crowning 
under  strong leveling. One could reason  that  the 
inverse  trend  should  also apply: In  systems  where 
metal-ion  completion produces a crowned deposit, 
strong leveling  should produce rabbit ears.  Such a 
complete  reversal  was  not illustrated in the  present 
study,  but  Figure 19 clearly shows  that  the  degree of 
crowning should  be  decreased  by leveling. Perhaps a 
complete  reversal  was  not  seen  because  the  assumed 
fraction of limiting current  was so high for  the 
1lCl'"wall-angle cases  that metal-ion  depletion 
outweighed the leveling effect. 

List of symbols  and  base  values of parameters 

Variables  (dimensional) 
C$ potential  within  the  electrolyte (V) 
cM concentration of the  depositing  metal  ion  (mol/cm3) 
cA concentration of the  leveling  agent  (mol/cm3) 
i current  density  at  the  cathode  surface  (mA/cm2) 

I -301 
I 

I 

0.0 0.5 rw 1.0 1.5 

Average  height, 7 
I 

Predicted relative nonuniformity  as a function of the  height of the 
deposited  film  at a 110" wall angle and  three different values of 
the  leveling  parameter: KLEV = 0 (curve IO); KLEV = 0.5 (curve 
20); KLEV = I (curve 18); base  conditions otherwise. 

Sh=0.5, K,,,=O 5, WaT=520. Wa,=6500, a$a,=3, ~ 0 . 6 .  ajn=0.25 

h/w=0.5, H=110". F/w=4, p/w=lO. s/w=50. (89% 01 lLIM ai 1=01 

Shape  evolution  predicted  under  moderate  leveling  and a 110"  wall 
a K = 0 = 1 IO" bas  conditions  otherwise . 

. ." . .." .. ...". " . 

NM flux of metal  ion  at  the  cathode  surface  (mol/crn2-s) 
N A  flux of leveling agent  at  the  cathode  surface (moVcm2-s) 

Geometric and operating  parameters 
Symbol Meaning  Base value 

w initial  width of base of cavity 10 pm 
h height of resist  wall 5 pm 

0 resist  wall  angle 90" 

P pitch  (intercavity  spacing) 100 pm 189 
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S height of constant-i plane 1 cm 
- 
i average initial current  density to 

feature 50 mA/cmZ 
c; bulk concentration of metal ion 100 mM 
c,* bulk concentration of leveling agent 0 mM 
6 thickness of diffusion boundary layer 40 pm 
T absolute  temperature 298 K 

Physico-chemical  constants 

Symbol 

K 

10, cA=o 
.m 

Meaning 

electrolyte  conductivity 
exchange current  density at 

cM = c i  and c,“ = 0 
transfer coefficients 
number of electrons transferred 
exponent in io-cM relation 
universal gas  constant 
Faraday’s  constant 
constant in inhibition  model 
metal-ion diffusivity 
leveling-agent diffusivity 

Base value 

0.5 W 1  cm” 

I W c m Z  
1.5, 0.5 
-. 
L 

0.6 
8.314 J/mol-K 
96  487 coulombs 
0 
5.2 x cm2/s 
- 

Dimensionless variables 

Symbol Expression Meaning 

d* 
dK - - dimensionless  potential 
i w  

CM 
c: 

c; 

c: 
CA - dimensionless leveling-agent concentration 
c; 

- dimensionless  metal-ion concentration 

i* = dimensionless current  density 
i 

1 

N: 
NMW 4.; - dimensionless metal-ion flux 

N: 
dimensionless leveling-agent flux 

DA.1 

Seven dimensionless parameters 

Symbol Expression Name Base value 
- 
i w  

nFD&; 
Sh Sherwood  number 0.5 

Y 
(exponent in kinetic 0.6 

expression) 
nFczDA 

KLEv - normalized leveling 0 
Tw kLEV parameter 

ffc 

n 
- (ratio of ac to n) 0.25 

RTK Wagner  number, 
Wa, - 

aCF Tw Tafel form 

(ratio of transfer 
coefficients) 

520 

3 

6500 

Other symbols 

do diameter of no-flux cylinder  surrounding  a  round 
cavity  (cm) 

- 
i L  average initial limiting current  density  to  feature 

(mA/cm2) 
ifar current density at  boundary far away from cathode 

n unit vector normal to surface (cm) 
i,zling current  density in presence of leveling agent 

(mA/cm2) 

(mA/cm2) 
iwithout leveling current  density in absence of leveling agent 

(mA/cm2) 
normalized height nonuniformity  (dimensionless) 
value of N when 9 is 90 percent of resist height 
average height of deposited film 
height of profile at  center of feature 
height of profile at  opposite  extreme from center 
surface  overpotential (V) 
concentration  overpotential (V) 
total overpotential (V) 
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