12

Proof of
correctness of

by J. E. Phillips
S. Vassiliadis

high-performance

3—1 Interlock

collapsing ALUs

A 32-bit 3—1 interlock collapsing ALU,
proposed to allow the execution of two
interlocked ALU-type instructions in one
machine cycle using an instruction-level
parallel machine implementation, is shown to
produce results equivalent to a serial
execution of the instructions using a 2—1 ALU.
The equivalence is shown by deriving tables
which represent all possible requirements for
the serial execution of the instructions
followed by the generalization of the table to
represent sets of instructions rather than the
individual instructions themselves.
Consequently, the equivalence of the 3—1
interlock collapsing ALU operations with these
generalized requirements of the serial
execution of the instructions is shown. The
correctness of a proposed high-speed
interlock collapsing ALU is thereby
demonstrated.

1. Introduction

The requirement for a 3-1 high-speed fixed-point ALU
arises from the existence of execution interlocks [1], the
demand for high-performance computation in the form of
multiple-issuance/execution machines* [2-12], and the need

to avoid increasing execution cycle time.
To clarify, consider the instruction sequence

AR R1,R2,
SR R3,R1,

where AR is an add instruction that adds the contents of
register R1, denoted as (R1), to (R2) and writes the results
to R1, and SR is a subtract instruction subtracting (R1)
from (R3) and writing the results to R3. This instruction
sequence can be handled with no loss of performance in a
serial machine by forwarding the results from the ALU to
the inputs of the ALU. The same sequence, however,
causes an underutilization of the second ALU in a
multiple-issuance machine that can issue two independent
instructions in a single cycle. This underutilization results
in no performance gains for the multiple-issuance machine
when compared with the execution of the pair using a
serial machine.

Several solutions have been proposed to relieve such
data dependency hazards for floating-point [10], vector [4],
and fixed-point (integer) [5, 6] units. However, as
discussed in [13, 14], solutions for the fixed-point units can
have detrimental effects: requiring increased numbers of
opcodes, incompatibility with existing implementations,
and potential increases in the cycle time of the machine
due to the concatenation of two ALUs. As a result,

©Copyright 1993 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

J. E. PHILLIPS AND S. VASSILIADIS

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

Vassiliadis et al.* [13] establish the necessity of a 3-1
high-speed fixed-point ALU and propose a device that
can be used to execute, in a single machine cycle, two
instructions exhibiting execution interlocks. Additionally,
it has been suggested [13, 15] that the device can compute
the correct results in a multiplicity of notations and
instruction sets including two’s-complement and unsigned
notation and all logical, arithmetic, and register transfer
instructions present in most architectures. Furthermore, it
has been suggested that the device can accommodate RISC
and CISC architectures, and that its implementation
requires only one more stage than a 2-1 binary adder [13,
16-18] designed with the use of equations reported in [19]
that result in high-speed adders [19, 20] using commonly
available technologies.

While it has been suggested that a device can be
designed that will perform 3-1 interlock collapsing ALU
(ICALU) operations correctly [13], and while equations
have been proposed that will not result in an
implementation which increases the machine cycle time
[13], a proof of equivalence between the equations and the
serial execution of two ALU operations incorporated in
the 3-1 ICALU has not been included. Given that studies
have shown that the inclusion of a high-speed 3-1 ICALU,
allowing the concurrent execution of interlocked
instructions, produces substantial improvements in the
parallel execution of instructions [11, 12, 21-24], and given
the lack of proof of correctness of the high-speed 3-1
ICALU, it is of interest, for completeness, to prove the
correctness of the new device.

In proving the correctness of the high-speed 3-1
ICALU, we proceed as follows. In Section 2, we provide a
background for the execution of the 3—~1 ICALU by
discussing the results from the serial execution of
interlocked ALU instructions and provide preliminaries
required for the proof of correctness of the 3-1 ICALU. In
Section 3 we prove the correctness of the high-speed 3-1
ICALU by showing the equivalence of the results to those
of the serial execution using a 2-1 ALU. Finally, in
Section 4, we present some concluding remarks.

2. Background, preliminaries, and instruction
considerations

A 3-1 ICALU is an ALU with three inputs and one
output, which can execute in a single machine cycle two
fixed-point instructions, with the operation of the second
instruction dependent upon the computation of the first
instruction. A high-speed implementation, as provided in
[13] and shown in Figure 1, was developed for the
ESA/370™ architecture [25], which was chosen to
represent a worst-case scenario for investigating the
feasibility of the device in a general-purpose architecture,

*S. Vassiliadis, ‘“Compound Instruction Set Machines,” private communication,
1989

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

EC&ALASL’ EXOSL’ EXAAL

because such an architecture possesses an instruction set
with rich, and potentially complex, ALU operations.
Clearly the feasibility of such a device, as suggested in
[13, 16], also implies that the incorporation of an interlock
collapsing device implementing only a subset of the
instruction set, e.g., arithmetic operations, is also feasible.
It should also be noted that the device can be incorporated
to perform other interlocked operations, such as address
generation interlocks and branch determination interlocks.
Furthermore, the possibility of including such a device in a
RISC machine is also implied. The speed of the device is
attributed to the parallel computation of the result, as can
be seen from Figure 1, in which L2 calculates controls in
parallel with the execution of the CALU, with the
operation of the device specified by the following
equations [13]:

A= by, + 08, + B

8, = HE gy + H By »

w = MEq + MEg

G" =G

—
-
i+l i+l + =ISOMi ?

L= aQuaa + Y oarase + @Y x0s T ¥ a0 >
== = = g =
B t Eor t+ B Eap T BiExor >

= B Exor >

A= QaB + Qay, + QBy, + 4B, 13

J. E. PHILLIPS AND S. VASSILIADIS

14

Table 1 ESA/370 RR-format loads, logicals, arithmetics,
and compares—function and operand representation, and
description.

Instruction Operation h
AR R1,R2 (R1)«(R1) + (R2) + h 0
SR R1,R2 (R1)<(R1) + (R2) + & 1
LPR R1,R2; R2<0; (R1)<0 + (R2) + h 1

R2=0; (R1)«<0 + (R2) + h 0
LNR R1,R2 R2=0; (R)«<-0 + (R2) + h 1
R2<0; (R1)<0 + (R2) + A 0
LR R1,R2 (R1)<0 + (R2) + h 0
LTR R1,R2 (R)«<0 + (R2) + h 0
LCR R1,R2 (R1)«<=0 + (R2) + h 1
ALR R1,R2 (R1)«(R1) + (R2) + h 0
SLR R1,R2 (R1)<(R1) + (R2) + h 1
CR R1,R2 X<—(R1) + R2) + h 1
CLR R1,R2 X<—(R1)+ (R2) + h 1
NR R1,R2 (R« (R1)A(R2) 0
OR R1,R2 (R« (R1)V(R2) 0
XR RL,R2 (R1)<-(R1)V(R2) 0
Table 2 Basic ALU operations to execute single ALU
instruction.
Instruction type Representation Operation h
Addition Add R1,R2 (R1y + (R2) + A 0
Subtraction Sub R1,R2 (R1) + (R2) + h 1
Logical LOP R1,R2 (R1) LOP (R2) 0

H=(Qo +L)VA
G = (o, + L)A,»
T,=Q0 + L +4,,

i+1?

o

where Qv Qz’ Qs’ 94’ ‘QOALASL’ QXAAL’ onsv = ADD? EOR’
and E,, are control signals, ¢, M, = H_, V T,, G;", and
T are parameters for recursive CLA equations as defined
in [19], and a,, B, and v, are inputs to the 3-1 ICALU.
The operation for the high-speed 3-1 ICALU was
determined by considering all of the operations that would
be required by sequences of two ALU operations
interlocked with one another [14]. To determine the
operations required of a 3-1 ICALU for this instruction
set, one need only consider the RR-format ALU
instructions, since all of the ALU operations have a
corresponding RR-format instruction. Other ALU
instructions differ from the RR-format instructions in the
source of the operands on which the ALU is to execute
rather than in the operation to be performed. The RR-
format ALU instructions are summarized in Table 1. In

J. E. PHILLIPS AND S. VASSILIADIS

this table, the instruction mnemonic is given, along with
register designations for the operands (denoted by R1 and
R2) in the first column. In the second column, the
operation is provided with (R1) representing the contents
of register R1, (R1) representing the one’s complement of
the contents of R1, 4 representing a ““hot one” supplied to
the adder, + indicating binary addition, A representing
bitwise AND, V representing bitwise OR, and V
representing bitwise EXCLUSIVE-OR. The contents of
the registers, for example (R1), are 32-bit signed or
unsigned numbers, with the bits numbered in ascending
order from the most significant bit (MSB) to the least
significant bit (LSB). Since status is discussed elsewhere
[13, 15, 26] and not considered in this paper, no distinction
is made between signed and unsigned numbers other than
for the instructions LOAD POSITIVE REGISTER (LPR)
and LOAD NEGATIVE REGISTER (LNR), for which the
operation to be performed depends upon the sign of the
operand. For each of these instructions, one of two
operations must be performed, depending on the sign of
the operand. The two possible operations are specified by
the two rows associated with each of these instructions in
Table 1 under the Operation column. The condition leading
to the operation is also shown in that column. Finally,
compare operations (CR and CLR) are used to set ALU
status (considered in [13]) rather than to provide ALU
results. Therefore, their results are not written to any
facility and thus are denoted by showing the destination of
the operation as X.

From Table 1 it can be observed that if the capability is
provided to zero the ALU input corresponding to operand
R1, then, with respect to the result of an operation, the
ALU operations can be reduced to three instruction types.
These instruction types are summarized in Table 2. The
addition instruction type covers the instructions AR; LPR,
when R2 = 0; LNR, when R2 < 0; LR; LTR; and ALR.
The subtraction instruction type covers the instructions
SR; LPR, when R2 < 0; LNR, when R2 = 0; LCR; SLR;
CR; and CLR. The logical instruction type covers NR,
OR, and XR, with LOP representing either of these logical
operations. To determine the operations required by an
ALU designed to execute, in a single cycle, interlocks
between ALU instructions, all combinations of the three
instruction types and all potential interlock situations must
be considered. Table 3 compiles the results from such
considerations for the instruction types shown in Table 2.

In Table 3, the operations to be performed on the
register operands are shown in the second column, in
which addition or subtraction operations are represented as
ADD and logical operations are represented as LOP. The
third column of the table shows the functions to be
performed on the 3-1 ICALU inputs to produce the
desired result of column two. The routing of operands to
allow the proper operation to be executed is shown in the

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

Table 3 Operand routings to produce desired operations for LOGICAL-ADD operations.

Row Desired operation ALU operation OPI oP2 a B vy
1 (R1 LOP R2) ADD R4 (y OP1 @) OP2 B VARVAS) +,~ R2 R4 R1
2 R3 ADD (R1 LOP R2) (y OP1 a) OP2 B ARVAC) + R2 R3 R1
3 —(yOP1 a) OP2 AV,@ + R2 R3 R1
4 (R1 LOP R1) ADD R4 (yOP1 o) OP2 B AV, +,— R2(=R1) R4 R1
5 R3 ADD (R1 LOP R1) (y OP1 @) OP2 B AV,D + R2(=R1) R3 R1
6 -(yOP1 a) OP2 8 AV, + R2(=R1) R3 R1
7 (R1 LOP R2) ADD (R1 LOP R2) (y OP1 @) OP2 (y OPle) ARVAC] +,— See note
8 (R1 ADD R2) LOP R4 (yOP1 o) OP2 B +,— N\V,D R2 R4 R1
9 R3 LOP (R1 ADD R2) (yOPl a)OP2 B8 +,— AV,D R2 R3 R1

10 (R1 ADD R1) LOP R4 (yOPl o) OP2 B +,— A V,@ R2(=R1) R4 R1
11 R3 LOP (R1 ADD R1) (y OP1 @) OP2 B +,— AV,@D R2(=R1) R3 R1
12 (R1 ADD R2) LOP (R1 ADD R2) (y OP1 @) OP2 (y OP1 «) +,— AV,D See note

13 (R1 LOP R2) LOP R4 (y OP1 o) OP2 B NV, N\V,@ R2 R4 R1
14 R3 LOP (R1 LOP R2) (y OP1 @) OP2 B AV,D AV,D R2 R3 R1
15 (R1 LOP R1) LOP R4 (yOP1 a) OP2 B NV, AV,D R2(=R1) R4 R1
16 R3 LOP (R1 LOP R1) (y OP1) OP2 8 N\V,@ AV,@D R2(=R1) R3 R1
17 (R1 LOP R2) LOP (R1 LOP R2) (y OP1 a) OP2 (y OP1 «) VAAVES AMVAC) See note

18 (R1 ADD R2) ADD R4 B OP2 (y OP1 a) +,— + R2 R4 R1
19 —~B OP2 (y OP1) +,— + R2 R4 RI
20 R3 ADD (Ri ADD R2) B OP2 (y OP1 o) +,— +,— R2 R3 R1
21 (R1 ADD R1) ADD R4 B OP2 (y OP1) +,— + R2(=R1) R4 R1
22 -B OP2 (y OP1 a) +,— + R2(=R1) R4 R1
23 R3 ADD (R1 ADD R1) B OP2 (y OP1 a) +,— +,— R2(=R1) R3 R1
24 (R1 ADD R2) ADD (R1 ADD R2) (y OP1 @) OP2 (y OP1 @) +,— +,= See note

Note: These operations, which occur when the register specifications for R1, R3, and R4 are the same, were not implemented in the high-speed 3-1 ICALU; therefore, their

operand routings were not included.

last three columns. The following example, in which the

data dependencies for a subtraction-followed-by-addition are

instruction type (i.e., SR R1,R2; AR R3,R4) are
considered, provides insight into the considerations that

Independent:

(R3) < (R3) + (R4).

and in the case of ““independent’ instructions, the results

must be made to produce Table 3. The combination of data
dependencies that can arise from this sequence are R1 =
R3; R1 = R4; and R1 = R3 = R4. Furthermore, there may
be no data dependencies, a condition denoted here as
“‘independent.”” Other data dependencies such as R2 = R3
and R2 = R4 are considered in this paper to be
‘‘independent,’” because they do not influence the ALU
operation and are trivial to resolve in a hardware
implementation. For each of these instruction and data
dependency sequences, the SR instruction produces

(R1) < (R1) — (R2).

The results for the addition operation, however, differ
for the different interlock situations:

R1 = R3: (R1) « (R1) — (R2) + (R4),
R1 = R4: (R3) « (R3) + (R1) — (R2),
R1 =R3 = R4: (R1) « (R1) — (R2) + (R1) — (R2),

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

These instruction sequences, contained in rows 18, 20, and
24 of Table 3, require the operations

Independent: (R3) < (R3) + (R4); h2 = 0,
RI=R3; (Rl)« (Rl)+ (R2) + (R4); k1 = 1, h2 = 0,
RI=R4: (R3) < (R3)+ (R1)+ (R2); hl =1,h2 =0,
Rl =R3=R& (Rl) < (Rl) + (R2) + (R1) + (R2);

hl=h2=1,

represented as two’s-complement operations for which 41
and A2 designate the provision of “hot ones’ to the first
and second serial operations, respectively.

From Table 3, it can be observed that, strictly speaking,
a 4-1 ICALU is required to execute all execution
interlocks that can occur between two ALU-type
instructions. In addition, interlocked instruction sequences,
in which the second instruction is LPR or LNR, can

J. E. PHILLIPS AND S. VASSILIADIS

15

16

Table 4 Concatenated 2-1 ALU operations supported in 3-1 ICALU.

Row OP] OP2 Dependency ALUI operation ALU2 operation Result hl h2
1 Add Add R3=R1;R4=R1 é6=a+g+hl A=8+b+h2 A=a+g+b+hl+h2 0 0
2 Add Sub R3 = R1 d=a+g+hl A=86+b+h2 A=a+g+b+hl+h2 0 1
3 Add Sub R4 = R1 S=a+g+hl A=8+b+h2 A=a+g+hl+b+h2 0 1
4 Add log R3=RI;R4=Rl S=a+g+hl A=08LOP2b A=(a+g+hl)LOP2b 0 0
5 Sub Add R3=RI;RA=R1 8=a+g+hl A=8+b+h2 A=a+g+b+hl+h2 1 0
6 Sub Sub R3 = R1 d=a+g+hl A=86+b+h2 A=a+g+b+hl+h2 101
7 Sub Sub R4 = R1 S=a+g+hl A=3+b+h2 A=(@+g+h)+b+h2 1 1
8 Sub Log R3=RI;R4=Rl S=a+g+hl A=8LOP2b A=(a+g+hl)LOP2b 1 0
9 log Add R3=R1;R4=R1 8=alOPlg A=8+b+h2 A=(@LOPlg)+b + h2 0 0
10 Log Sub R3 = R1 8=alOPlgy A=8+b+h2 A=@LOPlgy+b+h2 0 1
11 Log Sub R4 =R1 5=alLOPlg A=3+b+h2 A=(aLOP1g) + b+ h2 0 1
11 Log Log 8d=alLOPlyg A=8LOP2D = (a LOP1g) LOP2 b 0 0

require two concatenated ALUs for their execution, since
the first instruction’s result is required before the second
ALU’s operation to execute the LPR or LNR can be
determined. Since execution interlocks between instruction
sequences that require either a 4-1 ICALU or two
concatenated ALUs for their execution were infrequent in
the instruction traces we considered, it was decided to
require that the instruction issue logic serialize the issue of
these sequences [13]. This results in the serial execution of
these sequences, which can be performed in two cycles
using a conventional 2-1 ALU. By enforcing this
requirement, the potential delay problems and complexity
associated with a 4-1 ICALU or two concatenated ALUs
can be avoided. With these assumptions, the design of a
3-1 ICALU is sufficient for executing most interlocked
ALU instructions in a single cycle. All operations of Table
3 except for those contained in rows 7, 12, 17, and 24 can
be supported by the 3-1 ICALU.

The operations of the 3-1 ICALU shown in Table 3
must provide results identical to those for two
concatenated 2-1 ALUs, denoted as ALU1 and ALU?2,
executing the instruction pair in a serial fashion. Table 4
summarizes the serial execution for all combinations of the
three instruction types and data dependencies that are
supported by the 3-1 ICALU. In this table, the first and
second operations (OP1 and OP2) are given in the second
and third columns of the table. In addition, the results (8)
from the operation of the first ALU (ALU1), results (A)
from the execution of the second ALU (ALU2), and the
overall result specified as the operation performed on the
three operands (a, g, and b) supplied to the two 2~1
ALUs are shown in the fifth, sixth, and seventh columns,
respectively. Finally, the hot ones, 41 and A2, supplied to
ALU1 and ALU?2, respectively, are provided in the last
two columns. Table 5 shows the setup of operand values
(denoted as A, I, and B) to the three inputs (denoted as a,

J. E. PHILLIPS AND S. VASSILIADIS

v, and B) of the 3-1 ICALU, as dictated by the operations
of Table 4, to execute pairs of add/sub-type operations for
various supported data dependencies. In this table, A,
represents the carry from a 3-2 CSA used in designing the
3-1 ICALU, and ¢, represents the carries produced in the
2-1 adder used in the design of the 3-1 ICALU, with all
the carries being produced from bit position i into i — 1.
The values, shown in the table, are for i = 32, which
represents the hot ones that must be supplied to the adders
as boundary conditions to produce the appropriate result.
The correctness of the 3-1 ICALU is proven by showing
the equivalence between its results and the results of the
serial execution using a 2-1 ALU, as provided in Table 4.

3. Proof of equivalence of high-speed 3—1
ICALU with serial execution by a 2-1 ALU

In this section, the data flow of the high-performance 3-1
ICALU, depicted in Figure 1 and described by the
Boolean equations in Section 2, is shown to produce
results equivalent to the serial execution of a pair of
interlocked ALU instructions by a 2-1 ALU. Equivalence
must be shown for each pair of instruction types and
possible data dependencies as provided by Table 4.

The setup of the high-speed 3-1 ICALU to implement
the required operations is shown in Table 6. In Table 6,
the second column specifies the operation dictated by the
first instruction, with the third column specifying the
operation dictated by the second instruction. Because a
3-1 adder is known to produce the correct results [13] for
addition as well as subtraction operations with the proper
inversion of operands and supply of hot ones, only add
operations are shown in Table 6, except for those
conditions in which a subtraction requires unique functions
to be supported by logic other than that executing a 3-1
addition. For example, for the operations AND followed
by add, an AND of A with I’ must be performed by the

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

Table 5 ALU setup to execute collapsing operations where OP1 and OP2 are add/sub-type operations.

*

Row op1 orz Dep o B Y, Asy . 5

1 Add Add R3 = R1; R4 = R1 A B, T, 0 0 8

2 Add Sub R3 = R1 A B, r, 1 0 b}

3 Add Sub R4 = R1 A B, T, 1 1 5

4 Sub Add R3 = R1; R4 = R1 A B, T 1 0 5

5 Sub Sub R3 = R1 A, B T, 1 1)

6 Sub Sub R4 = R1 A B, T, 1 0 3,

Table 6 ALU setup to execute collapsing operation categories.
Row OPI Subseqz'tent o B % A bp Eap Bor Bxr Bor 4 % Q0 Qg Qg Qg
aperation

1 Ad Ad A B L, 0 0 0 0 ©0 1 1 1 0 1 0 0 0
2 AND Ad A BT 0 0 0 0 0 1 0 0 1 0 0 0 1
3 OR Ald A B L, O 0 0 0 0 1 0 0 1 0 1 0 0
4 XOR Add A B I, 0 0 0 0 0 1 0 0 1 0 0 1 1
5 AND Sub A BT 0 1 0 0 0 1 0 0 1 0 1 0 0
6 OR Sub ABT 0 1 0 0 0 1 0 0 1 0 0 1 0
7 XOR Sub A BT 0 1 0 0 0 1 0 0 1 0 0 1 1
8 Add AND A B L O 0 1 0 0 0 0 1 0 0 0 1 1
9 Add OR A B I, 0 0 0 1 0 0 0 1 0 0 0 1 1
10 Add XOR A B T 0 0 0 0 1 0 0 1 0 0 0 1 1
11 AND AND A BT 0 0 1 0 0 0 0 0 0 0 0 0 1
12 AND OR A°BT 0 0 0 1 0 0 0 0 0 0 0 0 1
13 AND XOR A B l:l 0 0 0 0 1 0 0 0 0 0 0 0 1
14 OR AND A B T, 0 0 1 0 0 0 0 0 0 0 1 0 0
15 OR OR ABT 0 0 0 1 0 0 0 0 0 0 1 0 0
16 OR XOR A B T, 0 0 0 0 1 0 0 0 0 0 1 0 0
7 XOR AND A BT 0 0 1 0 0 0 0 0 0 0 0 1 1
18 XOR OR A'B T 0 0 0O 1 0 0 0 0 0 0 0 1 1
9 XOR XOR A B T 0 0 0 0 1 0 0 0 0 0 0 1 1

logic block, L1, while for the operations AND followed by
sub, a NAND of A with I" must be performed by L1.
These unique situations must be shown to be realizable. In
the following, each row of Table 6 is shown to be executed
by the high-speed 3-1 ICALU implementation. First, row 1
is shown to produce a 3-1 addition. Next, rows 2-4 are
shown to produce the expected logical operation followed
by an addition. Subsequently, rows 5-7 (logical followed
by subtraction), rows 8-10 (add followed by logical), and
rows 11-19 (logical followed by logical) are considered in
three separate groups.

® Add followed by add

In assuming that the ICALU is presented with the correct
inputs and the hot ones as dictated by Table 5 for the add
category, and realizing that the operation of the 3-1

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

ICALU for the ““independent’ data dependency case can
be achieved by a 3-1 addition with one of the operands
zeroed, to prove that add followed by add is performed by
the ICALU, we need to prove that the device essentially
performs a 3-1 binary addition on its inputs. With
substitution, and assuming that the proper inputs are
denoted by @, B;, and ¥, for bit position /, i.c., the ALU
setup of Table 6, row 1, the expressions for the fast
implementation of the 3-1 ICALU give

i =1+0+B0+B0=1,

juil

G

Eg = B0 =0,
Bgomi = B0 =0,
o, =AVBVYTL,

J. E. PHILLIPS AND S. VASSILIADIS

17

18

A, = 1AB, + 1AT, + 1B[, + 0B, ,
= AB + AT, + BT,.

The previous equations for ¢, and A, determine the output
of a 3-2 binary addition. It must be proven that the
remaining equations determining the behavior of the device
compute a 2-1 binary addition. Given that

L =A0+T0+ATL0+ATL0 =0,
the remaining equations perform

H=(0o+0)VA, =0V
G =Q0o,+0A,, =0A

i1 ?

i+1?

T=lo+0+A, =0+A
Gl =G" +0=G

i+l i+l i+1?

6,= H1+HO = H,

i+1?

= M1+ 310 = b,
A=pd,,t 04, +t0=Mo, +Ho,,.

Furthermore, given that H,, G,, T, Gf" =G/, and A, are
the equations proven to determine a binary addition [19],
the proposed device indeed computes a 3-1 binary addition
as required by the add-followed-by-add category of
interlocked ALU instructions.

® Logical followed by add

For these operations, a bitwise logical AND, OR, or XOR
must be performed between A and I'. This result should
then be added to a third operand B. The logical operation
is performed by the L1 block of Figure 1 as specified by
the expression for L in the defining equations. We first
demonstrate that, for the setup in rows 2-4 of Table 6,

L produces bitwise logical AND, OR, and XOR,
respectively. For the setup of the ICALU device as shown
in row 2,

L=A0+T0+ATL0+ ATl =AT,

which is the bitwise logical AND, as desired. For the setup
of row 3 of Table 6,

L=A1+T1+AT0+ATO0=A +T,,

which is the bitwise logical OR, as desired. Finally, for the
setup of row 4 of Table 6,
L=A0+T0+AIl+All=ATL+ATl, =AVT,

which is the bitwise EXCLUSIVE-OR, as desired. In the
following, LOP is used to represent one of bitwise AND,
OR, or EXCLUSIVE-OR.

Other than the setup to produce the appropriate logical
operation between A and T', the setup of Table 6 is
identical for rows 2-4. Using this setup in the equations

J. E. PHILLIPS AND S. VASSILIADIS

defining the fast ICALU implementation produces

B =1+0+B0+B0=1,

Bgw = B0 =0,
Esomi = B0 =0,

g, = don’t care,

A, =0AB + 0AT, + 0BT, + 1B,_, = B,_
L =ALOPIT,

H =(00,+ALOPIT)VB = (A LOPIT)VB,
G =[00, + (A,LOP1T)IB, = (A, LOP1T)B,,

T =00,+ (A LOPIT) + B, =(A LOP1T) + B,
GTn = Gm + 0 — Gm

i+l i+l i+1?

1°

6,=H1l+HO=H,
u= M1+ MO =M,

A=pdt oiE +0=Mo, +Ho,,,

i+l
which is the expression for the sum from a 2-1 CLA using
the recursive equations described in [19], with inputs being
the logical operation A LOP1 I" and B. Therefore, the
ICALU produces the result (A LOP1T) + B, where +
represents addition.

® Logical followed by sub

These operations are identical to those for “logical
followed by add,’” as just discussed, with the exception
that the bitwise logical operations NAND, NOR, and
XNOR must be produced by the logic block L1 to support
the subtraction of the logical operation from the third
operand, B. Therefore, all that is required is to
demonstrate that L1 can produce these operations.

For the setup of row 5 of Table 6,

L =R+ T1+ 0AT + 0AT, - 7 + T, = AT,

which is the bitwise logical NAND, as desired. For the
setup of row 6 of Table 6,

L=A0+T0+ATl+Al0=Al=A+T,

which is the bitwise logical NOR, as desired. Finally, for
the setup of row 7 of Table 6,
L=A0+T0+AT1+AT1=AT +ATl,=AVT,

which is the bitwise EXCLUSIVE-NOR, as desired.
Therefore, the 2-1 CLALU is set up to subtract A LOP1T
from the middle operand as desired.

® Add followed by logical

For these operations, which encompass rows 8-10 of
Table 6, the setup of the 3-1 ICALU is identical except for

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

the controls &, ,, B, and which specify one of the

:XOR’
three possible bitwise logical operations to be performed
between the sum of A and I" and the third operand B.
Therefore, the common expressions for these operations
are

L=A0+T0+ATll+All=Al +AL=AVT,

o, = don’t care,

A, = 0AB, + AT, + 0BT, + 0B_ = AT,,
=0g+AVIVA,L) =AY VAL,
(00 + A v F)(i+1 1+I) (A v F)(i+l 1+1)’

Ti =00, + (AVID) + (A, [,)=AVYD)+ (AL,

First consider the operation when the logical operation is a
bitwise logical AND. For this case, the setup of row 8 of
Table 6 yields

Eee =0+0+B1+B0=8B,
Egi = B0 =0,
Eqom = B0 =0,

“izMBi+A_/Iio=A4iBi’
6,= HB + H0 = HB,,

A =MB9,, + HB¢1+1 = B(M¢,,, + H¢z+1)

However, the last expression in parentheses is the
recursive expression for the 2-1 addition of two values.
The values in this case are A, VI and 4, I, ,. But A VT,
represents the sum from a 3—2 CSA with a third input of
zero, and A, T, represents the carry, A, from such a
3-2 CSA. From the results above, A, ¥V ¢, = «,, for

this case, so that
A=B[AVIE)Y«,]=BA+T),

which is the bitwise AND between the third input B and
the sum between the first two inputs A + T, as desired.
Next consider the bitwise logical OR operation. From row
9 of Table 6,

T =0+1+B0+B0=1,

GEN
Egw = B0 =0,
Eqomi = B1 =B,
Gm G, +B,

u= M1+ MO =M,
9i=H,.1+170=H

A=Mg, +Hs.,

i+l i+1
However, by the same arguments as for the logical
operation being a bitwise AND, M.¢,,, + H. 4,

i+1 i+l

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

represents the sum of A and I'. Therefore,
=(AVI,Vk,)+B,

where + represents bitwise logical OR, so that A is the
bitwise logical OR between B and the sum A + I, where
+ represents addition, as desired. Finally, consider the
bitwise logical EXCLUSIVE-OR operation. From row 10
of Table 6,

B =0+0+B0+Bl=8B,
Egai = B1=B,

Bomi = B0 =10,

le G:fl +0= GH—I >

M = A/[iBi + MBi ’

6,= HB, + HB,,

= (MB + MB)¢,. + (HB + HB)§,,

i+1

=B(M¢,, + Hs,,) + BM0,,, + Ho,),
=B(M¢,, + Hé.) + BMH,,

+ Mo, +MHé, +Hs.,)
=BM¢, +Ho,)+BMH + Mo +Hd._),

= B(Md,,, + He,) + B{M, + ¢,)H, + ¢,.))

= B(Mg,., + Ho,,) + BIMo,, + Ho,_]

=B(A +T), + B(A + 1),
=BV (A+1),

where + has the mixed usage of bitwise logical OR or
addition, depending on the context, and where the final
expression is the EXCLUSIVE-OR between the third
input operand and the sum between the first two input
operands as desired

® Logical followed by logical

For the add-followed-by-logical operations, it was shown
that, for the specifications of & AND? MOR, and Exon of rows
8-10 of Table 6, the desired logical operation between the
sum of a 2-1 addition between the two input operands A
and I and a third input operand B is executed. The logical-
followed-by-logical operations are produced if the 2-1
addition can be set up to add the output of the logical
block, L1, to zero. It has already been shown, for the
logical-followed-by-add case, that for the operand setup
given in rows 11-19 of Table 6 and with the setups for

Qi ase> 05> and €y, specified in those rows, the
desired logical operation is produced by L1 for OP1. It
remains to be shown that the expressions defining the fast
3-1 ICALU implementation produce a 2-1 addition among
the output, L1, and zero. Since £}, = 0 in these rows, the

J. E. PHILLIPS AND S. VASSILIADIS

20

value for o, is a don’t care, because it is ANDed with (.
Furthermore, A, = 0, since (2, €),, and {), are zero.
Therefore,

H =[00, + (A LOPLT)]V 0 = (A LOP1T),
G, =[0a, + (A LOP1T)]0 = 0,
T = 0o, + (A LOPIT) + 0 = (A LOP1T) = H,,

A =B LOP2 M¢,., + H¢,,)-

it+1
However, since ¢,, = 0 and A,, = 0, and since G, = 0,
¢, = 0forall 0 < i < 31; therefore,

A = B, LOP2 (M0 + H]) = B,LOP2 (A, LOP1T)),

which is the desired result. Therefore, the 3-1 ICALU
produces a result equivalent to the serial execution of two
interlocked ALU instructions for all cases of instruction
pairings and data dependencies of Table 4.

4. Concluding remarks

A 32-bit 3-1 ICALU, proposed by [13], to allow the
execution of two interlocked ALU-type instructions in one
cycle using an instruction-level parallel machine
implementation has been proven to produce results
equivalent to a serial execution of the instructions using a
2-1 ALU. The proof was shown by deriving tables which
represent all possible requirements for the serial execution
of the instructions followed by the generalization of the
table to represent sets of instructions rather than the
individual instructions themselves. Consequently, we have
proven the equivalence of the 3-1 ICALU operations
proposed in [13] with these generalized requirements of the
serial execution of the instructions, thereby demonstrating
the correctness of the proposed design of a high-speed
ICALU presented in [13]. The fast implementation of the
3-1 ICALU can be implemented with only a 3-2 CSA logic
stage of additional delay when compared with a 2-1 ALU,
suggesting that incorporation of this implementation of the
device may produce no impact on the cycle time of the
machine.

ESA/370 is a trademark of International Business Machines
Corporation.

References

1. P. M. Kogge, The Architecture of Pipelined Computers,
McGraw-Hill Book Co., Inc., New York, 1981.

2. R. M. Tomasulo, ‘““‘An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,”” IBM J. Res. Develop. 11,
25-33 (January 1967).

3. R. D. Acosta, J. Kjelstrup, and H. C. Torng, ““An
Instruction Issuing Approach to Enhancing Performance in
Multiple Functional Unit Processors,”” IEEE Trans.
Computers 35, 815-828 (September 1986).

4. A. Padegs, B. B. Moore, R. M. Smith, and W. Buchholz,
““The IBM System/370 Vector Architecture: Design
Considerations,”” IEEE Trans. Computers 37, 509-520
(May 1988).

J. E. PHILLIPS AND S. VASSILIADIS

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

. W. A. Wulf, “The WM Computer Architecture,””
Computer Architecture News 16, 70-84 (March 1988).

. W. A. Wulf and C. Y. Hitchcock III, ““Apparatus for
Reading To and Writing From Memory Streams of Data
While Concurrently Executing a Plurality of Data
Processing Operations,”” U.S. Patent 4,819,155, April
1989.

. N. P. Jouppi, “The Nonuniform Distribution of
Instruction-Level and Machine Parallelism and Its Effect
on Performance,”” IEEE Trans. Computers 38, 1645-1658
(December 1989).

. N. P. Jouppi and D. W. Wall, “Available Instruction-
Level Parallelism for Superscalar and Superpipelined
Machines,”” Proceedings of ASPLOS III, ACM, 1989, pp.
272-282.

. H. S. Warren, Jr., “Instruction Scheduling for the IBM

RISC System/6000 Processor,”” IBM J. Res. Develop. 34,

85-92 (January 1990).

R. R. Oehler and R. D. Groves, ‘“‘IBM RISC System/6000

Processor Architecture,”” IBM J. Res. Develop. 34, 23-36

(January 1990).

S. Vassiliadis, B. Blaner, and R. J. Eickemeyer, “SCISM:

A Scalable Compound Instruction Set Machine,”

Technical Report TR01.C683, IBM Glendale Laboratory,

Endicott, NY, October 1992.

S. Vassiliadis, B. Blaner, and R. J. Eickemeyer, ‘‘On the

Attributes of the SCISM Organization,”” Computer

Architecture News 20, 44-53 (September 1992).

S. Vassiliadis, J. Phillips, and B. Blaner, “‘Interlock

Collapsing ALUs,”” IEEE Trans. Computers, 1992,

accepted for publication.

S. Vassiliadis, J. Phillips, and B. Blaner, “ICU Design

Considerations,”” Technical Report TR01.C114, IBM

Glendale Laboratory, Endicott, NY, October 1991.

J. Phillips and S. Vassiliadis, ‘“Condition Code and

Overflow Determination for 3-Operand SCISM ALUS,”

Technical Report TR01.C207, 1BM Glendale Laboratory,

Endicott, NY, December 1991.

J. Phillips and S. Vassiliadis, ‘““High Performance 3-1

Interlock Collapsing ALU,”” IEEE Trans. Computers,

submitted for publication, 1992.

S. Vassiliadis and J. Phillips, ““‘Interlock Collapsing

SCISM ALU Design,”” Technical Report TR01.C115, IBM

Glendale Laboratory, Endicott, NY, October 1991.

S. Vassiliadis and J. Phillips, ‘3-1 Arithmetic Logic Unit

for RISC Architectures,” Technical Report TR01.C605,

IBM Glendale Laboratory, Endicott, NY, September 1992.

S. Vassiliadis, ‘‘Recursive Equations for Hardwired Binary

Adders,” Int. J. Electron. 67, 201-213 (August 1989).

S. Vassiliadis, “A Comparison Between Adders with New

Defined Carries and Traditional Schemes for Addition,””

Int. J. Electron. 64, 617-626 (April 1988).

N. Malik, R. J. Eickemeyer, and S. Vassiliadis,

“Instruction-Level Parallelism for Execution Interlock

Collapsing,”” Computer Architecture News 20, 38-43

(September 1992).

N. Malik, R. J. Eickemeyer, and S. Vassiliadis, ‘“‘Interlock

Collapsing ALU for Increased Instruction-Level

Parallelism,”” Conference Proceedings, Annual

International Symposium on Microarchitecture, Portland,

OR, December 1992, pp. 149-157.

N. Malik, R. J. Eickemeyer, and S. Vassiliadis,

““Execution Interlock Collapsing Under Restricted

Memory Models,”” Proceedings of ISCIS VII International

Conference on Computer and Information Sciences,

Antalia, Turkey, November 1992, pp. 181-187.

N. Malik, R. J. Eickemeyer, and S. Vassiliadis,

‘“‘Architectural Effects on Dual Instruction Issue with

Interlock Collapsing ALUs,”” presented at the Twelfth

Annual IEEE International Phoenix Conference on

Computers and Communications, March 1993.

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

25. ESA/370 Principles of Operation, Order No. SA22-7200-0,
1989; available through IBM branch offices.

26. J. Phillips and S. Vassiliadis, ‘““Early SCISM ALU Status
Determination,” Technical Report TR01.C205, IBM
Glendale Laboratory, Endicott, NY, December 1991.

Received June 25, 1992; accepted for publication
November 11, 1992

1IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993

James E. Phillips IBM Advanced Workstation Systems,
11400 Burnet Road, Austin, Texas 78758 (PHILJE at
AUSVMS, phillips@vnet.ibm.com). In 1974 Mr. Phillips
received a B.S. degree in nuclear engineering from North
Carolina State University, after which he worked in the field
of radiation safety. He received the M.S.E.E. and the
B.S.E.E. degrees from the University of Tennessee,
Knoxville, in 1984 and 1982, respectively. Mr. Phillips is
currently employed at IBM Austin, where his assignments
include computer engineering and architecture, and the high-
level design and implementation of new computer systems.
Prior to his current assignment, he worked in the Glendale
Laboratories, IBM Endicott, New York, contributing to the
research on the SCISM processors. His research interests
include parallel and pipelined architectures, VLSI, and
computer arithmetic. Since joining IBM, Mr. Phillips has
received the First Invention Filed Award, the second level of
the Invention Achievement Award, and the first level of the
Publication Achievement Award. He has nine patents
currently on file.

Stamatis Vassiliadis 1BM Enterprise Systems, P.O. Box
950, Poughkeepsie, New York 12602 (STAMATIS at GLDVM2,
stamatis@gdlvm2.vnet.ibm.com). Dr. Vassiliadis received the
Dr. Eng. degree in electronic engineering from the Politecnico
di Milano, Milan, Italy, in 1978. He is currently a Senior
Engineer at the IBM Mid-Hudson Valley Laboratory,
Poughkeepsie, and previously worked at the Glendale
Laboratories, IBM Endicott, New York. His work
assignments include the development of new computer
organizations and architectures, high-level design and technical
leadership in the implementation of new computer systems,
and advanced research in a variety of computer-related topics.
Previous work included participation in the design of the IBM
9370 Model 60 computer system. Since joining IBM he has
received a number of awards, including ten levels of the
Publication Achievement Award, 13 levels of the Invention
Achievement Award, and an Qutstanding Innovation Award
for engineering/scientific hardware design in 1989. In 1990 he
was awarded the most patents in IBM. His research interests
include computer architecture, hardware design and functional
testing of computer systems, parallel processors, computer
arithmetic, EDFI for hardware implementations, neural
networks, fuzzy logic and systems, and software engineering.
Dr. Vassiliadis has been an Adjunct Professor in the School of
Electrical Engineering, College of Engineering, Cornell
University, Ithaca, New York, and in the Electrical
Engineering Department at the Thomas J. Watson School of
Engineering and Applied Science, State University of New
York (S.U.N.Y.), Binghamton, New York. He is currently a
Visiting Professor in the School of Electrical Engineering,
College of Engineering, Cornell University, Ithaca, New York.

21

J. E. PHILLIPS AND 8. VASSILIADIS

