
Proof of
correctness of

by J. E. Phillips
S. Vassiliadis

high-performance
3-1 interlock
collapsing ALUs

A 32-bit 3-1 interlock collapsing ALU,
proposed to allow the execution of two
interlocked ALU-type instructions in one
machine cycle using an instruction-level
parallel machine implementation, is shown to
produce results equivalent to a serial
execution of the instructions using a 2-1 ALU.
The equivalence is shown by deriving tables
which represent all possible requirements for
the serial execution of the instructions
followed by the generalization of the table to
represent sets of instructions rather than the
individual instructions themselves.
Consequently, the equivalence of the 3-1
interlock collapsing ALU operations with these
generalized requirements of the serial
execution of the instructions is shown. The
correctness of a proposed high-speed
interlock collapsing ALU is thereby
demonstrated.

1. Introduction
The requirement for a 3-1 high-speed fixed-point ALU
arises from the existence of execution interlocks [l], the
demand for high-performance computation in the form of
multiple-issuance/execution machines* [2-121, and the need

to avoid increasing execution cycle time.
To clarify, consider the instruction sequence

AR Rl,R2,

SR R3,R1,

where AR is an add instruction that adds the contents of
register R1, denoted as (Rl), to (R2) and writes the results
to R1, and SR is a subtract instruction subtracting (R1)
from (R3) and writing the results to R3. This instruction
sequence can be handled with no loss of performance in a
serial machine by forwarding the results from the ALU to
the inputs of the ALU. The same sequence, however,
causes an underutilization of the second ALU in a
multiple-issuance machine that can issue two independent
instructions in a single cycle. This underutilization results
in no performance gains for the multiple-issuance machine
when compared with the execution of the pair using a
serial machine.

Several solutions have been proposed to relieve such
data dependency hazards for floating-point [lo], vector [4],
and fixed-point (integer) [5 , 61 units. However, as
discussed in [13, 141, solutions for the fixed-point units can
have detrimental effects: requiring increased numbers of
opcodes, incompatibility with existing implementations,
and potential increases in the cycle time of the machine
due to the concatenation of two ALUs. As a result,

Wopyright 1993 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor. 12

IBM J . RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993 J. E. PHILLIPS AND S. VASSILIADIS

Vassiliadis et al.* [13] establish the necessity of a 3-1
high-speed fixed-point ALU and propose a device that
can be used to execute, in a single machine cycle, two
instructions exhibiting execution interlocks. Additionally,
it has been suggested [13, 151 that the device can compute
the correct results in a multiplicity of notations and
instruction sets including two's-complement and unsigned
notation and all logical, arithmetic, and register transfer
instructions present in most architectures. Furthermore, it
has been suggested that the device can accommodate RISC
and CISC architectures, and that its implementation
requires only one more stage than a 2-1 binary adder [13,
16-18] designed with the use of equations reported in [19]
that result in high-speed adders [19, 201 using commonly
available technologies.

designed that will perform 3-1 interlock collapsing ALU
(ICALU) operations correctly [13], and while equations
have been proposed that will not result in an
implementation which increases the machine cycle time
[13], a proof of equivalence between the equations and the
serial execution of two ALU operations incorporated in
the 3-1 ICALU has not been included. Given that studies
have shown that the inclusion of a high-speed 3-1 ICALU,
allowing the concurrent execution of interlocked
instructions, produces substantial improvements in the
parallel execution of instructions [ll, 12, 21-24], and given
the lack of proof of correctness of the high-speed 3-1
ICALU, it is of interest, for completeness, to prove the
correctness of the new device.

While it has been suggested that a device can be

In proving the correctness of the high-speed 3-1
ICALU, we proceed as follows. In Section 2, we provide a
background for the execution of the 3-1 ICALU by
discussing the results from the serial execution of
interlocked ALU instructions and provide preliminaries
required for the proof of correctness of the 3-1 ICALU. In
Section 3 we prove the correctness of the high-speed 3-1
ICALU by showing the equivalence of the results to those
of the serial execution using a 2-1 ALU. Finally, in
Section 4, we present some concluding remarks.

2. Background, preliminaries, and instruction
considerations
A 3-1 ICALU is an ALU with three inputs and one
output, which can execute in a single machine cycle two
fixed-point instructions, with the operation of the second
instruction dependent upon the computation of the first
instruction. A high-speed implementation, as provided in
[13] and shown in Figure 1, was developed for the
ESA/370"" architecture [25], which was chosen to
represent a worst-case scenario for investigating the
feasibility of the device in a general-purpose architecture,

*S. Vassiliadis, "Compound Instruction Set Machines," private communication,
1989.

c

f
L2 I

because such an architecture possesses an instruction set
with rich, and potentially complex, ALU operations.
Clearly the feasibility of such a device, as suggested in
[13, 161, also implies that the incorporation of an interlock
collapsing device implementing only a subset of the
instruction set, e.g., arithmetic operations, is also feasible.
It should also be noted that the device can be incorporated
to perform other interlocked operations, such as address
generation interlocks and branch determination interlocks.
Furthermore, the possibility of including such a device in a
RISC machine is also implied. The speed of the device is
attributed to the parallel computation of the result, as can
be seen from Figure 1, in which L2 calculates controls in
parallel with the execution of the CALU, with the
operation of the device specified by the following
equations [13]:

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993 J. E. PHILLIPS AND S. VASSILIADIS

Table 1 ESN370 RR-format loads, logicals, arithmetics,
and compares-function and operand representation, and
description.

Instruction Operation h

AR R1,R2 (R1)-(Rl) + (R2) + h 0
SR R1,R2 (R l) t (R l) + (E) + h 1
LPR R1,R2; R2<0; (R l) t O + (m) + h 1

R2r0 ; (R1) tO + (R2) + h 0
LNR R1,R2 R220; (R1)-0 + (m) + h 1

R2<0; (Rl)+O + (R2) + h 0
LR R1,R2 (Rl)+O + (R2) + h 0
LTR R1,R2 (R1)tO + (R2) + h 0
LCR R1,R2 (R1)-0 + (m) + h 1
ALR R1,R2 (Rl)+(Rl) + (R2) + h 0
SLR R1,R2 (R l) t (R l) + (E) + h 1

CR R1,R2 X t (R 1) + (ET) + h 1
CLR R1,R2 X-(Rl)+ (E) + h 1
NR R1,R2 (R l) t (R l) A (R 2) 0
OR R1,R2 (R l) t (R l) V (R 2) 0
XR R1,R2 (Rl)+(Rl)V(R2) 0

Table 2 Basic ALU operations to execute single ALU
instruction.

Instruction iype Representation Operation h
~~~~~~ ~ 

Addition Add  R1,R2 (Rl )  + (R2) + h 0 
Subtraction Sub R1,R2 (Rl)  + (E) + h 1 

Logical LOP R1,R2 (Rl)  LOP (R2) 0 

H, = ( f l p t  + Jq v A t + l  9 

G, = ( f 1 4 s  + L,)AL+l 7 

T, = apt + Lt + A , + l ,  

where fl,, 4, 0 4 ,  floALAsL9 flxos,, =ADD, 
” 

and EXOR are  control signals, 4t, A 4 ,  = H,-l V Ti, CY, and 7‘: are  parameters  for  recursive  CLA  equations  as defined 
in [19], and cy,, pi, and 7, are  inputs  to  the 3-1 ICALU. 

The  operation for the high-speed 3-1 ICALU  was 
determined  by considering all of the  operations  that would 
be required by  sequences of two  ALU  operations 
interlocked with  one  another [14]. To  determine  the 
operations  required of a 3-1 ICALU for  this  instruction 
set,  one  need  only  consider  the  RR-format  ALU 
instructions,  since all of the  ALU  operations  have a 
corresponding RR-format  instruction. Other  ALU 
instructions differ from the RR-format instructions in the 
source of the  operands  on  which  the  ALU is to  execute 
rather  than in the  operation  to  be  performed.  The RR- 

14 format  ALU  instructions  are  summarized in Table 1. In 

J. E. PHILLIPS  AND S. VASSILIADIS 

this  table, the  instruction  mnemonic is  given,  along with 
register  designations for  the  operands  (denoted  by  R1  and 
R2) in the first column. In  the  second column, the 
operation is provided with (R1) representing  the  contents 
of register R1, (E) representing  the  one’s  complement of 
the  contents of R1, h representing a “hot  one” supplied to 
the  adder, + indicating binary addition, A representing 
bitwise AND, V representing bitwise OR, and V 
representing bitwise EXCLUSIVE-OR.  The  contents of 
the registers, for example (Rl),  are 32-bit signed or 
unsigned numbers,  with  the  bits  numbered in ascending 
order from the  most significant bit (MSB) to  the  least 
significant bit  (LSB).  Since  status is discussed  elsewhere 
[13, 15, 261 and  not  considered in this paper,  no distinction 
is made between signed and unsigned numbers  other  than 
for the  instructions  LOAD  POSITIVE  REGISTER  (LPR) 
and  LOAD  NEGATIVE  REGISTER  (LNR),  for  which  the 
operation  to  be performed depends upon the sign of the 
operand.  For  each of these  instructions,  one of two 
operations  must  be performed,  depending on  the sign of 
the  operand.  The  two possible operations  are specified by 
the  two  rows  associated  with  each of these  instructions in 
Table 1 under  the Operation column.  The condition  leading 
to  the  operation is also shown in that  column. Finally, 
compare  operations (CR and  CLR)  are used to  set  ALU 
status (considered in [13]) rather  than  to provide ALU 
results.  Therefore, their results  are  not  written  to  any 
facility and  thus  are  denoted  by showing the destination of 
the  operation  as X. 

From  Table 1 it can  be  observed  that if the capability is 
provided to  zero  the  ALU input corresponding  to  operand 
R1, then, with respect  to  the result of an operation,  the 
ALU  operations  can  be  reduced  to  three instruction types. 
These  instruction  types  are  summarized in Table 2. The 
addition instruction  type  covers  the  instructions  AR;  LPR, 
when R2 2 0; LNR,  when R2 < 0; LR;  LTR;  and  ALR. 
The  subtraction instruction type  covers  the  instructions 
SR;  LPR,  when R2 < 0; LNR,  when R2 2 0; LCR;  SLR; 
CR;  and  CLR.  The logical instruction  type  covers  NR, 
OR, and XR, with LOP representing  either of these logical 
operations. To determine  the  operations required by  an 
ALU designed to  execute, in a single cycle,  interlocks 
between  ALU  instructions, all combinations of the  three 
instruction types and all potential interlock  situations must 
be  considered. Table 3 compiles the  results  from  such 
considerations  for  the  instruction  types  shown in Table 2. 

In  Table 3, the  operations  to  be performed on  the 
register operands  are  shown in the  second column, in 
which addition or  subtraction  operations  are  represented  as 
ADD and logical operations  are  represented  as  LOP.  The 
third column of the  table  shows  the  functions  to  be 
performed on  the 3-1 ICALU  inputs  to  produce  the 
desired result of column  two. The routing of operands  to 
allow the  proper  operation  to  be  executed is shown in the 

IBM J. RES.  DEVELOP.  VOL. 37 NO. 1 JANUARY 1993 



Table 3 Operand routings to produce desired operations for LOGICAL-ADD operations. 

Row Desired operation ALU operation OPl OP2 a P r  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

(R1  LOP R2) ADD R4 
R3 ADD  (R1  LOP R2) 

(R1  LOP R1) ADD R4 
R3 ADD  (R1  LOP R1) 

(R1  LOP R2) ADD (R1  LOP R2) 
(R1 ADD R2) LOP R4 
R3 LOP (R1 ADD R2) 
(R1  ADD R1) LOP R4 
R3 LOP (R1  ADD R1) 
(R1  ADD R2) LOP  (R1  ADD R2) 
(R1  LOP R2) LOP R4 
R3 LOP  (R1  LOP R2) 
(R1 LOP R1) LOP R4 
R3 LOP  (R1  LOP R1) 
(R1  LOP R2) LOP  (R1  LOP R2) 
(R1  ADD R2) ADD R4 

R3 ADD  (R1  ADD R2) 
(R1  ADD R1) ADD R4 

R3 ADD  (R1 ADD R1) 
(R1  ADD R2) ADD (R1 ADD R2) 

( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
- ( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
- ( y  OP1 a) OP2 p 
( y  OP1 a) OP2 ( y  OPla) 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 ( y  OP1 a) 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 ( y  OP1 a) 
p OP2 ( y  OP1 a) 
-p  OP2 ( y  OP1 a) 
p OP2 ( y  OP1 a) 
p OP2 ( y  OP1 a) 
-p  OP2 ( y  OP1 a) 
p OP2 ( y  OP1 a) 
( y  OP1 a) OP2 ( y  OP1 a) 

R2  R4 
R2 R3 
R2  R3 
R2(=R1) R4 
R2(=R1) R3 
R2(=R1)  R3 
See note 
R2 R4 
R2  R3 
R2(=R1) R4 
R2(=R1)  R3 
See note 
R2  R4 
R2  R3 
R2(=R1) R4 
R2(=R1)  R3 
See note 
R2  R4 
R2 R4 
R2 R3 
R2(=R1) R4 
R2(=R1) R4 
R2(=R1) R3 
See note 

R1 
R1 
R1 
R1 
R1 
R1 

R1 
R1 
R1 
R1 

R1 
R1 
R1 
R1 

R1 
R1 
R1 
R1 
R1 
R1 

Note:  These operations, which occur when the register specifications for R1. R3. and R4 are the same, were not implemented in the high-speed 3-1 ICALU; therefore, their 
operand routings were not included. 

last  three columns. The following example, in which  the 
data  dependencies for  a  subtraction-followed-by-addition 
instruction  type (i.e., SR R1,R2; AR R3,R4) are 
considered,  provides insight into  the  considerations  that 
must  be made to  produce  Table 3. The combination of data 
dependencies  that  can  arise  from this sequence  are R1 = 
R3; R1 = R4; and R1 = R3 = R4. Furthermore,  there  may 
be  no  data  dependencies, a  condition denoted  here  as 
“independent.”  Other  data  dependencies  such  as R2 = R3 
and R2 = R4 are  considered in this  paper  to  be 
“independent,”  because  they  do  not influence the  ALU 
operation  and  are trivial to  resolve in a hardware 
implementation. For  each of these  instruction  and  data 
dependency  sequences,  the SR instruction produces 

(Rl)  + (Rl) - (R2). 

The  results  for  the addition operation,  however, differ 
for the different interlock  situations: 

R1 = R3: (Rl)  + (Rl)  - (R2) + (R4), 

R1 = R4: (R3) +- (R3) + (Rl)  - (R2), 

R1 = R3 = R4: (Rl)  + (Rl)  - (R2) + (Rl)  - (R2), 

and in the  case of “independent” instructions, the  results 
are 

Independent: (R3) + (R3) + (R4). 

These  instruction  sequences,  contained in rows 18, 20, and 
24 of Table 3, require  the  operations 

Independent: (R3) + (R3) + (R4); h2 = 0, 

R1 = R3; (Rl)  + (Rl)  + (E) + (R4); hl = 1, h2 = 0, 

R1 = R4: (R3) +- (R3) + (Rl) + (E); h l  = 1,  h2 = 0, 

R1 = R3 = R4: (Rl) + (Rl)  + (E) + (Rl) + (E); 
hl = h2 = 1, 

represented  as two’s-complement operations  for  which h 1 
and h 2  designate  the provision of “hot  ones”  to  the first 
and  second serial operations, respectively. 

a 4-1 ICALU is  required to  execute all execution 
interlocks  that  can  occur  between  two  ALU-type 
instructions. In addition,  interlocked instruction  sequences, 
in which  the  second  instruction is LPR or LNR, can 

From  Table 3, it can  be  observed that, strictly speaking, 

15 

IBM  J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993 J. E. PHILLIPS AND S. VASSILIADIS 



Table 4 Concatenated 2-1 ALU  operations  supported in 3-1 ICALU. 

Row OPl OP2 Dependency AL  Ul operation AL U2 operation  Result hl h2 

1 Add Add R 3 = R l ; R 4 = R 1  6 = a + g + h l  A = 6 + b + h 2  A = a + g + b + h l + h 2  0 0 
2 Add Sub R3 = R1 F = a + g + h l  A = 6 + 6 + h 2  A = a + g + 6 + h l + h 2  0 1 
3 Add Sub R4 = R1 S = a + g + h l  A = Z + b + h 2  A = a + g + h l + b + h 2  0 1 
4 Add Log R 3 = R l ; R 4 = R l  d = a + g + h l  A = 6 L O P 2 b  A = ( a + g + h l ) L O P 2 b  0 0 
5 Sub Add R 3 = R l ; R 4 = R 1  S = a + g + h l  A = 6 + b + h 2  A = a + g + b + h l + h 2  1 0 
6 Sub Sub R3 = R1 F = a + g + h l  A = 6 + 6 + h 2  A = a + j + 6 + h l + h 2  1 1 
7 Sub Sub R4 = R1 b = a + g + h l  A = 8 + 6 + h 2  A = ( a + g + h 1 ) + 6 + h 2  1 1 
8 Sub Log R 3 = R l ; R 4 = R l  d = a + g + h l  A = 6 L O P 2 b  A = ( a + g + h l ) L O P 2 b  1 0 
9 Log Add R3 = R1; R4 = R1 6 = a LOPlg  A = 6 + b + h2 A = (a L O P l g )  + b + h2 0 0 

10 Log Sub R3 = R1 6 = a L O P l g  A = 6 + 6 + h 2  A = ( a L O P l g ) + 6 + h 2  0 1 
11 Log Sub R4 = R1 6 = a L O P l g  A = Z + b + h 2  A = ( a L O P l g ) + b + h 2  0 1 
11 Log Log 6 = a LOPl g A = 6 LOP2 b A = (a  LOPl g) LOP2 b 0 0  

require two concatenated ALUs for  their execution, since 
the first instruction’s result is required before the second 
ALU’s operation to execute the LPR or LNR can be 
determined. Since execution interlocks between instruction 
sequences that require either a 4-1 ICALU or two 
concatenated ALUs for their execution were infrequent in 
the instruction traces we considered, it was decided to 
require that the instruction issue logic serialize the issue of 
these sequences [13]. This results in the serial execution of 
these sequences, which can be performed in two cycles 
using a conventional 2-1 ALU. By  enforcing this 
requirement, the potential delay problems and complexity 
associated with a 4-1 ICALU or two concatenated ALUs 
can be avoided. With these assumptions, the design of a 
3-1 ICALU is  sufficient for executing most interlocked 
ALU instructions in a single cycle. All operations of Table 
3 except for those contained in rows 7, 12,  17, and 24 can 
be supported by the 3-1 ICALU. 

The operations of the 3-1 ICALU shown in Table 3 
must provide results identical to those for two 
concatenated 2-1 ALUs, denoted as ALUl and ALU2, 
executing the instruction pair in a serial fashion. Table 4 
summarizes the serial execution for all combinations of the 
three instruction types and data dependencies that are 
supported by the 3-1 ICALU. In this table, the first  and 
second operations (OP1 and OP2) are given in the second 
and  third columns of the table. In addition, the results (6) 
from the operation of the first ALU (ALUl), results (A) 
from the execution of the second ALU  (ALU2), and the 
overall result specified as the operation performed on the 
three operands (a ,  g, and b)  supplied to the two 2-1 
ALUs are shown in the fifth, sixth, and seventh columns, 
respectively. Finally, the hot ones, h l  and h2, supplied to 
ALUl and ALU2, respectively, are provided in the last 
two columns. Table 5 shows the setup of operand values 

16 (denoted as A, r, and B) to the three inputs (denoted as a, 

y, and p) of the 3-1 ICALU, as dictated by the operations 
of Table 4, to execute pairs of addhub-type operations for 
various supported data dependencies. In this table, hi 
represents the carry from a 3-2 CSA used in designing the 
3-1 ICALU, and 4t represents the carries produced in the 
2-1 adder used in the design of the 3-1 ICALU, with all 
the carries being produced from  bit position i into i - 1. 
The values, shown in the table, are for i = 32, which 
represents the hot ones that must be supplied to the adders 
as boundary conditions to produce the appropriate result. 
The correctness of the 3-1 ICALU is proven by  showing 
the equivalence between its results and the results of the 
serial execution using a 2-1 ALU, as provided in Table 4. 

3. Proof of equivalence of high-speed 3-1 
ICALU with serial execution by  a 2-1 ALU 
In this section, the data flow  of the high-performance 3-1 
ICALU, depicted in Figure 1 and described by the 
Boolean equations in Section 2, is shown to produce 
results equivalent to the serial execution of a pair of 
interlocked ALU instructions by a 2-1 ALU. Equivalence 
must be shown for each pair of instruction types and 
possible data dependencies as provided by Table 4. 

The setup of the high-speed 3-1 ICALU to implement 
the required operations is shown in Table 6. In Table 6, 
the second column  specifies the operation dictated by the 
first instruction, with the third  column  specifying the 
operation dictated by the second instruction. Because a 
3-1 adder is  known to produce the correct results [13] for 
addition as well as subtraction operations with the proper 
inversion of operands and supply of  hot ones, only  add 
operations are shown in Table 6, except for those 
conditions in which a subtraction requires unique functions 
to be supported by  logic other than that executing a 3-1 
addition. For example, for the operations AND followed 
by add, an AND of A with r must be performed by the 

J. E. PHILLIPS AND S .  VASSILIADIS IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993 



Table 5 ALU setup to execute collapsing operations where OP1 and OP2 are addhub-type operations. 

Row OPI OP2 DeP 0, Pi 7; 4 2  432 a;* 

1 Add Add R3 = R1; R4 = R1 A, B, rL 0 0 6, 
2 Add Sub R3 = R1 4 B r, 1 0 4 
3 Add Sub R4 = R1 4 B, ri 1 1 ai 
4 Sub Add R3 = R1; R4 = R1 4 B, 'i 1 0 aL 
5 Sub Sub R3 = R1 Ai B, rt 1 1 a1 

- - 
- 

- - 
- 

6 Sub Sub R4 = R1 4 B, 'i 1 0 ai 

Table 6 ALU setup to execute collapsing operation categories. I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Add 
AND 
OR 
XOR 
AND 
OR 
XOR 
Add 
Add 
Add 
AND 
AND 
AND 
OR 
OR 
OR 
XOR 
XOR 
XOR 

Add 
Add 
Add 
Add 
Sub 
Sub 
Sub 
AND 
OR 
XOR 
AND 
OR 
XOR 
AND 
OR 
XOR 
AND 
OR 
XOR 

A ~ B ~ I - ,  o o o o o 1 1 1  o 1 0 

A ~ B ~ ~ ~  o o o o o 1 o o 1 o 1 
A ~ B , ~ ~  o o o o o 1 o o 1 o o 

A i B I T l  0 0 0 0 0 1 0 0 1 0  0 

q B , q O l  0 0 0 1 0 0 1 0  1 

A , B , T O l  0 0 0 1 0 0 1 0  0 
& B t r L O  1 0 0 0 1 0 0 1 0  0 
A , B , $  o o 1 o o o o 1 o o o 
A , B , ~ ,  o o o 1 o o o 1 o o o 
A ~ B , ~ ~  o o o o 1 o 0 1 o o o 
A , B , C O O  1 0  0 0 0 0 0 0  0 
A , B , T  0 0 0 1 0 0 0 0 0 0 0 
A t B , T t  0 0 0 0 1 0 0 0 0 0 0 
A ; B , $  o o 1 o o o o o o o 1 
A , B , S O  o o 1 o o o o o o 1 
A ~ B , ~ ~  o o o o 1 o o o o o 1 
A , B , S  o o 1 o o o o o o o o 
A ~ B , ~ ~  o o o 1 o o o o o o o 
A # B , $  o o o o 1 o o o o o o 

0 0 
0 1 
0 0 
1 1 
0 0 
1 0 
1  1 
1 1 
1 1 
1 1 
0 1 
0 1 
0 1 
0 0 
0 0 
0 0 
1  1 
1 1 
1 1 

logic block, L1, while  for the operations AND followed  by 
sub, a NAND of A with r must be performed by L1. 
These unique situations must  be shown to be realizable. In 
the following, each row of Table 6 is shown to be executed 
by the high-speed 3-1 ICALU implementation. First, row 1 
is shown to produce a 3-1 addition. Next, rows 2-4 are 
shown to produce the expected logical operation followed 
by an addition. Subsequently, rows 5-7 (logical  followed 
by subtraction), rows 8-10 (add followed  by  logical),  and 
rows 11-19 (logical  followed  by  logical) are considered in 
three separate groups. 

Add followed by add 
In assuming that the ICALU is presented with the correct 
inputs and the hot ones as dictated by Table 5 for the add 
category, and  realizing that the operation of the 3-1 

ICALU for  the "independent" data dependency case can 
be achieved by  a 3-1 addition  with one of the operands 
zeroed, to prove that add  followed  by  add  is  performed  by 
the ICALU, we  need to prove that the device essentially 
performs a 3-1 binary addition on its inputs. With 
substitution, and  assuming that the proper inputs are 
denoted by a,, /3,, and y, for  bit  position i, i.e., the ALU 
setup of Table 6, row 1, the expressions for the fast 
implementation of the 3-1 ICALU give 

EGENi = 1 + 0 + BIO t BiO = 1, 

E,,,~ = BtO = 0, 

- 

13 

EsoM, = BID = 0, 
- 

= A, v B, v rt , 17 

IBM J .  RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993 J .  E. PHILLIPS AND S. VASSlLlADIS 



hi = lAiBi + 1AJi + lBJr + OBi-, 

= AiBi + Airi + Biri . 
The previous equations for 5 and hi determine the output 
of a 3-2 binary addition. It must be proven that the 
remaining equations determining the behavior of the device 
compute a 2-1 binary addition. Given that 

L~ = A,O + rio + Krio + AEO = 0, 

the remaining equations perform 

Hi = (14 + 0) V Ai+l  = a, V A i + l ,  

Gi = (lu; + O)hi+l = U , A ~ + ~ ,  

= l q  + 0 + Ai+, = mi + A i + l ,  

GI:, = G;:l + 0 = G;:l , 

Bi = H;l + H,O = H i ,  

pi = M,1 + M;O = M i ,  

A; = IL;4,+1 + q + + l  + 0 = Mj4i+l + q4;+1 . 

- 

- 

- 

Furthermore, given that Hi,  Gi, Ti,  GY = G!*, and hl are 
the equations proven to determine a binary addition [19], 
the proposed device indeed computes a 3-1 binary addition 
as required by the add-followed-by-add category of 
interlocked ALU instructions. 

Logical followed by add 
For these operations, a bitwise logical AND,  OR, or XOR 
must be performed between A and r. This result should 
then be added to a third operand B. The logical operation 
is  performed by the L1 block of Figure 1 as specified by 
the expression for L in the defining equations. We  first 
demonstrate that, for the setup in rows 2-4 of Table 6, 
L produces bitwise logical AND,  OR, and XOR, 
respectively. For the setup of the ICALU device as shown 
in row 2, 

L = AiO + 6 0  + GO + AX1 = Airt, 

which  is the bitwise logical AND, as desired. For the setup 
of row 3 of Table 6, 

L = + ril + Krio + A ~ ~ O  = 4 + rc, 
which  is the bitwise logical OR, as desired. Finally, for the 
setup of row 4 of Table 6, 

L = A ~ O  + rio + Kril + AKI = Kri + AZ = v ri ,  
which is the bitwise EXCLUSIVE-OR, as desired. In the 
following, LOP is  used to represent one of bitwise AND, 
OR, or EXCLUSIVE-OR. 

Other than the setup to produce the appropriate logical 
operation between A and r, the setup of Table 6 is 

18 identical for rows 2-4. Using this setup in the equations 

defining the fast ICALU implementation produces 

ZcENi = 1 + 0 + BiO + BiO = 1, 

E&mI = BiO = 0, 

E,,,i = BiO = 0, 

ui = don't care, 

Az = OAIBj + OAiri + OBiri + lBi-l = Bi-l, 

- 

L, = A; L o p i  ri , 
H .  = (ogi + A, L o p i  r;) v B, = (A, L o p i  $1 v B, , 

G, = [ O q  + (Ai LOPl Ti)]Bi = (Ai LOPl ri)Bj, 

= Oai + (A; LOPl ri) + Bi = (A, LOPl ri) + Bi, 

GI:, = G;:l + 0 = G? r+l ' 

e i = q l + @ o = q . ,  
pi = Mil + M;O = M ; ,  

- 

which  is the expression for the sum  from a 2-1 CLA using 
the recursive equations described in [19], with inputs being 
the logical operation A LOPl r and B. Therefore, the 
ICALU produces the result (A LOPl r) + B, where + 
represents addition. 

Logical followed by  sub 
These operations are identical to those for "logical 
followed by add," as just discussed, with the exception 
that the bitwise logical operations NAND,  NOR, and 
XNOR must be produced by the logic block L1 to support 
the subtraction of the logical operation from the third 
operand, B. Therefore, all that is required is to 
demonstrate that L1 can produce these operations. 
For the setup of row 5 of Table 6, 

L = K l + ~ l + O A i ~ + O K r ' , = ~ + c = $ ,  

which  is the bitwise logical NAND, as desired. For the 
setup of row 6 of Table 6, 

L = A ~ O  + c o  + + qrio = A,ri = A~ + r,, " 

which is the bitwise logical NOR, as desired. Finally, for 
the setup of row 7 of Table 6, 

L = T o  + rio + Airil + = A~J-; + q i  = v ri, 
" 

which is the bitwise EXCLUSIVE-NOR, as desired. 
Therefore, the 2-1 CLALU is set up to subtract A LOPl r 
from the middle operand as desired. 

Add followed by logical 
For these operations, which encompass rows 8-10 of 
Table 6, the setup of the 3-1 ICALU is identical except for 

J. E. PHILLIPS AND S. VASSILIADIS IBM J. RES. DEVELOP.  VOL. 37 NO. 1 JANUARY 1993 



the  controls E,,,, E,,, and E,,,, which  specify one of the 
three possible  bitwise logical operations  to  be performed 
between  the  sum of A and r and  the third operand B. 
Therefore,  the  common  expressions for these  operations 
are 

L = A,O + rto + &ril + ~ ~ 6 1  = &rl + = A, v r,, 
a, = don't care, 

Ai = OAiBt + lALTi + OB,Ti + OBt-, = Air,, 

H = ( O q  + '4, v ri, v (Ai+,$+,, = (Al v $1 v (Ai+l~t t l ) ,  

G, = (0UL + Ai v rJAtt,rttJ = (Ai v ~J(Ai+ ,~ , , ,L  

T, = o q  + (Ai r,, + (A,,1rjt,) = (Al v r,, + (Ai,,$,,,. 

First  consider  the  operation  when  the logical operation is a 
bitwise logical AND. For  this  case,  the  setup of row 8 of 
Table 6 yields 

EGEN, = 0 + 0 + Btl + B,O = B,, 

EsxMi = B,O = 0, 

zSoM, = B,O = 0, 

p, = A4,Bt + M O  = MBl,  

8( = YBl + RO = HBt , 

- 

Ai = y B L 4 i + ,  + Y B , G  + 0 = Bl(q41t ,  + H G ) .  
However,  the  last  expression in parentheses is the 
recursive  expression for the 2-1 addition of two values. 
The  values in this case are A, V r, andAI+,TLt1. But A, V rl 
represents  the  sum from  a 3-2 CSA with  a  third  input of 
zero,  and Al,,r,+, represents  the  carry, AL+,,  from such a 
3-2 CSA. From  the  results  above, Ai t l  V = K,+, for 
this  case, so that 

AI = Bi[(A, v r,) v 5,,1 = Bl(A + U l ,  

which is the bitwise AND between  the third  input B and 
the  sum  between  the first two  inputs A + r, as  desired. 
Next  consider  the bitwise logical OR operation.  From  row 
9 of Table 6, 

- 
rCEN, = o + 1 + B,O + B,O = I ,  
I 

-SXMI - = BiO = 0, 

E,,,, = BI1 = B, , 

GI:, = G::, + BI , 

p l = M 1 + $ O = M ,  

8, = Htl  +e0 = H ,  

4 = M4,+1 + H4,+1 + B,. 
However,  by  the  same  arguments  as for the logical 
operation being  a  bitwise AND, M,4ttl + HL$ttl 

represents  the  sum of A and r. Therefore, 
~ 

= v ri v K,+J + B, , 
where + represents bitwise logical OR, so that A is the 
bitwise logical OR between B and  the  sum A + r, where 
+ represents addition, as desired.  Finally, consider  the 
bitwise logical EXCLUSIVE-OR operation. From row 10 
of Table 6, 

EGENi = 0 + 0 + BtO + B,1 = B,, 

EsxMi = B,1 = B,, 

8,,,, = BLO = 0, 

GI:, = G;:l + 0 = G::,, 

" 

p, = Mij  + $Bi, 

A, = (MBi + yBiMt+,  + (HB + HB#Jlt1 + 0, 

= &y4L+1 + q7J + B,(q4i+l + KL 
= Bi@yL+, + H t G )  + B L ( r n 4 , + ,  

+ q 4 # t l  + MH4,+, + H4i+,). 

= Bpfj,+, + H L G )  + B$yH + y4,,, + K)? 
= Bp.(4Lt, + H t G )  + BJ(M + 41+J(q,  + 4,+,)1> 

= Bpq4Lt, + H L G )  + BI[y4t,, + H X I >  

8, = H,B + e B , ,  
" - -  

- 

~- 

- " 

- - " 

- 

= B,(A + r), + B,(A + r)t , 
= B, v (A + 

- 

where + has  the mixed usage of bitwise logical OR or 
addition,  depending  on the  context, and where  the final 
expression is the EXCLUSIVE-OR between  the third 
input operand  and  the  sum  between  the first two input 
operands  as  desired 

Logical followed by logical 
For the  add-followed-by-logical operations, it was shown 
that, for the specifications of E,,,, E,,, and EXOR of rows 
8-10 of Table 6, the  desired logical operation  between  the 
sum of a 2-1 addition between  the  two input operands A 
and r and a  third  input operand B is executed.  The logical- 
followed-by-logical operations  are  produced if the 2-1 
addition can  be  set  up  to add the  output of the logical 
block, L1, to  zero.  It  has  already  been  shown, for the 
logical-followed-by-add case,  that for the  operand  setup 
given in rows 11-19 of Table 6 and with the  setups for 
R,,,,,,  R,,,,, and RXML specified in those  rows,  the 
desired logical operation is produced  by L1 for OP1. It 
remains to  be  shown  that  the  expressions defining the  fast 
3-1 ICALU implementation produce a 2-1 addition  among 
the  output, L1, and  zero.  Since R, = 0 in these  rows,  the 19 

IBM J. RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993 J .  E. PHILLIPS AND S. VASSILIADIS 



value for a is a don’t  care,  because it is ANDed with SZ,. 5. W.  A.  Wulf, “The WM Computer Architecture,” 
Furthermore, A, = 0, since f l l ,  a,, and C I 3  are  zero. Computer Architecture News-16, 70-84 (March 1988). 
Therefore, 

6. W.  A.  Wulf and C. Y .  Hitchcock 111, “Apparatus for 
Reading To and  Writing From Memorv Streams of Data 

q. = [oq + ( A ~  L o p i  ri)l v o = L o p i  r>, 
G, = [oui + (A~ LOPI r~lo = 0, 

T, = oq + (A~ L o p i  r,) + o = (A, L o p i  ri) = H, , 

While Concurrently Exicuting  a Plurality of Data 
Processing Operations,” U.S. Patent 4,819,155, April 
1989. 

Instruction-Level and  Machine Parallelism and Its Effect 
on Performance,” ZEEE Trans. Computers 38,  1645-1658 
(December 1989). 

7.  N.  P. Jouppi, “The Nonuniform Distribution of 

Ai = B, LOP2 + HG). 8. N. P. JOUDDi and  D. W. Wall. “Available Instruction- 

However,  since &, = 0 and A,, = 0, and  since Gi = 0, 
C#Ji = 0 for all 0 I i I 31; therefore, 

1 1  

Level Parallelism for Superscalar and Superpipelined 
Machines,” Proceedings of ASPLOS ZZZ, ACM,  1989, pp. 
272-282. 

A~ = B,  LOP^ (40 + ~ ~ 1 )  = B,  LOP^ L o p i  ri), 9. H. S. Warren, Jr., “Instruction Scheduling for the IBM 
RISC Systed6000 Processor,” ZBM J. Res.  Develop. 34, 

which is the  desired result. Therefore,  the 3-1 ICALU 
85-92 (January 1990). 

10.  R.  R. Oehler and R. D. Groves, “IBM RISC Systed6000 
produces a  result  equivalent to  the  serial  execution of two Processor Architecture,” ZBM J. Res.  Develop. 34,  23-36 
interlocked ALU  instructions for all cases of instruction 
pairings and  data  dependencies of Table 4. 

4. Concluding remarks 
A 32-bit 3-1 ICALU,  proposed  by [13], to allow the 
execution of two interlocked ALU-type  instructions in one 
cycle using  an  instruction-level  parallel  machine 
implementation has been proven  to  produce  results 
equivalent to a  serial execution of the  instructions using  a 
2-1 ALU. The proof was shown by deriving tables  which 
represent all possible requirements for the  serial  execution 
of the  instructions followed by  the generalization of the 
table  to  represent  sets of instructions  rather  than  the 
individual instructions themselves. Consequently,  we  have 
proven  the  equivalence of the 3-1 ICALU  operations 
proposed in [13] with  these generalized requirements of the 
serial  execution of the  instructions,  thereby  demonstrating 
the  correctness of the  proposed design of a  high-speed 
ICALU  presented in [13]. The  fast implementation of the 
3-1 ICALU  can  be implemented with  only a 3-2 CSA logic 
stage of additional  delay when  compared  with a 2-1 ALU, 
suggesting that  incorporation of this  implementation of the 
device  may  produce no impact on the  cycle time of the 
machine. 

ESN370 is a trademark of International Business Machines 
Corporation. 

References 
1. P. M. Kogge, The Architecture of Pipelined Computers, 

McGraw-Hill Book Co.,  Inc., New York, 1981. 
2.  R.  M. Tomasulo, “ A n  Efficient  Algorithm for Exploiting 

Multiple Arithmetic Units,” ZBM J. Res. Develop. 11, 
25-33 (January 1967). 

Instruction Issuing Approach to Enhancing Performance in 
Multiple Functional Unit Processors,” ZEEE Trans. 
Computers 35,  815-828 (September 1986). 

4. A. Padegs, B.  B. Moore, R.  M. Smith, and  W. Buchholz, 
“The IBM Systed370 Vector Architecture: Design 
Considerations,” ZEEE Trans. Computers 37,  509-520 
(May 1988). 

3. R.  D. Acosta, J. Kjelstrup, and H. C. Torng, “An 

(January 1990). 

A Scalable Compound Instruction Set Machine,” 
Technical Report TROI. C683, IBM Glendale Laboratory, 
Endicott, NY, October 1992. 

12. S. Vassiliadis, B. Blaner, and R. J. Eickemeyer, “On the 
Attributes of the SCISM Organization,” Computer 
Architecture News 20, 44-53 (September 1992). 

13. S. Vassiliadis, J. Phillips, and  B. Blaner, “Interlock 
Collapsing ALUs,” ZEEE Trans. Computers, 1992, 
accepted for publication. 

14. S. Vassiliadis, J. Phillips, and  B. Blaner, “ICU Design 
Considerations,” Technical Report TROI. C114, IBM 
Glendale Laboratory,  Endicott, NY, October 1991. 

15. J. Phillips  and S. Vassiliadis, “Condition Code and 
Overflow Determination for 3-Operand SCISM ALUS,” 
Technical Report TROI. C207, IBM Glendale Laboratory, 
Endicott, NY, December 1991. 

16. J. Phillips  and S. Vassiliadis, “High Performance 3-1 
Interlock Collapsing ALU,” ZEEE Trans. Computers, 
submitted for publication, 1992. 

17. S .  Vassiliadis and J. Phillips, “Interlock Collapsing 
SCISM ALU Design,” Technical Report TROI.CI15, IBM 
Glendale Laboratory, Endicott, N Y ,  October 1991. 

for RISC Architectures,” Technical Report TROI. C605, 
IBM Glendale Laboratory, Endicott, NY, September 1992. 

19. S. Vassiliadis,  “Recursive Equations for  Hardwired  Binary 
Adders,” Znt. J. Electron. 67,201-213  (August  1989). 

20. S. Vassiliadis, “A Comparison Between Adders with New 
Defined Carries and Traditional Schemes for Addition,” 
Int. J. Electron. 64,  617-626 (April 1988). 

“Instruction-Level Parallelism for Execution Interlock 
Collapsing,” Computer Architecture News 20, 38-43 
(September 1992). 

Collapsing ALU for Increased Instruction-Level 
Parallelism,” Conference Proceedings, Annual 
International Symposium on Microarchitecture, Portland, 
OR, December 1992,  pp.  149-157. 

“Execution Interlock Collapsing Under Restricted 
Memory Models,” Proceedings of ZSCZS WZ International 
Conference on Computer and Information Sciences, 
Antalia, Turkey, November 1992,  pp. 181-187. 

“Architectural Effects on Dual Instruction Issue with 
Interlock Collapsing ALUs,” presented at the Twelfth 
Annual IEEE International Phoenix Conference on 
Computers and Communications, March 1993. 

11. S. Vassiliadis, B. Blaner, and  R. J. Eickemeyer, “SCISM: 

18. S .  Vassiliadis and J. Phillips, “3-1 Arithmetic Logic Unit 

21. N. Malik,  R. J. Eickemeyer, and S .  Vassiliadis, 

22. N.  Malik, R. J. Eickemeyer, and S. Vassiliadis, “Interlock 

23. N. Malik, R. J. Eickemeyer, and S .  Vassiliadis, 

24. N. Malik, R. J. Eickemeyer, and S. Vassiliadis, 

J. E. PHILLIPS AND S. VASSILIADIS IBM 1. RES. DEVELOP.  VOL. 37 NO. 1 JANUARY 1993 



25. ESAl370 Principles of Operation, Order  No. SA22-7200-0, James E. Phillips IBMAdvanced Workstation Systems, 
1989; available  through IBM branch offices. 11400 Burnet Road, Austin, Texas 78758 (PHIWE  at 

Determination,” Technical Report TROI. C205, IBM 
Glendale Laboratory,  Endicott,  NY,  December 1991. 

26. J. Phillips and S. Vassiliadis, ‘‘Early SCISM  ALU  Status AUSVM6, phillips@vnet.ibm.com). In 1974 Mr. Phillips 
received  a B.S. degree in nuclear  engineering from  North 
Carolina State University,  after  which he worked in the field 
of radiation  safety. He received the M.S.E.E. and the 
B.S.E.E. degrees from the  University of Tennessee, 

currently employed at IBM  Austin, where his  assignments 
include computer engineering and  architecture,  and  the high- 
level design and implementation of new computer  systems. 
Prior to his current assignment, he  worked in the Glendale 
Laboratories, IBM Endicott,  New York,  contributing to the 
research  on the SCISM  processors.  His  research  interests 
include  parallel and pipelined architectures,  VLSI, and 
computer arithmetic. Since joining IBM, Mr. Phillips has 
received the  First Invention  Filed  Award,  the second level of 
the Invention  Achievement Award, and  the first level of the 
Publication  Achievement  Award. He has nine patents 
currently  on file. 

Stamatis Vassiliadis IBM Entelprise Systems, P.O. BOX 
950, Poughkeepsie, New York 12602 (STAMATIS at GLDVM2, 
stamatis@gdlvmLvnet.ibm.com). Dr. Vassiliadis  received  the 
Dr. Eng.  degree in electronic  engineering from the  Politecnico 
di Milano, Milan, Italy, in 1978. He is currently a Senior 
Engineer at the  IBM  Mid-Hudson Valley Laboratory, 
Poughkeepsie, and previously worked  at the  Glendale 
Laboratories, IBM Endicott,  New York. His  work 
assignments  include  the development of new computer 
organizations and  architectures, high-level design  and  technical 
leadership in the implementation of new computer  systems, 
and  advanced  research in a variety of computer-related topics. 
Previous  work included  participation in the design of the  IBM 
9370 Model 60 computer  system.  Since joining IBM he  has 
received  a  number of awards, including ten  levels of the 
Publication  Achievement Award, 13 levels of the  Invention 
Achievement  Award,  and  an  Outstanding  Innovation  Award 
for  engineeringlscientific hardware design in 1989. In 1990 he 
was awarded the most patents in IBM. His  research  interests 
include computer  architecture,  hardware design and functional 
testing of computer  systems, parallel processors,  computer 
arithmetic, EDFI for hardware implementations,  neural 
networks, fuzzy logic and  systems, and software engineering. 
Dr.  Vassiliadis has been an Adjunct  Professor in the School of 
Electrical  Engineering, College of Engineering,  Cornell 
University,  Ithaca,  New  York, and in the Electrical 
Engineering  Department at the Thomas J. Watson School of 
Engineering  and Applied Science,  State  University of New 
York (S.U.N.Y.),  Binghamton, New York. He is  currently a 
Visiting Professor in the School of Electrical  Engineering, 
College of Engineering,  Cornell University,  Ithaca,  New  York. 

Received June 25,  1992; accepted  for  publication Knoxville, in 1984 and 1982, respectively.  Mr. Phillips is 
November 11, 1992 

IBM J .  RES. DEVELOP. VOL. 37 NO. 1 JANUARY 1993 J .  E. PHILLIPS AND S. VASSILIADIS 


