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A 32-bit 3-1 interlock collapsing ALU, 
proposed to allow the execution of two 
interlocked ALU-type instructions in one 
machine cycle using an instruction-level 
parallel machine implementation, is shown to 
produce results equivalent to a serial 
execution of the  instructions  using a 2-1  ALU. 
The  equivalence is shown by deriving tables 
which represent all possible requirements for 
the serial execution of the  instructions 
followed  by the generalization of the table to 
represent sets of instructions rather than the 
individual  instructions themselves. 
Consequently, the equivalence  of the 3-1 
interlock collapsing ALU operations with these 
generalized requirements of the serial 
execution of the instructions is shown.  The 
correctness of  a proposed high-speed 
interlock collapsing ALU is thereby 
demonstrated. 

1. Introduction 
The  requirement  for a 3-1 high-speed  fixed-point ALU 
arises from the  existence of execution  interlocks [l], the 
demand  for high-performance computation in the  form of 
multiple-issuance/execution machines* [2-121, and  the need 

to avoid  increasing execution cycle  time. 
To clarify, consider  the  instruction  sequence 

AR Rl,R2, 

SR R3,R1, 

where AR is an  add  instruction  that  adds  the  contents of 
register R1, denoted  as (Rl), to (R2) and  writes  the  results 
to R1, and SR is  a subtract instruction subtracting (R1) 
from (R3) and  writing the  results  to R3. This  instruction 
sequence  can  be handled  with no  loss of performance in a 
serial  machine by forwarding the  results from the ALU to 
the  inputs of the ALU. The  same  sequence,  however, 
causes an  underutilization of the  second ALU in a 
multiple-issuance  machine that  can  issue two independent 
instructions in a single cycle.  This underutilization results 
in no  performance gains  for the multiple-issuance  machine 
when  compared  with  the  execution of the pair  using  a 
serial  machine. 

Several  solutions  have  been  proposed  to relieve such 
data  dependency  hazards  for floating-point [lo], vector [4], 
and fixed-point  (integer) [5 ,  61 units. However,  as 
discussed in [13, 141, solutions for the fixed-point  units can 
have  detrimental effects:  requiring increased  numbers of 
opcodes, incompatibility with existing  implementations, 
and potential increases in the  cycle time of the machine 
due  to  the  concatenation of two ALUs. As a  result, 
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Vassiliadis et al.* [13] establish the necessity of a 3-1 
high-speed  fixed-point ALU and propose a device that 
can be used to execute, in a single  machine cycle, two 
instructions exhibiting execution interlocks. Additionally, 
it has been suggested [13,  151 that the device can compute 
the correct results in a multiplicity of notations and 
instruction sets including  two's-complement  and  unsigned 
notation and  all  logical, arithmetic, and register transfer 
instructions present in  most architectures. Furthermore, it 
has been suggested that the device can accommodate RISC 
and CISC architectures, and that its implementation 
requires only one more stage than a 2-1 binary adder [13, 
16-18] designed  with the use of equations reported in  [19] 
that result in high-speed adders [19,  201 using  commonly 
available technologies. 

designed that will  perform 3-1 interlock collapsing ALU 
(ICALU) operations correctly [13], and  while equations 
have been proposed that will  not result in an 
implementation which increases the machine cycle time 
[13], a proof  of equivalence between the equations and the 
serial execution of two ALU operations incorporated in 
the 3-1 ICALU has not  been included. Given that studies 
have shown that the inclusion of a high-speed 3-1 ICALU, 
allowing the concurrent execution of interlocked 
instructions, produces substantial improvements in the 
parallel execution of instructions [ll, 12,  21-24], and given 
the lack of proof  of correctness of the high-speed 3-1 
ICALU, it is of interest, for completeness, to prove the 
correctness of the new  device. 

While  it has been suggested that a device can be 

In proving the correctness of the high-speed 3-1 
ICALU, we proceed as follows. In Section 2, we provide a 
background for the execution of the 3-1 ICALU by 
discussing the results from the serial execution of 
interlocked ALU instructions and provide preliminaries 
required for the proof  of correctness of the 3-1 ICALU. In 
Section 3 we prove the correctness of the high-speed 3-1 
ICALU by  showing the equivalence of the results to those 
of the serial execution using a 2-1 ALU. Finally, in 
Section 4, we present some concluding remarks. 

2. Background, preliminaries, and instruction 
considerations 
A 3-1 ICALU is  an ALU with three inputs and one 
output, which  can execute in a single  machine cycle two 
fixed-point instructions, with the operation of the second 
instruction dependent upon the computation of the first 
instruction. A high-speed implementation, as provided in 
[13] and  shown in Figure 1, was developed for the 
ESA/370"" architecture [25],  which was chosen to 
represent a worst-case scenario for investigating the 
feasibility of the device in a general-purpose architecture, 

*S. Vassiliadis, "Compound Instruction Set Machines," private communication, 
1989. 

c 

f 
L2 I 

because such an architecture possesses an instruction set 
with rich, and potentially complex, ALU operations. 
Clearly the feasibility of such a device, as suggested in 
[13,  161, also implies that the incorporation of an interlock 
collapsing  device  implementing  only a subset of the 
instruction set, e.g., arithmetic operations, is also feasible. 
It should also be noted that the device can be incorporated 
to perform other interlocked operations, such as address 
generation interlocks and branch determination interlocks. 
Furthermore, the possibility of including such a device in a 
RISC machine  is also implied. The speed of the device is 
attributed to the parallel computation of the result, as can 
be seen from Figure 1, in which L2 calculates controls in 
parallel  with the execution of the CALU, with the 
operation of the device specified by the following 
equations [13]: 
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Table 1 ESN370 RR-format loads, logicals, arithmetics, 
and compares-function  and operand representation, and 
description. 

Instruction Operation h 

AR  R1,R2 (R1)-(Rl) + (R2) + h 0 
SR  R1,R2 ( R l ) t ( R l )  + (E) + h 1 
LPR  R1,R2; R2<0; ( R l ) t O  + (m) + h 1 

R2r0 ;   (R1) tO  + (R2) + h 0 
LNR R1,R2 R220; (R1)-0 + (m) + h 1 

R2<0; (Rl)+O + (R2) + h 0 
LR  R1,R2 (Rl)+O + (R2) + h 0 
LTR  R1,R2 (R1)tO + (R2) + h 0 
LCR  R1,R2 (R1)-0 + (m) + h 1 
ALR R1,R2 (Rl)+(Rl)  + (R2) + h 0 
SLR R1,R2 ( R l ) t ( R l )  + (E) + h 1 

CR  R1,R2 X t ( R 1 )  + (ET) + h 1 
CLR R1,R2 X-(Rl)+ (E) + h 1 
NR  R1,R2 ( R l ) t ( R l ) A ( R 2 )  0 
OR R1,R2 ( R l ) t ( R l ) V ( R 2 )  0 
XR R1,R2 (Rl)+(Rl)V(R2) 0 

Table 2 Basic ALU operations to execute single ALU 
instruction. 

Instruction iype Representation Operation h 
~~~~~~ ~ 

Addition Add  R1,R2 (Rl )  + (R2) + h 0 
Subtraction Sub R1,R2 (Rl)  + (E) + h 1 

Logical LOP R1,R2 (Rl)  LOP (R2) 0 

H, = ( f l p t  + Jq v A t + l  9 

G, = ( f 1 4 s  + L,)AL+l 7 

T, = apt + Lt + A , + l ,  

where fl,, 4, 0 4 ,  floALAsL9 flxos,, =ADD, 
” 

and EXOR are  control signals, 4t, A 4 ,  = H,-l V Ti, CY, and 7‘: are  parameters  for  recursive  CLA  equations  as defined 
in [19], and cy,, pi, and 7, are  inputs  to  the 3-1 ICALU. 

The  operation for the high-speed 3-1 ICALU  was 
determined  by considering all of the  operations  that would 
be required by  sequences of two  ALU  operations 
interlocked with  one  another [14]. To  determine  the 
operations  required of a 3-1 ICALU for  this  instruction 
set,  one  need  only  consider  the  RR-format  ALU 
instructions,  since all of the  ALU  operations  have a 
corresponding RR-format  instruction. Other  ALU 
instructions differ from the RR-format instructions in the 
source of the  operands  on  which  the  ALU is to  execute 
rather  than in the  operation  to  be  performed.  The RR- 

14 format  ALU  instructions  are  summarized in Table 1. In 

J. E. PHILLIPS  AND S. VASSILIADIS 

this  table, the  instruction  mnemonic is  given,  along with 
register  designations for  the  operands  (denoted  by  R1  and 
R2) in the first column. In  the  second column, the 
operation is provided with (R1) representing  the  contents 
of register R1, (E) representing  the  one’s  complement of 
the  contents of R1, h representing a “hot  one” supplied to 
the  adder, + indicating binary addition, A representing 
bitwise AND, V representing bitwise OR, and V 
representing bitwise EXCLUSIVE-OR.  The  contents of 
the registers, for example (Rl),  are 32-bit signed or 
unsigned numbers,  with  the  bits  numbered in ascending 
order from the  most significant bit (MSB) to  the  least 
significant bit  (LSB).  Since  status is discussed  elsewhere 
[13, 15, 261 and  not  considered in this paper,  no distinction 
is made between signed and unsigned numbers  other  than 
for the  instructions  LOAD  POSITIVE  REGISTER  (LPR) 
and  LOAD  NEGATIVE  REGISTER  (LNR),  for  which  the 
operation  to  be performed depends upon the sign of the 
operand.  For  each of these  instructions,  one of two 
operations  must  be performed,  depending on  the sign of 
the  operand.  The  two possible operations  are specified by 
the  two  rows  associated  with  each of these  instructions in 
Table 1 under  the Operation column.  The condition  leading 
to  the  operation is also shown in that  column. Finally, 
compare  operations (CR and  CLR)  are used to  set  ALU 
status (considered in [13]) rather  than  to provide ALU 
results.  Therefore, their results  are  not  written  to  any 
facility and  thus  are  denoted  by showing the destination of 
the  operation  as X. 

From  Table 1 it can  be  observed  that if the capability is 
provided to  zero  the  ALU input corresponding  to  operand 
R1, then, with respect  to  the result of an operation,  the 
ALU  operations  can  be  reduced  to  three instruction types. 
These  instruction  types  are  summarized in Table 2. The 
addition instruction  type  covers  the  instructions  AR;  LPR, 
when R2 2 0; LNR,  when R2 < 0; LR;  LTR;  and  ALR. 
The  subtraction instruction type  covers  the  instructions 
SR;  LPR,  when R2 < 0; LNR,  when R2 2 0; LCR;  SLR; 
CR;  and  CLR.  The logical instruction  type  covers  NR, 
OR, and XR, with LOP representing  either of these logical 
operations. To determine  the  operations required by  an 
ALU designed to  execute, in a single cycle,  interlocks 
between  ALU  instructions, all combinations of the  three 
instruction types and all potential interlock  situations must 
be  considered. Table 3 compiles the  results  from  such 
considerations  for  the  instruction  types  shown in Table 2. 

In  Table 3, the  operations  to  be performed on  the 
register operands  are  shown in the  second column, in 
which addition or  subtraction  operations  are  represented  as 
ADD and logical operations  are  represented  as  LOP.  The 
third column of the  table  shows  the  functions  to  be 
performed on  the 3-1 ICALU  inputs  to  produce  the 
desired result of column  two. The routing of operands  to 
allow the  proper  operation  to  be  executed is shown in the 
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Table 3 Operand routings to produce desired operations for LOGICAL-ADD operations. 

Row Desired operation ALU operation OPl OP2 a P r  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

(R1  LOP R2) ADD R4 
R3 ADD  (R1  LOP R2) 

(R1  LOP R1) ADD R4 
R3 ADD  (R1  LOP R1) 

(R1  LOP R2) ADD (R1  LOP R2) 
(R1 ADD R2) LOP R4 
R3 LOP (R1 ADD R2) 
(R1  ADD R1) LOP R4 
R3 LOP (R1  ADD R1) 
(R1  ADD R2) LOP  (R1  ADD R2) 
(R1  LOP R2) LOP R4 
R3 LOP  (R1  LOP R2) 
(R1 LOP R1) LOP R4 
R3 LOP  (R1  LOP R1) 
(R1  LOP R2) LOP  (R1  LOP R2) 
(R1  ADD R2) ADD R4 

R3 ADD  (R1  ADD R2) 
(R1  ADD R1) ADD R4 

R3 ADD  (R1 ADD R1) 
(R1  ADD R2) ADD (R1 ADD R2) 

( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
- ( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
- ( y  OP1 a) OP2 p 
( y  OP1 a) OP2 ( y  OPla) 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 ( y  OP1 a) 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 p 
( y  OP1 a) OP2 ( y  OP1 a) 
p OP2 ( y  OP1 a) 
-p  OP2 ( y  OP1 a) 
p OP2 ( y  OP1 a) 
p OP2 ( y  OP1 a) 
-p  OP2 ( y  OP1 a) 
p OP2 ( y  OP1 a) 
( y  OP1 a) OP2 ( y  OP1 a) 

R2  R4 
R2 R3 
R2  R3 
R2(=R1) R4 
R2(=R1) R3 
R2(=R1)  R3 
See note 
R2 R4 
R2  R3 
R2(=R1) R4 
R2(=R1)  R3 
See note 
R2  R4 
R2  R3 
R2(=R1) R4 
R2(=R1)  R3 
See note 
R2  R4 
R2 R4 
R2 R3 
R2(=R1) R4 
R2(=R1) R4 
R2(=R1) R3 
See note 

R1 
R1 
R1 
R1 
R1 
R1 

R1 
R1 
R1 
R1 

R1 
R1 
R1 
R1 

R1 
R1 
R1 
R1 
R1 
R1 

Note:  These operations, which occur when the register specifications for R1. R3. and R4 are the same, were not implemented in the high-speed 3-1 ICALU; therefore, their 
operand routings were not included. 

last  three columns. The following example, in which  the 
data  dependencies for  a  subtraction-followed-by-addition 
instruction  type (i.e., SR R1,R2; AR R3,R4) are 
considered,  provides insight into  the  considerations  that 
must  be made to  produce  Table 3. The combination of data 
dependencies  that  can  arise  from this sequence  are R1 = 
R3; R1 = R4; and R1 = R3 = R4. Furthermore,  there  may 
be  no  data  dependencies, a  condition denoted  here  as 
“independent.”  Other  data  dependencies  such  as R2 = R3 
and R2 = R4 are  considered in this  paper  to  be 
“independent,”  because  they  do  not influence the  ALU 
operation  and  are trivial to  resolve in a hardware 
implementation. For  each of these  instruction  and  data 
dependency  sequences,  the SR instruction produces 

(Rl)  + (Rl) - (R2). 

The  results  for  the addition operation,  however, differ 
for the different interlock  situations: 

R1 = R3: (Rl)  + (Rl)  - (R2) + (R4), 

R1 = R4: (R3) +- (R3) + (Rl)  - (R2), 

R1 = R3 = R4: (Rl)  + (Rl)  - (R2) + (Rl)  - (R2), 

and in the  case of “independent” instructions, the  results 
are 

Independent: (R3) + (R3) + (R4). 

These  instruction  sequences,  contained in rows 18, 20, and 
24 of Table 3, require  the  operations 

Independent: (R3) + (R3) + (R4); h2 = 0, 

R1 = R3; (Rl)  + (Rl)  + (E) + (R4); hl = 1, h2 = 0, 

R1 = R4: (R3) +- (R3) + (Rl) + (E); h l  = 1,  h2 = 0, 

R1 = R3 = R4: (Rl) + (Rl)  + (E) + (Rl) + (E); 
hl = h2 = 1, 

represented  as two’s-complement operations  for  which h 1 
and h 2  designate  the provision of “hot  ones”  to  the first 
and  second serial operations, respectively. 

a 4-1 ICALU is  required to  execute all execution 
interlocks  that  can  occur  between  two  ALU-type 
instructions. In addition,  interlocked instruction  sequences, 
in which  the  second  instruction is LPR or LNR, can 

From  Table 3, it can  be  observed that, strictly speaking, 

15 
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Table 4 Concatenated 2-1 ALU  operations  supported in 3-1 ICALU. 

Row OPl OP2 Dependency AL  Ul operation AL U2 operation  Result hl h2 

1 Add Add R 3 = R l ; R 4 = R 1  6 = a + g + h l  A = 6 + b + h 2  A = a + g + b + h l + h 2  0 0 
2 Add Sub R3 = R1 F = a + g + h l  A = 6 + 6 + h 2  A = a + g + 6 + h l + h 2  0 1 
3 Add Sub R4 = R1 S = a + g + h l  A = Z + b + h 2  A = a + g + h l + b + h 2  0 1 
4 Add Log R 3 = R l ; R 4 = R l  d = a + g + h l  A = 6 L O P 2 b  A = ( a + g + h l ) L O P 2 b  0 0 
5 Sub Add R 3 = R l ; R 4 = R 1  S = a + g + h l  A = 6 + b + h 2  A = a + g + b + h l + h 2  1 0 
6 Sub Sub R3 = R1 F = a + g + h l  A = 6 + 6 + h 2  A = a + j + 6 + h l + h 2  1 1 
7 Sub Sub R4 = R1 b = a + g + h l  A = 8 + 6 + h 2  A = ( a + g + h 1 ) + 6 + h 2  1 1 
8 Sub Log R 3 = R l ; R 4 = R l  d = a + g + h l  A = 6 L O P 2 b  A = ( a + g + h l ) L O P 2 b  1 0 
9 Log Add R3 = R1; R4 = R1 6 = a LOPlg  A = 6 + b + h2 A = (a L O P l g )  + b + h2 0 0 

10 Log Sub R3 = R1 6 = a L O P l g  A = 6 + 6 + h 2  A = ( a L O P l g ) + 6 + h 2  0 1 
11 Log Sub R4 = R1 6 = a L O P l g  A = Z + b + h 2  A = ( a L O P l g ) + b + h 2  0 1 
11 Log Log 6 = a LOPl g A = 6 LOP2 b A = (a  LOPl g) LOP2 b 0 0  

require two concatenated ALUs for  their execution, since 
the first instruction’s result is required before the second 
ALU’s operation to execute the LPR or LNR can be 
determined. Since execution interlocks between instruction 
sequences that require either a 4-1 ICALU or two 
concatenated ALUs for their execution were infrequent in 
the instruction traces we considered, it was decided to 
require that the instruction issue logic serialize the issue of 
these sequences [13]. This results in the serial execution of 
these sequences, which can be performed in two cycles 
using a conventional 2-1 ALU. By  enforcing this 
requirement, the potential delay problems and complexity 
associated with a 4-1 ICALU or two concatenated ALUs 
can be avoided. With these assumptions, the design of a 
3-1 ICALU is  sufficient for executing most interlocked 
ALU instructions in a single cycle. All operations of Table 
3 except for those contained in rows 7, 12,  17, and 24 can 
be supported by the 3-1 ICALU. 

The operations of the 3-1 ICALU shown in Table 3 
must provide results identical to those for two 
concatenated 2-1 ALUs, denoted as ALUl and ALU2, 
executing the instruction pair in a serial fashion. Table 4 
summarizes the serial execution for all combinations of the 
three instruction types and data dependencies that are 
supported by the 3-1 ICALU. In this table, the first  and 
second operations (OP1 and OP2) are given in the second 
and  third columns of the table. In addition, the results (6) 
from the operation of the first ALU (ALUl), results (A) 
from the execution of the second ALU  (ALU2), and the 
overall result specified as the operation performed on the 
three operands (a ,  g, and b)  supplied to the two 2-1 
ALUs are shown in the fifth, sixth, and seventh columns, 
respectively. Finally, the hot ones, h l  and h2, supplied to 
ALUl and ALU2, respectively, are provided in the last 
two columns. Table 5 shows the setup of operand values 

16 (denoted as A, r, and B) to the three inputs (denoted as a, 

y, and p) of the 3-1 ICALU, as dictated by the operations 
of Table 4, to execute pairs of addhub-type operations for 
various supported data dependencies. In this table, hi 
represents the carry from a 3-2 CSA used in designing the 
3-1 ICALU, and 4t represents the carries produced in the 
2-1 adder used in the design of the 3-1 ICALU, with all 
the carries being produced from  bit position i into i - 1. 
The values, shown in the table, are for i = 32, which 
represents the hot ones that must be supplied to the adders 
as boundary conditions to produce the appropriate result. 
The correctness of the 3-1 ICALU is proven by  showing 
the equivalence between its results and the results of the 
serial execution using a 2-1 ALU, as provided in Table 4. 

3. Proof of equivalence of high-speed 3-1 
ICALU with serial execution by  a 2-1 ALU 
In this section, the data flow  of the high-performance 3-1 
ICALU, depicted in Figure 1 and described by the 
Boolean equations in Section 2, is shown to produce 
results equivalent to the serial execution of a pair of 
interlocked ALU instructions by a 2-1 ALU. Equivalence 
must be shown for each pair of instruction types and 
possible data dependencies as provided by Table 4. 

The setup of the high-speed 3-1 ICALU to implement 
the required operations is shown in Table 6. In Table 6, 
the second column  specifies the operation dictated by the 
first instruction, with the third  column  specifying the 
operation dictated by the second instruction. Because a 
3-1 adder is  known to produce the correct results [13] for 
addition as well as subtraction operations with the proper 
inversion of operands and supply of  hot ones, only  add 
operations are shown in Table 6, except for those 
conditions in which a subtraction requires unique functions 
to be supported by  logic other than that executing a 3-1 
addition. For example, for the operations AND followed 
by add, an AND of A with r must be performed by the 
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Table 5 ALU setup to execute collapsing operations where OP1 and OP2 are addhub-type operations. 

Row OPI OP2 DeP 0, Pi 7; 4 2  432 a;* 

1 Add Add R3 = R1; R4 = R1 A, B, rL 0 0 6, 
2 Add Sub R3 = R1 4 B r, 1 0 4 
3 Add Sub R4 = R1 4 B, ri 1 1 ai 
4 Sub Add R3 = R1; R4 = R1 4 B, 'i 1 0 aL 
5 Sub Sub R3 = R1 Ai B, rt 1 1 a1 

- - 
- 

- - 
- 

6 Sub Sub R4 = R1 4 B, 'i 1 0 ai 

Table 6 ALU setup to execute collapsing operation categories. I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Add 
AND 
OR 
XOR 
AND 
OR 
XOR 
Add 
Add 
Add 
AND 
AND 
AND 
OR 
OR 
OR 
XOR 
XOR 
XOR 

Add 
Add 
Add 
Add 
Sub 
Sub 
Sub 
AND 
OR 
XOR 
AND 
OR 
XOR 
AND 
OR 
XOR 
AND 
OR 
XOR 

A ~ B ~ I - ,  o o o o o 1 1 1  o 1 0 

A ~ B ~ ~ ~  o o o o o 1 o o 1 o 1 
A ~ B , ~ ~  o o o o o 1 o o 1 o o 

A i B I T l  0 0 0 0 0 1 0 0 1 0  0 

q B , q O l  0 0 0 1 0 0 1 0  1 

A , B , T O l  0 0 0 1 0 0 1 0  0 
& B t r L O  1 0 0 0 1 0 0 1 0  0 
A , B , $  o o 1 o o o o 1 o o o 
A , B , ~ ,  o o o 1 o o o 1 o o o 
A ~ B , ~ ~  o o o o 1 o 0 1 o o o 
A , B , C O O  1 0  0 0 0 0 0 0  0 
A , B , T  0 0 0 1 0 0 0 0 0 0 0 
A t B , T t  0 0 0 0 1 0 0 0 0 0 0 
A ; B , $  o o 1 o o o o o o o 1 
A , B , S O  o o 1 o o o o o o 1 
A ~ B , ~ ~  o o o o 1 o o o o o 1 
A , B , S  o o 1 o o o o o o o o 
A ~ B , ~ ~  o o o 1 o o o o o o o 
A # B , $  o o o o 1 o o o o o o 

0 0 
0 1 
0 0 
1 1 
0 0 
1 0 
1  1 
1 1 
1 1 
1 1 
0 1 
0 1 
0 1 
0 0 
0 0 
0 0 
1  1 
1 1 
1 1 

logic block, L1, while  for the operations AND followed  by 
sub, a NAND of A with r must be performed by L1. 
These unique situations must  be shown to be realizable. In 
the following, each row of Table 6 is shown to be executed 
by the high-speed 3-1 ICALU implementation. First, row 1 
is shown to produce a 3-1 addition. Next, rows 2-4 are 
shown to produce the expected logical operation followed 
by an addition. Subsequently, rows 5-7 (logical  followed 
by subtraction), rows 8-10 (add followed  by  logical),  and 
rows 11-19 (logical  followed  by  logical) are considered in 
three separate groups. 

Add followed by add 
In assuming that the ICALU is presented with the correct 
inputs and the hot ones as dictated by Table 5 for the add 
category, and  realizing that the operation of the 3-1 

ICALU for  the "independent" data dependency case can 
be achieved by  a 3-1 addition  with one of the operands 
zeroed, to prove that add  followed  by  add  is  performed  by 
the ICALU, we  need to prove that the device essentially 
performs a 3-1 binary addition on its inputs. With 
substitution, and  assuming that the proper inputs are 
denoted by a,, /3,, and y, for  bit  position i, i.e., the ALU 
setup of Table 6, row 1, the expressions for the fast 
implementation of the 3-1 ICALU give 

EGENi = 1 + 0 + BIO t BiO = 1, 

E,,,~ = BtO = 0, 

- 

13 

EsoM, = BID = 0, 
- 

= A, v B, v rt , 17 
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hi = lAiBi + 1AJi + lBJr + OBi-, 

= AiBi + Airi + Biri . 
The previous equations for 5 and hi determine the output 
of a 3-2 binary addition. It must be proven that the 
remaining equations determining the behavior of the device 
compute a 2-1 binary addition. Given that 

L~ = A,O + rio + Krio + AEO = 0, 

the remaining equations perform 

Hi = (14 + 0) V Ai+l  = a, V A i + l ,  

Gi = (lu; + O)hi+l = U , A ~ + ~ ,  

= l q  + 0 + Ai+, = mi + A i + l ,  

GI:, = G;:l + 0 = G;:l , 

Bi = H;l + H,O = H i ,  

pi = M,1 + M;O = M i ,  

A; = IL;4,+1 + q + + l  + 0 = Mj4i+l + q4;+1 . 

- 

- 

- 

Furthermore, given that Hi,  Gi, Ti,  GY = G!*, and hl are 
the equations proven to determine a binary addition [19], 
the proposed device indeed computes a 3-1 binary addition 
as required by the add-followed-by-add category of 
interlocked ALU instructions. 

Logical followed by add 
For these operations, a bitwise logical AND,  OR, or XOR 
must be performed between A and r. This result should 
then be added to a third operand B. The logical operation 
is  performed by the L1 block of Figure 1 as specified by 
the expression for L in the defining equations. We  first 
demonstrate that, for the setup in rows 2-4 of Table 6, 
L produces bitwise logical AND,  OR, and XOR, 
respectively. For the setup of the ICALU device as shown 
in row 2, 

L = AiO + 6 0  + GO + AX1 = Airt, 

which  is the bitwise logical AND, as desired. For the setup 
of row 3 of Table 6, 

L = + ril + Krio + A ~ ~ O  = 4 + rc, 
which  is the bitwise logical OR, as desired. Finally, for the 
setup of row 4 of Table 6, 

L = A ~ O  + rio + Kril + AKI = Kri + AZ = v ri ,  
which is the bitwise EXCLUSIVE-OR, as desired. In the 
following, LOP is  used to represent one of bitwise AND, 
OR, or EXCLUSIVE-OR. 

Other than the setup to produce the appropriate logical 
operation between A and r, the setup of Table 6 is 

18 identical for rows 2-4. Using this setup in the equations 

defining the fast ICALU implementation produces 

ZcENi = 1 + 0 + BiO + BiO = 1, 

E&mI = BiO = 0, 

E,,,i = BiO = 0, 

ui = don't care, 

Az = OAIBj + OAiri + OBiri + lBi-l = Bi-l, 

- 

L, = A; L o p i  ri , 
H .  = (ogi + A, L o p i  r;) v B, = (A, L o p i  $1 v B, , 

G, = [ O q  + (Ai LOPl Ti)]Bi = (Ai LOPl ri)Bj, 

= Oai + (A; LOPl ri) + Bi = (A, LOPl ri) + Bi, 

GI:, = G;:l + 0 = G? r+l ' 

e i = q l + @ o = q . ,  
pi = Mil + M;O = M ; ,  

- 

which  is the expression for the sum  from a 2-1 CLA using 
the recursive equations described in [19], with inputs being 
the logical operation A LOPl r and B. Therefore, the 
ICALU produces the result (A LOPl r) + B, where + 
represents addition. 

Logical followed by  sub 
These operations are identical to those for "logical 
followed by add," as just discussed, with the exception 
that the bitwise logical operations NAND,  NOR, and 
XNOR must be produced by the logic block L1 to support 
the subtraction of the logical operation from the third 
operand, B. Therefore, all that is required is to 
demonstrate that L1 can produce these operations. 
For the setup of row 5 of Table 6, 

L = K l + ~ l + O A i ~ + O K r ' , = ~ + c = $ ,  

which  is the bitwise logical NAND, as desired. For the 
setup of row 6 of Table 6, 

L = A ~ O  + c o  + + qrio = A,ri = A~ + r,, " 

which is the bitwise logical NOR, as desired. Finally, for 
the setup of row 7 of Table 6, 

L = T o  + rio + Airil + = A~J-; + q i  = v ri, 
" 

which is the bitwise EXCLUSIVE-NOR, as desired. 
Therefore, the 2-1 CLALU is set up to subtract A LOPl r 
from the middle operand as desired. 

Add followed by logical 
For these operations, which encompass rows 8-10 of 
Table 6, the setup of the 3-1 ICALU is identical except for 
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the  controls E,,,, E,,, and E,,,, which  specify one of the 
three possible  bitwise logical operations  to  be performed 
between  the  sum of A and r and  the third operand B. 
Therefore,  the  common  expressions for these  operations 
are 

L = A,O + rto + &ril + ~ ~ 6 1  = &rl + = A, v r,, 
a, = don't care, 

Ai = OAiBt + lALTi + OB,Ti + OBt-, = Air,, 

H = ( O q  + '4, v ri, v (Ai+,$+,, = (Al v $1 v (Ai+l~t t l ) ,  

G, = (0UL + Ai v rJAtt,rttJ = (Ai v ~J(Ai+ ,~ , , ,L  

T, = o q  + (Ai r,, + (A,,1rjt,) = (Al v r,, + (Ai,,$,,,. 

First  consider  the  operation  when  the logical operation is a 
bitwise logical AND. For  this  case,  the  setup of row 8 of 
Table 6 yields 

EGEN, = 0 + 0 + Btl + B,O = B,, 

EsxMi = B,O = 0, 

zSoM, = B,O = 0, 

p, = A4,Bt + M O  = MBl,  

8( = YBl + RO = HBt , 

- 

Ai = y B L 4 i + ,  + Y B , G  + 0 = Bl(q41t ,  + H G ) .  
However,  the  last  expression in parentheses is the 
recursive  expression for the 2-1 addition of two values. 
The  values in this case are A, V r, andAI+,TLt1. But A, V rl 
represents  the  sum from  a 3-2 CSA with  a  third  input of 
zero,  and Al,,r,+, represents  the  carry, AL+,,  from such a 
3-2 CSA. From  the  results  above, Ai t l  V = K,+, for 
this  case, so that 

AI = Bi[(A, v r,) v 5,,1 = Bl(A + U l ,  

which is the bitwise AND between  the third  input B and 
the  sum  between  the first two  inputs A + r, as  desired. 
Next  consider  the bitwise logical OR operation.  From  row 
9 of Table 6, 

- 
rCEN, = o + 1 + B,O + B,O = I ,  
I 

-SXMI - = BiO = 0, 

E,,,, = BI1 = B, , 

GI:, = G::, + BI , 

p l = M 1 + $ O = M ,  

8, = Htl  +e0 = H ,  

4 = M4,+1 + H4,+1 + B,. 
However,  by  the  same  arguments  as for the logical 
operation being  a  bitwise AND, M,4ttl + HL$ttl 

represents  the  sum of A and r. Therefore, 
~ 

= v ri v K,+J + B, , 
where + represents bitwise logical OR, so that A is the 
bitwise logical OR between B and  the  sum A + r, where 
+ represents addition, as desired.  Finally, consider  the 
bitwise logical EXCLUSIVE-OR operation. From row 10 
of Table 6, 

EGENi = 0 + 0 + BtO + B,1 = B,, 

EsxMi = B,1 = B,, 

8,,,, = BLO = 0, 

GI:, = G;:l + 0 = G::,, 

" 

p, = Mij  + $Bi, 

A, = (MBi + yBiMt+,  + (HB + HB#Jlt1 + 0, 

= &y4L+1 + q7J + B,(q4i+l + KL 
= Bi@yL+, + H t G )  + B L ( r n 4 , + ,  

+ q 4 # t l  + MH4,+, + H4i+,). 

= Bpfj,+, + H L G )  + B$yH + y4,,, + K)? 
= Bp.(4Lt, + H t G )  + BJ(M + 41+J(q,  + 4,+,)1> 

= Bpq4Lt, + H L G )  + BI[y4t,, + H X I >  

8, = H,B + e B , ,  
" - -  

- 

~- 

- " 

- - " 

- 

= B,(A + r), + B,(A + r)t , 
= B, v (A + 

- 

where + has  the mixed usage of bitwise logical OR or 
addition,  depending  on the  context, and where  the final 
expression is the EXCLUSIVE-OR between  the third 
input operand  and  the  sum  between  the first two input 
operands  as  desired 

Logical followed by logical 
For the  add-followed-by-logical operations, it was shown 
that, for the specifications of E,,,, E,,, and EXOR of rows 
8-10 of Table 6, the  desired logical operation  between  the 
sum of a 2-1 addition between  the  two input operands A 
and r and a  third  input operand B is executed.  The logical- 
followed-by-logical operations  are  produced if the 2-1 
addition can  be  set  up  to add the  output of the logical 
block, L1, to  zero.  It  has  already  been  shown, for the 
logical-followed-by-add case,  that for the  operand  setup 
given in rows 11-19 of Table 6 and with the  setups for 
R,,,,,,  R,,,,, and RXML specified in those  rows,  the 
desired logical operation is produced  by L1 for OP1. It 
remains to  be  shown  that  the  expressions defining the  fast 
3-1 ICALU implementation produce a 2-1 addition  among 
the  output, L1, and  zero.  Since R, = 0 in these  rows,  the 19 
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value for a is a don’t  care,  because it is ANDed with SZ,. 5. W.  A.  Wulf, “The WM Computer Architecture,” 
Furthermore, A, = 0, since f l l ,  a,, and C I 3  are  zero. Computer Architecture News-16, 70-84 (March 1988). 
Therefore, 

6. W.  A.  Wulf and C. Y .  Hitchcock 111, “Apparatus for 
Reading To and  Writing From Memorv Streams of Data 

q. = [oq + ( A ~  L o p i  ri)l v o = L o p i  r>, 
G, = [oui + (A~ LOPI r~lo = 0, 

T, = oq + (A~ L o p i  r,) + o = (A, L o p i  ri) = H, , 

While Concurrently Exicuting  a Plurality of Data 
Processing Operations,” U.S. Patent 4,819,155, April 
1989. 

Instruction-Level and  Machine Parallelism and Its Effect 
on Performance,” ZEEE Trans. Computers 38,  1645-1658 
(December 1989). 

7.  N.  P. Jouppi, “The Nonuniform Distribution of 

Ai = B, LOP2 + HG). 8. N. P. JOUDDi and  D. W. Wall. “Available Instruction- 

However,  since &, = 0 and A,, = 0, and  since Gi = 0, 
C#Ji = 0 for all 0 I i I 31; therefore, 

1 1  

Level Parallelism for Superscalar and Superpipelined 
Machines,” Proceedings of ASPLOS ZZZ, ACM,  1989, pp. 
272-282. 

A~ = B,  LOP^ (40 + ~ ~ 1 )  = B,  LOP^ L o p i  ri), 9. H. S. Warren, Jr., “Instruction Scheduling for the IBM 
RISC Systed6000 Processor,” ZBM J. Res.  Develop. 34, 

which is the  desired result. Therefore,  the 3-1 ICALU 
85-92 (January 1990). 

10.  R.  R. Oehler and R. D. Groves, “IBM RISC Systed6000 
produces a  result  equivalent to  the  serial  execution of two Processor Architecture,” ZBM J. Res.  Develop. 34,  23-36 
interlocked ALU  instructions for all cases of instruction 
pairings and  data  dependencies of Table 4. 

4. Concluding remarks 
A 32-bit 3-1 ICALU,  proposed  by [13], to allow the 
execution of two interlocked ALU-type  instructions in one 
cycle using  an  instruction-level  parallel  machine 
implementation has been proven  to  produce  results 
equivalent to a  serial execution of the  instructions using  a 
2-1 ALU. The proof was shown by deriving tables  which 
represent all possible requirements for the  serial  execution 
of the  instructions followed by  the generalization of the 
table  to  represent  sets of instructions  rather  than  the 
individual instructions themselves. Consequently,  we  have 
proven  the  equivalence of the 3-1 ICALU  operations 
proposed in [13] with  these generalized requirements of the 
serial  execution of the  instructions,  thereby  demonstrating 
the  correctness of the  proposed design of a  high-speed 
ICALU  presented in [13]. The  fast implementation of the 
3-1 ICALU  can  be implemented with  only a 3-2 CSA logic 
stage of additional  delay when  compared  with a 2-1 ALU, 
suggesting that  incorporation of this  implementation of the 
device  may  produce no impact on the  cycle time of the 
machine. 

ESN370 is a trademark of International Business Machines 
Corporation. 
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