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The  architecture,  design,  and  performance 
of  multiprocessors  in  the  Application 
System/400@' (AS/400@)  family  are  discussed. 
The  paper  describes  how  this  multitasking 
system,  originally  designed  as  a  uniprocessor 
system,  was  modified  to  form a  multiprocessor 
system.  The  unique  approach,  using  relatively 
atomic  instructions,  required  a  minimum of 
change  while  providing  significant 
performance  gains. 

Introduction 
The Application System/400@  (AS/400@) system is a 
general-purpose, mid-range  family of computers which was 
first introduced in  1988. It provides batch and interactive 
capability for commercial and  office applications. Among 
the software and hardware features of the AS/400 system 
is the layered machine architecture [l] shown in Figure 1. 
The user and parts of the operating system are provided a 

high-level  machine interface (MI). Below this, vertical 
licensed internal code (VLIC) implements the remainder 
of the operating system functions. VLIC uses internal 
microprogrammed interface (IMPI) instructions. Horizontal 
licensed internal code (HLIC) performs the operations 
specified by the IMPI instructions. The HLIC is likely to 
change significantly over time as newer processors are 
designed, even if the IMPI instructions do not. This 
constant change of the HLIC is consistent with many other 
microcoded systems, such as System/370TM; however, the 
IMPI interface can also change without necessarily 
requiring significant changes in application code or 
operating system code (above the MI). The layered 
architecture of the AS/400 system allows the underlying 
hardware and software interface and functions to change 
in order to take advantage of technology advances without 
affecting the end user. 

Many of the high-level functions performed by software 
in other systems are provided below the IMPI in the 
AS/400 system [2]. Complex functions, such as dispatching 

Wopyright 1992 by International Business Machines Corporation. Copying in  printed form for private use is permitted without payment of royalty provided that (1) each 
reproduction is done without alteration and (2) the Journal reference and  IBM copyright notice are included on the first page. The title and abstract, but no other portions, of 
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other 

portion of this paper must be obtained from the Editor. 

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992 J. E. BAHR ET AL. 

1001 



tasks,  queuing,  and  input/output (IIO) operations,  are 
provided at  the  IMPI  by  means of hardware  and  HLIC. 
These  are  some of the  functions  that  an operating system 
must often alter significantly when  multiprocessors  are 
introduced  into  an  architecture. Often the  uniprocessor 
assumption  that  only  one  task  at a time runs  and  alters 
data  structures  that  are  shared  by  other  tasks is no longer 
true  for  multiprocessors. 

The  unique  architecture of the AS/400 system made 
it an ideal candidate  for design as a shared-memory 
multiprocessor.  The layered architecture  made it easier  to 
introduce multiprocessing  without  requiring changes  to 
existing applications,  because multiprocessor changes 
could be  made below the MI. In  addition,  the AS1400 
system  was  already a  multitasking system.  Task-to-task 
communications  are  controlled by built-in instructions 
supported by HLIC.  Other  functions  are  also written in 
HLIC-for example,  the  task  dispatcher.  This  type of 
high-level support  at  the  IMPI level makes it possible to 
incorporate  multiprocessor  architecture while restricting 
most of the  changes  to  the  hardware  and  HLIC levels. 

One of the major changes  made  at  the  IMPI level in 
order  to implement  multiprocessing was  the redefinition 
of many instructions  as relatively  atomic instructions. 
Only one  instruction  that  operated  on  shared  IMPI  data 
structures  was allowed to  run  at a  time. The  instruction 
execution  on  one  processor  was  suspended  by  the 
processor  hardware if another  instruction of the  same  type 
was  already running on  another  processor. A  unique 
hardware  lock  was used by  the  HLIC  for  each  type of 
relatively atomic  instruction.  Other  hardware  changes were 
also made to  support  multiprocessors: A  common shared 
bus allowed  multiple processors  to  access main storage.  A 
cache  was  attached  to  each  processor  to  reduce  the main- 

1002 storage-access  bandwidth  needs of the  processors.  (Earlier 

J. E. BAHR ET AL. 

versions of AS/400 did not  have  caches.)  Another  addition 
was a mechanism to  send messages between  processors. 

performance  was  done while the  hardware  was being 
designed. As a  result of this  modeling, improvements  were 
made early in the design of the  hardware  and in the  HLIC 
task  dispatching. 

Synchronization and serialization 

Hardware  and  software modeling to  evaluate 

Conventional  synchronization mechanisms 
In  the Systeml370 architecture,  several  instructions,  such 
as  TEST  AND  SET,  COMPARE  AND  SWAP,  and 
COMPARE  DOUBLE  AND  SWAP,  are defined to provide 
atomic (i.e.,  indivisible from  start  to finish) operations  for 
multiprocessor operation [3]. Other  architectures  provide 
similar instructions.  For  example,  the Digital Equipment 
Corporation VAXT” architecture  provides  atomic  test-and- 
set-main-storage functions via the  BBSSI  (Branch  on Bit 
Set  and  Set  Interlocked)  and  BBCCI  (Branch  on Bit Clear 
and  Clear  Interlocked)  instructions [4]. In  the  COMPARE 
AND  SWAP  instruction of the System/370 architecture, 
fetching an  operand (for the  purpose of the  compare)  and 
storing  (for the  purpose of the  swap)  into  the  location of 
this operand  appear  to  be  an interlocked operation  as 
observed by other  processors. (In this  paper,  we  use 
“interlocked”  and  “atomic”  interchangeably,  to  refer  to 
single,  noninterruptible operations.)  It is worth noting that 
the interlocked  fetch-store operation only “appears” 
to  other  processors  to  be a single operation (i.e., other 
processors, no matter what sequence of fetch  and  store 
operations  the  other  processors may perform,  cannot  get 
results  inconsistent with those  that would have  resulted 
from a single interlocked fetch-store operation). Many 
hardware implementations of this architecture  are  possible. 
Some of these  are 

Preventing any  accesses  to  the  interlocked location 
during the  time  between  the interlocked fetch  and  store 
operations,  and delaying accesses  to  this  location  by  any 
other  processor. 
Allowing only fetches  that  are  not  part of an interlocked 
fetch-store operation (and no  stores)  to  occur  between 
the interlocked fetch  and  store,  since  the  outcome is the 
same  as if the noninterlocked fetch  had  occurred  before 
the interlocked fetch. 
Allowing any  accesses  to  occur  between  the  interlocked 
fetch  and  store, but repeating  the interlocked fetch 
if a store  to  the  same  location  occurs  between  the 
interlocked fetch  and  store, since the  outcome is the 
same  as if the  store  had  not  occurred  between  the 
interlocked fetch  and  store. 

The atomicity mechanism  for  the  interlocked fetch-store 
operation  is, in general, different from  the  mechanism  that 
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can  be used  in  a uniprocessor multitasking environment, 
where it  is sufficient to  guarantee  that  interrupts  and 
task  switches  do  not  occur in the middle of this type of 
instruction.  The atomicity  mechanism for a multiprocessor 
requires  more  than  the  uniprocessor instruction-level 
atomicity,  since it  involves the  prevention  or repetition 
of specific types of storage  accesses. 

and  set in one  atomic  operation.  Each  such  TEST  AND 
SET  lock  represents a shared  resource  and provides the 
synchronization mechanism so that only one  processor 
operates  on  the  shared  resource  at a time. The BalanceTM 
multiprocessor  system of Sequent  Computer  Systems [5], 
for  example,  provides 64 semaphores  that  can  be  TESTed 
AND  SET  by  any of the 30 processors in the  system.  The 
Sequoia  Systems fault-tolerant computers provide 1024 
TEST  AND  SET  locks in storage [6]. The  processors in 
the  system (up to 64) contend  for  these  locks.  Other 
synchronization primitives [7] exist, but these have  less  in 
common with the AS/400 multiprocessor  architecture  than 
TEST  AND  SET  mechanisms. 

Given an  elementary,  atomic  fetch  and  store  sequence 
operating  on  one  storage  location,  such  as  COMPARE 
AND  SWAP  or  TEST  AND  SET,  software  can build more 
elaborate  structures  for managing the sharing of storage 
data  and  other  resources. 

Other  systems provide hardware  locks  that  can  be  tested 

Relatively  atomic instructions 
The  AS400  multiprocessor  provides a synchronization 
solution by means of relatively  atomic instructions. These 
instructions  are divided into  classes.  Instructions in each 
class  are  atomic relative  only to  instructions within the 
same  class  executing  on  other  processors in the  system. 
(AS/400 instructions, with a few exceptions,  are  treated  as 
atomic  operations  on a uniprocessor; Le., interrupts  and 
task  switches  are  not allowed in the middle of a  partially 
completed  instruction.  Thus, it is not  necessary  to  consider 
relative atomicity on a uniprocessor.) Absolutely  atomic 
instructions are  atomic relative to all instructions executing 
on all processors.  For  example,  COMPARE  AND  SWAP 
in Systerd370  multiprocessors is absolutely atomic, while 
COMPARE  AND  SWAP  WORD in the AS1400 system is 
atomic relative only  to  instructions in the  COMPARE 
AND  SWAP  WORD  class. While one  A3400  processor is 
executing  an  instruction in this  class,  other  processors  are 
permitted by the  hardware  architecture  to  access  the  same 
storage  location simultaneously  with  relatively  atomic 
instructions  not in this class  or with  regular  load or  store 
instructions;  however,  the  operating  system avoids  this 
type of simultaneous  access by using  only  relatively  atomic 
instructions in the  same  class  for potentially  simultaneous 
accesses  to  the  same  data  (except when software  ensures 
via other mechanisms that  there is  no simultaneous, 
conflicting access  to  the  data used by relatively atomic 
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instructions).  Since  these  data  are  internal  to  the  operating 
system, only the  operating  system  accesses  them,  and  it 
follows  this convention. 

In System/370, for  the  most  part,  absolutely  atomic 
instructions  are  used by the  software  to  set  software  locks 
that provide protection  for  storage  accesses  to  shared  data. 
After  setting such a lock and completing one  or  more 
general-purpose instructions  that perform the  accesses, 
software must  then  use  another  instruction  to  release  the 
software  lock. 

In AS/400, many accesses  to  the  operating  system  VLIC 
shared-data  structures  are  combined  into a single complex 
instruction that is not  interruptible,  or is  interruptible  only 
at  certain defined points. For  example, a single instruction 
searches a message queue,  enqueues a new message  in the 
appropriate  position,  and  moves a waiting task  from  the 
wait list of the  queue  to  the task-dispatching queue. 
Another  characteristic of AS/400, mentioned previously, 
is that,  by  convention,  general-purpose  instructions  are 
not used to  access  the  shared-data  structures.  These 
characteristics  were used to  advantage  to  support 
multitasking in AS/400 prior to  the  introduction of 
multiprocessors. Because of these  characteristics, it  is 
possible to define some  instructions  that  access  the  VLIC 
shared-data  structures  as relatively atomic  rather  than 
have the  VLIC  obtain  software  locks  before using these 
instructions. In  some  cases,  VLIC  accesses  shared  data 
without  using  relatively atomic  instructions.  For  example, 
when  task  dispatching  is  disabled on all but  one  processor, 
VLIC  on  the remaining processor  can  use  instructions  that 
are not  relatively atomic. 

Relatively atomic  instructions  are divided into  classes 
based  on  the  type of shared-data  structure, called  IMP1 
objects,  that  the  instructions  access.  Instructions  that  are 
not  in the  same  class  do  not  access  the  same  shared-data 
structures.  Hardware  and  HLIC  incorporate a lock 
mechanism into  these  complex  instructions  that  locks 
out only instructions  from  the  same  class. (This  lock 
mechanism,  called instruction-class  locks, is described in 
more detail in the  section  on  hardware  locks.)  Once a 
processor  has  set  such a lock, all other  processors in the 
system  are  prevented  from  executing  instructions  from 
the  same  class until the first processor’s  instruction is 
complete.  Instructions in this class in other  processors  are 
simply  delayed by  the  hardware until the relatively atomic 
instruction  completes.  Instructions in different classes  are 
allowed to  execute  simultaneously,  since  they  do  not  have 
conflicting accesses  to  the  same  data. Multiple classes of 
relatively atomic  instructions  are defined in order  to  reduce 
the likelihood that more than  one  instruction  from a class 
will attempt  to  execute simultaneously and  thus  degrade 
performance. 

The  instruction  classes follow: 
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Compare  and  swap instructions, such as COMPARE 

Hold record instructions, which provide symbolic 

Z/O, which includes both IMPI I/O instructions and 

AND SWAP  WORD. 

software locks. 

operations performed by the HLIC when  handling I/O 
interrupts. 
System timer instructions, which provide time-of-day, 
time interval, and clock comparator functions. 
SRC instructions, which provide semaphores. 
SRQ instructions, which pass messages between tasks. 
TDQ accesses, which include updates to the task- 
dispatching queue and accesses by the HLIC task 
dispatcher. 
Primary Directory accesses, which include accesses to 
address-translation tables by the translation hardware 
and by IMPI instructions. 

There are several other significant characteristics of 
relatively atomic instructions. First, I/O interrupts that 
occur in the middle of a relatively atomic instruction are 
held  pending  until the instruction execution is completed. 
Second, HLIC implements relatively atomic instructions 
in a manner that prevents other interrupts from  causing a 
partially completed interlocked operation. For example, 
all main-storage pages that must  be used to complete a 
relatively atomic instruction are referenced before  any of 
the store operations of the instruction are performed. 
Another processor cannot invalidate a main-storage page 
that has already been referenced until the completion of 
the relatively atomic instruction. 

Serialization 
Some architectures use “strong ordering” for storage 
accesses. (That is, store operations and fetch operations 
are performed in the order given  by the program. 
This is  not the case with “weak ordering.”) In other 
architectures, the program order of storage accesses is not 
necessarily the order in which the hardware performs the 
operations. For performance reasons, the hardware may  be 
designed to carry out the storage accesses in  an order that 
differs  from the program order. At times, when the 
software must ensure that previous storage operations 
have been completed, a serialization operation is 
performed. This means that all previous storage operations 
that are initiated by the processor doing the serialization 
are completed or have the appearance, to other 
processors, of being completed. In System/370, the 
COMPARE AND SWAP instruction and the interlocked 
fetch-store operation provide serialization mechanisms  [3]. 
While  weak ordering allows the hardware to reorder 
storage accesses for maximum performance, it also places 
additional requirements on the software to perform 

1004 serialization operations at times when they would  not  be 

PROGRAM ORDER 

Processor 1 Processor 2 
(1) store A 
(2) fetch B 

(1) s m  B 
(2) fetch A 

REAL TIME ORDER, CASE 1 

Processor 1 Processor 2 
store A 
fetch B ‘2 

tl 

store B t ,  
fetch A ‘4 

Processor 1 Processor 2 
fetch A 
stolt B 

fetch B 
store A 

Processor 1 fetches new vdue of B. 
Processor 2 fetches old value of A. 

e 
$1 

‘2 

‘3 

‘4 

needed if the program order of storage accesses had been 
implemented  by the hardware. To avoid this impact on 
software, AS400 architecture uses a modified strong 
ordering for its storage accesses. That is,  store operations 
are done in program order, and fetch operations are done 
in  program order; however, store operations can be done 
late relative to fetch operations. This type of ordering is 
also used  in Systed370 [3]. This architecture allows the 
hardware to buffer stores in the  processor, continue with 
subsequent fetches, and propagate stores to main storage 
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PROGRAM ORDER 

Processor  1  Processor 2 
(1) store  A 
(2) serialii 

(1) store B 

(3) fetch B 
(2) serialize 
(3) fetch  A 

REAL TIME  ORDER,  CASE 1 

Processor 1 Processor 2 
store  A 
serialize 
fetch B 

store B 
serialize 
fetch  A 

Processor 1 fetches  old  value of B. 
Processor 2 fetches  new  value  of  A. 

REAL TIME  ORDER,  CASE 2 

Processor 1  Processor 2 
store  A 
serialize 

store B 
fetch B 

serialize 
fetch  A 

Processor 1 fetches  new  value of B. 
Processor 2 fetches  new  value  of A. 

REAL TIME ORDER,  CASE 3 

Processor 1  Processor 2 
store B 
serialize 
fetch  A 

store A 
serialize 
fetch B 

Processor 2 fetches old  value  of  A. 
Processor 1 fetches new value of B. 

& 
‘1 

‘2 

‘3 

‘4 

‘5 

‘6 

lime - 
‘I 

‘2 

‘3 

‘4 

‘5 

‘6 

‘I 

‘2 

‘3 

‘4 

‘5 

‘6 

(i.e., complete the storage operations) or to the caches 
of other processors whenever the main-storage bus is 
available. Software can guarantee that fetches return the 
latest data by  using the serialization mechanism described 
below. 

Consider the example in Figure 2. With weak ordering 
or with  modified strong ordering, the store operations 
may be completed after the fetches. Four of the possible 
sequences are shown. One can observe that if processor 1 
fetches the old value of B, processor 2 may or may  not 
fetch the new value of A. With strong ordering rules, if 
processor 1 fetches B and obtains the old value of B 
&e., the value that exists before processor 2 stores to B), 

Processor  1  Processor 2 

STORES 

RELATIVELY  ATOMIC 
INSTRUCTION, CJASS N 

to and  including  its  relatively 
atomic  instruction are propagated 
to the processor 2 cache) 

Storage accesses with relatively atomic instructions. 

it  follows  logically that processor 2 will fetch the new 
value of A (Le., the value that processor 1 stores into A). 
In Figure 3, a serialization operation is added between the 
stores and fetches, and some of the possible sequences are 
shown. With serialization, software can ensure that if 
processor 1 fetches the old value of B, processor 2 will 
fetch the new value of A. 

Relatively atomic instructions provide serialization as 
well as interlocking on shared data structures. Serialization 
in an AS/400 system means that all storage accesses that 
occur prior to or are part of a relatively atomic instruction 
have been performed such that processors subsequently 
executing the same class of relatively atomic instruction 
will fetch the latest stored data and  will  not alter data 
already logically fetched before the relatively atomic 
instruction was executed. Serialization is achieved by 
propagating store operations to the common main-storage 
bus. Bus snooping, a commonly  used cache-consistency 
mechanism  for computers [7], is  used in the AS/400 
system. Bus snooping ensures that once a store operation 
is propagated to the storage bus, all processor caches are 
updated or invalidated. Bus snooping is described in the 
following section. Thus, if two processors execute a 
sequence as shown in Figure 4, processor 1 store 
operations may be buffered so that they do not update 
storage or the processor 2 cache; however, should 
processor 1 and processor 2 perform relatively atomic 
instructions from the same class in the order shown, the 
processor 1 stores must be propagated to the processor 2 
cache before processor 2 can continue. 

Multiprocessor hardware support 
Hardware design  goals for the AS/400 multiprocessor 
system included the following: 
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Providing a shared-main-storage multiprocessor system. 
Providing a bus structure to connect two processors, 

Incorporating a high-performance protocol for main- 

Providing HLIC with  simple interlock and serialization 

Handling all cache-consistency problems (keeping  all 
cache copies of a main storage location consistent). 
Providing mechanisms to handle lookaside-buffer and 
primary-directory consistency. 
Minimizing cost and design overhead in converting from 
uniprocessor to multiprocessors. 

extendable in the future to four processors. 

storage bus arbitration. 

mechanisms called hardware locks. 

Early in the design of the AS/400 multiprocessor, it 
was decided that a single  design should be used for both 
uniprocessor and N-way multiprocessor. The goal  was to 
create  a single processor design that would require minor 
enhancements to produce a two-way processor. To help 
debug the system and further test the design, a four-way 

1006 multiprocessor was constructed-even though a two-way 

processor would  be the actual product. Building a four- 
way system in the laboratory helped expose bugs  in the 
system more  quickly by increasing the probability that 
software and hardware design  flaws  would  be found. For 
example, consider a noninterlocking instruction such as 
ADD LOGICAL HALFWORD IMMEDIATE, which 
fetches the contents of a storage location, adds an 
immediate value to the contents, and stores the sum  in the 
same storage location. If the operating system uses this 
instruction to increment a shared-storage location, a 
problem occurs if two processors simultaneously increment 
the storage location, since one of the increments will be 
overwritten by the other processor. The probability of two 
processors simultaneously performing this instruction is 
greater with a four-way processor than with a two-way 
processor (assuming that the frequency of executing the 
instruction is the same). 

Figure 5 shows the processor and main-storage 
components of the AS/400 system. 

Another early design choice was bus snooping for cache 
consistency. Because all processors are on the same main- 
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storage bus and all processors perform system-bus 
arbitration in parallel, it was  fairly straightforward to 
implement main-storage bus snooping [7]. The caches are 
implemented as store-through; i.e., all store operations are 
propagated to main storage on the common  main-storage 
bus. Store operations by one processor result in other 
processors invalidating their cache lines corresponding to 
the main storage location being accessed. The design 
contains two identical copies of the cache-directory array: 
the “cache directory” and the “multiprocessor directory” 
(both shown  in Figure 5 ) .  Internal fetches and stores can 
read the cache directory, while store operations by outside 
processors are checked against the multiprocessor 
directory, to determine whether a cache line-invalidation is 
required. Whenever an invalidation is required, the cache 
is “stolen” for one cycle to invalidate both directory 
arrays. Cache consistency is thus maintained  by  snooping 
on stores and invalidating the corresponding cache lines, 
which  no longer contain the most current copy of the 
storage data. This prevents the processor from fetching 
old data from the cache, since a fetch from one of these 
invalidated cache lines results in a cache miss, and the 
cache line  is fetched from storage. Invalidations have a 
small effect on system performance. 

The AS1400 interconnection scheme 
The AS/400 multiprocessor interconnection system does 
not have a central hub. Control information that would 
normally be passed to a central hub is transmitted between 
processors on buses called multiprocessor fields, or 
MPJields. This control information shows each processor’s 
store operations, fetch requests, hardware lock operations, 
and some other operations. The store and fetch operations 
that require the use of the storage bus are buffered  and 
held  pending  in each processor until arbitration for the 
storage bus is complete and the bus is available for the 
operation. Each processor transmits information  pertaining 
to its operations on its own  MPfield output bus, which  is 
sent to all the other processors, and each processor 
receives information pertaining to its peers’ operations on 
one input bus for each peer. Thus, in a four-way processor 
system, each processor has one output and three inputs. 
Figure 6 shows the MF’tield  wiring among processors. 
Each processor MPfield output is designated “A” by that 
processor (indicated by arrows in the figure).  The output 
of processor 0 is input D of processor 1 and input B of 
processor 3. Were processor 2 installed, the signals  would 
be input C.  In this way, all processors have identical logic, 
any processor may  be placed in any slot, a processor is 
identified  with a different “name” by  each of the other 
processors, yet the processors have consistent views  of the 
overall system state. The control information sent on the 
MPfield buses is  used  by the processors to track all 
pending operations and to arbitrate the storage bus  and 
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1- m[ Processor Rocessor withihprocessor modules 

CPU slot on CPU slot 1/3 

hardware locks. Bus hardware for this tracking and 
arbitration must  be duplicated in all processors. The state 
of this bus hardware in one processor is kept consistent 
with the bus hardware state in the other processors, in the 
sense that all  of them reflect the same set of pending store, 
fetch, and hardware lock operations. Also, each processor 
must arrive at the same conclusion relative to which 
processor can use the storage bus or hardware locks, since 
arbitration for these is resolved in parallel in  all  of the 
processors. 

A processor that includes the extra logic required for 
multiprocessors can run in a multiprocessor configuration 
or by itself. If one of the processors in a multiprocessor 
system fails, the system can  be reinitialized with the failing 
processor disabled. If diagnostic software that executes 
during the initial  program  load (IPL) detects a failing 
processor, it uses multiprocessor configuration registers to 
disable the processor and its corresponding MPfield bus. 

The  bus arbitration algorithm requires that bus hardware 
be duplicated in  all processors; this speeds up arbitration 
by tracking all  pending store operations that are buffered 
in each processor until the storage bus  is available. In 
addition, the main-storage-card interface had to be 
designed to allow 100% usage of the main-storage bus. 
A tie-breaker mechanism  is implemented; processor 
priority changes in a round-robin fashion. 

This interconnection scheme yields  an interesting result. 

1 oorir 
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Main-storage inte$ace 
The storage bus consists of three parts: main-storage 
controls, the main-storage address and  command bus, and 
an 8-byte-wide main-storage data bus. Up  to six main- 
storage cards can be installed. If four or more cards are 
installed, addresses are interleaved among the first four 
cards. Main-storage cards independently process different 
commands at the same time. 

Since the main-storage card takes three cycles to 
retrieve fetched data from its internal dynamic random 
access memory  (DRAM) arrays, the data transfer for a 
fetch is done no less than three cycles after the fetch 
address and  command are sent to the main-storage card. 
Fetches usually involve fetching all 32 bytes for a cache 
line, so the data transfer for a fetch requires four cycles 
(bus and storage cycle times are the same) on the 8-byte 
main-storage data bus. 

All processors arbitrate for control of the shared bus, 
monitoring the main-storage interface and MPfield buses 
each cycle to determine, in parallel, which processor 
should use the main-storage bus in the next cycle. This 
allows the main-storage bus to be used every cycle. 
(Control of the bus can switch from processor to processor 
every cycle.) This maximum utilization would be difficult 
to achieve if bus arbitration were done at one central 
point, since it would take a cycle just to communicate 
the arbitration result to each processor. 

Because the cache greatly reduces the number of main- 
storage fetches, most storage-bus commands are for store 
operations. However, a store-through cache creates a 
greater load on the storage bus than a store-in cache, 
especially with many single-byte store operations. As a 
result, effort was expended to reduce the time required for 
stare operations. Many ideas were combined to allow one 
store command to be issued each cycle on the main- 
storage bus, when multiple main-storage cards are 
available to service these stores. (Bursts of fetch 
commands can be issued at this rate, but the rate of 
fetches is limited by the four-cycle data transfer for a 
cache-line fetch.) AS/400 multiprocessor architecture 
requires interlocked stores to shared storage but allows 
noninterlocked stores to nonshared bytes within an 8-byte 
word. Thus, main storage must  be byte-writable (Le., 
processors can issue single-byte store commands on the 
main-storage bus). However, the main-storage card 
implementation, in order to handle the error-correction 
code (ECC), turns single-byte store operations into read- 
modify-write sequences on the main-storage card in the 
following way: The main-storage card fetches the word 
plus check bits from its internal DRAM chips, corrects 
errors, modifies the selected byte, generates new check 
bits for the new set of 8 bytes, and stores the new word 
and ECC into the DRAMS. A main-storage card can 

1008 perform such a read-modify-write operation in  five 

cycles; a direct 32-byte store operation requires four 
cycles. 

The bus design  involved a number of trade-offs. 
A single, shared bus has limitations: It has a limited 
bandwidth; all processors must arbitrate for control of it; 
it presents a heavier electrical load than point-to-point 
buses, thus requiring a longer  time to drive the bus signals. 
Increasing this time to accommodate more processors 
reduces the bus  bandwidth and, in turn, limits the number 
of processors that can be supported. On the other hand, 
its simplicity  is a compelling  argument  in its favor. 
Furthermore, enhancements in the main-storage card and 
processors help to lessen the effects of a single  main- 
storage bus. As a result, having a single shared bus does 
not significantly degrade total system performance. 

Hardware locks 
A highly sophisticated locking structure is incorporated 
into the AS/400 system hardware. In multiprocessor 
systems, an extension is provided to every HLIC word 
(in control store). This extension is  for HLIC  to issue 
commands to request or release hardware locks. These 
lock commands can be coded in parallel with any other 
HLIC function that can be coded in the normal HLIC 
word, and are only to serialize storage accesses and to 
interlock HLIC code sequences, executing in different 
processors, that implement  IMP1 relatively atomic 
instructions. The hardware implements ten different locks. 
Eight such locks are used by HLIC to support the eight 
classes of relatively atomic instructions, one lock  is  used 
to interlock HLIC accesses to shared resources internal to 
HLIC, and one lock is used for hardware debugging. 

consist of the following HLIC words: 
An HLIC sequence for using a hardware lock  might 

Requesting a hardware lock (subsequent HLIC 
operations in this processor are suspended by the 
hardware if the hardware lock has already been obtained 
by another processor). 
Fetching shared data. 
Operating on the data (optional). 
Storing data into the shared location. 
Releasing the lock. 

Some HLIC sequences perform  multiple fetches, stores, 
and other operations between requesting and releasing the 
lock. 

mechanisms because hardware locks do not  involve  main- 
storage accesses. One alternative would be a “test-and- 
set” that would use main storage and operate more  slowly. 
The hardware-lock scheme is simpler for HLIC, since 
the test-and-set scheme would require HLIC to handle 
situations in which the test-and-set variable is already set, 

Hardware locks are preferable to other interlock 
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and  HLIC would have  to  loop  on  the  test-and-set 
command until the  test found that  the variable had  been 
reset.  Also,  test-and-set  variables in shared storage 
increase  the  cache miss ratio in many cache designs. 
Another  advantage of hardware  locks is that multiple lock 
requests  for different locks  can  be  granted in parallel in 
one  cycle,  whereas  test-and-set  storage  accesses with a 
shared main-storage bus  require multiple bus cycles. 

Because of the small number of locks  and  processors, 
the  HLIC lock commands  to  obtain  or  release  hardware 
locks can  be  broadcast  between  processors in one cycle 
across  unique  wires in the MPfield. If a  lock is requested 
and  has  not  been obtained by any  other  processor, 
execution of the  HLIC is not  delayed. Multiple processors 
can collectively obtain more than  one  hardware lock in a 
single cycle  unless  conflicts occur. Releasing  a hardware 
lock  is also normally a single-cycle operation. 

In  contrast,  the  Balance  system of Sequent  Computer 
Systems [5 ]  supports 30 processors  and 64 semaphores, 
whose values are communicated between  processors 
across a  serial interface. 

The  ten  hardware locks are  independent,  and a 
processor  can  own  more  than  one lock at a time.  A 
deadlock could occur if one  processor obtained one lock 
and  requested  another lock that  was  already  owned by a 
second  processor, while the  second  processor  requested 
the lock already  owned by the first processor.  To  prevent 
this type of deadlock  situation,  the locks are  numbered, 
and  HLIC  for a processor always acquires multiple 
hardware locks in order,  from  lowest  to highest. 

The serialization  provided by relatively atomic 
instructions  (as  described  earlier in the section on 
serialization)  is  accomplished at  the  hardware level  when  a 
lock  is released. If previously issued  store  operations  are 
buffered in the  processor,  they  are propagated to storage 
whenever  the  storage bus is available. No other  processor 
can  obtain  the  hardware lock that has  been  released until 
these buffered store  operations  are propagated to  the 
storage  bus  and snooping has invalidated all copies of 
these  storage  locations in the  other  processor  caches, since 
an  HLIC  sequence in another  processor  that  requests  such 
a hardware  lock is suspended by the  hardware until this 
occurs.  There is no delay due  to  the buffered store 
operations in the  HLIC  sequence  that released the 
hardware lock. 

Simultaneous lock requests in the  same  cycle  are  rare 
but  must  be handled. More  often, a lock collision results 
when  one  processor  requests a  lock  when another 
processor is  in the middle of a locked  sequence. 
Simultaneous lock requests  are resolved by the  hardware 
through  the  use of  priority bits in each  processor  that 
define  which processor  has  the highest  priority and 
therefore  obtains  the  hardware  lock.  The priority  bits 
are  kept in a register in each  processor, along with the 
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hardware  to  detect  and handle  collisions. The priority 
changes pseudorandomly  over time to  prevent  any  one 
processor  from having a constant  disadvantage.  Since all 
processors implement the  same  pseudorandom  algorithm, 
the priority  bits  in all processors  are  consistent. 

Processor intercommunications register 
All multiprocessor systems  require a message-handling 
scheme  to  send messages between  processors.  The AS/400 
multiprocessor  design uses a hardware  register, called the 
processor  intercommunications  register  (PIR),  and  an 
efficient set of controls to send messages  between  processors. 
Using a register instead of main storage permits  processor 
intercommunication without causing cache misses. The 
PIR, duplicated in all processors, acts  as a main-storage 
location and can  be protected with one of the hardware 
locks. When a write to  the  PIR  occurs, the  PIRs of all 
processors are  set identically. A message-handling scheme 
must be capable of causing an  interrupt in the receiving 
processor in order  to have the message handled quickly. 
In the A3400 design, that  interrupt is handled by  HLIC. 

Figure 7 shows  the  PIR  format.  The  ID  (processor 
identification)  mask is included in the  PIR,  each bit 
corresponding to  one of the possible processors. A unique 
main-store-interface command allows messages  to  be  sent 
to  the  PIR register. An additional PIR bit is used  to 
generate  interrupts: When a message  with the  exception 
bit on  (EXC in Figure 7) is sent  to  the  PIR,  an  interrupt 
is caused in each  processor  whose  ID bit  is 1. To 
acknowledge a message, a processor need only  reset 
its  ID bit by sending  a  message to  the  PIR with the 
exception bit off. No hardware  lock is required  to  reset  an 
ID bit, because  the  hardware  can  reset  the bit atomically. 
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All copies of that PIR ID bit in all processors are updated 
simultaneously to keep the ID fields  in  all processors 
consistent. HLIC conventions allow  using the PIR ID bits 
as busy indicators. The HLIC can release the PIR  lock and 
process other IMPI instructions after sending a message, 
rather than spinning in a loop until the ID bits are reset. 
Hardware resets  the PIR ID bits as other processors 
respond to the PIR message. The HLIC does not  send out 
PIR messages when the PIR ID bits indicate messages  still 
outstanding. 

The data field  in the PIR (bits 16-55) is  large  enough 
to send  an AS/400 virtual-address segment  identifier 
from one processor to another. This field width  allows 
the PIR to be used to send to other processors the virtual 
address of a segment to be purged from the lookaside 
buffers of all processors. The data field is also used as 
a command extender, since the CMD  field contains only 
2 bits. 

Hardware  primary-directory lock 
The AS1400 system uses virtual addresses, which  must 
be translated to real addresses before main storage is 
accessed. High-speed lookaside buffers  in the processor, 
as shown in Figure 5, contain the addresses of the most 
recently translated page addresses. Special hardware 
maintains the lookaside buffers and the primary directory 
(the main table used in translating virtual addresses, which 
resides in main storage and is shared by  all processors and 
all tasks). Lookaside buffer  misses are handled by the 
hardware; however, one of the hardware locks interlocks 
hardware primary directory searches in order to allow 
maintenance of the primary directory. 

HLIC follows special rules in turning off the valid  bit 
associated with a virtual address in the primary directory. 
When the valid  bit is 0, any attempt to translate the 
address causes a page fault. Also associated with the 
primary directory entry for each virtual page are a 
reference bit and a change bit. The reference bit  is set 
by the hardware if the bit  is 0 when a virtual address is 
translated using the primary directory. Subsequent virtual 
address translation may use the high-speed lookaside 
buffers. The change bit is set by the hardware if the 
change bit is 0 when a store operation into the page is 
performed. The reference bit acts  as an indication to HLIC 
that a processor lookaside buffer  may  hold a copy of a 
primary directory entry. The reference bit  is used by 
HLIC in the following manner when  implementing  an  IMPI 
instruction that requires resetting the valid bit: If the 
primary-directory lock is obtained and the reference bit  is 
0, the valid bit may  be set to 0. If the reference bit is 1, a 
PIR  message is required to purge the page from all of the 
lookaside buffers  in order to keep the lookaside buffers 
from being used subsequently to translate virtual addresses 
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Set bit function 
The main-storage card provides a set-bit and a reset-bit 
function, which  is a special command that is executed 
by the main-storage card as a read-modify-write  of its 
internal DRAMS. Therefore, the processor hardware does 
not have to do a read-modify-write to set the reference 
and change bits during a virtual-address translation using 
the primary directory. This set-bit function avoids having 
to interlock primary directory translations and allows 
multiple concurrent translations. 

Task  dispatching 
AS/400 multiprocessor task dispatching provides automatic 
workload  balancing  among processors and, by  using the 
same objects and methods as were used by previous 
uniprocessors, avoids the need for significant VLIC 
changes. As with a uniprocessor, all ready-to-run tasks are 
enqueued in priority order on a single, system-wide task- 
dispatching queue in shared storage. The task dispatcher 
can  be  invoked on any processor by an IMPI instruction. 
It can also be  implicitly invoked after the task-dispatching 
queue is altered by a built-in function or IMPI instruction. 
(The I/O interrupt handler is an example of a built-in 
function that can alter the task-dispatching queue. IMPI 
instructions that can implicitly invoke the task dispatcher 
include those supporting semaphores and message 
passing.) Task dispatching remains a built-in processor 
function performed by HLIC between IMPI instructions. 
The VLIC is  not directly involved  in either the decision to 
switch tasks or the actual saving and loading of task state. 

The  only functional change caused by multiprocessing 
that is  visible to VLIC is that task selection is not based 
solely on priority. “Processor eligibility” and “cache 
affinity” also affect task selection. Eligibility can  be used 
by VLIC to restrict a task to a subset of the available 
processors. Cache afinity identifies the processor on 
which a task has most recently executed and, therefore, 
the processor on  which the task is likely to have the 
highest cache hit rate and experience the best 
performance. Other than initializing the new task-state 
fields for processor eligibility, cache affinity, and current 
processor, no VLIC changes were required for 
multiprocessor task dispatching. 

When invoked, the task dispatcher checks the task- 
dispatching queue for changes since the last task- 
dispatcher call executed on any processor. If the task 
dispatcher finds changes, it searches the queue to 
determine what task should be running on each processor. 
If it  is determined that processors other than the one 
executing the task dispatcher must perform task switches, 
a list of required task switches is stored in an HLIC 
object in  main storage, and the first processor required to 
switch is  signaled to run the task dispatcher. If the task 
dispatcher, when  running on this processor, finds that the 
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task-dispatching queue  has  not  changed  since  the previous 
invocation,  the  HLIC  performs  the  task  switch using the 
information stored in the  HLIC  object  rather  than 
repeating  the  queue  search. (A task  switch consists of 
storing the  state of the  current  task  and loading state 
information for  the  new task.) If the  HLIC  object indicates 
that additional task  switches  are  required,  the next 
processor  on  the list is signaled. This  continues until all 
required task  switches  have  been  completed  or until a task 
dispatcher finds the task-dispatching queue  altered,  the 
latter  causing  the  queue  to  be  searched again and a new 
list of required  task  switches  to  be  generated. 

Task selection  is  based on a combination of priority, 
eligibility, and  cache affinity. The  task  dispatcher  selects 
the highest-priority tasks,  unless  they  are  prevented  from 
being dispatched  because of eligibility or  cache affinity. 
Eligibility is never  overridden  by  the  task  dispatcher. If 
all processors  for which  a task is eligible are assigned to 
higher-priority tasks,  the  task is not  dispatched. 

If the  processor  for which a task  has  cache affinity is 
assigned to a higher-priority task,  the  task is  skipped  (not 
dispatched),  unless doing so would  result in a processor 
remaining idle or  an  excessive  number  (as defined below) 
of tasks with cache affinity being skipped.  The skip 
threshold is the limit on  the  number of tasks  that may be 
skipped because of cache affinity and is specified by  the 
VLIC. If the  number of skipped tasks  reaches  the skip 
threshold,  cache affinity is ignored and  the task  is  assigned 
to  any  processor  for which  it  is eligible. If tasks  are 
skipped and  the  end of the task-dispatching queue is 
reached  before  each  processor is  assigned a task,  cache 
affinity is  ignored and skipped tasks  are assigned to  the 
remaining processors. When affinity is ignored,  either 
because of the  skip  threshold  or in order  to assign a task 
to  an  otherwise idle processor,  tasks  that  are  closest  to  the 
front of the  queue  are not selected,  because  they  are 
presumed  to  have  stronger affinity than  those  farther back 
in the  queue.  Tasks  that  are  nearer  the  front will usually 
have a shorter wait for their preferred  processor  and have 
more  data remaining  in cache  when  they  run, so system 
performance will benefit more from skipping them  than 
from skipping tasks  farther  down  the  queue. 

Initially, a task  has  equal affinity for all processors. 
When a task  is initially dispatched,  processor selection  is 
based only on  priority  and eligibility. HLIC  sets  the  cache 
affinity of a task  to a specific processor when the  task is 
switched  to  that  processor.  Certain  IMPI  instructions 
that  can  result in a task being removed  from  the  task- 
dispatching queue  for a long time  can specify that  the 
cache affinity of the  task be reset  to  the initial state. 

Performance 
Early in the  development of the two-way  multiprocessor 
(Model D80), the  performance objective was 1.7 times the 

throughput of the Model D70 uniprocessor.  This  was a 
15% degradation  from  the ideal performance (twice that 
of a single processor).  This  factor  was  deemed a realistic 
expectation  for  an initial multiprocessor  scheme. 

An interactive workload  called  RAMP-C (Repeatable 
And Measurable  PerformanceCOBOL)  was  used  to  model 
and  measure  the  performance of the  A3400  multiprocessor 
system. The workload simulates the activity of workstations 
in commercial data processing. Clearly, other environments 
might have  caused  a significant departure  from the 
performance values given. The performance analysis effort 
for the multiprocessor machine included modeling the 
hardware and software design prior to completion of the 
hardware implementation and of the system  performance 
measurement. 

Hardware  and  software  design modeling 
Various  analysis techniques  assessed  aspects of AS1400 
multiprocessor performance.  The  two major classes of 
performance  factors  that required evaluation  were 
1) hardware  and  HLIC effects and 2) software 
implications. Performance  issues  related  to  hardware 
and  HLIC included 

Cache  consistency. 
Cache miss rate, both  aggregate and  dynamic. 
Main-storage contention, which is related  to main- 
storage card  and main-storage bus utilization. 
Synchronization of instruction-class  locks. 
Lookaside buffer synchronization. 
Queue-structure manipulation. 
Task-dispatching  algorithms. 

Several models provided  for  assessment of the 
performance  questions.  The first was a  simulation  model 
that provided an  understanding of main-storage contention 
and  the effect of cache-consistency  maintenance.  This 
model  was  a  low-level abstraction of the  processor design. 
It  encompassed all aspects of the  hardware design that  are 
shared facilities  (e.g., cache  data  bus  and  memory-card 
controller) and  enough detail  of other  parts of the 
architecture  to  cause all significant queuing  effects to  occur 
in the simulation. The input to  the model consisted of a 
sequence of IMPI  instructions  generated  on  the  basis 
of frequencies  observed  for  uniprocessors.  Code  that 
emulated the  HLIC  for  the  IMPI  instructions  was used 
to simulate the detailed interaction of machine facilities. 

The  second  category of models consisted of analytic 
approaches  that  evaluated  the  performance  degradation 
due  to  the instruction-class-lock implementations.  The 
frequency of occurrence of instructions in uniprocessors 
was used in the calculations. Various instruction-class-lock 
schemes, which  hold class  locks  for different durations, 
were  evaluated. Degradation of throughput  was  determined, 
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Main-storage-card utilization (%) 

and  trade-offs were made  on  instruction-class-lock  design 
schemes. 

The third category of model was address-trace analysis, 
which is important in helping one to understand cache 
performance. Many real-address main-storage traces taken 
from the earlier uniprocessor (AS/400  Model  B70) 
machines were used as input to models of a cache 
directory. Reference patterns and overall behavior in 
terms of cache miss rate were outputs of these models. 

A fourth category of model was main-storage-card 
utilization, one factor that is critical to multiprocessor 
throughput. This parameter represents the percentage 
of  all machine cycles that a card controller is busy. The 
simulation model used represented the processors simply 
as originators of memory requests of various types. 
Memory cards were defined to the model  with parameters 
describing the time for processing requests. For a given 
configuration  and set of parameters, simulation projected 
the processor throughput. 

A study of model results showed significant sensitivity 
to the number of main-storage cards installed and the 
speed of the DRAM chips used  on the main-storage cards. 
Main-storage-card utilization was greater with slower 
DRAMS  and  with  fewer main-storage cards. As card 
utilization increased over 30%, throughput of the 
multiprocessor dropped off, as shown in Figure 8 for a 
two-way multiprocessor. (The uniprocessor throughput did 
not vary significantly in the range of main-storage-card 
utilization shown in Figure 8.)  The AS1400 Model D80 has 
DRAM chips with an 80-ns data access time and can 

1012 have a maximum of six main-storage cards. With this 

configuration, main-storage-card utilization averaged 22% 
for the two-way multiprocessor. 

throughput was reduced by 7.5% after consideration of 
all hardware and HLIC factors. The contributors to this 
degradation broke down  roughly as follows: 

Results of the modeling work showed that ideal 

Instruction-class-lock contention (3.0%). This 
degradation was a queuing  effect that depended upon 
the class-lock synchronization scheme. 
Cache hit rate reduction (2.3%). This resulted from 
processors interacting and  changing data in shared 
memory. The store-through cache design caused 
directory entries that would  not be affected  on a 
uniprocessor to be  purged  in a multiprocessor. This 
resulted in a reduced cache hit rate. 
Main-storage contention (1.6%). This effect was due to 
contention for the shared main-storage controllers and 
for the main-storage bus. 
Task dispatcher multiprocessor overhead (0.6%). 
Additional function provided in the HLIC task 
dispatcher for multiprocessors requires additional 
microcode path length compared with that of the 
uniprocessor dispatcher. 

A simulation model of the software was used to provide 
an understanding of multiprocessor operating system 
effects. The performance model simulated the flow  of user 
tasks and operating system tasks when the RAMP-C 
benchmark was executed. The effects of cache affinity 
(the ability to maintain tasks on the same processor to 
maximize the cache hit rate) were observed by the model. 
The effects of different  algorithms for allocating tasks to 
processors was a key element of this area of the analysis. 
In particular, the skip threshold provides a means of 
extending the search of ready-to-run tasks. Modeling 
portrayed the effects of the skip-threshold value on the 
cache affinity  of tasks, as shown in Figure 9. Tasks with 
affinity  had a high initial cache hit rate. When the first 100 
cache accesses had  an 86% cache hit rate, the cache was 
considered “hot.” Increasing the skip threshold provided 
a greater probability of  finding a task with  affinity for an 
available processor. As can be seen in Figure 9, a skip 
threshold of 1 provided the preponderance of the benefit. 
Little additional probability of  finding a task with  affinity 
was gained for increased searches. Having a skip threshold 
larger than 1 reduced the likelihood that the highest- 
priority task would complete quickly. 

2.2% due to all software effects. Thus, the total hardware 
and software degradation was 9.7%. Based on  an ideal 
multiprocessor ratio of two times a single processor, the 
modeled degradation implied a multiprocessor performance 
factor of 1.81 for the two-way multiprocessor machine. 

Modeling results showed a multiprocessor degradation of 
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Performance measurement 
Two  sets of internal  performance  counters  are employed in 
the  hardware  to  measure  multiprocessor  performance.  The 
first set of counters  accumulates  data  for  each of the 21 
unique  states of the  multiprocessor, including  application- 
run-time state,  VLIC-run-time  state, wait states, exception 
states,  and  the  suspended  state.  The  suspended  state, 
unique to  multiprocessors, is entered by one  or  more 
processors  when  another  processor  executes  an  instruction 
that  suspends  their  IMPI  instruction  execution  and task 
dispatching. For  each  state,  the  counters  accumulate  the 
numbers of a)  instructions  executed, b) processor  cycles, 
and  c) times the  state is entered. A second  set of internal 
counters  monitors  cache hits and  misses, main-storage bus 
use,  and multiprocessor-lock  conflicts. Measurements 
undertaken  on  systems running the RAMP-C  benchmark 
show a degradation of 10.7% from the ideal multiprocessor, 
or  multiprocessor  throughput of 1.79  times that of a single 
uniprocessor. 

Conclusion 
The  AS400  multiprocessor effort represents a significant 
step  forward  for  the AS/400 system.  The  intent of the 
multiprocessor  architecture  was  to minimize the  software 
changes required to  support multiple processors.  The 
uniprocessor  operating  system  was  not significantly 
changed  to  handle  shared  data  objects,  because  either  the 
code  already handled them  for a multitasking environment, 
or  the relatively atomic  instructions handle them  for a 
multiprocessor  environment.  The  operating  system  already 
used  the  IMPI  instructions, which accessed IMPI-level 
shared  data  structures and  which  could be redefined as 
relatively atomic  to provide  interlocked accesses.  The 
relatively-atomic-instruction approach had  much less of an 
effect on  the  software  than if the  conventional  approach 
to interlocking instructions had been used. The design 
includes a four-way processor used  in the  development 
laboratory (since  multiprocessor  problems  surfaced  more 
quickly in the  four-way system).* The design  provides 
HLIC with the  necessary mechanisms to efficiently 
implement AS/400 multiprocessors  and maintains both 
simplicity and  performance with minimal overhead. 

Performance modeling of the AS/400 multiprocessor 
helped us gain  a better  understanding of the  task- 
dispatching characteristics of the  system  and  hardware 
effects. This modeling enabled us  to modify the  HLIC 
task-dispatching  algorithm and  ensure  that  the 
multiprocessor  met  its  performance  objectives.  The 
performance models  predicted  a two-processor system 
throughput of 1.81 times that of a uniprocessor.  System 
performance  measurements indicated a factor of 1.79, 
a 3% difference between model results  and  measurements. 

I I I I I 
0 1 2 3 4 5 

Number of ready-to-run tasks skipped  (skip  threshold) 

$ Skip threshold summary 
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