
Architecture,
design, and

by J. E. Bahr
S. B. Levenstein
L. A. McMahon
T. J. Mullins
A. H. Wottreng

performance
of Application
System/400
(ASl400)
multiprocessors

The architecture, design, and performance
of multiprocessors in the Application
System/400@' (AS/400@) family are discussed.
The paper describes how this multitasking
system, originally designed as a uniprocessor
system, was modified to form a multiprocessor
system. The unique approach, using relatively
atomic instructions, required a minimum of
change while providing significant
performance gains.

Introduction
The Application System/400@ (AS/400@) system is a
general-purpose, mid-range family of computers which was
first introduced in 1988. It provides batch and interactive
capability for commercial and office applications. Among
the software and hardware features of the AS/400 system
is the layered machine architecture [l] shown in Figure 1.
The user and parts of the operating system are provided a

high-level machine interface (MI). Below this, vertical
licensed internal code (VLIC) implements the remainder
of the operating system functions. VLIC uses internal
microprogrammed interface (IMPI) instructions. Horizontal
licensed internal code (HLIC) performs the operations
specified by the IMPI instructions. The HLIC is likely to
change significantly over time as newer processors are
designed, even if the IMPI instructions do not. This
constant change of the HLIC is consistent with many other
microcoded systems, such as System/370TM; however, the
IMPI interface can also change without necessarily
requiring significant changes in application code or
operating system code (above the MI). The layered
architecture of the AS/400 system allows the underlying
hardware and software interface and functions to change
in order to take advantage of technology advances without
affecting the end user.

Many of the high-level functions performed by software
in other systems are provided below the IMPI in the
AS/400 system [2]. Complex functions, such as dispatching

Wopyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992 J. E. BAHR ET AL.

1001

tasks, queuing, and input/output (IIO) operations, are
provided at the IMPI by means of hardware and HLIC.
These are some of the functions that an operating system
must often alter significantly when multiprocessors are
introduced into an architecture. Often the uniprocessor
assumption that only one task at a time runs and alters
data structures that are shared by other tasks is no longer
true for multiprocessors.

The unique architecture of the AS/400 system made
it an ideal candidate for design as a shared-memory
multiprocessor. The layered architecture made it easier to
introduce multiprocessing without requiring changes to
existing applications, because multiprocessor changes
could be made below the MI. In addition, the AS1400
system was already a multitasking system. Task-to-task
communications are controlled by built-in instructions
supported by HLIC. Other functions are also written in
HLIC-for example, the task dispatcher. This type of
high-level support at the IMPI level makes it possible to
incorporate multiprocessor architecture while restricting
most of the changes to the hardware and HLIC levels.

One of the major changes made at the IMPI level in
order to implement multiprocessing was the redefinition
of many instructions as relatively atomic instructions.
Only one instruction that operated on shared IMPI data
structures was allowed to run at a time. The instruction
execution on one processor was suspended by the
processor hardware if another instruction of the same type
was already running on another processor. A unique
hardware lock was used by the HLIC for each type of
relatively atomic instruction. Other hardware changes were
also made to support multiprocessors: A common shared
bus allowed multiple processors to access main storage. A
cache was attached to each processor to reduce the main-

1002 storage-access bandwidth needs of the processors. (Earlier

J. E. BAHR ET AL.

versions of AS/400 did not have caches.) Another addition
was a mechanism to send messages between processors.

performance was done while the hardware was being
designed. As a result of this modeling, improvements were
made early in the design of the hardware and in the HLIC
task dispatching.

Synchronization and serialization

Hardware and software modeling to evaluate

Conventional synchronization mechanisms
In the Systeml370 architecture, several instructions, such
as TEST AND SET, COMPARE AND SWAP, and
COMPARE DOUBLE AND SWAP, are defined to provide
atomic (i.e., indivisible from start to finish) operations for
multiprocessor operation [3]. Other architectures provide
similar instructions. For example, the Digital Equipment
Corporation VAXT” architecture provides atomic test-and-
set-main-storage functions via the BBSSI (Branch on Bit
Set and Set Interlocked) and BBCCI (Branch on Bit Clear
and Clear Interlocked) instructions [4]. In the COMPARE
AND SWAP instruction of the System/370 architecture,
fetching an operand (for the purpose of the compare) and
storing (for the purpose of the swap) into the location of
this operand appear to be an interlocked operation as
observed by other processors. (In this paper, we use
“interlocked” and “atomic” interchangeably, to refer to
single, noninterruptible operations.) It is worth noting that
the interlocked fetch-store operation only “appears”
to other processors to be a single operation (i.e., other
processors, no matter what sequence of fetch and store
operations the other processors may perform, cannot get
results inconsistent with those that would have resulted
from a single interlocked fetch-store operation). Many
hardware implementations of this architecture are possible.
Some of these are

Preventing any accesses to the interlocked location
during the time between the interlocked fetch and store
operations, and delaying accesses to this location by any
other processor.
Allowing only fetches that are not part of an interlocked
fetch-store operation (and no stores) to occur between
the interlocked fetch and store, since the outcome is the
same as if the noninterlocked fetch had occurred before
the interlocked fetch.
Allowing any accesses to occur between the interlocked
fetch and store, but repeating the interlocked fetch
if a store to the same location occurs between the
interlocked fetch and store, since the outcome is the
same as if the store had not occurred between the
interlocked fetch and store.

The atomicity mechanism for the interlocked fetch-store
operation is, in general, different from the mechanism that

IBM J . RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

can be used in a uniprocessor multitasking environment,
where it is sufficient to guarantee that interrupts and
task switches do not occur in the middle of this type of
instruction. The atomicity mechanism for a multiprocessor
requires more than the uniprocessor instruction-level
atomicity, since it involves the prevention or repetition
of specific types of storage accesses.

and set in one atomic operation. Each such TEST AND
SET lock represents a shared resource and provides the
synchronization mechanism so that only one processor
operates on the shared resource at a time. The BalanceTM
multiprocessor system of Sequent Computer Systems [5],
for example, provides 64 semaphores that can be TESTed
AND SET by any of the 30 processors in the system. The
Sequoia Systems fault-tolerant computers provide 1024
TEST AND SET locks in storage [6]. The processors in
the system (up to 64) contend for these locks. Other
synchronization primitives [7] exist, but these have less in
common with the AS/400 multiprocessor architecture than
TEST AND SET mechanisms.

Given an elementary, atomic fetch and store sequence
operating on one storage location, such as COMPARE
AND SWAP or TEST AND SET, software can build more
elaborate structures for managing the sharing of storage
data and other resources.

Other systems provide hardware locks that can be tested

Relatively atomic instructions
The AS400 multiprocessor provides a synchronization
solution by means of relatively atomic instructions. These
instructions are divided into classes. Instructions in each
class are atomic relative only to instructions within the
same class executing on other processors in the system.
(AS/400 instructions, with a few exceptions, are treated as
atomic operations on a uniprocessor; Le., interrupts and
task switches are not allowed in the middle of a partially
completed instruction. Thus, it is not necessary to consider
relative atomicity on a uniprocessor.) Absolutely atomic
instructions are atomic relative to all instructions executing
on all processors. For example, COMPARE AND SWAP
in Systerd370 multiprocessors is absolutely atomic, while
COMPARE AND SWAP WORD in the AS1400 system is
atomic relative only to instructions in the COMPARE
AND SWAP WORD class. While one A3400 processor is
executing an instruction in this class, other processors are
permitted by the hardware architecture to access the same
storage location simultaneously with relatively atomic
instructions not in this class or with regular load or store
instructions; however, the operating system avoids this
type of simultaneous access by using only relatively atomic
instructions in the same class for potentially simultaneous
accesses to the same data (except when software ensures
via other mechanisms that there is no simultaneous,
conflicting access to the data used by relatively atomic

IBM I. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

instructions). Since these data are internal to the operating
system, only the operating system accesses them, and it
follows this convention.

In System/370, for the most part, absolutely atomic
instructions are used by the software to set software locks
that provide protection for storage accesses to shared data.
After setting such a lock and completing one or more
general-purpose instructions that perform the accesses,
software must then use another instruction to release the
software lock.

In AS/400, many accesses to the operating system VLIC
shared-data structures are combined into a single complex
instruction that is not interruptible, or is interruptible only
at certain defined points. For example, a single instruction
searches a message queue, enqueues a new message in the
appropriate position, and moves a waiting task from the
wait list of the queue to the task-dispatching queue.
Another characteristic of AS/400, mentioned previously,
is that, by convention, general-purpose instructions are
not used to access the shared-data structures. These
characteristics were used to advantage to support
multitasking in AS/400 prior to the introduction of
multiprocessors. Because of these characteristics, it is
possible to define some instructions that access the VLIC
shared-data structures as relatively atomic rather than
have the VLIC obtain software locks before using these
instructions. In some cases, VLIC accesses shared data
without using relatively atomic instructions. For example,
when task dispatching is disabled on all but one processor,
VLIC on the remaining processor can use instructions that
are not relatively atomic.

Relatively atomic instructions are divided into classes
based on the type of shared-data structure, called IMP1
objects, that the instructions access. Instructions that are
not in the same class do not access the same shared-data
structures. Hardware and HLIC incorporate a lock
mechanism into these complex instructions that locks
out only instructions from the same class. (This lock
mechanism, called instruction-class locks, is described in
more detail in the section on hardware locks.) Once a
processor has set such a lock, all other processors in the
system are prevented from executing instructions from
the same class until the first processor’s instruction is
complete. Instructions in this class in other processors are
simply delayed by the hardware until the relatively atomic
instruction completes. Instructions in different classes are
allowed to execute simultaneously, since they do not have
conflicting accesses to the same data. Multiple classes of
relatively atomic instructions are defined in order to reduce
the likelihood that more than one instruction from a class
will attempt to execute simultaneously and thus degrade
performance.

The instruction classes follow:

1. E. BAHR ET AL

Compare and swap instructions, such as COMPARE

Hold record instructions, which provide symbolic

Z/O, which includes both IMPI I/O instructions and

AND SWAP WORD.

software locks.

operations performed by the HLIC when handling I/O
interrupts.
System timer instructions, which provide time-of-day,
time interval, and clock comparator functions.
SRC instructions, which provide semaphores.
SRQ instructions, which pass messages between tasks.
TDQ accesses, which include updates to the task-
dispatching queue and accesses by the HLIC task
dispatcher.
Primary Directory accesses, which include accesses to
address-translation tables by the translation hardware
and by IMPI instructions.

There are several other significant characteristics of
relatively atomic instructions. First, I/O interrupts that
occur in the middle of a relatively atomic instruction are
held pending until the instruction execution is completed.
Second, HLIC implements relatively atomic instructions
in a manner that prevents other interrupts from causing a
partially completed interlocked operation. For example,
all main-storage pages that must be used to complete a
relatively atomic instruction are referenced before any of
the store operations of the instruction are performed.
Another processor cannot invalidate a main-storage page
that has already been referenced until the completion of
the relatively atomic instruction.

Serialization
Some architectures use “strong ordering” for storage
accesses. (That is, store operations and fetch operations
are performed in the order given by the program.
This is not the case with “weak ordering.”) In other
architectures, the program order of storage accesses is not
necessarily the order in which the hardware performs the
operations. For performance reasons, the hardware may be
designed to carry out the storage accesses in an order that
differs from the program order. At times, when the
software must ensure that previous storage operations
have been completed, a serialization operation is
performed. This means that all previous storage operations
that are initiated by the processor doing the serialization
are completed or have the appearance, to other
processors, of being completed. In System/370, the
COMPARE AND SWAP instruction and the interlocked
fetch-store operation provide serialization mechanisms [3].
While weak ordering allows the hardware to reorder
storage accesses for maximum performance, it also places
additional requirements on the software to perform

1004 serialization operations at times when they would not be

PROGRAM ORDER

Processor 1 Processor 2
(1) store A
(2) fetch B

(1) s m B
(2) fetch A

REAL TIME ORDER, CASE 1

Processor 1 Processor 2
store A
fetch B ‘2

tl

store B t ,
fetch A ‘4

Processor 1 Processor 2
fetch A
stolt B

fetch B
store A

Processor 1 fetches new vdue of B.
Processor 2 fetches old value of A.

e
$1

‘2

‘3

‘4

needed if the program order of storage accesses had been
implemented by the hardware. To avoid this impact on
software, AS400 architecture uses a modified strong
ordering for its storage accesses. That is, store operations
are done in program order, and fetch operations are done
in program order; however, store operations can be done
late relative to fetch operations. This type of ordering is
also used in Systed370 [3]. This architecture allows the
hardware to buffer stores in the processor, continue with
subsequent fetches, and propagate stores to main storage

J. E. BAHR ET AL. IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

PROGRAM ORDER

Processor 1 Processor 2
(1) store A
(2) serialii

(1) store B

(3) fetch B
(2) serialize
(3) fetch A

REAL TIME ORDER, CASE 1

Processor 1 Processor 2
store A
serialize
fetch B

store B
serialize
fetch A

Processor 1 fetches old value of B.
Processor 2 fetches new value of A.

REAL TIME ORDER, CASE 2

Processor 1 Processor 2
store A
serialize

store B
fetch B

serialize
fetch A

Processor 1 fetches new value of B.
Processor 2 fetches new value of A.

REAL TIME ORDER, CASE 3

Processor 1 Processor 2
store B
serialize
fetch A

store A
serialize
fetch B

Processor 2 fetches old value of A.
Processor 1 fetches new value of B.

&
‘1

‘2

‘3

‘4

‘5

‘6

lime -
‘I

‘2

‘3

‘4

‘5

‘6

‘I

‘2

‘3

‘4

‘5

‘6

(i.e., complete the storage operations) or to the caches
of other processors whenever the main-storage bus is
available. Software can guarantee that fetches return the
latest data by using the serialization mechanism described
below.

Consider the example in Figure 2. With weak ordering
or with modified strong ordering, the store operations
may be completed after the fetches. Four of the possible
sequences are shown. One can observe that if processor 1
fetches the old value of B, processor 2 may or may not
fetch the new value of A. With strong ordering rules, if
processor 1 fetches B and obtains the old value of B
&e., the value that exists before processor 2 stores to B),

Processor 1 Processor 2

STORES

RELATIVELY ATOMIC
INSTRUCTION, CJASS N

to and including its relatively
atomic instruction are propagated
to the processor 2 cache)

Storage accesses with relatively atomic instructions.

it follows logically that processor 2 will fetch the new
value of A (Le., the value that processor 1 stores into A).
In Figure 3, a serialization operation is added between the
stores and fetches, and some of the possible sequences are
shown. With serialization, software can ensure that if
processor 1 fetches the old value of B, processor 2 will
fetch the new value of A.

Relatively atomic instructions provide serialization as
well as interlocking on shared data structures. Serialization
in an AS/400 system means that all storage accesses that
occur prior to or are part of a relatively atomic instruction
have been performed such that processors subsequently
executing the same class of relatively atomic instruction
will fetch the latest stored data and will not alter data
already logically fetched before the relatively atomic
instruction was executed. Serialization is achieved by
propagating store operations to the common main-storage
bus. Bus snooping, a commonly used cache-consistency
mechanism for computers [7], is used in the AS/400
system. Bus snooping ensures that once a store operation
is propagated to the storage bus, all processor caches are
updated or invalidated. Bus snooping is described in the
following section. Thus, if two processors execute a
sequence as shown in Figure 4, processor 1 store
operations may be buffered so that they do not update
storage or the processor 2 cache; however, should
processor 1 and processor 2 perform relatively atomic
instructions from the same class in the order shown, the
processor 1 stores must be propagated to the processor 2
cache before processor 2 can continue.

Multiprocessor hardware support
Hardware design goals for the AS/400 multiprocessor
system included the following:

IBM I. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992 J . E. BAHR ET AL.

Providing a shared-main-storage multiprocessor system.
Providing a bus structure to connect two processors,

Incorporating a high-performance protocol for main-

Providing HLIC with simple interlock and serialization

Handling all cache-consistency problems (keeping all
cache copies of a main storage location consistent).
Providing mechanisms to handle lookaside-buffer and
primary-directory consistency.
Minimizing cost and design overhead in converting from
uniprocessor to multiprocessors.

extendable in the future to four processors.

storage bus arbitration.

mechanisms called hardware locks.

Early in the design of the AS/400 multiprocessor, it
was decided that a single design should be used for both
uniprocessor and N-way multiprocessor. The goal was to
create a single processor design that would require minor
enhancements to produce a two-way processor. To help
debug the system and further test the design, a four-way

1006 multiprocessor was constructed-even though a two-way

processor would be the actual product. Building a four-
way system in the laboratory helped expose bugs in the
system more quickly by increasing the probability that
software and hardware design flaws would be found. For
example, consider a noninterlocking instruction such as
ADD LOGICAL HALFWORD IMMEDIATE, which
fetches the contents of a storage location, adds an
immediate value to the contents, and stores the sum in the
same storage location. If the operating system uses this
instruction to increment a shared-storage location, a
problem occurs if two processors simultaneously increment
the storage location, since one of the increments will be
overwritten by the other processor. The probability of two
processors simultaneously performing this instruction is
greater with a four-way processor than with a two-way
processor (assuming that the frequency of executing the
instruction is the same).

Figure 5 shows the processor and main-storage
components of the AS/400 system.

Another early design choice was bus snooping for cache
consistency. Because all processors are on the same main-

J . E. BAHR ET AL. IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

storage bus and all processors perform system-bus
arbitration in parallel, it was fairly straightforward to
implement main-storage bus snooping [7]. The caches are
implemented as store-through; i.e., all store operations are
propagated to main storage on the common main-storage
bus. Store operations by one processor result in other
processors invalidating their cache lines corresponding to
the main storage location being accessed. The design
contains two identical copies of the cache-directory array:
the “cache directory” and the “multiprocessor directory”
(both shown in Figure 5) . Internal fetches and stores can
read the cache directory, while store operations by outside
processors are checked against the multiprocessor
directory, to determine whether a cache line-invalidation is
required. Whenever an invalidation is required, the cache
is “stolen” for one cycle to invalidate both directory
arrays. Cache consistency is thus maintained by snooping
on stores and invalidating the corresponding cache lines,
which no longer contain the most current copy of the
storage data. This prevents the processor from fetching
old data from the cache, since a fetch from one of these
invalidated cache lines results in a cache miss, and the
cache line is fetched from storage. Invalidations have a
small effect on system performance.

The AS1400 interconnection scheme
The AS/400 multiprocessor interconnection system does
not have a central hub. Control information that would
normally be passed to a central hub is transmitted between
processors on buses called multiprocessor fields, or
MPJields. This control information shows each processor’s
store operations, fetch requests, hardware lock operations,
and some other operations. The store and fetch operations
that require the use of the storage bus are buffered and
held pending in each processor until arbitration for the
storage bus is complete and the bus is available for the
operation. Each processor transmits information pertaining
to its operations on its own MPfield output bus, which is
sent to all the other processors, and each processor
receives information pertaining to its peers’ operations on
one input bus for each peer. Thus, in a four-way processor
system, each processor has one output and three inputs.
Figure 6 shows the MF’tield wiring among processors.
Each processor MPfield output is designated “A” by that
processor (indicated by arrows in the figure). The output
of processor 0 is input D of processor 1 and input B of
processor 3. Were processor 2 installed, the signals would
be input C. In this way, all processors have identical logic,
any processor may be placed in any slot, a processor is
identified with a different “name” by each of the other
processors, yet the processors have consistent views of the
overall system state. The control information sent on the
MPfield buses is used by the processors to track all
pending operations and to arbitrate the storage bus and

IBM J . RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

r

1- m[Processor Rocessor withihprocessor modules

CPU slot on CPU slot 1/3

hardware locks. Bus hardware for this tracking and
arbitration must be duplicated in all processors. The state
of this bus hardware in one processor is kept consistent
with the bus hardware state in the other processors, in the
sense that all of them reflect the same set of pending store,
fetch, and hardware lock operations. Also, each processor
must arrive at the same conclusion relative to which
processor can use the storage bus or hardware locks, since
arbitration for these is resolved in parallel in all of the
processors.

A processor that includes the extra logic required for
multiprocessors can run in a multiprocessor configuration
or by itself. If one of the processors in a multiprocessor
system fails, the system can be reinitialized with the failing
processor disabled. If diagnostic software that executes
during the initial program load (IPL) detects a failing
processor, it uses multiprocessor configuration registers to
disable the processor and its corresponding MPfield bus.

The bus arbitration algorithm requires that bus hardware
be duplicated in all processors; this speeds up arbitration
by tracking all pending store operations that are buffered
in each processor until the storage bus is available. In
addition, the main-storage-card interface had to be
designed to allow 100% usage of the main-storage bus.
A tie-breaker mechanism is implemented; processor
priority changes in a round-robin fashion.

This interconnection scheme yields an interesting result.

1 oorir

J. E. BAHR ET AL.

Main-storage inte$ace
The storage bus consists of three parts: main-storage
controls, the main-storage address and command bus, and
an 8-byte-wide main-storage data bus. Up to six main-
storage cards can be installed. If four or more cards are
installed, addresses are interleaved among the first four
cards. Main-storage cards independently process different
commands at the same time.

Since the main-storage card takes three cycles to
retrieve fetched data from its internal dynamic random
access memory (DRAM) arrays, the data transfer for a
fetch is done no less than three cycles after the fetch
address and command are sent to the main-storage card.
Fetches usually involve fetching all 32 bytes for a cache
line, so the data transfer for a fetch requires four cycles
(bus and storage cycle times are the same) on the 8-byte
main-storage data bus.

All processors arbitrate for control of the shared bus,
monitoring the main-storage interface and MPfield buses
each cycle to determine, in parallel, which processor
should use the main-storage bus in the next cycle. This
allows the main-storage bus to be used every cycle.
(Control of the bus can switch from processor to processor
every cycle.) This maximum utilization would be difficult
to achieve if bus arbitration were done at one central
point, since it would take a cycle just to communicate
the arbitration result to each processor.

Because the cache greatly reduces the number of main-
storage fetches, most storage-bus commands are for store
operations. However, a store-through cache creates a
greater load on the storage bus than a store-in cache,
especially with many single-byte store operations. As a
result, effort was expended to reduce the time required for
stare operations. Many ideas were combined to allow one
store command to be issued each cycle on the main-
storage bus, when multiple main-storage cards are
available to service these stores. (Bursts of fetch
commands can be issued at this rate, but the rate of
fetches is limited by the four-cycle data transfer for a
cache-line fetch.) AS/400 multiprocessor architecture
requires interlocked stores to shared storage but allows
noninterlocked stores to nonshared bytes within an 8-byte
word. Thus, main storage must be byte-writable (Le.,
processors can issue single-byte store commands on the
main-storage bus). However, the main-storage card
implementation, in order to handle the error-correction
code (ECC), turns single-byte store operations into read-
modify-write sequences on the main-storage card in the
following way: The main-storage card fetches the word
plus check bits from its internal DRAM chips, corrects
errors, modifies the selected byte, generates new check
bits for the new set of 8 bytes, and stores the new word
and ECC into the DRAMS. A main-storage card can

1008 perform such a read-modify-write operation in five

cycles; a direct 32-byte store operation requires four
cycles.

The bus design involved a number of trade-offs.
A single, shared bus has limitations: It has a limited
bandwidth; all processors must arbitrate for control of it;
it presents a heavier electrical load than point-to-point
buses, thus requiring a longer time to drive the bus signals.
Increasing this time to accommodate more processors
reduces the bus bandwidth and, in turn, limits the number
of processors that can be supported. On the other hand,
its simplicity is a compelling argument in its favor.
Furthermore, enhancements in the main-storage card and
processors help to lessen the effects of a single main-
storage bus. As a result, having a single shared bus does
not significantly degrade total system performance.

Hardware locks
A highly sophisticated locking structure is incorporated
into the AS/400 system hardware. In multiprocessor
systems, an extension is provided to every HLIC word
(in control store). This extension is for HLIC to issue
commands to request or release hardware locks. These
lock commands can be coded in parallel with any other
HLIC function that can be coded in the normal HLIC
word, and are only to serialize storage accesses and to
interlock HLIC code sequences, executing in different
processors, that implement IMP1 relatively atomic
instructions. The hardware implements ten different locks.
Eight such locks are used by HLIC to support the eight
classes of relatively atomic instructions, one lock is used
to interlock HLIC accesses to shared resources internal to
HLIC, and one lock is used for hardware debugging.

consist of the following HLIC words:
An HLIC sequence for using a hardware lock might

Requesting a hardware lock (subsequent HLIC
operations in this processor are suspended by the
hardware if the hardware lock has already been obtained
by another processor).
Fetching shared data.
Operating on the data (optional).
Storing data into the shared location.
Releasing the lock.

Some HLIC sequences perform multiple fetches, stores,
and other operations between requesting and releasing the
lock.

mechanisms because hardware locks do not involve main-
storage accesses. One alternative would be a “test-and-
set” that would use main storage and operate more slowly.
The hardware-lock scheme is simpler for HLIC, since
the test-and-set scheme would require HLIC to handle
situations in which the test-and-set variable is already set,

Hardware locks are preferable to other interlock

J. E. BAHR ET A L IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

and HLIC would have to loop on the test-and-set
command until the test found that the variable had been
reset. Also, test-and-set variables in shared storage
increase the cache miss ratio in many cache designs.
Another advantage of hardware locks is that multiple lock
requests for different locks can be granted in parallel in
one cycle, whereas test-and-set storage accesses with a
shared main-storage bus require multiple bus cycles.

Because of the small number of locks and processors,
the HLIC lock commands to obtain or release hardware
locks can be broadcast between processors in one cycle
across unique wires in the MPfield. If a lock is requested
and has not been obtained by any other processor,
execution of the HLIC is not delayed. Multiple processors
can collectively obtain more than one hardware lock in a
single cycle unless conflicts occur. Releasing a hardware
lock is also normally a single-cycle operation.

In contrast, the Balance system of Sequent Computer
Systems [5] supports 30 processors and 64 semaphores,
whose values are communicated between processors
across a serial interface.

The ten hardware locks are independent, and a
processor can own more than one lock at a time. A
deadlock could occur if one processor obtained one lock
and requested another lock that was already owned by a
second processor, while the second processor requested
the lock already owned by the first processor. To prevent
this type of deadlock situation, the locks are numbered,
and HLIC for a processor always acquires multiple
hardware locks in order, from lowest to highest.

The serialization provided by relatively atomic
instructions (as described earlier in the section on
serialization) is accomplished at the hardware level when a
lock is released. If previously issued store operations are
buffered in the processor, they are propagated to storage
whenever the storage bus is available. No other processor
can obtain the hardware lock that has been released until
these buffered store operations are propagated to the
storage bus and snooping has invalidated all copies of
these storage locations in the other processor caches, since
an HLIC sequence in another processor that requests such
a hardware lock is suspended by the hardware until this
occurs. There is no delay due to the buffered store
operations in the HLIC sequence that released the
hardware lock.

Simultaneous lock requests in the same cycle are rare
but must be handled. More often, a lock collision results
when one processor requests a lock when another
processor is in the middle of a locked sequence.
Simultaneous lock requests are resolved by the hardware
through the use of priority bits in each processor that
define which processor has the highest priority and
therefore obtains the hardware lock. The priority bits
are kept in a register in each processor, along with the

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

I l l
Not + DATA c E
Used

C
0 CMD x ‘0 I, ‘z I,

I l l

0 15 16 ... 55 56 57,58 59 60 61 62 63

DATA 40 bits, enough for a virtual address segment identifier

CMD: 2-bit command

EXC: 0 = Reset acknowledgment bits only
1 = Write command, data, and ID bits to all processor PIRs,

and cause a PIR intempt on processors with ID bit = 1

6-1, = ID @messor identification) bits for
processors 0-3, respectively

Processor intercommunications register (PIR) format.

hardware to detect and handle collisions. The priority
changes pseudorandomly over time to prevent any one
processor from having a constant disadvantage. Since all
processors implement the same pseudorandom algorithm,
the priority bits in all processors are consistent.

Processor intercommunications register
All multiprocessor systems require a message-handling
scheme to send messages between processors. The AS/400
multiprocessor design uses a hardware register, called the
processor intercommunications register (PIR), and an
efficient set of controls to send messages between processors.
Using a register instead of main storage permits processor
intercommunication without causing cache misses. The
PIR, duplicated in all processors, acts as a main-storage
location and can be protected with one of the hardware
locks. When a write to the PIR occurs, the PIRs of all
processors are set identically. A message-handling scheme
must be capable of causing an interrupt in the receiving
processor in order to have the message handled quickly.
In the A3400 design, that interrupt is handled by HLIC.

Figure 7 shows the PIR format. The ID (processor
identification) mask is included in the PIR, each bit
corresponding to one of the possible processors. A unique
main-store-interface command allows messages to be sent
to the PIR register. An additional PIR bit is used to
generate interrupts: When a message with the exception
bit on (EXC in Figure 7) is sent to the PIR, an interrupt
is caused in each processor whose ID bit is 1. To
acknowledge a message, a processor need only reset
its ID bit by sending a message to the PIR with the
exception bit off. No hardware lock is required to reset an
ID bit, because the hardware can reset the bit atomically.

I. E. BAHR ET AL.

1009

All copies of that PIR ID bit in all processors are updated
simultaneously to keep the ID fields in all processors
consistent. HLIC conventions allow using the PIR ID bits
as busy indicators. The HLIC can release the PIR lock and
process other IMPI instructions after sending a message,
rather than spinning in a loop until the ID bits are reset.
Hardware resets the PIR ID bits as other processors
respond to the PIR message. The HLIC does not send out
PIR messages when the PIR ID bits indicate messages still
outstanding.

The data field in the PIR (bits 16-55) is large enough
to send an AS/400 virtual-address segment identifier
from one processor to another. This field width allows
the PIR to be used to send to other processors the virtual
address of a segment to be purged from the lookaside
buffers of all processors. The data field is also used as
a command extender, since the CMD field contains only
2 bits.

Hardware primary-directory lock
The AS1400 system uses virtual addresses, which must
be translated to real addresses before main storage is
accessed. High-speed lookaside buffers in the processor,
as shown in Figure 5, contain the addresses of the most
recently translated page addresses. Special hardware
maintains the lookaside buffers and the primary directory
(the main table used in translating virtual addresses, which
resides in main storage and is shared by all processors and
all tasks). Lookaside buffer misses are handled by the
hardware; however, one of the hardware locks interlocks
hardware primary directory searches in order to allow
maintenance of the primary directory.

HLIC follows special rules in turning off the valid bit
associated with a virtual address in the primary directory.
When the valid bit is 0, any attempt to translate the
address causes a page fault. Also associated with the
primary directory entry for each virtual page are a
reference bit and a change bit. The reference bit is set
by the hardware if the bit is 0 when a virtual address is
translated using the primary directory. Subsequent virtual
address translation may use the high-speed lookaside
buffers. The change bit is set by the hardware if the
change bit is 0 when a store operation into the page is
performed. The reference bit acts as an indication to HLIC
that a processor lookaside buffer may hold a copy of a
primary directory entry. The reference bit is used by
HLIC in the following manner when implementing an IMPI
instruction that requires resetting the valid bit: If the
primary-directory lock is obtained and the reference bit is
0, the valid bit may be set to 0. If the reference bit is 1, a
PIR message is required to purge the page from all of the
lookaside buffers in order to keep the lookaside buffers
from being used subsequently to translate virtual addresses

1010 that are no longer valid.

J. E. BAHR ET AL.

Set bit function
The main-storage card provides a set-bit and a reset-bit
function, which is a special command that is executed
by the main-storage card as a read-modify-write of its
internal DRAMS. Therefore, the processor hardware does
not have to do a read-modify-write to set the reference
and change bits during a virtual-address translation using
the primary directory. This set-bit function avoids having
to interlock primary directory translations and allows
multiple concurrent translations.

Task dispatching
AS/400 multiprocessor task dispatching provides automatic
workload balancing among processors and, by using the
same objects and methods as were used by previous
uniprocessors, avoids the need for significant VLIC
changes. As with a uniprocessor, all ready-to-run tasks are
enqueued in priority order on a single, system-wide task-
dispatching queue in shared storage. The task dispatcher
can be invoked on any processor by an IMPI instruction.
It can also be implicitly invoked after the task-dispatching
queue is altered by a built-in function or IMPI instruction.
(The I/O interrupt handler is an example of a built-in
function that can alter the task-dispatching queue. IMPI
instructions that can implicitly invoke the task dispatcher
include those supporting semaphores and message
passing.) Task dispatching remains a built-in processor
function performed by HLIC between IMPI instructions.
The VLIC is not directly involved in either the decision to
switch tasks or the actual saving and loading of task state.

The only functional change caused by multiprocessing
that is visible to VLIC is that task selection is not based
solely on priority. “Processor eligibility” and “cache
affinity” also affect task selection. Eligibility can be used
by VLIC to restrict a task to a subset of the available
processors. Cache afinity identifies the processor on
which a task has most recently executed and, therefore,
the processor on which the task is likely to have the
highest cache hit rate and experience the best
performance. Other than initializing the new task-state
fields for processor eligibility, cache affinity, and current
processor, no VLIC changes were required for
multiprocessor task dispatching.

When invoked, the task dispatcher checks the task-
dispatching queue for changes since the last task-
dispatcher call executed on any processor. If the task
dispatcher finds changes, it searches the queue to
determine what task should be running on each processor.
If it is determined that processors other than the one
executing the task dispatcher must perform task switches,
a list of required task switches is stored in an HLIC
object in main storage, and the first processor required to
switch is signaled to run the task dispatcher. If the task
dispatcher, when running on this processor, finds that the

IBM J . RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

task-dispatching queue has not changed since the previous
invocation, the HLIC performs the task switch using the
information stored in the HLIC object rather than
repeating the queue search. (A task switch consists of
storing the state of the current task and loading state
information for the new task.) If the HLIC object indicates
that additional task switches are required, the next
processor on the list is signaled. This continues until all
required task switches have been completed or until a task
dispatcher finds the task-dispatching queue altered, the
latter causing the queue to be searched again and a new
list of required task switches to be generated.

Task selection is based on a combination of priority,
eligibility, and cache affinity. The task dispatcher selects
the highest-priority tasks, unless they are prevented from
being dispatched because of eligibility or cache affinity.
Eligibility is never overridden by the task dispatcher. If
all processors for which a task is eligible are assigned to
higher-priority tasks, the task is not dispatched.

If the processor for which a task has cache affinity is
assigned to a higher-priority task, the task is skipped (not
dispatched), unless doing so would result in a processor
remaining idle or an excessive number (as defined below)
of tasks with cache affinity being skipped. The skip
threshold is the limit on the number of tasks that may be
skipped because of cache affinity and is specified by the
VLIC. If the number of skipped tasks reaches the skip
threshold, cache affinity is ignored and the task is assigned
to any processor for which it is eligible. If tasks are
skipped and the end of the task-dispatching queue is
reached before each processor is assigned a task, cache
affinity is ignored and skipped tasks are assigned to the
remaining processors. When affinity is ignored, either
because of the skip threshold or in order to assign a task
to an otherwise idle processor, tasks that are closest to the
front of the queue are not selected, because they are
presumed to have stronger affinity than those farther back
in the queue. Tasks that are nearer the front will usually
have a shorter wait for their preferred processor and have
more data remaining in cache when they run, so system
performance will benefit more from skipping them than
from skipping tasks farther down the queue.

Initially, a task has equal affinity for all processors.
When a task is initially dispatched, processor selection is
based only on priority and eligibility. HLIC sets the cache
affinity of a task to a specific processor when the task is
switched to that processor. Certain IMPI instructions
that can result in a task being removed from the task-
dispatching queue for a long time can specify that the
cache affinity of the task be reset to the initial state.

Performance
Early in the development of the two-way multiprocessor
(Model D80), the performance objective was 1.7 times the

throughput of the Model D70 uniprocessor. This was a
15% degradation from the ideal performance (twice that
of a single processor). This factor was deemed a realistic
expectation for an initial multiprocessor scheme.

An interactive workload called RAMP-C (Repeatable
And Measurable PerformanceCOBOL) was used to model
and measure the performance of the A3400 multiprocessor
system. The workload simulates the activity of workstations
in commercial data processing. Clearly, other environments
might have caused a significant departure from the
performance values given. The performance analysis effort
for the multiprocessor machine included modeling the
hardware and software design prior to completion of the
hardware implementation and of the system performance
measurement.

Hardware and software design modeling
Various analysis techniques assessed aspects of AS1400
multiprocessor performance. The two major classes of
performance factors that required evaluation were
1) hardware and HLIC effects and 2) software
implications. Performance issues related to hardware
and HLIC included

Cache consistency.
Cache miss rate, both aggregate and dynamic.
Main-storage contention, which is related to main-
storage card and main-storage bus utilization.
Synchronization of instruction-class locks.
Lookaside buffer synchronization.
Queue-structure manipulation.
Task-dispatching algorithms.

Several models provided for assessment of the
performance questions. The first was a simulation model
that provided an understanding of main-storage contention
and the effect of cache-consistency maintenance. This
model was a low-level abstraction of the processor design.
It encompassed all aspects of the hardware design that are
shared facilities (e.g., cache data bus and memory-card
controller) and enough detail of other parts of the
architecture to cause all significant queuing effects to occur
in the simulation. The input to the model consisted of a
sequence of IMPI instructions generated on the basis
of frequencies observed for uniprocessors. Code that
emulated the HLIC for the IMPI instructions was used
to simulate the detailed interaction of machine facilities.

The second category of models consisted of analytic
approaches that evaluated the performance degradation
due to the instruction-class-lock implementations. The
frequency of occurrence of instructions in uniprocessors
was used in the calculations. Various instruction-class-lock
schemes, which hold class locks for different durations,
were evaluated. Degradation of throughput was determined,

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992 J. E. BAHR ET AL.

101 1

Main-storage-card utilization (%)

and trade-offs were made on instruction-class-lock design
schemes.

The third category of model was address-trace analysis,
which is important in helping one to understand cache
performance. Many real-address main-storage traces taken
from the earlier uniprocessor (AS/400 Model B70)
machines were used as input to models of a cache
directory. Reference patterns and overall behavior in
terms of cache miss rate were outputs of these models.

A fourth category of model was main-storage-card
utilization, one factor that is critical to multiprocessor
throughput. This parameter represents the percentage
of all machine cycles that a card controller is busy. The
simulation model used represented the processors simply
as originators of memory requests of various types.
Memory cards were defined to the model with parameters
describing the time for processing requests. For a given
configuration and set of parameters, simulation projected
the processor throughput.

A study of model results showed significant sensitivity
to the number of main-storage cards installed and the
speed of the DRAM chips used on the main-storage cards.
Main-storage-card utilization was greater with slower
DRAMS and with fewer main-storage cards. As card
utilization increased over 30%, throughput of the
multiprocessor dropped off, as shown in Figure 8 for a
two-way multiprocessor. (The uniprocessor throughput did
not vary significantly in the range of main-storage-card
utilization shown in Figure 8.) The AS1400 Model D80 has
DRAM chips with an 80-ns data access time and can

1012 have a maximum of six main-storage cards. With this

configuration, main-storage-card utilization averaged 22%
for the two-way multiprocessor.

throughput was reduced by 7.5% after consideration of
all hardware and HLIC factors. The contributors to this
degradation broke down roughly as follows:

Results of the modeling work showed that ideal

Instruction-class-lock contention (3.0%). This
degradation was a queuing effect that depended upon
the class-lock synchronization scheme.
Cache hit rate reduction (2.3%). This resulted from
processors interacting and changing data in shared
memory. The store-through cache design caused
directory entries that would not be affected on a
uniprocessor to be purged in a multiprocessor. This
resulted in a reduced cache hit rate.
Main-storage contention (1.6%). This effect was due to
contention for the shared main-storage controllers and
for the main-storage bus.
Task dispatcher multiprocessor overhead (0.6%).
Additional function provided in the HLIC task
dispatcher for multiprocessors requires additional
microcode path length compared with that of the
uniprocessor dispatcher.

A simulation model of the software was used to provide
an understanding of multiprocessor operating system
effects. The performance model simulated the flow of user
tasks and operating system tasks when the RAMP-C
benchmark was executed. The effects of cache affinity
(the ability to maintain tasks on the same processor to
maximize the cache hit rate) were observed by the model.
The effects of different algorithms for allocating tasks to
processors was a key element of this area of the analysis.
In particular, the skip threshold provides a means of
extending the search of ready-to-run tasks. Modeling
portrayed the effects of the skip-threshold value on the
cache affinity of tasks, as shown in Figure 9. Tasks with
affinity had a high initial cache hit rate. When the first 100
cache accesses had an 86% cache hit rate, the cache was
considered “hot.” Increasing the skip threshold provided
a greater probability of finding a task with affinity for an
available processor. As can be seen in Figure 9, a skip
threshold of 1 provided the preponderance of the benefit.
Little additional probability of finding a task with affinity
was gained for increased searches. Having a skip threshold
larger than 1 reduced the likelihood that the highest-
priority task would complete quickly.

2.2% due to all software effects. Thus, the total hardware
and software degradation was 9.7%. Based on an ideal
multiprocessor ratio of two times a single processor, the
modeled degradation implied a multiprocessor performance
factor of 1.81 for the two-way multiprocessor machine.

Modeling results showed a multiprocessor degradation of

J . E. BAHR ET AL. IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

Performance measurement
Two sets of internal performance counters are employed in
the hardware to measure multiprocessor performance. The
first set of counters accumulates data for each of the 21
unique states of the multiprocessor, including application-
run-time state, VLIC-run-time state, wait states, exception
states, and the suspended state. The suspended state,
unique to multiprocessors, is entered by one or more
processors when another processor executes an instruction
that suspends their IMPI instruction execution and task
dispatching. For each state, the counters accumulate the
numbers of a) instructions executed, b) processor cycles,
and c) times the state is entered. A second set of internal
counters monitors cache hits and misses, main-storage bus
use, and multiprocessor-lock conflicts. Measurements
undertaken on systems running the RAMP-C benchmark
show a degradation of 10.7% from the ideal multiprocessor,
or multiprocessor throughput of 1.79 times that of a single
uniprocessor.

Conclusion
The AS400 multiprocessor effort represents a significant
step forward for the AS/400 system. The intent of the
multiprocessor architecture was to minimize the software
changes required to support multiple processors. The
uniprocessor operating system was not significantly
changed to handle shared data objects, because either the
code already handled them for a multitasking environment,
or the relatively atomic instructions handle them for a
multiprocessor environment. The operating system already
used the IMPI instructions, which accessed IMPI-level
shared data structures and which could be redefined as
relatively atomic to provide interlocked accesses. The
relatively-atomic-instruction approach had much less of an
effect on the software than if the conventional approach
to interlocking instructions had been used. The design
includes a four-way processor used in the development
laboratory (since multiprocessor problems surfaced more
quickly in the four-way system).* The design provides
HLIC with the necessary mechanisms to efficiently
implement AS/400 multiprocessors and maintains both
simplicity and performance with minimal overhead.

Performance modeling of the AS/400 multiprocessor
helped us gain a better understanding of the task-
dispatching characteristics of the system and hardware
effects. This modeling enabled us to modify the HLIC
task-dispatching algorithm and ensure that the
multiprocessor met its performance objectives. The
performance models predicted a two-processor system
throughput of 1.81 times that of a uniprocessor. System
performance measurements indicated a factor of 1.79,
a 3% difference between model results and measurements.

I I I I I
0 1 2 3 4 5

Number of ready-to-run tasks skipped (skip threshold)

$ Skip threshold summary

Application System1400 and AS1400 are registered trademarks,
and System1370 is a trademark, of International Business
Machines Corporation.

VAX is a trademark of Digital Equipment Corporation.
Balance is a trademark of Sequent Computer Systems.

References
1. M. R. Funk, Q. G. Schmierer, and D. J. Thomforde,

“System Processor Architecture,” IBM Application
System1400 Technology, Order No. SA21-9540, pp.
100-103, June 1988; available through IBM branch offices.

2. B. E. Clark and M. J. Corrigan, “Application Systed400
Performance Characteristics,” IBM Syst. J . 28, No. 3,
407-423 (1989).

3. IBM System1370 Extended Architecture, Principles of
Operation, Order No. SA22-7085-0; available through IBM
branch offices.

4. R. N. Gamache and K. D. Morse, “VMS Symmetric
Multiprocessing,” Digital Tech. J . 1, No. 7, 57-63 (1988).

5. S. Thakkar, P. Gifford, and G. Fielland, “The Balance
Multiprocessor,” IEEE MICRO 8, No. 2, 57-69 (1988).

6. P. A. Bernstein, “Sequoia: A Fault-Tolerant Tightly
Coupled Multiprocessor for Transaction Processing,”
Computer 21, No. 2, 37-45 (1988).

“Synchronization, Coherence and Event Ordering in
Multiprocessors,” Computer 21, No. 2, 9-21 (1988).

7. M. Dubois, C. Scheurick, and F. A. Briggs,

Received October 1 , 1990; accepted for publication
January 2, 1992

*This four-way multiprocessor was recently announced as an IBM product
(AS400 Model E95).

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992 J. E. BAHR ET AL.

James E. Bahr ZBM Application Business Systems, Hwy. IBM Outstanding Technical Achievement Award and an IBM
52 & 37th St. NW, Rochester, Minnesota 59901 (JBAHR at Corporate Award for his work on the AS400 multiprocessor
RCHVMW2). Mr. Bahr is a Senior Planner, responsible for architecture. He received a B.S.E.E. from Marquette
system price/performance analysis of the AS/400 system. University in 1971 and an M.S.E.E. from the University of
Prior to this assignment, he was a performance analyst in Minnesota in 1980.
the Rochester Programming Laboratory, focusing on
multiprocessor performance. Past assignments include
technical and managerial positions in the Rochester
Engineering Laboratory for processor development. Mr.
Bahr holds one patent and has published two papers on
multiprocessor performance. He joined IBM in 1973 after
receiving a B.S.E.E. degree from the University of Minnesota.

Systemi38 and Systemi36 are trademarks of International Business Machines
Corporation.

Sheldon B. Levenstein ZBM Application Business
Systems, Hwy. 52 & 37th St. NW, Rochester, Minnesota
59901 (SHEL ut RCHVMX). Mr. Levenstein is a Staff
Engineer in AS/400 High End Processor Development. He
joined IBM in 1980 as a junior engineer and has been involved
in the development of the AS400 processor chips. He has had
several assignments dealing with processors, storage control,
and multiprocessor design. Mr. Levenstein has applied for
four patents; he was awarded an IBM Outstanding Technical
Achievement Award for his contributions to the AS/400
multiprocessor effort. He received a B.S.E.E. from the
University of Illinois in 1980.

Lynn A. McMahon ZBM Application Business Systems,
Hwy. 52 & 37th St. NW, Rochester, Minnesota 59901
(MCMAHON at RCHVMX). Mr. McMahon is an Advisory
Programmer in the AS/400 HMC development group. He
joined IBM in 1977 as an associate programmer and worked
on various emulation and device-control microcode projects
before becoming involved in horizontal-microcode
development for the System/3gTM and AS/400 processors.
Mr. McMahon has received two patents and applied for
four others; he has received an IBM Outstanding
Technical Achievement Award for his work on the AS/400
multiprocessor IMP1 definition. He received a B.S. degree in
computer science in 1975 and an M.S. degree in computer
science in 1977, both from Iowa State University.

Timothy J. Mullins ZBM Application Business Systems,
Hwy. 52 & 37th St. NW, Rochester, Minnesota 59901
(MULLINS at RCHVM3). Mr. Mullins joined the Rochester
Development Laboratory after receiving a B.S.E.E. degree
from the University of California at Berkeley in 1977. He has
done work in the design and development of input/output
controllers for System/38 user-terminal devices, such as
workstations and operator consoles. Mr. Mullins later became
involved in CPU development in the areas of logic design and
timing analysis. In 1982, he received an M.S.E.E. degree from
the University of Minnesota. Mr. Mullins is currently an
Advisory Engineer in the Rochester Laboratory Hardware
Design Center and is involved in AS/400 system design and
performance analysis.

Andrew H. Wottreng ZBM Application Business Systems,
Hwy. 52 & 37th St. NW, Rochester, Minnesota 59901 (AHW
at RCHVMX). Mr. Wottreng is a Senior Engineer in the
AS1400 High End Processor Architecture and Definition
Department. He joined IBM in 1974 as a Junior Engineer,
and has been involved in the development of System/34,
S y ~ t e m / 3 6 ~ ~ , and AS/400 processors. He has had several
assignments dealing with chip designs, performance modeling,

1014
maintenance procedures, and architecture. Mr. Wottreng has
received one patent and applied for another; he received an

J. E. BAHR ET AL. 1BM J . RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

