
Unique design by M. Kumar 

concepts 
in GF11 
and their impact 
on performance 

GF11 is a 512-way SlMD parallel  computer 
currently  used to verify  quantum 
chromodynamics  theory  and to explore  the 
SlMD approach to parallel  processing.  System 
design  choices,  such  as  network  design, 
processing  element  design,  and  other 
architectural  features,  allow GFl l  to sustain 
very high performance,  close to the 10- 
gigaFLOPS  peak.  Several  applications,  such 
as structural analysis,  seismic  modeling, 
computational fluid dynamics,  and  linear 
algebra,  have  been ported to GF11. 
Applications  execute in the  range  of 4 to 10 
gigaFLOPS.  The diversity in applications  that 
perform  well on GF11 demonstrates  that the 
SlMD architecture is effective for a  much  larger 
set  of  applications  than  previously  believed. 
The high network  and  data-memory 
bandwidths  minimize  the effort required to 
tune  applications for optimum  performance. 

Introduction 
GFll is a 512-way  SIMD (single-instruction-stream 
multiple-data-stream) parallel computer that is operational 

at the IBM Thomas J. Watson Research Center [l-71. 
Though its peak performance of  10 gigaFLOPS (GFLOPS) 
has been surpassed by several other computers, it  is still 
unique in its ability to sustain performance close to its 
peak on a wide range of scientific  and  engineering 
applications. (The floating-point chips and  memory 
technology used in GFl l  are almost two generations 
older than those used  in current parallel computers. The 
performance of floating-point arithmetic logic  unit chips 
and the density of memory chips have increased by more 
than a factor of  10 since the selection of components for 
GFll  in  1984. Thus, the appearance of computers with 
higher peak performance is  not surprising. However, GFl l  
has several unique system-design concepts that enable it to 
sustain a very high fraction of its peak performance on 
most applications. Therefore, current parallel computers, 
even with  higher peak performance, cannot match the 
sustained performance of GFl l  on several important 
applications [8, 91.) 

The GFl l  hardware consists of 566 identical processors 
and  10 disk drives connected through a 576 x 576 Benes 
network [lo]. A central controller controls the operation of 
all processors, disk drives, and the network. (It is possible 
to replace the 10 disks with processors so as to have 576 
processors, as described in  [2], or to replace processors 
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with disk drives.) Each processor has a peak performance 
of 20 megaFLOPS (MFLOPS). (Each processor has two 
floating-point adders and two floating-point multipliers, all 
operating at 5 MFLOPS. The peak processor performance 
of 20 MFLOPS is achieved when all four floating-point 
units are continuously busy.) Therefore, the maximum 
possible performance of a 566-processor system is 
11.3 GFLOPS. However, 500 or 512  of the 566 
processors, depending on how the data in an application 
can be partitioned, are intended to be used by  an 
application program at any  given  time,  and the remaining 
ones function as spares. Thus, from the application point 
of view, the peak performance of GFll  is  10 GFLOPS. 

A high-level overview of GFll  is shown in Figure 1; 
details can  be  found  in  [2, 41. Each processor has its own 
data memory (there is  no shared data memory). A single 
copy of the program exists in the program  memory in the 
central controller, and instructions broadcast from the 
program memory are executed by all active processors as 
soon as they are received by the processors. The whole 
system operates with a 50-ns machine cycle, and the 

network transports one byte of data received from the 
processor at every input  in each cycle. 

GFll  was designed  by John Beetem, Monty M. 
Denneau, and Donald H. Weingarten, and  is described 
in detail in  [l-71. Several individuals made  significant 
contributions to turn the design into an operational system 
(see the Acknowledgments), and Yurij A. Baransky played 
a pivotal role in demonstrating the usability of GF11. 
Many applications have been programmed on GFl l  since 
it became operational in November 1990  [4, 51. In the next 
few sections of this paper we describe the unique design 
concepts of GF11, such as the use of a Benes network to 
provide conflict-free, low-latency interprocessor 
communication for a large number of communication 
patterns (up to 1024), system-wide synchronous operation, 
the ability of each processor to perform multiple 
operations concurrently in each machine cycle, and the 
balanced design of the memory system. GFll  is the only 
parallel computer in which interprocessor communication 
is synchronous with respect to the computations in the 
processors. We also discuss how these design 991 
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choices contribute to the efficient operation of the entire 
system. 

of programming various scientific and  engineering 
applications on  GF11. Not only did this programming 
activity prove the effectiveness of the GFl l  design 
concepts iu  enabling GFl l  to sustain more than 50% of its 
peak performance on a large  number of applications, but it 
also demonstrated that good designs for the network and 
memory subsystems reduce the effort required for 
restructuring the application programs or developing new 
algorithms for optimal performance. The significant  effect 
of the network approach for interprocessor communication 
on the performance of applications is also discussed. 

Prior to the availability of current SIMD machines 
[ l l ,  121, the SIMD architecture was widely believed to be 
effective for only a small set of scientific and  engineering 
applications-those characterized as using explicit finite 
difference methods on structured grids. Nonetheless, 
applications outside this narrow domain have been 
successfully programmed  on GFll  and other parallel 
machines. These new application results [12-151 and 
analyses [16] suggest a much wider applicability of the 
SIMD architecture. 

In the last section of this paper, we analyze the outcome 

Innovative use of Benes  network  for 
interprocessor  communication 
The earlier SIMD computers connected processors directly 
with one another in simple topologies, primarily the mesh 
connection [17-201. Communication on the network was 
controlled directly by the instructions of the application 
program. In these computers, communication was very 
efficient if the communication pattern of the program 
conformed to the connectivity of the processors (for 
example, each processor communicating only with its 
nearest neighbors on a 2D mesh of processors). 
Communication could be optimally coordinated with the 
calculations. However, more general communication 
patterns in a program  had to be broken down by the user 
or compiler into simpler steps that conformed to the 
connectivity of the processors, and the communication 
was extremely inefficient for many of these patterns. 

In addition to the above type of communication 
mechanism, current SIMD computers use the hypercube 
(e.g., MasPar [ll]) and  shuffle-exchange  (e.g.,  CM-2  [12]) 
types of networks. Because of their “self-routing’’ nature, 
these networks can handle more general patterns of 
interprocessor communication, but they operate 
asynchronously with respect to the processing elements 
and introduce significant overhead into the communication 
process. The sources of this overhead are analyzed below. 
This communication overhead also adversely affects 
performance of  MIMD (multiple-instruction-stream 

992 multiple-data-stream) computers [21,  221.  By using a Benes 

network, GFll  can provide full connectivity between the 
processors without incurring the overhead of asynchronous 
operation. 

Benes networks were proposed for handling telephone 
traffic in  1961 [lo], and their use in parallel processing was 
suggested in the early eighties [23-251. However, GFll  is 
the only parallel computer that uses this type of network 
for interprocessor communication. The approach of using a 
set of preprogrammed switch settings, discussed below,  is 
the idea essential to the use of the Benes network in a 
SIMD parallel system. The key characteristics of this 
network and their contribution to the efficiency of the 
overall system are discussed below. The network is 
perhaps the most important factor that allows GFll  to 
sustain performance close to the peak on a wide variety of 
applications. 

Characteristics of the GFll  interconnection network 
The communication network in GFll  is a three-stage 
Benes network, constructed from 24 X 24 switches with 24 
such switches in each stage. The data paths in the switches 
and network are one byte wide.  In  an ordinary Benes 
network, these switches must  be able to connect the 24 
inputs to the outputs according to any permutation. The 
24 X 24 switches used in  GF11, however, are more general: 
They allow inputs to be connected to multiple outputs. 
Each of several switch inputs can broadcast its data to 
multiple switch outputs simultaneously, as long as two 
inputs do not attempt to broadcast to the same output. 
This communication pattern, in which each of multiple 
inputs simultaneously broadcasts its data to multiple 
nonoverlapping outputs, is  known  in the literature as 
multicast communication. Using this structure, the GFll  
network has the following characteristics: 

Full connectivity Benes networks have the same 
functional capability as full crossbar switches; i.e., they 
can provide connections from all the network inputs to the 
network outputs simultaneously, according to any specified 
permutation. Networks with this property are known  in 
the literature as nonblocking networks. Furthermore, the 
added capability of the switches to perform multicast 
communication allows the GFll  network also to perform 
multicast communication efficiently. The network can 
deliver data from each of its several network inputs to 
multiple nonoverlapping network outputs simultaneously. 
However, while any permutation can be performed by 
sending data once over the network, data must be sent 
over the network twice to perform a multicast. In the first 
pass over the network, the data broadcast from each input 
is replicated within the network in order to create  as many 
copies as the number of outputs to which it  must be 
broadcast. Then, in the second pass, the correct number of 
copies available for each broadcast item are permuted in 
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order to deliver them to the desired outputs. Details of the 
algorithm  used to perform multicast communication can be 
found  in [26]. 

Fixed delay In a SIMD parallel processing environment, 
the nonblocking property implies that if in a given cycle 
each processor sends a word of data to another, according 
to any permutation between the sending  and the receiving 
processors, all processors will receive their data 
simultaneously after a fixed  number of cycles. The delay 
depends only on the hardware implementation of the 
Benes network and is independent of the pattern of 
communication. 

Use of precomputed switch settings Benes networks 
require substantially less hardware than full crossbar 
switches, at the expense of requiring a more complex 
algorithm to calculate the switch settings needed to 
provide each specified permutation. In contrast, the 
frequently used  multistage networks in  MIMD computers 
use very simple algorithms, which are essentially 
implemented in switch hardware. The switches determine 
their own settings by examining the destination-address 
part of each message packet while the packet, consisting of 
the data and the destination address, passes through the 
network. Networks of this type are known as self-routing 
networks. 

The drawback of requiring complex algorithms 
(therefore, complex hardware) to determine switch settings 
is eliminated  in GFl l  by allowing the switch settings for a 
predeclared set of communication patterns to be computed 
and loaded into the switches in the network. The network 
can store the switch settings for 1024 permutations, and a 
switch setting, once stored, can be used by simply 
broadcasting a 10-bit switch-setting number  from the 
central controller to the network. When all processors 
simultaneously send a word across the network as a result 
of executing an identical instruction received from the 
central controller, the 10-bit switch-setting number  is 
simultaneously broadcast from the central controller to 
all the switches in the network and  is  used to select the 
precomputed switch-setting for the desired permutation. 
Thus, even the simplest routing algorithm need not be 
executed in the switch. 

Advantages of the GFll  network 
The GFl l  interconnection network, because of its above- 
mentioned characteristics, has several advantages over 
the most commonly used self-routing network. These 
advantages, discussed next, allow the network to 
efficiently  meet the interprocessor communication 
requirements of almost all applications we have studied 
and to hide the communication overhead completely by 
overlapping it with the calculations being performed by the 

processors and by eliminating the involvement of the 
processors in the communication process. 

High  bandwidth sustained for any  definable interprocessor 
connectivity pattern In  almost all applications studied, 
GFll  processors exchange data with other processors at a 
rate close to the peak network bandwidth of  20 megabytes 
(MB)  per second per processor (011 GB/s for 566 
processors). Since the peak performance of each processor 
is 20 MFLOPS (a total of =ll GFLOPS), the ratio of 
communication bandwidth to computational power for 
arbitrary communication patterns is almost two orders of 
magnitude better than that of most contemporary parallel 
computers [27, 281. This is primarily because of the 
nonblocking nature of the Benes network. 

Since the network can support any permutation or 
multicast communication pattern, the processors can easily 
be  configured or logically connected as arrays of various 
dimensions and of different extents in each dimension, 
or as rings, tori, butterflies, trees, etc. [Specifying a 
permutation for the GFll  network is equivalent to 
specifying the interprocessor connectivity pattern or 
configuration. For example, assume that the P processors 
are numbered from 0 to P - 1. If the permutation pattern 
on the Benes  network connects network  input i (0 5 i < P )  
to network output i + 1 modulo P ,  the processors are 
logically connected or configured as a ring.] An application 
program  may use several configurations during its 
execution. As long as these configurations are declared in 
the application program, switch settings can  be computed 
by the compiler for each configuration  and loaded into 
the switch when the program  is  loaded into memory, or 
computed and loaded into the switch as a part of the 
program initialization phase (depending upon whether 
the configuration  is  known at compile time). Settings for 
1024 configurations can be stored in the switches of the 
network. During the execution of the program, the 
central controller can select any stored configuration  for 
interprocessor communication by broadcasting the switch- 
setting number to the network. 

The configuration to be used is  specified  in every GFll  
instruction that causes data to be transferred over the 
network, and  is  found in the “switch-setting number” 
field  in the instruction. Word transfer for the previous 
instruction is completely overlapped with switch setting for 
the current instruction. Since transfer of a word (four 
bytes) takes four cycles (200 ns), a GFll  program  could 
change configurations five  million times a second while 
maintaining the data transfer rate of 20 MB/s per 
processor. 

No packetizationldepacketization overhead To send 
a message  from one processor to another in a parallel 
computer with a typical self-routing network, the sending 993 
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processor must  first  form a packet consisting of the data to 
be sent and the address of the destination processor. An 
operating system routine is invoked to form the packet and 
relay it to the network interface. The destination address 
and data to be transmitted are provided as parameters by 
the user program to the operating system routine called. 
Similarly, the receiving processor also invokes an 
operating system routine to receive the packet from the 
network interface and to retrieve the data field  from this 
packet. Depending on the software implementation, this 
process can require the processors to execute from a few 
extra instructions to several thousand. 

By comparison, completing the transfer of a word 
over the network in GFll  uses only a few  fields of one 
instruction. An instruction in the single  program 
controlling all processors specifies a memory-read 
operation, one bit to specify that the data being  read out of 
the processor memory should be placed on the network 
interface, the number of the precomputed switch setting to 
be used by the network, and a final  bit to specify that the 
processor register file should receive a data word from 
the network interface after the k e d  network delay. For 
most cases there is  no  difference between a simple load 
operation from their own data memories and the transfer 
of a word over the network from remote processor data 
memories. (In very rare cases, in which network data 
transfers are required more frequently than once every 
four instructions, additional delay occurs because of the 
byte-wide data path.) 

Simple  hardware,  no  queues, no queuing delays From 
the hardware point of view, the network interfaces in 
GFll  are also trivially simple.  Both the send and receive 
interfaces are simply shift registers to convert between 32- 
bit processor data paths and byte-wide network data paths. 
The simplicity of network interface hardware minimizes 
the latency through the network. Also, since the network 
is  nonblocking, there is no need to queue the messages in 
the switches or the network interface. This simplifies the 
switch design. 

Shorter  messages, no routing  delays In a self-routing, 
packet-switched network, each switch must examine the 
destination-address part of the message to determine its 
route through the network. This adds to the delay through 
the network. With precomputed routes for the flow  of data 
through the network, the GFl l  network does not incur this 
added delay. Also, since the route of the data has been 
precomputed, there is  no  need to carry the destination 
address with the data. This results in shorter messages and 
more  efficient  utilization of the network bandwidth. 

Replacement of failing processors by  spares Since 
994 Benes networks can support all permutations, any subset 

of processors can be chosen from the set of available 
processors for running an application. Network faults can 
also be avoided by not  using the processors affected by 
the faulty network switches. The application program is 
always written in terms of logical processors and the 
logical connectivity patterns between them.  The run-time 
environment maintains a list of operational (physical) 
processors, chooses a subset of the operational processors, 
and maps them to logical processors. The switch settings 
are then computed to provide the logical connectivity 
requested by the application. 

if faulty processors are discovered (by running the 
diagnostics or looking at the status information in the 
processors), the mapping between the logical processors 
and the remaining  good processors is performed, including 
the recalculation of the switch-settings, so that the faulty 
processors may be replaced and the calculation restarted 
from the previous checkpoint. 

Checkpoints are inserted in lengthy applications, and 

System-wide synchronous operation 
Another very important, unique feature of GFll  is that 
the operation of the multistage network, like that of the 
processing elements, is controlled by the application 
program instructions. This is possible because delays 
through the Benes network are k e d .  Thus, calculations 
within processors and communication over the network are 
synchronized. Similarly, the transfer of data from the 1/0 
disks to and  from the processor local  memories  is also 
synchronized with the calculations in the processors. This 
is accomplished by using  buffers  with the disks that can 
transmit data to and receive data from the GFll  network 
synchronously, under the control of the program 
instructions. In fact, all components of the GFll  system 
(the central controller, the instruction-distribution bus, the 
1/0 buffers,  and the network) operate synchronously, using 
a common clock distributed throughout the GFll  system. 

synchronously in other SIMD computers [ l l ,  151. Thus, 
their interconnection network delays cannot be determined 
at compile time, because the networks used by the other 
computers are self-routing and blocking. Therefore, the 
operation of the network cannot be synchronized with the 
operation of the processing elements. Since data from the 
1/0 devices are transferred to the processor data memories 
through the network, data transfer from the 1/0 devices 
cannot be synchronized with the calculations either. The 
advantages of having system-wide synchronous operation 
are given  in the following subsections. 

In contrast, only the processing elements operate 

Low  synchronization  overhead Most applications 
implemented on parallel computers have a large number 
of computation steps or phases, usually separated by 
communication steps. If the communication delays are 
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nondeterministic, the processors must be synchronized 
after each communication step, especially in a SIMD 
computer, because synchronization is the only mechanism 
to ensure that data transmitted over the network in a 
communication step arrive at the processors before the 
computation step that uses them begins. 

elements is controlled by the same instruction sequence. 
When a communication step initiated by some instruction 
causes the processors to send data out to the network, all 
the receiving processors are guaranteed to receive their 
data in the same cycle following the fixed network delay. 
Therefore, no synchronization code is necessary to detect 
the completion of a communication step. 

In  GF11, operation of the network and of the processing 

Opportunity for overlapping calculations with 
communication  and I10 operations Since the delay 
through the network is constant and all the switches in the 
network as well as all the processing elements operate 
synchronously, using a common clock, the GFl l  compiler 
can optimally interleave computation with communication. 
For example,  following an operation that transmits data 
over the network, an arithmetic operation that uses the 
data as an  input operand can be initiated after a delay 
equal to the network delay. The operand, when received 
from the network, is used immediately in the arithmetic 
operation, without having to be stored in the receiving 
processor memory first. This eliminates the additional 
delay that would be incurred if the data being received 
from the network were first stored in the memory  and 
then read back as an  input operand, and also reduces the 
likelihood of memory bandwidth becoming a bottleneck. 

to the processing-element memory can be initiated by an 
instruction in the program; then the processing elements 
can access the data  as soon as they arrive, because the 
delay from the 1/0 device buffer to the processing element 
memories is  fixed (determined solely by hardware). 

Similarly, the transfer of data from the I/O-device buffer 

Memory organized to provide high bandwidth 
The processors in GFll  can overlap the calculations being 
performed by the arithmetic unit with data transfer from 
the memory subsystem and  with the address calculation 
arithmetic for memory accesses. Thus, unlike  most other 
computers, GFll  does not require extra cycles for memory 
accesses and address calculations, and for most 
instructions the processors perform useful arithmetic 
operations. The three levels of memory hierarchy, 
described below,  allow processing elements to access 
operands without incurring memory-access delays. 

Balanced memory hierarchy 
The organization of the GFll  memory subsystem is shown 
in Figure 2. Each processor in GFl l  has 2 MB of memory; 

therefore, a 512-processor system has 1 GB. Memory on 
each processor, implemented in  DRAM technology, is 
organized as two banks with 256K  32-bit words each. If 
the two DRAM banks are accessed alternately, a sequence 
of load operations or a sequence of store operations can be 
performed once every four cycles (an arithmetic operation 
is performed once per cycle). However, because of the 
hardware design, if consecutive accesses are to the same 
DRAM bank or the load and store operations are 
intermixed, the bandwidth to the DRAM is reduced. 
Without a faster intermediate memory, the DRAM 
bandwidth would clearly be the bottleneck in most 
applications. 

To prevent the DRAM bandwidth from  affecting the 
performance of GF11, data from the DRAM are moved 
into a 16K-word buffer  implemented in static RAM 
(SRAM) technology, and  from there into a 256-word 
register file. The SRAM buffer can be accessed once every 
cycle, and the register file can be accessed four times 
every cycle (four accesses per arithmetic operation). Two 
of the four accesses to the register file provide operands 
for the arithmetic unit, one access is  used to store back the 
result of the arithmetic operation, and the fourth access is 
used to bring a new data word into the register file from 
the SRAM or the network or to transfer a result back from 
the register to the SRAM or the relocation registers for 
SRAM and  DRAM. 

The  SRAM is used mostly as a user-programmable 
cache. In many computation-intensive scientific or 
engineering problems, the data being manipulated consist 
of large  multidimensional arrays, and essentially identical 
operations are performed  on the individual elements of an 
array. The SRAM  buffer is used to hold  in one section of 
the array data from the DRAM and manipulate it (possibly 
requiring several accesses to it) before writing it back to 
the DRAM (if it  is  modified). This mitigates the impact of 
limited DRAM bandwidth. The register file is  large  enough 
to store all the scalar data being  used by the program  and 
to store a few vectors of modest size. 

Hardware support for address calculation 
The memory subsystem contains hardware to support 
address calculations for data in SRAM and DRAM. Each 
SRAM address can be modified by adding  an  offset to it 
from one of  256  SRAM relocation registers. Two accesses 
are performed on relocation registers for each instruction: 
a read access to obtain the relocation amount to be added 
to the SRAM address being broadcast in the instruction, 
and a write access to update one of the relocation 
registers. Each instruction carries, in addition to the 
SRAM address, the read and write addresses for the 
SRAM relocation registers. The DRAM address can be 
modified  similarly by adding the offset  from the single 
DRAM relocation register to the DRAM address being 995 
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broadcast in the instruction. One relocation register 
suffices for the DRAM, because the DRAM is accessed at 
most once every four cycles and the relocation values can 
be obtained from the SRAM, as shown in Figure 2. 

The address relocation hardware gives each processor 
the ability to generate a different  SRAM or DRAM address 
based on local data. This is  useful in many situations, 
some of which are the following: 

Indirect addressing into arrays stored locally within the 
processors, and into large arrays distributed across data 
memories of  all processors. The latter situation occurs 
very frequently in  all unstructured grid applications; an 
efficient way to handle it  on GFll  is  explained in the 
discussion of PAM-CRASH implementation in [SI. 
The capabilities of the GFll  network are also 
crucial in  handling indirect addressing across large 
arrays. 

Table lookup for calculating transcendental functions, 
using series expansion. 
Table lookup for properties of materials when simulating 
a physical  medium, where the property has different 
values for different ranges of some other variable being 
computed in the processors. 

graph according to some rule that prescribes a different 
In combinatorial algorithms, for traversing a tree or a 

996 path for each processor. 

Multiple  concurrent  operations  per  instruction 
It was mentioned in the preceding section that arithmetic 
operations are overlapped with network operations and 
memory operations. Actually, multiple activities occur 
within the arithmetic section and the memory section of 
the processors. We call such architectures, in which 
several operations are performed concurrently by each 
processing element for each instruction, “super-scalar.” 
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Table 1 Performance sustained by GFll on scientifidengineering  applications. 

Application Number of Performance Problem sue 
processors used (GFLOPS) 

PAM-CRASH  (finite  element  method) 500 5.5 10,000 elements 
TPP  (linear  algebra,  LU  decomposition) 500 4.3 1000 x 1000 
TPP  (linear  algebra,  LU  decomposition) 500 5.6 2500 x 2500 
TPP  (linear  algebra,  LU  decomposition) 450 7.4 5400 X 5400 
Gaussian elimination 500 9.3 2500 X 2500 
Gaussian  elimination 500 9.5 6000 x 6000 
2D FFT 512 7.2 1024 x 1024 
Shallow Water equations  (weather code) 512 7.5 256 x 256 
Matrix  multiplication 512 10.0 1024 X 1024 

The GFl l  processors can perform the following operations 
concurrently in each instruction (50-ns cycle time): 

An arithmetic operation (integer or floating point), for 
which the operands are received from the register file 
and the computed result is stored back in the register 
file. 
A shift or rotate (logical or arithmetic) operation on one 
input operand, if the simultaneous arithmetic operation is 
an integer or logical operation. 
A read or write operation on the SRAM. For a read 
operation, the data retrieved from the SRAM can be sent 
to the register file, the DRAM, the network, another 
location of the SRAM  itself, the relocation registers, or 
the central controller. (If  multiple processors send data 
to the central controller simultaneously, the central 
controller receives the “logical  OR” of the data sent.) In 
the case of a write operation, the data to be loaded can 
come from the register file, the DRAM,  an  immediate 
operand in the instruction, or another location in the 
SRAM  itself. 
A write operation to the SRAM  and  DRAM relocation 
registers. The data written are the same as those 
available for writing to the SRAM  during that cycle. 

relocation registers, as described in the preceding 
section. 
Selecting a bit  from the several condition code bits 
generated by the current operation, and storing it in one 
of the eight 1-bit condition code registers in the 
processor. 
Performing  five  read operations on the condition code 
registers, and  using the logical values read back to 
conditionally disable the write operation into the SRAM 
or DRAM, to disable the data transfer to the central 
controller, and to modify the network and integer ALU 
operations. Thus, even  though all processors receive the 
same instruction, different operations are performed for 
it  in different processors, depending on the logical values 
stored in the condition code registers. 

Translation of the SRAM address using  SRAM 

In addition to the above operations, which are 
performed for every instruction, the following DRAM and 
network operations can occur once every four instructions: 

A word is transferred over the network according to the 
specified communication pattern. It takes four cycles to 
transfer a word because the network is one byte wide. 
A new communication pattern is selected for the next 
word transfer. 
A word  is stored into the DRAM (either from the SRAM 
or the immediate operand), or a word  is  read  from the 
DRAM. The DRAM-bank cycle time of four cycles is a 
technology limitation. The compiler  must determine that 
no  DRAM-bank  conflict  will occur; bank conflicts reduce 
the access rate. 

The instruction broadcast from the central controller has 
201 bits. Of these, 177 are sent to the processors, and the 
remaining ones control other parts of the system. In the 
177 bits reaching the processors, 85 are used as addresses 
for various memories and registers, 32 are used as the 
immediate operand, and the rest directly control the 
operations in the processors. 

Though the processors in GFll  perform only one 
arithmetic operation in each instruction, they do many 
other operations to move data, so that operands are 
available for an arithmetic operation in every cycle. This 
contributes significantly to the ability of GFll  to sustain 
near-peak performance on  most applications. Most other 
processors spend a significant  number of cycles to get the 
operands to the arithmetic units. 

Summary of application  studies 
Since GFll  became operational, several scientific/ 
engineering applications have been programmed  on  it. 
Some of the representative applications are listed in 
Table 1. The key application remains quantum 
chromodynamics. More detailed discussion on the 
implementation of these applications on GFll  can be 
found in  [3-7,  291. The decision concerning the number of 997 
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processors to use depended upon  how the problem could 
be conveniently partitioned. The key observations from 
this programming  effort are as follows. 

High sustained pegormance 
It is quite clear from Table 1 that GFll  sustained 
more than 50% of its peak performance on all of the 
applications. This ratio of actual performance to peak 
performance is significantly better than that being observed 
on the currently available parallel computers [8, 91. 
Imbalance between the number of add  and  multiply 
operations in a GFll  application is usually the primary 
cause of the gap between the peak and actual performance. 
To achieve the peak performance, the two floating-point 
adders and two floating-point  multipliers in each processor 
must be continuously busy, requiring the application to 
have an equal number of add and  multiply operations. 
This imbalance accounts for almost all of the performance 
degradation in the Shallow Water benchmark [14] and half 
of the performance loss in the PAM-CRASH benchmark 
15,  301. 

remaining performance loss in PAM-CRASH,  which could 
have been avoided if domain decomposition [31] or some 
similar approach had been used to reduce the network 
traffic, instead of the most straightforward data-partitioning 
scheme, which was chosen for this implementation. The 
memory or network bandwidths rarely become serious 
bottlenecks in  GF11. 

Network bandwidth limitations account for the 

The performance of GFl l  on the TPP benchmark for 
a 1000 X 1000 matrix (4.3 GFLOPS) is still the highest 
absolute performance achieved on any computer for 
a matrix of this size [32]. For this matrix size, the 
performance loss is primarily due to the distributed 
memory aspect of GF11,  which creates load imbalance 
during the execution of the program [5]. Naturally, for a 
larger matrix (6000 X 6000) the performance improves. 
Though current parallel computers can claim  higher 
absolute performance on even larger matrices, their 
ratios of actual performance to peak performance are 
substantially lower. 

In  addition to the applications listed in Table 1, a neural 
network simulation program [33], a program to simulate 
the evolution of galaxies [4],  an FFT program,  and a wave 
mechanics application from Sandia National Laboratories 
[34] have also been implemented  on  GF11. All of these 
applications sustain good performance (in excess of 50% 
of the peak) on GF11. 

Ease of developing and debugghg new programs 
The programming  model for SIMD computers is inherently 
simpler  than the programming  model  for  MIMD  computers, 
because there is a single flow  of control. In the 

998 programming  model  for  MIMD computers, one must 
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generate the multiple  flows of control and coordinate them. 
The  MIMD  programming  model is less restrictive but more 
complex. Most of the programs implemented on MIMD 
computers follow the SIMD  programming  model [16]. 

was  easy to develop an instruction-level simulator for a 
GFll  system comprising a few  (4 to 16) processors and 
small data memories. This simulator proved extremely 
useful  in  initial development and  debugging of GFll  
programs. Since the simulator runs on  an  IBM  RT PC@ 
workstation, the initial application development did  not 
depend on the availability of GFll  hardware. 

The SIMD architecture and system-wide synchronous 
operation also guarantee that program execution can be 
repeated with identical results. In  GF11, the application 
program can be stopped after the execution of any 
instruction, and the values of its data structures can be 
examined. This further simplifies the task of debugging 
programs. 

Because of the system-wide synchronous operation, it 

Ease of programming for optimum pe~ormance 
The architectural features that enable GFll  to sustain 
high performance consistently also simplify the task of 
achieving this performance. Because of the high network 
and memory bandwidths, a simple partitioning of the 
program  suffices in most cases because it does not usually 
create memory or network bottlenecks. In  most other 
parallel computers, such bottlenecks appear more readily, 
and complex program transformations and data partitioning 
are required to circumvent them. The research community 
in parallel processing has already invested significant  effort 
in developing new algorithms to efficiently use parallel 
computers with  limited interprocessor communication 
bandwidth, and users of these algorithms may perceive 
the GFll  network as overkill. However, we believe that 
new applications will continue to be developed, and 
architectures like GFll  will accelerate the development of 
new applications for parallel computers by freeing the 
programmer from the burden of program transformations 
and  having to invent new  parallel algorithms. 

For example, if the standard matrix multiplication 
algorithm,  in which the inner product to determine one 
element of the result matrix is performed in the innermost 
loop, were partitioned naively on GFll  to calculate one 
column of the results matrix on every processor, GFll  
would  still sustain 5.0 GFLOPS, even though the 
computation-to-communication ratio has dropped to 
0.5 FLOPS per byte from  =40 in the more sophisticated 
partitioning described in  [4]. To achieve 10-GFLOPS 
performance, it was necessary to restructure the 
program  [4]. 

In the Shallow Water benchmark included in Table 1, 
the 2D matrix data were assigned one row per processor. 
This partitioning is  much simpler than the blockwise 
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partitioning necessary in other computers, and it uses 
simpler interprocessor communication patterns. It was 
possible to use the simpler partitioning because the 
network could handle the extra communication generated 
by  it without increasing the computation time.  Similarly, in 
the PAM-CRASH application, data were partitioned in a 
straightforward manner, and  domain decomposition 
algorithms were not  needed to reduce the communication 
overhead. 

The execution time of a sequence of instructions on 
GFll  can be determined precisely from the number of 
instructions in the sequence, because each instruction 
takes exactly one cycle to compute. (In traditional 
processors, however, a load operation, for example, takes 
different times to complete depending on whether the data 
are in the cache or not.) Even the conditional operations 
take one cycle, irrespective of whether they are performed 
or not. Therefore, the performance of a program can be 
readily determined by counting the number of instructions 
in the compiled code of various subroutines, and 
performance tuning can be done without actually running 
the programs. 

Conclusions 
By sustaining more than 50% of its peak  on several types 
of scientific and engineering programs, GFll  has provided 
strong evidence that the SIMD architecture is  effective for 
a much  larger set of applications than has been credited by 
conventional wisdom. We continue to program  new 
applications to explore the limits of this set. We have also 
shown that the new system-design concepts employed in 
GFll  are effective  in  enabling GFll  to sustain near-peak 
performance on  different types of applications. Memory 
or network bandwidths have never been found to be the 
bottlenecks. 

High network and  memory bandwidths significantly 
simplify the task of mapping programs to multiple 
processors and distributing the data to the memory, 
because the extra network and memory traffic generated 
by less-than-optimal mapping does not cause the network 
or memory to become a bottleneck and, therefore, does 
not  affect the performance of the system. Finally, the 
nonblocking nature of the network and its operation in 
synchronism with the processors make interprocessor 
communication very efficient, even for one-word data 
transfers. The GFl l  network can sustain its peak 
bandwidth for  almost  all types of interprocessor 
communication. 
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