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Unique design
concepts

in GF11

and their impact
on performance

by M. Kumar

GF11 is a 512-way SIMD parallel computer
currently used to verify quantum
chromodynamics theory and to explore the
SIMD approach to parallel processing. System
design choices, such as network design,
processing element design, and other
architectural features, allow GF11 to sustain
very high performance, close to the 10-
gigaFLOPS peak. Several applications, such
as structural analysis, seismic modeling,
computational fluid dynamics, and linear
algebra, have been ported to GF11.
Applications execute in the range of 4 to 10
gigaFLOPS. The diversity in applications that
perform well on GF11 demonstrates that the
SIMD architecture is effective for a much larger
set of applications than previously believed.
The high network and data-memory
bandwidths minimize the effort required to
tune applications for optimum performance.

Introduction
GF11 is a 512-way SIMD (single-instruction-stream
multiple-data-stream) parallel computer that is operational

at the IBM Thomas J. Watson Research Center [1-7].
Though its peak performance of 10 gigaFLOPS (GFLOPS)
has been surpassed by several other computers, it is still
unique in its ability to sustain performance close to its
peak on a wide range of scientific and engineering
applications. (The floating-point chips and memory
technology used in GF11 are almost two generations

older than those used in current parallel computers. The
performance of floating-point arithmetic logic unit chips
and the density of memory chips have increased by more
than a factor of 10 since the selection of components for
GF11 in 1984. Thus, the appearance of computers with
higher peak performance is not surprising. However, GF11
has several unique system-design concepts that enable it to
sustain a very high fraction of its peak performance on
most applications. Therefore, current parallel computers,
even with higher peak performance, cannot match the
sustained performance of GF11 on several important
applications (8, 9].)

The GF11 hardware consists of 566 identical processors
and 10 disk drives connected through a 576 x 576 Benes
network [10]. A central controller controls the operation of
all processors, disk drives, and the network. (It is possible
to replace the 10 disks with processors so as to have 576
processors, as described in [2], or to replace processors
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with disk drives.) Each processor has a peak performance
of 20 megaFLOPS (MFLOPS). (Each processor has two
floating-point adders and two floating-point multipliers, all
operating at 5 MFLOPS. The peak processor performance
of 20 MFLOPS is achieved when all four floating-point
units are continuously busy.) Therefore, the maximum
possible performance of a 566-processor system is
11.3 GFLOPS. However, 500 or 512 of the 566
processors, depending on how the data in an application
can be partitioned, are intended to be used by an
application program at any given time, and the remaining
ones function as spares. Thus, from the application point
of view, the peak performance of GF11 is 10 GFLOPS.
A high-level overview of GF11 is shown in Figure 1;
details can be found in [2, 4]. Each processor has its own
data memory (there is no shared data memory). A single
copy of the program exists in the program memory in the
central controller, and instructions broadcast from the
program memory are executed by all active processors as
soon as they are received by the processors. The whole
system operates with a 50-ns machine cycle, and the
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network transports one byte of data received from the
processor at every input in each cycle.

GF11 was designed by John Beetem, Monty M.
Denneau, and Donald H. Weingarten, and is described
in detail in [1-7]. Several individuals made significant
contributions to turn the design into an operational system
(see the Acknowledgments), and Yurij A. Baransky played
a pivotal role in demonstrating the usability of GF11.
Many applications have been programmed on GF11 since
it became operational in November 1990 [4, 5]. In the next
few sections of this paper we describe the unique design
concepts of GF11, such as the use of a Benes network to
provide conflict-free, low-latency interprocessor
communication for a large number of communication
patterns (up to 1024), system-wide synchronous operation,
the ability of each processor to perform multiple
operations concurrently in each machine cycle, and the
balanced design of the memory system. GF11 is the only
parallel computer in which interprocessor communication
is synchronous with respect to the computations in the

processors. We also discuss how these design 991
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choices contribute to the efficient operation of the entire
system.

In the last section of this paper, we analyze the outcome
of programming various scientific and engineering
applications on GF11. Not only did this programming
activity prove the effectiveness of the GF11 design
concepts in enabling GF11 to sustain more than 50% of its
peak performance on a large number of applications, but it
also demonstrated that good designs for the network and
memory subsystems reduce the effort required for
restructuring the application programs or developing new
algorithms for optimal performance. The significant effect
of the network approach for interprocessor communication
on the performance of applications is also discussed.

Prior to the availability of current SIMD machines
{11, 12], the SIMD architecture was widely believed to be
effective for only a small set of scientific and engineering
applications—those characterized as using explicit finite
difference methods on structured grids. Nonetheless,
applications outside this narrow domain have been
successfully programmed on GF11 and other parallel
machines. These new application results [12-15] and
analyses [16] suggest a much wider applicability of the
SIMD architecture.

Innovative use of Benes network for
interprocessor communication

The earlier SIMD computers connected processors directly
with one another in simple topologies, primarily the mesh
connection [17-20]. Communication on the network was
controlled directly by the instructions of the application
program. In these computers, communication was very
efficient if the communication pattern of the program
conformed to the connectivity of the processors (for
example, each processor communicating only with its
nearest neighbors on a 2D mesh of processors).
Communication could be optimally coordinated with the
calculations. However, more general communication
patterns in a program had to be broken down by the user
or compiler into simpler steps that conformed to the
connectivity of the processors, and the communication
was extremely inefficient for many of these patterns.

In addition to the above type of communication
mechanism, current SIMD computers use the hypercube
(e.g., MasPar [11]) and shuffle-exchange (e.g., CM-2 [12])
types of networks. Because of their ““self-routing’” nature,
these networks can handle more general patterns of
interprocessor communication, but they operate
asynchronously with respect to the processing elements
and introduce significant overhead into the communication
process. The sources of this overhead are analyzed below.
This communication overhead also adversely affects
performance of MIMD (multiple-instruction-stream
multiple-data-stream) computers [21, 22]. By using a Benes
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network, GF11 can provide full connectivity between the
processors without incurring the overhead of asynchronous
operation.

Benes networks were proposed for handling telephone
traffic in 1961 [10], and their use in parallel processing was
suggested in the early eighties [23-25]. However, GF11 is
the only parallel computer that uses this type of network
for interprocessor communication. The approach of using a
set of preprogrammed switch settings, discussed below, is
the idea essential to the use of the Benes network in a
SIMD parallel system. The key characteristics of this
network and their contribution to the efficiency of the
overall system are discussed below. The network is
perhaps the most important factor that allows GF11 to
sustain performance close to the peak on a wide variety of
applications.

® Characteristics of the GF11 interconnection network
The communication network in GF11 is a three-stage
Benes network, constructed from 24 x 24 switches with 24
such switches in each stage. The data paths in the switches
and network are one byte wide. In an ordinary Benes
network, these switches must be able to connect the 24
inputs to the outputs according to any permutation. The

24 x 24 switches used in GF11, however, are more general:
They allow inputs to be connected to multiple outputs.
Each of several switch inputs can broadcast its data to
multiple switch outputs simultaneously, as long as two
inputs do not attempt to broadcast to the same output.
This communication pattern, in which each of multipie
inputs simultaneously broadcasts its data to multiple
nonoverlapping outputs, is known in the literature as
multicast communication. Using this structure, the GF11
network has the following characteristics:

Full connectivity Benes networks have the same
functional capability as full crossbar switches; i.e., they
can provide connections from all the network inputs to the
network outputs simultaneously, according to any specified
permutation. Networks with this property are known in
the literature as nonblocking networks. Furthermore, the
added capability of the switches to perform multicast
communication allows the GF11 network also to perform
multicast communication efficiently. The network can
deliver data from each of its several network inputs to
multiple nonoverlapping network outputs simultaneously.
However, while any permutation can be performed by
sending data once over the network, data must be sent
over the network twice to perform a multicast. In the first
pass over the network, the data broadcast from each input
is replicated within the network in order to create as many
copies as the number of outputs to which it must be
broadcast. Then, in the second pass, the correct number of
copies available for each broadcast item are permuted in
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order to deliver them to the desired outputs. Details of the
algorithm used to perform multicast communication can be
found in [26].

Fixed delay In a SIMD parallel processing environment,
the nonblocking property implies that if in a given cycle
each processor sends a word of data to another, according
to any permutation between the sending and the receiving
processors, all processors will receive their data
simultaneously after a fixed number of cycles. The delay
depends only on the hardware implementation of the
Benes network and is independent of the pattern of
communication.

Use of precomputed switch settings  Benes networks
require substantially less hardware than full crossbar
switches, at the expense of requiring a more complex
algorithm to calculate the switch settings needed to
provide each specified permutation. In contrast, the
frequently used multistage networks in MIMD computers
use very simple algorithms, which are essentially
implemented in switch hardware. The switches determine
their own settings by examining the destination-address
part of each message packet while the packet, consisting of
the data and the destination address, passes through the
network. Networks of this type are known as self-routing
networks.

The drawback of requiring complex algorithms
(therefore, complex hardware) to determine switch settings
is eliminated in GF11 by allowing the switch settings for a
predeclared set of communication patterns to be computed
and loaded into the switches in the network. The network
can store the switch settings for 1024 permutations, and a
switch setting, once stored, can be used by simply
broadcasting a 10-bit switch-setting number from the
central controller to the network. When all processors
simultaneously send a word across the network as a result
of executing an identical instruction received from the
central controller, the 10-bit switch-setting number is
simultaneously broadcast from the central controller to
all the switches in the network and is used to select the
precomputed switch-setting for the desired permutation.
Thus, even the simplest routing algorithm need not be
executed in the switch.

® Advantages of the GF11 network

The GF11 interconnection network, because of its above-
mentioned characteristics, has several advantages over

the most commonly used self-routing network. These
advantages, discussed next, allow the network to
efficiently meet the interprocessor communication
requirements of almost all applications we have studied
and to hide the communication overhead completely by
overlapping it with the calculations being performed by the
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processors and by eliminating the involvement of the
processors in the communication process.

High bandwidth sustained for any definable interprocessor
connectivity pattern  In almost all applications studied,
GF11 processors exchange data with other processors at a
rate close to the peak network bandwidth of 20 megabytes
(MB) per second per processor (=11 GB/s for 566
processors). Since the peak performance of each processor
is 20 MFLOPS (a total of =11 GFLOPS), the ratio of
communication bandwidth to computational power for
arbitrary communication patterns is almost two orders of
magnitude better than that of most contemporary parallel
computers [27, 28]. This is primarily because of the
nonblocking nature of the Benes network.

Since the network can support any permutation or
multicast communication pattern, the processors can easily
be configured or logically connected as arrays of various
dimensions and of different extents in cach dimension,
or as rings, tori, butterflies, trees, etc. [Specifying a
permutation for the GF11 network is equivalent to
specifying the interprocessor connectivity pattern or
configuration. For example, assume that the P processors
are numbered from 0 to P — 1. If the permutation pattern
on the Benes network connects network input i (0 < i < P)
to network output i + 1 modulo P, the processors are
logically connected or configured as a ring.] An application
program may use several configurations during its
execution. As long as these configurations are declared in
the application program, switch settings can be computed
by the compiler for each configuration and loaded into
the switch when the program is loaded into memory, or
computed and loaded into the switch as a part of the
program initialization phase (depending upon whether
the configuration is known at compile time). Settings for
1024 configurations can be stored in the switches of the
network. During the execution of the program, the
central controller can select any stored configuration for
interprocessor communication by broadcasting the switch-
setting number to the network.

The configuration to be used is specified in every GF11
instruction that causes data to be transferred over the
network, and is found in the ““switch-setting number”’
field in the instruction. Word transfer for the previous
instruction is completely overlapped with switch setting for
the current instruction. Since transfer of a word (four
bytes) takes four cycles (200 ns), a GF11 program could
change configurations five million times a second while
maintaining the data transfer rate of 20 MB/s per
processor.

No packetization/depacketization overhead To send
a message from one processor to another in a parallel

computer with a typical self-routing network, the sending 993
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processor must first form a packet consisting of the data to
be sent and the address of the destination processor. An
operating system routine is invoked to form the packet and
relay it to the network interface. The destination address
and data to be transmitted are provided as parameters by
the user program to the operating system routine called.
Similarly, the receiving processor also invokes an
operating system routine to receive the packet from the
network interface and to retrieve the data field from this
packet. Depending on the software implementation, this
process can require the processors to execute from a few
extra instructions to several thousand.

By comparison, completing the transfer of a word
over the network in GF11 uses only a few fields of one
instruction. An instruction in the single program
controlling all processors specifies a memory-read
operation, one bit to specify that the data being read out of
the processor memory should be placed on the network
interface, the number of the precomputed switch setting to
be used by the network, and a final bit to specify that the
processor register file should receive a data word from
the network interface after the fixed network delay. For
most cases there is no difference between a simple load
operation from their own data memories and the transfer
of a word over the network from remote processor data
memories. (In very rare cases, in which network data
transfers are required more frequently than once every
four instructions, additional delay occurs because of the
byte-wide data path.)

Simple hardware, no queues, no queuing delays  From
the hardware point of view, the network interfaces in
GF11 are also trivially simple. Both the send and receive
interfaces are simply shift registers to convert between 32-
bit processor data paths and byte-wide network data paths.
The simplicity of network interface hardware minimizes
the latency through the network. Also, since the network
is nonblocking, there is no need to queue the messages in
the switches or the network interface. This simplifies the
switch design.

Shorter messages, no routing delays 1In a self-routing,
packet-switched network, each switch must examine the
destination-address part of the message to determine its
route through the network. This adds to the delay through
the network. With precomputed routes for the flow of data
through the network, the GF11 network does not incur this
added delay. Also, since the route of the data has been
precomputed, there is no need to carry the destination
address with the data. This results in shorter messages and
more efficient utilization of the network bandwidth.

Replacement of failing processors by spares  Since
Benes networks can support all permutations, any subset
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of processors can be chosen from the set of available
processors for running an application. Network faults can
also be avoided by not using the processors affected by
the faulty network switches. The application program is
always written in terms of logical processors and the
logical connectivity patterns between them. The run-time
environment maintains a list of operational (physical)
processors, chooses a subset of the operational processors,
and maps them to logical processors. The switch settings
are then computed to provide the logical connectivity
requested by the application.

Checkpoints are inserted in lengthy applications, and
if faulty processors are discovered (by running the
diagnostics or looking at the status information in the
processors), the mapping between the logical processors
and the remaining good processors is performed, including
the recalculation of the switch-settings, so that the faulty
processors may be replaced and the calculation restarted
from the previous checkpoint.

System-wide synchronous operation
Another very important, unique feature of GF11 is that
the operation of the multistage network, like that of the
processing elements, is controlled by the application
program instructions. This is possible because delays
through the Benes network are fixed. Thus, calculations
within processors and communication over the network are
synchronized. Similarly, the transfer of data from the I/O
disks to and from the processor local memories is also
synchronized with the calculations in the processors. This
is accomplished by using buffers with the disks that can
transmit data to and receive data from the GF11 network
synchronously, under the control of the program
instructions. In fact, all components of the GF11 system
(the central controller, the instruction-distribution bus, the
1/0 buffers, and the network) operate synchronously, using
a common clock distributed throughout the GF11 system.
In contrast, only the processing elements operate
synchronously in other SIMD computers [11, 15]. Thus,
their interconnection network delays cannot be determined
at compile time, because the networks used by the other
computers are self-routing and blocking. Therefore, the
operation of the network cannot be synchronized with the
operation of the processing elements. Since data from the
I/O devices are transferred to the processor data memories
through the network, data transfer from the 1/O devices
cannot be synchronized with the calculations either. The
advantages of having system-wide synchronous operation
are given in the following subsections.

Low synchronization overhead Most applications
implemented on parallel computers have a large number
of computation steps or phases, usually separated by
communication steps. If the communication delays are
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nondeterministic, the processors must be synchronized
after each communication step, especially in a SIMD
computer, because synchronization is the only mechanism
to ensure that data transmitted over the network in a
communication step arrive at the processors before the
computation step that uses them begins.

In GF11, operation of the network and of the processing
elements is controlled by the same instruction sequence.
When a communication step initiated by some instruction
causes the processors to send data out to the network, all
the receiving processors are guaranteed to receive their
data in the same cycle following the fixed network delay.
Therefore, no synchronization code is necessary to detect
the completion of a communication step.

Opportunity for overlapping calculations with
communication and I/O operations  Since the delay
through the network is constant and all the switches in the
network as well as all the processing elements operate
synchronously, using a common clock, the GF11 compiler
can optimally interleave computation with communication.
For example, following an operation that transmits data
over the network, an arithmetic operation that uses the
data as an input operand can be initiated after a delay
equal to the network delay. The operand, when received
from the network, is used immediately in the arithmetic
operation, without having to be stored in the receiving
processor memory first. This eliminates the additional
delay that would be incurred if the data being received
from the network were first stored in the memory and
then read back as an input operand, and also reduces the
likelihood of memory bandwidth becoming a bottleneck.
Similarly, the transfer of data from the I/O-device buffer
to the processing-element memory can be initiated by an
instruction in the program; then the processing elements
can access the data as soon as they arrive, because the
delay from the 1/O device buffer to the processing element
memories is fixed (determined solely by hardware).

Memory organized to provide high bandwidth
The processors in GF11 can overlap the calculations being
performed by the arithmetic unit with data transfer from
the memory subsystem and with the address calculation
arithmetic for memory accesses. Thus, unlike most other
computers, GF11 does not require extra cycles for memory
accesses and address calculations, and for most
instructions the processors perform useful arithmetic
operations. The three levels of memory hierarchy,
described below, allow processing elements to access
operands without incurring memory-access delays.

® Balanced memory hierarchy

The organization of the GF11 memory subsystem is shown
in Figure 2. Each processor in GF11 has 2 MB of memory;
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therefore, a 512-processor system has 1 GB. Memory on
each processor, implemented in DRAM technology, is
organized as two banks with 256K 32-bit words each. If
the two DRAM banks are accessed alternately, a sequence
of load operations or a sequence of store operations can be
performed once every four cycles (an arithmetic operation
is performed once per cycle). However, because of the
hardware design, if consecutive accesses are to the same
DRAM bank or the load and store operations are
intermixed, the bandwidth to the DRAM is reduced.
Without a faster intermediate memory, the DRAM
bandwidth would clearly be the bottleneck in most
applications.

To prevent the DRAM bandwidth from affecting the
performance of GF11, data from the DRAM are moved
into a 16K-word buffer implemented in static RAM
(SRAM) technology, and from there into a 256-word
register file. The SRAM buffer can be accessed once every
cycle, and the register file can be accessed four times
every cycle (four accesses per arithmetic operation). Two
of the four accesses to the register file provide operands
for the arithmetic unit, one access is used to store back the
result of the arithmetic operation, and the fourth access is
used to bring a new data word into the register file from
the SRAM or the network or to transfer a result back from
the register to the SRAM or the relocation registers for
SRAM and DRAM.

The SRAM is used mostly as a user-programmable
cache. In many computation-intensive scientific or
engineering problems, the data being manipulated consist
of large multidimensional arrays, and essentially identical
operations are performed on the individual elements of an
array. The SRAM buffer is used to hold in one section of
the array data from the DRAM and manipulate it (possibly
requiring several accesses to it) before writing it back to
the DRAM (if it is modified). This mitigates the impact of
limited DRAM bandwidth. The register file is large enough
to store all the scalar data being used by the program and
to store a few vectors of modest size.

® Hardware support for address calculation

The memory subsystem contains hardware to support
address calculations for data in SRAM and DRAM. Each
SRAM address can be modified by adding an offset to it
from one of 256 SRAM relocation registers. Two accesses
are performed on relocation registers for each instruction:
a read access to obtain the relocation amount to be added
to the SRAM address being broadcast in the instruction,
and a write access to update one of the relocation
registers. Each instruction carries, in addition to the
SRAM address, the read and write addresses for the
SRAM relocation registers. The DRAM address can be
modified similarly by adding the offset from the single
DRAM relocation register to the DRAM address being
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Organization of the GF11 memory subsystem.

broadcast in the instruction. One relocation register
suffices for the DRAM, because the DRAM is accessed at
most once every four cycles and the relocation values can
be obtained from the SRAM, as shown in Figure 2.

The address relocation hardware gives each processor
the ability to generate a different SRAM or DRAM address
based on local data. This is useful in many situations,
some of which are the following:

¢ Table lookup for calculating transcendental functions,
using series expansion.

¢ Table lookup for properties of materials when simulating
a physical medium, where the property has different
values for different ranges of some other variable being
computed in the processors.

¢ In combinatorial algorithms, for traversing a tree or a
graph according to some rule that prescribes a different
path for each processor.
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e Indirect addressing into arrays stored locally within the
processors, and into large arrays distributed across data
memories of all processors. The latter situation occurs
very frequently in all unstructured grid applications; an
efficient way to handle it on GF11 is explained in the
discussion of PAM-CRASH implementation in [5].

The capabilities of the GF11 network are also
crucial in handling indirect addressing across large
arrays.

Multiple concurrent operations per instruction
It was mentioned in the preceding section that arithmetic
operations are overlapped with network operations and
memory operations. Actually, multiple activities occur
within the arithmetic section and the memory section of
the processors. We call such architectures, in which
several operations are performed concurrently by each
processing element for each instruction, ““super-scalar.”
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Table 1

Performance sustained by GF11 on scientific/engineering applications.

Application Number of Performance Problem size
processors used (GFLOPS)

PAM-CRASH (finite element method) 500 5.5 10,000 elements
TPP (linear algebra, LU decomposition) 500 4.3 1000 x 1000
TPP (linear algebra, LU decomposition) 500 5.6 2500 x 2500
TPP (linear algebra, LU decomposition) 450 7.4 5400 x 5400
Gaussian elimination 500 9.3 2500 x 2500
Gaussian elimination 500 9.5 6000 x 6000
2D FFT 512 7.2 1024 x 1024
Shallow Water equations (weather code) 512 7.5 256 x 256
Matrix multiplication 512 10.0 1024 x 1024

The GF11 processors can perform the following operations
concurrently in each instruction (50-ns cycle time):

* An arithmetic operation (integer or floating point), for
which the operands are received from the register file
and the computed result is stored back in the register
file.

A shift or rotate (logical or arithmetic) operation on one
input operand, if the simultaneous arithmetic operation is
an integer or logical operation.

A read or write operation on the SRAM. For a read
operation, the data retrieved from the SRAM can be sent
to the register file, the DRAM, the network, another
location of the SRAM itself, the relocation registers, or
the central controller. (If multiple processors send data
to the central controller simultaneously, the central
controller receives the “logical OR” of the data sent.) In
the case of a write operation, the data to be loaded can
come from the register file, the DRAM, an immediate
operand in the instruction, or another location in the
SRAM itself.

¢ A write operation to the SRAM and DRAM relocation
registers. The data written are the same as those
available for writing to the SRAM during that cycle.
Translation of the SRAM address using SRAM
relocation registers, as described in the preceding
section.

Selecting a bit from the several condition code bits
generated by the current operation, and storing it in one
of the eight 1-bit condition code registers in the
processor.

Performing five read operations on the condition code
registers, and using the logical values read back to
conditionally disable the write operation into the SRAM
or DRAM, to disable the data transfer to the central
controller, and to modify the network and integer ALU
operations. Thus, even though all processors receive the
same instruction, different operations are performed for
it in different processors, depending on the logical values
stored in the condition code registers.
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In addition to the above operations, which are
performed for every instruction, the following DRAM and
network operations can occur once every four instructions:

¢ A word is transferred over the network according to the

specified communication pattern. It takes four cycles to

transfer a word because the network is one byte wide.

A new communication pattern is selected for the next

word transfer.

¢ A word is stored into the DRAM (either from the SRAM
or the immediate operand), or a word is read from the
DRAM. The DRAM-bank cycle time of four cycles is a
technology limitation. The compiler must determine that
no DRAM-bank conflict will occur; bank conflicts reduce
the access rate.

The instruction broadcast from the central controller has
201 bits. Of these, 177 are sent to the processors, and the
remaining ones control other parts of the system. In the
177 bits reaching the processors, 85 are used as addresses
for various memories and registers, 32 are used as the
immediate operand, and the rest directly control the
operations in the processors.

Though the processors in GF11 perform only one
arithmetic operation in each instruction, they do many
other operations to move data, so that operands are
available for an arithmetic operation in every cycle. This
contributes significantly to the ability of GF11 to sustain
near-peak performance on most applications. Most other
processors spend a significant number of cycles to get the
operands to the arithmetic units.

Summary of application studies

Since GF11 became operational, several scientific/
engineering applications have been programmed on it.
Some of the representative applications are listed in

Table 1. The key application remains quantum
chromodynamics. More detailed discussion on the
implementation of these applications on GF11 can be
found in [3-7, 29]. The decision concerning the number of

997
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processors to use depended upon how the problem could
be conveniently partitioned. The key observations from
this programming effort are as follows.

High sustained performance

It is quite clear from Table 1 that GF11 sustained

more than 50% of its peak performance on all of the
applications. This ratio of actual performance to peak
performance is significantly better than that being observed
on the currently available parallel computers [8, 9].
Imbalance between the number of add and multiply
operations in a GF11 application is usually the primary
cause of the gap between the peak and actual performance.
To achieve the peak performance, the two floating-point
adders and two floating-point multipliers in each processor
must be continuously busy, requiring the application to
have an equal number of add and multiply operations.

This imbalance accounts for almost all of the performance
degradation in the Shallow Water benchmark [14] and half
of the performance loss in the PAM-CRASH benchmark
[5, 30].

Network bandwidth limitations account for the
remaining performance loss in PAM-CRASH, which could
have been avoided if domain decomposition [31] or some
similar approach had been used to reduce the network
traffic, instead of the most straightforward data-partitioning
scheme, which was chosen for this implementation. The
memory or network bandwidths rarely become serious
bottlenecks in GF11.

The performance of GF11 on the TPP benchmark for
a 1000 x 1000 matrix (4.3 GFLOPS) is still the highest
absolute performance achieved on any computer for
a matrix of this size [32]. For this matrix size, the
performance loss is primarily due to the distributed
memory aspect of GF11, which creates load imbalance
during the execution of the program [5]. Naturally, for a
larger matrix (6000 x 6000) the performance improves.
Though current parallel computers can claim higher
absolute performance on even larger matrices, their
ratios of actual performance to peak performance are
substantially lower.

In addition to the applications listed in Table 1, a neural
network simulation program [33], a program to simulate
the evolution of galaxies [4], an FFT program, and a wave
mechanics application from Sandia National Laboratories
[34] have also been implemented on GF11. All of these
applications sustain good performance (in excess of 50%
of the peak) on GF11.

Ease of developing and debugging new programs

The programming model for SIMD computers is inherently
simpler than the programming model for MIMD computers,
because there is a single flow of control. In the
programming model for MIMD computers, one must
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generate the multiple flows of control and coordinate them.
The MIMD programming model is less restrictive but more
complex. Most of the programs implemented on MIMD
computers follow the SIMD programming model {16].

Because of the system-wide synchronous operation, it
was easy to develop an instruction-level simulator for a
GF11 system comprising a few (4 to 16) processors and
small data memories. This simulator proved extremely
useful in initial development and debugging of GF11
programs. Since the simulator runs on an IBM RT PC®
workstation, the initial application development did not
depend on the availability of GF11 hardware.

The SIMD architecture and system-wide synchronous
operation also guarantee that program execution can be
repeated with identical results. In GF11, the application
program can be stopped after the execution of any
instruction, and the values of its data structures can be
examined. This further simplifies the task of debugging
programs.

Ease of programming for optimum performance

The architectural features that enable GF11 to sustain

high performance consistently also simplify the task of
achieving this performance. Because of the high network
and memory bandwidths, a simple partitioning of the
program suffices in most cases because it does not usually
create memory or network bottlenecks. In most other
parallel computers, such bottlenecks appear more readily,
and complex program transformations and data partitioning
are required to circumvent them. The research community
in parallel processing has already invested significant effort
in developing new algorithms to efficiently use parallel
computers with limited interprocessor communication
bandwidth, and users of these algorithms may perceive

the GF11 network as overkill. However, we believe that
new applications will continue to be developed, and
architectures like GF11 will accelerate the development of
new applications for parallel computers by freeing the
programmer from the burden of program transformations
and having to invent new parallel algorithms.

For example, if the standard matrix multiplication
algorithm, in which the inner product to determine one
element of the result matrix is performed in the innermost
loop, were partitioned naively on GF11 to calculate one
column of the results matrix on every processor, GF11
would still sustain 5.0 GFLOPS, even though the
computation-to-communication ratio has dropped to
0.5 FLOPS per byte from =40 in the more sophisticated
partitioning described in [4]. To achieve 10-GFLOPS
performance, it was necessary to restructure the
program [4].

In the Shallow Water benchmark included in Table 1,
the 2D matrix data were assigned one row per processor.
This partitioning is much simpler than the blockwise
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partitioning necessary in other computers, and it uses
simpler interprocessor communication patterns. It was
possible to use the simpler partitioning because the
network could handle the extra communication generated
by it without increasing the computation time. Similarly, in
the PAM-CRASH application, data were partitioned in a
straightforward manner, and domain decomposition
algorithms were not needed to reduce the communication
overhead.

The execution time of a sequence of instructions on
GF11 can be determined precisely from the number of
instructions in the sequence, because each instruction
takes exactly one cycle to compute. (In traditional
processors, however, a load operation, for example, takes
different times to complete depending on whether the data
are in the cache or not.) Even the conditional operations
take one cycle, irrespective of whether they are performed
or not. Therefore, the performance of a program can be
readily determined by counting the number of instructions
in the compiled code of various subroutines, and
performance tuning can be done without actually running
the programs.

Conclusions

By sustaining more than 50% of its peak on several types
of scientific and engineering programs, GF11 has provided
strong evidence that the SIMD architecture is effective for
a much larger set of applications than has been credited by
conventional wisdom. We continue to program new
applications to explore the limits of this set. We have also
shown that the new system-design concepts employed in
GF11 are effective in enabling GF11 to sustain near-peak
performance on different types of applications. Memory
or network bandwidths have never been found to be the
bottlenecks.

High network and memory bandwidths significantly
simplify the task of mapping programs to multiple
processors and distributing the data to the memory,
because the extra network and memory traffic generated
by less-than-optimal mapping does not cause the network
or memory to become a bottleneck and, therefore, does
not affect the performance of the system. Finally, the
nonblocking nature of the network and its operation in
synchronism with the processors make interprocessor
communication very efficient, even for one-word data
transfers. The GF11 network can sustain its peak
bandwidth for almost all types of interprocessor
communication.
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