Knowledge
In operation

by T. Bollinger
U. Pletat

The L, ., knowledge representation language
and an inference engine to interpret it have
been developed as part of the LILOG project,
where new concepts for understanding
natural-language texts were investigated. L, .
is a typed predicate logic whose type system
has adopted the concepts of KL-One-like
languages. Further language constructs allow
the formulation of default and control
knowledge. The inference engine for L, ,. was
designed as an experimental theorem prover,
allowing us to investigate the behavior of
various inference calculi as well as a number
of search strategies. Processing with L , . is
not restricted to a propositional reasoner for
logical formulas; we are also able to delegate
special kinds of inferences to external
deductive components. Currently, one such
external reasoner for processing spatial
information on the basis of analog
representation is attached to the inference
engine.

1. Introduction

With the realization of the first knowledge based systems,
the paradigm of rule-based programming (programming by
stating logical relationships instead of describing algorithms
using procedural programming languages) has emerged;
see, e.g., [1]. Rule-based programming plays an important
role in the knowledge based systems framework primarily
because of the high degree of programming productivity it
makes possible.

Although knowledge based systems still use some
conventional software, which is often programmed in a
procedural language, a rule-based representation of the
knowledge provided to a knowledge based system has
become an accepted programming style. This is not
surprising because the knowledge underlying a knowledge
based system is the ““intelligent” part of the software
system, and it is often very difficult to describe this part of
a knowledge based system in terms of procedural
languages. Thus, abstract ways of describing knowledge
are of high importance. This paper deals with the pure
form of rule-based programming of the knowledge of a
knowledge based system: to represent the knowledge in
terms of predicate logic. In particular, we describe the
logic-based knowledge representation language L, .,
together with the inference engine we developed to make
the knowledge operational.

The L, , ,; language and the inference engine
interpreting it are the outcome of research on knowledge
representation and processing which was carried out
within the LILOG project,’ where new concepts
for understanding natural-language tools were investigated.
The monograph [2] is the final report on the LILOG
project. It contains numerous articles documenting the
progress of the linguistic part of the project.

Although the requirements for L, ; - stem mainly from
the natural-understanding context from which it emerged,
the concepts offered by the language are general enough to
make it applicable in other contexts of knowledge based
systems as well:

1 The LILOG project at the IBM Germany Institute for Knowledge Based Systems
had as its primary goal the use and development of advanced Llnguistic and
LOGical methods for the understanding of German through a knowledge based
programming system.

©Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

T. BOLLINGER AND U. PLETAT

965

966

» Conceptionally L, . is a typed predicate logic. It offers
a KL-One-like type system and supports the rule-based
formulation of logical axioms with the expressiveness
of full first-order predicate logic.

e The language offers a means for controlling the inference
engine executing the knowledge. This allows for the
selection of axioms for forward- and backward-chaining
tasks and the delegation of inferences to external
deductive devices.

® L, o also supports the handling of default information.
As a by-product, this enables us to offer both classical
negation and negation by failure.

These elements make L, ; . an advanced knowledge
representation language supporting the natural modeling of
the knowledge underlying a knowledge based system. Its
expressiveness is at the upper end of the scale of typed
logics and can be best compared with the KRYPTON
approach (see [3]) or Frisch’s general framework for typed
logics for knowledge representation (cf. [4]).

Besides developing new concepts for natural-language
understanding, the LILOG project was intended to develop
an experimental software environment in which the
practical applicability of theoretical approaches could be
evaluated. This has led to the implementation of the
natural-language understanding system LEU/2
(LILOG Experimentier Umgebung, Version 2, or
LILOG Experimental Environment, Version 2), of
which the inference engine interpreting L, ;; ., is an
essential part.

Since LEU/2 is experimental, the L,;; .. inference
engine was designed accordingly, to achieve a high degree
of flexibility rather than high performance. This high
flexibility makes it easy to exchange modules which have
great influence on the inference behavior. Also, the
adaptability of the inference engine to new tasks has been
considered in the design.

In particular, the LILOG inference engine has the
following features:

LOG

¢ The inference calculus determining the behavior of the
inference processes has been designed as a separate
module. Therefore, exchanging the calculus involves
only replacing one implementation of the calculus
module with another.

¢ The same process applies for the search strategies. This
enables us to experiment with the interaction between
inference calculi and strategies for traversing the search
space.

e External deductive components can be connected to the
inference engine to delegate special inference tasks to
more efficient reasoners. In the framework of LEU/2
one such external reasoner, the depiction module
processing spatial information on the basis of analog

T. BOLLINGER AND U. PLETAT

representations, has already been attached. Because we
consider the invocation of external reasoners to be the
application of a specific calculus rule, other external
reasoners can easily be attached, e.g., a deductive
database system.

¢ A number of parameters permit us to tune the inference
behavior whenever a knowledge base of considerable
size must be processed by the inference engine.

The knowledge to be processed by the LILOG inference
engine is stored in the LILOG database system, and a
special interface module allows the inference engine
to store in and retrieve from the database system the
knowledge it must process, cf. [5]. The L ., compiler
translates the L, | ., source code into an internal
representation on which the inference engine operates.
Together with the knowledge engineering environment
supporting the development of L, ., knowledge bases,
the above three components form a complete knowledge
representation system based on typed predicate logic.

The structure of this paper is as follows: The next
section describes the L, ,, ., knowledge representation
language by explaining the language constructs offered to
the knowledge engineer. We then describe the LILOG
inference engine in detail. Finally, we report on our
practical experience with the entire knowledge
representation system. We assume that the reader has
some basic understanding of predicate logic or rule-based
programming and is able to recognize the benefits of type
systems for programming and knowledge representation.

2. The L, ,; knowledge representation
language

The development of a language to represent the semantic
knowledge of the LEU/2 natural-language understanding
system was one of the central activities of the LILOG
project from its beginning. Creating a new language
became necessary because we found no suitable formalism
in the scientific literature to satisfy our multiple
requirements for a knowledge representation language:

e To offer a rich expressiveness for capturing a wide range
of natural-language phenomena.

¢ To be a communication medium between the linguistic
and the logical parts of the project.

¢ To provide a formal semantics as the basis for the
LILOG inference engine.

Most formalisms suggested in the knowledge
representation literature (see [6] for a compact overview)
address specific aspects of knowledge representation.

This reflects a situation in which formalisms emerge from
investigations of particular problems aimed at understanding
various specific concepts in the representation of knowledge.

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

In our search for an adequate knowledge representation
formalism for a wide-spectrum natural-language
understanding project such as LILOG, we found that the
individual well-established approaches dealing with specific
aspects of knowledge representation did not cover the
range of features required for our purposes. What seemed
necessary was to integrate various specific approaches to
knowledge representation within one language. To achieve
such an integration was the major impetus for the
development of L, ; .. In the long run, only the
integration of several research directions can lead to the
knowledge representation formalisms that are required in
the framework of natural-language understanding and other
applications of realistic size of knowledge based systems.

Against the background of the above discussion of the
state of the art in knowledge representation, the definition
and implementation of L, .. can be seen as one of the
first attempts to integrate different streams of knowledge
representation languages within one formalism.

& The basic ideas behind L, ..

The starting point for L, .. was the decision to create a
logic-based knowledge representation formalism, since
this seemed to be the most promising way to fulfill our
requirement of defining a language in terms of both a
formal syntax and a formal semantics.

To be more specific, we considered order-sorted
predicate logic as the basis for the development of L, ; .
because it offers a type concept, and type systems are an
essential part of modern programming languages [7-9].
Also, in formal software specification, type concepts play
an important role (see [10] or [11]). And finally, types have
also made their way into a particular class of Al languages:
the attributive set-description languages we know (for
example) from computational linguistics [12, 13], or from
the KL-One family of languages [14, 15].

The role of type systems is to describe the object classes
of a program or, as in our setting, of a knowledge base.
Since we used the attribute-based set-description language
STUF (cf. [16, 17)) in the linguistic part of the LILOG
project, we decided to develop a type system in the STUF
or KL-One style for L, ;| ... These approaches to type
definitions fit nicely into the framework of an order-sorted
predicate logic (cf. [18, 19]) since they also deal with a set
of sorts together with a partial ordering between them,
reflecting the subset relationship between the sets
interpreting the sorts.

This concept of sets ordered by inclusion and common
to both the semantic and the linguistic knowledge
representation formalisms was the reason for integrating
(parts of) STUF as the type system of the first version of
L, o6 [20]. Since then we have gained an improved
understanding of the feature-term description languages
and how to combine them with predicate logic. This

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

enabled us to integrate concepts of languages such as
KL-One [14] and Feature Logic [21] into the sort
descriptions offered by L, |, ., [22].

The integration of attribute-based set descriptions with
the framework of order-sorted predicate logic is also
a step toward integrating two philosophies of knowledge
representation: classical logic-based approaches and typical
object-oriented approaches having their roots in artificial
intelligence [3].

The world of logic has not only created formalisms for
the pure mathematical way of reasoning (of which order-
sorted predicate logic is a representative), but during the
last ten years it has also enabled more flexible ways of
human reasoning to be formalized. One of the more
elaborate of these enrichments of logic to provide better
models of human reasoning is nonmonotonic reasoning
[23]. The basic idea of nonmonotonic reasoning may be
characterized as a logical framework which offers
quantifications less rigid than the usual universal ones,
with the aim of arriving at a logic which still works well
in situations where exceptions to general rules occur.
Particularly in the framework of natural-langnage
understanding, the required reasoning mechanisms are
strongly influenced by the common sense humans apply.
In this situation, standard logics are inadequate, because
they were introduced to describe the reasoning processes in
the precise and even formalized field of mathematics. In
contrast, formal reasoning with respect to information
in natural language must mimic the imprecise reasoning
humans apply in everyday situations. Thus, the results that
have been achieved in the field of nonmonotonic reasoning
are very welcome in the framework of a project such as
LILOG, and have therefore found their place in our
knowledge representation language.

The features of L, . discussed thus far have described
improved facilities for representing knowledge. But
knowledge is not only of the static nature suggested by the
term representation. Knowledge that is only representable
but not processable is of little practical use (at least from a
computer scientist’s point of view). Processing knowledge
formulated within a certain logic is still a complex task
which often reaches the limits of available computational
power. This is because the inferential processes we use for
putting knowledge in operation are still search procedures
traversing immense search spaces in an uncontrolled way.
The advantages of conventional programming languages
over most knowledge representation languages stem mainly
from the effort which must be spent on the explicit control
of program execution.

In L, we have made some first attempts to provide
control information for the theorem prover implementing
the language. This comprises the possibilities of selecting
logical axioms for forward chaining or backward chaining,

or both reasoning modes, in order to exclude certain rules 967

T. BOLLINGER AND U. PLETAT

968

of a knowledge base from the reasoning process.
Moreover, we can delegate deductive tasks to external
inference systems, which are assumed to process certain
requests in a more efficient way than the main theorem
prover interpreting L, ... In the context of LEU/2, the
depictional reasoner [24] for processing spatial information
can be activated to perform reasoning tasks on the basis of
analog representation of spatial knowledge.

In addition to these basic concepts for expressing
knowledge, we have developed a concept for structuring
knowledge into ‘‘knowledge packets” [25]. This permits
us to separate large knowledge bases into different
components, each of which deals with specific aspects
of the domain of discourse to be modeled.

Following this general overview of L, ., we provide
a more detailed discussion of the particular language
constructs in the next section. The style of the discussion
remains informal, since formal definitions of the
concepts available in L, .. may be found elsewhere
{22, 26, 27].

® Representing knowledge in L, .

AL, knowledge base is the formalization of a
particular application domain over which a knowledge
based system is supposed to reason. Within the LILOG
project we used L, - to model the semantic background
knowledge of the LEU/2 natural-language understanding
system. The knowledge developed for LEU/2 deals with
tourist information about the city of Diisseldorf, such as
one would expect from a tourist guide, along with general
knowledge about places of interest to a visitor to a city.
A particular description of the knowledge that has been
modeled for LEU/2 can be found in [28].

In this section we provide an informal description of the
language constructs offered by L, , ., introducing the
concrete syntax of the language by means of examples. We
explain what can be described by the various constructs of
L, ;1 oc for which a formal definition of the semantics has
been developed. The corresponding formalizations are
provided elsewhere; we refer to the respective background
papers whenever further information on the language may
be of interest to the reader.

Knowledge items

Because L, ., is a knowledge representation language
based on typed logic, type definitions and logical axioms
play a major role in a L, . knowledge base. Axioms state
the logical properties of functions and predicates; thus,

the declarations of these predicate and function symbols
occurring in the logical formulas of a knowledge base are
further knowledge entities.

Sort declarations Sort declarations introduce the object
classes of a knowledge base. In order-sorted predicate

T. BOLLINGER AND U. PLETAT

logic the sort declarations are of a very simple nature,
consisting simply of the name of the sort to be declared
plus the embedding of the sort into the hierarchy of sorts
of a knowledge base [4, 19, 29].

As an example, we have the following sort declarations
recalling what can be expressed in order-sorted logic:

sort person.
sort woman < person.
sort man < person.

These sort declarations introduce the data domains person,
woman, and man, and state that woman and man are
contained in person.

L, ;; o Offers a richer sort concept than order-sorted
predicate logic does. This results from the integration into
L, oc of concepts from feature-term-description languages
such as STUF [17], Feature Logic [21], and KL.-One [14].
Since all these languages pursue the paradigm of modeling
semantic knowledge by defining sets, they offer
sophisticated means for describing object classes. Thus,
in contrast to order-sorted logic, where sets can only
be described in terms of sort names, L, ; .. allows for
complex descriptions of sets by means of sort expressions.
These sort expressions are constructed over a collection
of operators defining, for example, the intersection, the
union, or the complement of object classes.

Stating subset relationships between object classes
is useful not only for splitting the data domain of a
knowledge base into several different object classes
(generalizing one-sorted logic to many-sorted logic), but
also for modeling knowledge about the world (generalizing
many-sorted logic to order-sorted logic). Thus, a modern
knowledge representation language should support the
explicit positioning of sorts within the lattice of sort
expressions (with respect to the subsumption ordering,
see below) of a knowledge base. In L, ; . this is achieved
by means of so-called sort constraints that may be part of
a sort declaration.

Requiring the subset relationship to hold between two
sorts (woman and person as well as man and person in the
above example) is not the only way of constraining the
interpretation of sorts; we may also express that one sort
is disjoint from another. A sort declaration such as

sort person.

sort woman < person.

sort man < person,
disjoint woman.

ina L, knowledge base introduces the sort man in
such a way that man and woman are disjoint subsets of
person. The disjointness of the sorts man and woman
could also be expressed as a declaration of the sort
man by

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

sort person.
sort woman < person.
sort man = and(person, not(woman)).

where the sort expression and(person, not(woman)) stands
for the intersection of person with the complement of the
sort woman. (Note that the two ways of introducing the
sort man lead to sort hierarchies which are not completely
equivalent.) A third alternative for defining these three
sorts is the following collection of sort declarations using
the union operator:

sort woman.

sort man;
disjoint woman.

sort person = or(man, woman).

In L, ,; the equations, inequalities, and disjointness
conditions between a sort name and a sort expression

are called sort constraints, since they constrain the
interpretation of the sort name being declared to the same
set, a subset, or a set disjoint from the set interpreting the
sort expression, respectively. For the first example above,
this means that both man and woman are contained in
person. Moreover, man and woman do not have any
object in common.

The sort constraints are a means for influencing the
structure of the sort hierarchy induced by the subsumption
relation << between the sort expressions of a knowledge
base:

se << se’ iff in any interpretation the denotation of se is a
subset of the set interpreting se'.

This subsumption relation has been studied for various
feature-term languages [3, 13, 21].

Besides positioning a sort within the lattice of sort
expressions, we can also introduce the attributes, i.e.,
features and roles, for a sort as part of its declaration. In
the more detailed declaration of the sort person below, we
introduce the two features age and sex, with their
corresponding ranges integer and sexes:

sort person;
features age : integer,
sex : sexes.

These attributes allow us to speak about the age and the
sex of a person. Features are functional attributes; i.e.,
they have a unique value for each object to which they can
be applied. In certain situations it is convenient to have
relational attributes available as well. This holds, e.g., for
the parenthood of a man or a woman, respectively, since a
person can be the father or mother of several (or possibly
no) children:

sort man < person;
roles father_of :: person.

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

sort mother < person;
roles mother_of :: person.

Semantically, features stand for one-place total
functions, while roles are interpreted as two-place
relations [22].

In many situations we wish to introduce some specific
objects of a sort when declaring it. The objects that can be
introduced for a sort in its declaration are called atoms.
Referring back to our sort person, we must still declare the
target sort sexes of the feature sex; a reasonable definition
could be the following:

sort sexes
atoms female, male.

The atoms which can be declared for a sort are objects of

that sort for which we impose a unique names assumption.
For the sort sexes, this means that it contains (at least) the
two different elements male and female.

Atoms can be used to form another kind of sort
expression: intervals of integers and enumerations which
appear in the definition of the sort vehicle below. Let us
first say what kinds of vehicles we might want to consider:

sort vehicle-type;
atoms bike, boat, car, plane, train.

Then we define vehicles as

sort vehicle
features wheels : [0...256],
doors : [0...256],
type : vehicle-type,
driver : person
owner : person.
roles user :: person.

The declaration of the sort vehicle makes use of intervals
of integers. The intervals are sort expressions such as

[0---25],

which is a short form of enumerating a set of integers.
In general, enumerations have the form

{al’”"an}’

where the a, are atoms and they define the set consisting
exactly of those elements interpreting the atoms mentioned
in the enumeration.

Sort expressions of the form f : se, where f is a feature
and se is some sort expression, define the subset of all
those elements of the domain of the feature f which are
mapped to the data domain defined by se. This mechanism
is typically called feature value restriction [14]. An
expression such as

type : {car} 969

T. BOLLINGER AND U. PLETAT

970

stands for all vehicles for which the type-feature has the
value car, and we could use this expression to define the
sort of cars by

sort car = and(vehicle, wheels : {4}, doors : {2, 3, 4, 5},

type : {car});
features body : body-type.

where the body types of a car may be defined as follows:

sort body-type;
atoms cabrio, coupe, hatchback, sedan.

According to this definition, cars are vehicles having four
wheels and two to five doors, depending on the body type.
Intuitively, any car should be a vehicle, and that is exactly
what the formal semantics of L, ;, .. establishes [22]; i.e.,
the subsumption relationship car << vehicle holds for these
two sorts. Value restrictions involving roles may also be
formulated; here, L, . offers two variants. The sort
expression

all user teenager

describes the sort of all vehicles whose users are
teenagers, provided that any such vehicle is in use,

i.e., that there is a person driving the vehicle. In many
modeling situations we wish to express that, with reference
to the above example, there is indeed a user of the vehicle.
In order to avoid notational overhead for describing this
with the some operator discussed below, we introduce the
following useful syntactic device in the sort description
features of L, ,.: The sort expression

driver :: teenager

is a shorthand for

and(all driver teenager, some driver).
The sort declarations

sort father = some father_of.
sort mother = some mother_of.

define fathers and mothers by stating that a father or a
mother is a man or a woman, respectively, such that there
is at least one person of whom he or she is a parent. In
other words, the sort expression some mother_of stands for
all objects m of sort person such that there is an object ¢
of sort person for which mother_of(m, c) holds.

The operator agree allows us to form the set of all
objects for which two feature paths (i.e., sequences of
features) have the same value. Thus, the sort expression

and(vehicle, agree(owner, driver))

characterizes vehicles owned by people who do not
allow others to drive their cars. The counterpart of the
agreement operator is the disagreement operator
disagree. It defines the set of all objects such that the

T. BOLLINGER AND U. PLETAT

two feature paths involved in the sort expression have
different values.

Finally, we wish to introduce sort expressions which
allow us to speak about sets containing finite subsets over
some base set as their elements. The sort declaration

sort group-of-tourists < person”.

defines the sort of group-of-tourists as a set containing
finite sets of persons as elements. In several modeling
situations it is convenient to consider a base set and finite
subsets within one set. Such classes of objects could be
described by the union or(person, person *), if we take the
sort person as the base set. This union can be abbreviated
by another operator, *; thus, for the sort person we obtain
person* = or(person, person”).

In summary, the sort descriptions of L, ., have ,
integrated concepts from order-sorted predicate logic and
KL-One-like languages. This supports an object-oriented
description of the data domain of a knowledge base in the
sense that we are able to speak about objects and their
attributes. The formal semantics of these language
constructs interprets sort expressions as sets (of a certain
structure according to the set-forming operators used in
the expression), features as total functions, and roles as
relations [22], allowing us to deal with subsumption
relationships between sort expressions in a natural way.
An interesting, although very natural, phenomenon of the
semantics for the sort descriptions of L, . is that we can
use an important property of object-oriented languages at
no cost: the concept of multiple inheritance. The
inheritance mechanism works in two directions: Features
and attributes are inherited downward in the lattice of sort
expressions, while objects of a sort are inherited upward.
This results from two simple mathematical properties:

A function F : D — R can also be applied to any subset
D' C D of its domain; thus we say that F is inherited
down to any subset D’ of D. In the context of the L .
knowledge terms introduced so far, this means, e.g., that
the age-feature of a person may also be evaluated for any
mother, since mother << person; i.e., mother is subsumed
by person, formalizing that any mother is (of course) also a
person. On the other hand, the subset relation between the
sets interpreting the sorts causes any object of a sort s to
be also an element of the sort s’, if s is subsumed by s’. In
this sense we obtain the upward inheritance of atoms (and
also other objects we describe below) of a sort. All this is
straightforward: We simply exploit the natural properties
of subset relations among sets and the element relation
between objects and sets.

Function declarations 'While the sort declarations of a
knowledge base introduce its sort hierarchy, or (to use a
different terminology) the taxonomy of its data domains,
the formulation of the logical axioms of a knowledge base

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

requires further declarations: We need to know the
relations to which the axioms refer. To introduce these
relations between the data classes of the knowledge base
is the purpose of the function and predicate declarations
to be discussed next. We have already introduced simple
kinds of function and predicate declarations: the features
and roles attached to a sort. Their simplicity results from
the fact that they can relate only two sorts. In general,
both functions and predicates of arbitrary arity are desirable.
A function declaration

function F (argname : se,, * « + , argname, : se,} — se.

in L, ,; states that in the domain modeled by the
knowledge base, the object classes represented by the sort
expressions se; are functionally related to the set se, and
that this relationship bears the name F.

Within the domain of traveling functions is a convenient
means for modeling knowledge. A typical functional
relationship is that of seat allocation, assigning a seat
within a vehicle to each of the passengers. Assuming for
simplicity that any seat can be identified by an integer
number, we obtain the following function declaration as
part of our knowledge base:

function seat-allocation { passenger : person, carrier : vehicle)
—> integer.

This declaration exhibits another feature of the concrete
syntax of L, ; ,.: The arguments of a function (and also
those of a predicate) need not be identified by their
position in the argument list; instead, we support the more
flexible method of explicit naming of argument positions.

Choosing a function to represent seat allocation is a
good means for expressing that each passenger in a
vehicle has a unique seat. Unfortunately, seats may be
overbooked; this can also be captured adequately by
modeling the seat allocation with a function, since
functions are in general not injective. Thus, it may happen
that both Mr. Miller and Mr. Smith are allotted to the
same seat No. 15 in a Boeing 737; i.e., we have

seat-allocation(passenger : Mister_ Miller, carrier :
Boeing_737) = 15

and

seat-allocation{(carrier : Boeing_737, passenger :
Mister_ Smith) = 15.

Some functions have no arguments. Such functions are
considered as elements of their target sort. The syntax of
L, o offers such nullary functions as constants or
reference objects, so we may have further declarations
such as

constant Mister_ Miller : man.

and

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

refo Mister_ Smith : man.
and
refo Boeing_737 : type : and(vehicle, { plane }).

as part of a knowledge base. Logically, there is no
difference between constants and reference objects.
However, in the natural-language understanding context of
the LILOG project, from which L, .. emerged, reference
objects (refos, for short) are distinguished as constants.
The type of a constant or a reference object may be given
by an arbitrary sort expression. Thus, we want to speak
about two distinguished sportscars such as

constant Porsche_911 :
and(car, doors : { 2 }, body-type : { cabrio }).
and

refo ferrari_dino :
and(car, doors : { 2 }, body-type : { coupe }).

L, ;1o offers several built-in functions for the arithmetic
operations. Thus, the following functions are part of any
knowledge base:

function (integer + integer) — integer.
function (integer — integer) — integer.
function (integer * integer) — integer.
function (integer / integer) — integer.

function — (integer) — integer.

Since in L, ;; ., we may have data domains containing sets
over a certain base set as elements, we would like to be
able to form unions of these sets or to create the set
containing two elements of the base set. This is the idea
behind the following built-in function:

function (top* & top*) — top*.

The sort expression zop* abbreviates the union or(top,
top ™}, which is the top element of the entire lattice of sort
expressions over a knowledge base. For example, the
function & can be used to form the set john & mary,
which is a set-object of the type person* and contains the
two elements john and mary.

The ability to declare function symbols and define them
via equations allows us to use L, . like the kernel of a
functional programming language standing in the tradition
of abstract data type specification; see [10, 30].

Predicate declarations A predicate declaration

predicate R (argname, : se, - - -, argname, : se).

appearing in a L, ; .. knowledge base tells us that we have
an arbitrary relation named R between the sets interpreting
the sort expressions se;; i.e., there is no functional
dependency between the arguments of the predicates.

T. BOLLINGER AND U. PLETAT

971

972

An important predicate that should occur in any
knowledge base on traveling is the following:

predicate travel (who : person*, fr : location, to : location,
with : vehicle).

The declaration of the predicate travel states that a relation
travel exists among the sorts person*, location, and vehicle
which can tell us who is traveling from where to where
using which vehicle. Choosing the sort expression person™
expresses that we wish to speak about traveling groups of
people and individual travelers in a uniform way.

Several built-in predicates are available in any knowledge
base, e.g., the comparison predicates between integers
and an equality predicate.

To test the subset or membership relation between
objects of the sort zop* we have the predicate

predicate (fop* in top*).

made available as an L, | ;. built-in. Using the constants
john and mary of sort person and the union operator &,
we observe that

mary in john & mary

is true, since mary is an element of the set john & mary.
Also,

mary & john in john & mary

holds, because john & mary and mary & john denote the
same set-object.

Finally, we have an additional collection of useful
predicates which are available as built-ins of L .
the so-called sort-predicates, which could be declared as
follows:

predicate {se} (top*).

for each sort expression se; i.e., we may use an arbitrary
sort expression as a unary predicate.

Using sort expressions as predicates, we are able to
state sort memberships that cannot be expressed by the
declaration of constants, refos, or functions. This holds,
for example, for conditional memberships such as the
following: If somebody travels more than 50 000 miles per
year, he is a globetrotter, where globetrotter is a subsort
of person:

sort globetrotter < person.
sort year.
predicate travels (who : person, distance : int, period : year).

axiom globetrotters
forall D : distance, P : person, Y : year;
travels(period : Y, distance : D, who : P)
and D = 50.000

-

{ globetrotter } (P).

T. BOLLINGER AND U. PLETAT

Having introduced the first logical axioms, we complete

the discussion of function and predicate declarations and
take a more detailed look at the logical axioms that may
occur in a knowledge base.

Axioms of a knowledge base The declarations of sorts,
functions, and predicates we have discussed thus far have
introduced the basic building blocks for formulating the
logical axioms of a L, .. knowledge base. As in any logic,
the logical axioms express which objects of which sort are
related by the relations (i.e., functions and predicates)
declared within the knowledge base.

The expressive power of the axioms that may occur
within a L, . knowledge base is that of full first-order
predicate logic. Because of the knowledge based system
context for which L, .. was designed, we have chosen a
rule-oriented notation for the logical axioms of the
following form:

axiom (axiom-id) { quantifications)
{ premise) — (conclusion)

Thus, every axiom has a name; next we have the
quantifications introducing the variables occurring in the
axiom, together with the quantifier to which the respective
variable is bound. Both universal and existential quantifiers
are offered; moreover, further default quantifiers are
possible as well (see below for the discussion of how to
handle defaults in L, ; ;). Then we have the body of an
axiom, which is basically an implication where the premise
may be a conjunction of disjunctions of literals, while the
conclusion may be a disjunction of conjunctions of literals.
Compared to the clausal form for logical formulas, which
is often used in resolution-style theorem proving [31] and
also for logic programming [32], this is a moderate
generalization which has the following advantages:
1) various quantifiers are available to the knowledge engineer;
2) writing the axioms as implications supports the ‘‘what
follows from what”” intuition which is often used in the
framework of operational logic; and 3) no normalizations
(but skolemization) are necessary for processing these
formulas as long as we use the model elimination calculus
for generalized clauses, which is described in [33, 34].
This general structure of the logical axioms allows us to
formulate ground facts such as

axiom john-and-mary-travel
travel(who : john & mary, fr : Los_Angeles,
to : San_ Francisco, with : Porsche_911).

expressing that both John and Mary travel from Los
Angeles to San Francisco with their Porsche, and rules
such as

axiom group-member :
forall M : person, G : person*, F, T : location, V : vehicle;

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

travel(who : G, fr: F,to : T, with : V') and
Min G
— traveliwho : M, fr: F, to : T, with : V)

expressing that if a group of people travels with some
vehicle, then any member of the group uses the same
vehicle.

While the above two rules involved either no or only
universal quantification, the concrete syntax of L, ; - also
supports the use of the existential quantifier, enabling us to
formulate axioms such as

axiom lonely-traveler :
exist P : person;
travel(who : P, fr : San_Francisco,
to : Los_ Angeles, with Porsche_911).

expressing that somebody is traveling from San Francisco
to Los Angeles.

Defaults in L, .. The quantifications appearing in
the axioms of a knowledge base are also the means for
formulating default knowledge. The basic idea behind this
approach is that a default proposition can be seen as a
special form of universally quantified formula, stating that
the proposition does not strictly hold for every object of
the sort of the quantified variable, but rather permits
exceptions.

Assuming a predicate

predicate uses(who : person, which : road).
and reference objects

refo Highway_ 1 : road.

refo Highway_101 : road.

we can state that people typically use either Highway 1
or Highway 101 when going from San Francisco to Los
Angeles by the following axiom involving a default
quantification:

axiom typical-route :
o_default P : person, forall V : vehicle;
travel(who : P, fr : San_Francisco,
to : Los_Angeles, with : V)
— uses(who : P, which : Highway_1) or
uses(who : P, which : Highway_101)

The quantification o_default P : person states that the
axiom typical-route involves what we call an optimistic
default; i.e., applying an axiom containing optimistic
default quantification does not trigger any consistency
checking of the conclusions (of the applied rules involving
the default) immediately after the inference process.

The more standard situation of performing the
consistency check before the application of a rule

can be specified by the so-called pessimistic

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

defaults, for which we foresee quantifications such as
p_default P : person. The effect of this differentiation is
that the LILOG inference engine uses rules involving an
optimistic default as if the corresponding variable had been
universally quantified. However, when it becomes
necessary to revise knowledge relying on default
information, formulas that have been derived using
optimistic defaults may be withdrawn, while this is not the
case for formulas relying on hard information only (see
[35] for a description of the truth-maintenance system
which handles this default reasoning approach in the
LILOG inference engine. The pessimistic defaults behave
like normal defaults by applying default rules only in
situations causing no contradictions [36]. From an
operational point of view, this means that we must verify
that no contradiction occurs when performing an inference
step involving a pessimistic default. Furthermore, the
default mechanism of L, ;, ., offers the concept of graded
qualities of default knowledge [26, 35]. While in the early
approaches to nonmonotonic reasoning, the quality scale
for knowledge relying on default information consisted
only of the two degrees hard and default (cf. [36],

[37]), more recent approaches have implicitly

suggested the use of an arbitrary partial ordering as the
quality scale [38]. In our setting of an order-sorted logic,
it seemed to be quite natural to use the partial ordering of
the sort expressions as the scale for measuring the quality
of default information described in L, . knowledge
bases. The basic idea is that information involving smaller
sorts is of higher quality than information stated for larger
sorts.

The default reasoning concept of L, ., allows for elegant
formulations of some typical puzzles which have become
rather famous in the meantime: the question whether
tweety can fly, and the question whether nixon is a pacifist.

Let us treat tweety first and assume the following
knowledge entities in our knowledge base:

sort bird.
sort large-bird < bird.
predicate fly(who:bird).

refo tweety : large-bird.
axiom flying-birds
_default B : bird;
fly(who:B).
axiom non-flying-birds
p_default LB : large-bird;
not fly(who:LB).

Then our knowledge implies both
fy(tweety)
and

“fly(tweety) 973

T. BOLLINGER AND U. PLETAT

974

but since we have large-bird < bird, the information that
tweety does not fly is of better quality than the information
asserting that sweety flies. (This analysis of the quality of
default information is done by the truth-maintenance
system [35].) Therefore, we do not encounter an
inconsistency, because the TMS discards the worse
information that tweety flies.

Of course, most real reasoning problems are not that
easy, because the sort hierarchy of a L, ;| .. knowledge
base is not a total but a partial ordering. Taking a partial
ordering as the quality scale for default information leaves
us with the problem of what to do with inconsistent
statements for which the quality of the conflicting results
cannot be effectively compared with respect to the
underlying sort hierarchy. This is discussed in the
framework of the Nixon diamond formulated in L
below:

LILOG

sort quaker.

sort republican.

sort pacifist.

refo nixon : and(quaker, republican).

axiom peaceful quakers
p_default Q : quaker; { pacifist}(Q).

axiom brave republicans :
p_default Q : republican; not { pacifist}(Q).

Since nixon is both a quaker and a republican, we obtain
both pacifist(nixon) and —pacifist(nixon). Because the
quality of the default information leading to this
contradiction cannot be compared, we take a skeptical
approach and believe neither in nixon being a pacifist nor
in nixon not being a pacifist.

The availability of defaults allows the knowledge
engineer to make use of both classical negation (since we
deal with full first-order predicate logic) and negation by
failure (since we can express that “‘something does not
hold unless stated otherwise’” by means of a default
axiom).

For a more detailed discussion of the concepts of
nonmonotonicity as part of L, ., see [26, 35].
Controlling inferences in L, ,. Since L, . is
implemented by an inference engine interpreting the
language, we (as any theorem prover does) face the
problem of having to traverse large search spaces. In the
natural-language understanding context of LEU/2, the size
of these search spaces does not result particularly from
the depth of the proofs to be performed, but from the fact
that we must deal with rather large knowledge bases:
The background knowledge base of LEU/2 consists, for
example, of about 600 sort declarations and about 300

T. BOLLINGER AND U. PLETAT

facts and rules. Thus, means for excluding parts of the
axiomatic knowledge for certain inference tasks are
welcome.

The application of L, ; . in the natural-language
understanding framework suggests both forward- and
backward-chaining tasks over a knowledge base. This is
due to the two operation modes of the LEU/2 system:
When texts have to be understood by the system, we want
to draw conclusions from the information contained in the
texts with respect to the background knowledge provided
to LEU/2. This is a typical situation in which the forward-
chaining mode of the inference engine is the main
inference task to be used. In many situations we know
in advance that only specific axioms of the knowledge
base need be used for these forward-chaining tasks.
Analogously, we can say the same about the backward-
chaining reasoning mode, i.e., that there are certain
axioms in the knowledge base for which the knowledge
engineer knows in advance that they need only be used in
the problem-solving mode, which is the basic inference
task when questions about the contents of texts must be
answered by LEU/2. This gives us two classes of axioms
within a knowledge base:

1. Axioms which are applied for knowledge base
extension, i.e., in the forward-chaining mode of the
inference engine.

2. Axioms which are applied for problem solving, i.c., in
the backward-chaining mode of the inference engine.

Of course, these two classes of axioms need not be
disjoint. The technical concept for qualifying axioms to be
relevant for backward or forward inferences is to use entry
points, which can be attached to the literals occurring in
an axiom. To make an axiom available to forward-chaining
tasks, one of the literals in the premise of the axiom must
be tagged with an entry point. The backward-chaining
tasks may use all axioms in which either no entry point
occurs or an entry point is provided for one of the literals
in the conclusion. Axioms that are to be used for both
forward- and backward-chaining tasks must have literals
tagged with entry points both in their premise and in their
conclusion.

To illustrate the effect of marking literals by entry
points, we return to our axiom group-member from above:

axiom group-member-bwc
forall M : person, G : person*, F, T : location, V : vehicle;
travel(who : G, fr: F, to : T, with : V') and
MinG
-

EP traveliwho : M, fr: F,to : T, with : V).

The entry point specified for the literal

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

traveliwho : M, fr: F,to: T,with: V)

qualifies the axiom group-member-bwc as one to be used for
backward inferences only.

By placing an entry point on a literal in the premise of
the axiom, we can qualify it to be usable in forward
inferences:

axiom group-member-fwc

forall M : person, G : person*, F, T : location, V' : vehicle;

EP travel(who : G, fr: F, to : T, with : V') and
Min G
-

traveliwho : M, fr: F, to : T, with : V).
The entry point specified for the literal
traveliwho : G, fr: F,to : T, with : V')

makes the axiom available for forward inferences which
have been triggered by a formula containing a literal that
unifies with the labeled literal. Thus, we may use the
axiom
axiom john-and-mary-travel
travel(who : john & mary, fr : Los_Angeles,
to : San_ Francisco, with : Porsche_911).

as a trigger formula and derive that both John and Mary
travel from Los Angeles to San Francisco by means of
forward inferences. Note that the formula group-member-
bwe is blocked for application in forward-chaining mode.

The second means for controlling the inference engine
is to delegate inference tasks to an external deductive
component. In particular, this means that in L, ,, we are
able to state that certain literals must be evaluated outside
the theorem prover that interprets L, ;. Currently only
one such external reasoner is supported: the depiction
module for processing spatial information on the basis of
cell matrices [24, 39]. The depiction module is a special
evaluator for predicates (appearing in literais) such as
close-to defining when some object is located close to
another one. A typical invocation of the depiction module
would be

depic close-to(what-is : church, close-to-what : bicycle)

indicating that the analysis should switch from the theorem
prover to the depiction module and process the above
literal there. A literal can be processed externally in two
ways, corresponding to the basic inference modes of
knowledge base extension and problem solving:

1. In the imagination mode, the depiction module is
provided with some literal and extends its internal
knowledge base with the information given by the
literal. This corresponds to the knowledge base
extension; whenever a depic-literal such as the one

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

above appears in the conclusion of an axiom, the
imagination mode of the depiction module is triggered
with this literal.

This general idea about the imagination mode of the
depictional reasoner is illustrated by the following
axiom:

axiom bike-and-church
forall B : bicycle, C : church

EP distance(between-objectl : B, and-object2 : C) < Im

— depic close-to(what-is : B, close-to-what : C).

When the axiom is to be processed by the inference
engine, it causes the depiction module to store the fact
that a bicycle is close to a church whenever it is
possible to prove that the distance between the bicycle
and the church is less than one meter. We can see from
this axiom that its application makes sense only in a
forward-reasoning mode, which is why we qualify

the rule as applicable only in forward-chaining tasks

by placing an entry point on the premise of the

axiom.

2. The inspection mode of the depiction module
corresponds to the problem-solving inference task.
When the inference engine must process a depic-literal
in backward-chaining mode, it does not search the set of
axioms for a complementary literal in order to make a
“classical” resolution step over that literal. Instead, the
literal is passed to the depiction module in order to verify
it and to return substitutions as the solution for that literal
to the theorem prover.

For the goal formula below, this means that the
inference engine will delegate the finding of a solution to
the depictional reasoner and not try to solve the goal
according to the knowledge in the propositional
knowledge base:

goal what-is-close-to-what
exists OB1 : object, OB2 : object;
?-depic close-to(what-is : OBI, close-to-what : OB2).

The mechanisms of imagination and inspection of the
depictional reasoner for processing spatial knowledge must
be considered special instances of increasing the amount
of knowledge of an external reasoner and accessing the
knowledge of such a special-purpose knowledge processor.
The integration of the spatial reasoner could be taken as
the design for including other external inference engines,
such as relational databases or a logic programming
system, in the LILOG knowledge representation approach.

Summarizing, the axiomatic part of a L, ., knowledge
base allows us to formulate the logical relationships
between the objects of a knowledge base in a rather
sophisticated way. The generalized clausal form in which
axioms may be presented supports the “what follows from

T. BOLLINGER AND U. PLETAT

975

976

what”” intuition that has proved very successful in
languages such as Prolog and other rule-based
programming languages for knowledge based systems.
Moreover, the default logic and the means for controlling
the inference processes can be used with little notational
overhead and exhibit a clear underlying intuition.

3. The LILOG inference engine

The development of an inference engine making the L,
knowledge representation language operational has been
strongly influenced by the natural-language understanding
context of the LILOG project. However, in the
architecture of the inference engine we have anticipated
the use of its logical kernel for a wider spectrum of
applications as well.

& Design objectives for the inference engine

In the framework of the LEU/2 natural-language
understanding system, knowledge represented in L,
may stem from two sources:

& Our knowledge engineers have developed the
background knowledge of LEU/2 about touring through
a city in which we find streets, museums, restaurants,
and other things of interest. Moreover, this background
knowledge contains specific information about the city of
Diisseldorf.

» The LEU/2 system interprets German texts describing,
for example, specific museums, or the location of
department stores in Disseldorf, by constructing L, .
representations of the information provided in such
texts.

The natural-language understanding capabilities of LEU/2
require that the knowledge provided to the system be
made operational by an inference engine for various
purposes. Knowledge extracted from German texts must
be combined with the background knowledge by means of
forward inferences (this corresponds to the text-input
mode of LEU/2). Of course, we can also query the
knowledge available to LEU/2 in natural language and
obtain natural-language answers to our question (this
corresponds to the query mode of LEU/2).

Apart from these two overall requirements, the linguistic
capabilities of a natural-language understanding system can
be improved by supporting, e.g., the linguistic analysis
with background knowledge about the application domain.
Typical tasks that benefit from the ¢valuation of
background knowledge are the disambiguation of different
readings of a natural-language sentence, or the resolution
of anaphoric references between a pronoun and the
explicitly mentioned referent to which it refers. Another
component which can benefit from the services of the
inference engine is the dialog component of the LEU/2

T. BOLLINGER AND U. PLETAT

system. Here the inference engine supports the generation
of cooperative natural-language answers to queries posed
against the knowledge of LEU/2.

The above discussion shows that in the natural-language
understanding framework of LEU/2, the inference engine
must offer a variety of application-dependent inference
tasks.

On the other hand, L, .. is a typed logic that does not
implicitly recognize the applications for which it is being
used. However, any logic suggests certain inference tasks
that can be performed over the knowledge represented in
this logic. Let us call these inference tasks application-
independent. Since L, | . is a typed logic, the following
three logical inference tasks are realized by the inference
engine no matter what application it is supposed to
support:

1. The classical logical inference task of solving the
problem of whether a goal formula follows from the
formulas given in a knowledge base.

2. In addition to the classical backward-chaining inference
task, a forward chainer (with consistency checking
capabilities) is of considerable interest for combining
new pieces of knowledge with existing knowledge.

3. The sort language of L, . constitutes a (sub)logic in
itself, suggesting inference tasks such as testing the
validity of the subsumption relation for two sort
expressions or computing their greatest lower bound.
Thus, special sort-processing capabilities are available
as a logical inference task.

These application-independent inference tasks can be
considered to be a second level of inferential capability
(realizing the application-dependent inference tasks)
offered by the inference engine of LEU/2.

Logics are typically made operational by means of
theorem provers. Classical theorem provers implement
pure first-order predicate logic in terms of a proof
procedure for testing whether a set of clauses is
inconsistent {40-42]. Very often they are optimized toward
performing this basic inference task efficiently [43-45]. In
considering the variety of tasks the LEU/2 inference
engine must deal with, it is clear that the functionality of
such basic theorem provers is not sufficient for our
purposes. Of course, the inference tasks we have in mind
also require the basic theorem-proving function of showing
that a set of clauses is inconsistent. According to the
application context given by the LEU/2 natural-language
understanding system, these tasks are executed in specific
contexts and may require different settings for the basic
proof procedure. Therefore, we aim at a parameterizable
theorem prover serving as the basic inference algorithm,
which is adaptable to the various specific inference tasks it
is supposed to solve. The general proof procedure meets

iBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

these requirements and can be considered as the “‘heart™
of the inference engine. The second basic reasoning
algorithm is an inconsistency checker for sort expressions,
which processes the sort information of a L,
knowledge base. Figure 1 illustrates the vertical structure
of the LILOG inference engine outlined thus far.

The discussion above has shown the different levels of
abstraction at which knowledge formulated in L, ., can
be made operational within LEU/2. The basic idea of
introducing the vertical structuring of the inference
engine is to make a clear distinction between application-
dependent inference tasks and the logical inference tasks
that are supported independently of the application. These
logical inference tasks themselves form a higher level of
inferential capability than the basic inference algorithms
represented by the general proof procedure and the
inconsistency checker.

In addition to the vertical structure of the LILOG
inference engine, we have imposed a horizontal structure
on the logical level of the inference engine, which has
been strongly influenced by further overall objectives for
LEU/2. One objective for the development of LEU/2 was
to create an experimental environment offering basic
processing modules needed for natural-language
understanding in such a way that extensions of these
modules and the integration of new components into
LEU/2 are easily possible. This decision was made in
order to provide an experimental system for testing the
feasibility of theoretical solutions in a given software
environment. Of course, this overall objective for LEU/2
applies to the knowledge representation and processing
activities of the LILOG project as well.

For processing L, ;; ., (and knowledge processing in
general), several interesting questions do need practical
experience, requiring an implementation of the knowledge
representation language:

& To what extent does the inference behavior of the
various logical inference tasks depend on the inference
calculus being used for the inference task?

& Can specialized external reasoners improve the
inferential capacities of the inference engine?

~ How do inference calculi and strategies for traversing the
search space interact? Which search strategy best fits
which calculus?

» Does one inference calculus fit some specific knowledge
base better than another?

& Can we tailor the behavior of the inference engine by
setting certain parameters and options so that inference
behavior improves for a specific knowledge base?

To experiment with the inference behavior of our

inference engine and answer such general questions, we
had to establish a very clean module structure for the

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

Application-dependent inference tasks

A
\

Application-independent inference tasks

3

\

General proof procedure and
inconsistency checker

Vertical structure of the LILOG inference engine.

i gas

inference engine as a whole and the general proof
procedure in particular. This led to an architecture in
which, for example, the general proof procedure is able
to make explicit reference to the inference calcufus and
search strategy it is supposed to use. Thus, the inference
calculus and the search strategy became separate modules
of which different realizations can be interchanged easily
in order to impose different inference behaviors on the
general proof procedure. The high degree of flexibility that
can be achieved by such an architecture has its price in
terms of lower efficiency, but for a system serving as an
environment for experimenting with inference calculi,
search strategies, etc., we are willing to pay this price.

The implementation of LEU/2 has already shown the
practical usefulness of the modular architecture of the
logical level of the inference engine. The user is already
able to choose among several search strategies such as
depth-first or breadth-first, and the reasoning capacities
can be enhanced by adding specialized calculus rules,
e.g., for processing sort literals, when the contents of the
knowledge base require this.

The rest of this section discusses the three layers of
the inference engine. First we address the application-
dependent layer: the user interface. Then the logic
interface, representing the application-independent
inference tasks, is discussed; and finally we give a more
detailed view of the low-level inference mechanisms

T. BOLLINGER AND U. PLETAT

977

978

represented by the general proof procedure and the sort-
processing algorithms.

& User interface

The user interface level of the inference engine offers the
application-dependent inference tasks. Since some of the
logical inference tasks provided by the inference engine are
also of interest to some of its users within LLEU/2, the user
interface is the point at which to access them. Below we
describe typical situations in which various modules of the
LEU/2 system will access the inference engine.

Inference tasks supporting text understanding Having
constructed the semantic representation of a sentence, we
must integrate the new knowledge into the previously
acquired text knowledge and background knowledge
available to LEU/2. This is done by checking whether the
new knowledge is consistent with the existing knowledge
and by performing forward inferences in order to deduce
implicit knowledge. Consistency checks and the execution
of forward inferences are part of the functionality offered
by the logic machine; they are described in more detail in
the next subsection.

The resolution of anaphoric references is one part
of the interpretation process that constructs L, ..
representations for German texts. It must determine
whether there is an antecedent in the text to which a
pronoun may refer. One way of making this decision is to
compare the sort of the object representing the antecedent
with the sort attached to the object representing the
pronoun. The linguistic algorithms will discard any of the
candidate antecedents whose sort is incompatible with the
sort of the pronoun; i.e., the greatest lower bound of the
sort of the antecedent and that of the pronoun is the empty
set. Computing the greatest lower bound is an inference
task the logic machine offers to its users within LEU/2.

Inference tasks supporting question answering In the
question-answering mode of LEU/2, we are able to

have a natural-language dialog with the system about

the knowledge it has acquired during previous text-
understanding phases. One objective here is to achieve a
dialog behavior which can be called cooperative. That is
to say, instead of verbalizing the logical answers to the
questions posed to the system in a straightforward way,
LEU/2 is expected to provide more informative, natural-
language answers.

Basically there are two question types whose logical
representations must be handled by the inference engine:
yes/no- and wh-questions (questions beginning with who,
what, which, and where). For yes/no-questions, it is
sufficient to try to prove the goal formula representing the
question, and, if the proof does not succeed, the negated
goal as well in order to provide the natural-language

T. BOLLINGER AND U. PLETAT

answers Yes, No, and I don’t know instead of being able
to say only Yes or I don’t know. For wh-questions such
as “Which museum is open at 11 o’clock?”’ one is
additionally interested in those instantiations of a specific
variable which represent the logical answers to a question.

To achieve cooperative behavior, concepts such as over-
answering and presupposition handling must be realized as
part of the dialog component, avoiding simple ““Yes’’ or
“No” answers to a question. For example, the answer
“No”’ to the question ““Does the museum open at 9
o’clock?” is not very helpful; a better answer would be
““No, the museum opens at 10 o’clock.”

To support such features with the inference engine,
some extensions of the general proof procedure have been
made, leading to more elegant solutions than would ad hoc
ideas based on standard approaches. The standard solution
for producing the answer ““No, the museum opens at 10
o’clock™ is first to submit the original goal representing the
yes/no-question. Then, if this proof fails, the ‘9 o’clock
term” in the question goal can be replaced with a variable,
and the more general goal resubmitted to the inference
engine.

We are able to realize this within one query by
immediately replacing the 9 o’clock term with a variable in
the question goal and by telling the inference engine to
prefer solutions which instantiate the variable with terms
that are compatible with the 9 o’clock term. If the
compatibility constraint set up by the 9 o’clock term
cannot be satisfied, we drop it and search for further
solutions to our modified goal; if we find the 10 o’clock
term, it becomes the result of the inference process. We
give a more detailed description of this method in the
subsection on the general proof procedure.

Detecting violated presuppositions is another means for
generating cooperative answers. Assuming that no Picasso
museum exists in Diisseldorf, a good answer to the
question ““Is the Picasso museum open on Monday?”’
would be ““There is no Picasso museum,” instead of
““No,” or ““I don’t know.” This is because the latter
answers presuppose that there is a Picasso museum
which, however, is closed on Mondays. The semantic
representation of the original question may be split into a
conjunction of two subgoals corresponding to the questions
QlI: ““Is there a Picasso museum?’’ and Q2: ““Is it open on
Monday?”’ This conjunction of subgoals is submitted to the
inference engine, and it is asked to prove first Q1 and then
Q2. The inference engine cannot find a proof of Q1 and
reports this to the dialog component, which is now able
to give the desired cooperative answer.

In general, to produce the logical answers to such
questions, the subgoals of the question goal must be
processed in a given order—the presupposition order. If
the proof of the entire question fails, those subgoals that

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

could be proved, as well as the first nonproven subgoal,
are returned to the dialog component, enabling it to give
its cooperative answer.

From an abstract logical point of view, the answers to
wh-questions are terms instantiating a variable of the
question goal. One task of natural-language generation is to
verbalize these terms by finding an appropriate succinct
description distinguishing it from other objects of the same
category (i.e., sort). Thus, the inference engine may be
asked to compute all attributes for which a certain object
has distinct values compared to other objects of the same
sort.

For example, if we intend to speak about a specific
pencil among a number of others, it may happen that the
one we are interested in is the only red one. If there is a
color-feature, its value is red for the red pencil and
different from red for the other pencils; i.e., color is a
discriminative attribute for the red pencil, and “‘red
pencil” is an appropriate verbalization of it. We refer to
[46], which describes the language-generation component
of the LEU/2 system.

® [ogic machine

The logic machine of the LILOG inference engine
performs the logical, i.e., application-independent,
inference tasks, upon which the more complex, application-
dependent inference tasks of the user interface are
realized. Here, then, we find the inference services one
would expect from an implementation of L, .. as a stand-
alone knowledge representation language. The general
structure of the logic machine is shown in Figure 2.

The three subcomponents for the execution of logical
inference tasks are the problem solver, the knowledge
base extender, and the sort processor. The first two
subcomponents use the general proof procedure, since
their major concern is to process the knowledge provided
in terms of the axioms of a L, .. knowledge base. The
general proof procedure contains the inference calculus
(together with the search strategy) as a fundamental
submodule.

Since the truth-maintenance system and the external
deductive component (a reasoner performing special
deductions) are triggered by special calculus rules, the
general proof procedure is also the point at which these
components are attached to the inference engine.

The sort processor offers inference tasks that evaluate
the knowledge represented in the sort declarations of a
knowledge base. These inference tasks are realized in
terms of an inconsistency checker for sort expressions.

Access to the knowledge bases is realized by a special
interface module connecting the inference engine with the
database system that stores the compiled L code on
which the inference engine operates.

LILOG

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

Logic interface

Knowledge base :

Problem solver extender Sort processor
—~—
\

External Lt~ General proof A

inferences procedure Inconsistency
Inference | |t checker
™S calculi
\ \i Y
LLILOG knowledge base access

Architecture of the LILOG logic machine.

Logic interface

The logic interface is, so to speak, the entrance through
which one can access the logical inference tasks offered by
the inference engine. Its three doors are described below.

Problem solver The problem solver can be considered as
a generalized theorem prover whose essential task is to
prove L, .. goal formulas, given in terms of conjunctions
of disjunctions of literals.

The problem solver itself essentially performs some
initialization tasks comprising the negation of the goal
formula and the setting of various parameters directing the
search within the general proof procedure. The negated
goal is then passed to the general proof procedure for
finding a proof of the goal. Certain features distinguish the
problem solver (with the general proof procedure) from
ordinary theorem provers. First, there are many options
available, allowing us to set various parameters for the
execution of an inference task. In addition to options for
specifying the search depth and the number of results
(such as 1 for a yes/no-question or ““all”’” for wh-questions),
we may, for example, specify how to represent the result
of an inference process: The simplest form is to return
just a success or failure message. Alternatively, one
may request the inference result to be presented as
instantiations of the goal formula, or in terms of valid
substitutions for the variables in the goal. An option more
specific to the LILOG inference engine allows us to focus
the search on particular instantiations of certain variables;
this is useful for realizing some kinds of over-answering
(see the subsection on the user interface). Another special

T. BOLLINGER AND U. PLETAT

980

fc option deals with handling implicit presuppositions when
asking natural-language questions. For this, the problem
solver receives a list of L, ., formulas, which is
interpreted as a conjunction and represents the
presupposition order. The task is to prove a maximal
number of these L, .. formulas in the given
(presupposition) order. The formulas for which the

proof fails represent the violated presuppositions.

Knowledge base extender The knowledge base extender
offers the inference tasks of executing forward inferences
in connection with performing consistency checks. To
check the consistency of a formula with respect to a given
knowledge base, it is sufficient to pass the formula itself
to the general proof procedure, which (being a refutation
procedure) detects an inconsistency by deducing the
empty clause.

The execution of forward inferences is triggered by the
input facts of the knowledge base extender. These facts
are applied to forward (-chaining) rules by trying to
resolve them with the premises that are marked by an
entry point. The results are passed to the general proof
procedure for “‘resolving away” any remaining premise
literals. If this succeeds, the instances of the conclusions
constitute valid facts deduced by a forward inference step.
In the axiom

axiom fw-axioml
forallx, y, z : top
EP P(x,y) and Q(y, z)
-

Rx, z).

the first premise is marked by an entry point. Thus, a
forward inference step can be initiated by the fact P(a, b);
if the second literal of the forward rule can be proven by
Q(b, c), the literal R(a, c) has been deduced by a forward
inference step. This fact can be the input of another
forward-inferencing cycle.

Since the inferential closure is infinite in general, the
forward search depth, i.e., the number of iterations for
using deduced facts as new triggering formulas for further
forward inference steps, must be limited by a special
parameter of the knowledge base extender.

Sort processor The sort processor solves logical
inference tasks which refer to the sort hierarchy defined
by the sort declarations of a L, ; ., knowledge base.
Typically, the inference tasks that can be submitted to the
sort processor are those that test whether the subsumption
relationship holds between two L, ; . sort expressions,
compute the greatest lower bound for two sort
expressions, or ask whether a sort expression stands

for the empty set.

T. BOLLINGER AND U. PLETAT

This kind of inferencing is offered on the one hand to
users of the inference engine. On the other hand, we also
use the sort processor within the inference engine, e.g.,
during the unification process, when the compatibility
between the sort of a variable and the sort of a term
that is to be substituted for the variable must be checked.
Processing the sort literals (those literals whose predicate
is a sort expression) also requires us to invoke the sort
processor to check whether a sort literal can be eliminated
[47].

The sort processor can be realized by an inconsistency
checker for sort expressions, since all inference tasks
concerning sort expressions can be reduced to the question
of whether a sort expression is inconsistent, i.e., whether
it stands for the empty set. If we have to test whether the
subsumption relation se << se’ holds, this is equivalent to
the question of whether and(se, not(se’)) stands for the
empty set. The computation of the greatest lower bound
of two sort expressions can be represented in terms of
subsumption tests and an inconsistency test.

General proof procedure

The general proof procedure (GPP) can be regarded as the
heart of the inference engine. It is the basic inference
algorithm upon which the problem solver and the
knowledge base extender offered at the logic interface

are realized through special calls to the GPP.

From an abstract point of view, the GPP can be viewed
as a theorem prover, because its essential task is to prove
goals formulated by L, ... Typical theorem provers that
have been developed in the recent past, such as the Prolog
Technology Theorem Prover [44] or SETHEO [45], focus
on the efficient implementation of pure predicate logic.
Their efficiency results from choosing one specific
inference calculus as the basis of the prover and then
implementing it in “‘lower”’-level languages such as C by
using special implementation techniques such as abstract
machines.

All of these provers have been designed as stand-alone
implementations of predicate logic, and efficiency has often
been their major design objective. In contrast to that, the
inference engine for L, ; .. has been designed with a
concrete application in mind (to be the processor of the
semantic knowledge of a natural-language understanding
system). Moreover, the idea of being able to experiment
with inference calculi and search strategies has had a
major influence on the architecture of our proof procedure
as well. Thus, our main objective was to construct an
inference engine able to deal with a broad range of
different tasks and easily adaptable to new applications.
To achieve these objectives, efficiency had to be sacrificed.

Considering the spectrum of possible objectives one may
set up for developing a theorem prover, the LILOG
inference engine is a bit out of the mainstream when

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

efficiency is the major concern. Thus, making direct
comparisons between rigid high-speed provers for pure
predicate logic and a flexible prover for a powerful sorted
logic is difficult.

Characteristics of the general proof procedure The
general proof procedure is realized as a search procedure
for traversing or constructing proof graphs. Compared

to standard resolution theorem provers such as the ones
mentioned above, it is distinguished from them by several
special features:

& Generalized clauses {33] are used instead of normal
clauses. These generalized clauses are disjunctions of
complex literals, each in itself consisting of a conjunction
of (simple) literals (see the subsection on axioms). This
representation avoids certain disadvantages of the
classical clausal normal form. In particular, rules with
conjunctive conclusions or disjunctive premises need
not be split into several clauses. Also, to represent the
negation of L, - goals, one generalized clause is
sufficient, since the negation of the goal formula yields a
disjunction of conjunctions, i.e., again a clause in our
generalized normal form. Using generalized clauses, the
proofs become shorter in general. Furthermore, due to
a method for generating lemmas, multiple proofs of
identical subgoals can be avoided.

& A straightforward extension of the resolution calculus
enables us to process these generalized normal forms:
two complex literals L, A *++ AL _andL; A+ AL/
are complementary iff two of the simple literals
contained in the complex ones are complementary.

& The GPP can run under different inference calculi as well
as different search strategies. Therefore the “‘naked”
GPP (i.e., without a calculus and search strategy) can be
considered to be a theorem prover shell. For the GPP,
an inference calculus is a set of calculus rules. In the
current implementation the following rules are realized:

~ The model-elimination extension rule [41], adapted to
generalized clauses (cf. [33]).

¢ The model-elimination reduction rule, also adapted to
the generalized clauses.

* The sort-elimination rule [48] for proving sort formulas.

~» The execute-built-in rule for evaluating built-in
predicates, features, and built-in arithmetic operators
that occur in equations and inequations.

 The tms-lookup rule for consulting the truth-
maintenance system (see the subsection on the TMS).

* The depic-inspection rule for letting a subgoal be
proved by the depictional component (see the
subsection on external reasoners), the only external
reasoning component connected to the GPP at the
moment.

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

The GPP can run with any subset of these rules; thus, it
is easy to configure the inference engine. If, for example,
one is not interested in using the TMS or the depictional
component, one need only delete the corresponding
inference rule from the calculus. Adding a new rule is
also not complicated. One need only write the Prolog
code that implements the rule, without having to modify
existing code.

& A part of the search space can be temporarily
disregarded during a proof. This is realized by
introducing a new kind of node in the search tree or
graph—the suspended node; this is explained in more
detail below.

& The conditions for terminating a proof can be quite
complex. In particular, it is not always enough to deduce
the empty clause as in classical theorem-proving
applications, because the GPP must support the
realization of a variety of other inference tasks.

Finding a proof as a general search problem The task
of finding a proof of a logical formula can be formulated in
terms of a tree/graph-search problem (cf. [49]); i.e., given a
set of nodes with specific initial and terminal nodes, plus a
relation that determines the successors for each node, the
problem is to find a path from an initial node to a terminal
node.

For resolution-based calculi, the nodes in such a tree
represent clauses from the initial clause set (also called the
input set) as well as clauses created during the proof. The
set of initial nodes depends on the resolution refinement”
used. For the set-of-support strategy, for example, the
initial nodes of the proof graph are the clauses of the
support set; for linear resolution and model elimination,
one must choose one of the input clauses such that the set
of the remaining clauses is satisfiable.

The expansion of a node (i.c., the calculation of its
successor clauses) consists of applying the calculus rules
to this selected node, possibly with additional arguments.
For the resolution rule, expanding the selected node
means performing all of the resolution steps which are
valid according to the used resolution refinement.

In the set-of-support strategy, for example, only clauses
in the current search tree and the initial clause are
candidates for performing a resolution step with the
selected clause. This restriction can be imposed because
one assumes that the clauses stemming from the support
set are not contradictory. Thus, a contradiction can be
found only by resolving either two clauses from the proof
tree, or a clause from the proof tree with one of the
clauses of the support set. If linear resolution or model
elimination are used, the relevant clauses for performing

2 We assume here that different refinements of the resolution rule constitute
different resolution calculi. For the most common resolution refinements, see

[40, 41]. 981

T. BOLLINGER AND U. PLETAT

982

Proof-graph
initializer
Open clauses
\
Clause selector Openclavse | - Controlkinformation
o interpreter
Possible
inference.steps
Open
clauses New suspended Inference-step
inference steps s selector
Executable
] inference steps v
New
Proof-graph <0pen clauses Inference-step
analyzer petformer
S c
Terminal Suspended 3
clauses ¢ inference steps Executable
inference
Result Proof-graph steps
generator s reinitializer

R el

General proof procedure.

P

resolution steps with the selected node are those of the
input set, but in the case of linear resolution, the
predecessors of the clause to be expanded must be
considered as well.

A terminal node in a normal theorem-proving application
corresponds to the empty clause. But since we use the
inference engine for a variety of user-specified inference
tasks, the conditions for a terminal node can be more
complex, and in only a few situations does the empty
clause happen to be a terminal clause. For example, when
the GPP is used to execute forward inferences, any clause
containing only literals originating from the conclusion of
an applied forward inference rule qualifies as a terminal
clause. This is because, in forward-chaining mode, we
are resolving away the premises of some L, . axioms
and take the instances of the conclusions as inferred
formulas.

The search space is traversed according to a certain
strategy. In the context of tree or graph search there are
two kinds of nodes: open and closed. Open nodes have
not yet been expanded, whereas for closed nodes the
successors have already been determined. The role of the
strategy is therefore to select the next open node to be
expanded; in the depth-first search, this is the most

T. BOLLINGER AND U. PLETAT

recently created open node. (For an apparently more
intelligent strategy, this could be the node with the
shortest clause.)

The distinction between closed and open nodes is the
simplest one. For our proof procedure we have introduced
a third class of nodes, called suspended nodes, in order to
realize more complex search strategies. Suspended nodes
are nodes which are temporarily disregarded by the search
procedure. In situations where no terminal node can be
reached, suspended nodes are “reactivated’” for the
search. Various search strategies can be modeled using
the concept of suspended nodes—for example, iterative
deepening, where a node is suspended, if its depth is equal
to the current maximal search depth, or the combination of
an efficient, incomplete search strategy with a less efficient
but complete one, where the suspended nodes play the
role of a reserve to be used if the efficient search strategy
fails. This technique also allows us to focus the search
on particular solutions, since nodes that lead to
incompatible solutions are simply suspended. We
explain this in more detail in the section on the proof
graph analyzer.

After this general overview we describe the proof
procedure in more detail by walking through one inference
cycle of the inference engine. Figure 3 shows the main
parts of the general proof procedure. The indices in the
boxes indicate whether the corresponding subprocedures
are parameterized by the inference calculi (C) or by the
search strategies (S).

Proof graph initializer ~ Because of our model elimination
calculus for generalized clauses, the initialization of the
proof graph becomes trivial. We suppose that background
and text knowledge bases, from which the goal is derived,
are consistent [40].

According to the model elimination calculus, the goal
is a logical consequence of these knowledge bases, if the
proof search leads to a terminal clause when starting from
one of the clauses from the negated goal. The usual choice
of the starting clause can be avoided for our generalized
clauses, since the negated goal can always be represented
by exactly one generalized clause. This is only one
advantage of our generalized normal form, as the example
below illustrates. Using the classical clausal normal form,
the negation of the goal P VV Q yields =P A —1Q, which
must be represented by the two clauses P and 1Q while
it is a single clause (consisting of one complex literal) in
our normal form.

Additionally, a temporary proof knowledge base for the
clauses of the proof graph is created in which the initial
goal clause is stored. Including this clause in the input
clause set is necessary for obtaining indefinite solutions;
see also [41].

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

Clause selector When a new inference cycle is entered,
the first activity is to select a clause to be expanded next.
The set of open clauses in the proof graph is always
ordered according to the criteria imposed by the search
strategy. Therefore, the clause selector has only the trivial
task of taking the first open clause as the clause to be
expanded.

Control information interpreter Given the selected
clause, the control information interpreter determines the
possible inference steps that can be applied to this selected
open clause. In some sense, the actual calculus rules
themselves make this choice, because a calculus rule

not only performs the actions for its execution, but also
determines its potential inference steps. For a resolution-
style calculus rule such as the model elimination extension
rule, this means that a calculus rule selects only those
clauses to which it can be applied to perform a possible
resolution step.

This allows us to conceive different calculus rules
that perform the same actions but interpret the control
knowledge in different ways; e.g., one rule considers only
L, ;o rules whose conclusion is marked by an entry point,
whereas another calculus rule may look at all clauses in
the knowledge bases.

For resolution-like inference steps, the unifier can be
established when computing the possible inference steps.
This means that we select for the possible inference steps
only clauses which pass the ““full unification filter.”
Because of the complex sort information which must
be considered during the unification process as well,
computing the unifiers as part of the clause selection may
be too costly. As an alternative, one may specify special
calculus rules for which the cheaper unsorted unification is
done by the control information interpreter and the more
expensive sort checks are executed by the inference step
performer.

This shows that we interpret the term “‘calculus rule”
in a very broad sense, and also that a part of the inference
strategy is transferred into the calculus rules. However,
since one of our main goals was to be able to have an
experimental environment for testing different calculi with
different strategies, this general concept of calculus rules is
an important means of achieving the amount of flexibility
we require.

Calculus rules may require specific control operators in
order to be applied. The switch to the external reasoners is
realized by such an operator. If a literal of the goal is to be
proven by such a component, it must be marked by the
corresponding control information. The calculus rule for
invoking an external reasoner checks whether the
respective control information is attached to the goal
literal, and only if this is the case does it generate the

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

corresponding inference step specification consisting of the
calculus rule with its arguments.

The same holds for the rules-processing literals that
involve specific predicates. The execute-built-in rule, for
instance, checks whether the literal to be proven is an
equation or has a built-in predicate. Analogously, the sort-
elimination rule tests whether the literal to be processed is
a sort literal.

Inference-step selector The output of the control
information interpreter is a set of inference-step
specifications containing the necessary information for

the execution of an inference step. This set of possible
resolution steps is divided according to a strategy by the
inference-step selector into two disjoint subsets: the set of
executable inference steps and the set of the suspended
inference steps.

Inference-step performer The inference step performer
executes the selected inference steps. For resolution
steps, this means in general that the two parent clauses,
instantiated by the calculated unifier, are concatenated
without the resolved literals. Other inference steps need
more processing, €.g., if an external reasoner is consulted.

Proof graph analyzer The result of the inference-step
performer is a set of new open clauses. This set must be
integrated into the existing proof graph, which consists of
the actual set of open clauses, the set of closed clauses,
and the set of terminal clauses. More precisely, the new
terminal clauses are determined. The remaining new
open clauses are integrated into the set of open clauses
according to the search strategy; e.g., if we have breadth-
first search, the set of open clauses is represented by a list,
and the new open clauses are added at the end of that list.

It may happen that the set of open clauses and the set of
terminal clauses are not disjoint. This is useful for realizing
certain options in an elegant way. According to one
option, one may request the forward chainer to deduce the
most specific consequences that can be obtained from the
trigger formula. For example, assume that the disjunction
D, V D, qualifies as a terminal clause such that 2D, can
be proven (or, in other words: the literals in D, can be
“resolved away’’); then, D, should be a consequence
derived by forward inferences. For specializing this
disjunction, it is necessary to try additional inference steps
so that D, V D, must also remain in the set of open
clauses.

This possibility of allowing a clause to be both a
terminal and an open clause is also exploited for
handling the presupposition order of the subgoals in the
representation of a question. According to this option, the
subgoals must be processed in a certain order until the

proof of one subgoal fails. The results of an inference task 983

T. BOLLINGER AND U. PLETAT

984

handling the presuppositions contains both the proven
and the nonproven subgoals of the original question
representation. A simple way to achieve this is to include
open clauses whose literals originate from the initial
question representation in the set of terminal clauses as
well. After the proof search, the literals in the shortest
terminal clause represent the minimal set of nonproven
subgoals.

The proof graph analyzer is also the part of the GPP
responsible for focusing the search on specific solutions.
Suppose that for a query

goal goal-1
exists X: 8,,Y:8,;
?-Q(X,Y).

the preferred solutions for X are a, or a,, and those for Y
are b, b,, or b,. The proof graph analyzer determines for
every new open clause whether the instantiations of the
variables X and Y are still compatible with the preferred
solutions. If X is replaced by a term ¢,, this means that
t, must be unifiable with either a, ora,; i.e., if#, is a
variable, the sort of #,, must be a supersort of the sort of a,
or a,. If ¢, is a ground term, it must be either 4, or a,.
Open clauses whose instantiations of X and Y are
incompatible with the preferred solutions are suspended;
i.e., in our search tree we have two classes of suspended
nodes: suspended inference steps determined according to
a search strategy and suspend clauses for realizing the
preferred solutions option. If no open clauses are left in
the search tree, the proof graph analyzer must drop one of
the constraints for the instantiations of the variables. In
our example, these may be the constraints on the variable
X. Then all suspended clauses are reactivated (i.e.,
reconsidered as open clauses, which do not violate the
remaining constraints), and the proof search continues as
usual.

When the new sets of open, suspended, and terminal
clauses have been determined, the proof graph analyzer
must decide whether the proof is finished. This depends on
the option specifying the number of desired solutions. If
only one solution is to be computed, the proof terminates
when the first (real) terminal clause has been generated. If
all solutions are desired, the search continues until the set
of open clauses becomes empty.

Result generator The result generator must select the
relevant terminal clauses that contribute to the results. As
shown by the example of the most special facts deduced
by forward inferences, there may be terminal clauses that
can be subsumed by other terminal clauses. From the
selected terminal clauses, the results are determined
according to the “‘kind-of-result’” options. With these
options one can specify whether valid instantiations of the

T. BOLLINGER AND U. PLETAT

goal, valid substitutions, or simply success/failure should
be the reported result.

Proof graph reinitializer If the set of open clauses is
empty and there are still some suspended nodes not
satisfying the termination conditions, we can reactivate
such suspended inference steps as possible usable ones
and select one of them according to the search strategy for
the reinitialization of the search. The selected inference
steps are executed, and the generated clauses constitute
the new set of open clauses.

Inconsistency checker for sort expressions The basic
inference algorithm for processing the knowledge given in
terms of the sort declarations of a L . knowledge base
is an inconsistency checker for sort expressions. Its task is
to decide whether a sort expression stands for the empty
set. Because of the richness of our sort description
language, other inference tasks concerning the sort
information of a knowledge base can be reduced to the
question whether a sort expression is inconsistent; see
also the subsection on the logic interface.

The basic steps of the inconsistency-checking algorithm
are the ones described below (see also [50] for a
comprehensive overview of such algorithms):

1. Fully expand the given sort expression according to the
sort constraints in the knowledge base. This replaces
every occurrence of a sort name with a sort expression
corresponding to the constraints for that sort name.
Apply this expansion process recursively until no
further expansion of user-defined sort names is possibie.
The recursive nature of the expansion process requires
that the sorts of a knowledge base must not be defined
cyclically. This is checked by an algorithm for detecting
cyclic sorts within a knowledge base.

2. Normalize the expanded sort expression by transforming
it according to the following rules:

¢ Push the negation symbols inward as far as possible;
after this only sort names and enumerations can be
negated.

e Apply the law of associativity by flattening nested
intersections and nested unions.

¢ Contract sort expressions f:se and f:se’ appearing in
an intersection to f-and(se, se') until there is at most
one such expression per feature within an
intersection.

¢ Contract sort expressions r::se and r::se’ appearing in
an intersection to r::and(se, se') until there is at most
one such expression per role within an intersection.

¢ Contract the enumerations (and negated
enumerations) in intersections until there remains

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

exactly one enumeration per intersection or the
intersection is replaced by the empty set.

3. Test whether the consistency of the normalized sort
expression can be ensured; i.c., the sort expression
cannot be inconsistent. This is the termination condition
for delivering a negative result.

4. Test whether the inconsistency of the normalized sort
expression can be ensured. This is the termination
condition for delivering a positive result.

5. If the termination conditions are not satisfied, reduce
the question of whether the given sort expression
is inconsistent to certain subgoals, i.e., to the
inconsistency of other sort expressions, according
to the inconsistency-checking calculus for L, .
sort expressions.

Besides computing whether a sort expression stands for
the empty set, the sort processor stores the results it has
computed by filling a tabie of greatest lower bounds of sort
expressions, in order to avoid repeated computations
during the lifetime of a knowledge base.

Truth-maintenance system

The truth-maintenance system (TMS) maintains the
assumptions and conclusions generated by the problem
solver and puts in order the dependencies among them.
Thus, it is able to determine the current set of valid
conclusions (beliefs) and to name the assumptions
supporting those conclusions. If an inconsistency arises,
the TMS follows the dependencies back to the assumptions
which caused the inconsistency. It can remove these
assumptions and all dependent conclusions from the set
of current beliefs.

Besides its main purpose of supporting belief revision,
a TMS can serve as a cache for inferred problem-solver
data. Since it regulates the inference process, it can also
generate simple explanations. The best-known TMSs are
those of [51, 52].

The TMS integrated into the LILOG inference engine
is based on the argument-based default logic developed
in [26]. Conflicts between contradicting conclusions are
resolved by comparing the strength of their arguments,
which are the rules and facts used for their deduction.
Their default strength is identified with a vector of sort
expression, where a vector of sort expression which is
subsumed’ by another one represents the stronger
argument. Currently, our TMS is used primarily as a cache.
For consulting the TMS during problem solving, we have a

3 We use the componentwise subsumption relationship between the sort expressions
in two such vectors as the subsumption relation between vectors of sort
expressions.

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

calculus rule called tms-lookup that determines whether a
fact is valid. A detailed presentation of this TMS is in [35].

External reasoners

In the current implementation there is one external
reasoner attached to the inference engine: the depictional
component [39], which reasons over spatial information
on the basis of analog representations. The two main
processes of this component are imagination and
inspection. The imagination process generates the analog
representation for a certain spatial relationship within the
internal knowledge base of the depictional reasoner. It is
activated when the knowledge base extender derives a
literal which is marked for processing by the depiction
module. The literal, instead of being added to the
propositional knowledge base, is handed to the depiction
module to be memorized there. Inspection is the dual
process; it determines whether a certain spatial
relationship holds. The depic-inspection calculus rule
transfers a literal that is to be processed outside the
theorem prover to the depiction component. If the
depiction module is able to prove this subgoal, it returns
an answer substitution to the general proof procedure,
which can then resolve away this literal.

These inference rules show how a principal solution for
attaching an external reasoning device could be attached to
a theorem prover without having to leave the logical
framework.

Access to knowledge

The knowledge base access system allows us to retrieve
the knowledge entities of a L, | . knowledge base which
we need for the inferential processes. In the corresponding
queries, syntactic properties can be specified as search
patterns. Thus, we may search for the declarations of
certain predicates, the roles and features of specific sorts,
or axioms of a certain type (such as facts or the backward-
chaining rule) containing certain literals (e.g., with a
specific predicate and polarity).

This knowledge base access system is realized in terms
of an interface module to the LILOG database system [5]
that has been developed as an advanced background
storage mechanism satisfying special requirements from
the knowledge based systems context.

4. Summary

The LILOG inference engine is the basis for the

LILOG knowledge representation system. This working
environment for knowledge engineers comprises tools such
as a graphical browser for sort lattices defined in terms of
L, 106 sort declarations. The L, ,, compiler translates the
knowledge bases into a processible representation on the
basis of which the LILOG inference engine executes the

knowledge. 985

T. BOLLINGER AND U. PLETAT

986

The LILOG knowledge representation system has been
realized in Quintus Prolog™ and is running under AIX® on
PS/2® and RS/6000™ workstations. This system comprises
about 45 000 lines of Prolog code.

In the context of the LILOG project on natural-language
understanding, the knowledge representation environment
has been used for modeling the background knowledge of
the LEU/2 text-understanding system. The inference
engine processes this background knowledge together
with those knowledge bases containing the L, .o
representations of natural-language texts. The background
knowledge base of LEU/2 contains knowledge about
touristic activities and attractions in general, plus specific
knowledge about the city of Diisseldorf. In addition to
that, the background knowledge contains the description of
numerous temporal and spatial relationships as well. This
constitutes some 600 sort declarations and some 300 logical
axioms in that knowledge base.

Although the LILOG knowledge representation
system has been developed as part of the LEU/2 text-
understanding system, we have employed it in
nonlinguistic contexts as well.

The KBSSM (Knowledge-Based System for Security
Management) system [53] supports system security
managers in their task of defining and controlling the
access rights to computer systems. Much of the
information concerning security management can be
described as logical rules about the accessibility of
computer systems. Thus, it appeared natural to us to
investigate a knowledge based approach in such a context
and to formulate the rules relevant for the access to data
or devices in L, ; ;- The inference engine could then be
used to check whether the set of rules defining the access
rights was consistent and whether certain actions violated
the security specifications. Thus, the knowledge based
approach led to an immediate implementation of the
security rules, whereas for conventional systems security
rules must be implemented in a procedural language. This
has shown the adequateness of L ; ., and its underlying
inference mechanism as a language for writing executable
specifications of software systems.

The inference services offered at the user interface level
of our deductive engine as described above covered nearly
all the requirements of the new application context. Only
one additional inference task had to be added to check
whether a certain property holds for all members of a
certain sort [54]. However, this was quite easy because
of the modular architecture of the system.

During the project, several extensions have been
investigated. Reference [55] presents a graph-based
extension of the model elimination calculus that has been
realized for allowing a more directed proof search. A
learning method has been developed for acquiring proof
plans from proofs of similar goals [56]. Furthermore, the

T. BOLLINGER AND U. PLETAT

prototype of a control language for specifying declaratively
the sequence of actions to be undertaken during the search
for a proof [57, 58] has been implemented.

We have learned the following lessons from the
development of the LILOG knowledge representation
system:

e Building a knowledge representation system should start
with a clear design of the language to be processed by
such a system. A clear design should be rooted in a well-
established technical framework in which the syntax and
formal semantics of a language can be defined. In our
case this was the context of order-sorted predicate logic,
KL-One-like type descriptions plus some fields of
nonmonotonic reasoning. It turned out that the
attachment of external reasoners can be handled easily
through corresponding calculus rules (see below).
The development of the inference engine for the L
language has benefitted considerably from the clearly
defined notion of logical inference. This has been a good
guideline for clarifying what must be implemented in
order to put the language into operation: an inference
engine that offers enough inference rules for processing
the various syntactic kinds of logical axioms that may
occur in a knowledge base. Thus, the inference calculus
determines the deductive power of the engine, and the
formal semantics defined for L, ; is the yardstick for
measuring the potential of the calculus in terms of
correctness and completeness.
Handling the inference calculus (as well as the search
strategy) as a separate module of the inference engine
has turned out to be a good means for adjusting
the computational power and efficiency of our
implementation of L, ,, .. with little effort. For example,
the easy attachment of external reasoners to our
inference engine has become possible because we can
interact with such a device simply by adding a new
inference rule to the calculus under which the inference
engine runs. However, the flexibility we have gained
through this approach has its price in terms of overall
performance.
¢ L, o allows the ““permissive’ use of sorts, features,
roles, and atoms in both sort expressions and logical
axioms. This approach was motivated by the
experimental nature of the whole system. By allowing
the same information to be expressed in different ways
inL;; . (e.g., feature values being specified in sort
expressions or by equations in axioms), we achieved a
high flexibility for the modeling of knowledge. However,
this had the drawback that the knowledge engineers were
uncertain how to express certain facts or relationships.
L, ;106 imposes no modeling style. Such a style was
influenced to a large degree by the inferential capacities
of the inference engine. Language constructs that could

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

be processed efficiently were preferred to those where
this has not been the case.

Finally, the implemented calculus for processing L, .
does not cover all possible valid inferences that can be
drawn semantically; i.e., even though the calculus is
sound, it is not complete. The completeness gaps result

References

1.

Rule-Based Expert Systems, B. G. Buchanan and E. H.
Shortliffe, Eds., Addison-Wesley Publishing Co., Reading,
MA, 1985.

. Textunderstanding in LILOG, O. Herzog and C.-R.

Rollinger, Eds., Lecture Notes in Artificial Intelligence,
Volume 546, Springer-Verlag, New York, 1991.

: 3. R. J. Brachman, V. P. Gilbert, and H. J. Levesque, ‘““An
mainly from the‘du'fll nat.ure of sorts, roles, anq .featu‘res, Essential Hybrid Reasoning System: Knowledge and
the use of equality in axioms, and the use of disjunctions Symbol Level Accounts of KRYPTON,”” Proceedings of
in sort expressions. It would be possible to close these 1JCAI-85, 1985, pp. 532-539.

. : : 4. A. M. Frisch, “The Substitutional Framework for Sorted
gaps t.)y employmg calculi such fls pa.ramodulatlon for Deduction: Fundamental Results on Hybrid Reasoning,”
handling equality or those described in [47, 59] to Artif. Intell. 49, 161-198 (1991).
account for sorts being used as predicates. Their 5. Thomas Ludwig, ““A Brief Overview of LILOG-DB,”

; ; : Proceedings of the 1990 Conference on Data Engineering,
1mple.:n.1e.ntatlon, h.owever, would lead in ger.leral to a M. Liu, Ed., Los Angeles, 1990.
prohibitive explosion of the search space, since they 6. Readings in Knowledge Representation, Ronald J.
enable inference steps that are not possible in the order- Brachman and Hector J. Levesque, Eds., Morgan

. . Kaufmann, Los Altos, CA, 1985.
tsorted c.ase. We .rt'aahzed, theref.ore, mainly only those 7. K. Jensen and N. Wirth, PASCAL: User Manual and
inferential capacities that were imposed by the Report, Springer-Verlag, New York, 1975.
requirements of the applications. 8. N. Wirth, Programming in Modula 2, Springer-Verlag,

New York, 1985.
. R . 9. M. Gordon, R. Milner, and C. Wadsworth, Edinburgh
In summary, the experiences we gained in the LILOG LCF, Lecture Notes in Computer Science, Volume 78,
project led to a deeper theoretical understanding of logic- Springer-Verlag, New York, 1978.

. 10. Joseph A. Goguen, James W. Thatcher, and Eric G.
based knowledge representatlon,.and should enable us to Wagner, “An Tnitial Algebra Approach to the Specification,
develop a knowledge representation system Correctness and Implementation of Abstract Data Types,”

Current Trends in Programming Methodology IV: Data
: : and Structuring, R. Yeh, Ed., Prentice-Hall, Inc.,
e That co.nstltutes a reasonable COl‘l:lpI'lSC between the Englewood Cliffs, NJ., 1978, pp. 80-144.
expressiveness of the representation language and the 11. The Vienna Development Method: The Meta-Language,
complexity and the efficiency of the calculus D. Bjorner and C. B. Jones, Eds., Lecture Notes in
processing it. gt())rrr;(pult;;‘SScience, Volume 61, Springer-Verlag, New
* Whose inference engine is tuned versus efficiency by, 12. F. Pereira and S. M. Shieber, “The Semantics of
e.g., choosing an abstract machine architecture for the Grammar Formalisms Seen as Computer Languages,’
: : Proceedings of the 10th International Conference on
inference engine. . , , Computational Linguistics, Stanford, 1984, pp. 123-129.
* That offers powerful tools for developing and inspecting 13. R. T. Kasper and W. C. Rounds, “‘A Logical Semantics
knowledge bases. for Feature Structures,”” Proceedings of the 24th Annual
Meeting of the Association for Computational Linguistics,
. Columbia University, New York, 1986, pp. 257-265.
Such a system could form an advanced programming 14. R. J. Brachman and J. G. Schmolze, ““‘An Overview of the
environment for knowledge based systems. KL-ONE Knowledge Representation System,”” Cogn. Sci.
9, 171-216 (1985).
15. W. A. Woods and J. G. Schmolze, ‘“The KL-ONE
Acknowledgment Family,”” Report No. TR-20-90, Center for Research in
Many people have contributed to the development of the Computing Technology, Harvard University, Cambridge,
: : : MA, 1990.
LILOG inference engine and th.e knowledge representation 16. Gosse Bouma, Esther Konig, and Hans Uszkoreit, “A
system as a whole. We would like to thank Stephan Flexible Graph-Unification Formalism and Its Application
Bayerl, Karl Hans Blésius, Uli Hedtstiick, Kai von Luck, to Natural-Language Processing,”” IBM J. Res. Develop.
; 32, 170184 (1988).
anq Kar.l Schlechta for their conceptu‘al support. Roland. 17. 7. Dérre and R. Seiffert, ““A Formalism for Natural
Seiffert implemented the L, , .. compiler, Thomas Ludwig Language—STUF,” Textunderstanding in LILOG, O.
was responsible for the knowledge base access, and Jan Herzog and C.-R. Rollinger, Eds., Lecture Notes in
Wilms provided the knowledge engineering tools. And é’;gi(ai‘é;{”e”’ge”ce’ Volume 546, Springer-Verlag, New
finally, Josef Gemander, Gerd Kortiim, Thomas Link, 18. A. Oberschelp, ‘“Untersuchungen zur mehrsortigen
Martin Miiller, and Karin Neuhold helped us to implement Quantorenlogik,”” Mathematische Ann. 145, 297-333
) : (1962).
the inference engine. 19. C. Walther, ““A Many-Sorted Calculus Based on

Resolution and Paramodulation,”” Research Notes in

Artificial Intelligence, Morgan Kaufmann, Los Altos, CA,
1987.
20. C. Beierle, J. Dorre, U. Pletat, C.-R. Rollinger, and R.
Quintus Prolog is a trademark of Quintus Computer Systems, Studer, ““The Knowledge Representation Language
Inc. L-LILOG,” CSL’88—2nd Workshop on Computer Science

AIX and PS/2 are registered trademarks, and RS/6000 is a
trademark, of International Business Machines Corporation.

987

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992 T. BOLLINGER AND U. PLETAT

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32,

33.

34.

35.

36.
37.

38.

39.

40.

Logic, E. Borger, H. Kleine Biining, and M. M. Richter,
Eds., Lecture Notes in Computer Science, Volume 385,
Springer-Verlag, New York, 1989, pp. 14-51.

G. Smolka, ‘A Feature Logic with Subsorts,”” Lilog-
Report 33, IBM Deutschland GmbH, Stuttgart, 1988.

U. Pletat and K. v. Luck, ‘““Knowledge Representation in
LILOG,” Sorts and Types for Artificial Intelligence,

K. H. Blisius, U. Hedtstiick, and C.-R. Rollinger, Eds.,
Lecture Notes in Artificial Intelligence, Volume 449,
Springer-Verlag, New York, 1990.

Readings in Nonmonotonic Reasoning, Matthew L.
Ginsberg, Ed., Morgan Kaufmann, Los Altos, CA, 1987.
M. N. Khenkhar, “‘Object-Oriented Representation of
Depictions on the Basis of Cell Matrices,” Text
Understanding in LILOG: Integrating Computational
Linguistics and Artificial Intelligence, Lecture Notes in
Artificial Intelligence, Volume 546, Springer-Verlag, New
York, 1991.

I. Wachsmuth, ‘‘Zur intelligenten Organisation von
Wissensbestéinden in kiinstlichen Systemen,”” IWBS-
Report 91, IBM Deutschland, Scientific Center, 1989.

K. Schlechta, “‘Defeasible Inheritance: Coherence
Properties and Semantics,”” SNS-Bericht 8947, Seminar
fiir natiirlich-sprachliche Systeme, Michael Morreau, Ed.,
Universitit Tiibingen, Germany, 1989.

U. Pletat, ““Modularizing Knowledge in L, .. IWBS-
Report 173, IBM Deutschland, Scientific Center, 1991.

G. Klose and K. von Luck, ‘“The Background Knowledge
of the LILOG System,”” Textunderstanding in LILOG,
O. Herzog and C.-R. Rollinger, Eds., Lecture Notes in
Artificial Intelligence, Volume 546, Springer-Verlag, New
York, 1991.

A. G. Cohn, ““A More Expressive Formulation of Many-
Sorted Logic,”” J. Automated Reasoning 3, 113-200 (1987).
H. Ehrig and B. Mahr, Fundamentals of Algebraic
Specification 1—Equations and Initial Semantics, EATCS
Monographs on Theoretical Computer Science, Volume 6,
Springer-Verlag, New York, 1985.

Deduktions-Systeme, K. H. Blisius and H.-J. Biirckert,
Eds., Oldenbourg, Miinchen, 1987.

W. F. Clocksin and C. S. Mellish, Programming in
Prolog, Springer-Verlag, New York, 1981.

T. Bollinger, ‘A Model Elimination Calculus for
Generalized Clauses,” Proceedings of IICAI-91, Sydney,
Australia, Morgan Kaufmann, Los Altos, CA, 1991, pp.
126-131.

T. Bollinger, S. Lorenz, and U. Pletat, “The LILOG
Inference Engine,” Text Understanding in LILOG:
Integrating Computational Linguistics and Artificial
Intelligence, Lecture Notes in Artificial Intelligence,
Volume 546, Springer-Verlag, New York, 1991.

S. Lorenz, ““Nichtmonotones SchlieBen mit
ordnungssortierten Defaults,” IWBS-Report 100, IBM
Deutschland, Scientific Center, January 1990.

Raymond Reiter, ‘A Logic for Default Reasoning,”” Artif.
Intell. 13, 81-132 (1980).

John McCarthy, ‘‘Circumscription—A Form of Non-
Monotonic Reasoning,” Artif. Intell. 13, 27-39 (1980).

J. F. Horty, R. H. Thomason, and D. S. Touretzky, “A
Sceptical Theory of Inheritance in Semantic Networks,”
Proceedings of the 6th National Conference of the
American Association for Artificial Intelligence, 1987.

M. N. Khenkhar, “DEPIC-2D: Eine Komponente zur
depiktionalen Reprisentation und Verarbeitung raumlichen
Wissens,”” GWAI-89, 13th German Workshop on Artificial
Intelligence, D. Metzing, Ed., Springer-Verlag, New York,
1989, p. 318-322.

C. L. Chang and R. C.-T. Lee, Symbolic Logic and
Mechanical Theorem Proving, Computer Science and
Applied Mathematics Series, Academic Press, Inc., New
York, 1973.

T. BOLLINGER AND U. PLETAT

41

42.

43.

4.

45.

46.

47.

48.

49.

50.

51.
52.
53.

54.

55.

56.

57.

58.

59.

D. Loveland, Automated Theorem Proving: A Logical
Basis, Volume 6 of Fundamental Studies in Computer
Science, North-Holland Publishing Co., New York, 1978.
W. Bibel, Automated Theorem Proving, Vieweg, Berlin,
1982.

W. McCune, “OTTER 2.0 User’s Guide,”” Report No.
ANL-90/9, Argonne National Laboratory, Argonne, IL,
1990.

Mark E. Stickel, ““A Prolog Technology Theorem
Prover,” New Generation Computing 2, 371-383 (1984).
R. Letz, S. Bayerl, J. Schuhmann, and W. Bibel,
“SETHEO—A High-Performance Theorem Prover,”” J.
Automated Reasoning 8, 186-212 (1992).

H.-J. Novak, “Integrating a Generation Component in a
Natural Language Understanding System,”
Textunderstanding in LILOG, O. Herzog and C.-R.
Rollinger, Eds., Lecture Notes in Artificial Intelligence,
Volume 546, Springer-Verlag, New York, 1991.

C. Beierle, U. Hedtstiick, U. Pletat, J. Sieckmann, and

P. H. Schmitt, ‘“An Order-Sorted Predicate Logic for
Knowledge Representation Systems,”” Artif. Intell. 55,
149-191 (1992).

U. Hedtstiick and P. H. Schmitt, ‘A Calculus for Order-
Sorted Predicate Logic with Sort Literals,” Sorts and
Types for Artificial Intelligence, K. H. Blasius, U.
Hedtstiick, and C.-R. Rollinger, Eds., Lecture Notes in
Computer Science, Springer-Verlag, New York, 1990.
Nils J. Nilsson, Principles of Artificial Intelligence, Tioga
Press, Palo Alto, CA, 1980.

B. Hollunder, W. Nutt, and M. Schmidt-Schauss,
““Subsumption Algorithms for Concept Description
Languages,” Proceedings of ECAI-90, 1990.

Jon Doyle, ““A Truth Maintenance System,” Artif. Intell.
12 (1979).

Johan DeKleer, “An Assumption-Based Truth Maintenance
System,”” Artif. Intell. 28, 127-162 (1986).

C. Lingenfelder and Astrid Schmiicker-Schend, ““Using
Knowledge-Based Methods to Administrate an Access
Control System,”” IWBS-Report 222, IBM Deutschland,
Scientific Center, June 1992.

S. Decker and C. Lingenfelder, ‘“Universally Quantified
Queries in Languages with Order-Sorted Logics,”
Proceedings of GWAI-92, Lecture Notes in Artificial
Intelligence, Springer-Verlag, New York, in press.

S. Bayerel and K.-H. Blésius, “Graph Based Extension of
the LILOG Inference Engine,”” IWBS-Report 229, IBM
Deutschland, Scientific Center, July 1992.

K. Neuhold, ‘“Ein Lernverfahren fiir den automatischen
Erwerb von Kontrollwissen,” ITWBS-Report 207, IBM
Deutschland, Scientific Center, January 1992.

K. Klabunde, “Erweiterungen der
Wissensreprisentationssprache L, ., um Konstrukte zur
Spezifikation von Kontrollinformation,”” IWBS-Report 92,
IBM Deutschland, Scientific Center, 1989.

M. Miiller, ‘‘Implementierung und Integration von
Verfahren zur wissensbasierten Steuerung der LILOG-
Inferenzmaschine,’” Diploma Thesis, FH Dortmund, 1991.
T. Bollinger and U. Pletat, ‘“An Order-Sorted Logic with
Sort Literals and Disjointness Constraints,”” Proceedings
of the 3rd International Conference on Principles of
Knowledge Representation and Reasoning, Cambridge,
MA, Morgan Kaufmann, Los Altos, CA, 1992, pp. 413-424.

Received October 24, 1990; accepted for publication
October 9, 1992

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

Toni Bollinger IBM Germany, GSDL Software
Architectures and Technologies, Hans-Klemm-Str. 45, D-7030
Boeblingen, Germany (bollinger@vnet.ibm.com). Dr. Bollinger
studied computer science at the Universities of Bonn and
Paris-Sud in Orsay, from which he received diploma degrees in
1984 and 1983, respectively. In 1986 he obtained a ‘‘Doctorat
de 3e cycle” from the University of Paris-Sud with a thesis
concerning generalization in machine learning. In 1987 he
joined IBM to work on knowledge-processing for the LILOG
project.

Udo Pletat /BM Germany, GSDL Software Architectures
and Technologies, Hans-Klemm-Str. 45, D-7030 Boeblingen,
Germany (pletat@vnet.ibm.com). Dr. Pletat studied computer
science and mathematics, receiving his master’s degree in 1980
from the University of Dortmund. He then worked as a
research and teaching assistant at the University of Stuttgart,
where he received his Ph.D. in computer science in 1984 on
the subject of formal models for the software design process.
After being a Visiting Scientist at the Computer Science
Department of the Technical University of Denmark, he joined
IBM in 1986. He has worked on the PROTOS project, and
since 1987 has been project leader of the LILOG project, first
for implementation of the first LILOG prototype and then for
the knowledge representation and processing subproject. His
current research interests include logic programming, logic-
based knowledge representation, and formal methods for
software design.

IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992

T. BOLLINGER AND U. PLETAT

989

