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in operation 

The L,,, knowledge  representation  language 
and  an  inference  engine  to  interpret it have 
been  developed as part  of  the  LILOG  project, 
where  now  concepts  for  understanding 
natural-language  texts  were  investigated. L,,,, 
is  a  typed  predicate  logic  whose  type  system 
has  adopted  the  concepts of  KL-One-like 
languages.  Further  language  constructs  allow 
the  formulation of default  and  control 
knowledge.  The  inference  engine  for L,,,, was 
designed  as  an  experimental  theorem  prover, 
allowing  us to investigate  the  behavior  of 
various  inference  calculi  as  well  as  a  number 
of search  strategies.  Processing  with  LLILoG  is 
not  restricted  to  a  propositional  reasoner  for 
logical  formulas;  we  are  also  able to delegate 
special  kinds of inferences to external 
deductive  components.  Currently,  one  such 
external  reasoner  for  processing  spatial 
information  on  the  basis of  analog 
representation  is  attached  to  the  inference 
engine. 

1. Introduction 
With the realization of the first  knowledge based systems, 
the paradigm of rule-based programming  (programming  by 
stating logical relationships instead of describing algorithms 
using procedural programming languages) has emerged; 
see, e.g., [l]. Rule-based  programming plays an important 
role in the knowledge based systems framework primarily 
because of the high degree of programming productivity it 
makes possible. 

Although  knowledge based systems still use some 
conventional software, which is often programmed in a 
procedural language, a rule-based representation of the 
knowledge provided to a knowledge based system has 
become an accepted programming style. This is  not 
surprising because the knowledge underlying a knowledge 
based system is the “intelligent” part of the software 
system, and it is often very difficult to describe this part of 
a knowledge based system in terms of procedural 
languages. Thus, abstract ways of describing knowledge 
are of  high importance. This paper deals with the pure 
form of rule-based programming of the knowledge of a 
knowledge based system: to represent the knowledge  in 
terms of predicate logic.  In particular, we describe the 
logic-based knowledge representation language LLILoG, 
together with the inference engine  we developed to make 
the knowledge operational. 

interpreting it are the outcome of research on  knowledge 
representation and processing which was carried out 
within the LILOG project,’ where new concepts 
for understanding natural-language tools were investigated. 
The monograph [2] is the final report on the LILOG 
project. It contains numerous articles documenting the 
progress of the linguistic part of the project. 

Although the requirements for L,,,, stem mainly  from 
the natural-understanding context from  which it emerged, 
the concepts offered by the language are general enough to 
make it applicable in other contexts of knowledge based 
systems as well: 

The L,,, language  and the inference engine 

1 The LILOG project at the IBM Germany Institute for Knowledge Based Systems 
had as its primary goal the use and development of advanced Llnguistic and 
LOGical methods for the understanding of German through  a knowledge based 
programming system. 
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Conceptionally L,,, is a typed predicate logic. It offers 
a KL-One-like type system and supports the rule-based 
formulation of logical axioms with the expressiveness 
of  full first-order predicate logic. 
The language offers a means for controlling the inference 
engine executing the knowledge. This allows for the 
selection of axioms for forward- and backward-chaining 
tasks and the delegation of inferences to external 
deductive devices. 

also supports the handling of default information. 
As a by-product, this enables us to offer both classical 
negation and negation by failure. 

These elements make L,,,, an advanced knowledge 
representation language supporting the natural modeling of 
the knowledge underlying a  knowledge based system. Its 
expressiveness is at the upper end of the scale of typed 
logics  and can be best compared with the KRYPTON 
approach (see [3]) or Frisch’s general framework for typed 
logics for knowledge representation (cf. [4]). 

Besides developing new concepts for natural-language 
understanding, the LILOG project was intended to develop 
an experimental software environment in which the 
practical applicability of theoretical approaches could be 
evaluated. This has led to the implementation of the 
natural-language understanding system LEU/2 
(LILOG Experimentier Umgebung, Version 2, or 
LILOG Experimental Environment, Version 2), of 
which the inference engine interpreting L,,,, is an 
essential part. 

Since LEU/2 is experimental, the L,,, inference 
engine was designed accordingly, to achieve a high degree 
of flexibility rather than high performance. This high 
flexibility makes it easy to exchange modules which have 
great influence on the inference behavior. Also, the 
adaptability of the inference engine to new tasks has been 
considered in the design. 

following features: 
In particular, the LILOG inference engine has the 

The inference calculus determining the behavior of the 
inference processes has been designed as a separate 
module. Therefore, exchanging the calculus involves 
only replacing one implementation of the calculus 
module  with another. 
The same process applies for the search strategies. This 
enables us to experiment with the interaction between 
inference calculi and strategies for traversing the search 
space. 
External deductive components can be connected to the 
inference engine to delegate special inference tasks to 
more  efficient reasoners. In the framework of LEU/2 
one such external reasoner, the depiction module 

966 processing spatial information on the basis of analog 

representations, has already been attached. Because we 
consider the invocation of external reasoners to be the 
application of a specific calculus rule, other external 
reasoners can easily be attached, e.g.,  a deductive 
database system. 
A number of parameters permit us to tune the inference 
behavior whenever a  knowledge base of considerable 
size must be processed by the inference engine. 

The knowledge to be processed by the LILOG inference 
engine is stored in the LILOG database system, and a 
special interface module allows the inference engine 
to store in  and retrieve from the database system the 
knowledge  it  must process, cf. [5]. The LLIMG compiler 
translates the LLIMG source code into an internal 
representation on which the inference engine operates. 
Together with the knowledge  engineering environment 
supporting the development of LLlm knowledge bases, 
the above three components form  a complete knowledge 
representation system based on typed predicate logic. 

The structure of this paper is as follows: The next 
section describes the knowledge representation 
language by explaining the language constructs offered to 
the knowledge engineer. We then describe the LILOG 
inference engine in detail. Finally, we report on our 
practical experience with the entire knowledge 
representation system. We assume that the reader has 
some basic understanding of predicate logic or rule-based 
programming and is able to recognize the benefits of type 
systems for programming and knowledge representation. 

2. The L,,,,, knowledge representation 
language 
The development of a  language to represent the semantic 
knowledge of the LEU2 natural-language understanding 
system was one of the central activities of the LILOG 
project from its beginning. Creating a  new  language 
became necessary because we found no suitable formalism 
in the scientific literature to satisfy our multiple 
requirements for a  knowledge representation language: 

To offer  a  rich expressiveness for capturing a wide range 

To be a communication medium between the linguistic 

To provide a  formal semantics as the basis for the 

of natural-language phenomena. 

and the logical parts of the project. 

LILOG inference engine. 

Most  formalisms suggested in the knowledge 
representation literature (see [6] for a compact overview) 
address specific aspects of knowledge representation. 
This reflects a situation in which formalisms emerge  from 
investigations of particular  problems  aimed at understanding 
various specific concepts in the representation of knowledge. 
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In our search for an adequate knowledge representation 
formalism  for a wide-spectrum natural-language 
understanding project such as LILOG, we found that the 
individual well-established approaches dealing  with specific 
aspects of knowledge representation did  not cover the 
range of features required for our purposes. What seemed 
necessary was to integrate various specific approaches to 
knowledge representation within one language. To achieve 
such an integration was the major impetus for the 
development of LLILOG. In the long run, only the 
integration of several research directions can  lead to the 
knowledge representation formalisms that are required in 
the framework of natural-language understanding and other 
applications of realistic size of knowledge based systems. 

Against the background of the above discussion of the 
state of the art in knowledge representation, the definition 
and implementation of LLImG can be seen as one of the 
first attempts to integrate different streams of knowledge 
representation languages  within one formalism. 

The basic ideas behind LL,L, 
The starting point for L,,,, was the decision to create a 
logic-based knowledge representation formalism, since 
this seemed to be the most  promising way to fulfill our 
requirement of defining a language in terms of both a 
formal syntax and a formal semantics. 

To be more specific,  we considered order-sorted 
predicate logic as the basis for the development of L,,,, 
because it offers a type concept, and type systems are an 
essential part of modern programming  languages [7-91. 
Also, in  formal software specification, type concepts play 
an important role (see [lo] or [ll]). And  finally, types have 
also made their way into a particular class of AI languages: 
the attributive set-description languages we know (for 
example) from computational linguistics [12,  131, or from 
the KL-One family of languages [14,  151. 

of a program or,  as in our setting, of a knowledge base. 
Since we  used the attribute-based set-description language 
STUF (cf. [16, 171) in the linguistic part of the LILOG 
project, we decided to develop a type system in the STUF 
or KL-One style for L,,,,,. These approaches to type 
definitions fit nicely into the framework of  an order-sorted 
predicate logic (cf. [18, 191) since they also deal with a set 
of sorts together with a partial ordering between them, 
reflecting the subset relationship between the sets 
interpreting the sorts. 

to both the semantic and the linguistic knowledge 
representation formalisms was the reason for integrating 
(parts of) STUF as the type system of the first version of 
LLILOG [20]. Since then we have gained  an improved 
understanding of the feature-term description languages 
and  how to combine them with predicate logic. This 

The role of type systems is to describe the object classes 

This concept of sets ordered by inclusion  and  common 

enabled us to integrate concepts of languages such as 
KL-One [14] and Feature Logic [21] into the sort 
descriptions offered by L,, [22]. 

The integration of attribute-based set descriptions with 
the framework of order-sorted predicate logic is also 
a step toward integrating two philosophies of knowledge 
representation: classical logic-based approaches and typical 
object-oriented approaches having their roots in  artificial 
intelligence [3]. 

The world of logic has not only created formalisms for 
the pure mathematical way of reasoning (of which order- 
sorted predicate logic is a representative), but during the 
last ten years it has also enabled more  flexible ways of 
human reasoning to be formalized.  One of the more 
elaborate of these enrichments of  logic to provide better 
models of human reasoning is nonmonotonic reasoning 
[23]. The basic idea of nonmonotonic reasoning may be 
characterized as a logical framework which offers 
quantifications less rigid than the usual universal ones, 
with the aim  of arriving at a logic which still works well 
in situations where exceptions to general rules occur. 
Particularly in the framework of natural-language 
understanding, the required reasoning mechanisms are 
strongly influenced by the common sense humans apply. 
In this situation, standard logics are inadequate, because 
they were introduced to describe the reasoning processes in 
the precise and even formalized field  of mathematics. In 
contrast, formal reasoning with respect to information 
in natural language  must  mimic the imprecise reasoning 
humans apply in everyday situations. Thus, the results that 
have been achieved in the field  of nonmonotonic reasoning 
are very welcome  in the framework of a project such as 
LILOG, and have therefore found their place in our 
knowledge representation language. 

The features of L,,,, discussed thus far have described 
improved facilities for representing knowledge. But 
knowledge is not only of the static nature suggested by the 
term representation. Knowledge that is only representable 
but not processable is of little practical use (at least from a 
computer scientist’s point of view). Processing knowledge 
formulated within a certain logic is still a complex task 
which often reaches the limits of available computational 
power. This is because the inferential processes we use for 
putting knowledge in operation are still search procedures 
traversing immense search spaces in  an uncontrolled way. 
The advantages of conventional programming  languages 
over most  knowledge representation languages stem mainly 
from the effort which must be spent on the explicit control 
of program execution. 

In LLILOG we have made some first attempts to provide 
control information for the theorem prover implementing 
the language. This comprises the possibilities of selecting 
logical  axioms for forward chaining  or backward chaining, 
or both reasoning modes, in order to exclude certain rules 967 
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of a knowledge base from the reasoning process. 
Moreover, we can delegate deductive tasks to external 
inference systems, which are assumed to process certain 
requests in a more efficient way than the main theorem 
prover interpreting L,,,. In the context of LEU/2, the 
depictional reasoner [24] for processing spatial information 
can be activated to perform reasoning tasks on the basis of 
analog representation of spatial knowledge. 

In addition to these basic concepts for expressing 
knowledge, we have developed a concept for structuring 
knowledge into “knowledge packets” [25]. This permits 
us to separate large  knowledge bases into different 
components, each of which deals with  specific aspects 
of the domain of discourse to be modeled. 

Following this general overview of L,,,,, we provide 
a more detailed discussion of the particular language 
constructs in the next section. The style of the discussion 
remains informal, since formal  definitions of the 
concepts available in L,,,, may be found elsewhere 
[22,  26,  271. 

Representing knowledge in LLILOc 
A LLILOG knowledge base is the formalization of a 
particular application domain over which a knowledge 
based system is supposed to reason. Within the LILOG 
project we used L,,,, to model the semantic background 
knowledge of the LEU/2 natural-language understanding 
system. The knowledge developed for LEU/2 deals with 
tourist information about the city of Diisseldorf, such as 
one would expect from a tourist guide,  along with general 
knowledge about places of interest to a visitor to a city. 
A particular description of the knowledge that has been 
modeled for LEU/2 can be found in [28]. 

In this section we provide an  informal description of the 
language constructs offered by L,,,,, introducing the 
concrete syntax of the language by means of examples. We 
explain what can be described by the various constructs of 
L,,,,, for which a formal  definition of the semantics has 
been developed. The corresponding formalizations are 
provided elsewhere; we refer to the respective background 
papers whenever further information  on the language  may 
be of interest to the reader. 

Knowledge items 
Because L,,, is a knowledge representation language 
based on typed logic, type definitions  and  logical axioms 
play a major  role  in a L,,,, knowledge base. Axioms state 
the logical properties of functions and predicates; thus, 
the declarations of these predicate and function symbols 
occurring in the logical formulas of a knowledge base are 
further knowledge entities. 

Sort declarations Sort declarations introduce the object 
968 classes of a knowledge base. In order-sorted predicate 
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logic the sort declarations are of a very simple nature, 
consisting simply of the name of the sort to be declared 
plus the embedding of the sort into the hierarchy of sorts 
of a knowledge base [4, 19, 291. 

As an example, we have the following sort declarations 
recalling what can be expressed in order-sorted logic: 

sort person. 
sort woman < person. 
sort man < person. 

These sort declarations introduce the data domains person, 
woman, and man, and state that woman and man are 
contained in person. 

LL,,oG offers a richer sort concept than order-sorted 
predicate logic does. This results from the integration into 
LLILOG of concepts from feature-term-description languages 
such as STUF [17], Feature Logic [21], and KL-One [14]. 
Since all these languages pursue the paradigm of modeling 
semantic knowledge by defining sets, they offer 
sophisticated means for describing object classes. Thus, 
in contrast to order-sorted logic, where sets can only 
be described in terms of sort names, LLILOG allows for 
complex descriptions of sets by means of sort expressions. 
These sort expressions are constructed over a collection 
of operators defining,  for  example, the intersection, the 
union, or the complement of object classes. 

Stating subset relationships between object classes 
is useful  not only for splitting the data domain of a 
knowledge base into several different object classes 
(generalizing one-sorted logic to many-sorted logic), but 
also for modeling  knowledge about the world (generalizing 
many-sorted logic to order-sorted logic). Thus, a modern 
knowledge representation language should support the 
explicit  positioning of sorts within the lattice of sort 
expressions (with respect to the subsumption ordering, 
see below) of a knowledge base. In L,,, this is achieved 
by means of so-called sort constraints that may be part of 
a sort declaration. 

Requiring the subset relationship to hold between two 
sorts (woman and person as well as man and person in the 
above example) is  not the only way of constraining the 
interpretation of sorts; we  may also express that one sort 
is disjoint from another. A sort declaration such as 

sort person. 
sort woman < person. 
sort man < person; 

disjoint woman. 

in a L,,, knowledge base introduces the sort man in 
such a way that man and woman are disjoint subsets of 
person. The disjointness of the sorts man and woman 
could also be expressed as a declaration of the sort 
man by 
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sort person. 
sort woman < person. 
sort man = andberson,  not(woman)). 

where the sort expression andberson, not(woman)) stands 
for the intersection of person with the complement of the 
sort woman. (Note that the two ways of introducing the 
sort man lead to sort hierarchies which are not  completely 
equivalent.) A third alternative for  defining these three 
sorts is the following collection of sort declarations using 
the union operator: 

sort woman. 

sort man; 
disjoint woman. 

sort person = or(man, woman). 

sort mother < person; 
roles  mother-of :: person. 

Semantically, features stand for one-place total 
functions, while roles are interpreted as two-place 
relations [22]. 

In many situations we wish to introduce some specific 
objects of a sort when declaring it.  The objects that can be 
introduced for a sort in its declaration are called atoms. 
Referring back to our sort person, we must still declare the 
target sort sexes of the feature sex; a reasonable definition 
could be the following: 

sort sexes 
atoms female, male. 

The atoms which can be declared for a sort are objects of 

In LLlLOG the equations, inequalities, and disjointness 
conditions between a sort name  and a sort expression 
are called sort constraints, since they constrain the 
interpretation of the sort name  being declared to the same Atoms can be used to form another kind Of 

set, a subset, or a set disjoint  from the set interpreting the 
sort expression, respectively. For the first example above, 
this means that both man and woman are contained in 

that sort for which we impose a unique names assumption. 
For the sort sexes, this means that it contains (at least) the 
two different elements male and female. 

expression: intervals of integers and enumerations which 
appear in the definition of the sort vehicle below. Let us 
first say what kinds of vehicles we  might want to consider: 

person. Moreover, man and woman do not have any 
object in common. 

The sort constraints are a means for  influencing the 
structure of the sort hierarchy induced by the subsumption 
relation << between the sort expressions of a knowledge 
base: 

se se' iff in any interpretation the denotation of se is a 
subset of the set interpreting se'. 

This subsumption relation has been studied for various 
feature-term languages [3, 13, 211. 

Besides positioning a sort within the lattice of sort 
expressions, we can also introduce the attributes, i.e., 
features and roles, for a sort as part of its declaration. In 
the more detailed declaration of the sort person below,  we 
introduce the two features age and sa, with their 
corresponding ranges integer and sexes: 

sort person; 
features age : integer, 

sex : sexes. 

These attributes allow us to speak about the age  and the 
sex of a person. Features are functional attributes; i.e., 
they have a unique value for each object to which they can 
be applied. In certain situations it  is convenient to have 
relational attributes available as well. This holds,  e.g., for 
the parenthood of a man or a woman, respectively, since a 
person can be the father or mother of several (or possibly 
no) children: 

sort man < person; 
roles father-of :: person. 

sort vehicle-type; 
atoms bike, boat,  car,  plane, train. 

Then we define vehicles as 

sort vehicle 
features wheels : [ 0 . . .256 1, 

doors : [ 0 . . .256 1, 
type : vehicle-type, 
driver : person 
owner : person. 

roles user :: person. 

The declaration of the sort vehicle makes use of intervals 
of integers. The intervals are sort expressions such as 

[ 0 * 256 1, 
which is a short form of enumerating a set of integers. 
In general, enumerations have the form 

{ a , , * . . , a n ) ,  

where the a, are atoms and they define the set consisting 
exactly of those elements interpreting the atoms mentioned 
in the enumeration. 

Sort expressions of the form f :  se, where f is a feature 
and se is some sort expression, define the subset of all 
those elements of the domain of the feature f which are 
mapped to the data domain  defined by se. This mechanism 
is typically called feature value restriction [14]. An 
expression such as 

type : { car } 969 

IBM J. RES. DEVELOP.  VOL. 36 NO. 6 NOVEMBER 1992 T. BOLLINGER AND U. PLETAT 



stands for all vehicles for which the type-feature has the 
value car, and we could use this expression to define the 
sort of cars by 

sort car = and(vehicZe, wheels : {4}, doors : (2, 3, 4, 5}, 
type : {car}); 

features body : bo@-type. 

where the body types of a car may be defined as follows: 

sort body-type; 
atoms cabrio, coupe, hatchback, sedan. 

According to this definition, cars are vehicles having four 
wheels and two to five doors, depending on the body type. 
Intuitively, any car should be a vehicle, and that is exactly 
what the formal semantics of L,, establishes [22]; i.e., 
the subsumption relationship car << vehicle holds for these 
two sorts. Value restrictions involving roles may also be 
formulated; here, L,,, offers two variants. The sort 
expression 

all user  teenager 

describes the sort of all vehicles whose users are 
teenagers, provided that any such vehicle is in use, 
i.e., that there is a person driving the vehicle. In many 
modeling situations we wish to express that, with reference 
to the above example, there is indeed a user of the vehicle. 
In order to avoid notational overhead for describing this 
with the some operator discussed below, we introduce the 
following  useful syntactic device in the sort description 
features of LLIm,: The sort expression 

driver :: teenager 

is a shorthand for 

and(all driver teenager, some driver). 

The  sort declarations 

sort father = some father-05 
sort mother = some  mother-o$ 

define fathers and mothers by stating that a father or a 
mother is a man or a woman, respectively, such that there 
is at least one person of whom  he or she is a parent. In 
other words, the sort expression some  mother-of stands for 
all objects m of sort person such that there is an object c 
of sort person for which mother-ofm, c)  holds. 

The operator agree allows us to form the set of all 
objects for which two feature paths (i.e., sequences of 
features) have the same value. Thus, the sort expression 

and(vehicle,  agree(owner,  driver)) 

characterizes vehicles owned by people who do not 
allow others to drive their cars. The counterpart of the 
agreement operator is the disagreement operator 

970 disagree. It defines the set of  all objects such that the 

two feature paths involved in the sort expression have 
different values. 

Finally, we wish to introduce sort expressions which 
allow  us to speak about sets containing finite subsets over 
some base set  as their elements. The sort declaration 

sort group-oftourists < person + . 
defines the sort of group-oftourists as a set containing 
finite sets  ofpersons as elements. In several modeling 
situations it  is convenient to consider a base set and finite 
subsets within one set. Such classes of objects could be 
described by the union orherson, person'), if we take the 
sort person  as the base set. This union can be abbreviated 
by another operator, *; thus, for the sortperson we obtain 
person* = orherson, person +). 

integrated concepts from order-sorted predicate logic  and 
KL-One-like languages. This supports an object-oriented 
description of the data domain of a knowledge base in the 
sense that we are able to speak about objects and their 
attributes. The formal semantics of these language 
constructs interprets sort expressions as sets (of a certain 
structure according to the set-forming operators used in 
the expression), features as total functions, and roles as 
relations [22], allowing us to deal with subsumption 
relationships between sort expressions in a natural way. 
An interesting, although very natural, phenomenon of the 
semantics for the sort descriptions of LLILoG is that we can 
use an important property of object-oriented languages at 
no cost: the concept of multiple inheritance. The 
inheritance mechanism works in two directions: Features 
and attributes are inherited downward in the lattice of sort 
expressions, while objects of a sort  are inherited upward. 
This results from two simple mathematical properties: 
A function F : D + R can also be applied to any subset 
D' C D of its domain; thus we say that F is inherited 
down to any subset D' of D. In the context of the LLILOG 
knowledge terms introduced so far, this means, e.g., that 
the age-feature of aperson may also be evaluated for any 
mother, since mother << person; i.e., mother is subsumed 
byperson, formalizing that any mother is (of course) also a 
person. On the other hand, the subset relation between the 
sets interpreting the sorts causes any object of a sort s to 
be also an element of the sort s', if s is subsumed by s'. In 
this sense we obtain the upward inheritance of atoms (and 
also other objects we describe below) of a sort. All this is 
straightforward: We simply exploit the natural properties 
of subset relations among sets and the element relation 
between objects and sets. 

In summary, the sort descriptions of LLImG have 

Function declarations While the sort declarations of a 
knowledge base introduce its  sort hierarchy, or (to use a 
different terminology) the taxonomy of its data domains, 
the formulation of the logical axioms of a knowledge base 
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requires further declarations: We  need to know the ref0 Mister- Smith : man. 
relations to which the axioms refer. To introduce these 
relations between the data classes of the knowledge base 
is the purpose of the function and predicate declarations ref0 Boeing-737 : type : and(vehicle, {plane }). 

and 

to be discussed next. We have already introduced simple 
kinds of function and predicate declarations: the features 
and roles attached to a sort. Their simplicity results from 
the fact that they can relate only two sorts. In general, 
both  functions  and  predicates of arbitrary arity are desirable. 

A function declaration 

function F (argname : se,, , argname,, : sen) + se. 

in kILoG states that in the domain  modeled by the 
knowledge base, the object classes represented by the sort 
expressions sei are functionally related to the set se, and 
that this relationship bears the name F.  

means for modeling  knowledge. A typical functional 
relationship is that of seat allocation, assigning a seat 
within a vehicle to each of the passengers. Assuming  for 
simplicity that any seat can be identified by an integer 
number, we obtain the following function declaration as 
part of our knowledge base: 

function seat-allocation (passenger :person, carrier : vehicle) 

Within the domain of traveling functions is a convenient 

+ integer. 

This declaration exhibits another feature of the concrete 
syntax of L,,,: The arguments of a function (and also 
those of a predicate) need  not  be  identified by their 

as part of a knowledge base. Logically, there is no 
difference  between  constants and  reference objects. 
However,  in  the  natural-language  understanding context of 
the  LILOG project, from which L,,  emerged,  reference 
objects (refos, for short) are  distinguished as constants. 
The type of a constant  or a reference object may  be  given 
by an  arbitrary  sort  expression. Thus, we  want to speak 
about two distinguished  sportscars  such  as 

constant Porsche- 911 : 

and 

ref0 ferrari- din0 : 

and(car, doors : { 2 }, body-type : { cabrio }). 

and(car,  doors : { 2 }, body-type : { coupe }). 

LLILoG offers several built-in functions for the arithmetic 
operations. Thus, the following functions are part of any 
knowledge base: 

function (integer + integer) + integer. 
function (integer - integer) + integer. 
function (integer * integer) ”* integer. 
function (integer 1 integer) + integer. 
function - (integer) + integer. 

position  in the argument  list; instead, we support the more Since in L,,, we  may have data domains containing sets 
flexible  method of explicit  naming of argument positions. over a certain base set as elements, we  would  like to be 

Choosing a function to represent seat allocation is a able to form unions of these sets or to create the set 
good means for expressing that each passenger in a containing two elements of the base set. This is the idea 
vehicle has a unique seat. Unfortunately, seats may be behind the following  built-in function: 
overbooked; this can also be captured adequately by 
modeling the seat allocation with a function, since function (top * & top *) + top ’ 
functions are in general not injective. Thus, it may happen The sort expression top* abbreviates the union or(top, 
that both Mr.  Miller  and  Mr. Smith are allotted to the top’), which  is the top element of the entire lattice of sort 
same seat No. 15 in a Boeing 737; i.e.,  we have expressions over a knowledge base. For example, the 

seat-allocation@assenger : Mister- Miller,  carrier : 
Boeing-737) = 15 

and 

seat-allocation(canier : Boeing-737, passenger : 
Mister-  Smith) = 15. 

Some functions have no arguments. Such functions are 
considered as elements of their target sort. The syntax of 
L,,, offers such nullary functions as constants or 
reference objects, so we may have further declarations 
such as 

constant Mister-  Miller : man. 

and 
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function & can be used to form the set john & mary, 
which is a set-object of the type person’ and contains the 
two elements john and mary. 

The ability to declare function symbols and define  them 
via equations allows us to use LLILoG like the kernel of a 
functional programming  language standing in the tradition 
of abstract data type specification; see [lo, 301. 

Predicate  declarations A predicate declaration 

predicate R (argname, : se,, , argname,, : sen). 

appearing in a L,,,,, knowledge base tells us that we have 
an arbitrary relation named R between the sets interpreting 
the sort expressions sei; i.e., there is  no functional 
dependency between the arguments of the predicates. 
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An important predicate that should occur in any 
knowledge base on traveling is the following: 

predicate travel  (who : person*, fr : location, to : location, 
with : vehicle). 

The declaration of the predicate travel states that a relation 
travel exists among the sortsperson*, location, and vehicle 
which can tell  us who is traveling from where to where 
using which vehicle. Choosing the sort expression person* 
expresses that we wish to speak about traveling groups of 
people and individual travelers in a uniform way. 

Several  built-in  predicates are available in any knowledge 
base, e.g., the comparison predicates between integers 
and an equality predicate. 

To test the subset or membership relation between 
objects of the sort top* we have the predicate 

predicate (top* in top*). 

made available as an L,,, built-in. Using the constants 
john and mary of sort person and the union operator &, 
we observe that 

mary in john & m a y  

is true, since mary is an element of the set john & mary. 
Also, 

maw & john in john & maw 

holds, because john & mary and mary &john denote the 
same set-object. 

Finally, we have an additional collection of useful 
predicates which are available as built-ins of  L,,,: 
the so-called sort-predicates, which could be declared as 
follows: 

predicate {se}  (top*). 

for each sort expression se; i.e., we may  use  an arbitrary 
sort expression as a unary predicate. 

Using sort expressions as predicates, we are able to 
state  sort memberships that cannot be expressed by the 
declaration of constants, refos, or functions. This holds, 
for example, for conditional memberships such as the 
following:  If somebody travels more than 50 000 miles per 
year, he is a globetrotter, where globetrotter is a subsort 
of person : 

sort globetrotter < person. 
sort year. 
predicate travels  (who :person, distance : int, period : year). 

axiom globetrotters 
forall D : distance, P : person, Y :  year; 
travels(peri0d : Y, distance : D,  who : P) 
and D 2 50.000 

{ globetrotter } (P). 
+ 

Having introduced the first  logical axioms, we complete 
the discussion of function and predicate declarations and 
take a more detailed look at the logical axioms that may 
occur in a knowledge base. 

Axioms of a knowledge  base The declarations of sorts, 
functions, and predicates we  have discussed thus far have 
introduced the basic building blocks for formulating the 
logical  axioms of a L,,,, knowledge base. As in any logic, 
the logical axioms express which objects of which sort are 
related by the relations (i.e., functions and predicates) 
declared within the knowledge base. 

The expressive power of the axioms that may occur 
within a L,,,, knowledge base is that of full first-order 
predicate logic. Because of the knowledge based system 
context for which L,,,, was designed, we have chosen a 
rule-oriented notation for the logical axioms of the 
following  form: 

axiom ( axiom-id ) ( quantifications ); 
(premise ) + ( conclusion ) 

Thus, every axiom has a name; next we have the 
quantifications introducing the variables occurring in the 
axiom, together with the quantifier to which the respective 
variable is bound. Both universal and existential quantifiers 
are offered; moreover, further default quantifiers are 
possible as well (see below  for the discussion of how to 
handle defaults in  LL,,,). Then we have the body of  an 
axiom,  which is basically an  implication where the premise 
may be a conjunction of disjunctions of literals, while the 
conclusion may be a disjunction of conjunctions of literals. 
Compared to the clausal form for logical formulas, which 
is often used in resolution-style theorem proving [31] and 
also for  logic  programming [32], this is a moderate 
generalization which has the following advantages: 
1) various quantifiers are available to the knowledge engineer; 
2) writing the axioms as implications supports the “what 
follows  from what” intuition which  is often used in the 
framework of operational logic;  and 3) no normalizations 
(but skolemization) are necessary for processing these 
formulas as long as we use the model  elimination calculus 
for generalized clauses, which  is described in [33, 341. 

This general structure of the logical axioms allows  us to 
formulate ground facts such as 

axiom john-and-mary-travel 
travel(who : john & mary, fr : Los-Angeles, 

to : Sun- Francisco,  with : Porsche- 911). 

expressing that both John and  Mary travel from Los 
Angeles to San Francisco with their Porsche, and rules 
such as 

axiom group-member : 
forall M : person, G : person*, F,  T : location, V :  vehicle; 
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travel(who : G, fr : F,  to : T,  with : V )  and 
M in G 

+ travel(who : M ,  f r  : F,  to : T,  with : V )  

expressing that if a group of people travels with some 
vehicle, then any member of the group uses the same 
vehicle. 

While the above two rules  involved either no or only 
universal quantification, the concrete syntax of L,,,, also 
supports the use of the existential quantifier, enabling us to 
formulate axioms such as 

axiom lonely-traveler : 
exist P : person; 
travel(who : P ,  f r  : Sun-Francisco, 

to : Los- Angeles, with Porsche-911). 

expressing that somebody is traveling from San Francisco 
to Los Angeles. 

Defaults in L,,L,, The quantifications appearing in 
the axioms of a knowledge base are also the means for 
formulating default knowledge.  The basic idea  behind this 
approach is that a default proposition can be seen as a 
special form of universally quantified formula, stating that 
the proposition does not strictly hold for every object of 
the sort of the quantified variable, but rather permits 
exceptions. 

Assuming a predicate 

predicate uses(wh0 : person, which : road). 

and reference objects 

ref0 Highway- I : road. 

ref0 Highway-101 : road. 

we can state that people typically use either Highway 1 
or Highway 101 when going  from San Francisco to Los 
Angeles  by the following  axiom  involving a default 
quantification: 

axiom typical-route : 
o-default P : person, forall V :  vehicle; 

travel(wh0 : P ,  f i  : Sun-Francisco, 
to : Los-Angeles, with : V )  

+ uses(wh0 : P ,  which : Highway- 1) or 
uses(wh0 : P ,  which : Highway- 101) 

The quantification o-default P :person states that the 
axiom typical-route involves what we  call  an optimistic 
default; i.e.,  applying  an  axiom containing optimistic 
default quantification does not trigger any consistency 
checking of the conclusions (of the applied rules involving 
the default) immediately  after the inference process. 
The more standard situation of performing the 
consistency check before the application of a rule 
can be specified by the so-called pessimistic 

defaults, for which we foresee quantifications such as 
p-default P :person. The  effect of this differentiation is 
that the LILOG inference engine uses rules involving  an 
optimistic default as if the corresponding variable had been 
universally quantified. However, when it becomes 
necessary to revise knowledge  relying on default 
information, formulas that have been derived using 
optimistic defaults may be withdrawn, while this is  not the 
case for formulas relying on hard information only (see 
[35] for a description of the truth-maintenance system 
which handles this default reasoning approach in the 
LILOG inference engine.  The pessimistic defaults behave 
like  normal defaults by applying  default rules only in 
situations causing no contradictions [36]. From an 
operational point of view, this means that we  must verify 
that no contradiction occurs when performing  an inference 
step involving a pessimistic default. Furthermore, the 
default mechanism of L,,,o, offers the concept of graded 
qualities of default  knowledge [26,  351. While in the early 
approaches to nonmonotonic reasoning, the quality scale 
for knowledge  relying on default information consisted 
only of the two degrees hard and default (cf. [36], 
[37]), more recent approaches have implicitly 
suggested the use of an arbitrary partial ordering as the 
quality scale [38]. In our setting of  an order-sorted logic, 
it seemed to be quite natural to use the partial ordering of 
the sort expressions as the scale for measuring the quality 
of default information described in L,,,, knowledge 
bases. The basic idea  is that information  involving  smaller 
sorts is of higher quality than information stated for larger 
sorts. 

The  default  reasoning  concept of  L,,,, allows for elegant 
formulations of some typical puzzles which have become 
rather famous in the meantime: the question whether 
tweety can  fly, and the question whether nixon is a pacifist. 

Let us treat tweety first  and assume the following 
knowledge entities in our knowledge base: 

sort bird. 
sort large-bird < bird. 
predicate @y(who:bird). 

ref0 tweety : large-bird. 
axiom flying-birds 

p-default B : bird; 
fly(who:B). 

axiom non-flying-birds 
p-default LB : large-bird; 
not fly(who:LB). 

Then our knowledge  implies  both 

PY (weety) 

and 

1fly(tweety) 
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but since we have lalge-bird < bird, the information that 
tweety does not fly is of better quality than the information 
asserting that tweety flies. (This analysis of the quality of 
default information is done by the truth-maintenance 
system [35].) Therefore, we do not encounter an 
inconsistency, because the TMS discards the worse 
information that tweety flies. 

Of course, most real reasoning problems are not that 
easy, because the sort hierarchy of a LLlLOG  knowledge 
base is not a total but a partial ordering. Taking a partial 
ordering as the quality scale for default information leaves 
us with the problem of what to do with inconsistent 
statements for which the quality of the conflicting results 
cannot be effectively compared with respect to the 
underlying sort hierarchy. This is discussed in the 
framework of the Nixon  diamond formulated in  L,,,,, 
below: 

sort quaker. 

sort republican. 

sort pacifist. 

ref0 nixon : and(quaker, republican). 

axiom peacefil quakers 
p-default Q : quaker; {pacifist}(Q). 

axiom brave republicans : 
p-default Q : republican; not {pac@st}(Q). 

Since nkon is both a quaker and a republican, we obtain 
both pacifst(nixon) and Ipacijist(nixon). Because the 
quality of the default information leading to this 
contradiction cannot be compared, we take a skeptical 
approach and believe neither in nixon being a pacifist  nor 
in nixon not  being a pacifist. 

engineer to make  use of both classical negation (since we 
deal  with  full first-order predicate logic) and negation  by 
failure (since we can express that “something does not 
hold unless stated otherwise” by means of a default 
axiom). 

For a more detailed discussion of the concepts of 
nonmonotonicity as part of L,,,,, see [26, 351. 

The availability of defaults allows the knowledge 

Controlling  inferences in LL,L,, Since LLILOG is 
implemented by an inference engine interpreting the 
language, we (as any theorem prover does) face the 
problem of having to traverse large search spaces. In the 
natural-language understanding context of LEU/2, the size 
of these search spaces does not result particularly from 
the depth of the proofs to be performed, but from the fact 
that we must deal with rather large knowledge bases: 
The background knowledge base of LEU/2 consists, for 

974 example, of about 600 sort declarations and about 300 

facts and rules. Thus, means for excluding parts of the 
axiomatic knowledge for certain inference tasks are 
welcome. 

The application of LLILOG in the natural-language 
understanding framework suggests both forward- and 
backward-chaining tasks over a knowledge base. This is 
due to the two operation modes of the LEU/2 system: 
When texts have to be understood by the system, we want 
to draw conclusions from the information contained in the 
texts with respect to the background knowledge provided 
to LEU/2. This is a typical situation in which the forward- 
chaining mode of the inference engine  is the main 
inference task to be used. In many situations we  know 
in advance that only specific axioms of the knowledge 
base need be used for these forward-chaining tasks. 
Analogously, we can say the same about the backward- 
chaining reasoning mode, i.e., that there are certain 
axioms in the knowledge base for which the knowledge 
engineer knows in advance that they need  only be used in 
the problem-solving mode, which  is the basic inference 
task when questions about the contents of texts must be 
answered by LEU/2. This gives us two classes of axioms 
within a knowledge base: 

1. Axioms which are applied  for  knowledge base 
extension, i.e.,  in the forward-chaining mode of the 
inference engine. 

2. Axioms which are applied  for  problem  solving,  i.e.,  in 
the backward-chaining mode of the inference engine. 

Of course, these two classes of axioms need not be 
disjoint. The technical concept for qualifying axioms to be 
relevant for backward or forward inferences is to use entry 
points, which can be attached to the literals occurring in 
an  axiom. To make  an  axiom available to forward-chaining 
tasks, one of the literals in the premise of the axiom must 
be  tagged  with  an entry point. The backward-chaining 
tasks may use all axioms in which either no entry point 
occurs or an entry point  is provided for one of the literals 
in the conclusion. Axioms that are to be used for both 
forward- and backward-chaining tasks must have literals 
tagged with entry points both in their premise and in their 
conclusion. 

To illustrate the effect of marking literals by entry 
points, we return to our axiom group-member from above: 

axiom group-member-bwc 
forall M : person, G : person *, F, T : location, V : vehicle; 
travel(wh0 : G, fr : F, to : T,  with : V )  and 
Min G 

+ 
EP travel(wh0 : M, fr : F, to : T,  with : V ) .  

The entry point  specified  for the literal 

T. BOLLINGER AND U. PLETAT IBM J. RES. DEVELOP. VOL. 36 NO. 6 NOVEMBER 1992 



havel(wh0 : M, fi : F, to : T, with : V )  

qualifies the axiom group-member-bwc as one to be used  for 
backward  inferences  only. 

By placing  an entry point on a literal in the premise of 
the axiom,  we can qualify  it to be usable in forward 
inferences: 

axiom group-member-jivc 
forall M : person, G : person*, F, T : location, V :  vehicle; 
EP travel(wh0 : G ,  fr : F, to : T ,  with : V )  and 
M in G 

travel(wh0 : M ,  fr : F,  to : T,  with : V).  
+ 

The entry point  specified for the literal 

travel(wh0 : G, fr : F, to : T,  with : V )  

makes the axiom available for forward inferences which 
have been triggered by a formula containing a literal that 
unifies  with the labeled literal. Thus, we may use the 
axiom 

axiom john-and-mary-travel 
travel(wh0 : john & mary, fr : Los-Angeles, 

to : Sun- Francisco,  with : Porsche- 911). 

as a trigger  formula and derive that both John and Mary 
travel from Los Angeles to San Francisco by means of 
forward inferences. Note that the formula group-mmber- 
bwc is  blocked for application in forward-chaining mode. 

The second means for controlling the inference engine 
is to delegate inference tasks to an external deductive 
component. In particular, this means that in L,,, we are 
able to state that certain literals must be evaluated outside 
the theorem prover that interprets LLILOG. Currently only 
one such external reasoner is supported: the depiction 
module for processing spatial information on the basis of 
cell matrices [24, 391. The depiction module is a special 
evaluator for predicates (appearing in literals) such as 
close-to defining when some object is located close to 
another one. A typical invocation of the depiction module 
would be 

depic close-to(what-is : church, close-to-what : bicycle) 

indicating that the analysis should switch from the theorem 
prover to the depiction module and process the above 
literal there. A literal can be processed externally in two 
ways, corresponding to the basic inference modes of 
knowledge base extension and problem  solving: 

1. In the imagination  mode, the depiction module is 
provided with some literal and extends its internal 
knowledge base with the information given by the 
literal. This corresponds to the knowledge base 
extension; whenever a depic-literal such as  the one 
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above appears in the conclusion of an  axiom, the 
imagination mode of the depiction module is triggered 
with this literal. 

This general  idea about the imagination mode of the 
depictional reasoner is illustrated by the following 
axiom: 

axiom bike-and-church 
forall B : bicycle, C : church 
EP distance(between-object1 : B, and-object2 : C) 5 Im 
+ depic close-to(what-is : B,  close-to-what : C).  

When the axiom is to be processed by the inference 
engine,  it causes the depiction module to store the fact 
that a bicycle is close to a church whenever it  is 
possible to prove that the distance between the bicycle 
and the church is less than one meter. We can see from 
this axiom that its application makes sense only in a 
forward-reasoning mode, which is why we qualify 
the rule as applicable only in forward-chaining tasks 
by placing an entry point on the premise of the 
axiom. 

corresponds to the problem-solving inference task. 
When the inference engine must process a depic-literal 
in backward-chaining  mode,  it  does  not search the set of 
axioms for a complementary  literal in order to make a 
“classical”  resolution step over that  literal.  Instead, the 
literal is passed  to  the  depiction  module in order to verify 
it  and to return substitutions as the solution  for that literal 
to the  theorem  prover. 

For the goal  formula below, this means that the 
inference engine  will delegate the finding of a solution to 
the depictional reasoner and not try to solve the goal 
according to the knowledge in the propositional 
knowledge base: 

goal what-is-close-to-what 

2. The inspection mode of the depiction module 

exists OB1 : object, OB2 : object; 
?-depic close-to(what-is : OBI, close-to-what : 082). 

The mechanisms of imagination and inspection of the 
depictional reasoner for processing spatial knowledge must 
be considered special instances of increasing the amount 
of knowledge of an external reasoner and accessing the 
knowledge of such a special-purpose knowledge processor. 
The integration of the spatial reasoner could be taken as 
the design for including other external inference engines, 
such as relational databases or a logic  programming 
system, in the LILOG knowledge representation approach. 

Summarizing, the axiomatic part of a LLILo, knowledge 
base allows us to formulate the logical relationships 
between the objects of a knowledge base in a rather 
sophisticated way. The generalized clausal form in which 
axioms may be presented supports the “what follows  from 
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what” intuition that has proved very successful in 
languages such as Prolog  and other rule-based 
programming  languages for knowledge based systems. 
Moreover, the default  logic and the means for controlling 
the inference processes can be used with little notational 
overhead and exhibit a clear underlying intuition. 

3. The LILOG inference  engine 
The development of an inference engine  making the L,,, 
knowledge representation language operational has been 
strongly influenced by the natural-language understanding 
context of the LILOG project. However, in the 
architecture of the inference engine we have anticipated 
the use of its logical kernel for a wider spectrum of 
applications as well. 

Design objectives for the inference  engine 
In the framework of the LEU/2 natural-language 
understanding system, knowledge represented in LLIMG 
may stem from two sources: 

Our  knowledge engineers have developed the 
background knowledge of LEU/2 about touring through 
a city in which we find streets, museums, restaurants, 
and other things of interest. Moreover, this background 
knowledge contains specific information about the city of 
Dusseldorf. 
The LEU/2 system interprets German texts describing, 
for example, specific museums, or the location of 
department stores in Dusseldorf, by constructing LLILoG 
representations of the information provided in such 
texts. 

The  natural-language understanding capabilities of LEU/2 
require that the knowledge provided to the system be 
made operational by an inference engine for various 
purposes. Knowledge extracted from  German texts must 
be  combined with the background knowledge by means of 
forward inferences (this corresponds to the text-input 
mode of LEU/2). Of course, we can also query the 
knowledge available to LEU/2 in natural language  and 
obtain natural-language answers to our question (this 
corresponds to the query mode of LEU/2). 

Apart from these two overall requirements, the linguistic 
capabilities of a natural-language understanding system can 
be improved by supporting, e.g., the linguistic analysis 
with background knowledge about the application domain. 
Typical tasks that benefit  from the evaluation of 
background knowledge are the disambiguation of different 
readings of a natural-language sentence, or the resolution 
of anaphoric references between a pronoun and the 
explicitly mentioned referent to which it refers. Another 
component which can benefit  from the services of the 

976 inference engine is the dialog component of the LEU2 

system. Here the inference engine supports the generation 
of cooperative natural-language answers to queries posed 
against the knowledge of LEU/2. 

understanding framework of LEU/2, the inference engine 
must  offer a variety of application-dependent inference 
tasks. 

The above discussion shows that in the natural-language 

On the other hand, LLlLOG is a typed logic that does not 
implicitly recognize the applications for which it is being 
used. However, any logic suggests certain inference tasks 
that can be performed over the knowledge represented in 
this logic. Let us call these inference tasks application- 
independent. Since L,,, is a typed logic, the following 
three logical inference tasks are realized by the inference 
engine no matter what application it is supposed to 
support: 

1. The classical logical inference task of solving the 
problem of whether a goal  formula  follows  from the 
formulas given in a knowledge base. 

2. In addition to the classical backward-chaining inference 
task, a forward chainer (with consistency checking 
capabilities) is of considerable interest for combining 
new pieces of knowledge with existing knowledge. 

3. The sort language of LLlLOG constitutes a (sub)logic in 
itself,  suggesting inference tasks such as testing the 
validity of the subsumption relation for two sort 
expressions or computing their greatest lower  bound. 
Thus, special sort-processing capabilities are available 
as a logical inference task. 

These application-independent inference tasks can be 
considered to be a second level of inferential capability 
(realizing the application-dependent inference tasks) 
offered by the inference engine of LEU/2. 

Logics are typically made operational by means of 
theorem provers. Classical theorem provers implement 
pure first-order predicate logic in terms of a proof 
procedure for testing whether a set of clauses is 
inconsistent [40-421. Very often they are optimized toward 
performing this basic inference task efficiently [43-451. In 
considering the variety of tasks the LEU/2 inference 
engine must deal with, it is clear that the functionality of 
such basic theorem provers is  not  sufficient for our 
purposes. Of course, the inference tasks we have  in  mind 
also require the basic theorem-proving function of showing 
that a set of clauses is inconsistent. According to the 
application context given by the LEU/:! natural-language 
understanding system, these tasks  are executed in specific 
contexts and may require different settings for the basic 
proof procedure. Therefore, we aim at a parameterizable 
theorem prover serving as  the basic inference algorithm, 
which is adaptable to the various specific inference tasks it 
is supposed to solve. The general proof procedure meets 
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these requirements and  can be considered as the “heart” 
of the inference engine. The second basic reasoning 
algorithm  is  an inconsistency checker for sort expressions, 
which processes the sort information of a L,,, 
knowledge base. Figure 1 illustrates the vertical structure 
of the LILOG inference engine outlined thus far. 

The discussion above has shown the different levels of 
abstraction at which knowledge formulated in L,,,, can 
be  made operational within LEU/2. The basic idea of 
introducing the vertical structuring of the inference 
engine  is to make a clear distinction between application- 
dependent inference tasks and the logical inference tasks 
that are supported independently of the application. These 
logical inference tasks themselves form a higher level of 
inferential capability than the basic inference algorithms 
represented by the general proof procedure and the 
inconsistency checker. 

inference engine,  we have imposed a horizontal structure 
on the logical  level of the inference engine, which has 
been strongly influenced  by further overall objectives for 
LEU/2. One objective for the development of LEU2 was 
to create an experimental environment offering basic 
processing modules  needed  for  natural-language 
understanding in such a way that extensions of these 
modules  and the integration of  new components into 
LEU/2 are easily possible. This decision was made in 
order to provide an experimental system for testing the 
feasibility of theoretical solutions in a given software 
environment. Of course, this overall objective for LEU/2 
applies to the knowledge representation and processing 
activities of the LILOG project as well. 

For processing L,,,oc (and knowledge processing in 
general), several interesting questions do need practical 
experience, requiring an implementation of the knowledge 
representation language: 

To what extent does the inference behavior of the 

In addition to the vertical structure of the LILOG 

various logical inference tasks depend on the inference 
calculus being  used for the inference task? 
Can specialized external reasoners improve the 
inferential capacities of the inference engine? 
How do inference calculi and strategies for traversing the 
search space interact? Which search strategy best fits 
which calculus? 
Does one inference calculus fit some specific knowledge 

Can we tailor the behavior of the inference engine by 
base better than another? 

setting certain parameters and options so that inference 
behavior improves for a specific  knowledge base? 

To experiment with the inference behavior of our 
inference engine  and answer such general questions, we 
had to establish a very clean module structure for the 

Applicationdependent  inference tasks 

I t 

1 t 
Application-independent  inference  tasks 

General  proof  procedure  and 
inconsistency  checker 

I 

r”l Knowledge 

inference engine as a whole  and the general proof 
procedure in particular. This led to an architecture in 
which, for example, the general proof procedure is able 
to make explicit reference to the inference calculus and 
search strategy it  is supposed to use. Thus, the inference 
calculus and the search strategy became separate modules 
of which  different realizations can be interchanged easily 
in order to impose  different inference behaviors on the 
general proof procedure. The high degree of flexibility that 
can be achieved by such an architecture has its price in 
terms of lower efficiency, but for a system serving as an 
environment for experimenting with inference calculi, 
search strategies, etc., we are willing to pay this price. 

The implementation of LEU/2 has already shown the 
practical usefulness of the modular architecture of the 
logical level of the inference engine. The user is already 
able to choose among several search strategies such as 
depth-first or breadth-first, and the reasoning capacities 
can be enhanced by adding specialized calculus rules, 
e.g., for processing sort literals, when the contents of the 
knowledge base require this. 

The rest of this section discusses the three layers of 
the inference engine. First we address the application- 
dependent layer: the user interface. Then the logic 
interface, representing the application-independent 
inference tasks, is discussed; and  finally  we  give a more 
detailed view of the low-level inference mechanisms 977 
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represented by the general proof procedure and the sort- 
processing algorithms. 

User interface 
The user interface level of the inference engine  offers the 
application-dependent inference tasks. Since some of the 
logical inference tasks provided by the inference engine are 
also of interest to some of its users within LEU/2, the user 
interface is the point at which to access them.  Below we 
describe typical situations in which various modules of the 
LEU/2 system will access the inference engine. 

Inference tasks supporting text understanding Having 
constructed the semantic representation of a sentence, we 
must integrate the new  knowledge into the previously 
acquired text knowledge and background knowledge 
available to LEU/2. This is done by checking whether the 
new  knowledge is consistent with the existing knowledge 
and by performing forward inferences in order to deduce 
implicit  knowledge. Consistency checks and the execution 
of forward inferences are part of the functionality offered 
by the logic machine; they are described in  more detail in 
the next subsection. 

The resolution of anaphoric references is one part 
of the interpretation process that constructs L,,, 
representations for German texts. It must determine 
whether there is an antecedent in the text to which a 
pronoun may refer. One way of making this decision is to 
compare the sort of the object representing the antecedent 
with the sort attached to the object representing the 
pronoun. The linguistic algorithms will discard any of the 
candidate antecedents whose sort is incompatible with the 
sort of the pronoun; Le., the greatest lower bound of the 
sort of the antecedent and that of the pronoun is the empty 
set. Computing the greatest lower bound is  an inference 
task the logic  machine offers to its users within LEU/2. 

Inference tasks supporting question answering In the 
question-answering mode of LEU/2, we are able to 
have a natural-language dialog  with the system about 
the knowledge  it has acquired during previous text- 
understanding phases. One objective here is to achieve a 
dialog behavior which can be called cooperative. That is 
to say, instead of verbalizing the logical answers to the 
questions posed to the system in a straightforward way, 
LEU/2 is expected to provide more informative, natural- 
language answers. 

Basically there are two question types whose logical 
representations must be handled by the inference engine: 
yeslno- and wh-questions (questions beginning  with who, 
what, which, and where). For yes/no-questions, it is 
sufficient to try to prove the goal  formula representing the 
question, and, if the proof does not succeed, the negated 

978 goal as well in order to provide the natural-language 

answers Yes, No, and I don’t know instead of being able 
to say only Yes or I don’t know. For wh-questions such 
as “Which museum is open at 11 o%lock?” one is 
additionally interested in those instantiations of a specific 
variable which represent the logical answers to a question. 

To achieve cooperative behavior, concepts such as over- 
answering and presupposition handling must be realized as 
part of the dialog component, avoiding simple “Yes” or 
“NO” answers to a question. For example, the answer 
“No” to the question “Does the  museum open at 9 
o’clock?” is not very helpful; a better answer would be 
“No, the  museum opens at 10 o’clock.’’ 

To support such features with the inference engine, 
some extensions of the general proof procedure have been 
made,  leading to more elegant solutions than would ad hoc 
ideas based on standard approaches. The standard solution 
for producing the answer “No, the museum opens at 10 
o’clock’’ is  first to submit the original  goal representing the 
yes/no-question. Then, if this proof  fails, the “9 o’clock 
term” in the question goal can be replaced with a variable, 
and the more general goal resubmitted to the inference 
engine. 

immediately replacing the 9 o’clock term with a variable in 
the question goal and by telling the inference engine to 
prefer solutions which instantiate the variable with terms 
that are compatible with the 9 o’clock term. If the 
compatibility constraint set up by the 9 o’clock term 
cannot be satisfied, we drop it  and search for further 
solutions to our modified  goal; if we  find the 10 o’clock 
term, it becomes the result of the inference process. We 
give a more detailed description of this method in the 
subsection on the general proof procedure. 

Detecting violated presuppositions is another means for 
generating cooperative answers. Assuming that no Picasso 
museum exists in Dusseldorf, a good answer to the 
question “Is the Picasso museum open on Monday?” 
would be ‘‘There is no Picasso museum,” instead of 
“No,” or ‘‘I don’t know.” This is because the latter 
answers presuppose that there is a Picasso museum 
which, however, is closed on Mondays. The semantic 
representation of the original question may be split into a 
conjunction of two subgoals corresponding to the questions 
Ql: “Is there a Picasso museum?” and Q2: “Is it open on 
Monday?” This conjunction of subgoals is submitted to the 
inference  engine,  and  it  is  asked to prove first Q1 and then 
Q2. The inference engine cannot find a proof of Q1 and 
reports this to the dialog component, which is  now able 
to give the desired cooperative answer. 

In general, to produce the logical answers to such 
questions, the subgoals of the question goal  must be 
processed in a given  order-the presupposition order. If 
the proof of the entire question fails, those subgoals that 

We are able to realize this within one query by 
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could be proved, as well as the first nonproven subgoal, 
are returned to the dialog component, enabling it to give 
its cooperative answer. 

From an abstract logical point of view, the answers to 
wh-questions are terms instantiating a variable of the 
question goal.  One task of natural-language generation is to 
verbalize these terms by finding  an appropriate succinct 
description distinguishing  it  from other objects of the same 
category (i.e., sort). Thus, the inference engine  may be 
asked to compute all attributes for which a certain object 
has distinct values compared to other objects of the same 
sort. 

For example, if we intend to speak about a specific 
pencil  among a number of others, it  may  happen that the 
one we are interested in is the only red one. If there is a 
color-feature, its value is red for the red  pencil  and 
different  from  red for the other pencils;  i.e., color is a 
discriminative attribute for the red  pencil, and “red 
pencil” is an appropriate verbalization of it. We refer to 
[46], which describes the language-generation component 
of the LEU/2 system. 

Logic machine 
The logic  machine of the LILOG inference engine 
performs the logical,  i.e., application-independent, 
inference  tasks, upon which the more  complex,  application- 
dependent inference tasks of the user interface are 
realized. Here, then, we find the inference services one 
would expect from  an implementation of LLlLOc as a stand- 
alone knowledge representation language. The general 
structure of the logic  machine is shown in Figure 2. 

inference tasks are the problem solver, the knowledge 
base extender, and the sort processor. The first two 
subcomponents use the general proof procedure, since 
their major concern is to process the knowledge provided 
in terms of the axioms of a hlLOG knowledge base. The 
general proof procedure contains the inference calculus 
(together with the search strategy) as a fundamental 
submodule. 

Since the truth-maintenance system and the external 
deductive component (a reasoner performing special 
deductions) are triggered by special calculus rules, the 
general proof procedure is also the point at which these 
components are attached to the inference engine. 

the knowledge represented in the sort declarations of a 
knowledge base. These inference tasks are realized in 
terms of  an inconsistency checker for sort expressions. 

Access to the knowledge bases is realized by a special 
interface module connecting the inference engine  with the 
database system that stores the compiled  LLILo, code on 
which the inference engine operates. 

The three subcomponents for the execution of logical 

The sort processor offers inference tasks that evaluate 

I Logic interface 

Problem solver base 
Sort processor extender - I I 

External I 
inferences  Inconsistency 

checker 

TMS 

1 1 1 
I LULm knowledge base access I 

Architecture of the LILOG logic machine. 

Logic interface 
The  logic interface is, so to speak, the entrance through 
which one can access the logical inference tasks offered by 
the inference engine. Its three doors are described below. 

Problem solver The problem solver can be considered as 
a generalized theorem prover whose essential task is to 
prove L,,Loc goal formulas, given in terms of conjunctions 
of disjunctions of literals. 

The problem solver itself essentially performs some 
initialization tasks comprising the negation of the goal 
formula and the setting of various parameters directing the 
search within the general proof procedure. The negated 
goal  is then passed to the general proof procedure for 
finding a proof  of the goal. Certain features distinguish the 
problem solver (with the general proof procedure) from 
ordinary theorem provers. First, there are many options 
available, allowing us to set various parameters for the 
execution of an inference task. In  addition to options for 
specifying the search depth and the number of results 
(such as 1 for a yeslno-question or “all” for wh-questions), 
we  may, for example, specify how to represent the result 
of an inference process: The simplest form is to return 
just a success or failure message. Alternatively, one 
may request the inference result to be presented as 
instantiations of the goal formula, or in terms of valid 
substitutions for the variables in the goal. An option more 
specific to the LILOG inference engine allows us to focus 
the search on particular instantiations of certain variables; 
this is  useful for realizing some kinds of over-answering 
(see the subsection on the user interface). Another special 979 
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fc option deals with  handling  implicit presuppositions when 
asking natural-language questions. For this, the problem 
solver receives a list of L,,,,, formulas, which is 
interpreted as a conjunction and represents the 
presupposition order. The task is to prove a maximal 
number of these LLILOG formulas in the given 
(presupposition) order. The formulas for which the 
proof  fails represent the violated presuppositions. 

Knowledge  base  extender The knowledge base extender 
offers the inference tasks of executing forward inferences 
in connection with  performing consistency checks. To 
check the consistency of a formula  with respect to a given 
knowledge base, it is sufficient to pass the formula  itself 
to the general proof procedure, which  (being a refutation 
procedure) detects an inconsistency by deducing the 
empty clause. 

input facts of the knowledge base extender. These facts 
are applied to forward (-chaining) rules by trying to 
resolve them with the premises that are marked by an 
entry point. The results are passed to the general proof 
procedure for “resolving away” any remaining premise 
literals. If this succeeds, the instances of the conclusions 
constitute valid facts deduced by a forward inference step. 
In the axiom 

The execution of forward inferences is  triggered by the 

the first premise is marked by an entry point. Thus, a 
forward inference step can be initiated by the fact P(a, b); 
if the second literal of the forward rule can be proven by 
Q(b, c), the literal R(a, c) has been deduced by a forward 
inference step. This fact can be the input of another 
forward-inferencing cycle. 

Since the inferential closure is  infinite in general, the 
forward search depth, i.e., the number of iterations for 
using deduced facts as new  triggering formulas for further 
forward inference steps, must be limited by a special 
parameter of the knowledge base extender. 

Sort processor The sort processor solves logical 
inference tasks which refer to the sort hierarchy defined 
by the sort declarations of a L,,,, knowledge base. 
Typically, the inference tasks that can be submitted to the 
sort processor are those that test whether the subsumption 
relationship holds between two LLILOG sort expressions, 
compute the greatest lower bound for two sort 
expressions, or ask whether a sort expression stands 

980 for the empty set. 

This kind of inferencing is  offered on the one hand to 
users of the inference engine. On the other hand, we also 
use the sort processor within the inference engine,  e.g., 
during the unification process, when the compatibility 
between the sort of a variable and the sort of a term 
that is to be substituted for the variable must be checked. 
Processing the sort literals (those literals whose predicate 
is a sort expression) also requires us to invoke the sort 
processor to check whether a sort literal can be eliminated 

The sort processor can be realized by an inconsistency 
checker for sort expressions, since all inference tasks 
concerning sort expressions can be reduced to the question 
of whether a sort expression is inconsistent, i.e., whether 
it stands for the empty set. If we have to test whether the 
subsumption relation se << se’ holds, this is equivalent to 
the question of whether andfse,  not(se’)) stands for the 
empty set. The computation of the greatest lower bound 
of two sort expressions can be represented in terms of 
subsumption tests and  an inconsistency test. 

[47l. 

General proof  procedure 
The general proof procedure (GPP) can be regarded as the 
heart of the inference engine. It is the basic inference 
algorithm  upon which the problem solver and the 
knowledge base extender offered at the logic interface 
are realized through special calls to the GPP. 

From an abstract point of view, the GPP can be viewed 
as a theorem prover, because its essential task is to prove 
goals formulated by LLILOG. Typical theorem provers that 
have been developed in the recent past, such as the Prolog 
Technology Theorem Prover [44] or SETHEO [45], focus 
on the efficient implementation of pure predicate logic. 
Their efficiency results from choosing one specific 
inference calculus as the basis of the prover and then 
implementing  it  in “lower”-level languages such as C by 
using special implementation techniques such as abstract 
machines. 

All of these provers have been designed as stand-alone 
implementations of predicate logic, and efficiency has often 
been their major  design objective. In contrast to that, the 
inference engine for LLILOG has been designed  with a 
concrete application in  mind (to be the processor of the 
semantic knowledge of a natural-language understanding 
system). Moreover, the idea of being able to experiment 
with inference calculi and search strategies has had a 
major influence  on the architecture of our proof procedure 
as well. Thus, our main objective was to construct an 
inference engine able to deal with a broad range of 
different tasks and easily adaptable to new applications. 
To achieve these objectives, efficiency  had to be  sacrificed. 

Considering the spectrum of possible objectives one may 
set up for developing a theorem prover, the LILOG 
inference engine is a bit out of the mainstream when 
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efficiency is the major concern. Thus, making direct 
comparisons between rigid  high-speed provers for pure 
predicate logic and a flexible prover for a powerful sorted 
logic is difficult. 

Characteristics of the general proof procedure The 
general proof procedure is  realized as a search procedure 
for traversing or constructing proof graphs. Compared 
to standard resolution theorem provers such as the ones 
mentioned above, it is distinguished  from them by several 
special features: 

Generalized clauses [33] are used instead of normal 
clauses. These generalized clauses are disjunctions of 
complex literals, each in itself consisting of a conjunction 
of (simple) literals (see the subsection on axioms). This 
representation avoids certain disadvantages of the 
classical clausal normal  form.  In particular, rules with 
conjunctive conclusions or disjunctive premises need 
not be split into several clauses. Also, to represent the 
negation of L,,,, goals, one generalized clause is 
sufficient, since the negation of the goal  formula yields a 
disjunction of conjunctions, i.e.,  again a clause in our 
generalized normal  form.  Using generalized clauses, the 
proofs become shorter in general. Furthermore, due to 
a method for generating lemmas,  multiple proofs of 
identical subgoals can be avoided. 
A straightforward extension of the resolution calculus 
enables us to process these generalized normal forms: 
two complex literals L,  A * A Lm and L ;  A A LA 
are complementary iff two of the simple literals 
contained in the complex ones are complementary. 
The  GPP can run under different inference  calculi as well 
as different search strategies. Therefore the “naked” 
GPP  (i.e., without a calculus and search strategy) can be 
considered to be a theorem prover shell. For the GPP, 
an inference calculus is a set of calculus rules. In the 
current implementation the following  rules are realized: 

The model-elimination extension rule [41], adapted to 

The model-elimination reduction rule, also adapted to 

The sort-elimination rule [48] for  proving sort formulas. 
The execute-built-in rule for evaluating built-in 
predicates, features, and  built-in arithmetic operators 
that occur in equations and inequations. 
The tms-lookup rule for consulting the truth- 
maintenance system (see the subsection on the TMS). 
The depic-inspection rule  for letting a subgoal be 
proved by the depictional component (see the 
subsection on external reasoners), the only external 
reasoning component connected to the GPP at the 
moment. 

generalized clauses (cf. [33]). 

the generalized clauses. 

The GPP can run  with any subset of these rules; thus, it 
is easy to configure the inference engine.  If, for example, 
one is not interested in using the TMS or the depictional 
component, one need only delete the corresponding 
inference rule  from the calculus. Adding a new  rule  is 
also not complicated. One  need only write the Prolog 
code that implements the rule, without having to modify 
existing code. 
A part of the search space can be temporarily 
disregarded during a proof. This is realized by 
introducing a new  kind of node in the search tree or 
graph-the suspended node; this is explained in more 
detail below. 
The conditions for terminating a proof can be quite 
complex. In particular, it is not always enough to deduce 
the empty clause as in classical theorem-proving 
applications, because the GPP  must support the 
realization of a variety of other inference tasks. 

Finding  a proof as a general search problem The task 
of finding a proof  of a logical  formula  can be formulated in 
terms of a tree/graph-search problem  (cf. [49]); i.e.,  given a 
set of nodes with specific initial and terminal nodes, plus a 
relation that determines the successors for each node, the 
problem  is to find a path from  an  initial node to a terminal 
node. 

For resolution-based calculi, the nodes in such a tree 
represent clauses from the initial clause set (also called the 
input set) as well as clauses created during the proof. The 
set of initial nodes depends on the resolution refinement’ 
used. For the set-of-support strategy, for example, the 
initial nodes of the proof  graph are the clauses of the 
support set; for linear resolution and model elimination, 
one must choose one of the input clauses such that the set 
of the remaining clauses is satisfiable. 

The expansion of a node (i.e., the calculation of its 
successor clauses) consists of applying the calculus rules 
to this selected node, possibly with additional arguments. 
For the resolution rule, expanding the selected node 
means performing all of the resolution steps which are 
valid according to the used resolution refinement. 

in the current search tree and the initial clause are 
candidates for performing a resolution step with the 
selected clause. This restriction can be imposed because 
one assumes that the clauses stemming  from the support 
set  are not contradictory. Thus, a contradiction can be 
found only by resolving either two clauses from the proof 
tree, or a clause from the proof tree with one of the 
clauses of the support set. If linear resolution or model 
elimination are used, the relevant clauses for performing 

In the set-of-support strategy, for example, only clauses 

2 We assume here that different refinements of the resolution rule constitute 
different resolution calculi. For  the most wmmon resolution refinements, see 
[a, 411. 981 
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: General proof procedure. 

resolution steps with the selected node are those of the 
input set, but in the case of linear resolution, the 
predecessors of the clause to be expanded must  be 
considered as well. 

A terminal node in a normal theorem-proving application 
corresponds to the empty clause. But since we  use the 
inference engine for a variety of user-specified inference 
tasks, the conditions for a terminal node can be more 
complex, and in only a few situations does the empty 
clause happen to be a terminal clause. For example, when 
the GPP is  used to execute forward inferences, any clause 
containing only literals originating  from the conclusion of 
an  applied forward inference rule qualifies as a terminal 
clause. This is because, in forward-chaining mode, we 
are resolving away the premises of some L,,, axioms 
and take the instances of the conclusions as inferred 
formulas. 

The search space is traversed according to a certain 
strategy. In the context of tree or graph search there are 
two kinds of nodes: open and closed. Open nodes have 
not yet been expanded, whereas for closed nodes the 
successors have already been determined. The role of the 
strategy is therefore to select the next open node to be 

982 expanded; in the depth-first search, this is the most 

recently created open node. (For an apparently more 
intelligent strategy, this could be the node with the 
shortest clause.) 

The distinction between closed and open nodes is the 
simplest one. For our proof procedure we have introduced 
a third class of nodes, called suspended nodes, in order to 
realize more complex search strategies. Suspended nodes 
are nodes which are temporarily disregarded by the search 
procedure. In situations where no terminal node can be 
reached, suspended nodes are “reactivated” for the 
search. Various search strategies can be modeled  using 
the concept of suspended nodes-for example, iterative 
deepening, where a node is suspended, if its depth is equal 
to the current maximal search depth, or the combination of 
an  efficient, incomplete search strategy with a less efficient 
but complete one, where the suspended nodes play the 
role of a reserve to be used if the efficient search strategy 
fails. This technique also allows us to focus the search 
on particular solutions, since nodes that lead to 
incompatible solutions are simply suspended. We 
explain this in more detail in the section on the proof 
graph analyzer. 

After this general overview we describe the proof 
procedure in more detail by walking through one inference 
cycle of the inference engine. Figure 3 shows the main 
parts of the general proof procedure. The indices in the 
boxes indicate whether the corresponding subprocedures 
are parameterized by the inference calculi (C) or by the 
search strategies (S). 

Proof graph initializer Because of our model  elimination 
calculus for generalized clauses, the initialization of the 
proof graph becomes trivial. We suppose that background 
and text knowledge bases, from which the goal is derived, 
are consistent [40]. 

According to the model  elimination calculus, the goal 
is a logical consequence of these knowledge bases, if the 
proof search leads to a terminal clause when starting from 
one of the clauses from the negated  goal. The usual choice 
of the starting clause can be avoided for our generalized 
clauses, since the negated goal can always be represented 
by exactly one generalized clause. This is only one 
advantage of our generalized normal form, as the example 
below illustrates. Using the classical clausal normal form, 
the negation of the goal P V Q yields -IP A -IQ, which 
must be represented by the two clauses -IP and 1Q while 
it  is a single clause (consisting of one complex literal) in 
our normal form. 

Additionally, a temporary proof  knowledge base for the 
clauses of the proof graph is created in which the initial 
goal clause is stored. Including this clause in the input 
clause set is necessary for obtaining indefinite solutions; 
see also [41]. 
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Clause  selector When a new inference cycle is entered, 
the first activity is to select a clause to be expanded next. 
The set of open clauses in the proof graph is always 
ordered according to the criteria imposed by the search 
strategy. Therefore, the clause selector has only the trivial 
task of taking the first open clause as the clause to be 
expanded. 

Control  information  interpreter Given the selected 
clause, the control information interpreter determines the 
possible inference steps that can be applied to this selected 
open clause. In some sense, the actual calculus rules 
themselves make this choice, because a calculus rule 
not only performs the actions for its execution, but also 
determines its potential inference steps. For a resolution- 
style calculus rule such as the model  elimination extension 
rule, this means that a calculus rule selects only those 
clauses to which  it can be applied to perform a possible 
resolution step. 

This allows us to conceive different calculus rules 
that perform the same actions but interpret the control 
knowledge in different ways; e.g., one rule considers only 
L,,,, rules whose conclusion is marked by an entry point, 
whereas another calculus rule  may look at all clauses in 
the knowledge bases. 

For resolution-like inference steps, the unifier can be 
established when computing the possible inference steps. 
This means that we select for the possible inference steps 
only clauses which pass the “full unification filter.” 
Because of the complex sort information which must 
be considered during the unification process as well, 
computing the unifiers as part of the clause selection may 
be too costly. As an alternative, one may specify special 
calculus rules for which the cheaper unsorted unification  is 
done by the control information interpreter and the more 
expensive sort checks are executed by the inference step 
performer. 

This shows that we interpret the term “calculus rule” 
in a very broad sense, and also that a part of the inference 
strategy is transferred into the calculus rules. However, 
since one of our main goals was to be able to have an 
experimental environment for testing different calculi with 
different strategies, this general concept of calculus rules is 
an important means of achieving the amount of flexibility 
we require. 

Calculus rules may require specific control operators in 
order to be applied. The switch to the external reasoners is 
realized by such an operator. If a literal of the goal is to be 
proven by such a component, it  must be marked by the 
corresponding control information. The calculus rule for 
invoking  an external reasoner checks whether the 
respective control information is attached to the goal 
literal, and only if this is the case does it generate the 

corresponding inference step specification consisting of the 
calculus rule with its arguments. 

The same holds for the rules-processing literals that 
involve specific predicates. The execute-built-in rule, for 
instance, checks whether the literal to be proven is an 
equation or has a built-in predicate. Analogously, the sort- 
elimination rule tests whether the literal to be processed is 
a sort literal. 

Inference-step selector The output of the control 
information interpreter is a set of inference-step 
specifications containing the necessary information for 
the execution of an inference step. This set of possible 
resolution steps is  divided according to a strategy by the 
inference-step selector into two disjoint subsets: the set of 
executable inference steps and the set of the suspended 
inference steps. 

Inference-step  pe$ormer The inference step performer 
executes the selected inference steps. For resolution 
steps, this means in general that the two parent clauses, 
instantiated by the calculated unifier, are concatenated 
without the resolved literals. Other inference steps need 
more processing, e.g.,  if an external reasoner is consulted. 

Proof  graph  analyzer The result of the inference-step 
performer is a set of new open clauses. This set must be 
integrated into the existing proof graph, which consists of 
the actual set of open clauses, the  set of closed clauses, 
and the set of terminal clauses. More precisely, the new 
terminal clauses are determined. The remaining  new 
open clauses are integrated into the set of open clauses 
according to the search strategy; e.g.,  if we have breadth- 
first search, the set of open clauses is represented by a list, 
and the new open clauses are added at the end of that list. 

It may happen that the set of open clauses and the set of 
terminal clauses are not disjoint. This is useful for realizing 
certain options in  an elegant way. According to one 
option, one may request the forward chainer to deduce the 
most specific consequences that can be obtained from the 
trigger  formula. For example, assume that the disjunction 
Dl V D, qualifies as a terminal clause such that d l l  can 
be proven (or, in other words: the literals in Dl can be 
“resolved away”); then, D, should be a consequence 
derived by forward inferences. For specializing this 
disjunction, it  is necessary to try additional inference steps 
so that D, V D, must also remain  in the set of open 
clauses. 

This possibility of allowing a clause to be both a 
terminal and an open clause is also exploited for 
handling the presupposition order of the subgoals in the 
representation of a question. According to this option, the 
subgoals must be processed in a certain order until the 
proof of one subgoal fails. The results of an inference task 983 
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handling the presuppositions contains both the proven 
and the nonproven subgoals of the original question 
representation. A simple way to achieve this is to include 
open clauses whose literals originate from the initial 
question representation in the set of terminal clauses as 
well. After the proof search, the literals in the shortest 
terminal clause represent the minimal set of nonproven 
subgoals. 

The proof graph analyzer is also the part of the GPP 
responsible for focusing the search on specific solutions. 
Suppose that for a query 

goal goal-1 
exists x: s,, Y :  s,; 
?-Q(X, Y ) .  

the preferred solutions for X are a, or a2,  and those for Y 
are b, ,  b,, or b,. The proof graph analyzer determines for 
every new open clause whether the instantiations of the 
variables X and Y are still compatible with the preferred 
solutions. If X is replaced by a term tx, this means that 
tx must  be  unifiable  with either a,  or a,; i.e., if tx is a 
variable, the sort of tx must  be a supersort of the sort of a ,  
or a,. If tx is a ground term, it must be either a ,  or a,. 
Open clauses whose instantiations of X and Y are 
incompatible with the preferred solutions are suspended; 
i.e., in our search tree we have two classes of suspended 
nodes: suspended  inference steps determined according to 
a search strategy and suspend  clauses for realizing the 
preferred solutions option. If no open clauses are left in 
the search tree, the proof graph analyzer must drop one of 
the constraints for the instantiations of the variables. In 
our example, these may be the constraints on the variable 
X. Then all suspended clauses are reactivated (i.e., 
reconsidered as open clauses, which do not violate the 
remaining constraints), and the proof search continues as 
usual. 

When the new sets of open, suspended, and terminal 
clauses have been determined, the proof graph analyzer 
must decide whether the proof  is  finished. This depends on 
the option specifymg the number of desired solutions. If 
only one solution is to be computed, the proof terminates 
when the first (real) terminal clause has been generated. If 
all solutions are desired, the search continues until the set 
of open clauses becomes empty. 

Result  generator The result generator must select the 
relevant terminal clauses that contribute to the results. As 
shown by the example of the most special facts deduced 
by forward inferences, there may  be terminal clauses that 
can be subsumed by other terminal clauses. From the 
selected terminal clauses, the results are determined 
according to the “kind-of-result’’ options. With these 

984 options one can specify whether valid instantiations of the 

goal, valid substitutions, or simply success/failure should 
be the reported result. 

Proof graph  reinitializer If the set of open clauses is 
empty and there are still some suspended nodes not 
satisfying the termination conditions, we can reactivate 
such suspended inference steps as possible usable ones 
and select one of them according to the search strategy for 
the reinitialization of the search. The selected inference 
steps are executed, and the generated clauses constitute 
the new set of open clauses. 

Inconsistency  checker for sort expressions The basic 
inference algorithm for processing the knowledge  given in 
terms of the sort declarations of a L,,, knowledge base 
is an inconsistency checker for sort expressions. Its task is 
to decide whether a sort expression stands for the empty 
set. Because of the richness of our sort description 
language, other inference tasks concerning the sort 
information of a knowledge base can be reduced to the 
question whether a  sort expression is inconsistent; see 
also the subsection on the logic interface. 

are the ones described below (see also [50] for a 
comprehensive overview of such algorithms): 

The basic steps of the inconsistency-checking algorithm 

1. Fully expand the given sort expression according to the 
sort constraints in the knowledge base. This replaces 
every occurrence of a  sort name  with a sort expression 
corresponding to the constraints for that sort name. 
Apply this expansion process recursively until  no 
further expansion of user-defined sort names is possible. 
The recursive nature of the expansion process requires 
that the sorts of a knowledge base must  not be defined 
cyclically. This is checked by an algorithm for detecting 
cyclic sorts within a knowledge base. 

it according to the following rules: 

Push the negation symbols inward as far as possible; 
after this only sort names and enumerations can be 
negated. 

intersections and nested unions. 

2. Normalize the expanded sort expression by transforming 

Apply the law  of associativity by flattening nested 

Contract sort expressions f s e  and f se ’  appearing in 
an intersection tofand(se,  se‘) until there is at most 
one such expression per feature within an 
intersection. 
Contract sort expressions r::se and r::se‘ appearing in 
an intersection to r::and(se, se’) until there is at most 
one such expression per role  within an intersection. 

enumerations) in intersections until there remains 
Contract the enumerations (and negated 
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exactly one enumeration per intersection or the 
intersection is replaced by the empty set. 

Test whether the consistency of the normalized sort 
expression can be ensured; i.e., the sort expression 
cannot be inconsistent. This  is the termination condition 
for delivering a negative result. 
Test whether the inconsistency of the normalized sort 
expression can be ensured. This is the termination 
condition for delivering a positive result. 
If the termination conditions are not satisfied, reduce 
the question of whether the given sort expression 
is inconsistent to certain subgoals, i.e., to the 
inconsistency of other sort expressions, according 
to the inconsistency-checking calculus for L,,,,, 
sort expressions. 

Besides computing whether a sort expression stands for 
the empty set, the sort processor stores the results it has 
computed by  filling a table of greatest lower bounds of sort 
expressions, in order to avoid repeated computations 
during the lifetime of a knowledge base. 

Truth-maintenance system 
The truth-maintenance system (TMS) maintains the 
assumptions and conclusions generated by the problem 
solver and puts in order the dependencies among  them. 
Thus, it is able to determine the current set of valid 
conclusions (beliefs) and to name the assumptions 
supporting those conclusions. If an inconsistency arises, 
the TMS  follows the dependencies back to the assumptions 
which caused the inconsistency. It can remove these 
assumptions and  all dependent conclusions from the set 
of current beliefs. 

Besides its main purpose of supporting belief revision, 
a TMS can serve as a cache for inferred problem-solver 
data. Since it regulates the inference process, it can also 
generate simple explanations. The best-known TMSs are 
those of [51, 521. 

The TMS integrated into the LILOG inference engine 
is based on the argument-based default logic developed 
in [26]. Conflicts between contradicting conclusions are 
resolved by comparing the strength of their arguments, 
which are the rules and facts used for their deduction. 
Their default strength is identified  with a vector of sort 
expression, where a vector of sort expression which  is 
subsumed3 by another one represents the stronger 
argument.  Currently, our TMS is  used  primarily as a cache. 
For consulting the TMS during  problem  solving,  we  have a 

3 We use the componentwise subsumption relationship between the sort expressions 
in two  such  vectors  as the subsumption relation between  vectors of sort 
expressions. 

calculus rule  called tms-lookup that determines whether a 
fact is  valid. A detailed presentation of this TMS is in [35]. 

External reasoners 
In the current implementation there is one external 
reasoner attached to the inference engine: the depictional 
component [39], which reasons over spatial information 
on the basis of analog representations. The two main 
processes of this component are imagination and 
inspection. The imagination process generates the analog 
representation for a certain spatial relationship within the 
internal knowledge base of the depictional reasoner. It is 
activated when the knowledge base extender derives a 
literal which  is marked for processing by the depiction 
module. The literal, instead of being added to the 
propositional knowledge base, is handed to the depiction 
module to be  memorized there. Inspection is the dual 
process; it determines whether a certain spatial 
relationship holds. The depic-inspection calculus rule 
transfers a literal that is to be processed outside the 
theorem prover to the depiction component. If the 
depiction module  is  able to prove this subgoal, it returns 
an answer substitution to the general proof procedure, 
which can then resolve away this literal. 

These inference rules show how a principal solution for 
attaching an external reasoning device could be attached to 
a theorem prover without having to leave the logical 
framework. 

Access  to knowledge 
The knowledge base access system allows us to retrieve 
the knowledge entities of a L,,,, knowledge base which 
we  need  for the inferential processes. In the corresponding 
queries, syntactic properties can be specified as search 
patterns. Thus, we  may search for the declarations of 
certain predicates, the roles and features of specific sorts, 
or axioms of a certain type (such as facts or the backward- 
chaining rule) containing certain literals (e.g.,  with a 
specific predicate and polarity). 

This knowledge base access system is realized in terms 
of  an interface module to the LILOG database system [SI 
that has been developed as an advanced background 
storage mechanism satisfying special requirements from 
the knowledge based systems context. 

4. Summary 
The LILOG inference engine  is the basis for the 
LILOG knowledge representation system. This working 
environment for  knowledge engineers comprises tools such 
as a graphical browser for sort lattices defined  in terms of 
L,,,, sort declarations. The L,,,, compiler translates the 
knowledge bases into a processible representation on the 
basis of which the LILOG inference engine executes the 
knowledge. 9858 
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The LILOG knowledge representation system has been 
realized in Quintus Prologm and is  running under AIX@ on 
PS/2@  and RS/6000m workstations. This system comprises 
about 45 000 lines of Prolog code. 

In the context of the LILOG project on natural-language 
understanding, the knowledge representation environment 
has been used for modeling the background knowledge of 
the LEU/2 text-understanding system. The inference 
engine processes this background knowledge together 
with those knowledge bases containing the L,,,, 
representations of natural-language texts. The background 
knowledge base of LEU/2 contains knowledge about 
touristic activities and attractions in general, plus specific 
knowledge about the city of Diisseldorf.  In  addition to 
that, the background knowledge contains the description of 
numerous temporal and spatial relationships as well. This 
constitutes some 600 sort declarations and some 300 logical 
axioms  in that knowledge base. 

system has been developed as part of the LEU/2 text- 
understanding system, we have employed  it in 
nonlinguistic contexts as well. 

Management) system [53] supports system security 
managers in their task of  defining and controlling the 
access rights to computer systems. Much  of the 
information concerning security management can be 
described as logical rules about the accessibility of 
computer systems. Thus, it appeared natural to us to 
investigate a knowledge based approach in such a context 
and to formulate the rules relevant for the access to data 
or devices in LLILOG. The inference engine  could then be 
used to check whether the set of rules defining the access 
rights was consistent and whether certain actions violated 
the security specifications. Thus, the knowledge based 
approach led to an immediate implementation of the 
security rules, whereas for conventional systems security 
rules must be implemented in a procedural language. This 
has shown the adequateness of L,,, and its underlying 
inference mechanism as a language for writing executable 
specifications of software systems. 

The inference services offered at the user interface level 
of our deductive engine as described above covered nearly 
all the requirements of the new application context. Only 
one additional inference task had to be added to check 
whether a certain property holds for all members of a 
certain sort [54]. However, this was quite easy because 
of the modular architecture of the system. 

During the project, several extensions have been 
investigated. Reference [55] presents a graph-based 
extension of the model  elimination calculus that has been 
realized for allowing a more directed proof search. A 
learning method has been developed for acquiring proof 

986 plans from proofs of similar goals [56]. Furthermore, the 

Although the LILOG knowledge representation 

The KBSSM (Knowledge-Based System for Security 

prototype of a control language for specifying declaratively 
the sequence of actions to be undertaken during the search 
for a proof [57, 581 has been implemented. 

We have learned the following lessons from the 
development of the LILOG knowledge representation 
system: 

Building a knowledge representation system should start 
with a clear design of the language to be processed by 
such a system. A clear design should be rooted in a well- 
established technical framework in which the syntax and 
formal semantics of a language can be defined. In our 
case this was the context of order-sorted predicate logic, 
KL-One-like type descriptions plus some fields of 
nonmonotonic reasoning. It turned out that the 
attachment of external reasoners can be handled easily 
through corresponding calculus rules (see below). 
The development of the inference engine for the LLIMG 
language has benefitted considerably from the clearly 
defined notion of logical inference. This has been a good 
guideline for clarifymg what must be implemented in 
order to put the language into operation: an inference 
engine that offers enough inference rules for processing 
the various syntactic kinds of logical axioms that may 
occur in a knowledge base. Thus, the inference calculus 
determines the deductive power of the engine,  and the 
formal semantics defined for L U M G  is the yardstick for 
measuring the potential of the calculus in terms of 
correctness and completeness. 
Handling the inference calculus (as well as the search 
strategy) as a separate module of the inference engine 
has turned out to be a good means for adjusting 
the computational power and efficiency of our 
implementation of L,,, with little effort. For example, 
the easy attachment of external reasoners to our 
inference engine has become possible because we can 
interact with such a device simply by adding a new 
inference rule to the calculus under which the inference 
engine runs. However, the flexibility we have gained 
through this approach has its price in terms of overall 
performance. 
L,,,,, allows the “permissive” use of sorts, features, 
roles, and atoms in both sort expressions and  logical 
axioms. This approach was motivated by the 
experimental nature of the whole system. By  allowing 
the same information to be expressed in  different ways 
in L,,, (e.g., feature values being specified in sort 
expressions or by equations in axioms), we achieved a 
high flexibility for the modeling of knowledge. However, 
this had the drawback that the knowledge engineers were 
uncertain how to express certain facts or relationships. 
L,,, imposes no  modeling style. Such a style was 
influenced to a large degree by the inferential capacities 
of the inference engine.  Language constructs that could 
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be processed efficiently were preferred to those where 
this has not been the case. 
Finally, the implemented calculus for processing L,,,, 
does not cover all possible valid inferences that can be 
drawn semantically; i.e., even though the calculus is 
sound, it  is  not complete. The completeness gaps result 
mainly  from the dual nature of sorts, roles, and features, 
the use of equality in axioms, and the use of disjunctions 
in sort expressions. It would  be possible to close these 
gaps by employing calculi such as paramodulation for 
handling equality or those described in [47, 591 to 
account for sorts being  used as predicates. Their 
implementation, however, would  lead in general to a 
prohibitive explosion of the search space, since they 
enable inference steps that are not possible in the order- 
sorted case. We realized, therefore, mainly only those 
inferential capacities that were imposed by the 
requirements of the applications. 

In summary, the experiences we  gained in the LILOG 
project led to a deeper theoretical understanding of logic- 
based knowledge representation, and should enable us to 
develop a knowledge representation system 

That constitutes a reasonable comprise between the 
expressiveness of the representation language  and the 
complexity and the efficiency of the calculus 
processing it. 

e.g., choosing an abstract machine architecture for the 
inference engine. 
That offers powerful tools for developing and inspecting 
knowledge bases. 

Whose inference engine  is tuned versus efficiency by, 

Such a system could  form an advanced programming 
environment for knowledge based systems. 
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