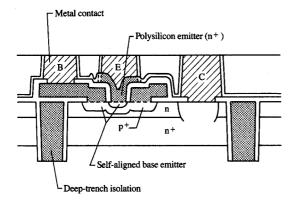
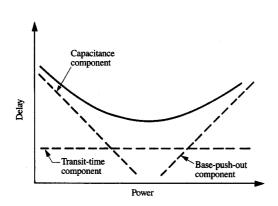
Advancing the state of the art in high-performance logic and array technology

by K. H. Brown D. A. Grose R. C. Lange T. H. Ning P. A. Totta


High-speed silicon bipolar technology continues to meet the demands of integrated circuits for mainframe computers. IBM has developed an advanced bipolar logic and highspeed array technology for its Enterprise System/9000™ systems. This technology, codenamed ATX-4, is composed of trench-isolated, double-polysilicon self-aligned bipolar devices, and has four fully planarized wiring levels with interlevel connecting studs. Chip fabrication has been implemented in 1-µm ground rules and is in full-scale manufacturing. ATX-4 represents a significant advance in providing higher-speed and lower-power logic at increased levels of integration compared with that of the ATX-1 technology used in previous generations. An overview of the design and integration of ATX-4 is discussed.

Introduction


The evolution of mainframe computing systems has led to significant changes in high-speed bipolar logic and array integrated circuit technology. Fundamental logic gate speed and the ability to minimize on-chip and off-chip delays is essential for providing the lowest system cycle time. Modern bipolar technology remains the best solution to this product requirement because of its fundamental advantages in intrinsic device switching speed and capacitance-driving capability. To achieve the lowest possible delay, the transistors and wiring must be designed to minimize parasitic resistances and capacitance. To reach these objectives, state-of-the-art bipolar devices consist of a polysilicon base contact which is self-aligned with the polysilicon emitter, a thin intrinsic base with an optimized collector doping profile, and deep-trench isolation [1-3]. Interconnections between devices must be designed for low parasitic capacitance and higher current and power densities. To accomplish this, electromigration-resistant wire levels are interconnected by vertical studs [4] incorporated into a fully planarized structure. The four independent wiring levels in ATX-4 chips minimize the path length between logic gates and significantly reduce the wiring capacitance.

This paper describes the design of the advanced highperformance bipolar logic and array chips used in the

Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without alteration and (2) the *Journal* reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to *republish* any other portion of this paper must be obtained from the Editor.

Figure 1 Schematic of an ATX-4 transistor. B = base, E = emitter, C = collector.

Figure 2

Log-log plot of a typical ECL circuit delay as a function of operating power.

IBM Enterprise System/9000TM (ES/9000TM) mainframe computers. ATX-4 contains all of the advanced bipolar transistor and interconnecting elements mentioned above, which are implemented by utilizing 1- μ m lithography. ATX-4 technology is currently used to manufacture logic, directory, and cache array chips; it represents a significant advance in speed and density over the previous ATX-1 technology.

Transistor structure and design

An ATX-4 transistor (shown schematically in **Figure 1**) can be characterized by three salient features: 1) a polysilicon base (B) contact self-aligned with the emitter opening, 2) deep-trench isolation, and 3) a polysilicon emitter (E) together with a very thin implanted intrinsic base and an optimized collector (C) doping profile. IBM has pioneered the development of these features since the 1970s [5–9]. Features 1 and 2 were used in bipolar technology for System/370[™] 3090[™] systems [10] introduced in 1989. Feature 3 is used for the first time in ATX-4.

Figure 2 illustrates the dependence of a typical emitter-coupled logic (ECL) circuit's delay on its operating power. The delay is dominated by three components [11]. The capacitance component is determined by lithography feature size tolerance and device structure. The base-push-out component, or Kirk effect [12], is a strong function of the device current density and the collector doping profile. These device features of the ATX-4 transistor have been designed to drastically reduce device delay.

• Self-aligned device structure, deep-trench isolation, and capacitance delay component

The self-alignment of the emitter opening with the polysilicon base contact greatly (by about a factor of 3 for 1- μ m designs) reduces the base-collector junction area and its associated capacitances compared with conventional non-self-aligned devices. Deep-trench isolation permits transistors to be closely packed and minimizes the collector-substrate junction capacitance. The self-aligned device structure and trench isolation are central to achieving a small device size and the small capacitance delay component of the ATX-4 transistor.

The self-aligned device structure also provides a natural decoupling of the extrinsic-base and intrinsic-base processing steps. The polysilicon extrinsic base and the sidewall insulation, which separate the extrinsic base from the emitter in a self-aligned manner, are formed first. The intrinsic base is then formed by low-energy boron implantation followed by a minimal drive-in thermal cycle; it can be made very thin, with basewidths ≤150 nm.

As implemented in ATX-4 transistors, the bottom of the deep trench is open (see Figure 1) and is filled with heavily doped, p-type polysilicon. The p+ polysilicon serves as a front-side contact to the p-type substrate. The front-side substrate contact is required because chips are mounted face-down on the package module.

• Polysilicon emitter and transit-time delay component The transit-time delay component is primarily determined by the intrinsic-base profile. In order to take advantage of the very thin intrinsic base formed by low-energy implantation, an arsenic-doped polysilicon emitter, with an emitter junction depth of 50 nm, is used in ATX-4 transistors. Since the minority hole diffusion length in the heavily doped emitter region is about 0.1– $0.2~\mu m$, the 50-nm single-crystal emitter region is transparent to the base current. It has been shown that for such shallow emitters, a polysilicon contact is essential to maintain current gain at levels necessary for circuit operation. This result is not achievable with a normal metal contact [13]. Thus, a polysilicon emitter allows shallow vertical profiles to be achieved without emitter–collector punchthrough or insufficient current gain.

 Collector design and base-push-out delay component Base push-out occurs when the collector current density is larger than can be supported by the collector doping concentration. This causes the effective electrical base width to be much larger than the physical base width (the base is pushed out) and hence degrades the device and circuit speeds because of an increase in base transit time and stored charge. In bipolar scaling [14], the collector current density increases rapidly as device size shrinks. This in turn causes the base-push-out delay component to increase rapidly. Base push-out can be minimized by reducing the collector epitaxial layer thickness and/or increasing the collector doping concentration [15]. In ATX-4 transistors, the base-push-out component is minimized by optimizing the collector profile design through a locally implanted phosphorus region under the emitter area. As a result, the intrinsic switching speed of the transistor is doubled.

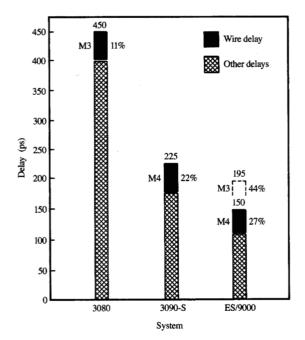
With these three transistor features, ATX-4 represents a state-of-the-art silicon bipolar transistor technology which is extendable to submicron dimensions in subsequent generations with improved lithography. The ATX-4 transistor provides a foundation for high-performance submicron silicon bipolar technology in future mainframe systems.

Lithography

All ATX-4 chips are fabricated using 1- μ m ground rules. This is a significant advance over 1.5- μ m ground rules used in ATX-1 chips. High-speed logic and array designs have a greater dependence on pattern overlay alignment to obtain maximum density and speed at a given critical dimension than on feature size. Thus, the 3σ minimum overlay tolerance for ATX-4 chips has been specified at 0.3 μ m, which is significantly tighter than the 0.4-0.5 μ m specified for most other 1- μ m VLSI applications.

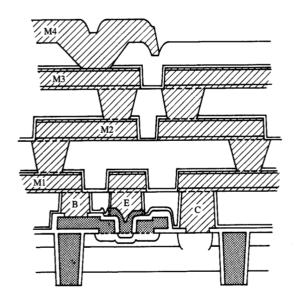
The ATX-4 chip is patterned with 5× step-and-repeat lithography tools which expose the photoresist using both the 436-nm g-line and the 405-nm h-line of the mercury emission spectrum. The tools are capable of submicron geometries and take advantage of site-by-site alignment or wafer mapping techniques to improve individual chip overlay tolerances. The planarization techniques featured

in ATX-4 coupled with tight overlay specifications require particular attention to the stepper alignment capabilities, because the planarization processes remove topography on which alignment signals are conventionally generated. To evaluate stepper capabilities and realistically predict alignment performance on real product, a series of test wafer and resist structure types was defined to optimize the tools, alignment mark structures, and process conditions [16].


In addition to an optimum alignment strategy, the ATX-4 overlay requirements led to the development of a technique for measuring the latent image created in the photoresist by exposure with either g- or h-line steppers prior to image development. Using signal processing and enhancement algorithms, a tool was designed and implemented in the manufacturing line which provides real-time measurement of overlay on product hardware and allows improved tool set-up and control practices [17]. This capability has improved product overlay alignment and throughput by 20% and has a primary role in achieving ATX-4 lithography specifications.

The ES/9000 system utilizes several hundred logic and array chip part numbers. This large set of logic part numbers, which is supported through IBM Engineering Design Systems, is manufactured using direct-write E-beam lithography for the metal interconnection levels. The EL3 E-beam tool is capable of field sizes greater than 7 mm, minimum critical dimensions of 0.8 μ m, and 3 σ overlay tolerances of less than 0.2 μ m [18]. Software was developed to allow an E-beam lithography exposure to be matched to previously exposed levels using stepper lithography and to correct for wafer and within-field distortions created by prior processing.

In summary, the lithographic strategy and design rule for the ATX-4 chips in which a state-of-the-art overlay and image size tolerance was obtained has been crucial to achieving minimum device delays and maximum wirability and circuit density.


Chip interconnections

Four-level wiring capability is a major factor in the overall performance and reliability of the ES/9000 systems. The ten meters of integrated wiring on a single 7-mm × 7-mm logic chip with 648 I/O C-4 (controlled collapse chip connection) pads should be viewed as an important extension of the total system packaging. With the large improvement in the intrinsic performance of the ATX-4 transistor, circuit delays which are due to chip wiring capacitance and resistance become more important. This is illustrated in Figure 3. For the ATX-4 logic chips, about one fourth of the on-chip delay is attributable to chip wiring. Figure 4 shows the ATX-4 transistor together with four levels of interconnecting wires. The use of four levels of wiring is key to achieving this low wiring delay. The extra wiring level has shortened the average wire length of

37.777

Relative contributions of wiring and silicon device to the on-chip propagation delay in three generations of IBM computers.

Figure

ATX-4 transistor with four-level interconnect wiring. B = base, E = emitter, C = collector.

conventional three-level-wired chips by one half. The complexity of fabricating four levels of chip wiring has also grown to the point that it now exceeds that of the silicon device and resistor. A major part of this increased complexity is due to an added emphasis on reliability and manufacturability in the four-level wiring design.

The current four-level system evolved from improvements made in the three-level metallization of IBM 3080 and 3090 systems [19] which have been retained in ATX-4 chips. These improvements are electromigration-enhanced Al-Cu and dual dielectric insulation.

Electromigration-enhanced Al-Cu

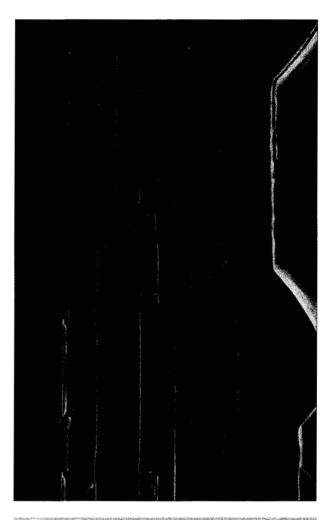
A 70× improvement in electromigration lifetime of aluminum wiring realized from adding about 4% Cu [20] was found to be less effective as lines narrowed to 1 μ m [21]. It was subsequently discovered that transition metal layers such as Hf, Ti, or Cr, which react with Al to form aluminide intermetallic compounds, improve the lifetime of narrow AlCu lines by as much as two orders of magnitude [21]. This innovation was first used in 3090 system threelevel chips as a second-level AlCu-Hf-AlCu film and was included in later four-level devices. The latest four-level structures use an inverted Ti-AlCu-Ti sandwich structure. This structure is equivalent in electromigration resistance to a Hf sandwich but appears to be more immune to void formation under conditions which create thermal-stressinduced voids. This allows current density design limits to be raised as high as 500 000 A/cm² without increasing electromigration wear-out failure rates.

Dual dielectric insulation

Early 3080 system product showed that a principal weakness in three-level wiring was that interlevel oxide shorts developed with time. This phenomenon was attributed to pinhole defects and embedded conductive particles in the SiO₂ film which caused the dielectric to deteriorate under stress. This problem was minimized by overlaying the rf-sputtered SiO₂ film of the interlayer dielectric with a 250-nm layer of plasma-enhanced chemically vapor-deposited (PECVD) SiN to form a much more reliable dielectric layer [22].

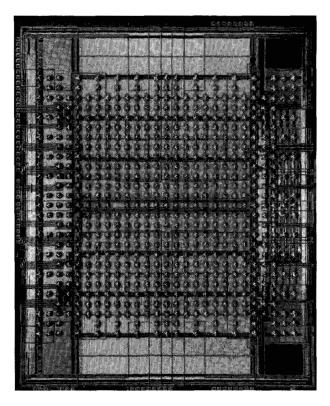
Four-level metal interconnections were developed to obtain greater integrated circuit productivity per wafer, improve wirability, and reduce wire length. Analysis of three-level logic chips showed that only about 30% of the surface of a chip was active logic cell area; the rest was simply a "wiring platform." If the logic cells could be brought together into close proximity, or "brickwalled," and vertical wires (studs) could be used to bring intercell wiring to the second and third levels, the chip circuit density could be significantly increased [23].

The development of successful four-level-metal fabrication progressed with advances in processing in three


evolutionary stages. Each stage incorporated vertical, interlevel metal studs with small cross-sectional areas instead of conventional tapered vias. Each wiring level was planarized to allow the same pitch wiring at each of the first three levels instead of the normal practice of relaxing wiring pitch at each subsequent level because of increased topography. The processing changes which evolved at each stage were 1) etch-back planarization with photoresist; 2) chem-mech polishing planarization; 3) damascene studs.

Etch-back planarization with photoresist Studs were initially formed by lift-off, which has been the predominant IBM thin-film-line fabrication technique since the mid-1970s. The planarization of dielectric layers was achieved by first leveling the topography created by sputtering SiO₂ over studded lines with multiple layers of photoresist. The combination of the planarized photoresist and buried SiO₂ was then etched back with appropriate RIE gases which remove both materials at approximately equal rates. The photoresist, a sacrificial layer, was totally removed. The remaining SiO₂ and Al studs were planarized. A PECVD SiN film was deposited to form a dual dielectric layer, and shallow vias were etched through this layer to the deepest studs.

Using this methodology, the first IBM four-level-metal chips were successfully fabricated and shipped to numerous internal customers for the AS/ $400^{\$}$, DASD, and other applications. The chips had as many as 12 000 bipolar circuits on a 7-mm \times 7-mm chip, and as many as 762 C-4 solder connections [22].


Chem-mech polishing planarization A low-cost chem-mech polishing technique [24] was then developed which provided greater planarity. It combined chemical and abrasive polishing to level the dielectric layer and expose the studs [25]. Contact-level studs were concurrently introduced to planarize the silicon masterslice topography. This permitted the finest wiring pitches to be used for "book" or intracell first-level wiring. This methodology was used for fabricating the four-level-metal logic chips for the 3090 system during the late 1980s.

Damascene studs The third step in the evolution of the current four-level-metal process was to invert the stud fabrication technique. It involved etching stud holes in a deposited dielectric film, polishing the film to the proper interlevel thickness, and then filling the holes with metal [22]. Excess metal was polished away to make the top of the metal stud flush with the insulator. We have referred to this method as the "damascene stud" method because of its strong similarity to the damascene jewelry-patterning technique. The previously described system, or studs-up polishing method, is the analog to a "cloisonné" jewelry-patterning technique.

Metallographic cross section of four-level wiring on an ATX-4 chip, illustrating damascene studs and chem-mech planarization.

The principal advantages of damascene stud fabrication are that the shallow via topography etched in SiN is avoided, the manufacturing hazards of bending or breaking the fine lift-off studs are absent, and the full cross-sectional area at the exposed tip of the studs is retained, minimizing resistance and increasing yield and reliability. To implement this stud-fabrication technique, RIE processes were required to make stud holes that were different in area and depth. Then, a deposition process was needed to fill these holes with metal. A repetitive deposition/rf etching or "dep-etch" hole-fill sequence was developed that satisfied these requirements [26]. A metallographic cross section of ATX-4 chip wiring is shown in Figure 5. This damascene stud processing is used for manufacturing ATX-4 logic and array chips used in ES/9000 systems.

Emma 6

Photograph of a 64KB SRAM array chip with more than 600 C-4 pads.

With continuing improvement and modification, this processing should be extendable into the submicron era of the 90s.

I/O terminal connection system

Connecting a chip to the package is accomplished with a C-4 solder bump array [27]. According to Rent's rule, additional I/O terminations are required for more random logic circuits [28]. The number of C-4 solder bump arrays has increased from 11×11 in the 3080 system, to 17×17 in the 3090 system, and to 27×27 in ES/9000 systems. As many as 648 pads are used in the ATX-4 chip set. Solder bumps 4 mils in diameter are located on 9-mil centers. The mating substrate may be multilayer alumina in the lowend machines of System/390® or the newly introduced multilayer glass-ceramic material at the high end. The glass-ceramic material [29] was purposely designed to match the thermal expansivity of silicon. Therefore, many of the previous constraints on chip size which were driven by the thermal cycle fatigue capability of the solder bumps no longer exist, and chip sizes for the future become essentially unbounded on this substrate material. Figure 6 shows a 64Kb SRAM array chip with C-4 pads.

Concluding remarks

The ATX-4 technology integrates advances in both transistor and interconnection design and processing and provides a high-reliability, high-performance bipolar engine for the ES/9000 systems. The ATX-4-based product set includes bipolar logic chips with circuit densities nearly five times those of ATX-1. Logic speed has been enhanced to 150 picoseconds in loaded circuits. Both differential current switch (DCS) and ECL circuits are available on the same ATX-4 logic chip, which allows considerable speed/power flexibility in optimizing circuit functionality. High-speed memory arrays were developed in the ATX-4 technology with densities up to 64 000 bits and a nominal access time of 2.5 ns. Direct attachment of chips to airand water-cooled modules is accomplished by extending IBM C-4 interconnection solder technology, which has more than 600 solder connections available on each chip.

It is expected that the ATX-4 technology, with incremental improvements, will provide a sound basis for meeting the needs of high-end computing systems throughout the next decade.

Enterprise System/9000, ES/9000, System/370, and 3090 are trademarks, and AS/400 and System/390 are registered trademarks, of International Business Machines Corporation.

References

- D. D. Tang, P. M. Solomon, T. H. Ning, R. D. Isaac, and R. E. Burger, "1.25 μm Deep-Groove-Isolated Self-Aligned Bipolar Circuits," *IEEE J. Solid-State Circuits* SC-17, 925-931 (1982).
- K. Ueno, H. Goto, É. Sugiyama, and H. Tsunoi, "A Sub-40 ps ECL Circuit at a Switching Current of 1.28 mA," IEDM Tech. Digest, pp. 371-374 (1987).
- M. Sugiyama, H. Takemura, C. Ogawa, T. Tashiro, T. Morikawa, and M. Nakamae, "A 40GHz fr Si Bipolar Transistor LSI Technology," *IEDM Tech. Digest*, pp. 221–224 (1989).
- T. A. Bartush, "A Four-Level Wiring Process for Semiconductor Chips," Proceedings of the Fourth IEEE Multilevel Interconnection Conference, 1987, p. 41.
- T. H. Ning and H. N. Yu, "Utilizing Polysilicon Diffusion Sources and Special Masking Techniques," U.S. Patent 4,157,269, June 5, 1979.
- N. G. Anantha, H. S. Bhatia, and J. L. Walsh, "High Performance Bipolar Device and Method for Making Same," U.S. Patent 4,160,991, July 10, 1979.
- J. A. Bondur and H. B. Pogge, "Method for Forming Isolated Regions of Silicon Utilizing Reactive Ion Etching," U.S. Patent 4,104,086, August 1, 1978.
- 8. T. H. Ning, R. D. Isaac, P. M. Solomon, D. D. Tang, and H. N. Yu, "Self-Aligned NPN Bipolar Transistors," *IEDM Tech. Digest*, pp. 823–824 (1980).
- D. D. Tang, K. P. MacWilliams, and P. M. Solomon, "Effects of Collector Epitaxial Layer on the Switching Speed of High-Performance Bipolar Transistors," *IEEE Electron Device Lett.* EDL-4, 17 (1983).
- Y. H. Chan, J. L. Brown, R. H. Nijhuis, C. R. Rivadeneira, and J. R. Struk, "A 3ns 32K Bipolar RAM," Proceedings of the 1986 IEEE International Solid-State Circuits Conference, pp. 210–211.
- D. D. Tang and P. M. Solomon, "Bipolar Transistor Design for Optimized Power-Delay Logic Circuits," *IEEE J. Solid-State Circuits* SC-14, 679-684 (1979).

- 12. C. T. Kirk, "A Theory of Transistor Cutoff Frequency Fall-Off at High Current Density," *IRE Trans. Electron Devices* **ED-9**, 164 (1962).
- T. H. Ning and R. D. Isaac, "Effect of Emitter Contact on Current Gain of Silicon Bipolar Devices," *IEEE Trans. Electron Devices* ED-27, 2051–2055 (1980).
- 14. P. M. Solomon and D. D. Tang, "Bipolar Circuit Scaling," *Proceedings of the 1979 IEEE Solid-State Circuits Conference*, pp. 86–87.
- H. Goto, Y. Nagase, T. Takadam, A. Tahara, and Y. Momma, "Analysis of Highly-Doped Collector Transistors by Using Two-Dimensional Process/Device Simulation and Its Application in ECL Circuits," *IEEE Trans. Electron Devices* 38, 1840–1844 (1991).
- J. D. Buckley, "An Advanced H-Line Stepper," Solid State Technol. 30, 7 (1987).
- W. D. Hopewell, J. C. Shaw, T. G. Van Kessel, and R. R. Jackson, "Latent-Image Based In-Situ Closed-Loop Control of Lithography Tools," U.S. Patent filed March 2, 1990.
- 18. H. C. Pfeiffer, T. R. Groves, and T. H. Newman, "High-Throughput, High-Resolution Electron Beam Lithography," *IBM J. Res. Develop.* 32, 494-501 (1988).
- L. J. Fried, J. Havas, J. S. Lechaton, J. S. Logan,
 G. Paal, and P. A. Totta, "A VLSI Bipolar Metallization
 Design with Three-Level Wiring and Area Array Solder
 Connections," IBM J. Res. Develop. 26, 362-371 (1982).
- I. Ames, F. M. d'Heurle, and R. E. Horstmann, "Reduction of Electromigration in Aluminum Films by Copper Doping," *IBM J. Res. Develop.* 14, 461 (1970).
 P. S. Ho, J. K. Howard, and J. F. White, "Intermetallic
- P. S. Ho, J. K. Howard, and J. F. White, "Intermetallic Compounds of Al and Transition Metals: Effect of Electromigration in 1–2μm-Wide Lines," J. Appl. Phys. 49, 4083 (1978).
- G. S. Gati, A. P. Lee, G. C. Schwartz, and C. L. Standley, "Composite Insulator Structure," U.S. Patent 4,601,939, July 22, 1986.
- S. Brenner, T. A. Bartush, D. J. Swietek, D. C. Banker, F. J. Crispi, D. J. Delotto, D. L. Merrill, J. P. Norsworthy, M.-N. Shen, and C. D. Waggoner, Proceedings of the 1983 IEEE International Solid-State Circuits Conference, p. 152.
- K. Beyer, W. Guthrie, S. Makarewicz, E. Mendel,
 W. Patrick, K. Perry, W. Pliskin, J. Riseman, P. Schaible,
 and C. Standley, "Chem-Mech Polishing Method for
 Producing Coplanar Metal/Insulator Films on a
 Substrate," U.S. Patent 4,944,836, July 31, 1990.
- W. L. Guthrie, W. J. Patrick, E. Levine, H. C. Jones, E. A. Mehter, T. F. Houghton, G. T. Chiu, and M. A. Fury, "A Four-Level VLSI Bipolar Metallization Design with Chemical-Mechanical Planarization," *IBM J. Res.* Develop. 36, 845-857 (1992, this issue).
- H. P. Bader and M. A. Lardon, "A New Metallization Technique for Very Large Scale Integrated Structures: Experiments and Computer Simulation," J. Vac. Sci. Technol. B 4, 833 (1986).
- L. S. Goldmann and P. A. Totta, "Area Array Solder Interconnections for VLSI," Solid State Technol. 26, 91 (1983).
- Microelectronics Packaging Handbook, R. R. Tummala and E. J. Rymaszewski, Eds., Van Nostrand Reinhold, New York, 1989.
- R. R. Tummala, A. H. Kumar, and P. W. McMillan, "Glass Ceramic Structures and Sintered Multilayer Substrates Thereof with Circuit Patterns of Gold, Silver or Copper," U.S. Patent 4,301,324, 1981.

Received April 8, 1992; accepted for publication June 10, 1992

Karen H. Brown IBM Technology Products, East Fishkill facility, Hopewell Junction, New York 12533 (BROWNKH at FSHVMCC). Ms. Brown received her Ph.D. in chemistry from the University of Rochester, New York. She joined IBM as a Postdoctoral Fellow in 1977, and became involved in process development and tool and process control as a research staff member and then as manager of the Josephson development line at IBM. In 1984 she became manager of the VLSI Development Facility in the Semiconductor Laboratory, IBM East Fishkill. She had responsibility for the development and transfer to manufacturing of one-micron and submicron technologies. In 1987 Ms. Brown was promoted to Senior Technical Staff Member for her work in advanced lithography systems and processes. Her experience includes the transfer of advanced semiconductor technologies to manufacturing as the engineering manager responsible for the introduction of new technologies and then as the manager of the Semiconductor Combined Line in East Fishkill. She returned to the Semiconductor Laboratory in 1990 as the manager of Advanced Technology Development.

Douglas A. Grose IBM Technology Products, Burlington facility, Essex Junction, Vermont 05452 (DGROSE at BTVVMOFS). Dr. Grose joined IBM in East Fishkill, New York, in 1979; he was named thin-films process engineering manager in 1981. In 1983, he became development engineering manager of bipolar logic personalization engineering. In 1984, he was named manager of semiconductor manufacturing engineering. He was named technical assistant to the president of the General Technology Division in Harrison, New York, in 1985, and returned to East Fishkill the following year as manager of high-performance technology. In 1986, he became manager of the combined semiconductor lines. Dr. Grose was named East Fishkill semiconductor plant manager in 1989 and became the East Fishkill semiconductor laboratory director a year later. He became Burlington assistant site general manager in April 1991, Burlington assistant site general manager-development in September 1991, and director of process development and senior location manager in February 1992. He assumed his current position in August 1992. Dr. Grose received bachelor's, master's, and doctorate degrees in engineering and a master's degree in business administration from Rensselaer Polytechnic Institute.

Russell C. Lange IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (RCL at YKTVMV). Mr. Lange is an IBM Fellow and director of the Manufacturing Research Department. He joined IBM in Burlington, Vermont, in 1970 after receiving a bachelor's degree in physics from Rensselaer Polytechnic Institute. He has held various management positions in the General Technology Division in both Burlington and East Fishkill. From 1983 to 1989 he was manager of advanced semiconductor technology, with responsibility for high-performance bipolar logic and array technology. While carrying out this assignment, he was responsible for establishing a joint program between East Fishkill and the Research Division for developing the technology base for bipolar array and logic technologies for the 1990s. In 1989, Mr. Lange became an IBM Fellow, moving to the Research Division to become director of the Advanced Silicon Technology Laboratory at the Thomas J. Watson Research Center. The following year he became director of Manufacturing Research. Mr. Lange is active in the Institute of Electrical and Electronics Engineers and is a founding member of the Bipolar Circuit and Technology Meeting of

Tak H. Ning IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (NING at YKTVMV, ning@watson.ibm.com). Dr. Ning joined the IBM Research Division at the Thomas J. Watson Research Center in 1973 as a research staff member. He became manager of exploratory bipolar devices and circuits in 1978. In 1982 he became manager of silicon devices and technology, and manager of the Research part of the Advanced Silicon Technology Laboratory (ASTL). In 1989 he was named manager of VLSI design and technology. He was appointed an IBM Fellow in 1991. Dr. Ning holds a B.A. degree from Reed College and a Ph.D. degree from the University of Illinois, both in physics. He has received several IBM Outstanding Innovation or Outstanding Contribution Awards, and has authored or co-authored 13 U.S. patents and more than 70 technical papers. He is a member of Phi Beta Kappa, Sigma Xi, and the American Physical Society, a Fellow of the Institute of Electrical and Electronics Engineers, and a past associate editor of the IEEE Transactions on Electron Devices. He received the 1989 IEEE Electron Device Society J. J. Ebers Award, and the 1991 IEEE Jack A. Morton Award.

Paul A. Totta IBM Technology Products, East Fishkill facility, Hopewell Junction, New York 12533 (TOTTA at FSHVMX, totta@fshvmx.vnet.ibm.com). Mr. Totta is an IBM Fellow at the Technology Products East Fishkill site. Before his appointment in 1987 he was project manager of interconnection technology in the laboratory for many years. He is currently a technical assistant to the director of the Semiconductor Research and Development Center. He has been responsible for the development of multilevel thin-film wiring and dielectrics on the surface of semiconductor devices, including ohmic and Schottky contacts, packaging materials and processes, and chip solder bump connections. His areas of expertise are thin-film metal and insulator technology for electronic devices, metallurgy of joining, physical metallurgy of corrosion, and magnetic materials. Mr. Totta is a metallurgical engineer by training, and a graduate of Rensselaer Polytechnic Institute. He is a member of Tau Beta Pi, Phi Lambda Upsilon, and Sigma Xi. Recently he was elected a Fellow of ASM International. In his IBM career he has achieved the ninth invention plateau and has received several outstanding contribution and invention awards. He also received a recognition award from ISHM for his development of solder bump metallurgy and thin-film interconnections.