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errors early in the development cycle is

critical to timely availability of market-driven
processor products. This paper describes the
part played by simulation in the verification of
the high-end modeis of the IBM Enterprise
System/9000™ (ES/9000™) processor family,
and how that effort advanced the state of the
art of fogic design simulation. The increased
complexity of the ES/9000 design over that of
the IBM Enterprise System/3090™ (ES/3090™)
necessitated a larger simulation effort. New
tools and methods were developed. Two
simulation missions were established. Element
simulation addressed ES/9000 functional
elements (e.g., the storage controller)
individually using the Complled Enhanced
Functional Simulator (CEFS), a software tool.
System simulation tested two or more
functional elements together using the
Engineering Verification Engine (EVE), a
special-purpose hardware parallel processor,
and an attached IBM 3092 Processor Controller
(PCE). The results achieved by simulation are
discussed, together with the methods used
and the impact these results had on the overall
verification of the ES/9000 Models 820 and 900.

It has been documented [1-3] that the cost of uncovering
hardware design errors is high when working with custom
VLSI circuits. Engineering changes are costly in terms of
time and engineering effort. Hardware design errors often
prevent complete testing of a function, which may delay
the discovery of additional errors. All of these factors bear
directly on the profitability of a product. The potential
revenue and market advantage lost because of a long
engineering test-floor effort is very large in today’s
increasingly competitive mainframe marketplace.

During the early planning stages of the IBM Enterprise
System/9000™ (ES/9000™) processors, it was concluded
that more errors had to be removed from the design before
hardware was built. Simulation of logic design prior to its
fabrication in hardware had played an important part in
the verification of earlier machines. However, as then
practiced, it would provide neither adequate nor
expeditious verification of the ES/9000 machine
architecture and its implementation. Its scope had to be
increased. This paper discusses the part played by
simulation in achieving this for the high-end processor
models 820 and 900.

Two simulation missions were established: element
simulation and system simulation. Each major functional
element of the central processor complex, or CPC (central
processor, storage controller, I/O subsystem, and
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channels) would be simulated as a standalone entity in
order to remove as many errors as possible. This was
known as element simulation.

Once element simulation was completed, a full system
simulation was then performed. System simulation was to
execute in simulation the earliest tests performed on the
engineering test floor after a machine was assembled and
powered on. These tests consisted of power-on reset,
certain manual operations, and the loading and execution
of various operating systems, beginning with the systems

assurance kernel (SAK), an internal IBM system exerciser.

System simulation built system-level models combining the
functional elements. It exercised these models on the
Engineering Verification Engine (EVE) using SAK to
discover system interaction design errors.

This paper is divided into two major sections discussing
the two simulation missions, the simulation methods each
used, and the testing performed. It concludes with a
discussion of the results of simulation and their impact on
the verification of the ES/9000 system.

Element simulation

Element simulation was responsible for verification at the
board or card level of the following functional elements:
central processor (CP), storage controller element (SCE),
intercommunication element (ICE), and channel (CHE).
The goal was the removal of at least 90% of the functional
design errors. This number was chosen on the basis of the
history of earlier simulation projects as well as the benefit
of improved simulator performance and techniques.
Furthermore, it was recognized early in the project that
some areas of the design would be more efficiently verified
at the system simulation level (e.g., multiprocessor design,
1/0); thus, it would not be practical to find all errors at the
element level.

Test design and definition

Once the hardware design had been reviewed for
functional content and its availability date for simulation
established, test design and definition began. A typical
sequence for this part of the simulation process included
the following:

& Deciding the source and type of stimuli needed for the
test. In some cases, for example, a high activity level of
a relatively random nature was required. This was
provided by ‘‘behavioral macro’ representations of
interfacing logic external to the element under test. The
macros were written in Basic Design Language for Cycle
Simulation (BDL/CS) and built into the simulation
model. They were driven by pseudorandom test vectors
contained in control files. In other cases, unique and
discrete events were most appropriate, and deterministic
test cases were written.
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& Deciding the environment in which the tests would be
run. One key factor of the test environment was the
model configuration. This could vary from a model with
the maximum number of functional entities that could be
interconnected to a model in which nearly half of the
hardware was represented by functional macros. In the
latter case, the computing resources required and the
simulation run times were substantially less than in the
former.

& Deciding the method of checking for correctness of
function. This was closely related to individual test
design, since it required knowing how the hardware
design was supposed to work. As the number of
individual tests increased, it became obvious that
checking had to be done with no manual intervention.
This meant that any test had to report pass or fail status,
with the latter accompanied by supporting data of the
test owner’s choice. The self-checking test methodology
also enhanced the regression-testing capability described
later.

An important part of test design was the use of
randomness in test cases and test drivers. This was an area
of significant enhancement over past simulation efforts.
Previously element simulation ended with the successful
execution of manually written static tests. The random
effect was built into several areas: the initialization of the
model, the test itself, and the responses by other elements
{e.g., behavioral macros) during the simulation. Tests were
random in that no simple relationships existed between
successive test vectors. However, the test vector sequence
needed to be reproducible so that data could be collected
when a design error was encountered, and to verify design
fixes. For performance reasons simulation normally ran
without full data collection. ‘“Seeds’” were used to initiate
a given “‘random” series.

Environment
The Compiled Enhanced Functional Simulator (CEFS), an
internal IBM software simulator running under Virtual
Machine/Extended Architecture™ (VM/XA™), was chosen
as the platform for element simulation. It offered high
performance, flexible application interfaces, and very fast
model compilation. The last was extremely important
during the early stages of the design when changes
occurred often.

The simulation was performed at a functional level, from
a register transfer description of the design. The simulation
models represented designs of 500 000 to 2 000 000 circuits.
Typical test cases would run many thousands of logic
cycles.

To limit the size of models and to increase performance,
other elements in the system which interface with the
element under test were implemented as behavioral macros

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

(s s



(i.e., scaffolded logic). For example, in SCE element
simulation, the CPs were not included in the model, but
rather CP macros, which behaved externally like a CP.
This approach had several advantages:

o The macros could provide stress not normally achievable
by the real element.

* The macros could be enhanced to provide logic not
normally in the real element—for example, special
recovery injection controls.

& Element simulation of one element was never gated by
the design of another element.

® Macros could provide global system effects, such as
multiprocessor support, so that these environments could
be tested even in a single-element model.

Several different test drivers and test case languages
were used in element simulation:

» Architectural verification programs (AVPs), which are
manually written test sequences to verify a specific
instruction (or combination of instructions) in a CP or
I/O processor.

& Macros, as described above, used extensively as test
drivers to provide random stimulus to the logic under
test.

& Dynamic test language (DTL), which allows one to write

low-level tests to alter any register or signal (facilities) in

the model, clock the model, and expect certain values in
facilities. This was useful in testing certain ““non-
mainline” functions, which were not easily testable by

AVPs or macros.

High-level languages, used to write programs interfacing

with CEFS to set and extract facility values, clock the

model, etc. These programs thus served as test drivers
and performed complicated initialization and monitoring
functions.

* SAK, an IBM internal operating system devoted
exclusively to testing IBM large-system architectures,
which provides random streams of instructions tailored
to stress certain aspects of the Enterprise Systems
Architecture/390™ (ESA/390™) architecture. It is
described in more detail in the section on SAK-driven
simulation.

System functions

All of the element-simulation efforts included testing
system-wide functions. Historically, many of these
functions were not tested until a real machine was built.
They included the following:

Architected resets  The operations performed by the

processor controller element (PCE) for each of the
architected resets [4] were emulated, and mainline tests
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were run afterward to verify that the element had reset
properly.

Recovery  During mainline tests, faults were injected into
the model in either a controlled or pseudorandom manner.
The recovery algorithms implemented by the PCE were
emulated, and for recoverable errors, the tests were
expected to complete as normal.

Degrade modes Many elements have portions of logic
which can be disabled for recovery or test purposes.
Examples include deleted lines in a cache, disabling the
branch history table (BHT), and isolating, or “‘fencing,”
one element from another. These degrade modes were
verified in element simulation.

Operator controls  Examples of these include architected
functions such as START, STOP, and Address Compare.
Again, mainline tests were simulated as the function was
exercised.

Measurements

To measure the progress and completeness of the
simulation effort, several elements were monitored.
Continuous tracking was done of the percentage of tests
successfully completed on a line-item basis, as well as
actual versus projected errors discovered. Key events in
the model (e.g., queue-full conditions, interlocks) were
monitored to make sure that the events of interest to
designers were being stressed. Finally, simulation was
periodically run in a special trace mode, whereby paths
through the logic were tagged to discover those not being
exercised. In a joint effort with the designers, this
information was used to develop new tests.

Model checkingfintegrity

All element-simulation tests included automatic results
checking, which provided operator-free testing and allowed
extensive use of batch execution. This consisted of
checking architected results and data integrity, and
monitoring error checkers and hang detectors.

Results
Element simulation was extremely effective. The number
of logic design errors detected ranged from about 87% in
the CP to 95% in the SCE and ICE, and 97% in the CHE.
Interface timing discrepancies, protocol errors, and
differences of architecture interpretation were among the
types of errors discovered. Since real Licensed Internal
Code (LIC) was used, many errors were removed from it
as well.

All elements realized improvements in random
methodology and techniques for verifying system
functions. This was the first extensive use of simulation for 753
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channels. It was also the first time that SAK was run in an
element simulation environment.

Improvements to simulation tools were generalized to
aid the entire CEFS simulation community. Among these
were an event-driven cycle dump providing English
phrases for specific events and functions that occurred in
addition to model values, an event-driven error injector,
and statistical analysis programs to determine function
coverage and path analysis.

The following sections provide some more detail about
the individual element simulation efforts.

o CP element simulation

The CP model consisted of the CP board comprising four
TCMs: buffer control element (BCE), instruction fetch
element (IFE), instruction execution element (IXE), and
system execution element (SXE). To allow independent
testing of the CP, a macro was created for the SCE.
Macros were also created to provide signals for the timing
facilities (including the external time reference), and to be
able to handle some 1/O requests and interrupts. The
structure of the CP model is shown in Figure 1. The CP
LIC was included as part of the model, and was exercised
as needed to test the hardware design (verification of the
LIC itself was the responsibility of the LIC development

group).

Test drivers

To test at the instruction level, three major test vehicles
were used: AVPs, random AVPs, and SAK. The test
library of AVPs has been developed over many years, and
had in the past been run on the engineering models of a
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new machine. This test library was enhanced for ESA/390
to include all of the new architecture items. Historically,
the role of CP element simulation was completed with the
successful execution of the AVP test library. Given the
complexity of the ES/9000 CP, much more verification was
needed.

Random AVPs are program-generated random streams
of instructions with initial states and expected results.
Because the expected results are gencrated by actually
running the test stream on an ES/3090 machine, new
ESA/390 architecture could not be included in the stream.
These tests stressed machine design features as opposed to
architecture, which is the domain of the normal AVPs and
SAK. Some of the machine features of interest included

¢ Branch resolution and the branch history table (BHT).

& Out-of-sequence execution.

» Buffer control element (BCE) cache and dynamic
lookaside table (DLAT) organization.

® General-purpose (GPR) and floating-point (FPR) register
management.

o Storing into the instruction stream.

To test these features, program ““generators’ were written
to produce random streams of instructions which were
tailored for a particular scenario. For example, a branch
test case could be generated which would have one or
more of about 20 different types of branch loops, branch
index tables, sequences of conditional branches, etc. These
generators turned out to be extremely powerful.

All of the SAK drivers were run in CP element
simulation except those stressing I/0O and expanded store,
since those areas were not completely modeled in the
macros.

Stress environments

All of the types of tests mentioned above were simulated
in environments which attempted to place additional stress
on the model. These included the following:

¢ The BCE instruction and data caches were initialized
randomly (or fully) with the instructions/data in the test.
In addition, the data cache lines could be optionally
loaded into the ““synonym” classes of the cache. When
the caches were preloaded in this manner, the timing
effects of various cache states would appear very
quickly. The DLATSs had the same initialization
capability.

o The BHT was preloaded either with random data or with
known branch information from the test case.

¢ The GPR and FPR register management controls were
randomly initialized so that different array positions were
used to hold the architected registers each time a test
was run.
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¢ The rate at which the SCE responded to the BCE for
fetches and stores was randomly varied, and the effects
of slowing down or speeding up the SCE could easily
be seen.

o The SCE macro was programmed to randomly send
cache line invalidates, invalidates for page table entries,
and storage key changes to the BCE, simulating
multiprocessor effects.

© A program was written to inject 1/O, external, or
machine check interrupts at random points in the
simulation of an instruction stream. The program would
determine whether the interrupt should be taken, and if
it should, would establish an interrupt handler to force
the instruction address back into the test case so that the
normal expected results would occur.

o SCE element simulation

The storage controller element (SCE) contains a high-
speed buffer and the main storage arrays. It consists of
data paths, arrays, and control logic. The SCE services
data requests to and from the CPs, ICEs, and PCE, and
must ensure that all data passed to other elements are not
corrupted. The maintenance of data integrity was the main
thrust of the SCE testing.

SCE element simulation was performed using two
different CEFS test case drivers. The first comprised hard-
coded test cases written in dynamic test language (DTL).
The second was the use of a set of random drivers
(macros) surrounding the SCE. This method was the
primary test vehicle for the SCE.

Random SCE driver

The SCE interfaces with up to six CPs, one or two ICEs,
and the PCE. All three can generate commands (e.g.,
store) to the SCE asynchronously. The random drivers and
a control program were designed to send out randomly
chosen commands at any time.

The drivers and control program had specific tasks.
The basic responsibilities of the drivers were to send
commands to be serviced by the SCE, to respond to
commands passed on by the SCE, and to validate
command responses and protocol. The largest tasks of
the control program were to check data integrity on all
interfaces and verify that the SCE adhered to architectural
restrictions. The random drivers were built into the
simulation model. The control program was a user-
provided extension to CEFS.

If the drivers or control program detected unexpected
results at any point during the run, the test case failed
immediately. Debugging a failing test case was
accomplished by using the control program output file.
This file supplied a full account of all the commands,
responses, and important SCE internal events that
occurred during the failing test case. The output file also
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supplied specifics about the failure by explicitly stating
which component (CP driver, ICE driver, PCE driver,

or control program) flagged the error and what the error
was. If the error was a data miscompare, the output file
contained the actual versus the expected data. If the error
was a response miscompare, the output file flagged the
failing command and driver that detected the miscompare.

The CP, ICE, and PCE drivers used the following
methods to choose commands. A different random number
was generated each simulation cycle for each driver. The
random number was then used to select a command to
send across the interface to the SCE. A probability table
for the commands, initialized at the start of the test case,
was used to index the random number to a specific
command. This initial probability table was varied from
test case to test case. Once a command was picked, the
driver decided whether or not the SCE could handle the
selected command by monitoring the available lines on the
SCE interface. If the interface indicated that the command
could be sent, the driver began the sequence of sending
the command. Otherwise, no command was sent to the
SCE during that cycle. The probability tables also
contained a no-op command, which, when chosen by the
driver, sent no command across the interface on that
cycle.

At the same time that the driver decided to send a
command, a store or fetch address had to be requested if
the command type indicated a memory access (there are
control commands, such as SIGNAL operations, which do
not access memory). In order for the memory controls to
be verified, a small set of memory addresses was used by
the drivers so that the probability of overlapping memory
requests to the same address was increased. A set of 64
line addresses (128 bytes per line) was the maximum
storage setup used. The line addresses were randomly
picked at the start of each test case and were used
throughout the test case. Whenever a driver requested a
storage address, one of these lines was randomly chosen.
Use of the limited address space allowed the test case to
stress the exclusivity of the lines. At the same time, the
small number of addresses ensured that if the SCE
incorrectly stored data during a test case, a fetch command
to that same address would likely follow, and the bad data
would be flagged by the control program as the data
crossed the interface back to the requesting driver. The
random storage setup at initialization was performed by
the control program. As the program picked addresses, it
initialized the SCE main memory array with random data
at the selected address and stored the same data in the
program copy of the memory. Throughout the test case,
the program would update its own copy of the address
space whenever a driver sent a storage update in order to
check data integrity. As a result, whenever a driver sent a

storage fetch request, the SCE data were checked against 755
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Structure of the intercommunication element.

being tested).

the program copy of the data as the data returned to the
requesting driver. Any miscompare caused the test case to
fail.

After the SCE processed a driver command, a response
was returned. It was the responsibility of the drivers to
validate the SCE response. Unsuccessful responses were
expected in many cases, such as when the requested
address was currently locked out by another driver. Other
examples of expected unsuccessful responses were when a
driver, for testing purposes, generated an illegal sequence
of commands, generated bad parity on an interface, or
used an unconfigured address in its request. If the driver
expected a different response from that which the SCE
returned, an error was flagged and the test case failed.

Hang detects were implemented in the CP drivers to
ensure that no commands were lost or overly delayed by
the SCE. For a test case to be successful, every command
sent by a driver had to be completed by the SCE within
the hang detect interval.

A typical successful test case had about 150 requests
from each CP driver, 150 requests from each ICE driver,
and up to 10 PCE requests. Thus, a fully configured
simulation model executed over 1200 SCE requests per
test case. Over 200 000 000 random memory requests were
sent and checked for proper execution. However, since
these memory requests occurred in different SCE states
because of the randomness of the test case, they exercised
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Boxes indicate
hardware; circles indicate macros; dashed boxes indicate parts
that could be either hardware or macros (depending on what was

the SCE in different ways. As a result, thousands of
memory states were tested.

® ICE element simulation
The intercommunication element (ICE) consists of four
discrete interacting parts:

¢ Channel request handler (CRH)—a multiplexing switch
for handling requests to and from the channels (CHE).

¢ System bus controller (SBC)—a crosspoint switch with
an expanded storage controller (ESC) by which the
ICE controls the expanded storage arrays (ESA),
and communicates with the SCE and thereby with
the CPs.

o Integrated off-load processor (IOP)—an interrupt-driven
RISC processor for managing 1/O operations.

¢ Multichannel! buffer (MCB)—a multiplexing switch and
buffer for communications between the IOPs, channels,
CPs, and main and expanded storages.

Figure 2 illustrates the structure of the ICE and the
communications paths between its parts.

Since each part had a character of its own, testing
addressed both the individual characteristics and the
interactions among parts. This dictated the use of macros
to functionally stress the switching and buffer entities, and
AVP test cases to test the IOP. Testing focused not only
on the complete ICE but also on its individual parts and
combinations.

IOP test

The IOP had to execute both architected and
nonarchitected instructions. The latter were required to
communicate with the CPs and the channels through the
MCB. Tests addressed both of these functions. AVP test
cases were used to test the IOP decode, execute, and put-
away mechanism.

Single-instruction AVPs  These manually written test
cases were used to test architected instructions supported
by the IOP and nonarchitected internal operations of the
IOP. They were also used to test the accessing of main
and expanded storages.

Random-instruction-stream AVPs A pseudorandom-
instruction-stream generator was used for both architected
and nonarchitected operations. These instruction streams
were used to create interference between instructions of all
types. The generator could vary the instruction streams
according to specified parameters, including

» Instruction classes, e.g., branches, rotates.

» Inclusion or exclusion of specific operations.
¢ Types of interrupts allowed.
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Judicious reselection of parameters resulted in discovering
errors when the previous set of parameters no longer
yielded new errors.

Switch/buffer test

This used the MCB, CRH, and SBC in a model with SCE,
IOP, CHE, and ESA macros, with and without a macro
for the second CRH. All macros (described below) except
the ESA acted as drivers, generating requests to the real
components in the model. The ESA was passive, servicing
store and fetch requests directed to it.

MCB test ' The MCB interfaced with all other functional
entities of the ICE. Testing it required generating requests
from all possible sources in random order to stress the
MCB.

CRH test  Since the CRH could handle requests to and
from as many as 64 channels, special attention was given
to driving it with a variety of channel configurations and

requests.

ICE macros

The macros used for ICE simulation were CHE, CRH,
ESA, IOP, paging generator, and SCE. Several were
replicated one or more times in a given model. The main
rationale for the numerous macros was to force high
coverage and high stress quickly and at a subelement level
of the model, where debugging would be easiest. All but
the ESA macro actively generated random requests under
user control (biasing) to the design. Hundreds of runs were
made, with many variations of the parameters of the driver
macros. This detected 85-90% of the mainline function
errors in the CRH/MCB/SBC complex. Checking for
correctness of responses and for data integrity was built
into all active macros. Audit trails were available for
failure analysis.

The active macros shared many characteristics, so a
detailed operating sequence is given for one of them
(CRH), while a summary of function is given for the
rest.

CRH random macro  The CRH macro was used to
represent one CRH of two attached to an MCB. It
generated requests to the MCB (reads and writes). To
cause contention in the MCB with requests from the other
(real) CRH, the macro kept up to sixteen channels running
at one time. All error checking done by the macro
occurred at the time the MCB returned the command
response to the CRH. Requests were one of three types:
MCB buffer requests, requests to storage, and requests to
the MCB channel communication area (CCA). CCA
requests competed for some of the same MCB resources
as the other two requests.
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The generation of buffer and storage requests was as
follows:

« Choose a random channel every cycle.

o If the channel selected is free and the store biasing
permits, start a new buffer store.

« Finish the store data transfer to the MCB buffer.

« Send a storage command to the MCB; when the response
returns, mark the store done and ready to be fetched.

& Use a second random channel to point to the “‘store
done’” status of another channel. If data transfer to
storage is complete, and if data are not being fetched by
any other channel, send a fetch storage command to the
MCB.

» When the fetch data return, compare them to the data
originally stored, log any errors, and mark both channels
(fetch and store) free for further use.

Channel (CHE) random macro The CHE macro stressed
the CRH by loading it with as many as 64 channels in
differing configurations. The macro was a random-biased
command generator representing sets of four to eight
channels attached to the CRH. This ensured contention
across the bidirectional bus interface with the CRH.

IOP random macro  Only about 10% of all IOP
instructions resulted in communication with the MCB.
In practice, the traffic presented to the MCB at the

IOP interface was quite low, and required additional
communication with the CPs and the channels through
LIC. The IOP macro was designed to simplify and
maximize the interaction between IOP and MCB. It
generated requests to the MCB for fetch/store activity to
main and expanded storages, and for CCA operations in
the MCB. It also could respond to interrupts from the CPs
that were forwarded by the SCE macro.

SCE macro  This macro responded primarily to requests
for fetch/store activity from/to main storage. It had the
added ability to present CP requests for work (interrupts)
to the IOP. These were generated at user-controlled
intervals, and checking was done for the IOP response to
each request.

Paging random macro  Interfacing with the SBC through
the SCE macro, the pager requested page transfers to and
from the expanded storage. Besides its use as a page
generator, this macro was useful in creating contention for
SBC resources during random runs.

ESA macro  This representation of the expanded storage
arrays received and processed requests from ICE. It was
passive in that it did not initiate requests as did all the

other macros. 757
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o Channel simulation

The channel is an engine providing a data path from the
CPC to external devices such as control units (e.g., 3990
storage control), other CPCs [via channel-to-channel (CTC)
connection], or IBM internal test devices.

Channel simulation tested the System/390% parallel and
high-speed fiber optic channels; included in this activity
were connecting different I/O devices (some modeled,
some as macros to the channel), and providing support for
other sites to integrate the channel into their simulation
environment.

Environments

The base configuration for simulation was a modeled
channel connected to a subset of the ICE, functional
macros for the IOP, CP, SCE with main storage, and a
macro for the test device (universal programmable device
emulator). The channel used real LIC, previously tested by
its developers, to provide functional operation. A variety
of channel diagnostics and specialized internal code were
also written.

Additional configurations utilized the base simulation
model augmented to include actual physical device
hardware [e.g., connection converters (9032, 9033),
directors (9034, 9035)], multiple test devices per channel,
multiple channels, and/or a CTC connection. Another
alternate mode! configuration included physical IOP
hardware, LIC, a logic support station (LSS), and a logic
support element (LSE) macro to provide a platform for
testing IOP LIC, subsystem resets, and recovery.

Test drivers

The general simulation philosophy included generated
random, self-checking, and seed-based (for reproducibility)
test cases. The main testing strategy was based on the
architected I/O instruction level utilizing the LIC for
functional operation. The random I/O tester (RIOT)
environment was established to fulfill this objective. RIOT
was designed to provide a level of test comparable to the
test-floor SAK procedures for testing the channels. RIOT
generates random test cases for each channel and device
consisting of random architected 1/O instructions (Start,
Clear, Halt, Resume, Cancel subchannel, etc.) for each
device. Then random channel command word (CCW)
programs are generated for each start subchannel
instruction. RIOT was initially designed to work with the
internal test device. When support was extended to include
other devices, it became apparent that more CCW control
was necessary. RIOT I/O device extension routines
(RIDER) was developed to accommodate restrictions on
CCW programs for any external device. RIDER provided
flexibility in tailoring CCW programs for any user-defined
device by constraining the CCW programs and status
responses. RIOT also did random configuration of the
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device emulators by randomizing several aspects such as
speed, type (byte or block for parallel), and frame sizes
(for fiber optic channels). RIOT was also responsible for
results checking, which included data integrity, architected
responses, and responses to the IOP.

Multiple site support

Since the channels connect to a wide variety of external
devices or control units, and to systems other than the
ES/9000, channel simulation supported multiple sites in
connecting the channel in their environment. This included
incorporating their hardware devices into the model
(connection converter, connection director, test devices,
etc.) or helping to include the channel in their simulation
by providing a mechanism (RIOT/RIDER) to govern the
random I/O instruction generation to specific devices, since
they may require device-specific CCW chains (3990 storage
control, CTC, etc.). This required compatibility across
operating systems (MVS and VM), support of
environments using the EVE simulator, and support

of other cross-simulator efforts.

System simulation

After each element had been simulated in the element
environment, system simulation combined the individual
elements into full-system models that were run on the
Engineering Verification Engine (EVE) system.

The overall goal of simulation was to reduce significantly
the time required by the engineering test floor to power-on
a real machine, reset that machine to a good running state,
then IPL an operating system (SAK followed by MVS and
VM) successfully. The challenge of system simulation was
to provide a machine to engineering test that could

& Successfully execute a power-on reset (POR).

& Perform initial LIC load.

& Load the SAK operating system.

& Run various SAK test case drivers error-free for at least
three minutes each.

An additional goal was to verify the tools needed by the
test floor to debug the errors it encountered.

System simulation was to remove 8% (over and above
the 90% removed by element simulation) of the total
hardware design errors prior to hardware being built. This
would leave 2% of the total to be removed on the test
floor. System simulation utilized the EVE hardware
simulator as its primary test vehicle.

EVE is a custom parallel computer that executes models
compiled from hardware descriptions written in BDL/CS [5].
EVE is channel-attached as a device to an IBM mainframe
““host” running VM/XA. The main function of the host is
to control and interact with simulation ““jobs”’ executing
on EVE. The main advantage of EVE over CEFS is higher
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cycle throughput, and this advantage increases as the size
of a model increases.

Early in the planning stages of the ES/9000 machines, it
was decided to divide the system simulation effort into two
distinct groups. The first group, known as Mainline Test,
utilized SAK test cases to verify the logical function of the
machine in a normal machine operating environment. This
test effort included architectural verification of the CP and
/O functions as well as the interaction between them in
the storage hierarchy. The second group, known as
Resets/Recovery Test, was responsible for testing the reset
functions of the machine (POR, IPL, and other types of
machine resets), error recovery, and other related manual
operations—all from a system perspective. This was
accomplished by attaching an actual processor controller
element (PCE) to the EVE simulator to exercise the
system model with the actual processor controller LIC
(PCLIC) through a pseudo-hardware interface.

SAK-driven simulation

SAK consists of a control program and a set of test
routines designed to test all aspects of the machine
architecture. The control program provides the basic
operating environment, and the test routines perform all
test case creation, expected results generation, and results
checking. On the test floor, the control program, test
routines, and test cases all execute on the system under
test. For simulation, a test case delivery mechanism was
required to allow the control and test routine overhead to
be offloaded to a host system. The SAK-driven simulation
(SDS) system was developed to provide this capability and
fully exploit the high-performance EVE simulator. By
transferring the overhead of SAK to a host system and
executing the test cases on an EVE model, this system
was able to achieve a test case throughput rate equal to
about one thousandth of that attained by SAK running on
the ES/9000 test-floor system.

In the SDS system, the control program and the test
routines run on a VM/XA host system.* Only the test
cases and a minisupervisor function run on the simulation
model. The minisupervisor dispatches test cases from a
work queue, processes test interrupts, and controls when
tests are finished and new queues of work should be
loaded. A host-resident mapper program is used to load
new test case queues into, and transfer actual test results
out of, the memory of the simulated model. A queuing
mechanism was designed to attain high EVE efficiency.
This mechanism allowed many test cases to be grouped
together into long work queues for dispatch to the model,
which greatly improved test case throughput by minimizing

*The VM/XA operating system was required so that the capabilities of the
simulated model could be matched in the test environment and exploited by the test
routines. For example, by defining multiple virtual central processors on VM/XA,
SAK was able to create multiprocessor and extended architecture test cases for the
simulated model while running on a uniprocessor host.
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the number of host-model interactions. Finally, a record
and playback function was added to guarantee the
reproducibility of simulation failures and aid in isolating
them.

The SDS system was originally put into practice by the
ES/3090 Model S system simulation group. Additional
advances were made during the ES/9000 simulation
effort to improve usability and performance. These
improvements included an automatic job submission and
control system, an automatic error isolation and trace
process (described below), an enhanced mapper program
yielding wider applicability of function and improved
performance, and the development of an associative main
memory scheme allowing large address space tests to be
run on a hardware simulator with a fixed-memory modeling
capability.

Debugging techniques

Aggressive verification schedules coupled with the number
of errors projected to be found during system simulation
made it essential to develop techniques to reduce the

time required to isolate and debug errors. Early experience
with SDS had shown that it was very difficult and
unproductive to isolate and debug simulation failures
because of the limited model trace capability of EVE.

The CEFS software simulator, although much slower than
its hardware counterpart, possesses a very powerful

trace facility. The solution was to couple the EVE and
CEFS simulators into a complete automated simulation
process:

e The user submits a SAK test run to the EVE simulation
system.

e SAK test cases are simulated on the model while SAK
performs test creation, results generation, and checking
of prior tests.

e Test case progression is tracked through the system and

all SAK-model stimuli are recorded.

At user-selected intervals (because of the large volume

of data) the state of the model is saved. This saved

model state is called a checkpoint.

¢ A model error is detected by SAK.

The control software isolates the model failure to the last

recorded checkpoint preceding the load of the failing test

case.

e The model is reset to this model state.

The recorded stimuli are “‘replayed” to the model up to

the start of the failing test case.

¢ At this point a new checkpoint is obtained and

simulation is terminated.

This new model state and the recorded stimuli are then

transported to CEFS.

A complete all-events trace is obtained on CEFS and

returned to the user for analysis.
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In practice, this process proved to be superior to previous
techniques used on EVE, and reduced the time to isolate
and debug a model failure from days to hours. The
improved problem-turnaround time lessened the discovery
of duplicate errors, thereby freeing up valuable human and
simulation resources.

Processor controller-EVE attachment

Early debugging of the error recovery and reset functions
in simulation required that the PCE be “attached” to the
simulated machine model. This was accomplished by
physically connecting an actual PCE to the EVE. This
involved changes to the PCLIC, the development of a
PCE-to-EVE adapter card, special internal code in EVE,
and extensions to the simulated model. A record and
playback mechanism was added to guarantee error
repeatability and aid in error isolation. The PCE-EVE
system could also be used with the SDS system. This
provided in system simulation the environment of the
engineering test floor, wherein PCE function testing is
performed while SAK runs on the actual CPC hardware.

® Mainline test

System architectural test
Mainline test was split into two groups, one responsible for
CP and SCE test and the other for I/O testing. Each group
defined which model configurations (number of CPs, SCEs,
channels, etc.) it would require to verify their specific
portion of the machine. The CP/SCE test group did
not require an I/O subsystem (IOSS) in their test
configurations; to create contention for data and hardware
resources they wrote macro behaviorals in BDL/CS to
drive the IOSS interface. The I/O test group required a full
system model (CP, SCE, and 10SS without a PCE), and
represented actual devices (printers, terminals, DASD,
etc.) with macros. Each group utilized SAK as its primary
test case driver to verify the machine operation, and each
was responsible for modifying the SAK user parameters to
optimize test efficiency and uncover errors as quickly as
possible. Each group experienced difficulty during the
early test cycle in debugging errors on EVE in a timely
fashion because of a large quantity of duplicate errors,
which were difficult to mask, and contention for the EVE
resources. Many debug enhancements described previously
(especially the EVE-to-CEFS playback capability) were
solutions to these problems.

The experience during system simulation confirmed that
the use of SAK in simulation was efficient in the removal
of errors from the design.

‘“Undefined”’ test

System simulation also took on responsibility for testing
the logic for propagation of undefined states after the reset
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of a machine. Simply, a value of “‘undefined”” was placed
in each bit of every latch in the machine and simulation
was run for 100 cycles. The hardware reset bit in the
simulation model would be activated and an additional 100
cycles run. The latches would be examined to ensure that
no ‘““‘undefined” values were present, indicating that the
reset was correctly executed. This effort removed errors
that had previously been removed only on the test floor,
requiring new hardware to be built.

Performance measurement

Machine throughput (performance) projections were
accomplished by using instruction-trace-driven simulation
models [6]. Once a functioning machine was available,
actual throughput measurements were made by executing
the tests on real machines. This activity also verified the
accuracy of the trace-driven models. For the ES/9000
machines, as a complement to these steps, the throughput
measurements were run against the hardware simulation
models. This allowed not only more timely verification of
the trace-driven models, but also earlier identification and
removal of performance problems.

Regression test

Once the first hardware was built, a set of regression tests,
including performance tests, was executed in simulation

to verify machine engineering changes. This proved
successful by identifying unsuccessful fixes or errors
introduced by new functions, and providing a level of
confidence in the physical hardware construction.

® Resets, recovery, manual operations, self-test

Resets, recovery, and manual operation tests were run on
an EVE system model using real PCLIC executing on the
attached PCE. The types of error found included hardware
design errors, LIC errors, errors in the PCLIC algorithms
controlling resets and recovery, and errors in the
hardware-dependent data tables (design data) used by the
resets and recovery PCLIC. This testing was not intended
to find all of the errors in the PCLIC (another test
organization was responsible for that), but some were
found through its use. Some of the resets and recovery
support functions were tested by using the CEFS simulator
with a tool to verify the design data comprising the Q-bus
data table (QDT). The Q-bus is an interface between the
PCE and the CPC that can be used without stopping the
CPC clocks; it is the primary means for the PCE to control
the reset and recovery actions in the CPC. Self-test was
not tested in this way. Instead, it used an EVE model built
from two different design languages, as described below.

Resets

Resets simulation tested the nonerror paths of the reset
algorithms corresponding to the architected functions
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tested, and, additionally, some of the error paths due to
real logic errors. The following functions were tested:
power-on reset (POR), system reset, system reset clear,
initial program load (IPL), IPL clear, CPU reset via
SIGP, and initial CPU reset via SIGP. The PCE-EVE
environment was used for these tests; the resets were
executed using the real PCLIC. For the SIGP resets
tested, the instructions were placed in the system area of
main storage of the model, and a restart was issued from
the PCE.

In general, two methods were used to verify the resets
testing. First, the error data read by the PCE were used to
ensure that no error checkers came on during the reset.
These data would be available on the test floor in the
error logs on the PCE; in simulation they were directly
examined in the EVE output files. Second, the reset
checkpoint was saved and given to Mainline Test, where
it was used as an initial state for a SAK simulation run.

Toward the goal of executing an IPL on an operating
system on the test floor, the steps of a SAK IPL were
analyzed, and corresponding simulation tests defined and
executed. After POR, the next step was to IPL the SAK
minisupervisor program mentioned earlier. The simulation

model contained a macro that modeled the IPL I/O device.

This macro contained the 24 bytes of data to be read in
by the initial channel command word (CCW) of the IPL.
These data contained the minisupervisor initial PSW, and
the CCW to read in the minisupervisor data. After the
minisupervisor was loaded, the CP was started from the
PCE, and the state of the model saved. This checkpoint
was then used as a starting state for a SAK simulation
run to verify the IPL. Those steps not covered by this
minisupervisor IPL were covered by mainline tests using
SAK programs that performed the I/O operations and
executed operations specifically used by the real SAK
supervisor on the test floor.

Recovery
Recovery simulation executed the recovery algorithms
implemented in PCLIC. In addition, errors were injected
when the model was in different states to ensure that
general recovery would work under different conditions
(e.g., will CP recovery succeed if an error is injected
during an I/O operation?). Simulation runs were started
from an initial model state provided by the model bring-up
team. This model state was close to the POR state.
However, since PCLIC is not part of the model, a POR
would have to be executed to get its state to match that of
the model—a step of several hours. As a shortcut, code
was written to initialize fields in the configuration tables
used by the PCLIC, so that a full POR did not have to
precede a recovery test run.

SAK was used to generate activity in the model,
although some handwritten loops were also used.
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Intermittent faults were injected at random or at some
particular model event. This was done from the simulation
host instead of the PCE for efficiency and better conditions
control. Since element simulation of recovery had been
done, system simulation concentrated on errors such as
interface errors and recovery scenarios that involved
multiple elements (e.g., CP or SCE errors during execution
of I/O or page operations).

Successful completion of the SAK test cases indicated
successful error recovery. For errors that invoked general
recovery, several errors were injected and recovered
sequentially. For additional verification, the same types of
data available on the PCE and EVE for problem debug
were inspected.

Manual operations

The environment built to test resets and recovery lent
itself to testing some of the PCE manual operations.
Several manual operations were tested, including
alter/display, address compare, and some of the
engineering debug commands.

QDT verification

Most of the PCE-CPC communication is done by reading
and writing Q-bus registers, which are defined to the
PCLIC in the QDT. To test the validity of these hardware-
dependent data, a tool was built with which the Q-bus
read/write activity represented by each QDT entry was
simulated and verified.

Self-test

The self-test function is a stuck-fault test provided for
manufacturing and on-line hardware diagnostics. Using a
seed, the self-test hardware generates pseudorandom data,
applies a clocking sequence to produce data flow through
the hardware, and compresses the result into a signature
register. This testing required a model containing
components built with both a gate-level language [Basic
Design Language for Structure (BDL/S)] for simulation of
low-level clocking and scanning functions, and a register
transfer-level language (BDL/CS) for simulation of the
self-test supporting elements. To accomplish this, mixed-
language simulation (MLS) was applied. Using MLS,
errors were found, particularly in the clocking and
scanning design. Removing these errors in simulation
avoided serious test-floor consequences for two reasons:
1) clocking and scanning errors are much more difficult

to debug on the test floor than are other types of errors;
2) scanning is frequently used to gather data to debug
other errors.

Conclusion
Simulation detected 97% of the hardware design errors
discovered during the ES/9000 high-end verification. For
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each hardware design error that escaped to the test floor,
extensive escape analysis was performed to determine why
simulation did not find it during the various stages of
testing. Many of these errors could have been found in
simulation if the proper instruction sequence had been
executed with the machine in a particular state. These
escapes are attributed to the pseudorandomness of the
SAK test cases in conjunction with the relatively short
nature of the simulation test cases. These errors typically
are a manifestation of the machine construction rather than
an architectural design violation, and are found after
minutes or hours of running on an actual machine. These
findings, along with designer areas of concern, have been
used to improve the testing done in simulation, where
feasible. Additionally, they have been forwarded to the
SAK development team to enhance their test case
functional coverage, and to tools support groups for more
powerful simulation tools.

Simulation had a marked impact on the verification of
the ES/9000 high-end machines. Power-on reset ran
successfully once physical and assembly defects were
removed. From machine assembly to the SAK operating
system actually running on the ES/9000 took 31 days—

a major success when compared with previous machine
experience. The contribution to this achievement made by
simulation validated the strategy of executing in simulation
those test floor bring-up procedures whose success or
failure gated further test floor efforts. The test floor now
had a machine on which basic bring-up and debugging
tools worked—and had it earlier than ever before.

Appendix: Glossary
The following definitions are provided for the acronyms
found in this paper:

e AVP Architectural verification program. A manually
written test case for specific machine instructions.

e BCE Buffer control element. Part of the CP which
contains the cache.

¢ BDL/CS Basic Design Language for Cycle Simulation.
A language used for hardware design.

e BDL/S Basic Design Language for Structure. A
language used for hardware design.

e BHT Branch history table. Part of the CP which
records previously executed branch instructions.

¢ CCW Channel command word. An instruction executed
by a channel.

e CEFS Compiled Enhanced Functional Simulator. A
simulator implemented in software.

e CHE Channel element. Provides a path from the CPC
to external devices.

o CP Central processor. The component of the CPC that
fetches and executes instructions.
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e CPC Central processor complex. The total of the
hardware of a system, excluding the I/O devices.

e CRH Channel request handler. Part of the ICE. A
multiplexing switch for handling requests to and from
the channels.

e CTC Channel-to-channel. Between channels.

e DASD Direct access storage device. Large-capacity
storage media, usually disks, capable of being randomly
accessed.

e DLAT Dynamic lookaside table. Part of the BCE.
Used for virtual-to-real address translation.

e DTL Dynamic test language. A low-level test case
language.

e ESA Expanded storage arrays. Part of the ICE.

e ESC Expanded storage controller. Part of the ICE.

e EVE Engineering Verification Engine. Hardware
parallel processor built for simulation.

e FPR Floating-point register.

e GPR General-purpose register.

¢ ICE Intercommunication element. The component of
the CPC that handles channel and expanded storage
requests.

e IFE Instruction fetch element. Part of the CP which
decodes instructions and prepares them for execution.

o IOP Integrated off-load processor. Part of the ICE. An
interrupt-driven RISC processor for managing I/O
operations.

¢ IOSS I/O subsystem. The control units and devices

attached to a CPC.

IPL Initial program load. The loading of a program

from an external device, and the initialization of that

program.

¢ IXE Instruction execution element. Part of the CP
which generates operand and instruction addresses
and executes most of the architected instructions.

e LIC Licensed Internal Code. Instructions executing
internal to the CPC. Licensed Internal Code is
copyrighted and is provided to the customer under the
terms and conditions of the applicable written agreement
between the customer and IBM.

e LSE Logic support element. Provides a communication
path from the PCE to an LSS.

¢ 1SS Logic support station. Allows a component of the
CPC to communicate with the PCE.

e MCB Multichannel buffer. Part of the ICE. A
multiplexing switch and buffer for communications
between the IOPs, channels, CPs, and main and
expanded storage.

e MLS Mixed-language simulation. Simulation using
models built with more than one design language.

e PCE Processor controller element. The component of
the CPC that provides operator interface, support,
recovery, and diagnostics.
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& PCLIC Processor controller LIC. LIC executing on
the PCE.

& POR Power-on reset. The architected reset performed
as part of the power-on sequence.

& PSW Program status word. A hardware facility
containing information used by a CP to control
instruction sequencing.

¢ QDT Q-bus data table. A compilation of symbolic
addresses used by the PCE to access the CPC.

o RIDER RIOT I/O device extension routine. Allows
RIOT to accommodate restrictions on CCW programs
for any external device.

« RIOT Random I/O tester. Generates random test cases
used in channel simulation.

¢ SAK Systems assurance kernel. An internal IBM
system exerciser.

¢ SBC System bus controller. Part of the ICE. A
crosspoint switch with an ESC by which the ICE
controls the ESA and communicates with the SCE and
thereby with the CPs.

o SCE Storage controller element. The component of the
CPC that services storage data requests.

¢ SDS SAK-driven simulation. Simulation using SAK as
the test program executing on the model.

& SIGP Signal processor. An architected instruction by
which CPs communicate control information to each
other.

o SXE System execution element. Part of the CP which
executes complex system instructions, e.g., 1/O
instructions.
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