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The discovery  and  removal  of logic design 
errors  early In the  development  cycle Is 
critical to timely availability of market-driven 
processor  products.  This  paper  describes  the 
part  played  by  sirnulation in the  Verification  of 
the  high-end  models  of  the  iBM  Enterprise 
System/9000"  (ES/900OW) processor  family, 
and  how that effort advanced  the  state  of  the 
art  of logic design  simulation. The increased 
complexity  of  the ES/9000 design  over  that of 
the IBM  Enterprise  System/3090"  (ES/3090") 
necessitated  a  larger  sirnulation  effort. New 
tools and  methods  were  developed.  Two 
simulation  missions were  established.  Element 
sirnulation  addressed ES/9000 functional 
elements (e.g., the  storage  controller) 
lndlvldually using the  Compiled  Enhanced 
Functional  Simulator (CEFS), a  software  tool. 
System  sirnulation  tested two or  more 
functional  elements  together using the 
Engineering  Verification  Engine (EVE), a 
special-purpose  hardware  parallel  processor, 
and  an  attached  IBM 3092 Processor  Controller 
(PCE).  The results achieved  by  simulation  are 
discussed,  together with the  methods  used 
and the Impact  these results had on the  overall 
verification of  the ES/9000  Models 820 and  900. 

Introduction 
It  has been documented [l-31 that the cost of uncovering 
hardware design errors is high when working with custom 
W I  circuits. Engineering changes are costly in terms of 
time  and  engineering effort. Hardware design errors often 
prevent complete testing of a function, which may delay 
the discovery of additional errors. All of these factors bear 
directly on the profitability of a product. The potential 
revenue and market advantage lost because of a  long 
engineering test-floor effort is very large  in today's 
increasingly competitive mainframe marketplace. 

During the early planning stages of the IBM Enterprise 
System/9000m  (ES/9000TM) processors, it was concluded 
that more errors had to be removed from the design before 
hardware was built.  Simulation of logic  design prior to its 
fabrication in hardware had  played  an important part in 
the verification of earlier machines. However, as then 
practiced, it  would provide neither adequate nor 
expeditious verification of the ESl9000 machine 
architecture and its implementation. Its scope had to be 
increased. This paper discusses the part played by 
simulation in  achieving this for the high-end processor 
models 820 and 900. 

Two simulation missions were established: element 
simulation and system simulation. Each major functional 
element of the central processor complex, or CPC (central 
processor, storage controller, I/O subsystem, and 
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channels)  would be simulated as a standalone entity in 
order to remove as many errors as possible. This was 
known as element  simulation. 

Once element simulation was completed,  a  full system 
simulation was then performed. System simulation was to 
execute in simulation the earliest tests performed on the 
engineering test floor after a  machine was assembled  and 
powered  on. These tests consisted of power-on reset, 
certain manual operations, and the loading  and execution 
of various operating systems, beginning  with the systems 
assurance kernel (SAK), an internal IBM system exerciser. 
System simulation  built system-level models  combining the 
functional  elements. It exercised these models on the 
Engineering  Verification  Engine (EVE) using SAK to 
discover system interaction design errors. 

This paper is divided into two major sections discussing 
the two simulation  missions, the simulation methods each 
used,  and the testing performed. It concludes with a 
discussion of the results of simulation  and their impact on 
the verification of the ES/9000 system. 

Element  simulation 
Element simulation was responsible for  verification  at the 
board or card level of the following functional elements: 
central processor (CP), storage controller element  (SCE), 
intercommunication element (ICE), and channel (CHE). 
The goal was the removal of at least 90% of the functional 
design errors. This number was chosen on the basis of the 
history of earlier simulation projects as well as the benefit 
of improved simulator performance and techniques. 
Furthermore, it was recognized early in the project that 
some areas of the design  would  be  more  efficiently  verified 
at the system simulation level (e.g., multiprocessor design, 
I/O); thus, it would not be practical to find all errors at the 
element  level. 

Test design and  definition 
Once the hardware design  had been reviewed  for 
functional content and its availability date for  simulation 
established, test design  and  definition  began. A typical 
sequence for this part of the simulation process included 
the following: 

Deciding the source and type of stimuli  needed for the 
test. In some cases, for  example,  a high activity level of 
a relatively random nature was required. This was 
provided by “behavioral macro” representations of 
interfacing  logic external to the element  under test. The 
macros were written in Basic Design  Language for Cycle 
Simulation (BDUCS) and  built into the  simulation 
model. They were driven  by pseudorandom test vectors 
contained in control files.  In other cases, unique  and 
discrete events were most appropriate, and deterministic 

752 test cases were written. 

Deciding the environment in  which the tests would  be 
run.  One key factor of the test environment was the 
model  configuration. This could vary from  a  model  with 
the maximum  number of functional entities that could  be 
interconnected to a  model  in  which nearly half  of the 
hardware was represented by functional macros.  In the 
latter case, the computing resources required  and the 
simulation run times were substantially less than in the 
former. 
Deciding the method of checking for correctness of 
function. This was closely related to individual test 
design, since it required knowing  how the hardware 
design was supposed to work. As the number of 
individual tests increased, it  became obvious that 
checking had to be done with  no  manual intervention. 
This  meant that any test had to report pass or fail status, 
with the latter accompanied  by supporting data of the 
test owner’s  choice. The self-checking test methodology 
also enhanced the  regression-testing capability described 
later. 

An important part of test design was the use  of 
randomness in test cases and test drivers. This was an  area 
of significant enhancement over past simulation  efforts. 
Previously element  simulation  ended  with the successful 
execution of manually written static tests. The random 
effect was built into several areas: the initialization of the 
model, the test itself,  and the responses by other elements 
(e.g.,  behavioral  macros)  during the simulation. Tests were 
random in that no simple relationships existed between 
successive test vectors. However, the test vector sequence 
needed to be reproducible so that data could be collected 
when  a  design error was encountered, and to verify design 
fixes. For performance reasons simulation  normally ran 
without full data collection. “Seeds” were used to initiate 
a  given “random” series. 

Environment 
The Compiled Enhanced Functional  Simulator (CEFS), an 
internal IBM software simulator  running under Virtual 
Machinebtended Architecturem (VM/XAm), was chosen 
as the platform  for  element  simulation. It offered high 
performance,  flexible application interfaces, and very fast 
model  compilation. The last was extremely important 
during the early stages of the design  when changes 
occurred often. 

The  simulation was performed  at  a  functional  level,  from 
a register transfer description of the design. The simulation 
models represented designs of 500 OOO to 2 OOO 000 circuits. 
Typical test cases would  run  many thousands of  logic 
cycles. 

To limit the size of models  and to increase performance, 
other elements in the system which interface with the 
element under test were implemented as behavioral macros 
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(i.e.,  scaffolded  logic). For example, in SCE element 
simulation, the CPs were not  included in the model, but 
rather CP macros, which behaved externally like a CP. 
This approach had several advantages: 

The macros could provide stress not normally achievable 
by the real element. 
The macros could be enhanced to provide logic  not 
normally in the real element-for example, special 
recovery injection controls. 

the design of another element. 

multiprocessor support, so that these environments could 
be tested even in a single-element  model. 

Element simulation of one element was never gated by 

Macros could provide global system effects, such as 

Several different test drivers and test case languages 
were used in element simulation: 

Architectural verification programs (AVPs), which are 
manually written test sequences to verify a specific 
instruction (or combination of instructions) in a CP or 
I10 processor. 
Macros, as described above, used extensively as  test 
drivers to provide random stimulus to the logic under 
test. 
Dynamic test language (DTL), which allows one to write 
low-level tests to alter any register or signal (facilities) in 
the model, clock the model,  and expect certain values in 
facilities. This was useful in testing certain “non- 
mainline” functions, which were not easily testable by 
AVPs or macros. 
High-level  languages,  used to write programs interfacing 
with CEFS to set and extract facility values, clock the 
model, etc. These programs thus served as test drivers 
and  performed complicated initialization  and  monitoring 
functions. 
SAK, an  IBM internal operating system devoted 
exclusively to testing IBM large-system architectures, 
which provides random streams of instructions tailored 
to stress certain aspects of the Enterprise Systems 
Architecture/390TU  (ESA/390m) architecture. It is 
described in more detail in the section on SAK-driven 
simulation. 

System functions 
All of the element-simulation efforts included testing 
system-wide functions. Historically, many of these 
functions were not tested until a real machine was built. 
They included the following: 

Architected resets The operations performed by the 
processor controller element (PCE) for each of the 
architected resets [4] were emulated, and  mainline tests 

were run afterward to verify that the element had reset 
properly. 

Recovery During  mainline tests, faults were injected into 
the model  in either a controlled or pseudorandom manner. 
The recovery algorithms implemented by the PCE were 
emulated, and for recoverable errors, the tests were 
expected to complete as normal. 

Degrade modes Many elements have portions of logic 
which can be disabled for recovery or test purposes. 
Examples include deleted lines in a cache, disabling the 
branch history table (BHT), and  isolating, or “fencing,” 
one element from another. These degrade modes were 
verified in element simulation. 

Operator controls Examples of these include architected 
functions such as START, STOP, and Address Compare. 
Again,  mainline tests were simulated as the function was 
exercised. 

Measurements 
To measure the progress and completeness of the 
simulation effort, several elements were monitored. 
Continuous tracking was done of the percentage of tests 
successfully completed on a line-item basis, as well as 
actual versus projected errors discovered. Key events in 
the model  (e.g.,  queue-full conditions, interlocks) were 
monitored to make sure that the events of interest to 
designers were being stressed. Finally, simulation was 
periodically run in a special trace mode, whereby paths 
through the logic were tagged to discover those not being 
exercised. In a joint effort with the designers, this 
information was used to develop new tests. 

Model checkinglintegn’ty 
All element-simulation tests included automatic results 
checking, which provided operator-free testing and allowed 
extensive use of batch execution. This consisted of 
checking architected results and data integrity, and 
monitoring error checkers and  hang detectors. 

Results 
Element simulation was extremely effective. The number 
of logic  design errors detected ranged  from about 87% in 
the CP to 95%  in the SCE and ICE, and 97%  in the CHE. 
Interface timing discrepancies, protocol errors, and 
differences of architecture interpretation were among the 
types of errors discovered. Since real Licensed Internal 
Code (LIC) was used, many errors were removed from  it 
as well. 

All elements realized improvements in random 
methodology and techniques for verifymg system 
functions. This was the first extensive use of simulation for 753 
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Structure of the  central  processor model. Boxes indicate  hard- 
# ware;  dashed  boxes  indicate  macros. 

channels. It  was also the first  time that SAK was run  in  an 
element simulation environment. 

Improvements to simulation tools were generalized to 
aid the entire CEFS simulation community. Among these 
were an event-driven cycle dump providing  English 
phrases for specific events and functions that occurred in 
addition to model values, an event-driven error injector, 
and statistical analysis programs to determine function 
coverage and path analysis. 

the individual element simulation efforts. 
The following sections provide some more detail about 

CP element  simulation 
The  CP model consisted of the CP board comprising four 
TCMs:  buffer control element (BCE), instruction fetch 
element (IFE), instruction execution element (IXE), and 
system execution element (SXE). To allow independent 
testing of the CP,  a macro was created for the SCE. 
Macros were also created to provide signals for the timing 
facilities (including the external time reference), and to be 
able to handle some 1/0 requests and interrupts. The 
structure of the CP model is shown in Figure 1. The CP 
LIC was included as part of the model,  and was exercised 
as needed to test the hardware design  (verification of the 
LIC itself was the responsibility of the LIC development 
group) * 

Test  drivers 
To test at the instruction level, three major test vehicles 
were used: AVPs,  random  AVPs,  and SAK. The test 
library of AVPs has been developed over many years, and 

754 had in the past been run on the engineering models of a 
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new  machine. This test library was enhanced for ESA/390 
to include all  of the new architecture items. Historically, 
the role of CP element simulation was completed with the 
successful execution of the AVP test library. Given the 
complexity of the ES/9000  CP,  much  more verification was 
needed. 

Random AVPs are program-generated random streams 
of instructions with  initial states and expected results. 
Because the expected results are generated by actually 
running the  test stream on an  ES/3090  machine,  new 
ESA/390 architecture could not be included in the stream. 
These tests stressed machine  design features as opposed to 
architecture, which is the domain of the normal  AVPs and 
SAK. Some of the machine features of interest included 

Branch resolution and the branch history table (BHT). 
Out-of-sequence execution. 
Buffer control element (BCE) cache and dynamic 

General-purpose (GPR) and floating-point (FPR) register 

Storing into the instruction stream. 

To test these features, program “generators” were written 
to produce random streams of instructions which were 
tailored for a particular scenario. For example, a branch 
test case could be generated which would have one or 
more of about 20 different types of branch loops, branch 
index tables, sequences of conditional branches, etc. These 
generators turned out to be extremely powerful. 

simulation except those stressing 1/0 and expanded store, 
since those areas were not completely modeled  in the 
macros. 

lookaside table (DLAT) organization. 

management. 

All of the SAK drivers were run in CP element 

Stress  environments 
All  of the types of tests mentioned above were simulated 
in environments which attempted to place additional stress 
on the model. These included the following: 

The BCE instruction and data caches were initialized 
randomly (or fully) with the instructionddata in the test. 
In addition, the data cache lines could be optionally 
loaded into the “~ynonym” classes of the cache. When 
the caches were preloaded in this manner, the timing 
effects of various cache  states would appear very 
quickly. The DLATs had the same initialization 
capability. 
The BHT was preloaded either with random data or with 
known branch information from the test case. 
The GPR and FPR register management controls were 
randomly initialized so that different array positions were 
used to hold the architected registers each time  a test 
was run. 
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The rate at which the SCE responded to the BCE for 
fetches and stores  was randomly varied, and the effects 
of slowing  down or speeding up the SCE could easily 
be seen. 

cache line invalidates, invalidates for page table entries, 
and storage key changes to the BCE, simulating 
multiprocessor effects. 
A program was written to inject I/O, external, or 
machine check interrupts at random points in the 
simulation of an instruction stream. The program  would 
determine whether the interrupt should be taken, and if 
it should, would establish an interrupt handler to force 
the instruction address back into the test case so that the 
normal expected results would occur. 

The SCE macro was programmed to randomly send 

SCE element simulation 
The storage controller element (SCE) contains a high- 
speed buffer and the main storage arrays. It consists of 
data paths, arrays, and control logic. The SCE services 
data requests to and  from the CPs, ICEs, and PCE, and 
must ensure that all data passed to other elements are not 
corrupted. The maintenance of data integrity was the main 
thrust of the SCE testing. 

different CEFS test case drivers. The first comprised hard- 
coded test  cases written in dynamic test language (DTL). 
The second was  the use of a set of random drivers 
(macros) surrounding the SCE. This method was the 
primary test vehicle for the SCE. 

SCE element simulation was performed using two 

Random SCE driver 
The SCE interfaces with up to six CPs, one or two ICEs, 
and the PCE. All three can generate commands (e.g., 
store) to the SCE asynchronously. The random drivers and 
a control program were designed to send out randomly 
chosen commands at any time. 

The drivers and control program had  specific tasks. 
The basic responsibilities of the drivers were to send 
commands to be serviced by the SCE, to respond to 
commands passed on by the SCE, and to validate 
command responses and protocol. The largest tasks of 
the control program were to check data integrity on all 
interfaces and verify that the SCE adhered to architectural 
restrictions. The random drivers were built into the 
simulation model. The control program was a user- 
provided extension to CEFS. 

results at any point  during the run, the test case failed 
immediately.  Debugging a failing test case was 
accomplished by using the control program output file. 
This file supplied a full account of  all the commands, 
responses, and important SCE internal events that 
occurred during the failing test case. The output file also 

If the drivers or control program detected unexpected 
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supplied specifics about the failure by explicitly stating 
which component (CP driver, ICE driver, PCE driver, 
or control program) flagged the error and what the error 
was. If the error was a data miscompare, the output file 
contained the actual versus the expected data. If the error 
was a response miscompare, the output file  flagged the 
failing  command and driver that detected the miscompare. 

The CP,  ICE, and PCE drivers used the following 
methods to choose commands. A different random number 
was generated each simulation cycle for each driver. The 
random number was then used to select a command to 
send across the interface to the SCE. A probability table 
for the commands, initialized at the start of the test case, 
was used to index the random number to a specific 
command. This initial probability table was varied from 
test case to test case. Once a command was picked, the 
driver decided whether or not the SCE could  handle the 
selected command by monitoring the available lines on the 
SCE interface. If the interface indicated that the command 
could be sent, the driver began the sequence of sending 
the command. Otherwise, no command was sent to the 
SCE during that cycle. The probability tables also 
contained a no-op command, which, when chosen by the 
driver, sent no command across the interface on that 
cycle. 

At the same time that the driver decided to send a 
command, a store or fetch address had to be requested if 
the command type indicated a memory access (there are 
control commands, such as SIGNAL operations, which do 
not access memory). In order for the memory controls to 
be verified, a small set of memory addresses was used by 
the drivers so that the probability of overlapping memory 
requests to the same address was increased. A set of 64 
line addresses (128 bytes per line) was the maximum 
storage setup used. The line addresses were randomly 
picked at the start of each test case and were used 
throughout the test case. Whenever a driver requested a 
storage address, one of these lines was randomly chosen. 
Use of the limited address space allowed the test case to 
stress the exclusivity of the lines. At the same time, the 
small  number of addresses ensured that if the SCE 
incorrectly stored data during a test case, a fetch command 
to that same address would  likely  follow,  and the bad data 
would be flagged by the control program as the data 
crossed the interface back to the requesting driver. The 
random storage setup  at initialization was performed by 
the control program. As the program  picked addresses, it 
initialized the SCE main memory array with random data 
at the selected address and stored the same data in the 
program copy of the memory. Throughout the test case, 
the program  would update its own copy of the address 
space whenever a driver sent a storage update in order to 
check data integrity. As a result, whenever a driver sent a 
storage fetch request, the SCE data were checked against 755 
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Structure of the  intercommunication  element. Boxes indicate 
hardware; circles indicate macros; dashed boxes indicate parts 
that could be either hardware  or  macros (depending on  what  was 
being tested). 

the program copy of the data as the data returned to the 
requesting driver. Any miscompare caused the test case to 
fail. 

After the SCE processed a driver command, a response 
was returned. It was the responsibility of the drivers to 
validate the SCE response. Unsuccessful responses were 
expected in many cases, such as when the requested 
address was currently locked out by another driver. Other 
examples of expected unsuccessful responses were when a 
driver, for testing purposes, generated an  illegal sequence 
of commands, generated bad parity on an interface, or 
used  an  unconfigured address in its request. If the driver 
expected a different response from that which the SCE 
returned, an error was flagged  and the test case failed. 

Hang detects were implemented in the CP drivers to 
ensure that no commands were lost or overly delayed by 
the SCE. For a test case to be successful, every command 
sent by a driver had to be completed by the SCE within 
the hang detect interval. 

A typical successful test case had about 150 requests 
from each CP driver, 150 requests from each ICE driver, 
and up to 10 PCE requests. Thus, a fully  configured 
simulation  model executed over 1200 SCE requests per 
test case. Over 200 000 000 random  memory requests were 
sent and checked for proper execution. However, since 
these memory requests occurred in different SCE states 

756 because of the randomness of the test case, they exercised 
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the SCE in different ways. As a result, thousands of 
memory states were tested. 

ICE element  simulation 
The  intercommunication  element (ICE) consists of four 
discrete interacting parts: 

Channel request handler (CRH)-a multiplexing switch 
for  handling requests to and  from the channels (CHE). 
System bus controller (SBC)-a crosspoint switch  with 
an expanded storage controller (ESC) by which the 
ICE controls the expanded storage arrays (ESA), 
and communicates with the SCE and thereby with 
the CPs. 
Integrated off-load processor (1OP)-an interrupt-driven 
RISC processor for managing 1/0 operations. 
Multichannel  buffer (MCB)-a multiplexing switch and 
buffer  for  communications  between the IOPs, channels, 
CPs,  and main and expanded storages. 

Figure 2 illustrates the structure of the ICE and the 
communications paths between its parts. 

Since each part had a character of its own, testing 
addressed both the  individual characteristics and the 
interactions among parts. This dictated the use of macros 
to functionally stress the switching  and  buffer entities, and 
AVP test cases to test the IOP. Testing focused not only 
on the complete ICE but also on its individual parts and 
combinations. 

IOP test 
The IOP had to execute both architected and 
nonarchitected instructions. The latter were required to 
communicate  with the CPs and the channels through the 
MCB. Tests addressed both of these functions. AVP test 
cases were used to test the IOP decode, execute, and put- 
away  mechanism. 

Single-instruction A W s  These manually written test 
cases were used to test architected instructions supported 
by the IOP  and nonarchitected internal operations of the 
IOP. They were also used to test the accessing of  main 
and expanded storages. 

Random-instruction-stream AWs A pseudorandom- 
instruction-stream generator was used for  both architected 
and nonarchitected operations. These instruction streams 
were used to create interference between instructions of  all 
types. The generator could vary the instruction streams 
according to specified parameters, including 

Instruction classes, e.g., branches, rotates. 
Inclusion or exclusion of specific operations. 
Types of interrupts allowed. 
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Judicious reselection of parameters resulted in discovering 
errors when the previous set of parameters no longer 
yielded new errors. 

Switchlbuffer test 
This used the MCB, CRH, and SBC in a model with SCE, 
IOP, CHE, and ESA macros, with  and without a macro 
for the second CRH. All macros (described below) except 
the ESA acted as drivers, generating requests to the real 
components in the model. The ESA was passive, servicing 
store and fetch requests directed to it. 

MCB test The MCB interfaced with all other functional 
entities of the ICE. Testing it required generating requests 
from  all possible sources in random order to stress the 
MCB. 

CRH test Since the CRH could handle requests to and 
from as many as 64 channels, special attention was given 
to driving  it with a variety of channel configurations and 
requests. 

ICE macros 
The macros used for ICE simulation were CHE, CRH, 
ESA, IOP, paging generator, and SCE. Several were 
replicated one or more times in a given  model. The main 
rationale for the numerous macros was to force high 
coverage and high stress quickly and at a subelement level 
of the model, where debugging  would be easiest. All but 
the ESA macro actively generated random requests under 
user control (biasing) to the design. Hundreds of runs were 
made, with many variations of the parameters of the driver 
macros. This detected 85-90% of the mainline function 
errors in the CRH/MCB/SBC complex. Checking for 
correctness of responses and for data integrity was built 
into all active macros. Audit trails were available for 
failure analysis. 

detailed operating sequence is  given for one of them 
(CRH), while a summary of function is  given for the 
rest. 

The active macros shared many characteristics, so a 

CRH  random macro The CRH macro was used to 
represent one CRH of two attached to an MCB. It 
generated requests to the MCB (reads and writes). To 
cause contention in the MCB  with requests from the other 
(real) CRH, the macro kept  up to sixteen channels running 
at one time. All error checking done by the macro 
occurred at the time the MCB returned the command 
response to the CRH. Requests were one of three types: 
MCB  buffer requests, requests to storage, and requests to 
the MCB channel communication area (CCA).  CCA 
requests competed for some of the same MCB resources 
as the other two requests. 

The generation of buffer and storage requests was as 
follows: 

Choose a random channel every cycle. 
If the channel selected is free and the store biasing 

Finish the store data transfer to the MCB  buffer. 
Send a storage command to the MCB; when the response 
returns, mark the store done and ready to be fetched. 
Use a second random channel to point to the “store 
done” status of another channel. If data transfer to 
storage is complete, and if data are not being fetched by 
any other channel, send a fetch storage command to the 
MCB. 

permits, start a new  buffer store. 

When the fetch data return, compare them to the data 
originally stored, log any errors, and mark both channels 
(fetch and store) free for further use. 

Channel (CHE) random macro The CHE macro stressed 
the CRH by loading it with as many as 64 channels in 
differing  configurations. The macro was a random-biased 
command generator representing sets of four to eight 
channels attached to the CRH. This ensured contention 
across the bidirectional bus interface with the CRH. 

IOP  random macro Only about 10% of  all IOP 
instructions resulted in communication with the MCB. 
In practice, the traffic presented to the MCB at the 
IOP interface was quite low, and required additional 
communication with the CPs and the channels through 
LIC. The IOP macro was designed to simplify and 
maximize the interaction between IOP and MCB. It 
generated requests to the MCB for fetch/store activity to 
main and expanded storages, and for  CCA operations in 
the MCB. It also could respond to interrupts from the CPs 
that were forwarded by the SCE macro. 

SCE macro This macro responded primarily to requests 
for fetch/store activity from/to main storage. It had the 
added ability to present CP requests for work (interrupts) 
to the IOP. These were generated at user-controlled 
intervals, and checking was done for the IOP response to 
each request. 

Paging random macro Interfacing with the SBC through 
the SCE macro, the pager requested page transfers to and 
from the expanded storage. Besides its use as a page 
generator, this macro was useful in creating contention for 
SBC resources during random runs. 

ESA macro This representation of the expanded storage 
arrays received and processed requests from ICE. It  was 
passive in that it  did  not initiate requests as did  all the 
other macros. 
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Channel simulation 
The channel is an  engine  providing  a data path from the 
CPC to external devices such as control units (e.g.,  3990 
storage control), other CPCs [via channel-to-channel (CTC) 
connection], or IBM internal test devices. 

Channel simulation tested the System/390@ parallel and 
high-speed  fiber optic channels; included in this activity 
were connecting different 1/0 devices (some modeled, 
some as macros to the channel), and providing support for 
other sites to integrate the channel into their simulation 
environment. 

Environments 
The base configuration for simulation was a  modeled 
channel connected to a subset of the ICE, functional 
macros for the IOP, CP, SCE with main storage, and  a 
macro for the test device (universal programmable device 
emulator). The channel used real LIC, previously tested by 
its developers, to provide functional operation. A variety 
of channel diagnostics and specialized internal code were 
also written. 

Additional configurations utilized the base simulation 
model augmented to include actual physical device 
hardware [e.g., connection converters (9032,  9033), 
directors (9034,  9035)],  multiple test devices per channel, 
multiple channels, and/or a CTC connection. Another 
alternate model  configuration  included physical IOP 
hardware, LIC, a logic support station (LSS), and a  logic 
support element (LSE) macro to provide a platform for 
testing IOP LIC, subsystem resets, and recovery. 

Test drivers 
The general simulation philosophy included generated 
random, self-checking, and seed-based (for reproducibility) 
test cases. The main testing strategy was based on the 
architected I/O instruction level utilizing the LIC for 
functional operation. The random  I/O tester (RIOT) 
environment was established to fulfill this objective. RIOT 
was designed to provide a  level of test comparable to the 
test-floor SAK procedures for testing the channels. RIOT 
generates random test  cases for each channel and device 
consisting of random architected 1/0 instructions (Start, 
Clear, Halt, Resume, Cancel subchannel, etc.) for each 
device. Then random channel command word (CCW) 
programs are generated for each start subchannel 
instruction. RIOT was initially  designed to work with the 
internal test device. When support was extended to include 
other devices, it became apparent that more CCW control 
was necessary. RIOT I/O device extension routines 
(RIDER) was developed to accommodate restrictions on 
CCW programs for any external device. RIDER provided 
flexibility  in  tailoring CCW programs for any user-defined 
device by constraining the CCW programs and status 
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device emulators by randomizing several aspects such as 
speed, type (byte or block for parallel), and frame sizes 
(for fiber optic channels). RIOT was also responsible for 
results checking, which included data integrity, architected 
responses, and responses to the IOP. 

Multiple site support 
Since the channels connect to a wide variety of external 
devices or control units, and to systems other than the 
ES/9000, channel simulation supported multiple sites in 
connecting the channel in their environment. This included 
incorporating their hardware devices into the model 
(connection converter, connection director, test devices, 
etc.) or helping to include the channel in their simulation 
by providing  a  mechanism (RIOT/RIDER) to govern the 
random 1/0 instruction generation to specific devices, since 
they may require device-specific CCW chains (3990 storage 
control, CTC,  etc.). This required compatibility across 
operating systems ( M V S  and VM), support of 
environments using the EVE simulator, and support 
of other cross-simulator efforts. 

System simulation 
After each element had been simulated in the element 
environment, system simulation combined the individual 
elements into full-system models that were run on the 
Engineering Verification Engine (EVE) system. 

The overall goal of simulation was to reduce significantly 
the time required by the engineering test floor to power-on 
a real machine, reset that machine to a  good  running state, 
then IPL an operating system (SAK followed by M V S  and 
VM) successfully. The challenge of system simulation was 
to provide a  machine to engineering test that could 

Successfully execute a power-on reset (POR). 
Perform  initial LIC load. 
Load the SAK operating system. 
Run various SAK test case drivers error-free for at least 
three minutes each. 

An additional goal was to verify the tools needed by the 
test floor to debug the errors it encountered. 

System simulation was to remove 8% (over and above 
the 90% removed by element simulation) of the total 
hardware design errors prior to hardware being  built. This 
would leave 2% of the total to be removed on the test 
floor. System simulation utilized the EVE hardware 
simulator as its primary test vehicle. 

EVE is a custom parallel computer that executes models 
compiled from hardware descriptions written in BDL/CS [5] .  
EVE is channel-attached as a device to an  IBM  mainframe 
“host” running VM/XA. The main function of the host is 
to control and interact with simulation “jobs” executing 
on EVE. The main advantage of EVE over CEFS is  higher 
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cycle throughput, and this advantage increases as the size 
of a model increases. 

Early in the planning stages of the ES/9000 machines, it 
was decided to divide the system simulation effort into two 
distinct groups. The first group, known as Mainline Test, 
utilized SAK  test  cases to verify the logical function of the 
machine in a normal  machine operating environment. This 
test effort included architectural verification of the CP and 
I/O functions as well as the interaction between them in 
the storage hierarchy. The second group, known as 
Resets/Recovery Test, was responsible for testing the reset 
functions of the machine  (POR, IPL, and other types of 
machine resets), error recovery, and other related manual 
operations-all from a system perspective. This was 
accomplished by attaching an actual processor controller 
element (PCE) to the EVE simulator to exercise the 
system model with the actual processor controller LIC 
(PCLIC) through a pseudo-hardware interface. 

SAK-driven simulation 
SAK consists of a control program  and a set of test 
routines designed to test all aspects of the machine 
architecture. The control program provides the basic 
operating environment, and the test routines perform all 
test case creation, expected results generation, and results 
checking. On the  test floor, the control program, test 
routines, and test cases all execute on the system under 
test. For simulation, a test case delivery mechanism was 
required to allow the control and test routine overhead to 
be offloaded to a host system. The SAK-driven simulation 
(SDS) system was developed to provide this capability and 
fully  exploit the high-performance EVE simulator. By 
transferring the overhead of SAK to a host system and 
executing the test cases on  an EVE model, this system 
was able to achieve a test case throughput rate equal to 
about one thousandth of that attained by SAK running on 
the ES/9000 test-floor system. 

In the SDS system, the control program and the test 
routines run  on a VM/XA host system.* Only the test 
cases and a minisupervisor function run on the simulation 
model.  The minisupervisor dispatches test cases from a 
work queue, processes test interrupts, and controls when 
tests  are finished and new queues of work should be 
loaded. A host-resident mapper program is used to load 
new test case queues into, and transfer actual test results 
out of, the memory of the simulated model. A queuing 
mechanism was designed to attain high EVE efficiency. 
This mechanism  allowed many test cases to be grouped 
together into long work queues for dispatch to the model, 
which greatly improved test case throughput by minimizing 

simulated model could be matched in the test environment and exploited by the test 
‘The VM/XA operating system was required so that  the capabilities of the 

routines. For example, by defining multiple virtual central processors on VWX.4, 
SAK was able to create multiprocessor and extended architecture test cases for the 
simulated model while running on a uniprocessor host. 

the number of host-model interactions. Finally, a record 
and playback function was added to guarantee the 
reproducibility of simulation failures and aid  in isolating 
them. 

The SDS system was originally put into practice by the 
ES/3090  Model S system simulation group. Additional 
advances were made during the ES/9000 simulation 
effort to improve usability and performance. These 
improvements included  an automatic job submission and 
control system, an automatic error isolation and trace 
process (described below), an enhanced mapper program 
yielding wider applicability of function and improved 
performance, and the development of an associative main 
memory scheme allowing large address space tests to be 
run on a hardware simulator with a fixed-memory  modeling 
capability. 

Debugging  techniques 
Aggressive verification schedules coupled with the number 
of errors projected to be found during system simulation 
made it essential to develop techniques to reduce the 
time required to isolate and debug errors. Early experience 
with SDS had shown that it was  very difficult  and 
unproductive to isolate and debug simulation failures 
because of the limited  model trace capability of EVE. 
The CEFS software simulator, although  much slower than 
its hardware counterpart, possesses a very powerful 
trace facility. The solution was to couple the EVE and 
CEFS simulators into a complete automated simulation 
process: 

The user submits a SAK test run to the EVE simulation 
system. 
SAK test cases are simulated on the model  while SAK 
performs test creation, results generation, and checking 
of prior tests. 
Test case progression is tracked through the system and 
all  SAK-model  stimuli are recorded. 
At user-selected intervals (because of the large volume 
of data) the state of the model is saved. This saved 
model state is called a checkpoint. 
A model error is detected by SAK. 
The control software isolates the model failure to the last 
recorded checkpoint preceding the load of the failing test 
case. 
The model is reset to this model state. 
The recorded stimuli are “replayed” to the model  up to 

At this point a new checkpoint is obtained and 

This  new  model state and the recorded stimuli are then 

A complete all-events trace is obtained on CEFS and 

the start of the failing test case. 

simulation is terminated. 

transported to CEFS. 

returned to the user for analysis. 
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In practice, this process proved to be superior to previous 
techniques used on EVE, and  reduced the time to isolate 
and  debug  a  model  failure  from days to hours. The 
improved problem-turnaround time lessened the discovery 
of duplicate errors, thereby freeing up valuable human  and 
simulation resources. 

Processor controller-Em attachment 
Early debugging  of the error recovery and reset functions 
in simulation required that the PCE be “attached” to the 
simulated  machine  model. This was accomplished  by 
physically connecting an actual PCE to the EVE. This 
involved changes to the PCLIC, the development of a 
PCE-to-EVE adapter card, special internal code in EVE, 
and extensions to the simulated  model.  A record and 
playback  mechanism was added to guarantee error 
repeatability and  aid  in error isolation. The PCE-EVE 
system could also be used with the SDS system. This 
provided in system simulation the environment of the 
engineering test floor,  wherein PCE function testing is 
performed  while SAK runs on the actual CPC hardware. 

Mainline test 

System  architectural  test 
Mainline test was split into two groups, one responsible for 
CP and SCE test and the other for  I/O  testing. Each group 
defined  which  model  configurations  (number of CPs, SCEs, 
channels, etc.) it  would require to verify their specific 
portion of the machine. The CP/SCE test group  did 
not require an 1/0 subsystem (IOSS) in their test 
configurations; to create contention for data and hardware 
resources they wrote macro behaviorals in  BDL/CS to 
drive the IOSS interface. The 1/0 test group required  a  full 
system model (CP, SCE, and  IOSS without a  PCE),  and 
represented actual devices (printers, terminals,  DASD, 
etc.) with macros. Each group utilized SAK as its primary 
test case driver to verify the machine operation, and each 
was responsible for  modifylng the SAK user parameters to 
optimize test efficiency  and uncover errors as quickly as 
possible. Each group experienced difficulty  during the 
early test cycle in  debugging errors on EVE in a  timely 
fashion because of a  large quantity of duplicate errors, 
which were difficult to mask,  and contention for the EVE 
resources. Many  debug enhancements described previously 
(especially the EVE-to-CEFS playback  capability) were 
solutions to these problems. 

the use of SAK in simulation was efficient  in the removal 
of errors from the design. 

The experience during system simulation  confirmed that 

“Undefined” test 
System simulation  also took on responsibility for  testing 

760 the logic  for  propagation of  undefined states after the reset 

of a  machine.  Simply,  a value of “undefined” was placed 
in each bit of every latch in the machine  and  simulation 
was run for 100 cycles. The hardware reset bit  in the 
simulation  model  would be activated and an additional 100 
cycles run. The latches would be examined to ensure that 
no “undefined” values were present, indicating that the 
reset was correctly executed. This effort  removed errors 
that had previously been removed only on the test floor, 
requiring  new hardware to be  built. 

Peflormance  measurement 
Machine  throughput (performance) projections were 
accomplished by using instruction-trace-driven simulation 
models [6] .  Once  a  functioning  machine was available, 
actual throughput measurements were made by executing 
the tests on real  machines. This activity also verified the 
accuracy of the trace-driven models. For the ES/9000 
machines, as a  complement to these steps, the throughput 
measurements were run  against the hardware simulation 
models. This allowed not only  more  timely  verification of 
the trace-driven models, but also earlier identification  and 
removal of performance problems. 

Regression  test 
Once the first hardware was built,  a set of regression tests, 
including performance tests, was executed in simulation 
to verify machine  engineering  changes. This proved 
successful by  identifying unsuccessful fixes or errors 
introduced by  new  functions,  and  providing  a  level of 
confidence in the physical hardware construction. 

Resets,  recovery,  manual  operations, self-test 
Resets, recovery, and  manual operation tests were run on 
an EVE system model  using real PCLIC executing on the 
attached PCE. The types of error found  included hardware 
design errors, LIC errors, errors in the PCLIC algorithms 
controlling resets and recovery, and errors in the 
hardware-dependent data tables (design data) used  by the 
resets and recovery PCLIC. This testing was not  intended 
to find  all  of the errors in the PCLIC (another test 
organization was responsible  for that), but some were 
found  through its use. Some of the resets and recovery 
support functions were tested by  using the CEFS simulator 
with  a  tool to verify the design data comprising the Q-bus 
data table (QDT). The Q-bus is an interface between the 
PCE and the CPC that can be  used without stopping the 
CPC clocks; it is the primary  means  for the PCE to control 
the reset and recovery actions in the CPC. Self-test was 
not tested in this way. Instead, it  used  an EVE model  built 
from  two  different  design  languages, as described below. 

Resets 
Resets simulation tested the nonerror paths of the reset 
algorithms corresponding to the architected functions 
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tested, and, additionally, some of the error paths due to 
real logic errors. The following functions were tested: 
power-on reset (POR), system reset, system reset clear, 
initial  program  load (IPL), IPL clear, CPU reset via 
SIGP, and  initial CPU reset via SIGP. The PCE-EVE 
environment was used for these tests; the resets were 
executed using the real PCLIC. For the SIGP resets 
tested, the instructions were placed in the system area of 
main storage of the model, and a restart  was issued from 
the PCE. 

In general, two methods were used to verify the resets 
testing. First, the error data read by the PCE  were used to 
ensure that no error checkers came on during the reset. 
These data would be available on the test floor  in the 
error logs on the PCE; in simulation they were directly 
examined in the EVE output files. Second, the reset 
checkpoint was saved and  given to Mainline Test, where 
it was used as an initial state for a SAK simulation run. 

Toward the goal of executing an IPL on  an operating 
system on the test floor, the steps of a SAK IPL were 
analyzed, and corresponding simulation tests defined  and 
executed. M e r  POR, the next step was to IPL the SAK 
minisupervisor program mentioned earlier. The simulation 
model contained a macro that modeled the IPL I/O device. 
This macro contained the 24 bytes of data to be read in 
by the initial channel command word (CCW) of the IPL. 
These data contained the minisupervisor initial  PSW, and 
the CCW to read in the minisupervisor data. After the 
minisupervisor was loaded, the CP was started from the 
PCE, and the state of the model saved. This checkpoint 
was then used as a starting state for a SAK simulation 
run to verify the IPL. Those steps not covered by this 
minisupervisor IPL were covered by mainline tests using 
SAK programs that performed the 1/0 operations and 
executed operations specifically used by the real SAK 
supervisor on the test floor. 

Recovery 
Recovery simulation executed the recovery algorithms 
implemented in PCLIC. In addition, errors  were injected 
when the model was in  different states to ensure that 
general recovery would work under different conditions 
(e.g.,  will  CP recovery succeed if an error is injected 
during an I/O operation?). Simulation runs were started 
from  an  initial  model state provided by the model bring-up 
team. This model state was close to the POR state. 
However, since PCLIC is not part of the model, a POR 
would have to be executed to get its state to match that of 
the model-a step of several hours. As a shortcut, code 
was written to initialize  fields in the configuration tables 
used by the PCLIC, so that a full POR did not have to 
precede a recovery test run. 
SAK was used to generate activity in the model, 

although some handwritten loops were also used. 
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Intermittent faults were injected at random or at some 
particular model event. This was done from the simulation 
host instead of the PCE for efficiency  and better conditions 
control. Since element simulation of recovery had been 
done, system simulation concentrated on errors such as 
interface errors and recovery scenarios that involved 
multiple elements (e.g.,  CP or  SCE errors during execution 
of  I/O or page operations). 

Successful completion of the SAK test cases indicated 
successful error recovery. For errors that invoked general 
recovery, several errors  were injected and recovered 
sequentially. For additional verification, the same types of 
data available on the PCE and EVE for problem  debug 
were inspected. 

Manual  operations 
The environment built to test resets and recovery lent 
itself to testing some of the PCE manual operations. 
Several manual operations were tested, including 
alteddisplay, address compare, and some of the 
engineering debug commands. 

QDT verijication 
Most of the PCE-CPC communication is done by reading 
and writing Q-bus registers, which are defined to the 
PCLIC in the QDT. To test the validity of these hardware- 
dependent data, a tool was built with which the Q-bus 
readmite activity represented by each QDT entry was 
simulated and  verified. 

Self-test 
The self-test function is a stuck-fault test provided for 
manufacturing and on-line hardware diagnostics. Using a 
seed, the self-test hardware generates pseudorandom data, 
applies a clocking sequence to produce data flow through 
the hardware, and compresses the result into a signature 
register. This testing required a model containing 
components built with both a gate-level language [Basic 
Design  Language for Structure (BDL/S)] for simulation of 
low-level  clocking  and scanning functions, and a register 
transfer-level language (BDL/CS) for simulation of the 
self-test supporting elements. To accomplish this, mixed- 
language simulation (MLS) was applied. Using MLS, 
errors were found, particularly in the clocking and 
scanning design.  Removing these errors in simulation 
avoided serious test-floor consequences for two reasons: 
1) clocking and scanning errors are much more difficult 
to debug on the test floor than are other types of errors; 
2) scanning is frequently used to gather data to debug 
other errors. 

Conclusion 
Simulation detected 97% of the hardware design errors 
discovered during the ES/9000 high-end verification. For 
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each hardware design error that escaped to the test floor, 
extensive escape analysis was performed to determine why 
simulation did not find  it during the various stages of 
testing. Many of these errors could have been found in 
simulation if the proper instruction sequence had been 
executed with the machine in a particular state. These 
escapes are attributed to the pseudorandomness of the 
S A K  test cases in conjunction with the relatively short 
nature of the simulation test cases. These errors typically 
are a manifestation of the machine construction rather than 
an architectural design violation, and are found after 
minutes or hours of running on an actual machine. These 
findings,  along with designer areas of concern, have been 
used to improve the testing done in simulation, where 
feasible. Additionally, they have been forwarded to the 
S A K  development team to enhance their test  case 
functional coverage, and to tools support groups for more 
powerful simulation tools. 

Simulation  had  a marked impact on the verification of 
the ES/9000  high-end machines. Power-on reset ran 
successfully once physical and assembly defects were 
removed. From machine assembly to the SAK operating 
system actually running on the ES/9000 took 31 duys- 
a  major success when compared with previous machine 
experience. The contribution to this achievement made by 
simulation validated the strategy of executing in simulation 
those test floor  bring-up procedures whose success or 
failure gated further test floor efforts. The test floor  now 
had  a  machine on which basic bring-up and debugging 
tools worked-nd had it earlier than ever before. 

Appendix: Glossary 
The following  definitions are provided for the acronyms 
found in this paper: 

AVP Architectural verification program.  A  manually 
written test case for specific machine instructions. 
BCE Buffer control element. Part of the CP  which 
contains the cache. 
BDL/CS Basic Design  Language for Cycle Simulation. 
A  language used for hardware design. 
BDUS Basic Design  Language for Structure. A 
language used for hardware design. 
BHT Branch history table. Part of the CP which 
records previously executed branch instructions. 
CCW Channel command word. An instruction executed 
by a channel. 

simulator implemented  in software. 

to external devices. 

762 fetches and executes instructions. 

CEFS Compiled Enhanced Functional Simulator. A 

CHE Channel element. Provides a path from the CPC 

CP Central processor. The component of the CPC that 
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CPC Central processor complex. The total of the 
hardware of a system, excluding the I/O devices. 
CRH Channel request handler. Part of the ICE. A 
multiplexing switch for handling requests to and  from 
the channels. 
CTC Channel-to-channel. Between channels. 
DASD Direct access storage device. Large-capacity 
storage media, usually disks, capable of being randomly 
accessed. 
DLAT Dynamic lookaside table. Part of the BCE. 

DTL Dynamic test language.  A  low-level test  case 

ESA Expanded storage arrays. Part of the ICE. 
ESC Expanded storage controller. Part of the ICE. 
EVE Engineering Verification  Engine. Hardware 

FPR Floating-point register. 
GPR General-purpose register. 
ICE Intercommunication element. The component of 
the CPC that handles channel and expanded storage 
requests. 
IFE Instruction fetch element. Part of the CP which 
decodes instructions and prepares them for execution. 
IOP Integrated off-load processor. Part of the ICE. An 
interrupt-driven RISC processor for managing I/O 
operations. 
IOSS 1/0 subsystem. The control units and devices 
attached to a  CPC. 
IPL Initial program  load. The loading of a  program 
from  an external device, and the initialization of that 
program. 
IXE Instruction execution element. Part of the CP 
which generates operand and instruction addresses 
and executes most of the architected instructions. 
LIC Licensed Internal Code. Instructions executing 

Used for virtual-to-real address translation. 

language. 

parallel processor built for simulation. 

internal to the CPC. Licensed Internal Code is 
copyrighted and is provided to the customer under the 
terms and conditions of the applicable written agreement 
between the customer and  IBM. 
LSE Logic support element. Provides a communication 

LSS Logic support station. Allows  a component of the 

MCB Multichannel buffer. Part of the ICE. A 

path from the PCE to an LSS. 

CPC to communicate with the PCE. 

multiplexing switch and buffer for communications 
between the IOPs, channels, CPs, and main  and 
expanded storage. 
MLS Mixed-language  simulation.  Simulation  using 
models  built with more than one design  language. 
PCE Processor controller element. The component of 
the CPC that provides operator interface, support, 
recovery, and diagnostics. 
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PCLIC  Processor  controller  LIC.  LIC  executing  on 

POR Power-on reset.  The  architected  reset performed 
as  part of the power-on sequence. 
PSW Program status word. A hardware facility 
containing  information used  by a CP  to  control 
instruction sequencing. 

addresses  used  by  the  PCE  to  access  the CPC. 

RIOT  to  accommodate  restrictions  on  CCW  programs 
for any  external device. 
RIOT  Random 1/0 tester.  Generates  random  test  cases 
used  in channel simulation. 
SAK  Systems  assurance kernel. An internal  IBM 
system  exerciser. 
SBC  System  bus controller. Part of the ICE. A 
crosspoint  switch  with  an ESC by  which  the  ICE 
controls  the  ESA  and  communicates  with  the SCE and 
thereby  with  the  CPs. 
SCE Storage  controller element. The  component of the 
CPC  that  services  storage  data  requests. 
SDS  SAK-driven simulation.  Simulation  using SAK  as 
the  test program executing  on  the model. 
SIGP Signal processor. An architected  instruction  by 
which  CPs  communicate  control information to  each 
other. 
SXE System  execution element. Part of the  CP  which 

the  PCE. 

QDT Q-bus data table. A compilation of symbolic 

RIDER  RIOT  I/O  device  extension routine.  Allows 

executes  complex  system  instructions, e.g., I/O 
instructions. 
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