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A floating-point  processor  with  the IBM 
System/390@  architecture  is  implemented  in 
one CMOS VLSl chip  containing  over  70 000 
cells  (equivalent  inverters),  using  a  transistor 
channel  length  of 0.5 pm. All floating-point 
instructions  are  hard-wired,  including  the 
binary  integer  multiplications.  The  chip  is 
implemented  in  a 1-pm technology  with  three 
layers  of  metal. All circuits  are  realized  in 
standard  cells  except  for  a  floating-point 
register  and  a  multiplier  array  macro,  which 
are  custom  designed  to  save  chip  area. 
Instructions  are  performed  in  a  five-stage 
pipeline  with  a  maximum  operating  frequency 
of  37 MHz. The  chip  measures  12.7  mm x 
12.7  mm,  and  dissipates 2 W. It  is  part of the 
chip  set  which  forms  the  core  of  the IBM 
Enterprise  System/9000"  Type  9221  entry-level 
models. 

Introduction 
Floating-point processors used to be seen as an option 
which could be added to the main CPU for performing 
scientific applications. In the models of the entry-level 
type (designated 9221)  of the new  IBM Enterprise 
System/9000TM  (ES/9000TM)  line,  floating-point processing 
is becoming  an inherent part of the CPU. This paper 

describes the IBM  ES/9000 Type 9221 floating-point 
processor, which is tightly coupled to the CPU and carries 
out all IBM ~ystem/390@ floating-point instructions. AI 
i~lstructions  are hardware-coded, so no microinstructions 
are needed. Moreover, binary integer multiplication  is also 
implemented on the floating-point  unit to improve overall 
performance. 

The floating-point processor was implemented in 1-pm 
CMOS technology, using the standard cell approach, with 
only two custom-designed macros-the 60 X 58-bit 
multiplier macro and the floating-point register macro.  The 
data flow  design was done in a top-down manner, starting 
with  an abstract functional block description which was 
broken down  in  more  and  more detail until the gate 
implementation level was reached. This method is 
especially appropriate for a standard cell approach, in 
which only logic gates from a standard library are available 
and  no detailed knowledge about the transistor level is 
required. A mixed-level representation was created which 
was used for understanding, documenting, and most of all, 
early floor-planning, to make sure that all the logic fit on 
the chip and that the wiring delays were acceptable. 

Design  goals 
Because of the inherent character of the floating-point 
processor in the IBM Enterprise System/9000 Type 9221 
models, a global optimization of the processor chip set  was 
the ultimate design  goal. First, system partitioning with 
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respect to packaging requirements was done. Our overall 
goal was to obtain the maximum system performance with 
the given  CMOS process [l]. Wide buses were used to 
achieve high performance. Critical interconnections were 
split into an internal processor bus and a floating-point 
bus. The chip set thus built consisted of two multichip 
modules, one containing the fixed-point unit, the 
instruction processing unit, and two cache chips, and the 
other with only the floating-point processor unit  and the 
clock chip. See [l] for additional details. 

Second, local chip optimization was done. For the 
floating-point unit, the cycle was dictated by the CPU. 
Optimization was then focused on  pipeline structure, chip 
area, and instruction implementation. Much  effort was 
expended to make sure that the structure would fit on 
one chip.  Although there were many implementation 
alternatives with more  promising cycle times,  we chose 
one which best fit the overall requirements of chip area 
and cycle time. 

Chip structure 

Pipelining 
While the CPU is based on a four-stage pipeline, the 
floating-point processor requires a five-stage  pipeline to 
perform its most used instructions (add, subtract, and 
multiply)  in one cycle for double-precision operands. The 
CPU resolves operand addresses, provides operands from 
the cache, and handles all exceptions for the floating-point 
processor. The five stages of the pipeline are instruction 
fetch, which  is executed on the CPU, register fetch, 
operand prealignment, addition, and normalization and 
register store. 

point  wait  signal  is raised whenever a floating-point 
instruction needs more than one cycle. The CPU then 
waits until this wait signal disappears before it increments 
its program counter and starts the next serial instruction, 
which is kept on the bus. 

Because the IBM  System/390 architecture requires that 
interrupts be precise, a wait condition is also invoked 
whenever an exception may occur. To minimize the 
impact on performance, extra logic was incorporated to 
predetermine the interrupt situations, as described later in 
the discussion of control flow. 

Dataflow 
The data flow  of the IBM  ES/9000 Type 9221 floating-point 
processor was designed  in a top-down manner. Starting 
with  global function blocks, we broke down the next 
hierarchical level into more detailed functions that were 
finally transformed into gate-level functions, including 
fine  tuning  with respect to logic transformation, input 
assignment, and  signal  buffering. The last is very critical 

To preserve synchronization with the CPU, a floating- 
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Figure 1 shows the data flow  of the IBM  ES/9000 Type 
9221 floating-point processor. It has been designed to 
perform the most used addhubtract and multiply 
instructions in one cycle for single-  and double-precision 
operands. Many bypass buses are used to avoid wait 
cycles when the results of the foregoing instructions are 
used. A wait cycle is needed only if the result of one 
instruction is used immediately by the next sequential 
instruction. 

The data flow shows two parallel paths for fraction 
processing: one add-path where all  non-multiply 
instructions are implemented, and one multiply-path 
especially designed for multiply  and  divide.  The add-path 
is 60 bits wide and consists of  an operand switcher, an 
aligner,  an adder, and a normalizer shifter. Instead of using 
two aligners  on each side of the operand paths, we used a 
switcher to switch operands, thereby saving one aligner. 
The switcher is also needed for other instructions, and 
requires many  fewer circuits. The resulting delay is not 
critical. 

The multiply-path consists of a Booth encoder for the 
58-bit  multiplier, a multiplier macro which forms the 
58 X 60-bit product terms sum  and carry, and a 92-bit 
adder which delivers the result product. The sign  and 
exponent paths are adjusted to be consistent with the add- 
path. The exponent path resolves all exception and true 
zero situations, as defined by the IBM  SystemI390 
architecture. The implementation of all other instructions 
is merged into the add-path and multiply-path, and requires 
only minimal additional logic. The data flow  in Figure 1 
thus shows more function blocks and multiplexer stages 
than needed for only add, subtract, and multiply 
operations. 

The data flow was then partitioned into smaller parts 
(typically registers with their input control). For every 
partition, such as FB, we described the functions in bit- 
level detail using a block description form to reflect  all 
functions required. All interface signals were named 
appropriately. Figure 2 shows an example of the detailed 
documentation for the partition FB. This was used for 
further transformation into gate-level and high-level 
documentation of the data flow, and also to design the 
control flow.  We were able to stabilize the interfaces 
between partitions at a very early stage. Cell count 
prediction was then easily made, so that early floor- 
planning could be done effectively. Because of our 
numerous wide internal buses, the chip layout was based 
exclusively on  wiring studies. (It  was not obvious that the 
data flow  would  fit  on the chip.)  Using this high-level 
documentation, we obtained a chip floor  plan at a very 
early stage. It helped us to adjust nets and bus buffering to 
achieve a well-balanced  design.  In fact, it was found that 
delay problems arise primarily in the long buses. Also, 
chip floor-planning ensured that we  could  implement  all of 
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our logic  on a single chip. Figure 3 shows the chip Arithmetic  implementation 
partition and the cell count prediction for each partition. Floating-point instructions are partitioned into three main 
The  main buses are globally wired. The control logic part groups: 1) additiodsubtraction, load; 2 )  multiplication;  and 
was assumed to comprise about 20% of the data flow part. 3) division. These are the instructions most  used in 
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Detailed  documentation of partition F B .  

scientific applications. The first two groups of instructions 
are performed in one cycle, and division  is  made as fast as 
possible. The following subsections describe the control 
flow to these three main groups of instructions. 

Addition,  subtraction,  load 
During the first two pipelined stages, only instruction 
and operand fetching are done. All data processing is 
concentrated in the third and fourth pipelined stages. In 
the fifth stage, the result is written back to the floating- 
point register. Hardware implementation is done with 
minimal  logic, provided the cycle remains within the 

736 design range. 

Effective  addition,  load 
Loads are treated like addition, with one operand equal to 
zero. During stage 3 the exponents of both operands are 
compared in order to determine the amount of alignment 
shift. The operand with the smaller exponent is then 
passed to the aligner for prealignment. In stage 4 the 
aligned operands are added. The addition may produce 
a carry-out, which results in a shift  right by one digit 
position, in accordance with the IBM System/390 
architecture. The exponent must then be incremented by 
one. If the instruction requires postnormalization, leading 
zeros are detected, and the normalization shift amount is 
determined. The exponent is then decreased accordingly. 
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1 Early floor-planning. Areas PP are reserved pads; areas XX are reserved for wiring. From upper left to lower right, IDS of the areas are as 
I follows: FLPT (floating-point register macro), ADD (adder),  MDP (multiplier postprocessing), FER (FE partition), FDR (FD partition), I MBR (MB partition), FAR (FA partition), FBR (FB partition), MAR (MA partition), MLP (multiplier macro), MUR (multiplier register), 

CT1 (control logic block), DIS (oscillator), and SEL (self-test logic). 
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Zero-digit  detection. 

Table 1 Exception  wait  situations. 

Effective  Exponent Ejcponent Unnormalized 
additionhubtraction = 7F < OD operand 

Yes  Yes - No 
Yes - Yes  Yes 
No - Yes - 

Since time is still available in stage 4, the exponent 
calculation is made sequentially after that of addition, 
using  only one exponent adder with an  input  multiplexer 
to select whether an exponent increase, an exponent 
adjustment, or a  multiply/divide exponent is required. 

Lading-zero detection is  made  by  calculating the 
hexadecimal  digit sums without a  propagated carry-in. 
Hexadecimal sums 0 and F for the digit  position i are 
determined  and  fed into a  multiplexer. The carry-in to this 
digit  position selects whether or not the result  digit is zero. 
This carry bit comes from the same carry-lookahead circuit 
used  for the adder, so no additional circuit is  needed. 
Figure 4 shows the realization.  By  using this additional 
logic, the shift  amount can be determined at nearly the 
same time as the addition result. 

Exponent exception, either overflow or underflow, is 
also detected in this stage. Meanwhile, the next instruction 
has already been started. As mentioned earlier, a  wait  may 
be raised at stage 3 to hold execution of the next serial 
instruction. In our case of  an effective  addition, the wait 

738 situation is met  when 
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The intermediate result exponent is 7F and  will  overflow 
when  an exponent increment is caused by a carry-out 
from the adder. 
The intermediate result exponent is  smaller  than OD, and 
a  normalization  is  required for unnormalized operands. 
Here the  exponent  must  be  decreased by the  normalization 
shift  amount,  which can be at most OD (14 in the decimal 
system), thus producing  an exponent underflow. 

Table 1 shows the cases in which  an exponent exception 
condition is met  for the effective  addition  and subtraction. 
This represents a very small percentage of cases, so 
performance is  only  minimally  affected. 

Effective subtraction 
To avoid  recomplementation of the result, we always 
subtract the smaller operand from the greater one.  Most 
frequently, subtractions are done by means of normalized 
fractions. Here the greater operand can always be 
determined whenever the exponents are unequal.  In stage 
3 the operand with the smaller exponent is passed to the 
aligner whose output is to be complemented.  When the 
exponents are equal,  a fraction-compare circuit compares 
the operands and selects the smaller operand to be 
negated. Thus, we  have  a  complemented  block on both 
sides of stage 3 in our data flow.  In stage 4 the subtraction 
is performed,  delivering  a positive result. The sign  is the 
sign  of the greater operand. Normalization is done in the 
same way as for an effective  addition.  No exponent 
overflow can occur. 

except for the case in which the exponents are equal, we 
cannot determine which operand is the smaller one. One 
additional cycle is needed. At  first we calculate A - B .  
Depending on whether the result is positive or negative, 
we calculate in the following cycle A - B or B - A ,  
respectively. The result is then taken from the second 
subtraction. The sign  is  determined  accordingly. 

Multiplication 
Multiplication is implemented by using  a  multiplier macro 
custom-designed to save chip area. Because the overall 
design  goal was not to minimize cycle time but to optimize 
the global chip set, we used the modified Booth  algorithm 
with serial addition of partial product terms [2], although 
the Wallace tree method  would  have been more  efficient 
[3]. The latter method,  however, is not appropriate for a 
regular structure, which in turn is very important when 
custom design  is required and  chip area and turnaround 
time are to be  minimized.  When this method is used, the 
multiplication  time is proportional to the number of 
additions of partial products, which is N/2 ,  where N is 
the  number of multiplication bits. 

reducing the number of additions and sequential delay 

For the case of subtraction with  unnormalized operands, 

The design  goal was to increase the arithmetic speed by 
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stages. The modified Booth method is used to meet the 
first  goal, and a partitioning of the multiplier array into 
two identical half parts to meet the latter goal. 

Partitioning the array into two parts is not  trivial. A 
special carry network has been developed to move the 
carry bits out of the lower significant array properly [4]. 
The advantages are the following: First, the carry network 
reduces the total multiplier delay by nearly 50%; second, it 
favors the structural regularity of the multiplier macro cell, 
as does the Booth algorithm. This regularity has the 
following advantages: 

The custom design is easier to handle (e.g., checking is 

Only one array need be designed. 
The performance is enhanced, and the area used is 

easier). 

reduced, by employing repeated circuits and repeated 
interconnection wiring. Circuit design  and layout can be 
made very dense. 
The multiplier bit width is easily extendable. 
Regularity also means short wiring, which is a major 
factor affecting the performance of  CMOS designs. 
Design turnaround time is reduced. 

In the Type 9221 floating-point processor, the multiplier 
740 must support 60 X 58-bit  multiplication, which is required 
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for our division  algorithm. A block diagram of the 60 X 58 
multiplier is shown in Figure 5. The border of the macro 
cell is indicated by a dashed line. The registers at the 
inputs as well as  at the outputs of the macro cell are part 
of the automatically wired logic circuitry of the chip. 
Inside the macro cell there are no latches, only 
multiplexers and adders. 

The multiplier  (MIER) input and output registers and 
the multiplicand  (MAND) input registers act  as input  and 
output ports to the array. These registers are separate scan 
paths which enhance the testability of the multiplier. The 
decoders for the 2 X 29 multiplier inputs are placed before 
the multiplier  input registers, to keep the delay of the 
multiplier and the rest of the data flow  well balanced. 
The multiplier output registers are inserted before the 
final summation of the most  significant product terms. 
This location was selected on the basis of the delay 
characteristics of the macrocell versus the cycle time of 
the system. Carry-save adders (CSA1,  CSA2,  and  CSA3) 
and half adders (HA1) between Array A and Array B are 
used to combine the sums and carries coming  from both 
arrays. Arrays A and B are mirrored on the chip, 
permitting  all array bits to be concentrated in the middle 
channel for summation. The multiplicand inputs cross 
Array B, the carry-save adders, the half adders, and finally 
Array A, in straight lines. 
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AND circuit  integrated  into  the full adder.  Transistors  are n-type unless marked P for p-type. 

To summarize, the multiplier uses the modified  Booth 
algorithm,  and consists of two identical arrays with  15 
rows and 66 columns each. The first row contains only 
multiplexers for the selection of the Booth-encoded 
signals.  Rows 2 through 15 contain multiplexers and full 
adders (carry-save adders). 

Circuit  organization 
The structure of the multiplier arrays is partly shown in 
Figure 6, which contains the upper right corner of one 
array. The first row (Level 1) consists only of multiplexers 
(MUXT, MUX3T). Full adders (FAT, FAC) are placed 
from row 2 on. To save inverters (and delay time), the 
circuits in  row 2 are different  from the circuits in row 3, 
a pattern that is repeated throughout the remainder of the 
array. The full adders in  row 2 have only true input 
signals, a complemented carry output, and a true sum 
output. The full adders in  row 3 have two complemented 
input  signals,  while the other input and output signals are 
true. 

Signals 56 through 59 represent the last four (low-order) 
multiplicand input signals. These signals are inputs to the 
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multiplexers. The four horizontal lines (TXO1, - ) are 
Booth-encoded signals  leading to all multiplexers of one 
row. In the macrocell layout, the circuits of a row are 
shifted by two pitches to the right compared with the 
circuits of the next higher  row. This guarantees a 
rectangular array layout. There are different types of 
multiplexers and  full adders derived from one multiplexer 
layout or from one full adder layout. One unique array 
element was optimally designed, with many personalization 
possibilities. It can be used  on every row of the array, 
repeatedly. Figure 7 shows the layout of a mirrored pair of 
array elements which makes the placement of the circuits 
in the array much  simpler.  Only at the right edge of the 
array are there irregularities. The full adder with an 
integrated AND-function was designed  with special care 
from both layout and performance viewpoints, since it 
contributed to the slowest delay path. 

Circuit  description 
The delay characteristics of the full adders used in the 
multiplier arrays directly affect the performance of the 
macrocell.  Both the sum and the carry paths of the full 
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Pattern-dependent  delay. 

adder circuit must be optimized. Two different adder cells 
are used within the multiplier array. This scheme 
eliminates a delay of one inverter in each array row. 
Figures 8(a) and 8(b) show the two full adders with 
alternating polarities for the carry-in (CI) and the input 
signal A. Input B is fed by the sum output of a previous 
adder and has the same polarity throughout. The circuits 
are nearly identical; only the two connections X and X-not 
are different. This eases the integration of the full adders 
into an array. A full adder cell consists of three inverters 
and twelve transmission gates. Eight transmission gates are 
used to generate two exclusive-OR functions, while four 
gates generate the carry-out function. If one follows the 
delay paths from one full adder to the next, a  maximum of 
three transmission gates in series between two inverters 
are encountered. 

due to the necessary AND-function between the full 
Worst-case paths are, however, caused by irregularities 

744 adders at  the right  edge (Figure 6) .  The circuit for this 
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block is shown in Figure 9. The transmission gates T2, T3, 
T10,  T11,  T18,  T19, T22, and  T23 perform the AND- 
function, which is integrated into the first  exclusive-OR 
function of the full adder. This integration makes the 
additional delay modest. 

Test results 
The typical delay of the multiplier macrocell from input to 
output register was measured to be 18 ns. This delay is the 
sum of two multiplexer delays and 14 carry-save adder 
delays inside the arrays, and of two carry-save adder 
delays and an on-chip driver delay outside the arrays. It 
also includes the  setup time for the registers. The pattern 
dependency of the multiplier delay can be seen in 
Figure 10. The delays, which vary between 16 ns and 
19.5 ns, are the result of applying 100 functional patterns. 
Finally, Figure 11 shows a distribution of multiplier delays 
resulting from the application of a worst-case pattern to 
several chips out of five experimental lots. 
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Verification  and  simulation 
For simulation and verification purposes, a one-to-one 
logic gate model of the multiplier was written and then 
was merged into the entire floating-point  model for circuit 
simulation. With this multiplier  model, data were generated 
to further test and stress  the multiplier macro, which was 
built  on  a test site. Because the macro was designed 
manually, additional effort was needed to check the 
correctness of the design. To this end, a topology-checking 
program  named MACH1 from our Engineering Design 
System (EDS) was used to check the transistor shapes 
against the logic gate model. A library of transistor shapes 
was created for defining the correspondence to logic gates. 
The program then checked the shape connections for 
correct function. By using both simulation and shape 
checking, a correct multiplier macro was built and merged 
onto the floating-point  chip. 

Binary  multiplication 
Although  not  a  floating-point instruction, binary integer 
multiplication  is also implemented  on the floating-point 

processor to improve performance. The  floating-point 
processor is very highly coupled to the CPU and is  an 
integral part of  it. Because the Booth encoders are 
implemented outside the multiplier  macro,  modification to 
the Booth coefficients can be easily made to match the 
requirements for signed  multiplication [5]. 

Division 
Division is performed by the floating-point processor using 
a  modified Newton convergence method. The starting seed 
for the division comes from  a table which is seven bits 
wide.  In the following, we describe only operations on the 
fractional part of the operands. Exponent calculation is 
simple and is calculated separately. 

Let A and B be the fractional parts of the dividend  and 
divisor, respectively. Then let A and B be bit-normalized; 
i.e., the most significant bit is nonzero (for hex-format, a 
bit-normalization must be done before processing): 

A = O.la,ap, - * * ass, 

B = O.lb,b& * * * bss . 745 
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Let R ,  be the start seed, which is the seven-bit 
approximation of the inverse of B :  

1 
& = ; + E ;  

E has at least seven leading zero bits. 
Division  is performed as follows: 

A A * %   A * R o  A * &  

B - B . R , -  / I  \ I + & B  
”” =- 

” B - + E  b I 
A * R,(1 - EB)  A R,,(1 - EB) - - - - 

( 1  + E B ) ( ~  - EB) 1 - E’B’ 

A * R,(1 - E B ) ( ~  + E’B’) A * Ro(l - E B ) ( ~  + E’B’) - - 
( 1  - E’B’)(~ + E’B’) 

- - 
1 - E ~ B ~  

A * Ro(l - E B ) ( ~  + &’B2)(1 + E ~ B ~ )  

( 1  - E ~ B ~ ) ( ~  + E ~ B ~ )  
- - 

A R,,(1 - E B ) ( ~  + &’B’)(l + E ~ B ~ )  

1 - E ~ B ’  
- - (3) 

Because &‘B8 has at least 64 leading zero bits, the 
quotient of AIB can be approximated by 

A 

B 
- = A  * R,,(l - E B ) ( ~  + s2B2)(1 + E ~ B ~ )  = Q.  (4)  

We need to perform only seven multiplications because the 
last multiplication result, which is ( 1  - E’B’), can be 
discarded. It was mathematically proven that the 
approximation so found is at most one least significant  bit 
away from the correct result. The precise result of the 
division  is then determined by making the two comparing 
multiplications 

A S B - Q  

and 

A S B(Q + lLSB), (5) 

where LSB indicates the least significant  bit. 

in Equation (3) are derived from the terms ( 1  + EB),  
( 1  - E’B’), and ( 1  - ~ ~ 8 ~ )  respectively, using special 
built-in circuitry. Hardware needed is minimal, whereas for 
the same function others need a table-lookup ROM [6] .  

The sequence of the division  is shown in Figure 12. 
The complete division  including the correcting steps is 
implemented in hardware and requires 14 cycles. An 
example of a divide using  decimal numbers is illustrated in 
Figure 13. LetA = 0.59786552 and B = 0.73216312. 
The divide table delivers the rounded inverse of the 
truncated B operand, which is 0.73. Thus, 
R, = 110.73 = 1.36. 

The terms ( 1  - EB),  ( 1  + E’B’), and ( 1  + E ~ B ~ )  used 
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Table 2 Performance summary-floating-point chip. 

Clock 37 MHz maximum 
Register-to-register 

Register-to-memory 

LINPACK [7] 

Power dissipation 2 w  

instruction 1 cycle typical 

instruction 3 cycles typical 

performance 4.1 MFLOPS 

Summary 
Figure 14 shows a wiring  plot of the chip.  Wiring 
amounted to more than 30 meters at the first iteration, 
resulting in  an unwirable  design. After two iterations, 
including  new  floor-planning, a design requiring only 18 
meters of wire was produced. The chip measures 
12.7 mm X 12.7 mm and contains more than 70 000 wired 
cells (equivalent inverter). All single-, double-, and 
extended-precision floating-point instructions, and the 
binary integer multiplication, are performed as defined by 
the IBM  Systeml390 principles of operation. The data 
types are short format (one sign bit, seven exponent bits, 
and 24 fraction bits), long format (one sign bit, seven 
exponent bits, and 56 fraction bits), and extended format 
(one sign bit, seven exponent bits, and 112 fraction 
bits). Instructions that are heavily used, such as addition, 
multiplication, load, and store, are performed in one 
cycle, except for extended operands. In  pipelining, 
mode, long results can be sdelivered every cycle, which is 
27 ns. Table 2 shows a performance summary of the 
floating-point chip. 

Systed390 is a registered trademark, and Enterprise 
System/9000  and  ES/9000 are trademarks, of International 
Business Machines Corporation. 
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