A single-chip
IBM System/390
floating-point
processor

in CMOS

by S. Dao-Trong
K. Helwig

A floating-point processor with the IBM
System/390°® architecture is implemented in
one CMOS VLSI chip containing over 70 000
cells (equivalent inverters), using a transistor
channel length of 0.5 pm. All floating-point
instructions are hard-wired, including the
binary integer multiplications. The chip is
implemented in a 1-pm technology with three
layers of metal. All circuits are realized in
standard cells except for a floating-point
register and a multiplier array macro, which
are custom designed to save chip area.
Instructions are performed in a five-stage
pipeline with a maximum operating frequency
of 37 MHz. The chip measures 12.7 mm x
12.7 mm, and dissipates 2 W. It is part of the
chip set which forms the core of the IBM
Enterprise System/9000™ Type 9221 entry-level
models.

introduction

Floating-point processors used to be seen as an option
which could be added to the main CPU for performing
scientific applications. In the models of the entry-level
type (designated 9221) of the new IBM Enterprise
System/9000™ (ES/9000™) line, floating-point processing
is becoming an inherent part of the CPU. This paper

describes the IBM ES/9000 Type 9221 floating-point
processor, which is tightly coupled to the CPU and carries
out all IBM System/390® floating-point instructions. All
instructions are hardware-coded, so no microinstructions
are needed. Moreover, binary integer multiplication is also
implemented on the floating-point unit to improve overall
performance.

The floating-point processor was implemented in 1-um
CMOS technology, using the standard cell approach, with
only two custom-designed macros—the 60 x 58-bit
multiplier macro and the floating-point register macro. The
data flow design was done in a top-down manner, starting
with an abstract functional block description which was
broken down in more and more detail until the gate
implementation level was reached. This method is
especially appropriate for a standard cell approach, in
which only logic gates from a standard library are available
and no detailed knowledge about the transistor level is
required. A mixed-level representation was created which
was used for understanding, documenting, and most of all,
early floor-planning, to make sure that all the logic fit on
the chip and that the wiring delays were acceptable.

Design goals

Because of the inherent character of the floating-point
processor in the IBM Enterprise System/9000 Type 9221
models, a global optimization of the processor chip set was
the ultimate design goal. First, system partitioning with

©Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

S. DAO-TRONG AND K. HELWIG

733

734

respect to packaging requirements was done. Our overall
goal was to obtain the maximum system performance with
the given CMOS process [1]. Wide buses were used to
achieve high performance. Critical interconnections were
split into an internal processor bus and a floating-point
bus. The chip set thus built consisted of two multichip
modules, one containing the fixed-point unit, the
instruction processing unit, and two cache chips, and the
other with only the floating-point processor unit and the
clock chip. See [1] for additional details.

Second, local chip optimization was done. For the
floating-point unit, the cycle was dictated by the CPU.
Optimization was then focused on pipeline structure, chip
area, and instruction implementation. Much effort was
expended to make sure that the structure would fit on
one chip. Although there were many implementation
alternatives with more promising cycle times, we chose
one which best fit the overall requirements of chip area
and cycle time.

Chip structure

¢ Pipelining

While the CPU is based on a four-stage pipeline, the
floating-point processor requires a five-stage pipeline to
perform its most used instructions (add, subtract, and
multiply) in one cycle for double-precision operands. The
CPU resolves operand addresses, provides operands from
the cache, and handles all exceptions for the floating-point
processor. The five stages of the pipeline are instruction
fetch, which is executed on the CPU, register fetch,
operand prealignment, addition, and normalization and
register store.

To preserve synchronization with the CPU, a floating-
point wait signal is raised whenever a floating-point
instruction needs more than one cycle. The CPU then
waits until this wait signal disappears before it increments
its program counter and starts the next serial instruction,
which is kept on the bus.

Because the IBM System/390 architecture requires that
interrupts be precise, a wait condition is also invoked
whenever an exception may occur. To minimize the
impact on performance, extra logic was incorporated to
predetermine the interrupt situations, as described later in
the discussion of control flow.

® Data flow

The data flow of the IBM ES/9000 Type 9221 floating-point
processor was designed in a top-down manner. Starting
with global function blocks, we broke down the next
hierarchical level into more detailed functions that were
finally transformed into gate-level functions, including

fine tuning with respect to logic transformation, input
assignment, and signal buffering. The last is very critical
for CMOS technology.

S. DAO-TRONG AND K. HELWIG

Figure 1 shows the data flow of the IBM ES/9000 Type
9221 floating-point processor. It has been designed to
perform the most used add/subtract and multiply
instructions in one cycle for single- and double-precision
operands. Many bypass buses are used to avoid wait
cycles when the results of the foregoing instructions are
used. A wait cycle is needed only if the result of one
instruction is used immediately by the next sequential
instruction.

The data flow shows two parallel paths for fraction
processing: one add-path where all non-multiply
instructions are implemented, and one multiply-path
especially designed for multiply and divide. The add-path
is 60 bits wide and consists of an operand switcher, an
aligner, an adder, and a normalizer shifter. Instead of using
two aligners on each side of the operand paths, we used a
switcher to switch operands, thereby saving one aligner.
The switcher is also needed for other instructions, and
requires many fewer circuits. The resulting delay is not
critical.

The multiply-path consists of a Booth encoder for the
58-bit multiplier, a multiplier macro which forms the
58 x 60-bit product terms sum and carry, and a 92-bit
adder which delivers the result product. The sign and
exponent paths are adjusted to be consistent with the add-
path. The exponent path resolves all exception and true
zero situations, as defined by the IBM System/3%0
architecture. The implementation of all other instructions
is merged into the add-path and multiply-path, and requires
only minimal additional logic. The data flow in Figure 1
thus shows more function blocks and multiplexer stages
than needed for only add, subtract, and multiply
operations.

The data flow was then partitioned into smaller parts
(typically registers with their input control). For every
partition, such as FB, we described the functions in bit-
level detail using a block description form to reflect all
functions required. All interface signals were named
appropriately. Figure 2 shows an example of the detailed
documentation for the partition FB. This was used for
further transformation into gate-level and high-level
documentation of the data flow, and also to design the
control flow. We were able to stabilize the interfaces
between partitions at a very early stage. Cell count
prediction was then easily made, so that early floor-
planning could be done effectively. Because of our
numerous wide internal buses, the chip layout was based
exclusively on wiring studies. (It was not obvious that the
data flow would fit on the chip.) Using this high-level
documentation, we obtained a chip floor plan at a very
carly stage. It helped us to adjust nets and bus buffering to
achieve a well-balanced design. In fact, it was found that
delay problems arise primarily in the long buses. Also,
chip floor-planning ensured that we could implement all of

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Y

Floating-point register
Ar
Multipiexer. S [
BITNORM
DIVTAB
el —I—{— -
- -—r-— —
‘|> ENCODE
2nd pipe stage
--------- =1 =_1 ==
L
BSW a ALIGN ' L
1 X 60 x 58 multiplier
STORE 1 I
[mvert][mvert] I——J L_]
3rd pipe stage ! A
.......... CE1C= 1| =101 =1
ADD ADD
LOAD

RMALIZE | [PrOD SEL/DIV CORR |

|
jass o

{;]

o

S %
Sth pipe stage

Floating-point data flow.

our logic on a single chip. Figure 3 shows the chip Arithmetic implementation

partition and the cell count prediction for each partition. Floating-point instructions are partitioned into three main

The main buses are globally wired. The control logic part groups: 1) addition/subtraction, load; 2) multiplication; and

was assumed to comprise about 20% of the data flow part. 3) division. These are the instructions most used in 735

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 S. DAO-TRONG AND K. HELWIG

736

T ez

O b 10-43, *00" ey a1y
- = | [

(8~63)

r—u}-l—'é > :-_; [

{8-43)

co-3) |

BIT NCRMALIZER

(8~63)

(&-10)

et 1T ERLISHTION ég d_—-

I
T
=

[eel2els

FB REGISTER | at]42]¢3]

g

Detailed documentation of partition FB.

!

scientific applications. The first two groups of instructions
are performed in one cycle, and division is made as fast as
possible. The following subsections describe the control
flow to these three main groups of instructions.

® Addition, subtraction, load

During the first two pipelined stages, only instruction
and operand fetching are done. All data processing is
concentrated in the third and fourth pipelined stages. In
the fifth stage, the result is written back to the floating-
point register. Hardware implementation is done with
minimal logic, provided the cycle remains within the
design range.

S. DAO-TRONG AND K. HELWIG

Effective addition, load

Loads are treated like addition, with one operand equal to
zero. During stage 3 the exponents of both operands are
compared in order to determine the amount of alignment
shift. The operand with the smaller exponent is then
passed to the aligner for prealignment. In stage 4 the
aligned operands are added. The addition may produce

a carry-out, which results in a shift right by one digit
position, in accordance with the IBM System/390
architecture. The exponent must then be incremented by
one. If the instruction requires postnormalization, leading
zeros are detected, and the normalization shift amount is
determined. The exponent is then decreased accordingly.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

| 1
B ADD 'MDP
FLP
[_{
FER :
mEITES
- -
FDR
‘ .m
; i, M-
I I) =]
Iy MBR hm
[T =
. [FBR i
IT——
FAR =
Bt ¢
=
Hanbend
)
L o
=1
i TR u;
' JUOMAR MLP M
| 1] #
i
-
ey TE
CT1
{ '
i
}
DIS
Ly
=HTT [SEL
i
r-J‘
l =

Early floor-planning. Areas PP are reserved pads; areas XX are reserved for wiring. From upper left to lower right, IDs of the areas are as
follows: FLPT (floating-point register macro), ADD (adder), MDP (multiplier postprocessing), FER (FE partition), FDR (FD partition),
MBR (MB partition), FAR (FA partition), FBR (FB partition), MAR (MA partition), MLP (multiplier macro), MUR (multiplier register),
CT1 (control logic block), DIS (oscillator), and SEL (self-test logic).

737

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 S. DAO-TRONG AND K. HELWIG

738

Operand 1, digit§ e e

Operand 2, digit i
(4
Decode
0 F
y inwdi e : 0 1
Carry [s———
et 2.1 MUX

| Figured

Zero-digit detection.

Table 1 Exception wait situations.

Effective Exponent Exponent Unnormalized
addition/subtraction =7F < 0D operand
Yes Yes — No
Yes — Yes Yes
No — Yes —

Since time is still available in stage 4, the exponent
calculation is made sequentially after that of addition,
using only one exponent adder with an input multiplexer
to select whether an exponent increase, an exponent
adjustment, or a multiply/divide exponent is required.

Leading-zero detection is made by calculating the
hexadecimal digit sums without a propagated carry-in.
Hexadecimal sums 0 and F for the digit position i are
determined and fed into a multiplexer. The carry-in to this
digit position selects whether or not the result digit is zero.
This carry bit comes from the same carry-lookahead circuit
used for the adder, so no additional circuit is needed.
Figure 4 shows the realization. By using this additional
logic, the shift amount can be determined at nearly the
same time as the addition result.

Exponent exception, either overflow or underflow, is
also detected in this stage. Meanwhile, the next instruction
has already been started. As mentioned carlier, a wait may
be raised at stage 3 to hold execution of the next serial
instruction. In our case of an effective addition, the wait
situation is met when

S. DAO-TRONG AND K. HELWIG

e The intermediate result exponent is 7F and will overflow
when an exponent increment is caused by a carry-out
from the adder.

e The intermediate result exponent is smaller than 0D, and
a normalization is required for unnormalized operands.
Here the exponent must be decreased by the normalization
shift amount, which can be at most 0D (14 in the decimal
system), thus producing an exponent underflow.

Table 1 shows the cases in which an exponent exception
condition is met for the effective addition and subtraction.
This represents a very small percentage of cases, so
performance is only minimally affected.

Effective subtraction

To avoid recomplementation of the result, we always
subtract the smaller operand from the greater one. Most
frequently, subtractions are done by means of normalized
fractions. Here the greater operand can always be
determined whenever the exponents are unequal. In stage
3 the operand with the smaller exponent is passed to the
aligner whose output is to be complemented. When the
exponents are equal, a fraction-compare circuit compares
the operands and selects the smaller operand to be
negated. Thus, we have a complemented block on both
sides of stage 3 in our data flow. In stage 4 the subtraction
is performed, delivering a positive result. The sign is the
sign of the greater operand. Normalization is done in the
same way as for an effective addition. No exponent
overflow can occur.

For the case of subtraction with unnormalized operands,
except for the case in which the exponents are equal, we
cannot determine which operand is the smaller one. One
additional cycle is needed. At first we calculate A — B.
Depending on whether the result is positive or negative,
we calculate in the following cycle4 — Bor B — A4,
respectively. The result is then taken from the second
subtraction. The sign is determined accordingly.

o Multiplication
Multiplication is implemented by using a multiplier macro
custom-designed to save chip area. Because the overall
design goal was not to minimize cycle time but to optimize
the global chip set, we used the modified Booth algorithm
with serial addition of partial product terms {2], although
the Wallace tree method would have been more efficient
[3]. The latter method, however, is not appropriate for a
regular structure, which in turn is very important when
custom design is required and chip area and turnaround
time are to be minimized. When this method is used, the
multiplication time is proportional to the number of
additions of partial products, which is N/2, where N is
the number of multiplication bits.

The design goal was to increase the arithmetic speed by
reducing the number of additions and sequential delay

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

58 MIER inputs 58 MIER inputs
e

e ~N I's -~ ™
1 14 15 15 14 1
HA1 CSA3 CS_A2
M j¢— True
j¢——— Complement
- :
66 x 15 > 66 x 15 :
. 60
Multiplier Multiplier : P MAND
L H inputs
Array A o F Array B H
-y
— e True
j¢———— Complement
I — csal g
I
| 55 n 51 6 26 |
Macro border —-ep. l 207 outputs
c] J|
Control = Carry-propagation adder
192 2
Full product
(a)
_ 60 bits _
MSB LSB
LSB
Array A 29 bits
58 bits
Array B 29 bits
MSB

/ / :]> 15 %pm];iucts of

I> 15 partial products of
Array A

\

"

,
=4
B

118 bits

\Carry-save adder /

LSB — least significant bit
MSB — most significant bit

Sum 118 bits . |

®

739

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 S. DAO-TRONG AND K. HELWIG

740

T TXTIXIXF2XF 56,57 7,58 50,50 5 | x¥ol,
LEVEL 1 X2F01,
UXTT] UXTY MIxaT] Tixor
TRUE CIRCUITS, 62 MULTIPLEXERS
—_— 02
TXTIXAXE 2XF 68,60 1 80 |TXXF X103,
L L X2¢03,
muxrr] ano | uxar| leno anp |ano Tix02
LEVEL 2 T T TIX T ™ T
al eljc | a] olfc Al ®lje a| 8]c
TAUE CIRCUITS !
64 ADDERS . - ar r
I CoF |8 coF |s coF s coF |8
——— TXO3;
56,60 ™) xioa,
o] ¢ | | osg o | O ' , i
LEVEL 3
COMPLEMENT |z o |c| & 8 |c & 8/t & e & & g (e
#5 ADDERS Fac e e A e
lo s leo s lo s ool ls loo loer & B8

Multiplier array, upper corner.

stages. The modified Booth method is used to meet the
first goal, and a partitioning of the multiplier array into
two identical half parts to meet the latter goal.

Partitioning the array into two parts is not trivial. A
special carry network has been developed to move the
carry bits out of the lower significant array properly [4].
The advantages are the following: First, the carry network
reduces the total multiplier delay by nearly 50%; second, it
favors the structural regularity of the multiplier macro cell,
as does the Booth algorithm. This regularity has the
following advantages:

¢ The custom design is easier to handle (e.g., checking is
easier).

¢ Only one array need be designed.

¢ The performance is enhanced, and the area used is
reduced, by employing repeated circuits and repeated
interconnection wiring. Circuit design and layout can be
made very dense.

¢ The multiplier bit width is easily extendable.

¢ Regularity also means short wiring, which is a major
factor affecting the performance of CMOS designs.

¢ Design turnaround time is reduced.

In the Type 9221 floating-point processor, the multiplier
must support 60 x 58-bit multiplication, which is required

S. DAO-TRONG AND K. HELWIG

for our division algorithm. A block diagram of the 60 x 58
multiplier is shown in Figure 5. The border of the macro
cell is indicated by a dashed line. The registers at the
inputs as well as at the outputs of the macro cell are part
of the automatically wired logic circuitry of the chip.
Inside the macro cell there are no latches, only
multiplexers and adders.

The multiplier (MIER) input and output registers and
the multiplicand (MAND) input registers act as input and
output ports to the array. These registers are separate scan
paths which enhance the testability of the multiplier. The
decoders for the 2 x 29 multiplier inputs are placed before
the multiplier input registers, to keep the delay of the
multiplier and the rest of the data flow well balanced.

The multiplier output registers are inserted before the
final summation of the most significant product terms.
This location was selected on the basis of the delay
characteristics of the macrocell versus the cycle time of
the system. Carry-save adders (CSA1, CSA2, and CSA3)
and half adders (HA1) between Array A and Array B are
used to combine the sums and carries coming from both
arrays. Arrays A and B are mirrored on the chip,
permitting all array bits to be concentrated in the middle
channel for summation. The multiplicand inputs cross
Array B, the carry-save adders, the half adders, and finally
Array A, in straight lines.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Mirrored pair of array elements.

74

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 S. DAO-TRONG AND K. HELWIG

742

cio

Ao
Bo 0 8
(Sum)
o CO
Carry
Out
comp 1)
@
Tie o
Ao —
T28
R E
27
Bo [©-8
T7 (Sum)
18
T8 T29
| [P]—%
X co
728 To Carr
e {[P] | Out
A

®

Adder with (a) true inputs and (b) complemented inputs. Transistors are n-type unless marked P for p-type.

S. DAO-TRONG AND K. HELWIG IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Voo
T21
5 26u B Vop
T1 T10 ™ T18 T19 T24
(] — i
20u 10u 10u My 1 w=26u X
Al o |) e rt
T23 T3
20u
Al o o
A2 o 22u =20
T22 T2
A2 o- ! 4
22u W=20

_ Figureg

To summarize, the multiplier uses the modified Booth
algorithm, and consists of two identical arrays with 15
rows and 66 columns each. The first row contains only
multiplexers for the selection of the Booth-encoded
signals. Rows 2 through 15 contain multiplexers and full
adders (carry-save adders).

Circuit organization
The structure of the multiplier arrays is partly shown in
Figure 6, which contains the upper right corner of one
array. The first row (Level 1) consists only of multiplexers
(MUX7T, MUX3T). Full adders (FAT, FAC) are placed
from row 2 on. To save inverters (and delay time), the
circuits in row 2 are different from the circuits in row 3,
a pattern that is repeated throughout the remainder of the
array. The full adders in row 2 have only true input
signals, a complemented carry output, and a true sum
output. The full adders in row 3 have two complemented
input signals, while the other input and output signals are
true.

Signals 56 through 59 represent the last four (low-order)
multiplicand input signals. These signals are inputs to the

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

AND circuit integrated into the full adder. Transistors are n-type unless marked P for p-type.

multiplexers. The four horizontal lines (TX01, - - -) are
Booth-encoded signals leading to all multiplexers of one
row. In the macrocell layout, the circuits of a row are
shifted by two pitches to the right compared with the
circuits of the next higher row. This guarantees a
rectangular array layout. There are different types of
multiplexers and full adders derived from one multiplexer
layout or from one full adder layout. One unique array
element was optimally designed, with many personalization
possibilities. It can be used on every row of the array,
repeatedly. Figure 7 shows the layout of a mirrored pair of
array elements which makes the placement of the circuits
in the array much simpler. Only at the right edge of the
array are there irregularities. The full adder with an
integrated AND-function was designed with special care
from both layout and performance viewpoints, since it
contributed to the slowest delay path.

Circuit description

The delay characteristics of the full adders used in the
multiplier arrays directly affect the performance of the
macrocell. Both the sum and the carry paths of the full

S. DAO-TRONG AND K. HELWIG

743

744

10

Count of failing pattern
=S
T

»N
1

15 16 17

100 functional patterns

Worst-case pattern

18 19 20 21

Multiplier delay for 100 functional patterns - (ns)

Pattern-dependent delay.

adder circuit must be optimized. Two different adder cells
are used within the multiplier array. This scheme
eliminates a delay of one inverter in each array row.
Figures 8(a) and 8(b) show the two full adders with
alternating polarities for the carry-in (CI) and the input
signal A. Input B is fed by the sum output of a previous
adder and has the same polarity throughout. The circuits
are nearly identical; only the two connections X and X-not
are different. This eases the integration of the full adders
into an array. A full adder cell consists of three inverters
and twelve transmission gates. Eight transmission gates are
used to generate two exclusive-OR functions, while four
gates generate the carry-out function. If one follows the
delay paths from one full adder to the next, a maximum of
three transmission gates in series between two inverters
are encountered.

Worst-case paths are, however, caused by irregularities
due to the necessary AND-function between the full
adders at the right edge (Figure 6). The circuit for this

S. DAO-TRONG AND K. HELWIG

block is shown in Figure 9. The transmission gates T2, T3,
T10, T11, T18, T19, T22, and T23 perform the AND-
function, which is integrated into the first exclusive-OR
function of the full adder. This integration makes the
additional delay modest.

Test results

The typical delay of the multiplier macrocell from input to
output register was measured to be 18 ns. This delay is the
sum of two multiplexer delays and 14 carry-save adder
delays inside the arrays, and of two carry-save adder
delays and an on-chip driver delay outside the arrays. It
also includes the setup time for the registers. The pattern
dependency of the multiplier delay can be seen in

Figure 10. The delays, which vary between 16 ns and

19.5 ns, are the result of applying 100 functional patterns.
Finally, Figure 11 shows a distribution of multiplier delays
resulting from the application of a worst-case pattern to
several chips out of five experimental lots.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

3sh Maximum delay (33.9 ns) at Vpy = 3.24V, T = 25°C

25—

\

Lot1 Lot2

Multiplier delay (ns)

15

10

mu"'"d-—";«"—" — d\#‘»"\m

&

Lot4

65 modules out of 5 lots

__ Figur

Worst-case delay distribution.

Verification and simulation

For simulation and verification purposes, a one-to-one
logic gate model of the multiplier was written and then
was merged into the entire floating-point model for circuit
simulation. With this multiplier model, data were generated
to further test and stress the multiplier macro, which was
built on a test site. Because the macro was designed
manually, additional effort was needed to check the
correctness of the design. To this end, a topology-checking
program named MACH]1 from our Engineering Design
System (EDS) was used to check the transistor shapes
against the logic gate model. A library of transistor shapes
was created for defining the correspondence to logic gates.
The program then checked the shape connections for
correct function. By using both simulation and shape
checking, a correct multiplier macro was built and merged
onto the floating-point chip.

Binary multiplication

Although not a floating-point instruction, binary integer
multiplication is also implemented on the floating-point

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

processor to improve performance. The floating-point
processor is very highly coupled to the CPU and is an
integral part of it. Because the Booth encoders are
implemented outside the multiplier macro, modification to
the Booth coefficients can be easily made to match the
requirements for signed multiplication [5].

® Division

Division is performed by the floating-point processor using
a modified Newton convergence method. The starting seed
for the division comes from a table which is seven bits
wide. In the following, we describe only operations on the
fractional part of the operands. Exponent calculation is
simple and is calculated separately.

Let A and B be the fractional parts of the dividend and
divisor, respectively. Then let A and B be bit-normalized;
i.e., the most significant bit is nonzero (for hex-format, a
bit-normalization must be done before processing):

A=0.laaa,- - a,,
B =0.1bpbp, - b,. 1)

S. DAO-TRONG AND K. HELWIG

745

MAREG B, R, (1-eB) | (1-eB) | (1+&°B?) | (1+°B%) | (1+&'B*) | (1+¢*BY)
A

MBREG B (1+&B) Q, (1-£°B?) Q, Q,
MULT
EA NP W, VP N s WO B\
PRODUCT »(1+eB) W 0, W(1-£°B?) 0, W»(1-¢'BY) 2, Q
Stepl1 | Step2 | Step3 Step 4 Step 5 Step 6 Step 7

Example divide in pipeline structure.

Stepl B+ R, = 0.73216312 X 1.36
= 0.99574184 = 1.+ €B,
1 - B = 1.00425816.

Step2 AR, = 0.59786552 % 1.36
= 0.81309710.

Step3 (1 + &B)(1 — &B) = 0.99998186 = 1 — £’B?,
1+ £’B* = 1.00001814.

Step4 A-R,-(1 - eB) = 0.81309710 x 1.00425816
= 0.81655939.

Step5 (1 — &’BH)(1 + £’B%) = 0.99998186 x 1.00001814
= 0.99999999 = 1 — ¢*B*,
1 + &'B* = 1.00000001.

Step6 A-R,: (1 - eB)(1+ £?B%) = 0.81655939 x 1.00001814
= 0.81657420.

Step7 A-R,- (1 - eB)(1 + £’B’)(1 + &'B*) = 0.81657420 x 1.00000001
= 0.81657420 = Q.

Comparing multiplications:
B - Q = 0.73216312 x 0.81657420 = 0.59786551 < A,
B(Q + 1LSB) = 0.73216312 x 0.81657421 = 0.59786552 = A.

However, the low part of the product, not shown here, is not zero, so that the full product is greater than A.
Thus, the correct result is
Q = 0.81657420.

Note: In hex format, the result must be corrected according to the bit normalization done before processing.
This step may increment the result exponent by one in the low-order bit.

Example divide A/B for A = 0.59786552 and B = 0.73216312.

746

S. DAO-TRONG AND K. HELWIG IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Let R, be the start seed, which is the seven-bit
approximation of the inverse of B:

1
R=gz+s @)

€ has at least seven leading zero bits.
Division is performed as follows:

A AR, AR, AR,
B B-R (1 " 1+¢B
B§+8

_ AR(1-<B) A-R(1-¢B)
" (1+eB(l-¢eB) 1-¢B?
_ ARl -eB)1+ e’B) A-R(l - eB)1 + &'BY)
T (1-é&BY1 + e'BY 1-¢'B?
ARl - eB)X1+ ¢’B)(1 + ¢'BY)
a (1-&'BH1 + ¢'BY
A-R(1 - eB)X1 + ’BY)(1 + ¢'BY)

o ®)
Because £*B® has at least 64 leading zero bits, the
quotient of A/B can be approximated by
A
3 ~A-R(1 - eB)1 + &'BY(1 + &'BY) = Q. (4)

We need to perform only seven multiplications because the
last multiplication result, which is (1 — ¢*B®), can be
discarded. It was mathematically proven that the
approximation so found is at most one least significant bit
away from the correct result. The precise result of the
division is then determined by making the two comparing
multiplications

AzB-Q
and
A z B(Q + 1LSB), 5)

where LSB indicates the least significant bit.
The terms (1 — &B), (1 + &’B?), and (1 + &*B*) used
in Equation (3) are derived from the terms (1 + £B),
(1 — £’B%), and (1 — &*B*) respectively, using special
built-in circuitry. Hardware needed is minimal, whereas for
the same function others need a table-lookup ROM [6].
The sequence of the division is shown in Figure 12.
The complete division including the correcting steps is
implemented in hardware and requires 14 cycles. An
example of a divide using decimal numbers is illustrated in
Figure 13. Let A = 0.59786552 and B = 0.73216312.
The divide table delivers the rounded inverse of the
truncated B operand, which is 0.73. Thus,
R, = 1/0.73 = 1.36.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Table 2 Performance summary—floating-point chip.

Clock 37 MHz maximum
Register-to-register

instruction 1 cycle typical
Register-to-memory

instruction 3 cycles typical
LINPACK [7]

performance 4.1 MFLOPS
Power dissipation 2w

Summary

Figure 14 shows a wiring plot of the chip. Wiring
amounted to more than 30 meters at the first iteration,
resulting in an unwirable design. After two iterations,
including new floor-planning, a design requiring only 18
meters of wire was produced. The chip measures

12.7 mm X 12.7 mm and contains more than 70 000 wired
cells (equivalent inverter). All single-, double-, and
extended-precision floating-point instructions, and the
binary integer multiplication, are performed as defined by
the IBM System/390 principles of operation. The data
types are short format (one sign bit, seven exponent bits,
and 24 fraction bits), long format (one sign bit, seven
exponent bits, and 56 fraction bits), and extended format
(one sign bit, seven exponent bits, and 112 fraction

bits). Instructions that are heavily used, such as addition,
multiplication, load, and store, are performed in one
cycle, except for extended operands. In pipelining,
mode, long results can be sdelivered every cycle, which is
27 ns. Table 2 shows a performance summary of the
floating-point chip.

System/390 is a registered trademark, and Enterprise
System/9000 and ES/9000 are trademarks, of International
Business Machines Corporation.

References

1. H. Schettler, K. Getzlaff, K. Klein, C. W. Starke, J.
Wilczynski, and A. Bhattacharyya, ““A CMOS Mainframe
Processor with a 0.5 um Channel Length,”” IEEE J. Solid
State Circuits 25, 1166 (1990).

2. O. L. McSorley, “High Speed Arithmetic in Binary
Computers,” Proc. IRE 49, 67 (1961).

3. C. S. Wallace, ““A Suggestion for Parallel Multiplier,”
IEEE Trans. Electron. Computers EC-13, 14 (1964).

4. K. G. Getzlaff, S. Dao-Trong, and K. Helwig,
““Multiplizierwerk (Multiplier),”” European Patent Office,
Reg. Number 89102956.3, February 1989.

5. A. D. Booth, ““A Signed Binary Multiplication Algorithm,”
Quart. J. Mech. Appl. Math. IV, Part 2, 163 (1951).

6. K. Kaneko, T. Okamoto, M. Nakajima, Y. Nakakura,

S. Gokita, J. Nishikawa, Y. Tanikawa, and H. Kadota,
““A VLSI RISC with 20 MFLOPS Peak, 64-Bit Floating
Point Unit,” IEEE J. Solid State Circuits 24, 1331
(1989).

7. 1. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
Stewart, LINPACK User’s Guide, Society for Industrial
and Applied Mathematics, Philadelphia, 1979.

S. DAO-TRONG AND K. HELWIG

747

748

Floating-point chip wiring.

Received April 18, 1991; accepted for publication
September 18, 1991

Son Dao-Trong IBM Germany, Schoenaicherstrasse

220, 7030 Boeblingen, Germany (DAOTRONG at BOEVM2).

Dr. Dao-Trong received his Dipl.-Ing. degree in electrical
engineering from the University of Karlsruhe. In 1979 he
joined the University, where he worked on logic synthesis

S. DAO-TRONG AND K. HELWIG

tools in a gate-array environment. He received his Doctor-Ing.
degree in 1984 and joined the IBM Laboratory in Boeblingen,
where he first worked on packaging design and noise analysis.
Since 1987 he has worked on floating-point design as a team
leader. In 1989, Dr. Dao-Trong received a patent on the
multiplier array which is embedded in the floating-point chip
of the recent Enterprise System/9000 9221 models. He is
currently working on the design of the next model, stressing
design methodology.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Klaus Helwig IBM Germany, Schoenaicherstrasse 220, 7030
Boeblingen, Germany (HELWIG at BOEVM4). Mr. Helwig
received the Dipl.-Ing. degree in electrical engineering from
the Technical University of Vienna, Austria, in 1965. From
1966 to 1968, he was employed with Siemens AG, Munich,
Germany, where he was engaged in the development of MOS
transistors. In 1968, he joined the Components Group of the
IBM Laboratories, Boeblingen, Germany, working on digital
integrated circuit designs especially for monolithic memory
applications. During the past years, Mr. Helwig has been
engaged in the design of CMOS memory and logic arrays.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

S. DAO-TRONG AND K. HELWIG

749

