Design of the

by D. H. Gibson
G. S. Rao

IBM System/390

computer family

for numerically
intensive
applications:
An overview
for engineers
and scientists

The IBM System/390® (S/390) computer family
provides a two-order-of-magnitude
performance range for numerically intensive
applications. The engineer or scientist can use
the same operating system, compiler, and run-
time environment commonly across the family.
This paper provides an overview of primary
§/390 hardware and software products of
interest for numerically intensive applications,
including MVS/ESA™, VM/ESA®, AIX/ESA™, and
the extension of FORTRAN for very large
applications and parallel applications. The
primary portion of the paper is focused on
details of design interest in three specific
hardware products within the S/390 family,
with emphasis on the Enterprise System/9000™
(ES/9000™) Model 900. Also described is a
potential parallel-computing configuration

using the ESCON Director™. The paper
concludes with a discussion of the generic
system environments within which S/390
products can support the technical user.

1. Introduction
Engineers and scientists have historically shown interest
in the design details of the tools they use, especially
computers. The history and a general description of
computers as a tool for engineers and scientists have been
given in an earlier paper by Gibson et al. [1]. The present
paper provides design details and references of interest for
users of System/390% (S/390) in numerically intensive
applications.

The paper begins with an overview of the elements of
an S$/390 system that are of interest to an engineer or
scientist. This is followed by a survey of syntactical

©Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

695

D. H. GIBSON AND G. S. RAO

696

“

extensions of FORTRAN for very large applications and
parallel processing, including the preprocessor and the
related syntax of the supercomputing systems extension'
Clustered FORTRAN, each of which represents pioneering
efforts in coarse-grained parallelism. The MVS/ESA™ and
AIX/ESA™ operating systems are discussed next, followed
by an extended discussion of design details of interest in
three models in the Enterprise System/9000™ (ES/9000™)
family, with special emphasis on the Model 900. This
fastest ES/9000 model within the S/390 family provides
scalar, vector, and parallel computing in the traditional
manner of improving state-of-the-art technology and
system structures. The advances in semiconductor
technology, packaging technology, and clock speed are
complemented by multiple execution elements and a
storage hierarchy that includes a two-level cache design.
The vector facility for the Model 900 is also discussed,
followed by a description of a potential base for parallel
processing in the S/390 environment using the ESCON
Director™. The ESCON Director is a part of the
Enterprise Systems Connection (ESCON™) family of
products that improve data rate, availability, distance,
connectivity characteristics, and system management for
system interconnection. It is a nonblocking crosspoint
switch with up to 60 ports. The paper concludes with a
discussion of the system usage environments of interest
to engineers and scientists for the ES/9000.

2. $/390 overview from an engineering and
scientific perspective

The S$/390 computing subsystems of interest to an engineer
or scientist are the high-level languages, the operating
systems, the processors, the storage subsystems, and the
hardware connectivity. S/390 computing services may be
invoked from UNIX® workstations, from 0S/2® or DOS
workstations, or from a variety of mainframe-interactive
(MFI) terminals.

® High-level languages
Numerically intensive computing usually involves
calculations written in a high-level language. The
predominant language for engineering and scientific
numerical computing is FORTRAN. Section 3 of this paper
discusses selected FORTRAN capabilities of interest
within the $/390 family, including the preprocessor for
generation of in-line subroutine code and the parallel
extensions known as Clustered FORTRAN.

$/390 computing services may also be invoked using
high-level languages other than FORTRAN, which have
their own special merits. Subroutines written in any of the
following high-level languages can call and be called by

! SuperComputing Systems Extensions (SCSE) are additions to the $/390 family.
They are designed to enhance S/390 for supercomputing. A specific SCSE, such as
Clustered FORTRAN, is available via special agreement.

D. H. GIBSON AND G. S. RAO

FORTRAN: The C language is often used in applications
written for a UNIX environment. C/370 [2] provides C
language support for large memory and multitasking. The
APL language has long been regarded as providing an
exceptional ability to formulate a task in array and vector
constructs. APL2™ [3] automatically uses the Vector
Facility of S/390 (when present) for improved performance.
VS PASCAL [4] embodies many software engineering
concepts and provides IBM extensions to the ANSI and
ISO PASCAL standards. Assembler support is provided
by the Assembler H [5] product.

In addition to high-level languages, a library of often-
used routines that have been highly tuned to the ES/9000
model is available. McComb and Schmidt [6] describe the
contents and some of the techniques used in ESSL, the
Engineering and Scientific Subroutine Library. This library
comprises more than 280 routines in ten computational
areas including, for example, linear algebra, matrix
operations, signal processing, and sorting. It has been
demonstrated to achieve the fastest possible execution
rates on ES/9000 models.

Another library of interest is the Optimization
Subroutine Library (OSL), a collection of high-
performance mathematical subroutines for use in
application programs that solve optimization problems.
The mathematical programming techniques within OSL,
which seek to minimize or maximize a function subject to
a set of constraints, include linear programming (simplex
and interior point methods) [7-10], mixed-integer
programming [11], quadratic programming [12], and pure
network solution [13].

MPSX/370 (Mathematical Programming System
Extended/370) Version 2 is a program used to optimize
operations and investments common to most users. MPSX
provides solutions for linear and separable mathematical
programming problems and, with Version 2, supports the
Vector Facility for improved performance.

Several hundred application programs [14] in the public
domain or available from vendors have been enabled to
support the Vector Facility, in addition to the thousands
that are enabled for the scalar ES/9000 processors.
Examples of the vector-enabled applications are
MSC/NASTRAN® for structural analysis, the FLO codes
for computational fluid dynamics, the GAUSSIAN codes
for chemistry, and the ECLIPSE codes for seismic
processing. In addition there are codes for physics, for
electronics, and for quantitative analysis.

® Operating systems

IBM System/390 services are available to the engineer or
scientist in one of three possible operating system
environments®. The UNIX environment is provided by the

2 There is a fourth operating system, VSE/ESA™, available for $/390 that is not
described herein because of the low use of this operating system by engineers and
scientists.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

AIX/ESA native operating system and by the AIX/370™
operating system, which takes advantage of the paging and
other hardware resource services provided by VM/ESA®.
Many users prefer the familiar interactive environment
offered by CMS under VM/ESA. Production environments
such as CATIA®-based simulations often choose
MVS/ESA and the associated batch monitor Job Entry
Subsystem, as do users concerned with systems storage
management.

® Processors

The eighteen ES/9000 processors announced in September
1990, together with the additional seven processors
announced in September 1991, span a 100-fold
performance range without vector processing, and a
200-fold range with vectors. They are based on one of three
implementations, each with its own technology, logical
design, and associated packaging: water-cooled (with a
tenfold performance range), frame-mounted air-cooled
(with a fourfold performance range), and rack-mounted air-
cooled (with a threcfold performance range). Section 5 of
this paper details the fastest processor within each of the
three implementations, with emphasis on numerically
intensive computing capability.

® Hardware connectivity

IBM System/390 connectivity is based on the IBM
Enterprise Systems Connection (ESCON) Architecture™.
Five papers in this issue are devoted to ESCON. One
especially interesting capability, the crosspoint switch, is
described by Georgiou et al. [15]. Section 5 of this paper
treats another aspect of ESCON that has not been widely
discussed: the potential for an n-way parallel system based
on ESCON, where n < 60. Additionally, and of particular
interest to the engineer and scientist, is the FDDI (Fiber
Distributed Data Interface, a high-speed fiber optic LAN)
attachment to S/390 as described by Coleman et al. [16] in
this issue.

3. FORTRAN, the language environment most
used for NIC

® FORTRAN 2.5

IBM VS FORTRAN [17] Version 2 Release 5 consists

of a compiler, an interactive debugging facility, and an
execution-time library of subprograms. The FORTRAN 77
standard constructs are supplemented with IBM
extensions. FORTRAN 66 constructs are also supported.
Both scalar and vector run-time environments are
supported.

One class of IBM extensions is referred to as Extended
Common. Currently, an application program may be
limited by the size of the common area. With this
extension, the size of the application program may be very

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

large, and recent measurements show that applications
as large as 5 GB can be run efficiently. Further detail is
provided in Section 4 of this paper.

Extended Common is a compiler option, not a
syntactical language extension; it allows the FORTRAN
programmer to define multiple extended common blocks,
each as large as 2 GB in size. This is achieved by
dynamically allocating storage to FORTRAN-named
common areas from Enterprise Systems Architecture/390™
(ESA/390™) data spaces [18]. Neither a FORTRAN array
nor a named common area may be assigned to more than
one data space. The size of the application program,
however, may be very large, since even with the 2GB limit
on an array or named common area, the user is free to
organize many arrays and variables into many named
common areas. Extended Common cannot be used with
static or interactive debug, the multitasking facility, or
other high-level languages. Assembler language programs
must be modified to accept data passed from an Extended
Common block. Otherwise, the programmer continues to
use normal application design practices and coding styles.
The above restrictions and details of use of Extended
Common are found in [17].

In order to assign named common areas to ESA/390 data
spaces, the user has only to specify the compiler option
“EC,” followed by the list of common area names, in the
same manner as for the FORTRAN dynamic common
“DC” option used with System/370™ Extended
Architecture (XA). In fact, if the aggregate size of
FORTRAN dynamic commons in existing code grows
beyond the System/370-XA limit, existing dynamic
common specifications may be changed to Extended
Common specifications by merely changing the option
“DC” to ““EC.”” The FORTRAN compiler organizes the
named commons in the “EC”” specification among a
minimum number of ESA/390 data spaces and establishes
all required addressability. A subroutine which explicitly
references data in Extended Common is said to be running
in extended mode (EMODE). A subroutine which accepts
arguments that might reside in Extended Common must
also run in EMODE, and must be compiled with the
“EMODE” compiler option to permit it to accept
Extended Common data. It is recommended when using
Extended Common that optimization level OPT(2) or
above be selected for compilation to avoid the greater
CPU utilization experienced at lower optimization
levels.

Another class of IBM extensions is referred to as
Parallel FORTRAN. Paralle]l FORTRAN provides for
automatic parallel execution of eligible DO loops and
automatic integration of parallel and vector processing on a
single, virtual, multiprocessing computer running under the
control of either the MVS/ESA or the VM/ESA operating

system. 697

D. H. GIBSON AND G. S. RAO

698

Although automatic detection of parallelism may be an
easy way to introduce parallelism, it does have some
limitations [19]. For this reason, Parallel FORTRAN
provides language extensions with which the programmer
may specify parallel execution. These include extensions
for parallel loop iterations, parallel statement sequences,
and parallel subroutine execution.

Library routines for synchronizing parallel pieces of
work are also provided. In-line language extensions, such
as PARALLEL LOOP, allow the programmer to identify
loops or blocks of statements that can be executed
concurrently. Out-of-line language extensions, such as
SCHEDULE TASK, permit the programmer to create
asynchronous execution environments. The combination of
Parallel FORTRAN and ES/9000 multiprocessors such as
the Model 900 can provide a significant reduction in
turnaround time for applications.

Parallel FORTRAN function is extended by two
supercomputing system extensions referred to as Clustered
FORTRAN.

& Clustered FORTRAN
IBM Clustered FORTRAN ([20] and IBM Enhanced
Clustered FORTRAN are combinations of hardware and
software which allow IBM multiprocessor systems to be
connected as clusters with all resources devoted to a single
FORTRAN application. The hardware consists of high-
speed intersystem connections. The two differ primarily in
the hardware cluster that is supported. IBM Clustered
FORTRAN allows two Enterprise System/3090™
(ES/3090™) multiprocessor systems to be connected as a
cluster, whereas IBM Enhanced Clustered FORTRAN
allows up to four ES/9000 multiprocessor systems to be
clustered. The FORTRAN compiler and library provided
as part of IBM Clustered FORTRAN are used for writing
and executing the job. One FORTRAN job can execute in
parallel across all of the processors, up to the maximum
cluster size of twelve 3090™ central processors (CPs) or
twenty-four ES/9000 CPs. In the description which follows,
the term ““Clustered FORTRAN"’ is used for software
concepts which are common to both IBM Clustered
FORTRAN and IBM Enhanced Clustered FORTRAN.
Clustered FORTRAN extends the Parallel FORTRAN
function: Whereas Parallel FORTRAN is limited to a single
operating system environment, the Clustered FORTRAN
execution environment supports multiple multiprocessors
each running a copy of the preferred operating system.
Either the MVS/ESA or the VM/ESA operating system
may be chosen, but both cannot be used in the same
cluster. The extensions over Parallel FORTRAN include

& Operating system support of the high-speed hardware

connection.
& FORTRAN run-time virtual configurability.

D. H. GIBSON AND G. S. RAO

o Parallel scheduling constructs across multiple virtual
computers.
& Enhanced parallel language constructs.

A user of Clustered FORTRAN specifies a virtual
configuration which suits the application at hand. A real
cluster configuration consisting of two six-way ES/9000
multiprocessor systems might be thought of as twelve
uniprocessor computers, as four computers each with three
processors, as two computers each with six processors, or
many other configurations. The virtual configuration is
specified at execution time by a file containing
COMPUTER statements, with one statement for each
virtual computer desired. When a Clustered FORTRAN
application is submitted for execution, the control
program extensions create the virtual configuration and
map it onto the real configuration for the duration of the
job.

A Clustered FORTRAN application sees a virtual
configuration for its execution environment. The virtual
configuration consists of one or more virtual computers
which are connected by a virtual connection facility. The
virtual computers share no memory; this mimics the
architecture of the collection of real computers in the
complex. Each of the virtual computers may be a shared-
memory multiprocessor; this mimics the architecture of
any one of the real computers in the complex. A virtual
configuration for a Clustered FORTRAN application is
shown in Figure 1.

& VAST-2 preprocessor

A program offering is available for preprocessing
FORTRAN programs to optimize them where possible.
VAST-2® for VS FORTRAN is a software tool that
automatically optimizes VS FORTRAN programs by
preprocessing DO and IF loops. It improves performance
through parallelization, vectorization with enhancements,
and in-line expansion [21].

Parallelization detects when the iteration of a loop can
be spread across separate processors; vectorization
enhancement inserts compiler directives, restructures
loops, and substitutes calls to library routines, in order to
increase the number of loops vectorized, and in-line
expansion reduces calling overhead and assists other kinds
of optimization by inserting the bodies of called routines at
the places where they are called.

IBM VS FORTRAN does a large amount of optimization
on its own. VAST-2 is intended for use on programs that
require the maximum possible optimization. As a
preprocessor, it is able to do some higher-level
optimizations that would be inefficient to attempt in the
compiler itself. VAST-2 also converts FORTRAN 8X array
syntax into DO loops that can be processed by the VS
FORTRAN compiler.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Root virtual computer

Clustered FORTRAN
application program
(root and paralle] tasks)

A A A e L e £ o
FT

FIT FT FI FT e o .0

Clustered FORTRAN library

14

Cluster virtual computer

Clustered FORTRAN
application program
(paralle] tasks only)

A me e | pes |

FI- FT . FT. FT e e.* FT

Clustered FORTRAN library

it

W TH tt
vp| |VP|eseivP

Virtual
connection facility

H W TH t
vP VP:je » o} VP

FT = FORTRAN task
VP = Virtual processor

A virtual configuration for a Clustered FORTRAN application.

4. AIX, VM/ESA, and MVS/ESA operating
system environments

® AIX/ESA

Many engineers and scientists want to transport
applications among systems without the necessity of
rewriting for each system. High-level languages (HLLs)
are helpful if each system has a compiler that maps the
chosen HLL to the specific system architecture. If it were
true that no interaction between the user and the application
was required, simply recompiling would suffice to transport
applications among systems. However, modern-day
computing practices involve the user working at a terminal to
interact with the application. The interaction always involves
set-up, often involves redirection of processing, and
sometimes involves debugging. The operating system
determines the environment that the user must understand
for this interaction, and UNIX is the only operating system
that attempts to run on architecturally different systems. If
there is no UNIX on the intended system, the user must
learn a different operating system.

The native version of UNIX for ES/9000 processors is
AIX/ESA, which became available in the second half of
1992. AIX/ESA is the newest member of the AIX® family,
providing a native implementation of the OSF/1™ operating

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

system for IBM Enterprise Systems. In support of the
heavy CPU and storage requirements of numerically
intensive applications, AIX/ESA exploits hardware
features such as multiprocessing and large-process address
spaces (up to 2 GB). AIX/ESA also supports expanded
storage directly as a paging device, providing fast paging
performance for large processes.

AIX/ESA operates natively, or under the VM/ESA
operating system, or in a logical partition of an ES/9000
processor. Migration and compatibility features facilitate
ease of migration from the current UNIX offering,
Advanced Interactive Executive/370™ (AIX/370™).

® AIX/370
The UNIX environment is currently supported by the
ATX/370 operating system under VM/ESA.

While there has been concern expressed about the
performance of running UNIX production under VM,
analysis has shown that there is no visible performance
degradation due to running a suitably configured AIX/370
guest under VM/ESA. This is primarily because VM
employs advanced paging algorithms, and it is particularly
advantageous to use VM paging when a large address
space is required that exceeds the physical memory of the
machine. Large address spaces are typical of numerically

D. H. GIBSON AND G. S. RAO

700

intensive computing. Blandy and Newson [22] describe the
management of host storage paging using algorithms that
are carried forward into VM/ESA.. In particular, Koba and
Iimura [23] state that “‘when an AIX/370 guest has been
set up with a processor dedicated to it, all DASD devices
dedicated to it, multiple swap devices allocated to it, and a
large pool of reserved pages in memory, CPU intensive
applications will run at essentially the same speed or better
as under CMS. This set up has eliminated much of the
non-native overhead associated with CP while taking
advantage of the superior VM paging subsystem and the
microcode assists available.”

* VM/ESA
The VM/ESA operating system provides VM data spaces
through a virtual machine architecture called Enterprise
Systems Architecture/Extended Configuration (ESA/XC).
Gdaniec and Hennessy [24] describe the ESA/XC virtual
machine architecture and present an overview of the
VM/ESA services provided in support of VM data spaces.
For engineers and scientists, one of the more interesting
services is the Shared File System (SFS). SFS provides a
hierarchical view of files that may be shared among the
several thousand users common to a large VM/ESA
system. The fundamental performance problem of a
reentrant service supporting thousands of users in a
singular limited storage space is eliminated by multiple
data spaces.

* MVS/ESA

The MVS operating system provides a number of
capabilities of interest to the engineer or scientist. Among
these capabilities is a rich batch monitor system and
system-managed storage. One especially interesting
capability in S/390 is a callable system service whereby the
user can give hints to the operating system that result in a
faster-running application. This is known as reference
pattern services.

Long-running production applications, such as CATIA-
based simulations, often reference large amounts of virtual
storage in a repeatable, predictable manner. MVS/ESA
SP 4.2, the §/390 version and initial release of MVS,
provides reference pattern services through program
CALLs. Judicious use of these CALLs benefits run-time
performance. In addition, when the MVS/ESA operating
system can detect forward-sequential accessing of virtual
storage, the CALLSs need not appear in the application to
obtain the performance improvement.

The numeric data processed by such applications often
span many of the 4096-byte pages that are managed by
MVS. The basic design of MVS is oriented to demand
paging, meaning that one page is brought into central
storage each time a page fault is taken. The page that is
brought in is the one containing the data demanded by the

D. H. GIBSON AND G. S. RAO

application. Reference pattern services allow the operating
system to bring multiple pages into real storage when a
single page fault is taken. An application can provide page-
reference pattern information that identifies the range of
data being referenced, the reference pattern, and the
number of bytes that the system is requested to bring into
central storage at one time. This information is provided in
a program CALL, the details of which are described in an
IBM publication on callable system services [25].

® Emerging application example

To demonstrate the kind of problem handling that
reference pattern services make practical, a large aircraft
flow-field analysis program has been measured. The grid
has been refined such that a 5GB problem size is created.
The FORTRAN Extended Common capability described
earlier in this paper has been used to define and dimension
the necessary variables. Thus, the system as a whole
contributes to the performance and coding which

make it practical to handle problems of this size. The
measurements are compared to a base measurement of

48 hours run time to complete two iterative cycles on an
ES/3090 Model J system with 512 MB central and 2 GB
expanded storage. The reference pattern services in
MVS/ESA 4.2 allow this job to run in 8.5 hours. The
ES/9000 Model 900 (see the next section of this paper)
allows this job to run in about 6.9 hours; the CPU time is
reduced by a factor of 2.4, but the I/O wait time is not
reduced. Note that in a production environment where the
system is not dedicated to running this one job, the
improvement in processor speed affects a larger fraction of
the total turnaround time. Increasing the processor storage
capacity of the ES/9000 Model 900 to 1 GB of central and
4 GB of expanded storage allows this job to run in one
hour. Note finally that this type of problem normally
requires 100 or more iterative cycles to complete. With the
ES/9000 Model 900, MVS/ESA 4.2, and FORTRAN 2.5
Extended Common, it is practical to run the complete job
over a weekend.

5. ES/9000 Models 900, 480, and 170

® Architecture overview
ESA/390 architecture [26] provides a rich environment for
numerically intensive computing applications. Addressing
capabilities permit access to 2GB data spaces. Floating-
point arithmetic is provided in 32-bit, 64-bit, and 128-bit
formats. Primitive instructions include variations on add,
subtract, multiply, divide, and square root. Logical flow is
controlled with comparison and branching instructions.
On September 5, 1990, IBM announced eighteen
ES/9000 processors which implement ESA/390
architecture. One year later an additional seven processors
were announced. All twenty-five are compatible. They

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

ES ICE ICE ES
SCE SCE
Ccs cs
SHSB SHSB

*<

PHSB PHSB PHSB PHSB PHSB PHSB
P ce ce cp cp cp
C/VF VF VF CIVF VF VF
CH = channels ICE = interconnect communication element
ES = expanded storage SCE = storage control element
CS = central storage VE = vector facility
CP = central processor C = integrated cryptographic feature

SHSB = shared high-speed buffer PHSB = private high speed buffer

ES/9000 Model 900 system structure.

differ primarily in the speed of execution. For even higher ~ ® ES/9000 Model 900
performance, seventeen of the twenty-five additionally

offer compatible vector operations [27]. System structure
The twenty-five ES/9000 processors may be grouped into
three implementations: water-cooled; frame-mounted air- Data flow The ES/9000 Model 900 is a shared-memory
cooled; and rack-mounted air-cooled. The fastest processor MIMD system with six central processors (CPs), each of
within each of the three implementations is described which can have an optional vector facility. As shown in
below, with emphasis on numerically intensive computing Figure 2, each CP connects to the two sides of the storage
capability. control element (SCE) and shared high-speed buffer 701

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 D. H. GIBSON AND G. S. RAO

702

L Ry

gur

(SHSB) with associated controls. The connection consists
of a doubleword store bus from each CP to each SCE side,
and a quadword fetch bus from each SCE side to each CP.
The quadword fetch bus is composed of one unidirectional
doubleword bus and one bidirectional doubleword bus,
described further in the subsection on the ES/9000 Model
900 Vector Facility.

The SHSB functions as a 4MB four-way set-associative
store-in cache with a 256-byte line size. Each SHSB side is
capable of fetching or storing four quadwords each
machine cycle. Absolute addresses are mapped to the
SHSB side corresponding to the 4MB mapping of central
storage; a CP need only request an absolute address from
one side. Requests by two or more CPs to store into the
same line are resolved by the SCE using the SHSB
directory. I/O activity interrogates the SHSB directory and
bypasses the SHSB if there is no hit.

Each central storage (CS) side is four-way interleaved
on 256-byte boundaries. It is partitioned between the two
sides on 4MB boundaries. The mapping of absolute to
physical 4MB ranges is determined by the processor
controller.

D. H. GIBSON AND G. S. RAQ

ES/9000 Model 900 conceptual storage control element data flow.

s Ve a e T ey e e e T e R R e R e

The interconnect communication element (ICE) is
connected to each SCE side by doubleword busing that
supports one doubleword fetch and one doubleword store
each machine cycle. The ICE supports the transfer of data
to and from the expanded storage, and the transfer of data
to and from channels (CH).

Thus, the data-fetch portion of each SCE side may be
thought of as a 4 x 4-quadword crosspoint switch between
the CS and the SHSB, cascading to a 4 X 6-quadword
crosspoint switch between the SHSB and the CPs in
parallel with a 4 x 2-doubleword crosspoint switch
between shared SHSB and ICE. This conceptual
representation is shown in Figure 3.

Similarly, the data-store portion of the SCE may be
thought of as a 6 x 4-quadword crosspoint switch from the
CPs to the SHSB. However, on any given machine cycle
only one doubleword and one quadword may move
between a CP and an SCE.

Memory hierarchy Figure 4 shows details of the central

processor. Each CP contains 256 KB of private high-speed
buffer (PHSB), divided into a 128KB instruction buffer and

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Shared high-speed buffer

Central processor 1
' l
Instruction PHSB Data PHSB
. Virtual
Branch Instruction .
> register
contols || " decoding e
Execution elements
Muitiple
execution
elements
. . »
Out-of-sequence
instruction
execution

¥

Store buffer

Figure 4 ..
ES/9000 Model 900 central processor structure.

a 128KB data buffer. As described by Liptay [28], both the
instruction and the data buffer are four-way set-associative
store-through doubleword-interleaved, with a 128-byte

line size. Access to these private high-speed buffers is
overlapped with execution and is essentially transparent to
the execution speed. When the required data are not
contained in the data buffer, the SHSB is accessed for a

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

128-byte line. The delay until the first operand is available
to an execution element is approximately 12 cycles when
the required data are found in the SHSB. If the required
data must be accessed from CS, the delay is 31 cycles.
This delay is reduced when accessing consecutively higher
memory addresses. Because the SHSB line size is 256
bytes, whereas the CP accesses for a 128-byte line, the

D. H. GIBSON AND G. S. RAO

703

704

Storage, FPRs, GPRs

Even elements

ES/9000 Model 900 Vector Facility, one per CP.

second half of the SHSB line is always found when
accessing consecutively higher addresses; for this
accessing pattern the delay averages 21.5 cycles.

For vector processing the machine has the capability to
do prefetching, as described later.

Execution rates The design of the central processor (CP)
is presented by Liptay [28] with emphasis on execution
from the associated private high-speed buffer (PHSB). The
hardware is capable of supporting the execution of three
or more instructions on any given machine cycle. The
floating-point execution element contains a pipelined adder
and multiplier capable of producing a result each machine
cycle. Measurements have shown that the LINPACK

100 x 100 benchmark achieves 30 MFLOPS on the scalar
execution elements.

D. H. GIBSON AND G. S. RAO

ES/9000 Model 900 Vector Facility

Data flow The IBM ES/9000 Model 900 Vector Facility
data flow for one CP is shown in Figure 5.

The 8 (or 16) vector registers (VRs), each holding 256
64-bit (or 32-bit) elements, are organized as even/odd sets
each holding 128 elements. Each set can deliver up to two
doublewords per machine cycle to either the associated
arithmetic logic unit (ALU) or the multiplier, or one
doubleword to each. Simultaneously, each set can accept
up to one doubleword per machine cycle. A doubleword
contains either one 64-bit operand or two 32-bit operands,
depending on the instruction being executed. This
even/odd VR design supports the processing of four 32-bit
arithmetic operations per machine cycle requiring eight
32-bit accesses and four 32-bit putaways.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

An ALU and a multiplier can also be supplied via a
data path that carries operands from the data PHSB on a
quadword bus, or from the FPRs or GPRs, of the
associated CP. Another data path into an ALU comes
directly from the multiplier. This path supports the 64-bit
compound vector instructions, such as multiply and add,
generating as many as four 64-bit floating-point operations
per machine cycle.

Upon presentation of two doublewords at the input,
an ALU can produce one 64-bit result or two 32-bit
normalized results two machine cycles later; a multiplier
can produce one 64-bit product or two 32-bit products
three machine cycles later. Both an ALU and a multiplier
can accept new doublewords each machine cycle. The
ALU executes add, subtract, compare, and logical
operations, and is also the path for loading the vector
registers. The multiplier executes multiply, divide, and
square root operations. Execution of divide operations
takes place at a rate of 16 quotients each 19 machine
cycles once the pipeline is filled. Execution of square root
operations takes place at a rate of 16 results each 22
machine cycles.

Output from the ALU or the multiplier is normally
placed in the VRs. Data are sent from the VRs to storage
using the bidirectional doubleword fetch bus in conjunction
with the doubleword store bus. The pairing thus formed
acts as a quadword bus for stride-one processing. The
doubleword store bus is used for stride-n processing. Data
are sent to the FPRs as required on the same doubleword
bus. Data are sent to the GPRs as required using a
separate 32-bit bus that shares internal pathing with the
above.

Pipeline operation The timing of the pipelined execution
of a vector instruction is variable. The performance
information which follows reflects a particular model of
performance, and the timings are optimistic. A paper is in
preparation to document performance variations.

Each vector instruction may be thought of as composed
of four sequential parts. These are start-up, element
access, vector execution, and end-of-operation (end-op).
Where possible, the end-op of a vector instruction is
overlapped with the start-up of the following vector
instruction, thereby reducing the apparent start-up time to
five machine cycles. Analysis shows that start-up time can
be as low as 25 cycles for many computationally intensive
kernels. Element access time can be as low as zero when
the vector is found in the associated data PHSB, as low as
12 cycles when the vector is found in the SHSB, and as
low as 31 cycles when the vector must be accessed from
central storage except when vector prefetching is in effect.
Vector execution is one result per even/odd side per
machine cycle.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Memory hierarchy The data PHSB associated with a
Vector Facility is capable of supplying one quadword

(128 bits) each machine cycle. The busing and access to
data may be thought of as providing two rates, which are
referred to as stride one and stride n. The stride-one rate is
one quadword fetch and one queued doubleword store
each machine cycle, and is achieved when consecutive
data accesses to storage increase by exactly one element if
the elements are in the data PHSB. There are quadword
store data buffers to queue operands until such time as the
data PHSB has free cycles. The stride-n rate is one
element fetch and one element store each machine cycle,
and is the rate achieved for all cases other than stride one.

Vector prefetching For vector stride-one and stride-two
fetch operations, the machine has the ability to do special
prefetch operations to reduce the cache-miss penalties.
These abilities allow the fetching of two sequential data
cache lines from the SHSB or CS as a single operation

(a 256-byte fetch with no gaps). This can cut the number of
data cache misses in half for long vectors. Additionally,
any subsequent double-line fetches will be sent out to the
SHSB early, overlapped with the data return from the
previous double-line fetch. This reduces the apparent
element access time to as few as 10 cycles, the actual
inter-line gap for 256 bytes being 20 cycles. Further, these
abilities reduce the comparable element access time for the
case in which all data are found in the SHSB from as few
as 12 cycles to as few as zero.

The above prefetching operations are used for plus-
stride-one and stride-two vector fetches. Prefetching begins
when the vector fetch reaches the first 256-byte boundary.
Once started, the prefetching continues for the rest of the
vector instruction. There is a momentary break in any
vector prefetching when crossing page boundaries.

Performance The maximum theoretical performance of
the ES/9000 Model 900 is 2666 MFLOPS. This is computed
by multiplying the maximum number of floating-point
operations per machine cycle per vector facility by the
clock speed, and then multiplying by six the number of
Vector Facilities in a Model 900. The maximum number of
floating-point operations per machine cycle is four for
either 32-bit or 64-bit execution. The rate is four for 32-bit
arithmetic because either the ALU or the multiplier as
required is split up to execute two 32-bit operations in
parallel. The rate is four for 64-bit arithmetic when
compound operations are executed that allow the ALU
and the multiplier to execute simultaneously.

The maximum theoretical performance will be achieved
when data in the data PHSB (or, for certain cases, data in
the SHSB) are reused two or more times on the average.
The memory hierarchy, as described above, delivers
elements from central storage at the rate of 256 bytes in 36

D. H. GIBSON AND G. S. RAO

705

cycles when stride-one or stride-two processing occurs
with no cache reuse. The maximum theoretical

; performance is 1185 MFLOPS for this no-cache-reuse
OCE situation.

o ES/9000 Model 480

An instructive example of the nine frame-mounted air-
cooled ES/9000 processors [29] is the two-processor Model
480. The design of the Model 480, depicted in Figure 6,
is based on the system structure of the IBM 3090 [30],
enhanced with ESA/390 and implemented in differential
current switch technology packaged in air-cooled thermal
conduction modules (TCMs). The TCMs are frame-
mounted in a 1.5-m* “footprint.”” The Model 480 is
comparable to a 3090 Model 200 that is installable in an
office environment.

The theoretical peak performance of an ES/9000 Model
480 with two Vector Facilities is 267 MFLOPS based on

~ , the cycle time of 15 ns. This system has been measured at
—t I 1 180 MFLOPS on the LINPACK 1000 x 1000 “best effort™
benchmark; with one Vector Facility the system achieves
91 MFLOPS. The more restrictive LINPACK 100 x 100
benchmark has been measured at 22 MFLOPS using the
VAST-2 preprocessor and VS FORTRAN 2.4.

Although the system structure described by Tucker [30]
for the 3090 Model 200 is used for the ES/9000 Model 480,
there are design differences between the two. Three of
these differences are of interest for numerically intensive
computing: expanded storage, cache, and floating-point
multiply. The expanded storage on the Model 480 shares

 Figusé .
S/9000 Model 480 system structure.

- —————Memory bus the memory buses with the central storage, unlike the
; : l 3090, which has separate busing for the expanded storage.
cs STC : Thus, the time needed for the hardware to move a page to
Control : Memory or from Model 480 expanded storage is about 9 us more
store ' control than on the 3090. The Model 480 cache is 128 KB, twice
o : : the size of the 3090. It is doubleword-interleaved, four-way
set-associative, with a 128-byte line. The floating-point

multiply design of the Model 480 enables typical register-
to-register multiply executions of seven cycles, as
compared to four cycles on the 3090. The effect of the
three differences cited is dependent upon the application,

~ and may produce better or worse performance than the
Procsiang e | Bettine 3090. For the LINPACK 100 x 100 benchmark, these
. design differences are not visible in the performance result.

Key store
- sugont o ES/9000 Model 170
bus The fastest of the four original rack-mounted air-cooled
Pro ES/9000 processors is the Model 170. The system structure
bus for a processing unit (PU) is depicted in Figure 7. A Model

170 has two PUs, one of which is used primarily for
input/output processing. Implementation is in 40 000-
circuit-per-chip CMOS technology [31] packaged in an
85-kg rack with a 0.6-m” footprint. The rack also has space
for mounting DASD, tape, and communication I/O devices.

ES/9000 Model 170: chips and busing.

706

D. H. GIBSON AND G. S. RAO IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Four 12.7-mm’ chips mounted on one 44-mm’ module
constitute a base ESA/390 PU. A floating-point
coprocessor is implemented on two chips mounted on a
second module. The base module and the coprocessor
module are mounted along with supporting clock logic on
one processor card. Buses between and within the chips
are 8 bytes wide. The CMOS technology implementation
permits a 30-ns cycle time. A 16KB four-way set-
associative cache delivers 64-byte lines, and is accessible
in one cycle from the working registers. Instruction
processing is done in a pipeline composed of the four
stages of instruction fetch, address generation, execution,
and putaway.

The Model 170 has been measured at 3.7 MFLOPS on
the LINPACK 100 x 100 benchmark using VS FORTRAN
2.4. It is tempting to compare a 170 with the entry-level
3090 Model 120E at 3.1 MFLOPS. Nevertheless, the
ES/9000 Model 170 is advertised as an effective
performance upgrade for either a 9370 Model 90 or a
4381 Model 91E, providing respectively 4.6x and 2.9x
performance factors for engineers and scientists doing
numerically intensive computing.

6. Potential parallel processing system

The announcement of $/390 makes possible a hardware
configuration for n-way parallel processing, where n may
be as large as 60. The ESCON Director™ is a nonblocking
crosspoint switch with up to 60 ports.Thirty simultaneous
connections, each designed to carry more than 10 MB/s
between any two ports, support an aggregate data transfer
rate several times that of channel speeds. This suggests the
intriguing possibility of up to 60-way parallel processing.

Figure 8 depicts a parallel processing system constructed
with each of 60 ES/9000 processors connecting to each of
two ESCON Directors. The ES/9000 processors described
in this paper are available with 12-256 ESCON channels,
each with a 10MB/s bandwidth. An n-way parallel
processing system for n < 60 could be configured with two
channels to/from each processor. The connection would
thus be channel-to-channel between any two models.

An n-way parallel processing system so constructed
would operate with each attached processor running a
copy of an operating system. Two obvious choices for an
operating system are MVS/ESA and VM/ESA. An
interesting research project [32] based on VM/ESA has
been described by Amman et al. The hardware used in this
project is the prototype Parallel Processing Computing
System described in the IBM/CERN Joint Study Report
1990 brochure. The obvious choice for the run-time
environment of such a parallel processing system would be
based on the IBM Clustered FORTRAN [20] SCSE
software offering.

N-way parallel processing with ES/9000 models and one
or more ESCON Directors is thus a possibility that can

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

R ESCON
ProCessors Director
£S5 ESCON
processors Director

N-way parallel processing with ESCON Director.

and likely will be explored in the early life of $/390. The
possible configurations are numerous, which surely
enhances the probability of success. The supporting
software that emerges will in all likelihood be based on the
current state of the art. This will be a fruitful area of
investigation.

7. System environments

IBM System/390 computing services are generally
accessible to the engineer or scientist through a terminal.
If the terminal is an intelligent workstation with an
operating system, S/390 services can be invoked through
cooperative processing or client/server computing. A
mainframe interactive (MFI) terminal, or a workstation
emulating such a terminal, invokes S/390 services for
either interactive or batch computing or both.

% Batch

For processing on the S/390, the phrase “‘background
processing” is more descriptive than is the older term
““batch.” Batch processing involves the submission of
work to be executed on S/390, where the submitter
specifies the data to be used, the program to be run, and
certain estimates of the computing resources that will be
consumed. There is usually a well-defined menu or
procedure that may be used at the terminal for batch -
submission. Depending on the batch monitor software that
the establishment chooses to run on the ES/9000
processor, the submitter may or may not be able to track

D. H. GIBSON AND G. S. RAO

X5

708

the progress of the submitted work. Background
processing means that in all cases the submitter is free to
use the terminal for other work once the batch submission
has been accepted.

e Interactive

Interactive S/390 services vary depending upon the
operating system chosen by the establishment where the
engineer or scientist works. UNIX interactive constructs
are used when AIX/ESA or AIX/370 is installed on the
ES/9000 processor to which the terminal is connected.
CMS and CP interactive constructs are used when the
establishment selects VM/ESA. TSO constructs are
available when the MVS/ESA operating system is chosen.
Each of these three interactive services offers functionality
to a greater or lesser degree, with unique syntax and
semantics in the following categories: file naming,
addressing, and manipulation; commands; enter and
display. Characteristically, interactive response time
varies from tenths of a second to a few seconds
depending upon the service invoked by the commands

or entry.

A typical terminal session for an engineer is to enter
information and commands to submit batch work to the
S/390, and then, while the batch work runs in the
background, to use interactive services such as mail and
text editing.

® Cooperative processing, client/server computing

The terms ““cooperative processing’ and “‘client server”
computing used in the IBM System/390 literature are not
self-defining. It is useful to describe six possible scenarios’
for accessing S/390 computing services from a RISC
System/6000™ workstation. The scenarios are based on
software capability existing in 1991. Depending upon the
intent of the reference, any one of the scenarios could be
termed either cooperative processing or client/server
computing.

At one extreme there is the ‘‘postprocessing’” scenario.
In this scenario, the ES/9000 performs all of the NIC
processing, and the RISC System/6000 provides a graphical
analysis of the results. At the other extreme, there is
““fine-grained” cooperation, where an application runs on
two or more processors with frequent interaction. Usually
the intent is to reduce the elapsed time of the application.

These scenarios, and a number of intermediate
scenarios, are considered below. It is assumed that if part
of the application is running on (or accessing data on) the
ES/9000 rather than the RISC System/6000, it is doing so
for one or more of the following reasons:

3 The first publication of these scenarios. was in an IBM Internal Use publication
which was the result of a residency project at the IBM International Technical
Support Center, Poughkeepsie, New York. The participants were A. Barak, M.
Batish, R. Bell, J. Hague, K. Wathne, and G. Wightwick.

D. H. GIBSON AND G. S. RAO

¢ The ES/9000 can have an order of magnitude more
storage.

¢ The absolute processing power of a multiprocessing
ES/9000 system is an order of magnitude greater.

¢ Tape management and access are more sophisticated.

¢ Large databases may exist on the ES/9000.

¢ The user may get more service from the ES/9000 if he is
one of many users on a RISC System/6000.

e The large-system environment includes access to shared
resources such as DASD.

® Postprocessing: ES/9000 to RISC System/6000 using
X-Windows

In this scenario, the NIC part of the application runs
entirely on the ES/9000. The graphical part of the
application is split between the ES/9000 and the RISC
System/6000. The X-Client part runs on the ES/9000, and
the X-Server part runs on the RISC System/6000.

The advantage of this approach is that it can be both
fully interactive and postprocessing, and the user does not
have to program specifically for two processors (since the
client-server interface is a well-defined system-level
interface).

The disadvantages are that the user is not taking
advantage of the NIC processing price/performance of the
RISC System/6000, that most graphical interrupts are
handled by the ES/9000, and that each new image requires
data to be downloaded. For a full image, one million bytes
would require several seconds to be transferred over, for
example, an Ethernet® connection.

® ES5/9000 to RISC System/6000: NFS

Network File System™ (NFS™) is a protocol that uses IP
(Internet Protocol) to allow cooperating computers to
access one another’s file systems as if they were local.

In this scenario, the main NIC application runs on the
ES/9000, producing spill files that are examined by a
graphics application on the RISC System/6000. The spill
files are part of the ES/9000 file system. NFS is used to
“mount”’ these files on the RISC System/6000, so that
they can be accessed by the graphics application. This
application uses X-Windows™ to handle all of the
graphics, and can provide interactive feedback to the
ES/9000 application by writing to a control file (also
mounted by NFS) that is read by the main application.
The NFS parameters may have to be adjusted so that the
control file is physically updated on the ES/9000 as quickly
as is required (within a few seconds, for example).

The advantages of this scenario are that a reasonable
degree of interactivity is maintained; the graphics
application does not have to deal with two processors (the
application considers all files to be local); the X-Client and
X-Server are both running on the RISC System/6000 (so
less CPU is needed on the ES/9000, and there are fewer

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

—ﬁ

interrupts on the ES/9000); and the data in the spill files
are downloaded only once by NFS (data are kept in
RISC System/6000 storage buffers if possible, and can be
processed as required by the graphics application).

The main disadvantage is that two separate applications
must be written; and there is still a fairly long delay in
downloading the spill files (about seven seconds on
Ethernet for 125 000 double-precision words).

® ES/9000 to RISC System/6000: FTP

File Transfer Protocol (FTP) is the Internet standard,
high-level protocol for transferring files from one system to
another.

In this scenario, the main NIC application runs on the
ES/9000 and produces spill files that are sent by the user
typing in FTP commands from the RISC System/6000. The
control file is also sent back to the ES/9000 using FTP
commands.

Other details, including advantages and disadvantages,
are much the same as for the NFS scenario. An additional
advantage is that the file is transferred only once (it may
be necessary to transfer it more than once in the NFS
scenario). Additional disadvantages are that the file must
be written to disk, and manual synchronization of the FTP
commands is required.

® ES/9000 to RISC System/6000: Sockets

In this scenario, the main NIC application runs on the
ES/9000 and produces files that are sent directly to the
RISC System/6000 using a socket connection. The control
data are also sent back to the ES/9000 using socket
commands.

Other details, including advantages and disadvantages,
are similar to the NFS scenario above. The main additional
advantages are that the data may not have to be written
to disk at all, and that NFS is not involved. A main
disadvantage is that more sophisticated programming,
including possible error recovery, is required. (This
disadvantage could be alleviated by providing well-defined
subroutines.)

® RISC System/6000: NFS

In this scenario, the entire application runs on the RISC
System/6000, but the initial data files are on the ES/9000.
NFS is used to “mount” these files on the RISC
System/6000 so that they can be accessed by the
application.

® Fine-grained cooperative processing

Fine-grained cooperative processing between two or more
coupled RISC System/6000s or ES/9000s or combinations
thereof is taken to mean processing which requires
frequent communication. The speed of the communication
paths becomes important in determining whether such

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

coupled configurations can reduce the elapsed time of an
application.

If the speed of processing is very fast relative to
the transfer rates over the communication paths,
communication speed becomes dominant. A metric that
may be used to express this is executions per byte (E/B).
Numerically intensive computing is characterized by E/B
ratios of 10 or more. Storage-coupled processors (for
example, the ES/9000 Model 900 discussed in this paper)
are characterized as having E/B capacities of 10 or less;
hence, they are not limited by communication speed.
Channel-coupled systems are characterized as requiring
applications with E/B of 10 to 100, and network-coupled
systems characteristically require an order of magnitude
more procesing per byte of data transferred, needing 100 to
1000 executions per byte.

As a rule of thumb, an application must spend an order
of magnitude more time processing data than transferring
it.

Summary

IBM System/390 computing services of interest to
engineers and scientists are based on the elements of an
$/390 system reviewed and detailed in this paper. The
software elements include FORTRAN, particularly the
syntactical extensions for parallel computing, and UNIX.
The hardware elements include ESCON and the ES/9000
processors, particularly the Model 900 design, which
includes a robust memory hierarchy and the Vector
Facility.

Acknowledgments

The authors wish to thank J. Wang, L. Ward, and D. Soll
for their description of large applications on S/390, and

S. Comfort and P. Gannon for their clear and useful
description of the Model 900 memory hierarchy. The
information on vector prefetching was provided by

M. Ignatowski. The information on vector design was
described by F. Sell, and M. Siegel, J. Stark, and

G. Doettling provided the material for Model 170 design.
The cooperative processing scenarios were first described
by A. Barak and his co-authors. R. Clark, B. Ralston, and
S. Tucker reviewed the paper and made suggestions for
improvement.

MVS/ESA, AIX/ESA, Enterprise System/9000, ES/9000,
ESCON Director, ESCON, VSE/ESA, Enterprise Systems
Connection Architecture, Enterprise Systems Architecture/390,
ESA/390, System/370, Enterprise System/3090, ES/3090, 3090,
Advanced Interactive Executive/370, AIX/370, and RISC
System/6000 are trademarks, and VM/ESA, System/390, 0S/2,
and AIX are registered trademarks, of International Business
Machines Corporation.

UNIX is a registered trademark of UNIX Systems
Laboratories, Inc. NASTRAN is a registered trademark of the

D. H. GIBSON AND G. §. RAO

709

710

National Aeronautics and Space Administration.
MSC/NASTRAN is an enhanced proprietary version
developed by the MacNeal/Schwendler Corporation. CATIA is
a registered trademark of Dassault Systémes, Inc. VAST-2 is a
registered trademark of Pacific-Sierra Corporation. OSF/1 is a
trademark of the Open Software Foundation, Inc. Ethernet is
a registered trademark of Xerox, Inc. Network File System
and NFS are trademarks of Sun Microsystems, Inc.
X-Windows is a trademark of the Massachusetts Institute

of Technology.

References and notes

1.

10.

11.

12.

13.

14.

15.

16.

17.

D. H. Gibson, D. W. Rain, and H. F. Walsh,
““Engineering and Scientific Processing on the IBM 3090,
IBM Syst. J. 25, No. 1, 36-50 (1986).

. C/370 Users’ Guide, Order No. SC09-1264; available

through IBM branch offices. Covers input/output,
interlanguage calls, and re-entrancy, among other details.

. APL2 Release 3 General Information Manual, Order No.

GH20-9214; available through IBM branch offices.
Includes a comparison between programs written in APL
and Pascal.

. VS PASCAL General Information Manual, Order No.

CG26-4318, and VS PASCAL Applications Programming
Guide, Order No. SC26-4319; available through IBM
branch offices.

. Assembler H Version 2 General Information Manual,

Order No. GC26-4035; available through IBM branch
offices.

. J. McComb and S. Schmidt, ‘‘Engineering and Scientific

Subroutine Library for the IBM 3090 Vector Facility,””
IBM Syst. J. 27, No. 4, 404-415 (1988). Also, addendum
in the Technical Note: R. C. Agarwal, F. G. Gustavson,
J. McComb, and S. Schmidt, ‘‘Engineering and Scientific
Subroutine Library Release 3 for IBM ES/3090 Vector
Multiprocessors,”” IBM Syst. J. 28, No. 2, 345-350 (1989).

. G. B. Dantzig, Linear Programming and Extensions,

Princeton University Press, Princeton, NJ, 1963.

. J. J. H. Forrest and J. A. Tomlin, ‘““Vector Processing in

Simplex and Interior Methods for Linear Programming,”
Research Report RJ-6390, IBM Research Division, San
Jose, CA, 1988.

. N. Karmarkar,““A New Polynomial-Time Algorithm for

Linear Programming,”” Combinatorica 4, 373-395 (1984).
J. A. Tomlin, ““A Note on Comparing Simplex and Interior
Methods for Linear Programming,” Progress in
Mathematical Programming, N. Megiddo, Ed., Springer-
Verlag, New York, 1989, pp. 91-103.

H. Crowder, E. L. Johnson, and M. W. Padberg, “‘Solving
Large Scale Zero-One Linear Programming Problems,”
Oper. Res. 31, 803-834 (1983).

D. Goldfarb, ““A Numerically Stable Method for Solving
Strictly Convex Quadratic Programs,” Math. Program.
27, 1-33 (1983).

N. D. Grigoriadis, ‘“An Efficient Implementation of the
Network Simplex Method,”” Math. Program. Study 26,
pp- 83-111 (1986).

ES/9000 for the Technical Computing Environment, Order
No. G520-6784; available through IBM branch offices.

C. J. Georgiou, T. A. Larsen, P. W. QOakhill, and B.
Salimi, ““The IBM Enterprise Systems Connection
(ESCON) Director: A Dynamic Switch for 200Mb/s Fiber
Optic Links,”” IBM J. Res. Develop. 36, 593-616 (1992,
this issue).

J. J. Coleman, C. B. Meltzer, and J. L. Weiner, ““Fiber
Distributed Data Interface Attachment to System/390,”
IBM J. Res. Develop. 36, 647-654 (1992, this issue).

VS FORTRAN Version 2, Programming Guide, Release 5,
Order No. SC26-4222-6, and VS FORTRAN Version 2,
Language and Library Reference, Release 6, Order No.

D. H. GIBSON AND G. S. RAO

18.

19.

20.

21.

22.
23.

25.

26.

27.

28.

29.

30.
31.

32.

SC26-4221-5; available through IBM branch offices.

C. A. Scalzi, A. G. Ganek, and R. J, Schmalz,
““Enterprise Systems Architecture/370: An Architecture for
Multiple Virtual Space Access and Authorization,”” IBM
Syst. J. 28, No. 1, 15-38 (1989).

L. J. Toomey, E. C. Plachy, R. G. Scarborough, R. J.
Sahulka, J. F. Shaw, and A. W. Shannon, ‘““IBM Parallel
FORTRAN,” IBM Syst. J. 27, No. 4, 416-435 (1988).

R. J. Sahulka, E. C. Plachy, L. J. Scarborough, R. G.
Scarborough, and S. W. White, “FORTRAN for Clusters
of IBM ES/3090 Multiprocessors,”” IBM Syst. J. 30, No. 3,
296-311 (1991).

VAST-2 for VS FORTRAN User’s Guide, Order No.
SC26-4668, Program Offering Release 1, December 1989;
available through IBM branch offices. Includes a
description of concepts and rules, and specific
transformations.

G. O. Blandy and S. R. Newson, “VM/XA Storage
Management,” IBM Syst. J. 28, No. 1, 175-191 (1989).

W. T. Koba and W. limura, AIX/370 as a Guest Operating
System, Order No. G320-3532, December 1989; available
through IBM branch offices.

. J. M. Gdaniec and J. P. Hennessy, ““VM Data Spaces and

ESA/XC Facilities,” IBM Syst. J. 30, No. 1, 14-33 (1991).
MVS/ESA Callable System Services for High-Level
Languages, Order No. GC28-1639; available through IBM
branch offices.

IBM Enterprise Systems Architecture/390 Principles of
Operation, Order No. SA22-7201; available through IBM
branch offices.

IBM Enterprise Systems Architecture/390 Vector
Operations, Order No. SA22-7125; available through IBM
branch offices.

J. 8. Liptay, ““Design of the IBM Enterprise System/9000
High-End Processor,”” IBM J. Res. Develop. 36, 713-731
(1992, this issue).

S. F. Hajek, ““IBM Enterprise System/9000 Type 9121 Air-
Cooled Processor,”” IBM J. Res. Develop. 35, 307-312
(1991).

S. G. Tucker, ‘“The IBM 3090 System: An Overview,””
IBM Syst. J. 25, No. 1, 4-19 (1986).

N. Roethe, “A CMOS Implementation of the ESA/390
Mainframe Architecture,”” Microprocess. &
Microprogram. 32, 209-214 (1991).

E. M. Ammann, R. R. Berbec, G. Bozman, M. Faix,

G. A. Goldrian, J. A. Pershing, Jr., J. Ruvolo-Chong, and
F. Scholz, ‘“The Parallel Processing Compute Server,”
IBM J. Res. Develop. 35, No. 5/6, 653-666 (1991).

Received July 1, 1991; accepted for publication
September 18, 1991

IBM J. RES. DEVELOP.

VOL. 36 NO. 4 JULY 1992

Donald H. Gibson IBM Enterprise Systems, P.O. Box 950,
Poughkeepsie, New York 12602 (retired). Mr. Gibson recently
retired as a member of the IBM Poughkeepsie Senior
Technical staff in IBM Enterprise Systems. He has worked in
design and development of large systems including SAGE,
STRETCH, System/360™ Models 91 and 85, System 370
Models 195 and 165, the 3090, including the Vector Facility,
and the ES/9000. He has lectured extensively on system design
and performance of large mainframes. The ‘“‘cache” design,
first introduced in the IBM S/360 Model 85, evolved directly
from his simulation work on block transfer memory systems
design, undertaken in connection with studies of parallel
systems and reported in his paper at the AFIPS Spring Joint
Computer Conference in 1967. During this period Mr. Gibson
lectured extensively on system design and performance of
large mainframes. In the mid-1970s he pursued technical
interests in graphics and artificial intelligence. The 3090
engineering/scientific design features, including both scalar
and vector, are based on his definitive customer survey work
in the late 1970s on large systems engineering/scientific
applications. In the early 1980s, he led the activity in IBM on
engineering data base, he chaired the work on a computer-
aided engineering strategy for IBM, and he pioneered work on
cooperative processing. His work most recently focused on
various aspects of cooperative processing between intelligent
workstations and large systems. Mr. Gibson received a
B.S.E.E. degree from the University of Kentucky, Lexington,
in 1956. He has received many IBM awards, notably the
Corporate Outstanding Contribution Award in 1967 for the
cache concept, and he holds several patents.

Gururaj S. Rao /BM Enterprise Systems, P.O. Box 950,
Poughkeepsie, New York, 12602 (GRAO at TDCSYS2). Dr.
Rao received his Bachelor of Engineering degree from the
University of Mysore, India, his Master of Engineering degree
from the Indian Institute of Science, India, and the Ph.D.
degree from Stanford University, California, all in electrical
engineering. He was an Assistant Professor of Electrical
Engineering at Rice University, Houston, Texas, from 1975 to
1978. He joined the IBM Thomas J. Watson Research Center
at Yorktown Heights, New York, in 1978, and worked on
large systems processor structure studies. In 1983, Dr. Rao
joined the Data Systems Division (now the Enterprise Systems
Development Laboratory) in Poughkeepsie, where he is
currently the manager of the Processor Architecture and
System Structure Department, with responsiblity for
developing future large-system requirements and architecture
direction. Dr. Rao has received several academic honors as
well as IBM awards. In 1991, he was appointed a Senior
Technical Staff Member.

System/360 is a trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

D. H. GIBSON AND G. S. RAO

711

