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This  paper  reviews the  considerations  that 
shaped  the  design of the  Enterprise  Systems 
Architecture/390m  Integrated  Cryptographic 
Facility.  It  describes  design  issues, 
alternatives,  and  decisions,  and  it  provides  the 
rationale  behind some of the  decisions.  issues 
related  to  performance,  security,  usability,  and 
availability  are  covered. 

Introduction 
Protection of information is one of the most important 
issues facing computer users today. This is because of the 
increasing number of applications involving network 
communications and distributed systems, the growing 
amount of information processed by computers, the 
increasing dependence on shared databases, and the 
increasing number of applications critical for the existence 
and success of enterprises. Cryptography is an  effective 
tool for providing data security (preventing unauthorized 
access to data), data integrity (ensuring the accuracy of 

data), and authentication (verifying the identity of a user 
or sender). The Enterprise Systems Architecture/390m 
(ESA/390m) Integrated Cryptographic Facility (ICRF) was 
designed to provide the cryptographic functions necessary 
for users of large systems to protect their data. 

The ICRF is  a DEA-based [l] cryptographic architecture 
that is an extension to the IBM ESN390 architecture. The 
facility provides cryptographic functions' for performing 
data encryption and decryption, handling message- 
authentication codes (MACs) [2] and personal-identification 
numbers (PINS) [3], and managing cryptographic keys. All 
cryptographic instructions are performed synchronously 
with central processing unit (CPU) instruction execution. 

Implementation of the ICRF architecture on the water- 
cooled Enterprise System/90OOm  (ES/9000m) computer 

1 In this paper, the term cryptographic function is used to refer to the capability 

crypiogmphic inrtruction is used to refer to the interface provided in the CPU to 
provided by the ICRF to perform a particular cryptographic action. The term 

operation is used to refer to the execution of cryptographic functions or 
permit the program to invoke cryptographic functions. The term cryptogmphic 

instructions; it is also used in a more general sense to refer to the actions in a 
cryptographic environment. 
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models provides a hardware cryptographic feature within 
a CPU that is capable of high performance in  financial- 
transaction and  large-file-encryption applications. The 
crypto unit’ is physically implemented in a tamper- 
resistant enclosure. Secret information is always kept 
inside the enclosure. A manual-control panel is provided 
for manual entry of cryptographic keys, clearing the 
contents of internal registers containing secret quantities, 
enabling or disabling the facility, and controlling the use of 
certain special cryptographic functions. 

Software support for the ICRF is provided by the IBM 
Integrated Cryptographic Service Facility (ICSF/MVS). 
This program provides an “interface” to application 
programs that is  upward compatible with the interface 
provided by the Cryptographic Unit Support Program 
(CUSP)3 and the Programmed Cryptographic Facility 
(PCF)4. 

A detailed description of the product objectives, the 
specific key-management scheme, and the structure of 
the ICRF was presented in a previous paper [4]. That 
paper also reviewed major functions and summarized 
the physical security provided by the first ICRF 
implementation. 

design of the ICRF. It first compares the ICRF with the 
ESN390 Vector Facility [5], from a system-design 
viewpoint, to highlight unusual design concerns caused by 
the ICRF. It then describes design issues, alternatives, and 
decisions, and it provides the rationale behind some of the 
decisions. Issues related to performance, security, 
usability, and availability are covered. 

This paper presents the considerations that shaped the 

Comparison  with  vector facility 
In the first implementation of the ICRF, because of the 
physical security and hard-wired logic, the hardware 
associated with the crypto unit took so much space that 
the number of crypto units that could be installed was 
limited. On some ES/9000 computer systems with up to 
three CPUs, only one crypto unit could be installed. On 
the largest systems, with up to six CPUs, only two could 
be installed. In addition, either a crypto unit or a vector 
unit,’ but not both, could be installed on any particular 
CPU. 

ICRF and vector  are the only two optional CPU 
facilities that are permitted to be installed on some (but not 
necessarily all) CPUs in a multiprocessing system. The 
type of configuration in which the CPUs are not equivalent 
poses several unusual problems for the control program, 

2 In this paper,  the term cryp~o unit is used to refer to a physical implementation  of 
the  ICRF architecture. 
3 The IBM  Cryptographic Unit Support  Program (CUSP) is the host software for 
supporting  the  IBM 3848 cryptographic  unit, which is a channel-attached device. 

3848 functions and provides the CUSP application program interface. 
The IBM Programmed  Cryptographic Facility (PCF) is software that simulates the 

In this paper,  the  term vector unit is used to refer to a physical implementation of 
684 the vector facility architecture. 
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and solutions for these problems must be addressed in the 
architecture. This  led to a starting point in the design 
process in  which  an attempt was made to use the same 
type of solutions for ICRF  as had been used for the vector 
facility. In many cases, the vector solutions also worked 
for ICRF; in other cases, they did not. 

differences between these two facilities. The comparison 
accentuates many complexities and implications for system 
design caused by the unusual characteristics of the ICRF. 

This section presents some of the similarities and 

Similarities to vector facility 
The ICRF and the vector facility have the following 
similarities: 

Both facilities have a requirement that the control 
program be able to disable any unit so that the 
application program cannot use it.  When a vector unit  is 
disabled, the control program does not have to save and 
restore the contents of the registers in the unit. This 
saves a significant amount of time when application tasks 
that do not use the facility are being dispatched. A 
crypto unit may have to be disabled because, for 
example, the master key (described below) has not been 
loaded, or the unit is in the error state. This requirement 
is met by means of a control bit in each CPU that 
enables or disables the use of the unit.  When the unit 
is disabled, any attempt to execute an instruction 
associated with the unit results in a program exception 
which indicates that the unit is  unavailable. 
Both facilities have a requirement for a special indication 
of the absence of the facility. For most facilities, an 
attempt to execute an instruction that is part of an 
uninstalled facility results in a program interruption that 
indicates an “operation exception.” The action taken by 
the control program when an application task encounters 
an operation exception is to terminate the task. For the 
vector facility and ICRF, when the facility is installed on 
some but not  all of the CPUs in the system, this is  not 
the desired action. Rather, a task attempting to use a 
particular facility should be rescheduled from a CPU 
without the facility to a CPU with it. To assist the 
program  in  identifying this case, new  program 
interruption codes were defined for both the vector 
facility and ICRF. When  an application task attempts to 
execute an instruction associated with the vector facility 
on a CPU on which a vector unit is not installed, the 
vector-operation exception is reported. Similarly, when 
an application task attempts to execute an instruction 
associated with the ICRF on a CPU on which a crypto 
unit  is  not installed, the crypto-operation exception is 
reported. 
Both facilities must process data in very large quantities. 
This can result in excessively long execution time  and 
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requires some sort of “sectioning” to divide the 
operation into smaller units. The considerations 
associated with sectioning are discussed in a later section 
of this paper. 

Differences from vector facility 
There are many differences between the ICRF and 
the vector facility in  handling certain functions and 
requirements. Among these functions and requirements 
described in the following sections are interchangeability, 
task scheduling, security restriction, and exception 
handling. 

Interchangeability 
All vector units in a system are identical and can be used 
interchangeably by all programs. The control program 
takes advantage of this characteristic to balance the 
workload on a multiprocessing system. It is very desirable 
to perform the same type of load balancing for programs 
using crypto units. Although crypto units in a system can 
normally be used interchangeably, there are some 
infrequent situations in  which this is  not the case. 

CPU affinity, the association of a task with a specific 
physical CPU, is required: 

Following are the two categories of situations in  which 

Some cryptographic support tasks require CPU affinity. 
These include manual key entry (because the process 
uses the manual-control panel, and each crypto unit has 
a separate panel) and error handling (because of the very 
nature of the process). 

identical to the program.  Following are some examples: 
manual controls have disabled one crypto unit  while the 
other is enabled; master-key entry has been completed 
on one crypto unit but not yet  started on the other; and 
physical tampering has caused the master-key registers 
to be cleared in one crypto unit but not  in the other. 

The states of the crypto units do not appear to be 

When the crypto units are not interchangeable, it may 
be desirable to permit application programs to use one of 
the crypto units but not the other. To do this, the control 
program must have a simple means to determine whether 
the crypto units are interchangeable. Since the contents 
of most registers of crypto units must be kept secret, a 
means was provided to verify interchangeability without 
disclosing the contents of secret registers. 

Even though a task may have a requirement to access 
a particular crypto unit, the task may execute many 
thousands of noncryptographic instructions between actual 
uses of the facility. By disabling the crypto unit (using the 
crypto-control bit), the control program can dispatch such 
a task on any CPU in the system and then reschedule the 
task on the proper CPU when the task attempts to issue a 
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cryptographic instruction. The requirement for CPU 
affinity and the situations in which the crypto units are not 
interchangeable create additional considerations and 
complexities for Processor Resource/Systems ManagerTM 
(PR/SMm)6 and VM support, as explained in the section 
on PR/SM support below. 

Task  scheduling 
The expected workload characteristics of the ICRF and the 
vector facility are quite different. Normally, vector 
instructions are executed in a batch environment and are 
used by only a small number of tasks; when used, vector 
instructions normally continue to be used over an extended 
period of time and represent a significant fraction of the 
instructions executed. Cryptographic instructions, on the 
other hand, are expected to be used primarily in a 
financial-transaction environment and to be used by most 
of the tasks in the system; even when used, cryptographic 
instructions represent an extremely small fraction of the 
total number of instructions executed. 

As mentioned previously, both the vector facility and 
ICRF provide special program exceptions to indicate to the 
control program that an application task has attempted to 
execute an instruction associated with the facility on a 
CPU that does not have the facility installed. As a result of 
this indication, the control program places the task in a list 
associated with that facility  (a “vector-scheduling’’ list or 
a “crypto-scheduling” list). The action for placing a task 
in the list is basically the same for the two facilities. 
However, the action for removing the task from the list is 
quite different. 

instruction, the task is  placed  in the vector-scheduling list 
and  left there for several time slices. Tasks on the vector- 
scheduling list are allocated time slices only on CPUs with 
vector units. The tasks in the vector-scheduling list are 
periodically tested to see whether they are still using 
vector instructions. If several time slices pass with  no 
vector use, a task is marked as not  using vectors, and the 
task is placed in the “non-vector-scheduling” list. To 
perform this type of action, the control program  must be 
able to test whether the task has used vectors during the 
past several time slices. This information is provided by 
the “vector-activity-count” register. 

The above-mentioned process for removal of tasks from 
the vector-scheduling list cannot be applied to the removal 
of tasks from the crypto-scheduling list. This is because 
expected workload characteristics indicate that nearly all 
tasks in crypto environments will  be  using crypto units. 
Unless some special action is taken, the scheduling list for 
those CPUs with a crypto unit  will  be overloaded, while 

When an application task first issues a vector 

6 PWSM is a  hardware feature that allows the resources of a machine 
(multiprocessor or uniprocessor system) to be shared dynamically among multiple, 
independent “partitions.” Each partition can run  a system control program,  and  all 
partitions can operate simultaneously [6] .  685 

R.  M.  SMITH, SR. AND P. C. YEH 



those CPUs without a crypto unit  may have a very light 
workload. 

It is expected that customers will install as many vector 
units in their systems (up to one per CPU) as are required 
to meet the peak workload requirements. As mentioned 
previously, early implementations of the ICRF can provide 
a maximum of two crypto units, even in systems with up 
to six CPUs. More sophisticated scheduling algorithms 
involving smaller time slices are needed to efficiently 
balance CPU workload in this environment. 

The fact that the vector facility is  an optional feature 
and is typically used by a small fraction of tasks leads to 
the requirement to provide vector-usage information for 
billing purposes. The vector-activity count provides this 
information. Since cryptographic use is expected to be 
more pervasive, no corresponding cryptographic-activity 
count was deemed necessary. 

Security restriction 
There is  no security restriction on the use of a vector unit. 
Any program that attempts to use the facility is given 
access to it. Most vector instructions are valid in the 
problem state (the state of the CPU when an application 
program is running). 

Stringent security restrictions exist regarding the use of 
the crypto unit, and special authorization must be provided 
to control access to the facility. In most cases, this 
authorization is at a very fine degree of resolution; i.e., 
tasks are given authority to perform certain cryptographic 
functions but not others. In ESN390, this type of control 
is normally provided by means of  an access-control 
program that operates in the supervisor state (the state of 
the CPU when the control program  is running). To 
facilitate this type of support, all cryptographic instructions 
are privileged (that is, they are valid only in the supervisor 
state). 

Exception  handling 
Once a vector unit is made available by the control 
program, the only situation that may cause the vector unit 
to become unusable is a hardware failure. This is reported 
simply as a “machine-check” interruption. 

For a crypto unit, many unusual situations must be 
reported. These include indications of hardware 
malfunction or improper setting of the manual controls. 
There are also indications that do not represent errors  at 
all. For example, each crypto unit has its own tamper- 
detection circuitry which,  upon detecting tamper, can 
cause the facility to become unusable; this situation must 
be reported to the control program as a special tamper 
indication. 

These unusual situations are reported by the hardware 
as part of the cryptographic instruction execution by 
setting status bits in the CPU. In a multiprocessing 
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environment, the cryptographic control program is 
normally scheduled to run on any of the CPUs in the 
multiprocessing system. Thus, when  it tests the result of a 
cryptographic instruction, the cryptographic control 
program may be running on a different CPU from the one 
it was running on when it executed the instruction. In 
order for the program to determine which CPU reported an 
unusual situation, information in the status word includes 
the address of the CPU that executed the instruction. 

Design  considerations 
The stringent requirement for security affected other 
design considerations, such as performance, flexibility, 
usability, and recovery, in a special way, resulting in many 
concerns and difficult trade-offs. Major  design 
considerations are described in this section, and the 
rationale for each decision is discussed. The design 
considerations are divided into two categories: system- 
design considerations and cryptographic-design 
considerations. 

System-design considerations 

CPU-integrated approach 
Most commercially available hardware cryptographic 
products are implemented as 1/0 devices attached to 
I/O channels. In fact, the original  goal of this project 
was to develop a follow-on product to the IBM 3848 
Cryptographic Unit [7], which is also a channel-attached 
device. However, the performance objective of providing 
up to 1000 transactions per second’ made the CPU- 
integrated approach a necessity. 

Register operands 
The execution time of many cryptographic operations is 
relatively long compared with the execution time of a 
typical ESN390 computer instruction. This long execution 
time creates an additional design concern for a 
multiprocessing system. 

INVALIDATE PAGE TABLE ENTRY and SET 
STORAGE KEY EXTENDED, requires that all CPUs in 
the multiprocessing system observe the effect of these 
instructions before the executing CPU can continue. This 
is  implemented by means of special hardware interlocks. A 
CPU executing one of these instructions must wait for a 
response from  all other CPUs in the system before 
completing the instruction execution. This response 
indicates that all storage accesses for instructions already 
in progress have been completed. Normally, each CPU 
signals the response at the completion of its current 

Execution of certain ESN390 instructions, such as 

7 “Transaction” here means an “IMS fast-path” financial transaction, consisting of 
thousands of instructions and several 110 and cryptographic instructions. 
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instruction, and the wait is short because the execution 
time for a typical ESA/390 instruction is short. However, 
with the long execution time for typical cryptographic 
instructions, if no special action were taken to improve 
the interlock, the waiting  time for all CPUs to signal 
completion would  be substantially increased. In some 
implementations, all CPUs must  wait  until the CPU 
that takes the longest time has completed its current 
instruction. In these implementations, the significance 
of this increased waiting  time is even more 
pronounced. 

instructions are placed in general registers. This  allows 
the CPU to respond to an interlock request from any 
other CPU immediately after all storage operands of the 
instruction have been fetched. As a result of this additional 
use of general registers, some cryptographic instructions 
use as many as ten general registers. This extensive 
use of general registers does not impose any significant 
programming constraint, since 1) there is  no compiler 
support for the instructions; 2) application programs 
cannot issue the instructions directly, but  must invoke 
them by means of a privileged support program; and 3) the 
only intended support program, the IBM Integrated 
Cryptographic Service Facility (ICSFMVS),  uses  the 
cryptographic instructions in a single subroutine that saves 
and restores all of the necessary general registers. 

To reduce this wait, the results of most cryptographic 

Sectioning  instructions 
The operands used in some cryptographic operations may 
be very long and must  be located in  main storage. MAC 
(message-authentication code) generation and MAC 
verification operate on a variable-length source operand. 
Encryption, decryption, and ciphertext translation operate 
on variable-length source operands and produce variable- 
length results. “Sectioning” is used in these operations 
to provide a reasonably short length of time between 
interruptible points. 

By dividing the processing of a long operand into 
intermediate-length sections, the CPU can recognize and 
respond to an interlock or interruption request at the end 
of each section; thus, the waiting  time of the interlock 
requests can be reduced. Sectioning could be achieved by 
defining the instructions to be interruptible (as for the 
System/370m  MOVE LONG [8]), by defining  an  explicit 
fixed section size (as for the ESN390 MOVE WITH KEY 
[9]), or by defining  an  explicit implementation-dependent 
section size (like the vector section size). The 
cryptographic instructions use a different method [lo] of 
dividing the processing. 

instruction is  specified by means of an address and 
length in a pair of general registers. Execution of the 
cryptographic instruction processes an implementation- 

Each variable-length storage operand for a cryptographic 
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dependent amount of the operand, updates the general 
registers to show the address and  length of the remaining 
operand, and sets a condition code (status bits in the CPU) 
to indicate whether or not the end of the operand was 
reached. The program can test the condition code set by 
the instruction in order to determine whether to continue 
the processing. 

in which the program must know the section size, the 
program does not have to know the section size for 
cryptographic instructions, and the cryptographic section 
size does not have to be a fixed value, thus providing more 
implementation flexibility. Sectioning for cryptographic 
instructions achieves the same result as making 
instructions interruptible, with less implementation 
complexity. 

Unlike instructions based on an explicit section size, 

Storage access 
Two ESN390 precedents in the area of storage access 
have been established by several cryptographic 
instructions. 

Three storage keys The execution of most ESN390 
instructions involves the use of a single “access key,” 
which is used to gain access to both instructions and 
operands in storage. Some ESN390 instructions, such as 
MOVE WITH KEY, permit the specification of a second 
access key, to be used in accessing a particular storage 
operand. As mentioned before, encryption, decryption, 
and ciphertext translation operate on variable-length 
source operands in storage and produce necessary 
variable-length results in storage. Since the information 
associated with cryptographic operations may be 
considered to be quite sensitive, the locations associated 
with the instruction, the fixed-length operands, and the two 
variable-length operands must be fetch-protected, and the 
source and result operands must be protected by different 
keys. Accommodating these requirements requires three 
access keys: one used to access instructions and the fixed- 
length operands, and one each to access the source and 
target operands. No other  ESN390 instruction uses more 
than two access keys. 

No boundary  alignment Storage operands of most 
ESA/390  privileged instructions are constrained to be 
located on word or double-word boundaries. The storage 
operands for cryptographic instructions are normally 
specified by application programs, which do not 
necessarily recognize boundary alignment.  In order to 
place short operands on the appropriate boundaries, 
ICSF/MVS moves the operands supplied by  the application 
program to another location. However, since the variable- 
length storage operands may  be very long, this technique 
becomes impractical. Therefore, even though they are 
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privileged instructions, the cryptographic instructions allow 
variable-length storage operands to be located on any 
boundary. 

Error  indication  and recovery 
The philosophy of error handling adopted for the ICRF is 
similar to that for I/O. The ICRF failure conditions are 
reported by means of a condition code and status word. 
No new machine-check interruption is defined for the 
ICRF. This is because cryptographic requests, like I/O 
requests, are routed through a single service program, 
ICSF/MVS. Since ICSF/MVS must examine the condition 
code and status-word setting after each cryptographic 
instruction for many other unusual situations, it was simple 
to add a bit to the status word for indicating errors; there 
was no  merit  in reporting hardware failure as a machine- 
check interruption. 

Redundancy and automatic hardware recovery are 
implemented within each crypto unit. To achieve high 
availability, two crypto units can be installed in a system. 

When hardware recovery for crypto-unit errors fails, an 
error indication is reported to the control program, and 
failing components are automatically disabled by the 
hardware. The control program can continue to use the 
CPU for noncryptographic tasks. 

Special security mode 
The import-clear-key and generate-clear-PIN functions are 
required for compatibility, migration, and some other 
special purposes, but these functions, if misused, can 
result in a significant reduction of overall system security. 
To maintain security, one approach considered was to 
provide clear-key and clear-PIN handling on an  off-line 
system (a separate support system). Encrypted keys and 
encrypted PINS would then be exchanged between the 
main  and  off-line systems. That approach was discarded 
because moving those functions from one system to 
another does not solve the problem;  it only moves it. The 
security of the main system depends on the security of the 
off-line system. In effect, from a security viewpoint, the 
off-line system is an extension of the main system. Also, 
the use of two systems, rather than one, to solve the 
problem is more complex and more costly. 

Instead, a special-security mode was implemented to 
enable these functions. The special-security mode is 
controlled by means of a physical key. The mode  must be 
active in order to perform the import-clear-key and 
generate-clear-PIN functions. Changing the mode does not 
disrupt normal applications. The security risk is reduced 
by disabling the functions when they are not in use. 

For users who prefer to use two systems, two PR/SM 
partitions (see footnote 6 ,  above) can be established, one 
of which runs in the special-security mode. This allows the 

688 user to implement the off-line system in a PR/SM partition. 

Dynamic master-@ update 
ICRF uses a “master key,” which resides inside the 
tamper-resistant enclosure, to protect other cryptographic 
keys in the system. The capability to update the master 
key dynamically and without disrupting application 
programs was required. 

Keys encrypted under the master key are said to be  in 
the “operational state.” Most keys in the operational state 
are maintained by ICSF/MVS  in a cryptographic key data 
set (CKDS). Other keys in the operational state are 
maintained by application programs. 

The  following  list summarizes the major steps of the 
process chosen to satisfy the requirements for dynamic 
update of the master key: 

1. A new master key is entered at the manual-control  panel. 
2. ICSF/MVS performs a batch job to convert keys in the 

current CKDS, which are encrypted under the current 
master key, to be encrypted under the new master 
key, and to place the result in a new  CKDS. The 
re-encipher-to-new-master-key function is provided 
specifically to perform this conversion. 

3. ICSF/MVS executes the set-master-key function and 
switches to the new CKDS. The set-master-key 
function causes the current master key to become the 
old master key and the new master key to become the 
current master key. The set-master-key function also 
changes the value in a register called the master-key- 
version-number register. 

4. Whenever an application requests a cryptographic 
service involving a key in the operational state, it 
supplies the key and a master-key version number. The 
master-key version number supplied by the application 
is compared with the master-key-version-number 
register. If the two master-key version numbers match, 
the application has supplied an up-to-date key, and the 
function can be performed. If the two master-key 
version numbers do not match, ICSF/MVS is alerted 
that conversion is required. If the master-key version 
number supplied by the application matches the most 
recent previous value, ICSF/MVS automatically 
converts the key supplied by the user from being 
encrypted under the old master key to being encrypted 
under the current master key. A new function, 
reencipher-from-old-master-key, is provided specifically 
to perform this conversion. 

Conceptually, the master-key-update process could be 
executed without step 2, since a key in the operational 
state may be converted by  step 4 when the key is  first 
used. However, the step was included for the following 
reason: Although the conversion process is transparent to 
application programs, this approach, if applied to a larger 
number of keys, could degrade performance significantly. 
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Multiple  cryptographic  domains 
To achieve physical isolation and protection among PRISM 
partitions, multiple cryptographic domains were adopted, 
each with its own master key and associated registers. A 
control program can use a cryptographic domain only if it 
knows the secret authorization pattern associated with the 
domain. Having multiple cryptographic domains permits 
PRISM support of the following two configurations: 
1) A cryptographic testing system and a cryptographic 
production system run on the same machine (uniprocessor 
or multiprocessor), each using a different master key. 
2) Several backup systems run in  different partitions on 
the same machine. Each partition must use a different 
master key, since the front-end production systems are 
independent cryptographic users, each using a different 
master key. 

operating without PRISM. This permits different control 
programs to be run on the machine (by means of initial 
program loading), each using a different cryptographic 
domain  with a different master key. 

PRISM support 
This section discusses the requirements and problems 
associated with  PRISM support. 

The requirement for CPU affinity  (defined previously in 
the subsection on interchangeability) makes support of 
ICRF for partitions more complex. For workload balance, 
PRISM normally uses floating CPU scheduling-that is, a 
logical CPU in a partition can run  on any physical CPU. 
This scheduling was extended to include crypto units. 
Floating crypto-unit scheduling can be used only when 
CPU affinity is not required. 

PRISM  must be alerted when the crypto units have 
become noninterchangeable and when a partition attempts 
to execute an instruction which invokes a cryptographic 
function that must be performed on a specific physical 
crypto unit. This is accomplished by defining special 
signals for those cryptographic functions associated with 
master-key entry, error handling, and other processes that 
may cause the crypto unit to become noninterchangeable. 
Exception conditions that may indicate that the crypto 
units have become noninterchangeable are signaled to 
PRISM.  PRISM uses these signals to turn off floating 
crypto-unit scheduling. When  floating crypto-unit 
scheduling is off, each CPU in the partition must  run 
on a predetermined physical CPU. Floating crypto-unit 
scheduling is resumed after all crypto units in the system 
become interchangeable again. 

program (CP) and  CP  is  running under PR/SM,  floating 
crypto-unit scheduling can be used by both CP and 
PR/SM.  This means that when CPU affinity is required, 
crypto-unit floating  must be prohibited at both CP and 

Multiple cryptographic domains are also provided when 

When a virtual machine is running under the VM control 

PRISM levels. This was achieved by having control 
returned to the appropriate control program when CPU 
affinity is required. The architecture was defined in such a 
way that ICSF/MVS  need  not  know whether it  is  running 
natively, in a partition, or as a guest. 

quantity, the master-key authorization pattern, is returned 
by the hardware to the program. After the master key has 
been manually entered, the program cannot perform most 
cryptographic functions unless it  can supply this secret 
quantity. For security reasons, it  is undesirable for PRISM 
to maintain a copy of this secret quantity. Without this 
information, PRISM cannot simulate cryptographic 
functions for a partition. Therefore, it was necessary to 
define the ICRF architecture in such a way that simulation 
of cryptographic functions is never required. This was 
accomplished by defining special controls for each function 
or condition that must be signaled to PRISM. These 
controls can be set to either cause a signal or permit 
execution of the function. PRISM sets the controls to 
cause signaling  when  floating crypto-unit scheduling is on 
and to permit execution of the function without signaling 
when floating crypto-unit scheduling is  off. 

Cryptographic-design  considerations 
In this section, some basic concepts of the ICRF key- 
management scheme are reviewed, and several key 
decisions with respect to the ICRF cryptographic design 
are discussed. A detailed description of these concepts and 
the ICRF approach are provided in [4]. 

Cryptographic keys can be divided into different types 
according to key usage. Table 1 shows the five basic 
key types supported by the ICRF and their intended 
functions. Note that each basic key type has more than 
one intended function and that for some functions more 
than one key is involved. If a key of a particular type 
could  be  used for unintended functions, severe security 
exposures would exist. For example, if a key-protection 
key could be used as a data-protection key, cryptographic 
keys encrypted under a particular key-protection key could 
be disclosed in the clear by using the key-protection key 
and the decryption function. 

normally  used in one system for a particular function (e.g., 
encryption) and in the other system for a different function 
(e.g., decryption). These two functions are called 
complementary functions. To prevent misuse of keys 
between complementary functions, the ICRF further 
divides each basic key type into more detailed key types, 
as shown in the right-hand column of Table 1. The key 
types for complementary functions are called 
complementary key types. 

by the application program through ICSF, and the 

As part of the master-key-entry process, a secret 

When a key is shared by two systems, the key is 

When a key is generated, the intended usage  is  specified 
689 
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Table 1 Summary of major  ICRF  functions and associated  key  types. 

Function Detailed key type 

Data-protection 

Message-authentication 

PIN-protection 

Encryption Data-encrypting 
Decryption Data-encrypting  key 
Ciphertext translation Data-translation 

Data-translation 
MAC generation 
MAC  verification 
PIN translation 

PIN  verification 
Algorithmic  PIN-generation  PIN  verification 

PIN  generation 
Key-protection Key  export 

Key import 

MAC-generation 
MAC-verification 
Input  PIN-encrypting 
Output  PIN-encrypting 
Input  PIN-encrypting 
PIN-verification 
PIN-generation 
Exporter  key-encrypting 
Importer  key-encrypting 

, .- . - * .  hardware associates the corresponding key type with the 
key. The key type of the key remains unchanged thereafter 
and is enforced by the hardware so that meaningful results 
are not produced if the key is used for unintended 
functions. 

Degree of key separation 
Generally, using more key types provides better security. 
However, key-management processes become more 
complex when more key types are handled. A careful 
trade-off between security and usability was a major design 
consideration. 

Conceptually, a  different detailed key type could be 
provided for each unique use of cryptographic keys. This 
is impractical for the ICRF, however, because of the 
adverse effects on usability and the space constraint on 
hardware design. The following provides the rationale 
behind some decisions on key separation of certain 
detailed key types. 

Data-encrypting and data-translation key types The 
ciphertext-translation function is provided to allow 
intermediate nodes to reencipher messages that are passing 
through without disclosing the messages in the clear 
outside the tamper-resistant enclosure. The function 
requires two cryptographic keys; it  first deciphers the input 
message in the clear using one key and then enciphers the 
clear message using another key. The function can be 
paired with the encryption or decryption function, or 
with the ciphertext-translation function itself, to form 
complementary functions. Table 2 summarizes the ICRF 
complementary functions for data protection. If a  different 
key type were used by the function at each end of every 
complementary pair in the table, a total of eight  different 

690 detailed key types would be required. 

The ICRF provides only two detailed key types for data 
protection: The data-encrypting key type is  used by both 
the encryption and decryption functions; the data- 
translation key type is used for both keys of the 
ciphertext-translation function. This decision was made for 
the following reasons: 1) It is a customer requirement that 
application programs written for the Cryptographic Unit 
Support Program (CUSP) (see footnote 3) or the 
Programmed Cryptographic Facility (PCF) (see footnote 4) 
must  run under ICSF/MVS. For this compatibility, the 
same key type is used in both the encryption and 
decryption functions. 2) Separation between the data- 
encrypting key type and the data-translation key type is 
necessary to prevent programs at a switching node from 
being able to decipher messages that are passing through. 
3) Additional key types would not have enhanced security 
significantly and would have entailed additional complexity 
of key management and the associated software support. 

MAC-generation and MAC-verijication key types A 
message authentication code (MAC) is a cryptographic 
check sum which can be used to verify that a message has 
been received without modifications;  it can also be used to 
authenticate the message originator. A MAC is generated 
for a message, using  a cryptographic key, and is sent with 
the message by the originator. To verify the integrity of 
the message, the recipient performs MAC verification. 
Verification consists of generating a  MAC for the received 
message using the same key and comparing the generated 
MAC with the received MAC. If they match, it is highly 
likely that the message is genuine and has been received 
without modifications. The MAC-generation  and  MAC- 
verification functions are complementary functions. 

If the key used by the recipient for MAC verification 
could also be used for the MAC-generation function, 
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anyone who has access to the key at the recipient's system 
would  be able to generate a valid MAC for a bogus 
message. Separation between the MAC-generation key 
type and the MAC-verification key type removes this 
concern. 

PINgeneration, PIN-verification,  input  PIN-encrypting, 
and output PIN-encvpting key types A secret personal 
identification  number (PIN) is usually used to authenticate 
the holder of a debit card or credit card in an electronic- 
funds-transfer system. The PIN can be a random number 
assigned by the card issuer, or can be cryptographically 
derived from some information about the cardholder. The 
PIN-generation function is provided to derive a PIN using 
a cryptographic key, called  an algorithmic-PIN-generation 
key, and a specific algorithm. The derived PIN is  in the 
clear, and the function is available only in the special- 
security mode.  Random PINs  are normally encrypted and 
stored in a PIN database for PIN verification. Derived 
PINs need not be stored and can be regenerated at 
verification time. 

After being entered at an automated teller machine 
(ATM) or point-of-sale terminal for host PIN verification, 
the PIN is encrypted. The encrypted PIN is sent to the 
host. This is called the PIN-entry function. 

In some  situations, a PIN entered by a cardholder  may 
travel  through several nodes  before  it reaches the  system that 
performs PIN verification.  The  PIN-translation  function  is 
provided to allow  switching  nodes to reencipher PINs 
without  disclosing the PINs in the clear.  The  function 
requires two keys-one for decrypting  the  incoming 
encrypted PIN and the other for  encrypting the outgoing  PIN. 

The PIN-translation function may also be employed in 
PIN verification using a PIN database. In this application, 
the received PIN in the encrypted form is converted to 
become encrypted under the PIN-database key. The result 
is compared with  an appropriate entry from the database. 

cryptographic algorithm, requires two keys-one for 
decrypting the received PIN and the other for deriving a 
reference PIN. The received PIN is deciphered and 
compared with the generated reference PIN. 

Table 3 summarizes complementary functions for PIN 
processing. The  ICRF provides four PIN-related key types 
for the following reasons: 

The PIN-verification function, which uses a 

1. A card issuer may authorize other institutions to 
perform the algorithmic PIN-verification process for the 
issuer. Separation between the PIN-generation key type 
(for the PIN-generation function) and the PIN- 
verification key type (for the PIN-verification function) 
prevents these institutions from generating valid PINs. 

2. The PIN-translation function is defined to use two key 
types: an input PIN-encrypting key type for the key 

Table 2 Complementary  functions for data protection. 

Encryption 
Encryption  Ciphertext  translation 
Ciphertext  translation  Ciphertext  translation 
Ciphertext  translation  Decryption 

~ ~ ~~ 

Decryption 

Table 3 Complementary  functions for PIN processing. 

PIN  generation PIN verification 
PIN entry* PIN  verification 
PIN entry* PIN  translation 
PIN translation PIN  translation 
PIN translation PIN  verification 

~ ~~ 

'Pin entry is performed at an ATM or point-of-sale terminal  and is not provided by 
the ICRF. 

protecting the input PIN and an output PIN-encrypting 
key type for the key protecting the output PIN. This 
separation prevents the function from being used (with 
the PIN-database key) to reencipher a PIN database to 
become one encrypted under a key chosen by an 
adversary and potentially known to the adversary. 

3. After a system has received an encrypted PIN sent 
from  an  ATM or point-of-sale terminal, the system may 
perform a PIN-verification function or a PIN-translation 
function, depending on whether the received PIN is to 
be processed by the system or forwarded to another 
system. Most current ATMs and terminals use only 
one cryptographic key for protecting PINs. To 
accommodate existing equipment, the same key type 
(input PIN-encrypting) is used to protect the input PIN 
for both the PIN-translation and PIN-verification 
functions. 

Importer  and exporter key-encvpting key types A key- 
encrypting key (KEK) is used to protect other keys of any 
type. The key-export and key-import functions are 
provided for key distribution; they are complementary 
functions. The key-export function reenciphers a key from 
being encrypted under the master key of the sender to 
being encrypted under a KEK shared with the receiver; 
the key-import function reenciphers a key from  being 
encrypted under a KEK shared with the sender to being 
encrypted under the master key of the receiver. An 
exporter key-encrypting key type is  used for the KEK in 
the key-export function, and  an importer key-encrypting 
key type is  used for the KEK in the key-import function. 

The ICRF provides a function that generates two copies 
of the same key with complementary key types. One copy 
can be used by the generation system, and the other is 
ready to be sent to another system. The key to be  sent is 
encrypted under an exporter KEK. If separation between 
the exporter and importer key-encrypting key types were 691 

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 R. M. SMITH, SR. AND P. C. YEH 



Multiple  enciphennent for key protection. 

not  provided,  any  key to be sent could also be imported 
back to the sender by an adversary. This  would  allow the 
adversary to obtain all pairs of complementary  keys, thus 
compromising  key-usage control. 

Key length and key protection 
The introduction of high-performance  cryptographic 
functions provides  a very powerful  code-breaking  tool. 
This leads to additional security considerations.  In  addition 
to supporting  many  key  types, the ICRF offers the 
following  additional security enhancements: All key- 
encrypting keys (KEKs) and  PIN-related keys are 128 bits 

692 long,  and the left  and  right  halves of a  128-bit  key are 
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protected by  different derivatives of a KEK. (The 
derivative of a KEK is obtained  by  performing the 
exclusive-OR of a  value  with the key.) 

One of the many reasons why each half of a  128-bit 
key  should  be encrypted under  different derivatives of a 
KEK is provided  here for illustration. As can be seen in 
Figure 1, if the same derivative of a KEK were used to 
encrypt both halves of a  128-bit key (Le., KEKl = 
KEK2), and if both  halves of the 128-bit key had the same 
value (i.e., KL = KR), the encrypted values of both 
halves of the key would be the same [i.e., eKEKl(KL) = 
eKEK2(KR)].  This  allows  128-bit keys with  equal  halves 
to be detected and  also  allows  128-bit keys with  equal 
halves to be created. One  could create a  128-bit  key  with 
equal  halves in the encrypted  form by simply  declaring  a 
64-bit random  number as both  halves of an encrypted 
128-bit  key.  Even  though the clear  value of this randomly 
created key  is  unknown, the key has only the strength of 
64 bits.  This  ability  to create a  128-bit key with  equal 
halves  drastically reduces the strength of system security. 
For example, an adversary could create an exporter KEK 
with  equal  halves in the encrypted form.  The adversary 
could then use the key-export  function to reencipher all 
keys in the CKDS (cryptographic key data set) to become 
encrypted under that exporter KEK. Thus, the overall 
system security is effectively  reduced to the level  of  @-bit 
keys. Encrypting each half  of a 128-bit key under  a 
different derivative of a KEK eliminates the ability to 
create and detect equal  halves of a  128-bit  key. 

Concluding remarks 
The  design of ICRF led to many  unusual architectural 
solutions.  The  physical  limitations  imposed  on  the 
implementation  resulted in special instructions to assist the 
control program in scheduling.  The  long  execution  time 

sociated  with  many of the cryptographic operations 
quired  special  handling of operands and  sectioning. The 

:sulted  in a  requirement for dynamic  master-key  update. 
The stringent requirement for security led to many 

unusual considerations that shaped the design of the ICRF. 
To provide  for protection of operands in storage, three 
access keys were required  for the execution of a  single 
instruction. To achieve  physical  isolation  and  protection 
among  logical systems running on the same  machine, 
multiple  cryptographic  domains were provided. To obtain 
high availability, extensive redundancy and transparent 
hardware recovery were required to protect the secret 
quantities involved. To facilitate control of the usage of 
individual  cryptographic  functions, all cryptographic 
instructions were specified to be  privileged. 

The  most  significant  difference  between the ICRF 
implementation and other hardware  cryptographic  devices 
is that the ICRF is implemented  on  CPUs  of general- 

continuous-operation  requirement for large systems 
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purpose mainframes. The high-performance characteristic 
of this CPU-integrated approach allows the facility, with 
little overhead, to use a 128-bit key length, thus enhancing 
security for most cryptographic keys. The high- 
performance characteristic also introduced many  new 
challenges, requiring a careful evaluation of overall 
security. The results of the evaluation shaped many 
aspects of the facility. 

to significantly enhance security by means of key 
separation. Although  using more key types generally 
provides higher security, it also complicates key 
management. The number of key types provided by the 
ICRF  was carefully investigated and determined in order 
to provide a balanced system that best fits the design 
criteria and market requirements. 

Another unique characteristic of the facility is its ability 
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