Integrated
Cryptographic
Facility of the
Enterprise
Systems

Architecture/390

Design
considerations

by R. M. Smith, Sr.
P. C. Yeh

This paper reviews the considerations that
shaped the design of the Enterprise Systems
Architecture/390™ Integrated Cryptographic
Facility. It describes design issues,
alternatives, and decisions, and it provides the
rationale behind some of the decisions. [ssues
related to performance, security, usability, and
availability are covered.

Introduction

Protection of information is one of the most important
issues facing computer users today. This is because of the
increasing number of applications involving network
communications and distributed systems, the growing
amount of information processed by computers, the
increasing dependence on shared databases, and the
increasing number of applications critical for the existence
and success of enterprises. Cryptography is an effective
tool for providing data security (preventing unauthorized
access to data), data integrity (ensuring the accuracy of

data), and authentication (verifying the identity of a user
or sender). The Enterprise Systems Architecture/390™
(ESA/390™) Integrated Cryptographic Facility (ICRF) was
designed to provide the cryptographic functions necessary
for users of large systems to protect their data.

The ICRF is a DEA-based [1] cryptographic architecture
that is an extension to the IBM ESA/390 architecture. The
facility provides cryptographic functions’ for performing
data encryption and decryption, handling message-
authentication codes (MACs) [2] and personal-identification
numbers (PINs) [3], and managing cryptographic keys. All
cryptographic instructions are performed synchronously
with central processing unit (CPU) instruction execution,

Implementation of the ICRF architecture on the water-
cooled Enterprise System/9000™ (ES/9000™) computer

1 In this paper, the term cryptographic function is used to refer to the capability
provided by the ICRF to perform a particular cryptographic action. The term
cryptographic instruction is used to refer to the interface provided in the CPU to
permit the program to invoke cryptographic functions. The term cryptographic
operation is used to refer to the execution of cryptographic functions or
instructions; it is also used in a more general sense to refer to the actions in a
cryptographic environment.

©Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 R. M. SMITH, SR. AND P. C. YEH

683

684

models provides a hardware cryptographic feature within

a CPU that is capable of high performance in financial-
transaction and large-file-encryption applications. The
crypto unit’ is physically implemented in a tamper-
resistant enclosure. Secret information is always kept
inside the enclosure. A manual-control panel is provided
for manual entry of cryptographic keys, clearing the
contents of internal registers containing secret quantities,
enabling or disabling the facility, and controlling the use of
certain special cryptographic functions.

Software support for the ICRF is provided by the IBM
Integrated Cryptographic Service Facility (ICSF/MVS).
This program provides an ““interface” to application
programs that is upward compatible with the interface
provided by the Cryptographic Unit Support Program
(CUSP)® and the Programmed Cryptographic Facility
(PCF)".

A detailed description of the product objectives, the
specific key-management scheme, and the structure of
the ICRF was presented in a previous paper [4]. That
paper also reviewed major functions and summarized
the physical security provided by the first ICRF
implementation.

This paper presents the considerations that shaped the
design of the ICRF. It first compares the ICRF with the
ESA/390 Vector Facility [5], from a system-design
viewpoint, to highlight unusual design concerns caused by
the ICRF. It then describes design issues, alternatives, and
decisions, and it provides the rationale behind some of the
decisions. Issues related to performance, security,
usability, and availability are covered.

Comparison with vector facility

In the first implementation of the ICRF, because of the
physical security and hard-wired logic, the hardware
associated with the crypto unit took so much space that
the number of crypto units that could be installed was
limited. On some ES/9000 computer systems with up to
three CPUs, only one crypto unit could be installed. On
the largest systems, with up to six CPUs, only two could
be installed. In addition, either a crypto unit or a vector
unit,” but not both, could be installed on any particular
CPU.

ICRF and vector are the only two optional CPU
facilities that are permitted to be installed on some (but not
necessarily all) CPUs in a multiprocessing system. The
type of configuration in which the CPUs are not equivalent
poses several unusual problems for the control program,

2 In this paper, the term crypfo unit is used to refer to a physical implementation of
the ICRF architecture.

3 The IBM Cryptographic Unit Support Program (CUSP) is the host software for
supporting the IBM 3848 cryptographic unit, which is a channel-attached device.

4 The IBM Programmed Cryptographic Facility (PCF) is software that simulates the
3848 functions and provides the CUSP application program interface.

5 In this paper, the term vector unit is used to refer to a physical implementation of
the vector facility architecture.

R. M. SMITH, SR. AND P. C. YEH

and solutions for these problems must be addressed in the
architecture. This led to a starting point in the design
process in which an attempt was made to use the same
type of solutions for ICRF as had been used for the vector
facility. In many cases, the vector solutions also worked
for ICRF; in other cases, they did not.

This section presents some of the similarities and
differences between these two facilities. The comparison
accentuates many complexities and implications for system
design caused by the unusual characteristics of the ICRF.

® Similarities to vector facility
The ICRF and the vector facility have the following
similarities:

e Both facilities have a requirement that the control
program be able to disable any unit so that the
application program cannot use it. When a vector unit is
disabled, the control program does not have to save and
restore the contents of the registers in the unit. This
saves a significant amount of time when application tasks
that do not use the facility are being dispatched. A
crypto unit may have to be disabled because, for
example, the master key (described below) has not been
loaded, or the unit is in the error state. This requirement
is met by means of a control bit in each CPU that
enables or disables the use of the unit. When the unit
is disabled, any attempt to execute an instruction
associated with the unit results in a program exception
which indicates that the unit is unavailable.
Both facilities have a requirement for a special indication
of the absence of the facility. For most facilities, an
attempt to execute an instruction that is part of an
uninstalled facility results in a program interruption that
indicates an “operation exception.”” The action taken by
the control program when an application task encounters
an operation exception is to terminate the task. For the
vector facility and ICRF, when the facility is installed on
some but not all of the CPUs in the system, this is not
the desired action. Rather, a task attempting to use a
particular facility should be rescheduled from a CPU
without the facility to a CPU with it. To assist the
program in identifying this case, new program
interruption codes were defined for both the vector
facility and ICRF. When an application task attempts to
execute an instruction associated with the vector facility
on a CPU on which a vector unit is not installed, the
vector-operation exception is reported. Similarly, when
an application task attempts to execute an instruction
associated with the ICRF on a CPU on which a crypto
unit is not installed, the crypto-operation exception is
reported.
e Both facilities must process data in very large quantities.
This can result in excessively long execution time and

IBM J1. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

requires some sort of ““sectioning’ to divide the
operation into smaller units. The considerations
associated with sectioning are discussed in a later section
of this paper.

® Differences from vector facility

There are many differences between the ICRF and

the vector facility in handling certain functions and
requirements. Among these functions and requirements
described in the following sections are interchangeability,
task scheduling, security restriction, and exception
handling.

Interchangeability
All vector units in a system are identical and can be used
interchangeably by all programs. The control program
takes advantage of this characteristic to balance the
workload on a multiprocessing system. It is very desirable
to perform the same type of load balancing for programs
using crypto units. Although crypto units in a system can
normally be used interchangeably, there are some
infrequent situations in which this is not the case.
Following are the two categories of situations in which
CPU affinity, the association of a task with a specific
physical CPU, is required:

e Some cryptographic support tasks require CPU affinity.
These include manual key entry (because the process
uses the manual-control panel, and each crypto unit has
a separate panel) and error handling (because of the very
nature of the process).

The states of the crypto units do not appear to be
identical to the program. Following are some examples:
manual controls have disabled one crypto unit while the
other is enabled; master-key entry has been completed
on one crypto unit but not yet started on the other; and
physical tampering has caused the master-key registers
to be cleared in one crypto unit but not in the other.

When the crypto units are not interchangeable, it may
be desirable to permit application programs to use one of
the crypto units but not the other. To do this, the control
program must have a simple means to determine whether
the crypto units are interchangeable. Since the contents
of most registers of crypto units must be kept secret, a
means was provided to verify interchangeability without
disclosing the contents of secret registers.

Even though a task may have a requirement to access
a particular crypto unit, the task may execute many
thousands of noncryptographic instructions between actual
uses of the facility. By disabling the crypto unit (using the
crypto-control bit), the control program can dispatch such
a task on any CPU in the system and then reschedule the
task on the proper CPU when the task attempts to issue a

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

cryptographic instruction. The requirement for CPU
affinity and the situations in which the crypto units are not
interchangeable create additional considerations and
complexities for Processor Resource/Systems Manager™
(PR/SM™)® and VM support, as explained in the section
on PR/SM support below.

Task scheduling

The expected workload characteristics of the ICRF and the
vector facility are quite different. Normally, vector
instructions are executed in a batch environment and are
used by only a small number of tasks; when used, vector
instructions normally continue to be used over an extended
period of time and represent a significant fraction of the
instructions executed. Cryptographic instructions, on the
other hand, are expected to be used primarily in a
financial-transaction environment and to be used by most
of the tasks in the system; even when used, cryptographic
instructions represent an extremely small fraction of the
total number of instructions executed.

As mentioned previously, both the vector facility and
ICRF provide special program exceptions to indicate to the
control program that an application task has attempted to
execute an instruction associated with the facility on a
CPU that does not have the facility installed. As a result of
this indication, the control program places the task in a list
associated with that facility (a ““vector-scheduling™ list or
a ““crypto-scheduling’ list). The action for placing a task
in the list is basically the same for the two facilities.
However, the action for removing the task from the list is
quite different.

When an application task first issues a vector
instruction, the task is placed in the vector-scheduling list
and left there for several time slices. Tasks on the vector-
scheduling list are allocated time slices only on CPUs with
vector units. The tasks in the vector-scheduling list are
periodically tested to see whether they are still using
vector instructions. If several time slices pass with no
vector use, a task is marked as not using vectors, and the
task is placed in the ““non-vector-scheduling” list. To
perform this type of action, the control program must be
able to test whether the task has used vectors during the
past several time slices. This information is provided by
the ““vector-activity-count’ register.

The above-mentioned process for removal of tasks from
the vector-scheduling list cannot be applied to the removal
of tasks from the crypto-scheduling list. This is because
expected workload characteristics indicate that nearly all
tasks in crypto environments will be using crypto units.
Unless some special action is taken, the scheduling list for
those CPUs with a crypto unit will be overloaded, while

6 PR/SM is a hardware feature that allows the resources of a machine
(multiprocessor or uniprocessor system) to be shared dynamically among multiple,
independent “‘partitions.’” Each partition can run a system control program, and all
partitions can operate simultaneously [6].

685

R. M. SMITH, SR. AND P. C. YEH

686

those CPUs without a crypto unit may have a very light
workload.

It is expected that customers will install as many vector
units in their systems (up to one per CPU) as are required
to meet the peak workload requirements. As mentioned
previously, early implementations of the ICRF can provide
a maximum of two crypto units, even in systems with up
to six CPUs. More sophisticated scheduling algorithms
involving smaller time slices are needed to efficiently
balance CPU workload in this environment.

The fact that the vector facility is an optional feature
and is typically used by a small fraction of tasks leads to
the requirement to provide vector-usage information for
billing purposes. The vector-activity count provides this
information. Since cryptographic use is expected to be
more pervasive, no corresponding cryptographic-activity
count was deemed necessary.

Security restriction

There is no security restriction on the use of a vector unit.
Any program that attempts to use the facility is given
access to it. Most vector instructions are valid in the
problem state (the state of the CPU when an application
program is running).

Stringent security restrictions exist regarding the use of
the crypto unit, and special authorization must be provided
to control access to the facility. In most cases, this
authorization is at a very fine degree of resolution; i.e.,
tasks are given authority to perform certain cryptographic
functions but not others. In ESA/390, this type of control
is normally provided by means of an access-control
program that operates in the supervisor state (the state of
the CPU when the control program is running). To
facilitate this type of support, all cryptographic instructions
are privileged (that is, they are valid only in the supervisor
state).

Exception handling

Once a vector unit is made available by the control
program, the only situation that may cause the vector unit
to become unusable is a hardware failure. This is reported
simply as a ““machine-check’ interruption.

For a crypto unit, many unusual situations must be
reported. These include indications of hardware
malfunction or improper setting of the manual controls.
There are also indications that do not represent errors at
all. For example, each crypto unit has its own tamper-
detection circuitry which, upon detecting tamper, can
cause the facility to become unusable; this situation must
be reported to the control program as a special tamper
indication.

These unusual situations are reported by the hardware
as part of the cryptographic instruction execution by
setting status bits in the CPU. In a multiprocessing

R. M. SMITH, SR. AND P. C. YEH

environment, the cryptographic control program is
normally scheduled to run on any of the CPUs in the
multiprocessing system. Thus, when it tests the result of a
cryptographic instruction, the cryptographic control
program may be running on a different CPU from the one
it was running on when it executed the instruction. In
order for the program to determine which CPU reported an
unusual situation, information in the status word includes
the address of the CPU that executed the instruction.

Design considerations

The stringent requirement for security affected other
design considerations, such as performance, flexibility,
usability, and recovery, in a special way, resulting in many
concerns and difficult trade-offs. Major design
considerations are described in this section, and the
rationale for each decision is discussed. The design
considerations are divided into two categories: system-
design considerations and cryptographic-design
considerations.

® System-design considerations

CPU-integrated approach

Most commercially available hardware cryptographic
products are implemented as I/O devices attached to

I/O channels. In fact, the original goal of this project
was to develop a follow-on product to the IBM 3848
Cryptographic Unit [7], which is also a channel-attached
device. However, the performance objective of providing
up to 1000 transactions per second’ made the CPU-
integrated approach a necessity.

Register operands

The execution time of many cryptographic operations is
relatively long compared with the execution time of a
typical ESA/390 computer instruction. This long execution
time creates an additional design concern for a
multiprocessing system.

Execution of certain ESA/390 instructions, such as
INVALIDATE PAGE TABLE ENTRY and SET
STORAGE KEY EXTENDED, requires that all CPUs in
the multiprocessing system observe the effect of these
instructions before the executing CPU can continue. This
is implemented by means of special hardware interlocks. A
CPU executing one of these instructions must wait for a
response from all other CPUs in the system before
completing the instruction execution. This response
indicates that all storage accesses for instructions already
in progress have been completed. Normally, each CPU
signals the response at the completion of its current

7 “Transaction”” here means an “’IMS fast-path”” financial transaction, consisting of
thousands of instructions and several 1/O and cryptographic instructions.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

instruction, and the wait is short because the execution
time for a typical ESA/390 instruction is short. However,
with the long execution time for typical cryptographic
instructions, if no special action were taken to improve
the interlock, the waiting time for all CPUs to signal
completion would be substantially increased. In some
implementations, all CPUs must wait until the CPU
that takes the longest time has completed its current
instruction. In these implementations, the significance
of this increased waiting time is even more
pronounced.

To reduce this wait, the results of most cryptographic
instructions are placed in general registers. This allows
the CPU to respond to an interlock request from any
other CPU immediately after all storage operands of the
instruction have been fetched. As a result of this additional
use of general registers, some cryptographic instructions
use as many as ten general registers. This extensive
use of general registers does not impose any significant
programming constraint, since 1) there is no compiler
support for the instructions; 2) application programs
cannot issue the instructions directly, but must invoke
them by means of a privileged support program; and 3) the
only intended support program, the IBM Integrated
Cryptographic Service Facility (ICSF/MVS), uses the
cryptographic instructions in a single subroutine that saves
and restores all of the necessary general registers.

Sectioning instructions

The operands used in some cryptographic operations may
be very long and must be located in main storage. MAC
(message-authentication code) generation and MAC
verification operate on a variable-length source operand.
Encryption, decryption, and ciphertext translation operate
on variable-length source operands and produce variable-
length results. ““Sectioning” is used in these operations

to provide a reasonably short length of time between
interruptible points.

By dividing the processing of a long operand into
intermediate-length sections, the CPU can recognize and
respond to an interlock or interruption request at the end
of each section; thus, the waiting time of the interlock
requests can be reduced. Sectioning could be achieved by
defining the instructions to be interruptible (as for the
System/370™ MOVE LONG [8]), by defining an explicit
fixed section size (as for the ESA/390 MOVE WITH KEY
[9)), or by defining an explicit implementation-dependent
section size (like the vector section size). The
cryptographic instructions use a different method [10] of
dividing the processing.

Each variable-length storage operand for a cryptographic
instruction is specified by means of an address and
length in a pair of general registers. Execution of the
cryptographic instruction processes an implementation-

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

dependent amount of the operand, updates the general
registers to show the address and length of the remaining
operand, and sets a condition code (status bits in the CPU)
to indicate whether or not the end of the operand was
reached. The program can test the condition code set by
the instruction in order to determine whether to continue
the processing.

Unlike instructions based on an explicit section size,
in which the program must know the section size, the
program does not have to know the section size for
cryptographic instructions, and the cryptographic section
size does not have to be a fixed value, thus providing more
implementation flexibility. Sectioning for cryptographic
instructions achieves the same result as making
instructions interruptible, with less implementation
complexity.

Storage access

Two ESA/390 precedents in the arca of storage access
have been established by several cryptographic
instructions.

Three storage keys The execution of most ESA/390
instructions involves the use of a single ““access key,”
which is used to gain access to both instructions and
operands in storage. Some ESA/390 instructions, such as
MOVE WITH KEY, permit the specification of a second
access key, to be used in accessing a particular storage
operand. As mentioned before, encryption, decryption,
and ciphertext translation operate on variable-length
source operands in storage and produce necessary
variable-length results in storage. Since the information
associated with cryptographic operations may be
considered to be quite sensitive, the locations associated
with the instruction, the fixed-length operands, and the two
variable-length operands must be fetch-protected, and the
source and result operands must be protected by different
keys. Accommodating these requirements requires three
access keys: one used to access instructions and the fixed-
length operands, and one each to access the source and
target operands. No other ESA/390 instruction uses more
than two access keys.

No boundary alignment Storage operands of most
ESA/390 privileged instructions are constrained to be
located on word or double-word boundaries. The storage
operands for cryptographic instructions are normally
specified by application programs, which do not
necessarily recognize boundary alignment. In order to
place short operands on the appropriate boundaries,
ICSF/MVS moves the operands supplied by the application
program to another location. However, since the variable-
length storage operands may be very long, this technique
becomes impractical. Therefore, even though they are 687

R. M. SMITH, SR. AND P. C. YEH

688

privileged instructions, the cryptographic instructions allow
variable-length storage operands to be located on any
boundary.

Error indication and recovery

The philosophy of error handling adopted for the ICRF is
similar to that for 1/O. The ICRF failure conditions are
reported by means of a condition code and status word.
No new machine-check interruption is defined for the
ICRF. This is because cryptographic requests, like 1/O
requests, are routed through a single service program,
ICSF/MVS. Since ICSF/MVS must examine the condition
code and status-word setting after each cryptographic
instruction for many other unusual situations, it was simple
to add a bit to the status word for indicating errors; there
was no merit in reporting hardware failure as a machine-
check interruption.

Redundancy and automatic hardware recovery are
implemented within each crypto unit. To achieve high
availability, two crypto units can be installed in a system.

When hardware recovery for crypto-unit errors fails, an
error indication is reported to the control program, and
failing components are automatically disabled by the
hardware. The control program can continue to use the
CPU for noncryptographic tasks.

Special security mode

The import-clear-key and generate-clear-PIN functions are
required for compatibility, migration, and some other
special purposes, but these functions, if misused, can
result in a significant reduction of overall system security.
To maintain security, one approach considered was to
provide clear-key and clear-PIN handling on an off-line
system (a separate support system). Encrypted keys and
encrypted PINs would then be exchanged between the
main and off-line systems. That approach was discarded
because moving those functions from one system to
another does not solve the problem; it only moves it. The
security of the main system depends on the security of the
off-line system. In effect, from a security viewpoint, the
off-line system is an extension of the main system. Also,
the use of two systems, rather than one, to solve the
problem is more complex and more costly.

Instead, a special-security mode was implemented to
enabie these functions. The special-security mode is
controlled by means of a physical key. The mode must be
active in order to perform the import-clear-key and
generate-clear-PIN functions. Changing the mode does not
disrupt normal applications. The security risk is reduced
by disabling the functions when they are not in use.

For users who prefer to use two systems, two PR/SM
partitions (see footnote 6, above) can be established, one
of which runs in the special-security mode. This allows the
user to implement the off-line system in a PR/SM partition.

R. M. SMITH, SR. AND P. C. YEH

Dynamic master-key update

ICRF uses a “master key,”” which resides inside the
tamper-resistant enclosure, to protect other cryptographic
keys in the system. The capability to update the master
key dynamically and without disrupting application
programs was required.

Keys encrypted under the master key are said to be in
the “operational state.”” Most keys in the operational state
are maintained by ICSF/MVS in a cryptographic key data
set (CKDS). Other keys in the operational state are
maintained by application programs.

The following list summarizes the major steps of the
process chosen to satisfy the requirements for dynamic
update of the master key:

1. A new master key is entered at the manual-control panel.

2. ICSF/MVS performs a batch job to convert keys in the
current CKDS, which are encrypted under the current
master key, to be encrypted under the new master
key, and to place the result in a new CKDS. The
re-encipher-to-new-master-key function is provided
specifically to perform this conversion.

3. ICSF/MVS executes the set-master-key function and
switches to the new CKDS. The set-master-key
function causes the current master key to become the
old master key and the new master key to become the
current master key. The set-master-key function also
changes the value in a register called the master-key-
version-number register.

4. Whenever an application requests a cryptographic
service involving a key in the operational state, it
supplies the key and a master-key version number. The
master-key version number supplied by the application
is compared with the master-key-version-number
register. If the two master-key version numbers match,
the application has supplied an up-to-date key, and the
function can be performed. If the two master-key
version numbers do not match, ICSF/MVS is alerted
that conversion is required. If the master-key version
number supplied by the application matches the most
recent previous value, ICSF/MVS automatically
converts the key supplied by the user from being
encrypted under the old master key to being encrypted
under the current master key. A new function,
reencipher-from-old-master-key, is provided specifically
to perform this conversion.

Conceptually, the master-key-update process could be
executed without step 2, since a key in the operational
state may be converted by step 4 when the key is first
used. However, the step was included for the following
reason: Although the conversion process is transparent to
application programs, this approach, if applied to a larger
number of keys, could degrade performance significantly.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Multiple cryptographic domains

To achieve physical isolation and protection among PR/SM
partitions, multiple cryptographic domains were adopted,
each with its own master key and associated registers. A
control program can use a cryptographic domain only if it
knows the secret authorization pattern associated with the
domain. Having multiple cryptographic domains permits
PR/SM support of the following two configurations:

1) A cryptographic testing system and a cryptographic
production system run on the same machine (uniprocessor
or multiprocessor), each using a different master key.

2) Several backup systems run in different partitions on
the same machine. Each partition must use a different
master key, since the front-end production systems are
independent cryptographic users, each using a different
master key.

Multiple cryptographic domains are also provided when
operating without PR/SM. This permits different control
programs {o be run on the machine (by means of initial
program loading), each using a different cryptographic
domain with a different master key.

PR/SM support
This section discusses the requirements and problems
associated with PR/SM support.

The requirement for CPU affinity (defined previously in
the subsection on interchangeability) makes support of
ICRF for partitions more complex. For workload balance,
PR/SM normally uses floating CPU scheduling—that is, a
logical CPU in a partition can run on any physical CPU.
This scheduling was extended to include crypto units.
Floating crypto-unit scheduling can be used only when
CPU affinity is not required.

PR/SM must be alerted when the crypto units have
become noninterchangeable and when a partition attempts
to execute an instruction which invokes a cryptographic
function that must be performed on a specific physical
crypto unit. This is accomplished by defining special
signals for those cryptographic functions associated with
master-key entry, error handling, and other processes that
may cause the crypto unit to become noninterchangeable.
Exception conditions that may indicate that the crypto
units have become noninterchangeable are signaled to
PR/SM. PR/SM uses these signals to turn off floating
crypto-unit scheduling. When floating crypto-unit
scheduling is off, each CPU in the partition must run
on a predetermined physical CPU. Floating crypto-unit
scheduling is resumed after all crypto units in the system
become interchangeable again.

When a virtual machine is running under the VM control
program (CP) and CP is running under PR/SM, floating
crypto-unit scheduling can be used by both CP and
PR/SM. This means that when CPU affinity is required,
crypto-unit floating must be prohibited at both CP and

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

PR/SM levels. This was achieved by having control
returned to the appropriate control program when CPU
affinity is required. The architecture was defined in such a
way that ICSF/MVS need not know whether it is running
natively, in a partition, or as a guest.

As part of the master-key-entry process, a secret
quantity, the master-key authorization pattern, is returned
by the hardware to the program. After the master key has
been manually entered, the program cannot perform most
cryptographic functions unless it can supply this secret
quantity. For security reasons, it is undesirable for PR/SM
to maintain a copy of this secret quantity. Without this
information, PR/SM cannot simulate cryptographic
functions for a partition. Therefore, it was necessary to
define the ICRF architecture in such a way that simulation
of cryptographic functions is never required. This was
accomplished by defining special controls for each function
or condition that must be signaled to PR/SM. These
controls can be set to either cause a signal or permit
execution of the function. PR/SM sets the controls to
cause signaling when floating crypto-unit scheduling is on
and to permit execution of the function without signaling
when floating crypto-unit scheduling is off.

& Cryptographic-design considerations

In this section, some basic concepts of the ICRF key-
management scheme are reviewed, and several key
decisions with respect to the ICRF cryptographic design
are discussed. A detailed description of these concepts and
the ICRF approach are provided in [4].

Cryptographic keys can be divided into different types
according to key usage. Table 1 shows the five basic
key types supported by the ICRF and their intended
functions. Note that each basic key type has more than
one intended function and that for some functions more
than one key is involved. If a key of a particular type
could be used for unintended functions, severe security
exposures would exist. For example, if a key-protection
key could be used as a data-protection key, cryptographic
keys encrypted under a particular key-protection key could
be disclosed in the clear by using the key-protection key
and the decryption function.

When a key is shared by two systems, the key is
normally used in one system for a particular function (e.g.,
encryption) and in the other system for a different function
(e.g., decryption). These two functions are called
complementary functions. To prevent misuse of keys
between complementary functions, the ICRF further
divides each basic key type into more detailed key types,
as shown in the right-hand column of Table 1. The key
types for complementary functions are called
complementary key types.

When a key is generated, the intended usage is specified

by the application program through ICSF, and the 689

R. M. SMITH, SR. AND P. C. YEH

|

690

- Table 1 Summary of major ICRF functions and associated key types.

Basic key type Function Detailed key type
Data-protection Encryption Data-encrypting
Decryption Data-encrypting key

Ciphertext translation

Data-translation
Data-translation

Message-authentication MAC generation MAC-generation
MAC verification MAC-verification
PIN-protection PIN translation Input PIN-encrypting
Output PIN-encrypting
PIN verification Input PIN-encrypting
Algorithmic PIN-generation PIN verification PIN-verification

PIN generation

Key-protection

Key export
Key import

PIN-generation

Exporter key-encrypting
Importer key-encrypting

_hardware associates the corresponding key type with the

key. The key type of the key remains unchanged thereafter
and is enforced by the hardware so that meaningful results
are not produced if the key is used for unintended
functions.

Degree of key separation

Generally, using more key types provides better security.
However, key-management processes become more
complex when more key types are handled. A careful
trade-off between security and usability was a major design
consideration.

Conceptually, a different detailed key type could be
provided for each unique use of cryptographic keys. This
is impractical for the ICRF, however, because of the
adverse effects on usability and the space constraint on
hardware design. The following provides the rationale
behind some decisions on key separation of certain
detailed key types.

Data-encrypting and data-translation key types The
ciphertext-translation function is provided to allow
intermediate nodes to reencipher messages that are passing
through without disclosing the messages in the clear
outside the tamper-resistant enclosure. The function
requires two cryptographic keys; it first deciphers the input
message in the clear using one key and then enciphers the
clear message using another key. The function can be
paired with the encryption or decryption function, or

with the ciphertext-translation function itself, to form
complementary functions. Table 2 summarizes the ICRF
complementary functions for data protection. If a different
key type were used by the function at each end of every
complementary pair in the table, a total of eight different
detailed key types would be required.

R. M. SMITH, SR. AND P. C. YEH

The ICRF provides only two detailed key types for data
protection: The data-encrypting key type is used by both
the encryption and decryption functions; the data-
translation key type is used for both keys of the
ciphertext-translation function. This decision was made for
the following reasons: 1) It is a customer requirement that
application programs written for the Cryptographic Unit
Support Program (CUSP) (see footnote 3) or the
Programmed Cryptographic Facility (PCF) (see footnote 4)
must run under ICSF/MVS. For this compatibility, the
same key type is used in both the encryption and
decryption functions. 2) Separation between the data-
encrypting key type and the data-translation key type is
necessary to prevent programs at a switching node from
being able to decipher messages that are passing through.
3) Additional key types would not have enhanced security
significantly and would have entailed additional complexity
of key management and the associated software support.

MAC-generation and MAC-verification key types A
message authentication code (MAC) is a cryptographic
check sum which can be used to verify that a message has
been received without modifications; it can also be used to
authenticate the message originator. A MAC is generated
for a message, using a cryptographic key, and is sent with
the message by the originator. To verify the integrity of
the message, the recipient performs MAC verification.
Verification consists of generating a MAC for the received
message using the same key and comparing the generated
MAC with the received MAC. If they match, it is highly
likely that the message is genuine and has been received
without modifications. The MAC-generation and MAC-
verification functions are complementary functions.

If the key used by the recipient for MAC verification
could also be used for the MAC-generation function,

IBM J. RES. DEVELOP, VOL. 36 NO. 4 JULY 1992

anyone who has access to the key at the recipient’s system
would be able to generate a valid MAC for a bogus
message. Separation between the MAC-generation key
type and the MAC-verification key type removes this
concern.

PIN-generation, PIN-verification, input PIN-encrypting,
and output PIN-encrypting key types A secret personal
identification number (PIN) is usually used to authenticate
the holder of a debit card or credit card in an electronic-
funds-transfer system. The PIN can be a random number
assigned by the card issuer, or can be cryptographically
derived from some information about the cardholder. The
PIN-generation function is provided to derive a PIN using
a cryptographic key, called an algorithmic-PIN-generation
key, and a specific algorithm. The derived PIN is in the
clear, and the function is available only in the special-
security mode. Random PINs are normally encrypted and
stored in a PIN database for PIN verification. Derived
PINs need not be stored and can be regenerated at
verification time.

After being entered at an automated teller machine
(ATM) or point-of-sale terminal for host PIN verification,
the PIN is encrypted. The encrypted PIN is sent to the
host. This is called the PIN-entry function.

In some situations, a PIN entered by a cardholder may
travel through several nodes before it reaches the system that
performs PIN verification. The PIN-translation function is
provided to allow switching nodes to reencipher PINs
without disclosing the PINs in the clear. The function
requires two keys—one for decrypting the incoming

encrypted PIN and the other for encrypting the outgoing PIN.

The PIN-translation function may also be employed in
PIN verification using a PIN database. In this application,
the received PIN in the encrypted form is converted to
become encrypted under the PIN-database key. The result
is compared with an appropriate entry from the database.

The PIN-verification function, which uses a
cryptographic algorithm, requires two keys—one for
decrypting the received PIN and the other for deriving a
reference PIN. The received PIN is deciphered and
compared with the generated reference PIN.

Table 3 summarizes complementary functions for PIN
processing. The ICRF provides four PIN-related key types
for the following reasons:

1. A card issuer may authorize other institutions to
perform the algorithmic PIN-verification process for the
issuer. Separation between the PIN-generation key type
(for the PIN-generation function) and the PIN-
verification key type (for the PIN-verification function)
prevents these institutions from generating valid PINs.

2. The PIN-translation function is defined to use two key
types: an input PIN-encrypting key type for the key

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Table 2 Complementary functions for data protection.

Decryption
Ciphertext translation
Ciphertext translation
Decryption

Encryption
Encryption
Ciphertext translation
Ciphertext translation

Table 3 Complementary functions for PIN processing.

PIN verification
PIN verification
PIN translation
PIN translation
PIN verification

PIN generation
PIN entry*
PIN entry*
PIN translation
PIN translation

*Pin entry is performed at an ATM or point-of-sale terminal and is not provided by
the ICRF.

protecting the input PIN and an output PIN-encrypting
key type for the key protecting the output PIN. This
separation prevents the function from being used (with
the PIN-database key) to reencipher a PIN database to
become one encrypted under a key chosen by an
adversary and potentially known to the adversary.

3. After a system has received an encrypted PIN sent
from an ATM or point-of-sale terminal, the system may
perform a PIN-verification function or a PIN-translation
function, depending on whether the received PIN is to
be processed by the system or forwarded to another
system. Most current ATMs and terminals use only
one cryptographic key for protecting PINs. To
accommodate existing equipment, the same key type
(input PIN-encrypting) is used to protect the input PIN
for both the PIN-translation and PIN-verification
functions.

Importer and exporter key-encrypting key types A key-
encrypting key (KEK) is used to protect other keys of any
type. The key-export and key-import functions are
provided for key distribution; they are complementary
functions. The key-export function reenciphers a key from
being encrypted under the master key of the sender to
being encrypted under a KEK shared with the receiver;
the key-import function reenciphers a key from being
encrypted under a KEK shared with the sender to being
encrypted under the master key of the receiver. An
exporter key-encrypting key type is used for the KEK in
the key-export function, and an importer key-encrypting
key type is used for the KEK in the key-import function.
The ICRF provides a function that generates two copies
of the same key with complementary key types. One copy
can be used by the generation system, and the other is
ready to be sent to another system. The key to be sent is
encrypted under an exporter KEK. If separation between

the exporter and importer key-encrypting key types were 691

R. M. SMITH, SR. AND P. C. YEH

(e s

692

128-bitkey

K

KL o Left6dbitsof K-
KR ight64 bitsof K - -
= E DEA encryption

D ‘DEA decryption .

Multiple encipherment for key protection.

not provided, any key to be sent could also be imported
back to the sender by an adversary. This would allow the
adversary to obtain all pairs of complementary keys, thus
compromising key-usage control.

Key length and key protection

The introduction of high-performance cryptographic
functions provides a very powerful code-breaking tool.
This leads to additional security considerations. In addition
to supporting many key types, the ICRF offers the
following additional security enhancements: All key-
encrypting keys (KEKs) and PIN-related keys are 128 bits
long, and the left and right halves of a 128-bit key are

R. M. SMITH, SR. AND P. C. YEH

protected by different derivatives of a KEK. (The
derivative of a KEK is obtained by performing the
exclusive-OR of a value with the key.)

One of the many reasons why each half of a 128-bit
key should be encrypted under different derivatives of a
KEK is provided here for illustration. As can be seen in
Figure 1, if the same derivative of a KEK were used to
encrypt both halves of a 128-bit key (i.e., KEK1 =
KEK?2), and if both halves of the 128-bit key had the same
value (i.e., KL. = KR), the encrypted values of both
halves of the key would be the same [i.e., eEKEK1(KL) =
eKEK2(KR)]. This allows 128-bit keys with equal halves
to be detected and also allows 128-bit keys with equal
halves to be created. One could create a 128-bit key with
equal halves in the encrypted form by simply declaring a
64-bit random number as both halves of an encrypted
128-bit key. Even though the clear value of this randomly
created key is unknown, the key has only the strength of
64 bits. This ability to create a 128-bit key with equal
halves drastically reduces the strength of system security.
For example, an adversary could create an exporter KEK
with equal halves in the encrypted form. The adversary
could then use the key-export function to reencipher all
keys in the CKDS (cryptographic key data set) to become
encrypted under that exporter KEK. Thus, the overall
system security is effectively reduced to the level of 64-bit
keys. Encrypting each half of a 128-bit key under a
different derivative of a KEK eliminates the ability to
create and detect equal halves of a 128-bit key.

Concluding remarks
The design of ICRF led to many unusual architectural
solutions. The physical limitations imposed on the
implementation resulted in special instructions to assist the
control program in scheduling. The long execution time
sociated with many of the cryptographic operations
quired special handling of operands and sectioning. The
continuous-operation requirement for large systems
ssulted in a requirement for dynamic master-key update.
The stringent requirement for security led to many
unusual considerations that shaped the design of the ICRF.
To provide for protection of operands in storage, three
access keys were required for the execution of a single
instruction. To achieve physical isolation and protection
among logical systems running on the same machine,
multiple cryptographic domains were provided. To obtain
high availability, extensive redundancy and transparent
hardware recovery were required to protect the secret
quantities involved. To facilitate control of the usage of
individual cryptographic functions, all cryptographic
instructions were specified to be privileged.
The most significant difference between the ICRF
implementation and other hardware cryptographic devices
is that the ICRF is implemented on CPUs of general-

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

purpose mainframes. The high-performance characteristic
of this CPU-integrated approach allows the facility, with
little overhead, to use a 128-bit key length, thus enhancing
security for most cryptographic keys. The high-
performance characteristic also introduced many new
challenges, requiring a careful evaluation of overall
security. The results of the evaluation shaped many
aspects of the facility.

Another unique characteristic of the facility is its ability
to significantly enhance security by means of key
separation. Although using more key types generally
provides higher security, it also complicates key
management. The number of key types provided by the
ICRF was carefully investigated and determined in order
to provide a balanced system that best fits the design
criteria and market requirements.

Acknowledgments

Many individuals have contributed to the concept and
development of this product. Among them, Walter F.
Bankowski, Brian B. Moore, and Julian Thomas initiated
the project and established hardware-design guidelines.
Chris J. Holloway and Robert J. Rosenthal defined PIN-
processing environments and customer requirements.

Ernest T. Zooper constantly supplied market requirements.

Stephen M. Matyas provided general cryptographic
direction; Don B. Johnson frequently reviewed ICRF
security aspects. Randall J. Easter, John T. Matcham,
Chuck F. Megivern, Brian M. Moriarty, and Vincent A.
Spano provided hardware-implementation input and
feedback. Gina Bourbeau, Lucina L. Green, Michael J.
Kelly, and R. Craig Larson specified software-design
criteria. Peter H. Gum, Roger E. Hough, Sandy L.
Rankin, Steve J. Schmandt, and Devon Yu supplied
PR/SM-support requirements. Dennis G. Abraham,
Ramesh K. Karne, Carl H. Meyer, An V. Le, Russ
Prymak, and John D. Wilkins suggested security
improvements.

Enterprise Systems Architecture/390, ESA/390, Enterprise
System/9000, ES/9000, Processor Resource/Systems Manager,
PR/SM, and System/370 are trademarks of International
Business Machines Corporation.

References

1. Data Encryption Algorithm, American National Standard
X3.92-1981, American National Standards Institute, New
York, December 31, 1981.

2. American National Standard for Financial Institution
Message Authentication (Wholesale), American National
Standard X9.9-1986, American Bankers Association,
Washington, DC, August 15, 1986.

3. Personal Identification Number (PIN) Management and
Security, American National Standard X9.8-1982,
American National Standards Institute, New York,
January 14, 1982.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

4, P. C. Yeh and R. M. Smith, Sr., “ESA/390 Integrated
Cryptographic Facility: An Overview,”” IBM Syst. J. 30,
192-205 (1991).

5. IBM Enterprise Systems Architecture(390 Vector
Operations, Order No. SA22-7207; available through IBM
branch offices.

6. T. L. Borden, J. P. Hennessy, and J. W. Rymarczyk,
““Multiple Operating Systems on One Processor
Complex,”” IBM Syst. J. 28, 104-123 (1989).

7. IBM 3848 Cryptographic Unit Product Description and
Operating Procedures, Order No. GA22-7073; available
through IBM branch offices.

8. IBM System/370 Principles of Operation, Order No.
GAZ22-7700; available through IBM branch offices.

9. IBM Enterprise Systems Architecture/390, Principles of
Operation, Order No. SA22-7201; available through IBM
branch offices.

10. ““Instruction with Long Operand Converted to
Intermediate Length Operation by Central Processor,”
IBM Tech. Disclosure Bull. 31, 78-79 (1989).

Received January 31, 1991; accepted for publication
May 21, 1992

Ronald M. Smith, Sr. /BM Enterprise Systems, P.O. Box
950, Poughkeepsie, New York 12602. Mr. Smith is a Senior
Technical Staff Member in the Enterprise Systems Central
Architecture Department of the Mid-Hudson Valley
Development Laboratory in Poughkeepsie. He received his
B.E.E. degree in electrical engineering from The Ohio State
University in 1957 and joined IBM at the Endicott Laboratory
that same year, moving to Poughkeepsie in 1961. He worked
on assignments in circuit design, central processor design, and
programming before joining Central Systems Architecture in
1966. Mr. Smith has twelve patents, six patent applications on
file, and thirteen published invention disclosures. He has
received an IBM Outstanding Contribution Award, an IBM
Outstanding Innovation Award, and an IBM Sixth-Level -
Invention Achievement Award.

Phil C. Yeh IBM Enterprise Systems, P.O. Box 950,
Poughkeepsie, New York 12602. Dr. Yeh is a Senior Engineer
in the Enterprise Systems Central Architecture Department of
the Mid-Hudson Valley Development Laboratory in
Poughkeepsie. He received an M.S. degree in computer
science and a Ph.D. in electrical engineering from the
University of Illinois at Urbana-Champaign in 1977 and 1981,
respectively. In 1981, he joined IBM at Poughkeepsie, where
he has worked on several assignments in architecture. He has
five issued patents and three patent applications on file. He
has also published several technical papers and has received
an IBM Outstanding Innovation Award. Dr. Yeh is a member
of the ACM and the IEEE Computer Society.

R. M. SMITH, SR. AND P. C. YEH

693

*

