| —

MVS Dynamic
Reconfiguration
Management

by R. Cwiakala
J. D. Haggar
H. M. Yudenfriend

This paper presents an overview of the
Dynamic Reconfiguration Management (DRM)
function of MVS/ESA™ and its support of the
IBM Enterprise System/9000™ family of
machines. Dynamic Reconfiguration
Management is the abllity to select a new 1/O
configuration definition without needing to
perform a power-on reset (POR) of the
hardware or an initial program load (IPL) of
the MVS operating system. Dynamic
Reconfiguration Management allows the
installation to add, delete, or modify definitions
for channel paths, control units, and 1/0
devices, in both the software and hardware
I/O configurations.

Introduction

Information systems perform a critical function within
business enterprises. For many businesses, operation
twenty-four hours a day, seven days a week is essential. In
international operations, time zone differences are often an
important factor. Outage and duration of outage can easily
be correlated to loss of productivity and/or to lost revenue.
The Dynamic Reconfiguration Management (DRM)
function [1] has been designed to support the objective of
continuous system operation in the following ways:

« Increasing system availability by allowing changes to the
1/O configuration while systems are in productive
operation.

& Eliminating the disruption caused by power-on reset and
initial program load, as well as the subsequent restarting
of subsystems and networks.

This function complements the nondisruptive installation
capability of Enterprise Systems Connection (ESCON™)
control units allowed by fiber optic technology and
connection topology, although DRM also supports existing
control units and devices.

Large IBM mainframe processors and the control
programs that operate on them both require definitions of
the system I/O configuration in order to effectively support
the execution of application-initiated I/O operations. Since
the advent of the IBM 3081 processor, the definition of
processor (hardware) I/O configuration has been performed
through the I/O Configuration Program (IOCP), and the
definition of the software I/O configuration has been
performed either through the system generation (SYSGEN)
process or the MVS configuration program (MVSCP) [2].

In the IBM Multiple Virtual Storage (MVS) operating
system, the processes, though separate, can use common
card-image input, which includes information required by
both the hardware and the software I/O configuration
definition. With separate processes, however, there is still
the potential for certain mismatch errors between the two
configuration definitions. Such errors may not be detected
until an attempt to initiate an I/O operation fails on an I/O
device. The recovery may require a rerun of both MVSCP
and IOCP and a subsequent power-on reset (POR) of the
hardware and initial program load (IPL) of the operating
system.

©Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

633

634

D
Panels - |-&
k
4
’ 1
Processor
UMs - HCD | configuration
| rules
4
4
IODF
' |
MVSTPL GO HED HCD
UCB/EDT 10CDS
build Teports | “pyild
CPC 1I0CP
PCE deck
10CDS — 10CP -

Interactive 1/0 definition process details.

In 1990, an improvement to MVS called the Hardware
Configuration Definition™ (HCD) [3] function was
introduced. Its objective was to consolidate the hardware
and software 1/O configuration definition processes under a
single interactive end-user interface, and to address the
problem of late detection of inconsistencies between the
hardware and software definitions. HCD provides an
interactive panel-driven capability that supports both the
hardware and software I/O configuration definition
functions, as shown in Figure 1. HCD validates all input
against hardware and software ““rules” and detects
inconsistencies and errors, allowing an interactive user to
make immediate corrections. Even with HCD, changes to
the current definition still require a POR and IPL.

Dynamic Reconfiguration Management (DRM),
introduced with System/390® (and supported by
MVS/ESA™ SP4.2.0), builds on the HCD function. With
DRM, an HCD-created 1/O definition file (IODF) can be
used to change the I/O configuration definition without
requiring the outage previously associated with the process
(i.e., without a POR and IPL). At control program
initialization, “‘architected’’ (formally defined) interfaces
between the control program and the hardware allow the
control program to determine whether its representation of
the I/O configuration is consistent with that defined for the

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

hardware. Once consistency has been verified, the current
I/O configuration definition can be updated with a new
definition by use of an HCD interactive panel, or by an
MVS operator command that invokes the DRM function.
The control program determines the changes required to
the existing definition (i.e., additions, deletions, and
modifications) and makes the necessary changes to the
software and, through the architected interfaces, to the
hardware. Changes are synchronized with existing 1/0
activity to minimize or eliminate disruption. The resultant
hardware definition can be written to a hardware 1/O
configuration data set (IOCDS) for use during subsequent
initialization.

The control program provides services that allow
application programs to be notified of a planned or
completed configuration change. This is vital to
applications that are sensitive to the I/O configuration,
such as the ESCON Manager™.,

The DRM function is supported both in basic mode and
logically partitioned (LPAR) mode. This function, invoked
in a logical partition running MVS, changes the hardware
definition of I/O resources across all affected partitions.

It permits a single point of control for DRM related to
hardware definitions. To ensure that deleted resources do
not adversely affect currently executing applications within
other partitions, installations must coordinate the planned
/O configuration change across affected partitions before
making the change.

Background information
MYVS builds the following data areas to represent the
software I/O configuration definition:

& Unit control blocks (UCBs) A UCB represents the
software definition of a device to MVS. Each device
type is represented to the software by a unit information
module (UIM) which is included in the product that
contains the device support. The UIM provides device-
dependent UCB information and indicates whether or
not the device type supports the dynamic capability.
During IPL, MVS builds a UCB for each device in the
configuration definition.

& Eligible device table (EDT) The EDT is an
installation-defined and -named representation of the
devices that are eligible for allocation. The EDT also
defines the relationships among these devices. During
IPL, MVS builds an EDT representing the EDT
definition.

Dynamic Reconfiguration Management design
Introducing Dynamic Reconfiguration Management into a
software and hardware structure designed around static
I/O configuration definitions provided a unique set of
challenges.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Many of the software data structures dealing with I/O
configuration definitions can trace their origins back to
System/360™. Those that intersected with hardware
function (e.g., performance data gathering) had to reside
in contiguous real storage that was established when the
control program was initialized. The 1/O configuration
definition (i.e., UCBs, EDT, and other related data
structures) was prevalidated and loaded at control program
initialization. Any changes to the 1/O configuration had to
be made within the context of this loaded definition. The
hardware I/O configuration definition had many of the
same properties. As with software, definitions were
prevalidated and loaded into contiguous main storage at
hardware initialization (i.e., POR). Neither hardware nor
software could handle additions or modifications to the
current configuration definition.

Performance implications required the continued use of
contiguous real storage. The design had to ensure that
enough contiguous real storage would be allocated at
hardware and software initialization to accommodate
dynamic reconfiguration. Prevalidated configuration
definitions were chosen over more granular definitions
(i.e., single-element definitions), because of practical
hardware and software implementation limits. The number
of channel paths, control units, or devices that are
supported by any hardware or software implementation is
finite. With the more granular approach, a check against
implementation limits would have to be done during the
activation of a change. In addition to the performance
implication, finding out that a planned change exceeded
implementation limits at activation time instead of at
definition time was unacceptable.

Although prevalidated configuration definitions were
chosen, it was clear that deleting an entire configuration
definition and adding a new one was unacceptable if the
incremental change involved only one or a few elements.
For this reason, the mechanism chosen was to make any
incremental change against the current definition. Any
determination of incremental change required that the
hardware and the software have a consistent interpretation
of the current configuration definition. This was necessary
in order to guarantee a valid set of changes to be applied
to the current definition. The design had to account for this
mechanism, and for the interfaces for communicating this
consistent interpretation of the configuration definition
between hardware and software.

Before the introduction of DRM, the ““current™
hardware I/O configuration definition was the one loaded at
POR. The default hardware I/O configuration definition, for
a subsequent POR, was the one loaded at the last POR.
Since DRM allows the hardware I/O configuration
definition to change without a POR, the question of default
had to be addressed. The proper default should be the
configuration represented in the hardware system area

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

(HSA), but should it become the default as soon as the
dynamic change is made, or after the installation has

done some testing to ensure adequate function and
performance? The design needed a means for determining
when the hardware would be allowed to accept a new
default, and which IOCDS included the representation of
the default. Also, the hardware had to be able to determine
whether the new default did in fact match the configuration
defined in the HSA.

In addition to those design considerations which affected
the control program software and hardware, there were
many that had to be addressed between applications
sensitive to configuration changes and the control program.
Installations had to be able to evolve to the new
environment of DRM with little or no disruption.
Unprepared applications had to be shielded from the loss
of resources (e.g., I/O devices they were using) and from
the appearance or disappearance of configuration data they
were not prepared to handle. For them, the world of
dynamic configuration required a static appearance.

Conversely, applications that were prepared to handle
dynamic change needed to have control over their destiny.
Mechanisms had to be created that allowed applications to
accommodate resource deletions at times that did not
conflict with the use of those resources, and to be told
when the 1/0 configuration environment had changed so
that they could adapt (use new resource, change their view
of the environment they were monitoring, etc.). The design
had to define an appropriate set of services that were
downward compatible, but also be able to exploit the new
dynamic environment. Similarly, control program
structures needed to be put in place to shield those
applications that had not yet evolved to the new
environment.

The remainder of this paper addresses the design
solutions to these problems.

Software operations
Over the life of MVS, applications, supplier products,
IBM products, and MVS components have built up
dependencies on the static data structures that represent
the 1/0 configuration definition within MVS. Dynamic
modifications to these data structures were precluded
because there was no way to guarantee the integrity of the
system and the consistency of the data. The first challenge
of providing a dynamic I/O configuration capability was to
provide an upward-compatible way to achieve dynamic
changes to these data structures while atlowing old
programs to continue to run without being affected by the
dynamic changes. Additionally, it was required that all
changes be performed in a nondisruptive manner and be
transparent to the user.

Another design goal of the dynamic I/O configuration
function was to maintain the separation of the

635

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

636

D
Panels | &
k
J
 mm— |
" Processor
UIMs * HCD |configuration
| niles

I0DE

HCD MVS
activate ACTIVATE
panel command
Y l
[New IODF Activate
Current | [~ function
IODF . [~
Update Modify
7 hardware
MVS CBs configuration
Download Switch
new IOCDS Ia(‘):g\[’gs

Configuration change process. The configuration change process
is invoked either by the CMS ACTIVATE command or through the
HCD activate panel. A new I/O configuration definition is
achieved by the installation selecting a target IODF and activating
it. MVS compares the active 1/O configuration definition to the
target I/O configuration definition and makes the changes.

configuration definition task from the configuration
activation task. The former task encompasses everything
from defining the topology of the I/O configuration (i.e.,
which control units attach to which channel paths, which
devices attach to which control units) to defining the usage
characteristics of the I/O components. It also includes
consideration of physical cabling constraints and
performance goals for the I/O components. This task

is typically performed by highly skilled systems
programmers, well before the time when the actual
configuration change occurs.

The configuration activation process actually puts the
machine into the state that reflects the new I/O
configuration. It is typically performed by operations
personnel during scheduled outages (weekends and
holidays).

Another goal of the dynamic 1/O configuration function
was to reduce, if not totally eliminate, cases in which the

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

software I/O configuration definition does not correspond
to the hardware 1/O configuration definition.

® Configuration activation

Configuration activation is shown schematically in

Figure 2. The installation selects a new I/O configuration
definition by specifying a new hardware or software
definition, or both, within the active IODF, or by
identifying a new IODF (see Figure 3). The definitions are
then compared in order to derive the set of changes that
must be implemented.

After determining the set of changes, the control
program validates that the changes are permissible. For
example, devices that are being deleted must be off-line
to the system and not in use (see the section on UCB
pinning). While performing this validity checking, the
system prevents any logical reconfigurations from taking
place. This prevents a device, device path, or channel path
from being reconfigured on-line after MVS verifies that it
can be deleted.

After verifying the changes, MVS issues a signal so that
all programs that need to monitor I/O configuration
changes are given a chance to prepare for the configuration
change. At this point MVS verifies that all UCBs that are
being deleted are not in use by the system. After this
verification, MVS makes all the changes to the hardware
definition, makes the new software data structures visible
to the rest of the operating system, and issues a final signal
to inform programs that the configuration change is
complete.

If any step of the configuration change process fails,
MVS returns the configuration to its original state. All
planned changes must be completed or none are made.
This ensures that the hardware configuration definition
contained in the channel subsystem corresponds to the
hardware configuration definition in the software files
(IODFs).

Basing the MVS Dynamic Reconfiguration Management
process on predefined IODFs provides the following
features:

¢ The configuration definition task continues to be
separated from the configuration activation task.

e Target configuration definitions are guaranteed to be
consistent with the machine implementation limits.

¢ Recovery to an existing predefined configuration state
is simplified. One alternative to having predefined
configuration definitions would be to have an individual
(or a program) enter configuration change commands one
at a time to the control program. If a system outage
occurred while the configuration was being changed, the
state of the hardware configuration definition would be
unpredictable. The MVS compare function provides a
consistent set of changes to be performed between any

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Activate New Hardware and Software Configuration

Specify or revise the values for the IODF activation.

Currently active IODF : SYS1.10DF01

Processor ID : CEC1
Configuration ID : TSOAQ
EDT ID : 01

Processor description
Configuration description
EDT description

IODF to be activated + SYS1.I10DFG2

Processor ID CECl____ +
Configuration ID TSOAQ__ +
EDT ID 01 +
Test only: — A{Yes or No)
Allow hardware deletes / FORCE option (Yes or No)
Write I0CDS (Yes or No)
Switch IOCDS name for next POR {Yes or No)
Command ===
Fl=Help F2=Split F4=Prompt F5=Reset F9=Swap F12=Cancel

two configuration definitions contained in IODFs. This
guaranteed consistency is the cornerstone in the MVS
recovery process in case a system outage occurs while a
configuration change is in progress (see the section on
recovery).

» The operator interface is simplified. Prespecified,
complete I/O configuration definitions avoid requiring the
operator to manually enter configuration definitions in
real time, write a separate program or CLIST, or
maintain additional sources of configuration change data
that must be applied to a given configuration definition.

& Any-to-any configuration changes are permitted. Since
the process compares two 1/O configuration definitions
and determines the set of changes required, in real time,
the installation is not required to track the history of
how the current configuration was derived. Only those
changes that the control program needs to make are
performed. Operational procedures are not required to
determine the individual steps necessary to achieve the

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

HCD Activate Panel used to initiate a dynamic reconfiguration change.

desired configuration change. For example, operations
personnel do not need to be aware of the individual
devices being added. However, if activating a
configuration definition requires that I/O resources be
deleted or modified, operator involvement is needed to
ensure that the I/O components that are affected are not
in use. Typically this requires taking the device logically
off-line so that it cannot be allocated for use by
applications.

& Defining 1/O devices

Programs written for earlier versions of MVS are
unprepared to cope with dynamic configuration changes.
To maintain compatibility with existing programs, and to
permit configuration-related data structures to become
dynamic, the following concepts were implemented:

& A device type either supports or does not support the
dynamic capability. Existing products which provide

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

637

638

Define Device Parameters/Features

Specify or revise the values below.

Configuration ID : MVSPROD1 description
Device number : 6760 Number of devices :'1
Device type : 3390

Parameter/

Feature Value P Req Description

ALTCTRL No Separate physical control unit path
OFFLINE No Device considered offline at IPL
DYNAMIC Yes Device supports dynamic configuration
SHARED No Device shared with other systems

SHAREDUP No Shared when system physically partitioned

Command ===>

Fl=Help F3=Exit F4=Prompt

F8=Forward F1@=Actions Fl2=Cancel
F22=Command

device is to be defined as installation-static or dynamic.

support for given device types maintain static-device-
dependent data structures and are unprepared to handle
the dynamic addition and deletion of UCBs.

¢ A device whose device type supports the dynamic
capability may be defined by the installation as dynamic
or not dynamic (Figure 4). Many existing programs,
including customer programs, supplier programs, and
IBM products, depend on device-related data structures
such as UCBs and the EDT, or use existing MVS
programming services which access these data
structures, and are unprepared to handle dynamic
changes to these structures.

These new concepts resulted in three software categories
of device definitions:

1. Static—the device support code does not support the
dynamic capability.

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

F5=Reset
F13=1Instruct Fl9=Left

F6=Previous F7=Backward

Definition of device parameters. If the device type supports dynamic reconfiguration, this panel allows the customer to specify whether the

2. Installation-static—the device type supports the
dynamic capability, but the installation specifies in the
device definition that the device is not to be treated as
dynamic.

3. Dynamic—the device type supports the dynamic
capability and the installation specifies that the device is
to be treated as dynamic.

® New MVS services

MVS now provides new programming services to obtain
UCB and EDT information in a dynamic environment.
Existing lookup and scanning services and existing data
structures are limited to those devices defined as static and
installation-static.

Because UCBs which are defined as dynamic are
accessible only to programs which use the new
programming services, unchanged programs which use
existing UCB services are shielded from encountering
dynamic UCBs which are subject to deletion.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

The new MVS programming services are the following:

% UCBPIN—pins or unpins a UCB.

+ PIN—prevents a UCB from being dynamically
deleted.

« UNPIN-—releases the pin on the UCB.

% UCBLOOK—obtains the UCB address for a given
device number.

% UCBSCAN-—scans through UCBs (returns UCB address
or copy of UCB data).

% EDTINFO—obtains information from the EDT.

% IOCINFO-—obtains current MVS 1/O configuration
token.

& UCB pinning

The pinning concept allows authorized programs to mark a
UCB as ineligible for deletion until the program performs a
corresponding unpin. Programs which access only the
UCBs of allocated devices do not need to perform pinning,
because an allocated UCB cannot be dynamically deleted.

When the configuration definition of a device is
dynamically deleted, MVS dynamically deletes the UCB
representing the device and any associated device-related
control blocks. Also, when the configuration definition of a
device is dynamically modified, MVS dynamically deletes
the UCB representing the device and dynamically adds a
new UCB, and its device-related data structures,
representing the new device definition. Thus, pinning
prevents both the deletion and the modification of device
definitions.

MYVS deletes UCBs only for devices which are not in
use by the system. To be a candidate for deletion, a device
must be both off-line and unallocated. However, there are
many programs which use off-line or unallocated devices,
or which use UCBs for devices without regard for whether
the device is on-line or off-line. These programs need a
method of preventing a UCB from being deleted.
Additionally, environmental restrictions make MVS device
allocation impractical for many operating system programs
to use as a way to prevent the deletion of a device.

% MVS 1/0 configuration token
Dynamic changes to the UCBs and the EDT introduce the
following problems:

% Programs which need to obtain information about the
current J/O configuration (e.g., by scanning the set of
UCBs representing the configuration) may encounter
inconsistent results if the set of UCBs representing the
I/O configuration is changing.

% Programs which are sensitive to the relationship between
a device number and a UCB may encounter inconsistent
results if a device definition is dynamically modified from
one device type to another.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

—_

% Programs which maintain lists of UCB addresses, and
then validate a given UCB address before using it, may
encounter inconsistent results if a UCB is dynamically
deleted and another UCB is later dynamically added at
the same storage address.

% Programs sensitive to the logical grouping of devices for
the purpose of allocation (i.e., the contents of the EDT)
may encounter inconsistent results.

The same problems are introduced when a dynamic device
reconfiguration (DDR) swap occurs which exchanges the
contents of two UCBs. A DDR swap changes the
relationship between the device number and the UCB for
the devices involved in the swap. The DDR swap problem
exists independently of DRM.

To solve these problems, the concept of an MVS 1/O
configuration token has been introduced. This token
uniquely represents the state of the 1/O configuration to MVS.

Using the MV'S 1/O configuration token with MV'S services
The MVS I/O configuration token can be used in
conjunction with the new MVS programming services
(UCBSCAN, UCBLOOK, UCBPIN, EDTINFO) to ensure
that the information returned by the services is consistent
with the configuration definition represented by the token.

MYVS sets the initial MVS 1/O configuration token during
IPL. The MVS I/O configuration token is updated when a
new 1/O configuration definition is activated, or when a
DDR swap occurs. An I/O configuration token consists of
multiple subtokens representing all aspects of the I/O
configuration that are accessible via programming services.
For a given dynamic configuration change, only the
affected portions of the token are updated. Programming
services ensure consistency with respect to the data being
returned. For example, if a dynamic configuration change
only updates the EDT, programming services which return
UCB information do not indicate that anything is
inconsistent.

The MVS T/O configuration token provides a way for
programs that require knowledge of configuration data to
detect that dynamic 1/O configuration changes have
occurred. For example, a program can determine whether
previously obtained configuration information has become
obsolete. Specifically, the token allows a program to detect
changes in the set of devices (useful for a program which
scans the set of UCBs), in a specific device definition, or
in the EDT definition. The token is an optional parameter
for programs using the new MVS services. The following
examples demonstrate how programs can use the token
with specific MVS services.

% UCBSCAN
The UCBSCAN service allows a program to scan the

set of UCBs by repetitively invoking the service. The 639

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

640

service requires an input work area which is used to
keep state information across repetitive invocations of
the service.

It is possible that the configuration can change
between invocations of the UCBSCAN service. By
storing the current configuration token into the work
area on its initial scan, the UCBSCAN service can
detect whether a configuration change has occurred on a
subsequent call, and notify the caller via a return code.
The caller can then choose to restart the scan.

e UCBLOOK
The UCBLOOK service allows an authorized program to
obtain a UCB address for a given device number. This
service also provides a PIN option which ensures that
the UCB address returned has been pinned.

The MVS 1/O configuration token concept allows a
program to maintain a list of UCB addresses or device
numbers without keeping all UCBs in the list pinned,
provided that the program keeps a configuration token
with the list. MVS ensures that the device definition
for the input device number or UCB address has not
changed since the time at which the input configuration
token was created. If the device definition has changed,
the service sets a return code to indicate that the device
definition is inconsistent with the token.

The configuration token allows programs to detect the
following cases, which otherwise would not be detected:

1. The configuration definition for a particular device
number has changed (because the service validates
both that a UCB exists for the device number and
that the device definition is consistent with the
token).

2. A UCB is deleted, but a different UCB is later added
at the same storage address (because the service
validates both that the UCB address represents a
valid UCB and that the device definition is consistent
with the token).

e EDTINFO
The EDTINFO service allows the caller to obtain
information about the current EDT. The configuration
token allows the caller to ensure that multiple
invocations of the service return consistent data.

® Operations on software device definitions
The following sections summarize the operations that can
be performed on the software definitions of devices.

Dynamic devices
The capability is provided to add, delete, or modify the
software definition of a dynamic device. This causes MVS
to dynamically add and delete UCBs.

The capability is also provided to dynamically redefine a
dynamic device as installation-static. This is useful in

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

making the device and its UCB available to programs
which use the pre-dynamic programming services for
access to UCBs.

Installation-static devices

The ability is provided to dynamically add the software
definition of an installation-static device. This causes MVS
to dynamically add a UCB and make it available to
programs which use pre-dynamic services to access UCBs.

It is not possible to dynamically delete or modify the
software definition of an installation-static device,
because there are no existing programming primitives or
serialization techniques that allow the removal of UCBs
from the system without causing incompatibilities with
existing applications, supplier and IBM products, and
MYVS operating system code. Additionally, dynamically
adding paths to or deleting them from an installation-static
device is not allowed because of the incompatibilities this
would cause with existing MVS code. This capability
allows an installation to exploit DRM without any changes
to its applications, although it is limited to adding only new
device definitions.

The ability is provided to dynamically redefine an
installation-static device as dynamic. This causes MVS to
invalidate the installation-static UCB and build a new UCB
for the dynamic device (i.c., the UCB address is changed
for the device). Therefore, there is a risk that programs
which have the address of the old UCB might attempt to
use it and encounter problems. For this reason, the system
storage that contains an installation-static UCB is never
freed, but rather is functionally invalidated (marked in
such a way that it is not usable). This avoids errors that
could result in storage overlays.

This capability allows the user to begin exploiting the
full dynamic capability (deletes and modifies, in addition to
adds) as soon as the installation has converted all its old
programs to exploit the new UCB services and to follow
the new serialization requirements for dynamic devices. If
this capability were not provided, the installation would
have to re-IPL the system in order to start exploiting the
dynamic I/O capability.

[Note: This transition is allowed only if the sole
difference between the source definition of the device and
the target definition of the device is that the source
definition is installation-static and the target definition is
dynamic. No other information about the device definition,
relative to the operating system (as opposed to the hardware),
can be different (e.g., device type). This rule is imposed to
minimize the probability that activating the wrong IODF
will cause work or valuable system storage to be wasted.}

Static devices
No capability is provided to dynamically add, delete, or
modify the software definition of a static device. However,

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

'3

activating an IODF which includes the definition of a new
static device is allowed. In this case, the activation is
accepted, but the UCB is not dynamically added. If a
hardware definition for the device is requested, it is added.
A subsequent IPL of the same I0DF makes the UCB
available.

This capability minimizes the number of IODFs that
must be created by the installation and therefore simplifies
the management of these files. For example, if the
installation wanted to add both dynamic devices and static
devices to the configuration, it need only create one IODF
with both changes. Only when the installation needs to
actually start using the static devices must it re-IPL the
system. Since the hardware definition is added at
activation time, no POR of the machine is required.

Hardware operations

To achieve the design goals of MVS Dynamic
Reconfiguration Management, three types of hardware
functions were required. First, the software required a
mechanism to determine whether or not the actual
configuration definition contained in the hardware matched
the I/O configuration definition contained in the JODF.
This mechanism was required so that the software could
determine that the changes to be applied to the current
hardware 1/O configuration definition were derived from
comparing the target IODF to a current IODF which
contained a representation of the current hardware
configuration. If the starting definition could not be
guaranteed, the incremental change that was determined
by comparing the source and target IODFs might not be
valid, and performing these changes would yield
unpredictable results.

Next, the software required a set of hardware primitives
to allow the system to modify the 1/O configuration
definition contained in the HSA (tables and control
storage used by the channel subsystem). These primitives
include the ability to nondisruptively modify the definitions
for channel paths, control units, and I/O devices. The
LPAR environment also introduced the requirement
to include in this set of primitives a mechanism
to ensure that only one partition at a time makes dynamic
changes to the hardware configuration definition.

Finally, a set of machine-dependent functions was
required in order to let the installation control how much
system resource to set aside for dynamic growth, whether
dynamic changes are to be allowed, and which partitions
are allowed to make them.

% Hardware/software synchronization

In order for the DRM process to predictably update the
hardware configuration definition, the software must have
complete knowledge of the hardware I/O configuration
definition. This is achieved by creating a hardware

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Synchronization of configurations. The active IODF, the new
IODF, the HSA, and the IOCDS must all be kept synchronized.

configuration token that uniquely identifies a hardware 1/O
configuration definition. This hardware configuration token
is kept within the IODF that is used to create the initial
hardware definition of the machine. When the machine is
initially powered on (POR), this initial hardware
configuration token is loaded into the HSA. Any time the
installation attempts to update the hardware configuration
definition by activating a new hardware configuration
definition, MVS retrieves the hardware configuration token
from the HSA and verifies that the currently active IODF
contains a matching hardware configuration token. If it
does not, the hardware and software I/O configuration
definitions are said to be out of synchronization, and no
dynamic hardware changes are allowed. If the currently
active IODF does contain a hardware configuration token
that matches the one contained in the HSA, the hardware
and software 1/O configuration definitions are said to be
synchronized, and both hardware and software dynamic
I/O configuration changes are allowed.

The installation can optionally make configuration
changes that affect only the software definition. This
option is available whether or not the software and
hardware I/O configuration definitions are synchronized.
Additionally, this capability can be used to restore
synchronization as needed. The section on CPC-wide
changes in LPAR describes the conditions under which
this capability is required.

Figure 5 shows the data flows for initially setting the

hardware configuration token. 641

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

642

& Automatic selection of the initial IODF

A problem that frequently occurs in data processing
installations is that a software configuration definition used
for IPL is incompatible with the hardware configuration
definition that was used for POR of the machine. When
these two definitions are not intended for use with each
other, unpredictable errors may occur, including inability
of the operating system to initialize, or even worse,
initializing and causing errors to occur that may jeopardize
data integrity.

In addition to its usage to determine whether or not the
software and hardware I/O configuration definitions are
synchronized (for the purpose of allowing or prohibiting
dynamic hardware changes), the hardware configuration
token can be used by MVS to automatically select an
IODF that matches the hardware configuration definition.
At the option of the installation, MVS searches the
designated initialization volume for the first IODF that
contains a hardware configuration token matching the
current hardware configuration token in the HSA. By
carefully choosing the naming conventions for its IODFs,
the installation can control which I0ODF is selected, in case
multiple IODFs contain the same hardware configuration
definition. The MVS search for the matching IODF starts
with an IODF data set suffix of '00' and proceeds
sequentially to 'FF' (hex values). By using this automatic
synchronization capability, the installation can minimize
the chances of initializing the system with an incorrect /O
configuration definition.

8 Operations on 1/O components

Enterprise System/9000™ (ES/9000™) processors provide
an interface that allows the control program to manipulate
the hardware I/O configuration definition and to query 1/O
configuration state information. This interface was
designed with the following objectives:

& Machine independence The interface to manipulate the
hardware configuration definition is implementation-
independent. Specific machine implementations are free
to construct their internal representations of the
configuration in any manner they choose.

& Efficiency The architected primitives that manipulate
the internal hardware structures may take relatively long
periods of time to complete (i.e., several milliseconds),
depending on the nature and scope of the change and the
system activity at the time of the change. Therefore,
these primitives were designed to complete
asynchronously to the program.

s Minimal disruption Only those 1/0O components that are
affected by the configuration change are momentarily
suspended while internal machine structures are updated.
New 1/O operations presented to the channel subsystem
may be temporarily prevented from starting, and

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

disconnected operations may be prevented from
completing. These effects are transparent to the user.

& Recoverability across a set of planned
changes Mechanisms are provided that allow the
program to maintain state information relative to a set of
planned configuration changes. This state information
persists across IPLs of the software and is visible across
logical partitions. This capability allows the operating
system to continue configuration changes from the point
at which a failure occurred.

© Operations on channel path definitions

Operations on channel paths allow the installation to
dynamically redefine a channel path. This allows the
installation to change the definition of its I/O channel paths
among various types of devices. For example, a channel
path that is currently defined as a block-multiplexor
channel path can by dynamicaily redefined as a byte-
multiplexor channel path and switched (or recabled) to a
new set of devices. Additionally, ESCON-capable channel
paths can be dynamically redefined to be ESCON channel
paths, ESCON conversion channel paths, or ESCON CTC
channel paths. Finally, if a configuration definition is not
correct (e.g., an ESCON channel path is incorrectly
defined to be a block channel path), the hardware
configuration definition can be dynamically changed to a
definition that is usable by the hardware without having to
POR the machine.

& Operations on control unit definitions

Most aspects of the control unit definitions are dynamically
modifiable by the system. Control unit definitions can

be dynamically added, deleted, and modified. The
modification of a control unit definition includes the
capability to add channel paths to it, remove channel paths
from it, change the unit address ranges that it is defined to
recognize, etc.

& Operations on 1/0 device definitions

Most aspects of 1/0 device definitions are dynamically
modifiable. Device definitions can be dynamically added,
deleted, and modified. The modification of a device
definition can include adding and deleting control units to
which it may be attached, setting a preferred path for I/O
operations, and turning either or both the status detection
facility and the interface timeout function on or off.

o Changing the default IOCDS for the next POR

The default hardware I/O configuration data set (IOCDS)
for the next POR of the machine is the IOCDS that was
used to POR the current I/O configuration. Since DRM
provides the ability to change the existing I/O configuration
definition in the hardware, customers also require the

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

R

DD MMM YY hh.mm.ss

CONFIGURATION - SINGLE IMAGE (CONFIG)
POWER-ON RESET COMPLETE D= PROCESSORS F= CENTRAL STORAGE
I0CDS FOR POR A5/DIOSTART -> 8. CP0 -> 0. PMA@ ON: 128 MB
HCD 10CDS ->:1, CP1 1. PMAL
2. CpP2 2. PMA2
A= ACTION 3. CP3 3. PMA3 ON: 128 MB
1. RELEASE 4, CP4
2. POWER-ON RESET -> 5. CP5 = EXPANDED STORAGE
3. MAXIMUM INSTALLED -> 0. ESA@ ON: 512 MB
4. SELECT IOCDS MGMT. E= VECTORS 1. ESAl
-> 1. VEl 2. ESA2
B= CP MODE 2. VE2 ->3. ESA3 ON: 512 MB
-> 1. ESA/378 ™™ 3. VE3
x2. NOT USED 4, VE4 H= 1/0 DEFINITION

3. LPAR -> 1. PERCENT EXPANSION: 26
C= 1/0 TRACE -> 2. ALLOW MODIFICATION
-> 1. TYPE(A /N) : 06600600
UNITS : 04 =--= CHPID STATUS ~---

ESA/370 IS A TRADEMARK (TM) OF THE IBM CORPORATION.

ONLINE: 93 OFFLINE: 35

CONFIGURATION MUST BE RELEASED (Al) BEFORE DEFINING NEW CONFIGURATION.

COMMAND ==

ability to change the default IOCDS that is used for the
next POR (see Figure 3). It must be possible to specify this
capability

o At the time a dynamic configuration change is attempted,
so that an installation can continue to run with the new
1/O configuration definition even after an outage forces it
to POR the machine.

o After a dynamic configuration has completed, in case the
installation should be run with the new I/O configuration
for a period of time to test that it is correct, before
committing to it for the next POR.

The switch-active IOCDS function works only if the target
IOCDS contains an I/O configuration definition that
matches the I/O configuration definition contained in the
HSA. This check is performed by comparing the hardware
configuration token contained in the channel subsystem

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

. CONFIG frame. The service processor for the ES/9000 processors provides the ability to control whether or not dynamic configuration
. changes are to be permitted, as well as the amount of storage to be set aside in the HSA for growth of the configuration

with the hardware configuration token contained in the
target IOCDS.

® Space requirements

During the POR process, the installation specifies how
much system resource (i.e., storage) is to be set aside for
growing the I/O configuration definition. The interface for
specifying this growth is in terms of a percentage of the
I/O configuration definition specified in the POR I0CDS
(see Figure 6). Space for the channel, control unit, and
/O device specifications is increased by the specified
percentage. This expansion factor was chosen as the
external interface for designated system growth
requirements for the following reasons:

o Simplicity A percentage growth factor is a simple

interface for the customer to understand. An alternative
approach that was dismissed was to have the customer

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

[R P S

643

644

Partition 4

MVS/ESA M MVS370 - MNVS/ESA
SP4:2.0 G SP4.2.0
Full dynamic
Software Manual Manual hardware and
only - verification verification . | software change
_orrestart . of restart :

igur

CPC-wide changes in LPAR. Coordinating dynamic 1/0 configu-
ration changes in an LPAR environment requires that the customer
perform software-only changes in the first n—1 partitions, and the
full hardware and software change last, in the nth partition.

specify the number of additional I/O components
intended to be added. This implied detailed planning for
the expected growth in terms of specific numbers of
devices and control units, and how they connected.

s Machine model independence A percentage growth
factor can be translated by the machine into the
appropriate amount of storage, which can vary with
future implementations.

& CPC-wide changes in LPAR

The hardware primitives defined to allow the software to
modify the 1/O configuration in HSA were intended to
operate on the I/O configuration definition of the entire
machine (i.e., across logical partitions), so that an MVS
operating system could perform changes to other partitions
(which might be running other operating systems). Thus,
these other partitions could be re-IPLed in order to change
only the software definition, as the hardware definition has
been changed for them. Optionally, these other operating
systems could support a subset of the DRM function that
would enable them to modify their own software structures
without having to implement the functions that alter the
hardware definition of the machine.

Cross-LPAR serialization

As was the case with the software data structures,
machine internals have evolved over time. These internal
control structures have also evolved from essentially static

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

designs, and they cannot easily be updated by multiple
logical partitions at the same time. For these reasons, a
new serialization primitive was defined that allows only
one logical partition at a time to make dynamic changes.
This new serialization primitive puts the logical partition
into configuration mode. In this mode, the hardware
primitives that modify the hardware I/O configuration
definition are allowed to be executed.

The primitive designed to perform this serialization
atomically compares the hardware configuration token
passed by the software with the hardware configuration
token contained in the HSA. If the token in the HSA is
valid and matches the token passed by the software,
configuration mode is established, and no other partitions
can enter configuration mode. When the software has
completed its changes to the hardware configuration
definition, it leaves configuration mode and sets the new
hardware 1/O configuration token into the HSA.

Program notification of configuration changes across
LPARs

The ability of DRM to manipulate the entire hardware 1/0
configuration definition of the processor from a central
point of control introduces the requirement that the
affected logical partitions must be notified of the
configuration change when additional I/O components
become visible to the program or when 1/O components
that were visible are no longer visible. This function was
accomplished by the existing IBM Enterprise Systems
architecture for installed-parameters-initialized (IPI)
channel report words (CRWs). However, the existing
mechanism only provided for the addition and removal of
hardware definitions; it did not cover the modification of
definitions. A new CRW had to be defined that allowed a
more granular notification of I/O configuration changes.
This notification is provided with an installed-parameters-
modified (IPM) CRW. Upon receipt of this CRW, the
operating system determines the scope of the configuration
changes and updates its internal state description to
represent the new hardware configuration definition.
Figure 7 shows a dynamic change in an LPAR environment.

MV'S software-only configuration changes

The CPC-wide capability afforded by DRM allows the
installation to use MVS to maintain the 1/O configuration
on the entire machine, not just the MVS partition initiating
the configuration change. If the configuration change
removes any definitions from the configuration or modifies
any definitions, care must be taken not to adversely affect
work in other partitions that may be using the affected I/0
resources. The MVS partition initiating the configuration
change will never delete an 1/O resource that is in use
within its own partition. However, there is no way to
verify the status of the I/O resource in the other partitions.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

DRM provides the ability for the installation to
coordinate dynamic configuration changes across multiple
MVS/ESA systems that support DRM by providing a
software-only change capability. This capability allows
MVS to verify that the I/O resources that will be deleted
by the configuration change are not in use by the partition.
Performing the software-only configuration change in
the first n — 1 partitions before doing the complete
configuration change in the nth partition ensures that none
of the 1/O resources being deleted are in use. When the
final configuration change is done, the hardware changes
are made and the other partitions are notified using the
CRWs described above.

The software-only capability is also useful for other
environments, €.g., MVS running as a virtual guest on a
VM system or on a processor that does not support the
DRM function. The operating system can still perform
configuration changes to its I/O configuration definition,
independently of the ability to change the hardware
definition. This is useful if an MVS customer would like to
change the initial EDT. Finally, software-only changes give
an installation the ability to reacquire hardware—software
synchronization if that becomes necessary, e.g., because
of an IPL using the wrong IODF.

Recovery
The primary motivation for Dynamic Reconfiguration
Management was to move toward continuous availability
for the customer. It was essential that system failures that
may occur during a dynamic 1/O configuration change
not require a POR of the machine to recover to a known
configuration definition state (i.e., the source or target
configuration definition). To achieve this objective, DRM
provides the necessary hardware and software mechanisms
to continue dynamic I/O configuration changes across IPLs
of the software, or in a different LPAR that may have
initiated the dynamic change.

The MVS design, which only allows the activation of
predefined IODFs, serves two purposes for recovery:

1. The configuration data that initiated the configuration
change are already available for controlling the
recovery.

2. The MVS algorithm for determining the incremental
set of configuration changes is deterministic, always
producing the same results for a particular set of input
1/0 configuration definitions.

The DRM primitives provided by the hardware allow the
software to keep state information in the channel
subsystem (Figure 8) while the system undergoes the
transition from the source configuration definition to the
target configuration definition. If a system failure occurs
(e.g., a DRM software failure, an MVS error that causes

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Partition 1 Partition 2 Partition 3 wes
MVS1 MVS2 MVS3
LPAR
Configuration state d 1 subsystem
information

Recovery of dynamic changes. State information kept in the chan-
nel subsystem allows MVS DRM to continue dynamic I/O config-
uration changes that may have been interrupted by a system
outage. The changes can be continued after a restart of a partition
or from another partition running MVS DRM.

DRM to fail, an MVS error that causes MVS to fail, an
LPAR failure that causes the logical partition to fail, or a
machine error that requires a re-IPL of the software but
not a POR of the machine), the state information kept by
DRM provides MVS with enough information to determine
which IODF contained the source 1/O configuration
definition and which contained the target I/O configuration
definition. Additionally, MVS can determine how far the
configuration change proceeded, and the direction in which
the configuration change was progressing (the normal
source-to-target transition, or backing out toward the
source). In invoking the recovery function of DRM, the
installation has the option of overriding the default on the
basis of its requirements and changes in environment (e.g.,
the reason for a back-out has been corrected). The default
is to continue in the same direction as when the failure
occurred. Recovery of a system failure while making a
dynamic configuration change is required prior to any
additional DRM changes.

Conclusion

The Dynamic Reconfiguration Management function of
MVS/ESA for ES/9000 processors provides an important
step in fulfilling continuous availability requirements.
The implementation is an evolutionary step toward the
automatic management of I/O configurations. Its design
provides for simplicity of use, robustness of function,
minimization of disruption, and integration of
recoverability.

MVS/ESA, Enterprise System/9000, ESCON, Hardware
Configuration Definition, ESCON Manager, System/360, and

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

645

646

ES/9000 are trademarks, and System/390 is a registered
trademark, of International Business Machines
Corporation.

References

1. MVS/ESA Planning: Dynamic I/O Configuration, Order No.

G(C28-1674; available through IBM branch offices.

2. MVS Configuration Program, Order No. GC28-1615;
available through IBM branch offices.

3. Hardware Configuration Definition: Using the Dialog,
Order No. GC33-6457; available through IBM branch
offices.

Received May 9, 1990; accepted for publication
January 15, 1992

R. CWIAKALA, J. D. HAGGAR, AND H. M. YUDENFRIEND

Richard Cwiakala IBM Enterprise Systems, P.O. Box

950, Poughkeepsie, New York 12602 (CWIAKALA at
POKVMCR3). Mr. Cwiakala is a senior programmer at the
Mid-Hudson Valley Programming Laboratory. He received
his B.A. in mathematics from Kean College, Union, New
Jersey, in 1965 and joined IBM in 1968 at the Poughkeepsie
Programming Center in Poughkeepsie, New York. He has held
a variety of test, development, design, and management
assignments in the MVS system control program. Mr.
Cwiakala received an IBM Outstanding Innovation Award for
his work on Dynamic Reconfiguration Management and two
IBM Invention Achievement Awards; he is a co-inventor on
six IBM patent applications.

Jeftrey D. Haggar IBM Enterprise Systems, P.O. Bax 950,
Poughkeepsie, New York 12602 (HAGGAR at POKVMCRS3).
Mr. Haggar is an advisory programmer at the Mid-Hudson
Valley Programming Laboratory. Since joining IBM as a
programmer in 1983, he has worked in the design and
development of the MVS operating system. He received a
B.S. in computer science in 1983 from Rensselaer Polytechnic
Institute, Troy, New York. Mr. Haggar received an IBM
Outstanding Technical Achievement Award for his work on
Dynamic Reconfiguration Management; he is a co-inventor on
three IBM patent applications.

Harry M. Yudenfriend IBM Enterprise Systems, P.O.

Box 950, Poughkeepsie, New York 12602 (HARRYY at
POKVMCR3, harryy@pokvmcr3.vnet.ibm.com). Mr.
Yudenfriend is a senior programmer at the Mid-Hudson Valley
Programming Laboratory. He joined IBM in the Poughkeepsie
Programming Center as a junior programmer in 1980. He has
held various design and development responsibilities in the
MVS operating system for the creation of and system support
for 1/O architecture enhancements on System/370™ and
System/390, including ESCON and Dynamic Reconfiguration
Management. He has received an IBM Outstanding Innovation
Award for his work on Dynamic Reconfiguration Management,
and three IBM Invention Achievement Awards. He is also a
co-inventor on nine IBM patent applications. Mr. Yudenfriend
received a B.S. in computer science from the Columbia
University School of Engineering and Applied Science in 1980.
He has been a member of the ACM since 1979 and an affiliate
member of the IEEE Computer Society since 1981.

System/370 is a trademark of International Business Machines Corporation.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

