The IBM 1A g%g
Enterprise N
Systems

Connection

(ESCON)

channel—

A versatile

building block

The IBM Enterprise Systems Connection & Performance: The channel for the IBM high-end systems
(ESCON™) environment required the design of had to provide a high level of performance—not only

a single channel that could be attached to the sustaining the maximum data transfer rate allowed by the
entire line of Enterprise System/9000™ ESCON architecture [1], but also performing chaining
processors and deliver the performance and block reconnection [2] in a timely manner. A typical
required by the top of that line. In addition to approach might have been to implement these time-

the channel, other functions were needed, critical functions in hardware; however, such a design
such as the ESCON channel-to-channel must be customized for a particular interface protocol
adapter. All of these functions were required to (the rules for sending and receiving messages) and

be implemented using the same channel message structure, and is very intolerant of changes [3].
hardware. This paper describes the key « Flexibility: The ESCON connection strategy required
elements of the IBM ESCON channel design. two basic channel types: the native ESCON channel and

the ESCON Converter Model 1 channel. These two
channels use different message structures and interface

Introduction protocols. In addition, the ESCON channel-to-channel
Several (often conflicting) requirements were placed on adapter (CTC) and the ESCON channel-test-vehicle

the design. of the IBM Enterprise Systems Connection control unit functions were needed. The designers were
(ESCON™) channel: given the requirement that a single hardware design must

©Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 617

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

618

To system

: Staging hardware

4 G
Chanriel attachment bus
- Chaninel v e s Channel
0 m
y 4
To contro] units

General structure of an ES/9000 channel subsystem.

[s0F| Header | Data

[cre [Eoﬂ

SOF Two-character start-of-frame delimiter.
Two types: ¢onnect and passive.

Header - 0-15 bytes of addressing and/or control-information.
Data. 0--1024-data bytes.

CRC "Two bytes of cyclic redundancy ¢heck.

EOF Three-character-end-of-frame:delimiter.
Three types: passive, disconnect; and abort.

General structure of a data frame.

be able to perform all of the above functions through
different code (““licensed internal code’’). Also, all of
the above interface protocols were being developed
concurrently with the channel, so changes had to be
accommodated easily. To achieve this degree of flexibility,
it was necessary that many functions be implemented
in code, which is readily modified. However, a code
implementation is inherently slower (and thus poorer in
performance) than a hardware implementation [4, 5].

& Common system attachment: The channel had to
be attachable to every system in the Enterprise
System/9000™ (ES/9000™) line, from the smallest Model
120 to the largest Model 900. The system interface was

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

required to use a minimum number of wires yet provide
sufficient bandwidth to support the maximum ESCON
data rate.

& Simulated 1/O (SIMIO) capability: Because of the large
numbers of channels required on the high-end systems,
it is impractical to attach real control units to every
channel during system testing or manufacturing testing.
There was a requirement to run real channel programs
on all the channels without using any external control
unit attachment.

& Low-cost, high-reliability package: Again, because of the
large number of channels required, it was necessary to
minimize the physical size of the channel. The channels
also had to meet the very stringent reliability,
availability, and serviceability requirements of the
top-of-the-line processors.

The following sections discuss how all of these
requirements were met in the design of the ESCON
channel.

Background

& Channel subsystem overview
The basic function performed by an ES/9000 channel
subsystem is to manage the transfer of data and control
information between system storage and the attached I/O
devices, thus freeing the central processors (CPs) of this
burden. The program requiring I/O must 1) build, in
system storage, a channel program, consisting of one or
more channel command words (CCWs), that describes the
data areas and provides the I/O-device commands to be
used; 2) build an operation request block (ORB}) specifying
the channel-program address and other parameters; and 3)
issue a Start-Subchannel instruction that specifies the I/O
device. The channel subsystem then queues and executes
the requested 1/O operation and informs the program of
the final status of the operation by means of an 1/O
interruption [2, 6].

The general structure of an ES/9000 channel substem is
shown in Figure 1. It consists of three main elements:

& Integrated off-load processors (IOPs) perform all the
communication with the CPs and maintain the work
queues for the channel subsystem. They perform path
selection, and they retry when busy conditions occur.
They also perform initialization functions and aid in
recovery from catastrophic channel errors.

& Channels are responsible for the execution of channel
programs. They initiate channel programs, perform data
transfer and chaining operations as appropriate, and
provide final status information to the IOP. They also
continue disconnected operations when so requested by
an I/O device [2].

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

& Staging hardware provides communication paths among
the IOPs, the channels, and the remainder of the system.
Each channel is attached to the staging hardware via its
own channel attachment bus. All communications with
the other elements of the system (including maintenance
function communications) are performed over this bus.

& [/O interface

The ESCON channel connects processors to ESCON
control units, Directors [7], and converters by means of a
full-duplex fiber optic serial link that operates at 200
megabits per second (Mby/s). This link is called the 1/O
interface. The data-encoding scheme is the character-
oriented 8B/10B code described by Widmer and Franaszek
[8]- This code converts 8-bit bytes into 10-bit characters
that are transmitted on the link; in addition, several 10-bit
control codes (called K-characters) are transmitted.

Communication on the interface is performed with
sequences of characters called frames. Figure 2 shows the
structure of the frames used by the ESCON channel. The
idle sequence, transmitted whenever no frames are being
transmitted, is the repetition of one of the K-characters
(K28.5). (Using a 10-bit idle character keeps the receiver in
character synchronism at all times, which simplifies design
of the receiver.)

All frames begin with an SOF (start-of-frame) delimiter
comprising two K-characters. Two types of SOF delimiters
are used: passive and connect. These delimiters control
the connection state of the ESCON Director™. Data
characters follow the SOF delimiter. The first group of
data characters is the frame header; the second is the data
field. All frames have a header, and frames used to
transfer data also have a data field. In either case, the
hardware that generates and receives frames can handle
variable-length headers and data fields. The next two
data characters of all frames comprise the CRC (cyclic
redundancy check). Following the CRC is the EOF (end-
of-frame) delimiter, which consists of three K-characters.
There are three types of EOF delimiters: The first two are
the passive and disconnect delimiters, used to control the
connection state of the ESCON Director. The third EOF
delimiter is the abort, used to signal the receiver to discard
the current frame. The idle sequence resumes after the
EOF delimiter. At least four idle characters must be
transmitted between frames.

In addition to the normal idle sequence, a group of
modified idle sequences, transmitted continuously, is
provided to signal special link states. The states include
ESCON Director disconnect, link failure, and link off-line.
The modified idle sequences are composed of the idle
character alternating with a data character [9]. The
ESCON channel provides facilities for generating and
receiving any of the 256 possible modified idle sequences
(one for each of the 256 data characters).

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Channel attachment bus

o} Channel Iﬁuachment]
bus control

Data buffer
(2048 bytes)

Data transfer
controls

Control store

<—>l, Local store l

Frame transmission Frame reception
¢ hardware hardware
Outbound sync buffer Tnbound sync buffer
Serializer Deserializer
Outbound
[oe -
N
VT
YO interface

ESCON channel elements.

Key elements of the channel design

At the heart of the ESCON channel, shown in Figure 3,

is the microprocessor, which controls all of the channel
elements. The channel attachment bus connects the
channel to the system. The 2048-byte data buffer is used as
a temporary staging area for data as they move between
the I/O interface and the system. The data-transfer
controls direct the transfer of data between the data buffer
and the I/O interface. The frame transmission and frame
reception hardware are independent elements. Each of
these elements is described in the following sections.

& Channel microprocessor

All IBM large-system channels since the 1970s have
been implemented using some form of microprocessor.
However, the requirements for the microprocessor in the
ESCON channel were somewhat more demanding than
those of previous channels. Not only did two channel

types have to be implemented, but the channel hardware 619

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

620

also had to be able to act as a control unit (e.g., the
ESCON channel-to-channel adapter). This required
complete control of the frame transmission and reception
hardware by the microprocessor in order to allow different
types of frames to be generated and received. Also,
previous channel processors handled only one task at a
time. As is discussed later, the ESCON channel processor
had to be able to control the data transfer to or from
system storage and to or from the I/O device
simultaneously, and had to switch tasks very rapidly
between the two. Finally, the ESCON architecture uses
far more complex recovery algorithms than does the
System/370™ OEMI parallel interface [10]. For example,
the channel is required to request a retry of the current
command under certain error conditions. Providing enough
control storage in each channel to contain all of these
recovery routines in addition to the primary routines would
have been too costly. Therefore, a mechanism for paging
non-time-critical code from main storage of the system was
required.

The processor developed to meet these requirements is
custom-designed, optimized for efficient control of the
channel hardware facilities. It has a simple one-byte-wide
data flow and has access to virtually all of the channel
elements. The processor has a one-byte ALU, a shifter,
and 256 bytes of working storage for general use. A 16-
kilobyte local store provides space for control information
for a large number of devices. Local store also holds trace
data for problem determination purposes.

The basic processor instruction is a 38-bit microword.
Thirty-five of the bits are divided into seven fields, each of
which can be decoded independently into micro-orders to
perform a different function. The last three bits are parity
bits. Two of the fields control the ALU functions and the
gating of data to and from the processor. One field is
normally used as the next address. The remaining fields
are used for various purposes, such as modifiers, array
addresses, constant values, and micro-orders for setting
and resetting control latches. Normally, one microword is
executed each channel cycle. Since each of the fields can
specify an independent function, multiple functions can be
performed in each cycle.

The writable control store (WCS) array provides space
for 8192 microwords. WCS is logically divided into 64
segments of 128 words each. The first 56 segments are
static; that is, the code there remains resident after system
initialization. These segments are used to contain the
mainline code critical to performance. The last eight
segments are pageable; these segments may be loaded
from system storage during channel operation, permitting
code that is not performance-oriented, such as recovery
and link initialization, to be loaded when required. The
paging function is performed by code, with hardware
assistance.

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

Conditional branching is provided to test various
conditions in the channel. A two-, four-, or eight-way
branch is implemented by replacing the appropriate
number of low-order bits of the next WCS address with
bits representing the selected branch conditions. (WCS
address means the address of the microword that is
executed next.) Branch prediction is used to improve
performance: If the actual branch condition agrees with the
prediction made when the branch was coded, the next
word is executed in the next cycle; if not, a one-cycle
penalty is incurred while the proper word is fetched from
WCS. A four-level link stack is provided for subroutines;
however, at least one level must be reserved for
preemptive traps (see the following).

Traps are the mechanism by which certain events are
made known to the code without the code having to test
for their occurrence explicitly. When a trap occurs, the
WCS address is set to that of the first word of the segment
that corresponds to the trap number. There are two types
of traps: normal and preemptive. Normal traps can occur
only when the code issues a specific micro-order that
allows them. This is typically done when the code has
completed a task and is going to idle while waiting for the
next event.

Preemptive traps provide a single level of interrupt
(i.e., a second preemptive trap cannot occur during a
preemptive trap). They may occur any time they are not
inhibited by the code. When a preemptive trap occurs, the
current WCS address is pushed onto the stack. When the
code in the trap routine has been completed, it issues a
RETURN order, which causes the former WCS address to
be popped off the stack and execution to resume at the
interrupted point. Only two registers must be saved and
restored by the preemptive trap routines, and other
functions can typically be performed in the microwords
that do the saving and restoring. Consequently, the
preemptive traps allow very rapid task switching. This
feature is exploited for data transfer, during which
the normal traps service the storage interface, while
preemptive traps break in as required to service the I/0
interface.

The microprocessor is of key importance to the channel
design. Its programmability provides the flexibility to
implement multiple architectures, while the combination of
multiple functions per cycle, branch prediction, and rapid
task switching provides performance that equals or
exceeds that of most all-hardware designs (see the data-
transfer section for further discussion of performance).

® Channel attachment bus

Prior to the introduction of the ES/9000 line of compatible
systems, it had been standard practice to design a new and
completely different channel for each new system. Thus,
the interface between the channels and the rest of the

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Staging hardware (TCM)

Selnesper
four-channel grovp

Channel attachments: (a) Early 3090 channel attachment; (b) ESCON channel attachment.

system was customized to the needs of the particular
system. An example of such an interface, found in the
early models of the 3090™ system, is shown in Figure 4(a).
Each of four channels is attached to a channel adapter
by means of a 33-wire interface consisting of two
unindirectional byte-wide buses and a multiplicity of
individual control signals. The adapter multiplexes the
data and control information from the four channels onto a
4-byte-wide bidirectional bus that is attached to the staging
hardware. A separate maintenance interface, consisting of
an additional 52 signal lines, is required for functions such
as scanning, loading code, and logging trace arrays. Thus,
a total of 85 wires are required to attach each channel to
the system.

This structure was not considered acceptable for
the ESCON channel, for a variety of reasons. The
configuration could not provide sufficient bandwidth
for each channel to sustain the maximum data rate of

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

the ESCON link. This was primarily because of the
multiplexing of the four channels using logic running at the
same cycle time as the channels themselves. As a result,
the multiplexing had to be done with the high-speed
bipolar logic of the staging hardware, where the cycle time
is approximately one fourth that of the channels. This
required that each channel have a separate interface to the
staging hardware. However, the requirement for an 85-wire
interface per channel far exceeded the number of available
signal pins on both the channel card and the thermal
conduction module (TCM) [11] of the staging hardware. In
addition, the 85-wire interface contained many signals, for
maintenance functions, that were common to multiple
channels. This made isolating errors to a failing channel
very difficult.

The channel attachment bus, shown in Figure 4(b), was
developed to solve these problems. It provides a high-
bandwidth communication path between each channel

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

621

622

and the staging hardware, using only ten signal lines

and a clock line. This bus is used for both normal and
maintenance functions; a separate maintenance interface is
not required. The ten signals consist of an 8-bit byte, a
parity bit, and a data-continue signal, which allows the
staging hardware to pause during the transfer of data if its
buffers become temporarily unavailable.

When a bus is inactive, the staging hardware controls
six of the eight bits and the parity bit, and the channel
controls the remaining two bits. The staging hardware
always controls the data-continue line.

When the staging hardware uses the bus to communicate
with the channel, it first determines that the bus is
inactive, then places an encoded request on its portion of
the bus in the next cycle, called the request cycle. In most
cases, all of the information required for unsolicited
requests from the staging hardware to the channel can be
contained in this encoded value, so no additional bus
cycles are necessary. If an additional cycle is required to
pass the entire message, this is also specified by the
encoded value passed during the request cycle.

When the channel requests use of the bus, it loads an
internal bus-control register with the appropriate bus
command and sets a latch. When channel hardware
determines that the bus is inactive, it activates both of the
bits it controls during the following cycle (the channel
request cycle). If the six bits controlled by the staging
hardware are inactive on the request cycle, the channel
places the contents of the control register on the bus during
the next cycle, called the command cycle. Additional data
cycles may follow, depending on the command.

The staging hardware always has priority for use of the
bus. If the channel, during its request cycle, detects a
concurrent request from the staging hardware that requires
control of the entire bus, the channel deactivates its
request and presents the request again when the bus
becomes idle. In this case, the staging hardware maintains
its request during the following cycle. If during its request
cycle the channel detects a concurrent request from the
staging hardware that does not require control of the entire
bus, the channel accepts the request and maintains its
request during the following cycle.

The maximum data rate any channel can sustain is
limited by the rate at which its system interface can move
data between its buffers and system storage. The protocols
implemented on the channel attachment bus allow the
transfer of 128 bytes in only 147 cycles, which includes
the overhead of passing the storage address to or from
which the data are to be moved, and receiving an
acknowledgment that the operation was completed
successfully. This allows a bandwidth in excess of 20
megabytes per second (MB/s), which is more than adequate
to provide the maximum data rate of the ESCON 1/O
interface.

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

Maintenance functions are also performed using the bus.
To set the channel into maintenance mode, the staging
hardware issues a request in its request cycle. This stops
the channel clock. Thereafter, one of the bus bits is used
to hold the channel in maintenance mode, while the
remainder of the bits are used for signaling resets,
providing data in, data out, and clock lines for scan rings
[12], etc. The channel leaves maintenance mode on
detecting all bits inactive on the bus. If the channel detects
a catastrophic error that forces it to stop its own clock, it
signals this condition to the staging hardware by activating
only one of the two bits it controls.

& Sync buffers

Attachment of the ESCON channel to the system is
simplified by running the channel synchronously to the
system. The channel and system clocking rate is controlled
by an independent oscillator in the processor and is not
synchronous to the ESCON I/O interface, which has a
fixed bit rate of 200 Mb/s. This difference between the
channel and 1/O clock speeds is handled by the channel
sync buffers.

Asynchronous first-in-first-out buffers are used to
synchronize the arrival and departure interface data with
the channel clock. Two buffers are used: the outbound
sync buffer and the inbound sync buffer (see Figure 3).
The outbound buffer is between the frame-transmission
hardware and the serializer, while the inbound buffer is
between the deserializer and the frame-reception hardware.
The primary function of the sync buffers is to store data
temporarily while metastabilities [13] caused by the
asynchronous sampling of signals are resolved. Placing
these buffers close to the 1/O interface minimizes the
number of asynchronous signals required for sending and
receiving data. The placement of these buffers also
maximizes the amount of logic that can be clocked
synchronously to the rest of the system. Developing
synchronously clocked logic is easier than developing
asynchronously clocked logic, because it allows the most
effective use of hardware design tools such as simulation,
timing analysis, clock generation, and test pattern
generation.

The outbound sync buffer has an additional function
used during certain recovery actions in the ESCON
channel that cause the channel clock to be temporarily
stopped. When the channel clock is running, all of the
characters transmitted on the link (including the idle
sequence) are supplied by the frame-transmission hardware
and are sent through the outbound sync buffer. When the
channel clock is stopped, a conventional sync buffer loses
its source of characters and transmits unintelligible data.
When these unintelligible data are received by the other
end of the link, a link failure condition is detected. This is
an unacceptable situation, because a link failure causes a

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

reset of the attached control units, which may lead to a
loss of data. This problem is solved by a feature of the
outbound sync buffer that detects the termination of the
channel clock and automatically generates the idle
sequence [14).

When the outbound sync buffer switches between its
own automatically generated idle sequence and the
character stream supplied by the frame-transmission
hardware, the running disparity of these two sources must
be the same. (Running disparity is the difference between
the total number of 1s and Os transmitted. A positive
running disparity indicates that more 1s than 0s have been
transmitted, and a negative running disparity indicates that
more 0s than 1s have been transmitted.) The 8B/10B code
achieves dc balance by choosing between two alternative
10-bit encodings of an 8-bit byte according to the running
disparity of the bits transmitted on the link. The disparity
of an encoding is the difference between the number of 1s
and 0s in that code. Some of the encodings from an 8-bit
to a 10-bit character have only one value, which has a zero
disparity. The rest of the encodings have two alternatives:
one with six 1s and four 0s (positive disparity) and one
with four 1s and six 0s (negative disparity). When the
running disparity is positive and the byte to be transmitted
has two alternative encodings, the 8B/10B encoder chooses
the one with negative disparity; when the running disparity
is negative, the alternative with positive disparity is
chosen. The idle character (K28.5) has two encodings: one
with positive disparity and an alternate with negative
disparity. These two idle character code points are sent
alternately when the idle sequence is transmitted.

The outbound sync buffer keeps track of the running
disparity of the character stream supplied by the frame-
transmission hardware. When the channel clock stops,
the sync buffer chooses the first idle character of its own
automatically generated idle sequence according to the
running disparity calculated following the last character
supplied by the frame-transmission hardware. When the
channel clock is restarted, the sync buffer delays switching
to the character stream supplied by the frame-transmission
hardware until the running disparity of its own
automatically generated idle stream equals the running
disparity of the first character supplied by the frame-
transmission hardware. Through this process of stopping
and starting the channel clock, the receiver at the other
end of the link sees no disparity errors and does not detect
a link failure condition.

® Frame-transmission hardware

The frame-transmission hardware is the key channel
component providing the flexibility described in the
Introduction. In addition to achieving the full data rate
for both the native ESCON channel and the ESCON
converter protocols, the hardware can generate special

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

From From To/from data
microprocessor . data buffer transfer controls
] —3 1
Header buffer Trace buffer
(16 bytes) (128 X 10 bits)
l y F vy Yy
Multiplexer - Out-frame
state machine
I)
= . Data paci
CRC 8B/0B registel:lg
enerator Encoder
£ (for SIMIO: | Control pacing
L mode) register
' l {
To-outbound To
sync buffer MIiCTOProcessor

Frame-transmission hardware.

test frames for SIMIO, diagnostics, simulation, and the
ESCON channel test vehicle. The channel test vehicle is
an ESCON channel with code that emulates an ESCON
control unit. The flexibility of this frame-transmission
hardware has saved the cost of developing additional
functional and test hardware and reduced the overall
product development time. The major elements of the
frame-transmission hardware are shown in Figure 5, and
its various modes of operation are described in the
following paragraphs.

To initiate a frame, the code first updates either the
header buffer or the trace buffer. (The header buffer is
used when generating normal frames used in the native
ESCON channel and ESCON converter protocols, while
the trace buffer is provided for the test modes to insert
erroneous frames into the normal stream.) The first 15
bytes of these buffers are reserved for the frame header
information, and the 16th byte is a control byte specifying
the frame attributes, which include the types of delimiters
and the length of the frame header. With all of the frame
attributes in a single control byte, the code has only one
byte to update when initiating a frame.

After the header buffer or trace buffer is updated, the
code starts the out-frame state machine (OFSM), which
controls the frame-transmission hardware. The OFSM
reads the control byte from either the header buffer or the
trace buffer, starts the frame by transmitting the start-of-
frame delimiter specified in the control byte, and then

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

623

624

transmits the header. After the header is transmitted,

the OFSM examines another bit in the control byte to
determine whether data should be appended to the header.
(Frames with data following the header are called data
frames, and frames with no data following the header are
called control frames.) Finally, the CRC is transmitted,
followed by the end-of-frame delimiter, which is also
specified in the control byte. As transmission proceeds, the
OFSM selects the source of the bytes by controlling the
multiplexer.

Including the control byte with the header data in the
header buffer and the trace buffer speeds frame generation
by allowing overlap of frame transmission with frame
preparation. The code can update the control byte of the
next frame while the data field, CRC, and end-of-frame
delimiter of the current frame are being transmitted. The
maximum data rate can then be realized, and the frames
are transmitted with the minimum number (four) of idle
characters between them.

The ESCON channel can transmit data faster than the
data can be received by some of the attached control units;
to solve this problem, the ESCON architecture provides
several methods of limiting the data transfer rate. One of
these methods, called data pacing, requires the transmitter
to insert extra idle characters between data frames. The
frame-transmission hardware automatically inserts these
extra idle characters and frees the code from having to
determine when to start the next data frame. Along with
data pacing, specified by the architecture, a control-pacing
function (not part of the architecture) is also implemented.
This control-pacing function is used by the ESCON
channel test vehicle and SIMIO to regulate the rate of
data-request frames, which are control frames. The data-
pacing and control-pacing registers determine the minimum
number of idle characters that must be inserted between
frames. When the code starts a new frame, the OFSM
automatically delays frame transmission until the proper
number of idle characters have been transmitted. The
OFSM selects between data pacing and control pacing by
comparing the type of the previous frame (control or data)
to that of the current frame. Data pacing is used if both
frames are data frames; control pacing is used for all other
combinations.

The transmission of a data frame cannot start until all
data for that frame are available. The frame-transmission
hardware automatically starts the frame when the
data are available and frees the code from making this
determination. The assembled frame leaves the multiplexer
and enters the 8B/10B encoder. The 10-bit encoded
characters leave the encoder and enter the outbound sync
buffer, which is discussed in the section on sync buffers,
above.

The trace buffer provides functions that give the
ESCON channel much of its flexibility. Providing useful

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

information for problem determination is its primary
function. As frames are transmitted, they are stored in the
trace buffer, which contains 16 bytes for each of the last
eight frames transmitted: the control byte and the first

15 bytes. In another mode of operation, the trace buffer is
used by the SIMIO function as the source of information
for frame generation. As described in the section on I/O
simulation, below, the first 16 bytes of the trace buffer
provide the control and header information, and the last
64 bytes can be the data source for data frames.

The ESCON channel test vehicle, diagnostics, and
simulation use the trace buffer in yet another mode, which
is called 10-bit mode. The microprocessor loads the buffer
with 10-bit encoded characters. When the microprocessor
begins frame generation, the OFSM reads the encoded
characters from the buffer, replacing the idle sequence and
bypassing the encoder and CRC generator. A hardware
disparity control delays transmission of the 10-bit
characters from the trace buffer until after the next idle
character with positive disparity has been transmitted.
After the 10-bit characters from the trace buffer have been
transmitted, the idle sequence resumes with a negative-
disparity idle character. Any valid or invalid bit stream can
be generated. This control of the disparity of the bit stream
leads to reproducible results of diagnostic tests. The
ESCON channel test vehicle, driven by special channel-
test software, uses 10-bit mode to predictably inject errors
into the channel under test to determine whether the
proper error-reporting and error-recovery actions are being
performed. The diagnostic code uses 10-bit mode when the
serial output is “wrapped back’ to the serial input,
electrically or optically. The diagnostics generate error
sequences to determine whether the errors are being
properly detected by the frame-reception hardware.
Simulation test cases also use the diagnostics to
demonstrate the correctness of the frame-reception
hardware. This capability of the trace buffer avoided the
necessity of developing special test hardware and writing
separate simulation test cases and diagnostic code.

The ESCON channel test vehicle and SIMIO both
require the generation and verification of data patterns
within data frames. The data generator register meets this
requirement by generating a simple sequence (i.e., 0, 1, 2,
3, - - -) or a pseudorandom pattern. The ESCON channel
test vehicle uses this register as the source of data for
frames sent to the channel under test. It also checks the
validity of data from the channel under test by comparing
the data received to the data generated by this register.
The SIMIO function uses the data generator similarly; it is
described later, under the heading 1/O simulation.

& Frame-reception hardware

The frame-reception hardware [15] complements the frame-
transmission hardware by recognizing all frames that

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

follow the rules described in the I/O interface section
above and by detecting and characterizing link errors, all
of which can be simulated by the frame-transmission
hardware. The division of functions performed by
hardware and code was chosen to keep the code
uninvolved in the mechanics of frame reception while
giving the code the maximum information, encoded in a
compact form, in error situations. To this end, the frame-
reception hardware automatically decodes the 10-bit
characters, checks for character synchronism, detects
modified idle sequences used to signal special link states,
detects start-of-frame and end-of-frame delimiters, checks
CRC, examines frame headers, and stores frame headers
and data. As the hardware performs these functions, it
collects information describing their progress and informs
the microprocessor when appropriate. The frame-reception
hardware (Figure 6) is controlled by the in-frame state
machine (IFSM).

The deserializer converts the bit stream received from
the link into 10-bit groups that are sent over a 10-bit
parallel bus through the inbound sync buffer to the 10B/8B
decoder, where they are decoded into data bytes, special

control characters, and invalid characters (code violations).

The output of the decoder is sent to the character sync
detection logic, CRC checker, and IFSM.

When these 10-bit groups are aligned on character
boundaries, the 10B/8B decoder detects valid characters.
When the character alignment is not on character
boundaries (i.e., the 10-bit groups contain bits from two
adjacent characters), invalid characters are detected. The
character sync detection logic calculates the frequency of
invalid characters to determine whether the deserializer
has the correct character alignment. The frequency of
invalid characters is calculated by hardware specified by
the ESCON architecture [16, 17]. Briefly, there are two
counters: One counts valid characters and the other counts
invalid characters. When the ratio of valid to invalid
characters is less than 15, the character sync detection
logic indicates that the deserializer does not have the
correct character alignment.

Character synchronism is achieved by adjusting the
character alignment of the deserializer. A signal controlled
by the microprocessor is sent to the deserializer instructing
it to discard one bit of the incoming serial bit stream, thus
changing the deserializer character alignment by one bit.
The discarding process continues until the alignment of
data from the deserializer is on character boundaries.

When the character sync detection logic determines that
the frequency of invalid characters is high enough that the
character alignment of the deserializer may not be correct,
it causes a microprocessor trap. Since large noise bursts
on the link may damage many characters, transforming
them into invalid characters, the character sync logic may
falsely detect a loss-of-character-sync condition even

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Toffrom data

From inbound .
sync buffer transfer confrols

© Character . - | |CRC checker

syne detection widelay

buffer
(16 X 2 bytes)

Sr—

Frame-reception hardware.

though the deserializer is still in the proper character
alignment. Because of this effect of a large noise burst and
because of the relatively long time it takes to readjust the
deserializer character alignment, the code does not
immediately start to readjust the deserializer character
alignment after the microprocessor is trapped because of a
loss-of-character-sync trap. Instead, it waits for about
10 us (2000 bit times) before examining the signal from the
character sync detection hardware that indicates loss of
character sync. If the character sync signal is off after this
wait time, the link has received a noise burst, and no
deserializer character realignment is required. If the loss-
of-character-sync signal is still on, the code starts the
deserializer character alignment procedure.

The alignment procedure consists of repeatedly
discarding one bit from the incoming serial bit stream and
waiting for about 3 us (600 bit times) before checking the

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

625

626

loss-of-character-sync signal. Eventually, either the
proper deserializer character alignment is established

and operations continue, or a time-out is encountered,
indicating a link failure. In either case, the code logs the
loss of character sync and includes information describing
the duration of the condition and the number of bits

that were discarded in order to reacquire sync. This
information is used to determine the performance of the
inbound link. Indeed, during testing of the channel, this
information proved very useful in correcting a defect in the
phase-lock loop of the deserializer.

The CRC checker receives data from the decoder,
verifies the contents of all frames, and supplies data to the
header and data buffers. The CRC bytes are not written
into the buffers. Because the frame length is generally
unpredictable and because the end is indicated by the end-
of-frame delimiter only after the receipt of the two CRC
bytes, the CRC checker has a 2-byte delay that prevents
writing the CRC bytes into the buffers.

The output of the 10B/8B decoder is also sent to the
IFSM logic, where the sequence of characters is examined.
This logic controls loading the header buffer and the
compare buffer (discussed below), reading the
Expect/Mask buffer (also discussed below), and setting
status information describing what was received on the
inbound interface. The reception of anything on the
inbound interface of a frame, modified idle sequence,
error, or any of certain other sequences is called an event;
each event causes an entry into the header buffer and
compare buffer.

During an I/O operation, most of the fields within the
received frame headers can be anticipated by the ESCON
channel, and very few of these fields change from frame to
frame as the operation proceeds. This characteristic of the
architecture is exploited by the Expect/Mask buffer. As
frames are received, they are automatically compared with
bit patterns stored in this buffer. At the beginning of each
I/O operation, the Expect/Mask buffer is initialized by the
microprocessor. Each element of the buffer has two bytes:
The first byte is the expected frame data or summary
information (discussed below), and the second is a mask of
the bits to be compared. As a frame is received, bytes are
read from the buffer and compared with the received
frame bytes. When the bits compared are equal, bits in
a compare register are set to zero. The contents of the
compare register are written into the compare buffer at
the end of the event. To check the validity of a received
frame, code simply reads the compare buffer entry for
the frame; if the entry is zero, the frame has passed the
Expect/Mask test. Nonzero bits in the entry direct the
code to the header bytes or summary byte that were not
equal to the Expect/Mask values. The Expect/Mask
facilities are also used to recognize data frames, as
discussed in the next section.

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

Since the code cannot always service the inbound
interface immediately, a pair of FIFO buffers, the header
and compare buffers, store information from the last eight
events detected on the inbound interface. Each event
occupies 16 bytes of the header buffer and one byte of the
compare buffer. The most common event is the receipt of
a frame. In this case, the frame header (up to 15 bytes)
and a summary byte are stored in the header buffer. The
result of the Expect/Mask compare operation is written
into the compare buffer. The write pointer is an address
register for the header and compare buffers and points
to the current event being stored in these buffers.

After each event, the write pointer is incremented by the
IFSM.

The read pointer, another address register for the header
and compare buffers, points to the current event being
read by the microprocessor. The read pointer is controlled
by the microprocessor. When the read and write pointers
are equal, the header and compare buffers are logically
empty and there is no work pending for the code. When
an event is detected by the IFSM, the header and compare
buffers are loaded, and the write pointer is incremented as
described above. Now the read and write pointers are no
longer equal, which causes a microprocessor trap. After
the code is finished processing the event, it increments
the read pointer. If no other events were received
during processing, the read and write pointers are again
equal, indicating that there is no pending work for the
microprocessor. The header and compare buffers also
provide trace information for problem determination, since
data for the last eight events are always in these buffers.

Sometimes events occur on the inbound interface faster
than they can be processed by the code. This is usually
caused by multiple errors on the inbound interface or by
error recovery operations occurring within the ESCON
channel. In either case, the header and compare buffers
may become full, and the IFSM must discard subsequent
events. When events have been discarded, the code is
notified. It must then assume that the connection state
of the ESCON Director is unknown and perform the
appropriate recovery action.

Each event entered into the header buffer includes a
byte of summary information that is written into the 16th
byte of storage for the event, as described above. One bit
of this byte indicates that the event is a normal frame. In
this case, the other seven bits describe the frame. The bits
indicate the type of start-of-frame and end-of-frame
delimiters and the length of the frame or its header (up
to 15 bytes). The IFSM normally writes the summary
information and increments the write pointer after the end
of the frame has been received.

When the ESCON channel is receiving data, the IFSM
makes the data frame header information available to
the code before the end of the frame is received. This

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

improves performance by allowing the code to begin
processing the header as soon as possible. However, it
presents a problem when an error is detected in the frame
after the header information has been presented to the
microprocessor. If this kind of error is detected, the IFSM
creates another event and, by setting one of the summary
bits, indicates that it is associated with the previous event.
When the code is informed of this condition, it assumes
that the previous header information is suspect and
performs the appropriate recovery.

When the event summary byte indicates an abnormal
event, the compare buffer entry does not hold the result of
the compare operation, but contains instead a description
of the abnormal event. A 4-bit field of the compare buffer
entry indicates such conditions as a loss of character
synchronism, a short frame, a long frame, a CRC error,
or a data-buffer overrun. Since more than one of these
conditions can occur within a single event, only the most
important one is presented by this 4-bit field. Two more
bits of the compare buffer entry indicate the validity of
the delimiters. These validity indicators are useful in
determining the state of the ESCON Director in error
situations. Another of the bits indicates that an invalid
character was received. In this case, the four bits of the
summary byte that are normally used to indicate the frame
length give attributes of the invalid character. These
include code violations, undefined control codes, and
invalid character sequences.

The compare invalid register keeps track of the validity
of Expect/Mask compare operations. Whenever the code
updates the Expect/Mask buffer, all entries in the compare
buffer become invalid, because the code cannot determine
whether a compare operation was performed before or
after the Expect/Mask buffer was updated. The compare
invalid register has eight bits, one associated with each
compare buffer entry. Whenever the Expect/Mask buffer is
changed, all eight bits of the compare invalid register are
set to 1 (indicating that all entries are invalid). When the
code reads the compare buffer and when the corresponding
bit in the compare invalid register is on, the code receives
a compare buffer value of all 1s, indicating that none of
the frame header bytes were equal to the contents of the
Expect/Mask buffer. The code can read the compare buffer
when it contains a description of an abnormal event. After
an update of the Expect/Mask buffer, as new events are
received, the bits of the compare invalid register are reset
by the IFSM. A 0 value of a compare invalid register bit
allows the corresponding compare buffer entry to be read
without modification.

® Data frame recognition

When the ESCON channel performs a read operation, a
mixture of data and control frames is received. One way
of extracting the read data would be to use a very fast

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

processor to examine the frames at link speeds. Because
this is a very costly solution, the ESCON channel uses the
Expect/Mask hardware to automatically distinguish control
frames from data frames and extract the read data from the
frames as they are being received. This hardware must be
programmable enough to handle protocols for both the
native ESCON channel and the ESCON Converter; the
frame header contents and length are not the same in these
two protocols.

The first group of header bytes in data frames used
in both the native ESCON channel and the ESCON
Converter identifies the frames as data frames. This group
contains X bytes. The second group contains flags that
describe the status of the data transfer operation. The
total length of the data frame header is Y.

The Expect/Masl\i*hardware is used to test the frame
headers. The code initializes the Expect/Mask buffer so
that the headers of the anticipated incoming data frames
equal the contents of the buffer. The code also sets two
4-bit registers to X and Y. The first X bytes of the
incoming frame must be equal to the first X' elements of
the Expect/Mask buffer for the hardware to recognize the
frame as a data frame. Once the frame is recognized as a
data frame, the hardware uses Y to determine the end of
the header and the beginning of the data field. Recall from
the previous section that the summary information stored
in the 16th byte of a header buffer entry is compared
with the 16th element in the Expect/Mask buffer. The
summary byte must also be equal to the Expect/Mask
buffer element for the frame to be recognized as a data
frame.

Code involvement in data transfer is further reduced by
conditionally interrupting the microprocessor. As described
above, the second group of bytes in the data frame header
contains flags describing the status of data transfer. These
flags indicate the ability of the sender to receive another
data request (RDY) and the end of data transfer. Code
must be interrupted if a data frame with one of thesc flags
is received. The hardware compares the group of bytes
containing the flags (from byte X + 1 to byte Y) with the
contents of the Expect/Mask buffer. If these bytes are not
equal (i.e., one of these unusual flags is received), the
write pointer for the header buffer and compare buffer is
incremented and a microprocessor trap is generated.

Once the data frame recognition hardware is initialized
by the code, the majority of data frames are received
automatically, without causing the microprocessor to be
interrupted. Since the code does not have to process each
data frame, these frames can be received with the
minimum number of idle characters (four) between them.
This means that the ESCON channel never requires
additional data pacing (discussed in the section on frame-
transmission hardware), regardless of how small the data

frames may be. 627

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

628

® Data transfer

The data transfer process can be thought of as two distinct
operations that occur simultaneously. Storage data
transfer is the movement of data between system storage
and the 2048-byte data buffer of the channel. Interface
data transfer is the movement of data between this data
buffer and the ESCON interface.

Prior to the advent of ESCON, all System/360™ and
System/370 channels used the standard parallel interface
[10]. Data transfer on this interface is relatively simple:
The control unit provides or requests each byte of data
for read or write operations respectively by raising the
appropriate control line to the channel. The channel
provides or accepts the data byte and raises the
corresponding control line to the control unit. This process
is well known and has remained relatively unchanged over
the years. Since performance is important and flexibility is
not required, all channels implement the data transfer on
the parallel interface using hardware state machines. The
function of the channel code during data transfer is limited
to the movement of data between system storage and the
data buffer. There is little or no involvement of the code in
the transfer of the data between the data buffer and the
parallel interface.

In the ESCON channel, however, data are transferred in
frames that contain, in addition to the data bytes, control
information in the header. This control information is
different for each function implemented with the channel
hardware (native ESCON channel, ESCON Converter
channel, ESCON control unit, etc.) and even varies from
frame to frame for a given function. In addition, data
request frames flow in the opposite direction from data
transfer and must be generated or processed concurrently
with the data frames. For example, the native ESCON
channel must be capable of receiving a data request frame
at any time during a write operation. It must process
this data request and then set the RDY bit in the next
outbound data frame.

To provide this kind of flexibility, it was necessary that
the code generate and interpret the information in the data
frame headers and data request frames in addition to
handling the movement of the data to and from system
storage. The challenge was to create a structure that would
permit this while also allowing a continuous flow of data
frames to be maintained on the link. The key was to
exploit the preemptive trap mechanism and the
Expect/Mask and data frame recognition facilities
previously described, and to provide additional hardware
assistance to enable the code to perform frame analysis
and setup in the minimum number of cycles [18].

To this end, two preemptive trap routines were provided
for the management of the data transfer on the serial
interface: the outbound-data service trap and the inbound-
data service trap. The inbound-data service trap is taken

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

whenever the inbound header buffer is not empty during
data transfer. It processes data request frames (writes) and
the data frame headers that do not agree with the expected
values (reads). The outbound-data service trap controls the
transmission of data frames (writes) and data request
frames (reads). It occurs as described in the following
sections.

Write operations Before the start of data transfer for a
write operation, the code sets up a “‘template’” of the
expected data request frame in the Expect/Mask arrays.
Therefore, when the inbound-data service trap is taken,
the code has merely to check the compare byte (stored in
the computer buffer) generated by the hardware to verify
that the data request frame was valid. The only remaining
check is the inspection of the received request count to
ensure that it conforms to the requirements of the
architecture being implemented. The code then loads

this count into a register ““stack” in the data transfer
control logic. This facility consists of a counter that is
decremented for each byte of data sent on the serial
interface and a backup register in which request counts
received while data are being transmitted on the interface
can be added. If the counter is decremented to zero during
the transmission of a frame, the transmission of data bytes
is terminated and the CRC is appended to the frame. The
backup register values are transferred to the counter by
hardware each time a new data frame is started when the
counter equals zero.

To enable a continuous stream of data frames to be
maintained on the interface, all processing necessary to
set up the next data frame must be overlapped with the
transmission of the current data frame on the link. For this
reason, the outbound-data service trap is taken for writes
when the transmission of the header portion of each frame
has been completed. It is further required that the number
of cycles necessary for this processing must be less than
that required to transmit the data portion of the frame.
This allows only about 16 cycles for the smallest permitted
data frame.

To meet this latter requirement, it is necessary for the
code to identify quickly which frame it is setting up
relative to the data request that is being satisfied by that
frame. Two examples of the need for this information are
as follows: A RDY bit may be required in the first frame
satisfying a data request, but not in any of the other frames.
An end (E) bit is required to be set only in the last frame
of the last data request of a channel command word [1].

Several hardware comparators in the data transfer
controls are provided to accomplish the overlapped
processing. The first two compare the value in the request
counter at the end of the header transmission with the
maximum data frame size specified by the control unit, and
with twice this value. If the value of the request counter at

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

this time is greater than twice the frame size, the frame
being set up is a continuation of the current request. If the
value of the request counter is less than or equal to twice
the frame size, but greater than the frame size, when the
transmission of the current frame is complete, the request
count will have been decremented to be less than or equal
to a frame size. Thus, the frame header being set up during
this occurrence of the outbound-data service trap will be
the last one for the current request. If the value in the
request counter is less than or equal to the frame size

at the end of the header transmission, the current

frame transmission will cause the request count to be
decremented to zero. Thus, the frame being set up by the
outbound-data service trap in this case is the first one for
the next request. The comparators allow the code to
determine which of the above conditions holds, with a
single four-way branch.

A special case exists for the second condition when the
new request is the last one for the channel command word.
In this case, in order to properly set the E bit, it must be
determined whether the last request will be satisfied by
one frame only. A third hardware comparison of the value
in the backup register and the maximum frame size is
provided for this purpose.

The code sets the appropriate bits in the outbound
header buffer and sets a latch. Once the latch has been set,
the hardware transmits the new frame when the current
frame has been transmitted and the pacing and data
availability requirements for the new frame have been met.
When the header for the new frame has been transmitted,
the outbound-data service trap is taken again and the
process is repeated.

Because of the extensive use of the hardware
comparators to assist the code, the outbound-data service
routine takes only seven hardware cycles to modify a bit
(for example, the E bit or RDY bit) in the outbound header
buffer and set the latch to send the frame. The hardware
cycle time is always less than the 50-ns interface byte
time, so the next frame is normally completely set up
prior to the transmission of the seventh byte of the
current frame. Thus, the design can readily support the
transmission of ““back-to-back’ data frames (i.e., only four
idles between the EOF of one to the SOF of the next)—
even at the minimum frame size of 16 bytes. For the native
ESCON channel using 16-byte frames and data requests of
256 bytes, the interface data transfer routines use just 30%
of the available microprocessor bandwidth, leaving the rest
for fetching data from storage, IOP communications,
running timers, etc. For a frame size of 256 bytes
(necessary for an 18MB/s data rate), this load drops to
15% of capacity.

Read operations The data-streaming feature was added
to the parallel interface in the late 1970s [10], allowing the

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

control unit to “‘stream’ data to the channel without
waiting for a response. This feature permits higher data
rates, independent of the cable length. However, if the
channel is temporarily unable to accept data bytes at the
rate requested by the control unit, it must abort the data
transfer and signal the control unit that an overrun has
occurred. Thus, with the data-streaming feature, overruns
could be encountered simply because the data-streaming
protocol eliminated the intertocks previously used to
prevent overruns, and fully buffered control units that ran
with no overruns in dc-interlock mode [10] had to cope
with overruns for the first time.

Early in the development of the ESCON channel, it was
decided to implement the interface protocol such that it
would not be exposed to overruns. This means that there
must always be space in the data buffer to accommodate
all data bytes requested but not yet received. Thus, the
maximum data request that can be made for each new read
CCW is the data buffer size. If the CCW count exceeds
this value, subsequent requests must be made as data are
received and moved out of the buffer to storage. The delay
between the time at which the last byte of a data block is
moved out of the buffer and the time at which a data
request to ““backfill”” this block can be transmitted directly
affects the cable length at which the maximum data rate
can be supported. An important objective of the design
was to minimize this delay, in order to achieve the
maximum possible ““full-bandwidth’ cable length. Of
course, complete code control of the processing of data
and data request frames was still required for maximum
flexibility.

It was thus decided to exploit once again the rapid task
switching of the preemptive trap mechanism by using the
outbound-data service trap to allow the code to make data
requests. A counter is provided to keep track of the
number of bytes moved between the data buffer and the
staging hardware. When this counter reaches a threshold
value selected by the code, the outbound data service trap
is taken. This threshold can be any value from 16 to 1024
in powers of two. When the trap is taken, a data request
frame for the number of bytes given by the threshold has
previously been set up in the outbound header buffer. The
code has only to check whether certain conditions for
sending a data request have been met before initiating the
transmission of the frame. This can be accomplished
within about nine hardware cycles after the space becomes
available in the buffer. After sending the frame, the code
computes and builds the next data request in the outbound
header buffer.

The data frame recognition hardware described in the
section on data frame recognition automatically controls
the proper routing of headers and data to the correct
buffers and checks for proper format all headers that do
not contain control information. Only headers that contain

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

629

630

rInbound header buffeq
_____ - ‘ —
Channel microprocessor
\ and hardware
A ‘ o
I Outbound header bufer |
B
1
Trace
Internal buffer
electronic T
wrap
Normal
____________ ot Daths
l+— External fiber g Alternate
wrap cable gﬁ éor
mode

Fig

SIMIO control unit data flow.

control information cause the inbound-data service trap.
The code in this routine uses the hardware-generated
compare byte from the compare buffer to quickly identify
the control bits that were set. The code then takes the
appropriate action on the basis of these bits.

For a data request size of 256 bytes, the outbound- and
inbound-data service routines use only about 15% of the
available bandwidth of the microprocessor, leaving the
remainder for moving data to storage, running timers, etc.
This number is not dependent on the data frame size as it
was for writes, since additional data frames that do not
contain control information are handled entirely by
hardware.

® J/O simulation

Simulated I/O (SIMIO) is the ability of the channel to
behave as if it were physically attached to a control unit.
Code and hardware in each channel provide the simulated
control unit function. This allows a complete system test
of the processor and channels without the attachment

of a real control unit to each channel. Because of the

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

complexities of cabling and configuring a large number of
control units, this capability becomes more important as
the number of channels provided on a system grows.

In parallel channels, the simulated control unit is
implemented by adding hardware at the 1/O interface. This
hardware generates signals to the channel in response to
signals from the channel. When the simulated control unit
sends data to the channel for a read operation, the data
pattern is supplied by a data generator. When the channel
sends data to the simulated control unit for a write
operation, the same data generator is used to check the
data pattern.

In the ESCON channel, however, all communication
between the channel and the control unit is done in
frames. A large amount of hardware would be required to
analyze frames from the channel and generate response
frames to the channel. Also, the channel implements
multiple architectures, and thus supports multiple frame
formats.

For these reasons, control unit simulation in the ESCON
channel is implemented using a combination of hardware
and code [19]. The hardware provides alternate data paths,
a data generator function similar to that used on the
parallel channels, and a preemptive trap to invoke the
SIMIO code. This code is a stand-alone routine, separate
from the mainline code. It uses the hardware facilities to
analyze the outbound frames from the channel and to
generate the required response frames to the channel.

The alternate data paths that are enabled in the SIMIO
mode are shown as dashed lines in Figure 7. The outbound
header buffer is the source of frames for the SIMIO code,
so it effectively becomes the inbound header buffer of the
simulated control unit (path A in Figure 7). Similarly, the
SIMIO code builds its response frames in the first 16 bytes
of the outbound trace buffer, so it effectively becomes the
outbound header buffer of the simulated control unit (paths
B and C in Figure 7). Outbound frame tracing is disabled
in SIMIO mode.

When mainline channel code sends a frame,
transmission of the frame on the link is suppressed, and
the SIMIO preemptive trap is taken instead. The code
examines the frame in the outbound header buffer, builds
the appropriate response in the trace buffer, and sets a
latch. This causes the out-frame state machine (OFSM) to
serialize and transmit the frame from the trace buffer
exactly as it does from the outbound header buffer in
normal mode.

In order for the frame transmitted by the simulated
control unit to be received by the channel, the outbound
link must be wrapped back to the inbound link. This may
be accomplished either by an internal electronic wrap,
which connects the output of the serializer to the input of
the deserializer, or by an external fiber optic wrap cable.
The latter method has the advantage of checking the fiber

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

optic components. Both of these paths are also shown as
dashed lines in Figure 7.

In the SIMIO mode, data for the data frames are
generated and examined by means of the data generator and
the trace buffer. The data generator is capable of generating
both an incrementing and a pseudorandom data pattern, and
the last 64 bytes of the trace buffer can be loaded by the
microprocessor with any data pattern. When the SIMIO
code examines data from a data frame, it instructs the
OFSM to compare data from the data buffer with data from
either the data generator or the trace buffer. When the
SIMIO code generates response data, it can specify the
source as either the data generator or the trace buffer.

& Technology and package

Figure 8 is a photograph of a Model 9021 ESCON channel
card with an optical duplex jumper cable attached. At the
lower right is an uncapped channel logic module, exposing
the three logic and three array chips. All of the ES/9000
machines use similar components and card layouts. The
card shown contains two physically separate channels. The
card technology is ““pin in hole” on 2.54-mm (100-mil)
centers. There are three power and four signal planes;

the card connector, on the right-hand side of the card,
contains 144 pins. Without the optical connectors, the
card is about 120 mm wide and 180 mm tall. The optical
connectors are attached to the left-hand side of the card
and add about 40 mm to its width.

The two gold-colored rectangular boxes next to each of
the optical connectors are the transmitter and receiver.
These components are connected to the serializer/
deserializer modules, which are 28 mm square. Each
serializer/deserializer contains two bipolar chips and
several passive components. The transmitter, receiver, and
serializer/deserializer operate at 200 MHz, thus requiring
careful card layout. The card also contains many small
components, such as crystals, decoupling capacitors,
terminating resistors, and inductors.

The logic modules, measuring 50 mm on a side, are the
largest components. Their multilayer ceramic (MLC)
substrates have 21 layers and a thickness of almost 4 mm.
The substrates can hold up to four logic chips (9.4 mm
square) and six array chips (9.4 mm by 6.5 mm).
Decoupling capacitors are provided on the substrates.

Each logic chip is fabricated using the IBM CMQS2
process [20, 21}. The chips contain random logic and a
number of embedded arrays. The ability to define arrays
within the logic chips was vital in the design of the
ESCON channel. The array chips are CMOS static arrays,
containing 144 kilobits each, with an access time of 15 ns.

Conclusions

Because of its high degree of programmability and content-
independent frame-transfer facilities, the ESCON channel

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

| S

Model 9021 ESCON channel card and MLC module.

has proven to be a versatile frame processor suitable for
many different functions. The single hardware design
provides two channel types for 18 different processor
models in the ES/9000 computer line. The design is equally
adaptable to control units: Three have been completed and
others are planned. The channel attachment bus provides a
minimum-wire attachment mechanism for integration of the
channel in a system.

A significant saving in hardware development cost
resulted from having a common design for all of these
functions. In addition, further savings in development,
debugging, and testing were realized by the ability to share
code routines among the functions.

Acknowledgments

Design of the ESCON channel would not have been
possible without the combined efforts of the entire channel
development team in Poughkeepsie. We especially
acknowledge the contributions of Cathy Huang, Matt
Kalos, and Bjorn Liencres. We also thank Dave Meltzer
and Lisa Spainhower for their thorough review of this
manuscript.

ESCON, Enterprise System/9000, ES/9000, ESCON Director,
System/370, 3090, and System/360 are trademarks of
International Business Machines Corporation.

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

632

References

1. J. C. Elliott and M. W. Sachs, “The IBM Enterprise
Systems Connection (ESCON) Architecture,”” IBM J. Res.
Develop. 36, 577-591 (1992, this issue).

2. IBM Enterprise Systems Architecture/390 Principles of
Operation, Order No. SA22-7201; available through IBM
branch offices.

3. I. R. Radziejewski, E. Lo, R. H. S. Hardy, and A. M.
Leung, ‘“‘Improved Performance Token Ring Network
Interface Adapter,” Proc. IEE, Part E 137, 421-426
(1990).

4. T. Yaguchi, K. Fujimoto, E. Katsumata, K. Tanaka,

K. Tamaru, A. Kanuma, Y. Katagiri, A. Nishikawa,

H. Shiraishi, T. Yamamoto, K. Kimura, Y. Terui, and
T. Hamai, ‘“Design of a CMOS Token Ring LAN
Controller, TRC, Compatible with IEEE802.2 MAC
Protocol,”” Proceedings of the 1989 Symposium on VLSI
Circuits, pp. 129-130.

5. D. R. Scherbarth, “Designing an FDDI Adapter,” Wescon
’90 Conf. Record 34, 118-120 (1990).

6. S. G. Tucker, ““The IBM 3090 System: An Overview,”
IBM Syst. J. 25, 15-16 (1986).

7. C. J. Georgiou, T. A. Larsen, P. W. Oakhill, and B.
Salimi, ‘“The IBM Enterprise Systems Connection
(ESCON) Director: A Dynamic Switch for 200Mb/s Fiber
Optic Links,”” IBM J. Res. Develop. 36, 593-616 (1992,
this issue).

8. A. X. Widmer and P. A. Franaszek, ‘A DC-Balanced,
Partitioned-Block, 8B/10B Transmission Code,”” IBM J.
Res. Develop. 27, 440451 (1983).

9. T. A. Gregg and L. Skarshinski, ‘“Transmitting Commands
Over a Serial Link,”” U.S. Patent 5,048,061, September 10,
1991.

10. IBM System/360 and System/370 I/O Interface Channel to
Control Unit Original Equipment Manufacturers’
Information, Order No. GA22-6974; available through IBM
branch offices.

11. D. P. Seraphim and I. Feinberg, ‘‘Electronic Packaging
Evolution in IBM,”” IBM J. Res. Develop. 25, 617-629
(1981).

12. E. B. Eichelberger and T. W. Williams, ““A Logic Design
Structure for LSI Testability,”” Proceedings of the Design
Automation Conference, IEEE Computer Society, New
Orleans, 1977, pp. 462-467.

13. G. Brent, T. Gregg, P. Oakhill, and M. S. Siegel,
‘“Asynchronous Multi-Clock Bidirectional Buffer
Controller,”” IBM Tech. Disclosure Bull. 24, 4404—-4406
(1982).

14. T. A. Gregg, ““Data Synchronizing Buffers for Data
Processing Channels,”” U.S. Patent 5,003,558, March 26,
1991.

15. D. F. Casper, J. R. Flanagan, T. A. Gregg, C. C. Huang,
and M. J. Kalos, ““Apparatus for Decoding Frames from a
Data Link,”” U.S. Patent 5,025,458, June 18, 1991.

16. L. Skarshinski, ‘““Character Synchronization Method,”
IBM Tech. Disclosure Bull. 28, 5577-5579 (1986).

17. IBM Enterprise Systems Architecture/390 ESCON 1/O
Interface, Order No. SA22-7202; available through IBM
branch offices.

18. D. F. Casper, J. R. Flanagan, T. A. Gregg, C. C. Huang,
and M. J. Kalos, ““System for High Speed Transfer of
Data Frames Between a Channel and an Input/Output
Device with Request and Backup Request Count
Registers,”” U.S. Patent 5,101,477, March 31, 1992.

19. D. F. Casper, J. R. Flanagan, T. A. Gregg, and M. J.
Kalos, ‘“Control Unit Simulation on the Serial Channel,”
IBM Tech. Disclosure Bull. 33, 170-172 (1991).

20. A. W. Aldridge, R. F. Keil, J. H. Panner, G. D. Pittman,
and D. R. Thomas, “A 40K Equivalent Gate CMOS
Standard Cell Chip,”” Proceedings of the IEEE Custom
Integrated Circuits Conference, 1987, pp. 248-251.

J. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER

21. Robert Hornung, Martine Bonneau, Bernard Waymel,
James Fiore, Elliot Gould, Ronald Piro, John Martin,
Lance McAllister, and Sze Tom, ‘‘A Versatile VSLI
Design System for Combining Gate Array and Standard
Cell Circuits on the Same Chip,”” Proceedings of the IEEE
Custom Integrated Circuits Conference, 1987, pp. 245-247.

Received June 19, 1991; accepted for publication May
13, 1992

John R. Flanagan IBM Enterprise Systems, P.O. Box 950,
Poughkeepsie, New York 12602 (FLANAGAN at PK705VMA,
flanagan@pk705vma.vnet.ibm.com). Mr. Flanagan is a Senior
Engineer in the Interconnect Products group. He received a
B.S. degree in electrical engineering from Santa Clara
University in 1973 and an M.S. degree in electrical engineering
from Stanford University in 1974. He joined IBM at the
Poughkeepsie Laboratory in 1974 and has held various
technical positions in the areas of circuit design, cryptographic
unit design, and channel design. Mr. Flanagan holds several
patents relating to the ESCON channel design and has
received an IBM Invention Achievement Award. He received
an IBM Outstanding Innovation Award for his work on the
development of the ESCON channel and ESCON architecture.
Mr. Flanagan is a member of Tau Beta Pi and Eta Kappa Nu.

Thomas A. Gregq IBM Enterprise Systems, P.O. Box 950,
Poughkeepsie, New York 12602 (GREGG at PKEDVM®9,
greggtag@vnet.ibm.com). Mr. Gregg is a Senior Engineer in
the Interconnect Products group. He received an Sc.B. degree
in engineering from Brown University in 1972 and continued
there under a University Fellowship, receiving an Sc.M.
degree in electrical engineering in 1974. He joined IBM at the
Poughkeepsie Laboratory in 1973. Mr. Gregg has held various
technical positions in the area of 1/O subsystem design. He
holds patents utilized in various IBM serial channel products
and has received three IBM Invention Achievement Awards.
He received an IBM Outstanding Innovation Award for work
in the architecture, design, and implementation of ESCON
products.

Daniel F. Casper IBM Enterprise Systems, P.O. Box 950,
Poughkeepsie, New York 12602 (CASPER at PKSMRVM).
Mr. Casper is a Senior Technical Staff Member in the
Interconnect Products group. He received a B.S. degree in
electrical engineering from the University of Wisconsin at
Madison in 1970, joining IBM at the Kingston Laboratory that
same year. Mr. Casper has held various technical positions in
the areas of channel and system-control-element development.
He holds numerous patents relating to channel design and has
received two IBM Invention Achievement Awards. He has
received several other formal awards, including an IBM
Outstanding Technical Achievement Award for his work on
the IBM 3090 system channels and an IBM Technical
Excellence Award. Mr. Casper is a member of the Institute of
Electrical and Electronics Engineers.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

