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The IBM Enterprise  Systems  Connection 
(ESCON"")  environment  required  the  design  of 
a single  channel  that  could  be  attached to the 
entire  line  of  Enterprise  System/900Om 
processors  and  deliver  the  performance 
required  by  the  top  of  that  line. In addition to 
the  channel,  other  functions  were  needed, 
such  as  the  ESCON  channel-to-channel 
adapter. All of  these  functions  were  required to 
be  implemented  using  the  same  channel 
hardware. This paper  describes  the  key 
elements of the IBM ESCON  channel  design. 

Introduction 
Several (often conflicting) requirements were placed on 
the design of the IBM Enterprise Systems Connection 
( E S C O P )  channel: 

Performance: The channel for the IBM  high-end systems 
had to provide a high level of performance-not only 
sustaining the maximum data transfer rate allowed by the 
ESCON architecture [l], but also performing chaining 
and block reconnection [2] in a timely manner. A typical 
approach might have been to implement these time- 
critical functions in hardware; however, such a design 
must be customized for a particular interface protocol 
(the rules for sending and  receiving messages) and 
message structure, and is very intolerant of changes [3]. 
Flexibility: The ESCON connection strategy required 
two basic channel types: the native ESCON channel and 
the ESCON Converter Model 1 channel. These two 
channels use different  message structures and interface 
protocols. In addition, the ESCON channel-to-channel 
adapter (CTC) and the ESCON channel-test-vehicle 
control unit functions were needed. The designers were 
given the requirement that a single hardware design  must 
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General  structure of an EW9000 channel subsystem. 
. ." .". .". _._" ~ 

General  structure of a data frame 

be able to perform all  of the above functions through 
different code ("licensed internal code"). Also, all  of 
the above interface protocols were being developed 
concurrently with the channel, so changes had to be 
accommodated  easily. To achieve  this  degree of  flexibility, 
it was necessary that many  functions  be  implemented 
in code,  which  is  readily modified. However, a code 
implementation  is  inherently  slower  (and thus poorer in 
performance)  than a hardware  implementation [4, 51. 
Common system attachment: The channel had to 
be attachable to every system in the Enterprise 
System/9000m  (ES/9000m)  line,  from the smallest Model 

61 8 120 to the largest Model 900. The system interface was 
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required to use a minimum  number of wires yet provide 
sufficient bandwidth to support the maximum ESCON 
data rate. 
Simulated 1/0 (SIMIO) capability: Because of the large 
numbers of channels required on the high-end systems, 
it  is impractical to attach real control units to every 
channel during system testing or manufacturing testing. 
There was a requirement to run real channel programs 
on all the channels without using any external control 
unit attachment. 
Low-cost, high-reliability package: Again, because of the 
large  number of channels required, it was necessary to 
minimize the physical size of the channel. The channels 
also had to meet the very stringent reliability, 
availability, and serviceability requirements of the 
top-of-the-line processors. 

The following sections discuss how  all  of these 
requirements were met  in the design of the ESCON 
channel. 

Background 

Channel subsystem overview 
The basic function performed by an  ES/9000 channel 
subsystem is to manage the transfer of data and control 
information between system storage and the attached 1/0 
devices, thus freeing the central processors (CPs) of this 
burden. The program requiring 1/0 must 1) build, in 
system storage, a channel program, consisting of one or 
more channel command words (CCWs), that describes the 
data areas and provides the I/O-device commands to be 
used; 2) build  an operation request block (ORB) specifying 
the channel-program address and other parameters; and 3) 
issue a Start-Subchannel instruction that specifies the 1/0 
device. The channel subsystem then queues and executes 
the requested 1/0 operation and informs the program of 
the final status of the operation by means of  an 1/0 
interruption [2, 61. 

shown in Figure 1. It consists of three main elements: 

Integrated off-load processors (IOPs) perform all the 
communication with the CPs and  maintain the work 
queues for the channel subsystem. They perform path 
selection, and they retry when busy conditions occur. 
They also perform initialization functions and  aid  in 
recovery from catastrophic channel errors. 
Channels are responsible for the execution of channel 
programs. They initiate channel programs, perform data 
transfer and chaining operations as appropriate, and 
provide final status information to the IOP. They also 
continue disconnected operations when so requested by 
an VO device [2]. 

The general structure of an  ES/9000 channel substem is 
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Staging hardware provides communication paths among 
the IOPs, the channels, and the remainder of the system. 
Each channel is attached to the staging hardware via its 
own channel attachment bus. All communications with 
the other elements of the system (including maintenance 
function communications) are performed over this bus. 

I10 interface 
The ESCON channel connects processors to ESCON 
control units, Directors [7], and converters by means of a 
full-duplex fiber optic serial link that operates at 200 
megabits per second (Mb/s). This link is called the 1/0 
interface. The data-encoding scheme is the character- 
oriented 8B/10B code described by Widmer  and Franaszek 
[8]. This code converts 8-bit bytes into 10-bit characters 
that are transmitted on the link; in addition, several 10-bit 
control codes (called K-characters) are transmitted. 

sequences of characters called frames. Figure 2 shows the 
structure of the frames used by the ESCON channel. The 
idle sequence, transmitted whenever no frames are being 
transmitted, is the repetition of one of the K-characters 
(K28.5). (Using a 10-bit  idle character keeps the receiver in 
character synchronism at all  times, which simplifies  design 
of the receiver.) 

All frames begin with an SOF (start-of-frame) delimiter 
comprising two K-characters. Two types of SOF delimiters 
are used: passive and connect. These delimiters control 
the connection state of the ESCON Directorm. Data 
characters follow the SOF delimiter. The first group of 
data characters is the frame header; the second is the data 
field.  All frames have a header, and frames used to 
transfer data also have a data field.  In either case, the 
hardware that generates and receives frames can handle 
variable-length headers and data fields. The next two 
data characters of  all frames comprise the CRC (cyclic 
redundancy check). Following the CRC is the EOF (end- 
of-frame) delimiter, which consists of three K-characters. 
There are three types of EOF delimiters: The first two are 
the passive and disconnect delimiters, used to control the 
connection state of the ESCON Director. The third EOF 
delimiter is the abort, used to signal the receiver to discard 
the current frame. The idle sequence resumes after the 
EOF delimiter. At least four idle characters must be 
transmitted between frames. 

In addition to the normal  idle sequence, a group of 
modified  idle sequences, transmitted continuously, is 
provided to signal special link states. The states include 
ESCON Director disconnect, link failure, and link  off-line. 
The modified  idle sequences are composed of the idle 
character alternating with a data character [9]. The 
ESCON channel provides facilities for generating and 
receiving any of the 256 possible modified  idle sequences 
(one for each of the 256 data characters). 

Communication on the interface is performed with 
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ESCON channel elements. 

Key  elements of the  channel  design 
At the heart of the ESCON channel, shown in Figure 3, 
is the microprocessor, which controls all  of the channel 
elements. The channel attachment bus connects the 
channel to the system. The 2048-byte data buffer  is used as 
a temporary staging area for data as they move between 
the 110 interface and the system. The data-transfer 
controls direct the transfer of data between the data buffer 
and the I/O interface. The frame transmission and frame 
reception hardware are independent elements. Each of 
these elements is described in the following sections. 

Channel microprocessor 
All IBM large-system channels since the 1970s have 
been implemented  using some form of microprocessor. 
However, the requirements for the microprocessor in the 
ESCON channel were somewhat more demanding than 
those of previous channels. Not only  did two channel 
types have to be implemented, but the channel hardware 
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also had to be able to act as a control unit (e.g., the 
ESCON channel-to-channel adapter). This required 
complete control of the frame transmission and reception 
hardware by the microprocessor in order to allow  different 
types of frames to be generated and received. Also, 
previous channel processors handled only one task at a 
time. As is discussed later, the ESCON channel processor 
had to be able to control the data transfer to or from 
system storage and to  or from the 1/0 device 
simultaneously, and  had to switch tasks very rapidly 
between the two. Finally, the ESCON architecture uses 
far more complex recovery algorithms than does the 
System/370m  OEM1 parallel interface [lo]. For example, 
the channel is required to request a retry of the current 
command under certain error conditions. Providing enough 
control storage in each channel to contain all  of these 
recovery routines in  addition to the primary routines would 
have been too costly. Therefore, a mechanism for paging 
non-time-critical code from  main storage of the system was 
required. 

The processor developed to meet these requirements is 
custom-designed, optimized for efficient control of the 
channel hardware facilities. It has a simple one-byte-wide 
data flow and has access to virtually all  of the channel 
elements. The processor has a one-byte ALU, a shifter, 
and 256 bytes of working storage for general use. A 16- 
kilobyte local store provides space for control information 
for a large number of devices. Local store also holds trace 
data for problem determination purposes. 

The basic processor instruction is a 38-bit  microword. 
Thirty-five of the bits are divided into seven fields, each of 
which can be decoded independently into micro-orders to 
perform a different function. The last three bits are parity 
bits. Two of the fields control the ALU functions and the 
gating of data to and from the processor. One field  is 
normally used as  the next address. The remaining  fields 
are used for various purposes, such as modifiers, array 
addresses, constant values, and micro-orders for setting 
and resetting control latches. Normally, one microword is 
executed each channel cycle. Since each of the fields can 
specify an independent function, multiple functions can be 
performed in each cycle. 

The writable  control store (WCS) array provides space 
for 8192 microwords. WCS is logically  divided into 64 
segments of  128 words each. The first 56 segments are 
static; that is, the code there remains resident after system 
initialization. These segments are used to contain the 
mainline code critical to performance. The last eight 
segments are pageable; these segments may be loaded 
from system storage during channel operation, permitting 
code that is  not performance-oriented, such as recovery 
and link initialization, to be loaded when required. The 
paging function is performed by code, with hardware 
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Conditional branching is provided to test various 
conditions in the channel. A two-, four-, or eight-way 
branch is implemented by replacing the appropriate 
number of low-order bits of the next WCS address with 
bits representing the selected branch conditions. (WCS 
address means the address of the microword that is 
executed next.) Branch prediction is used to improve 
performance: If the actual branch condition agrees with the 
prediction made when the branch was coded, the next 
word is executed in the next cycle; if not, a one-cycle 
penalty is incurred while the proper word is fetched from 
WCS. A four-level link stack is provided for subroutines; 
however, at least one level must be reserved for 
preemptive traps (see the following). 

Traps are the mechanism by which certain events are 
made  known to the code without the code having to test 
for their occurrence explicitly. When a trap occurs, the 
WCS address is set to that of the first word of the segment 
that corresponds to the trap number. There are two types 
of traps: normal andpreemptive. Normal traps can occur 
only when the code issues a specific micro-order that 
allows them. This  is typically done when the code has 
completed a task and is going to idle  while  waiting for the 
next event. 

Preemptive traps provide a single  level of interrupt 
(i.e., a second preemptive trap cannot occur during a 
preemptive trap). They may occur any time they are not 
inhibited by the code. When a preemptive trap occurs, the 
current WCS address is pushed onto the stack. When the 
code in the trap routine has been completed, it issues a 
RETURN order, which causes the former WCS address to 
be popped off the stack and execution to resume at the 
interrupted point.  Only two registers must be saved and 
restored by the preemptive trap routines, and other 
functions can typically be performed  in the microwords 
that do the saving and restoring. Consequently, the 
preemptive traps allow very rapid task switching. This 
feature is exploited for data transfer, during which 
the normal traps service the storage interface, while 
preemptive traps break in as required to service the 1/0 
interface. 

The microprocessor is of key importance to the channel 
design. Its programmability provides the flexibility to 
implement  multiple architectures, while the combination of 
multiple functions per cycle, branch prediction, and rapid 
task switching provides performance that equals or 
exceeds that of most all-hardware designs (see the data- 
transfer section for further discussion of performance). 

Channel  attachment  bus 
Prior to the introduction of the ES/9000  line of compatible 
systems, it  had been standard practice to design a new and 
completely different channel for each new system. Thus, 
the interface between the channels and the rest of the 
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Channel attachments: (a) Early 3090 channel attachment; (b) ESCON channel attachment. 

system was customized to the needs of the particular 
system. An example of such an interface, found in the 
early models of the 3O9Om system, is shown in Figure 4(a). 
Each of four channels is attached to a channel adapter 
by means of a 33-wire interface consisting of two 
unindirectional byte-wide buses and a multiplicity of 
individual control signals. The adapter multiplexes the 
data and control information  from the four channels onto a 
4-byte-wide bidirectional bus that is attached to the staging 
hardware. A separate maintenance interface, consisting of 
an additional 52 signal  lines, is required for functions such 
as scanning, loading code, and logging trace arrays. Thus, 
a total of 85 wires are required to attach each channel to 
the system. 

This structure was not considered acceptable for 
the ESCON channel, for a variety of reasons. The 
configuration could not provide sufficient bandwidth 
for each channel to sustain the maximum data rate of 

the ESCON link. This was primarily because of the 
multiplexing of the four channels using  logic running at the 
same cycle time as the channels themselves. As a result, 
the multiplexing  had to be done with the high-speed 
bipolar logic of the staging hardware, where the cycle time 
is approximately one fourth that of the channels. This 
required that each channel have a separate interface to the 
staging hardware. However, the requirement for an 85-wire 
interface per channel far exceeded the number of available 
signal pins on both the channel card and the thermal 
conduction module  (TCM) [ll] of the staging hardware. In 
addition, the 85-wire interface contained many signals, for 
maintenance functions, that were common to multiple 
channels. This made isolating errors to a failing channel 
very difficult. 

developed to solve these problems. It provides a high- 
bandwidth communication path between each channel 

The channel attachment bus, shown in Figure 4(b), was 
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and the staging hardware, using only ten signal lines 
and a clock line. This bus is used for both normal and 
maintenance functions; a separate maintenance interface is 
not required. The ten signals consist of an 8-bit byte, a 
parity bit, and a data-continue signal, which allows the 
staging hardware to pause during the transfer of data if its 
buffers become temporarily unavailable. 

When a bus is inactive, the staging hardware controls 
six of the eight bits and the parity bit, and the channel 
controls the remaining two bits. The staging hardware 
always controls the data-continue line. 

with the channel, it  first determines that the bus is 
inactive, then places an encoded request on its portion of 
the bus in the next cycle, called the request cycle. In  most 
cases, all  of the information required for unsolicited 
requests from the staging hardware to the channel can be 
contained in this encoded value, so no additional bus 
cycles are necessary. If an additional cycle is required to 
pass the entire message, this is also specified by the 
encoded value passed during the request cycle. 

internal bus-control register with the appropriate bus 
command and sets a latch. When channel hardware 
determines that the bus is inactive, it activates both of the 
bits it controls during the following cycle (the channel 
request cycle). If the six bits controlled by the staging 
hardware are inactive on the request cycle, the channel 
places the contents of the control register  on the bus during 
the next cycle, called the command cycle. Additional data 
cycles may  follow, depending on the command. 

The staging hardware always has priority for use of the 
bus. If the channel, during its request cycle, detects a 
concurrent request from the staging hardware that requires 
control of the entire bus, the channel deactivates its 
request and presents the request again when the bus 
becomes idle.  In this case, the staging hardware maintains 
its request during the following cycle. If during its request 
cycle the channel detects a concurrent request from the 
staging hardware that does not require control of the entire 
bus, the channel accepts the request and maintains its 
request during the following cycle. 

The maximum data  rate any channel can sustain is 
limited by the rate at which its system interface can move 
data between its buffers  and system storage. The protocols 
implemented on the channel attachment bus allow the 
transfer of 128 bytes in only 147 cycles, which includes 
the overhead of passing the storage address to  or from 
which the data are to be moved, and receiving an 
acknowledgment that the operation was completed 
successfully. This allows a bandwidth in excess of 20 
megabytes per second (MB/s), which  is  more  than adequate 
to provide the maximum data rate of the ESCON 1/0 

When the staging hardware uses the bus to communicate 

When the channel requests use of the bus, it loads an 
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Maintenance functions are also performed using 
To  set the channel into maintenance mode, the stal 
hardware issues a request in its request cycle. This 
the channel clock. Thereafter, one of the bus bits i; 
to hold the channel in maintenance mode,  while thc 
remainder of the bits are used for signaling resets, 
providing data in, data out, and clock lines for scaI 
[12], etc. The channel leaves maintenance mode on 
detecting all bits inactive on the bus. If the channel 
a catastrophic error that forces it to stop its own cl 
signals this condition to the staging hardware by ac 
only one of the two bits it controls. 

Sync  buffers 
Attachment of the ESCON channel to the system i; 
simplified by running the channel synchronously to 
system. The channel and system clocking rate is cc 
by an independent oscillator in the processor and i: 
synchronous to the ESCON I/O interface, which h: 
fixed bit rate of 200 Mbls. This difference between 
channel and I/O clock speeds is  handled by the cha 
sync buffers. 

Asynchronous first-in-first-out buffers are used tc 
synchronize the arrival and departure interface dati 
the channel clock. Two buffers are used: the outbol 
sync buffer  and the inbound sync buffer (see Figure 
The outbound buffer is between the frame-transmis; 
hardware and the serializer, while the inbound bu& 
between the deserializer and the frame-reception hl 
The primary function of the sync buffers  is to store 
temporarily while metastabilities [13] caused by the 
asynchronous sampling of signals are resolved. Plac 
these buffers close to the I/O interface minimizes th 
number of asynchronous signals required for sendin 
receiving data. The placement of these buffers also 
maximizes the amount of logic that can be clocked 
synchronously to the rest of the system. Developin1 
synchronously clocked logic is easier than developi: 
asynchronously clocked logic, because it  allows the 
effective use of hardware design tools such as simul 
timing analysis, clock generation, and test pattern 
generation. 

The outbound sync buffer has an additional funcl 
used during certain recovery actions in the ESCOPI 
channel that cause the channel clock to be tempora 
stopped. When the channel clock is running, all of 
characters transmitted on the link  (including the id1 
sequence) are supplied by the frame-transmission h 
and are sent through the outbound sync buffer. Wh 
channel clock is stopped, a conventional sync buffe 
its source of characters and transmits unintelligible 
When these unintelligible data are received by the ( 

end of the link, a link failure condition is detected. 
an unacceptable situation, because a link failure cal 
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reset of the attached control units, which may  lead to a 
loss of data. This problem is solved by a feature of the 
outbound sync buffer that detects  the termination of the 
channel clock and automatically generates the idle 
sequence [14]. 

own automatically generated idle sequence and the 
character stream supplied by the frame-transmission 
hardware, the running disparity of these two sources must 
be the same.  (Running disparity is the difference between 
the total number of 1s and Os transmitted. A positive 
running disparity indicates that more 1s than Os have been 
transmitted, and a negative running disparity indicates that 
more Os than 1s have been transmitted.) The 8B/10B code 
achieves dc balance by choosing between two alternative 
10-bit encodings of an  8-bit byte according to the running 
disparity of the bits transmitted on the link. The disparity 
of an encoding is the difference between the number of 1s 
and Os in that code. Some of the encodings from  an  8-bit 
to a 10-bit character have only one value, which has a zero 
disparity. The rest of the encodings have two alternatives: 
one with six 1s and four Os (positive disparity) and one 
with four 1s and six Os (negative disparity). When the 
running disparity is positive and the byte to be transmitted 
has two alternative encodings, the 8B/10B encoder chooses 
the one with negative disparity; when the running disparity 
is negative, the alternative with positive disparity is 
chosen. The idle character (K28.5) has two encodings: one 
with positive disparity and  an alternate with negative 
disparity. These two idle character code points are sent 
alternately when the idle sequence is transmitted. 

The outbound sync buffer keeps track of the running 
disparity of the character stream supplied by the frame- 
transmission hardware. When the channel clock stops, 
the sync buffer chooses the first  idle character of its own 
automatically generated idle sequence according to the 
running disparity calculated following the last character 
supplied by the frame-transmission hardware. When the 
channel clock is restarted, the sync buffer delays switching 
to the character stream supplied by the frame-transmission 
hardware until the running disparity of its own 
automatically generated idle stream equals the running 
disparity of the first character supplied by the frame- 
transmission hardware. Through this process of stopping 
and starting the channel clock, the receiver at the other 
end of the link sees no disparity errors and does not detect 
a link failure condition. 

When the outbound sync buffer switches between its 

Frame-transmission hardware 
The frame-transmission hardware is the key channel 
component providing the flexibility described in the 
Introduction. In addition to achieving the full data rate 
for both the native ESCON channel and the ESCON 
converter protocols, the hardware can generate special 
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Frame-transmission  hardware. 

test frames for SIMIO, diagnostics, simulation, and the 
ESCON channel test vehicle. The channel test vehicle is 
an ESCON channel with code that emulates an ESCON 
control unit. The flexibility of this frame-transmission 
hardware has saved the cost of developing additional 
functional and test hardware and reduced the overall 
product development time. The major elements of the 
frame-transmission hardware are shown in Figure 5, and 
its various modes of operation are described in the 
following paragraphs. 

To initiate a frame, the code first updates either the 
header buffer or the trace buffer. (The header buffer  is 
used when generating normal frames used in the native 
ESCON channel and ESCON converter protocols, while 
the trace buffer is provided for the test modes to insert 
erroneous frames into the normal stream.) The first  15 
bytes of these buffers are reserved for the frame header 
information, and the 16th byte is a control byte specifying 
the frame attributes, which include the types of delimiters 
and the length of the frame header. With  all  of the frame 
attributes in a single control byte, the code has only one 
byte to update when initiating a frame. 

After the header buffer or trace buffer is updated, the 
code starts the out-frame state machine (OFSM), which 
controls the frame-transmission hardware. The OFSM 
reads the control byte from either the header buffer or the 
trace buffer, starts the frame by transmitting the start-of- 
frame delimiter  specified  in the control byte, and then 
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transmits the header. After the header is transmitted, 
the OFSM examines another bit in the control byte to 
determine whether data should be appended to the header. 
(Frames with data following the header are called data 
frames, and frames with no data following the header are 
called control frames.) Finally, the CRC is transmitted, 
followed by the end-of-frame delimiter, which is also 
specified  in the control byte. As transmission proceeds, the 
OFSM selects the source of the bytes by controlling the 
multiplexer. 

Including the control byte with the header data in the 
header buffer and the trace buffer speeds frame generation 
by allowing overlap of frame transmission with frame 
preparation. The code can update the control byte of the 
next frame while the data field, CRC, and end-of-frame 
delimiter of the current frame are being transmitted. The 
maximum data rate can then be realized, and the frames 
are transmitted with the minimum  number  (four) of idle 
characters between them. 

The ESCON channel can transmit data faster than the 
data can be received by some of the attached control units; 
to solve this problem, the ESCON architecture provides 
several methods of limiting the data transfer rate. One of 
these methods, called data pacing, requires the transmitter 
to insert extra idle characters between data frames. The 
frame-transmission hardware automatically inserts these 
extra idle characters and frees the code from  having to 
determine when to start the next data frame. Along with 
data pacing,  specified by the architecture, a control-pacing 
function (not part of the architecture) is also implemented. 
This control-pacing function is used by the ESCON 
channel test vehicle and SIMIO to regulate the rate of 
data-request frames, which are control frames. The data- 
pacing and control-pacing registers determine the minimum 
number of idle characters that must be inserted between 
frames.  When the code starts a new frame, the OFSM 
automatically delays frame transmission until the proper 
number of idle characters have been transmitted. The 
OFSM selects between data pacing and control pacing by 
comparing the type of the previous frame (control or data) 
to that of the current frame. Data pacing is used if both 
frames are data frames; control pacing is used for all other 
combinations. 

The transmission of a data frame cannot start until  all 
data for that frame are available. The frame-transmission 
hardware automatically starts  the frame when the 
data are available and frees the code from  making this 
determination. The assembled frame leaves the multiplexer 
and enters the 8B/10B encoder. The 10-bit encoded 
characters leave the encoder and enter the outbound sync 
buffer,  which is discussed in the section on sync buffers, 
above. 

The trace buffer provides functions that give the 
624 ESCON channel much of its flexibility.  Providing  useful 
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information for problem determination is its primary 
function. As frames are transmitted, they are stored in the 
trace buffer, which contains 16 bytes for each of the last 
eight frames transmitted: the control byte and the first 
15 bytes. In another mode of operation, the trace buffer is 
used by  the SIMIO function as the source of information 
for frame generation. As described in the section on 1/0 
simulation, below, the first 16 bytes of the trace buffer 
provide the control and header information, and the last 
64 bytes can be the data source for data frames. 

The ESCON channel test vehicle, diagnostics, and 
simulation use the trace buffer  in yet another mode, which 
is called  10-bit  mode. The microprocessor loads the buffer 
with 10-bit encoded characters. When the microprocessor 
begins frame generation, the OFSM reads the encoded 
characters from the buffer,  replacing the idle sequence and 
bypassing the encoder and CRC generator. A hardware 
disparity control delays transmission of the 10-bit 
characters from the trace buffer  until after the next idle 
character with positive disparity has been transmitted. 
After the 10-bit characters from the trace buffer have been 
transmitted, the idle sequence resumes with a negative- 
disparity idle character. Any valid or invalid bit stream can 
be generated. This control of the disparity of the bit stream 
leads to reproducible results of diagnostic tests. The 
ESCON channel test vehicle, driven by special channel- 
test software, uses 10-bit  mode to predictably inject errors 
into the channel under test to determine whether the 
proper error-reporting and error-recovery actions are being 
performed.  The diagnostic code uses 10-bit  mode when the 
serial output is “wrapped back” to the serial input, 
electrically or optically. The diagnostics generate error 
sequences to determine whether the errors are being 
properly detected by the frame-reception hardware. 
Simulation test cases also use the diagnostics to 
demonstrate the correctness of the frame-reception 
hardware. This capability of the trace buffer avoided the 
necessity of developing special test hardware and writing 
separate simulation test cases and diagnostic code. 

The ESCON channel test vehicle and SIMIO both 
require the generation and verification of data patterns 
within data frames. The data generator register meets this 
requirement by generating a simple sequence (i.e., 0, 1, 2, 
3, - - ) or a pseudorandom pattern. The ESCON channel 
test vehicle uses this register as the source of data for 
frames sent to the channel under test. It also checks the 
validity of data from the channel under test by comparing 
the data received to the data generated by this register. 
The SIMIO function uses the data generator similarly; it is 
described later, under the heading 1/0 simulation. 

Frame-reception hardware 
The frame-reception hardware [15] complements the frame- 
transmission hardware by recognizing  all frames that 
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follow the rules described in the 1/0 interface section 
above and by detecting and characterizing link errors, all 
of which can be simulated by the frame-transmission 
hardware. The division of functions performed by 
hardware and code was chosen to keep the code 
uninvolved  in the mechanics of frame reception while 
giving the code the maximum information, encoded in a 
compact form, in error situations. To this end, the frame- 
reception hardware automatically decodes the 10-bit 
characters, checks for character synchronism, detects 
modified  idle sequences used to signal special link states, 
detects start-of-frame and end-of-frame delimiters, checks 
CRC, examines frame headers, and stores frame headers 
and data. As the hardware performs these functions, it 
collects information describing their progress and  informs 
the microprocessor when appropriate. The frame-reception 
hardware (Figure 6)  is controlled by the in-frame state 
machine (IFSM). 

the link into 10-bit groups that are  sent over a 10-bit 
parallel bus through the inbound sync buffer to the 10B/8B 
decoder, where they are decoded into data bytes, special 
control characters, and invalid characters (code violations). 
The output of the decoder is sent to the character sync 
detection logic,  CRC checker, and IFSM. 

When these 10-bit groups are aligned  on character 
boundaries, the 10B/8B decoder detects valid characters. 
When the character alignment is not on character 
boundaries (Le., the 10-bit groups contain bits from two 
adjacent characters), invalid characters are detected. The 
character sync detection logic calculates the frequency of 
invalid characters to determine whether the deserializer 
has the correct character alignment. The frequency of 
invalid characters is calculated by hardware specified by 
the E X O N  architecture [16,  171. Briefly, there are two 
counters: One counts valid characters and the other counts 
invalid characters. When the ratio of valid to invalid 
characters is less than 15, the character sync detection 
logic indicates that the deserializer does not have the 
correct character alignment. 

Character synchronism is achieved by adjusting the 
character alignment of the deserializer. A signal controlled 
by the microprocessor is sent to the deserializer instructing 
it to discard one bit of the incoming serial bit stream, thus 
changing the deserializer character alignment by one bit. 
The discarding process continues until the alignment of 
data from the deserializer is on character boundaries. 

The deserializer converts the bit stream received from 

When the character sync detection logic determines that 
the frequency of invalid characters is high enough that the 
character alignment of the deserializer may not be correct, 
it causes a microprocessor trap. Since large noise bursts 
on the link  may damage many characters, transforming 
them into invalid characters, the character sync logic  may 
falsely detect a loss-of-character-sync condition even 
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though the deserializer is still in the proper character 
alignment. Because of this effect of a large noise burst and 
because of the relatively long  time  it takes to readjust the 
deserializer character alignment, the code does not 
immediately start to readjust the deserializer character 
alignment after the microprocessor is trapped because of a 
loss-of-character-sync trap. Instead, it waits for about 
10 ps (2000 bit  times) before examining the signal  from the 
character sync detection hardware that indicates loss of 
character sync. If the character sync signal is off after this 
wait time, the link has received a noise burst, and no 
deserializer character realignment  is required. If the loss- 
of-character-sync signal is still on, the code starts the 
deserializer character alignment procedure. 

The alignment procedure consists of repeatedly 
discarding one bit from the incoming serial bit stream and 
waiting for about 3 ps (600  bit times) before checking the 
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loss-of-character-sync signal. Eventually, either the 
proper deserializer character alignment  is established 
and operations continue, or a time-out is encountered, 
indicating a link failure. In either case, the code logs the 
loss of character sync and includes information describing 
the duration of the condition and the number of bits 
that were discarded in order to reacquire sync. This 
information is used to determine the performance of the 
inbound  link. Indeed, during testing of the channel, this 
information proved very useful  in correcting a defect in the 
phase-lock loop of the deserializer. 

The CRC checker receives data from the decoder, 
verifies the contents of all frames, and supplies data to the 
header and data buffers. The CRC bytes are not written 
into the buffers. Because the frame length is generally 
unpredictable and because the end is indicated by the end- 
of-frame delimiter only after the receipt of the two CRC 
bytes, the CRC checker has a 2-byte delay that prevents 
writing the CRC bytes into the buffers. 

The output of the 10B/8B decoder is also sent to the 
IFSM logic, where the sequence of characters is examined. 
This logic controls loading the header buffer  and the 
compare buffer (discussed below),  reading the 
Expectmask buffer (also discussed below), and setting 
status information describing what was received on the 
inbound interface. The reception of anything on the 
inbound interface of a frame, modified  idle sequence, 
error, or any of certain other sequences is  called  an event; 
each event causes an entry into the header buffer and 
compare buffer. 

During an I/O operation, most of the fields within the 
received frame headers can be anticipated by the ESCON 
channel, and very few of these fields change from frame to 
frame as the operation proceeds. This characteristic of the 
architecture is exploited by the Expectmask buffer. As 
frames are received, they are automatically compared with 
bit patterns stored in this buffer. At the beginning of each 
1/0 operation, the Expectmask buffer is initialized by the 
microprocessor. Each element of the buffer has two bytes: 
The first byte is the expected frame data or summary 
information (discussed below), and the second is a mask of 
the bits to be compared. As a frame is received, bytes are 
read from the buffer and compared with the received 
frame bytes. When the bits compared are equal, bits in 
a compare register are set  to zero. The contents of the 
compare register are written into the compare buffer at 
the end of the event. To check the validity of a received 
frame, code simply reads the compare buffer entry for 
the frame; if the entry is zero, the frame has passed the 
Expectmask test. Nonzero bits in the entry direct the 
code to the header bytes or summary byte that were not 
equal to the Expectmask values. The Expectmask 
facilities are also used to recognize data frames, as 
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Since the code cannot always service the inbound 
interface immediately, a pair of FIFO buffers, the header 
and compare buffers, store information from the last eight 
events detected on the inbound interface. Each event 
occupies 16 bytes of the header buffer  and one byte of the 
compare buffer.  The  most  common event is the receipt of 
a frame. In this case, the frame header (up to 15 bytes) 
and a summary byte are stored in the header buffer. The 
result of the Expectmask compare operation is written 
into the compare buffer. The write pointer is an address 
register for the header and compare buffers  and points 
to the current event being stored in these buffers. 
After each event, the write pointer is incremented by the 
IFSM. 

The read pointer, another address register for the header 
and compare buffers, points to the current event being 
read by the microprocessor. The read pointer is controlled 
by the microprocessor. When the read and write pointers 
are equal, the header and compare buffers are logically 
empty and there is no work pending for the code. When 
an event is detected by the IFSM, the header and compare 
buffers are loaded, and the write pointer is incremented as 
described above. Now the read and write pointers are no 
longer equal, which causes a microprocessor trap. After 
the code is  finished processing the event, it increments 
the read pointer. If no other events were received 
during processing, the read and write pointers are again 
equal, indicating that there is no pending work for the 
microprocessor. The header and compare buffers also 
provide trace information for problem determination, since 
data for the last eight events are always in these buffers. 

Sometimes events occur on the inbound interface faster 
than they can be processed by the code. This is usually 
caused by multiple errors on the inbound interface or by 
error recovery operations occurring within the ESCON 
channel. In either case, the header and compare buffers 
may become full, and the IFSM must discard subsequent 
events. #en events have been discarded, the code is 
notified. It must then assume that the connection state 
of the ESCON Director is unknown and perform the 
appropriate recovery action. 

Each event entered into the header buffer includes a 
byte of summary information that is written into the 16th 
byte of storage for the event, as described above. One  bit 
of this byte indicates that the event is a normal  frame.  In 
this case, the other seven bits describe the frame. The bits 
indicate the type of start-of-frame and end-of-frame 
delimiters and the length of the frame or its header (up 
to 15 bytes). The IFSM normally writes the summary 
information and increments the write pointer after the end 
of the frame has been received. 

When the ESCON channel is receiving data, the IFSM 
makes the data frame header information available to 
the code before the end of the frame is received. This 
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improves performance by allowing the code to begin 
processing the header as soon as possible. However, it 
presents a problem when an error is detected in the frame 
after the header information has been presented to the 
microprocessor. If this kind of error is detected, the IFSM 
creates another event and, by setting one of the summary 
bits, indicates that it is associated with the previous event. 
When the code is informed of this condition, it assumes 
that the previous header information is suspect and 
performs the appropriate recovery. 

When the event summary byte indicates an abnormal 
event, the compare buffer entry does not  hold the result of 
the compare operation, but contains instead a description 
of the abnormal event. A 4-bit  field of the compare buffer 
entry indicates such conditions as a loss of character 
synchronism, a short frame, a long frame, a CRC error, 
or a data-buffer overrun. Since more than one of these 
conditions can occur within a single event, only the most 
important one is presented by this 4-bit  field. Two more 
bits of the compare buffer entry indicate the validity of 
the delimiters. These validity indicators are useful in 
determining the  state of the ESCON Director in error 
situations. Another of the bits indicates that an  invalid 
character was received. In this case, the four bits of the 
summary byte that are normally used to indicate the frame 
length  give attributes of the invalid character. These 
include code violations, undefined control codes, and 
invalid character sequences. 

The compare invalid register keeps track of the validity 
of Expectmask compare operations. Whenever the code 
updates the Expectmask buffer,  all entries in the compare 
buffer become invalid, because the code cannot determine 
whether a compare operation was performed before or 
after the Expectmask buffer was updated. The compare 
invalid register has eight bits, one associated with each 
compare buffer entry. Whenever the Expectmask buffer is 
changed, all  eight bits of the compare invalid register are 
set  to 1 (indicating that all entries are invalid).  When the 
code reads the compare buffer  and when the corresponding 
bit in the compare invalid register is on, the code receives 
a compare buffer value of all Is, indicating that none of 
the frame header bytes were equal to the contents of the 
Expectmask buffer. The code can read the compare buffer 
when it contains a description of an abnormal event. After 
an update of the Expect/Mask buffer, as new events are 
received, the bits of the compare invalid register are reset 
by the IFSM. A 0 value of a compare invalid register bit 
allows the corresponding compare buffer entry to be read 
without modification. 

Data fiame recognition 
When the E X O N  channel performs a read operation, a 
mixture of data and control frames is received. One way 
of extracting the read data would be to use a very fast 
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processor to examine the frames at link speeds. Because 
this is a very costly solution, the ESCON channel uses the 
Expectmask hardware to automatically distinguish control 
frames from data frames and extract the read data from the 
frames as they are being received. This hardware must be 
programmable  enough to handle protocols for both the 
native ESCON channel and the ESCON Converter; the 
frame header contents and length are not the same in these 
two protocols. 

in both the native ESCON channel and the ESCON 
Converter identifies the frames as data frames.  This group 
contains X bytes. The second group contains flags that 
describe the status of the data transfer operation. The 
total length of the data frame header is Y. 

The Expect/Mask hardware is used to test the frame 
headers. The code initializes the ExpecWask buffer so 
that the headers of the anticipated incoming data frames 
equal the contents of the buffer. The code also sets two 
4-bit registers to X and Y. The first X bytes of the 
incoming frame must be equal to the first X elements of 
the Expectmask buffer for the hardware to recognize the 
frame as a data frame. Once the frame is recognized as a 
data frame, the hardware uses Y to determine the end of 
the header and the beginning of the data field.  Recall  from 
the previous section that the summary information stored 
in the 16th byte of a header buffer entry is compared 
with the 16th element in the Expectmask buffer.  The 
summary byte must also be equal to the Expectmask 
buffer element for the frame to be recognized as a data 
frame. 

Code involvement in data transfer is further reduced by 
conditionally interrupting the microprocessor. As described 
above, the second group of bytes in the data frame header 
contains flags describing the  status of data transfer. These 
flags indicate the ability of the sender to receive another 
data request (RDY) and the end of data transfer. Code 
must be interrupted if a data frame with one of these flags 
is received. The hardware compares the group of bytes 
containing the flags  (from byte X + 1 to byte Y) with the 
contents of the Expectmask buffer. If these bytes are not 
equal (i.e., one of these unusual flags is received), the 
write pointer for the header buffer  and compare buffer is 
incremented and a microprocessor trap is generated. 

Once the data frame recognition hardware is initialized 
by the code, the majority of data frames are received 
automatically, without causing the microprocessor to be 
interrupted. Since the code does not have to process each 
data frame, these frames can be received with the 
minimum number of idle characters (four) between them. 
This means that the ESCON channel never requires 
additional data pacing (discussed in the section on frame- 
transmission hardware), regardless of how small the data 
frames may be. 

The first group of header bytes in data frames used 
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Data transfer 
The data transfer process can be thought of as two distinct 
operations that occur simultaneously. Storage data 
transfer is the movement of data between system storage 
and the 2048-byte data buffer of the channel. Znterjace 
data transfer is the movement of data between this data 
buffer  and the ESCON interface. 

Prior to the advent of ESCON,  all  System/360m  and 
System/370 channels used the standard parallel interface 
[lo]. Data transfer on this interface is relatively simple: 
The control unit provides or requests each byte of data 
for  read or write operations respectively by raising the 
appropriate control line to the channel. The channel 
provides or accepts the data byte and raises the 
corresponding control line to the control unit. This process 
is  well  known  and has remained relatively unchanged over 
the years. Since performance is important and  flexibility  is 
not required, all channels implement the data transfer on 
the parallel interface using hardware state machines. The 
function of the channel code during data transfer is limited 
to the movement of data between system storage and the 
data buffer. There is little or no involvement of the code in 
the transfer of the data between the data buffer  and the 
parallel interface. 

frames that contain, in addition to the data bytes, control 
information in the header. This control information is 
different  for each function  implemented  with the channel 
hardware (native ESCON channel, ESCON Converter 
channel, ESCON control unit, etc.) and  even varies from 
frame to frame for a given  function.  In  addition, data 
request frames flow  in the opposite direction from data 
transfer and  must  be generated or processed concurrently 
with the data frames. For example, the native ESCON 
channel must  be capable of receiving a data request frame 
at any time during a write operation. It must process 
this data request and then set the RDY bit in the next 
outbound data frame. 

In the ESCON channel, however, data are transferred in 

To provide this kind  of flexibility,  it was necessary that 
the code generate and interpret the information in the data 
frame headers and data request frames in addition to 
handling the movement of the data to and  from system 
storage. The challenge was to create a structure that would 
permit this while also allowing a continuous flow  of data 
frames to be  maintained on the link. The key was to 
exploit the preemptive trap mechanism  and the 
Expectmask and data frame  recognition  facilities 
previously described, and to provide additional hardware 
assistance to enable the code to perform frame analysis 
and setup in the minimum  number of cycles [HI .  

To this end, two preemptive trap routines were provided 
for the management of the data transfer on the serial 
interface: the outbound-data service trap and the inbound- 
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whenever the inbound header buffer is not empty during 
data transfer. It processes data request frames (writes) and 
the data frame headers that do not agree with the expected 
values (reads). The outbound-data service trap controls the 
transmission of data frames (writes) and data request 
frames (reads). It occurs as described in the following 
sections. 

Write operations Before the start of data transfer for a 
write operation, the code sets up a “template’y of the 
expected data request frame in the Expectmask arrays. 
Therefore, when the inbound-data service trap is taken, 
the code has merely to check the compare byte (stored in 
the computer buffer) generated by the hardware to verify 
that the data request frame was valid. The only remaining 
check is the inspection of the received request count to 
ensure that it conforms to the requirements of the 
architecture being  implemented. The code then loads 
this count into a register “stack” in the data transfer 
control logic. This facility consists of a counter that is 
decremented for each byte of data sent on the serial 
interface and a backup register in which request counts 
received  while data are being transmitted on the interface 
can be added. If the counter is decremented to zero during 
the transmission of a frame, the transmission of data bytes 
is terminated  and the CRC  is appended to the frame. The 
backup register values are transferred to the counter by 
hardware each time a new data frame is started when the 
counter equals zero. 

To enable a continuous stream of data frames to be 
maintained on the interface, all processing necessary to 
set up the next data frame  must be overlapped with the 
transmission of the current data frame on the link. For this 
reason, the outbound-data service trap is taken for writes 
when the transmission of the header portion of each frame 
has been completed.  It is further required that the number 
of cycles necessary for this processing must  be less than 
that required to transmit the data portion of the frame. 
This allows  only about 16 cycles for the smallest permitted 
data frame. 

To meet this latter requirement, it is necessary for the 
code to identify  quickly  which frame it is setting up 
relative to the data request that is being  satisfied  by that 
frame. Two examples of the need  for this information are 
as follows: A RDY bit  may  be required in the first frame 
satisfying a data  request,  but  not in any of the other  frames. 
An end (E) bit is required to be set only in the last frame 
of the last data request of a channel command  word [l]. 

Several hardware comparators in the data transfer 
controls are provided to accomplish the overlapped 
processing. The first two compare the value in the request 
counter at the end of the header transmission  with the 
maximum data frame size specified  by the control unit,  and 
with  twice this value. If the value of the request counter at 
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this time  is greater than twice the frame size, the frame 
being set up is a continuation of the current request. If the 
value of the request counter is less than or equal to twice 
the frame size, but greater than the frame size, when the 
transmission of the current frame is complete, the request 
count will have been decremented to be less than or equal 
to a frame size. Thus, the frame header being set up  during 
this occurrence of the outbound-data service trap will be 
the last one for the current request. If the value in the 
request counter is less than or equal to the frame size 
at the end of the header transmission, the current 
frame transmission will cause the request count to be 
decremented to zero. Thus, the frame being set up by the 
outbound-data service trap in this case is the first one for 
the next request. The comparators allow the code to 
determine which of the above conditions holds,  with a 
single four-way branch. 

A special case exists for the second condition when the 
new request is the last one for the channel command word. 
In this case, in order to properly set the E bit, it  must be 
determined whether the last request will be satisfied by 
one frame only. A third hardware comparison of the value 
in the backup register and the maximum frame size is 
provided for this purpose. 

The code sets the appropriate bits in the outbound 
header buffer and sets a latch. Once the latch has been set, 
the hardware transmits the new frame when the current 
frame has been transmitted and the pacing and data 
availability requirements for the new frame have been met. 
When the header for the new frame has been transmitted, 
the outbound-data service trap is taken again  and the 
process is repeated. 

comparators to assist the code, the outbound-data service 
routine takes only seven hardware cycles to modify a bit 
(for example, the E bit or RDY bit) in the outbound header 
buffer and set the latch to send the frame. The hardware 
cycle time is always less than the 50-ns interface byte 
time, so the next frame is normally completely set up 
prior to the transmission of the seventh byte of the 
current frame. Thus, the design can readily support the 
transmission of “back-to-back” data frames (i.e.,  only four 
idles between the EOF of one to the SOF of the next)- 
even at the minimum  frame size of 16 bytes. For the native 
ESCON channel using 16-byte frames and data requests of 
256 bytes, the interface data transfer routines use just 30% 
of the available microprocessor bandwidth, leaving the rest 
for fetching data from storage, IOP communications, 
running timers, etc. For a frame size of 256 bytes 
(necessary for an  18MB/s data rate), this load drops to 
15%  of capacity. 

Because of the extensive use of the hardware 

Read operations The data-streaming feature was added 
to the parallel interface in the late 1970s [lo], allowing the 

IBM 1. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 

control unit to “stream” data to the channel without 
waiting for a response. This feature permits higher data 
rates, independent of the cable length. However, if the 
channel is temporarily unable to accept data bytes at the 
rate requested by the control unit, it must abort the data 
transfer and  signal the control unit that an overrun has 
occurred. Thus, with the data-streaming feature, overruns 
could  be encountered simply because the data-streaming 
protocol eliminated the interlocks previously used to 
prevent overruns, and  fully  buffered control units that ran 
with no overruns in dc-interlock mode [lo] had to cope 
with overruns for the first  time. 

decided to implement the interface protocol such that it 
would not be exposed to overruns. This means that there 
must always be space in the data buffer to accommodate 
all data bytes requested but not yet received. Thus, the 
maximum data request that can be made  for each new  read 
CCW  is the data buffer size. If the CCW count exceeds 
this value, subsequent requests must be made as data are 
received and moved out of the buffer to storage. The delay 
between the time at which the last byte of a data block is 
moved out of the buffer  and the time at which a data 
request to “backfill” this block can be transmitted directly 
affects the cable length at which the maximum data rate 
can be supported. An important objective of the design 
was to minimize this delay, in order to achieve the 
maximum possible “full-bandwidth” cable length. Of 
course, complete code control of the processing of data 
and data request frames was still required for maximum 
flexibility. 

It was thus decided to exploit once again the rapid task 
switching of the preemptive trap mechanism by using the 
outbound-data service trap to allow the code to make data 
requests. A counter is provided to keep track of the 
number of bytes moved between the data buffer  and the 
staging hardware. When this counter reaches a threshold 
value selected by the code, the outbound data service trap 
is taken. This threshold can be any value from  16 to 1024 
in powers of two.  When the trap is taken, a data request 
frame for the number of bytes given by the threshold has 
previously been set up  in the outbound header buffer. The 
code has only to check whether certain conditions for 
sending a data request have been met before initiating the 
transmission of the frame. This can be accomplished 
within about nine hardware cycles after the space becomes 
available in the buffer. After sending the frame, the code 
computes and builds the next data request in the outbound 
header buffer. 

The data frame recognition hardware described in the 
section on data frame recognition automatically controls 
the proper routing of headers and data to the correct 
buffers  and checks for proper format all headers that do 
not contain control information. Only headers that contain 

Early in the development of the ESCON channel, it was 

1. R. FLANAGAN, T. A. GREGG, AND D. F. CASPER 



r""""""""- 
I ri Receiver 

r- 
I 

I 

I 
+External fiber kmittex I wrapcable 
I 
I"""""""" mode 

""t Alternate 
paths for 
smo 

SIMIO control unit data flow. 

control information cause the inbound-data service trap. 
The code in this routine uses the hardware-generated 
compare byte from the compare buffer to quickly identify 
the control bits that were set. The code then takes the 
appropriate action on the basis of these bits. 

inbound-data service routines use only about 15% of the 
available bandwidth of the microprocessor, leaving the 
remainder for moving data to storage, running timers, etc. 
This number is not dependent on the data frame size as it 
was for writes, since additional data frames that do not 
contain control information are handled entirely by 
hardware. 

For a data request size of 256 bytes, the outbound- and 

I10 simulation 
Simulated I10  (SIMIO)  is the ability of the channel to 
behave as if it were physically attached to a control unit. 
Code and hardware in each channel provide the simulated 
control unit function. This  allows a complete system test 
of the processor and channels without the attachment 

630 of a real control unit to each channel. Because of the 

complexities of cabling and configuring a large  number of 
control units, this capability becomes more important as 
the number of channels provided on a system grows. 
In parallel channels, the simulated control unit is 

implemented by adding hardware at the I10 interface. This 
hardware generates signals to the channel in response to 
signals from the channel. When the simulated control unit 
sends data to the channel for a read operation, the data 
pattern is supplied by a data generator. When the channel 
sends data to the simulated control unit for a write 
operation, the same data generator is used to check the 
data pattern. 

In the ESCON channel, however, all communication 
between the channel and the control unit is done in 
frames. A large amount of hardware would be required to 
analyze frames from the channel and generate response 
frames to the channel. Also, the channel implements 
multiple architectures, and thus supports multiple frame 
formats. 

For these reasons, control unit simulation in the ESCON 
channel is implemented  using a combination of hardware 
and code [19]. The hardware provides alternate data paths, 
a data generator function similar to that used on the 
parallel channels, and a preemptive trap to invoke the 
SIMIO code. This code is a stand-alone routine, separate 
from the mainline code. It uses the hardware facilities to 
analyze the outbound frames from the channel and to 
generate the required response frames to the channel. 

The alternate data paths that are enabled in the SIMIO 
mode are shown as dashed lines in Figure 7. The outbound 
header buffer  is the source of frames for the SIMIO code, 
so it effectively becomes the inbound header buffer  of the 
simulated control unit (path A in Figure 7). Similarly, the 
SIMIO code builds its response frames in the first 16 bytes 
of the outbound trace buffer, so it effectively becomes the 
outbound header buffer of the simulated control unit (paths 
B and C in Figure 7). Outbound frame tracing is disabled 
in SIMIO mode. 

When  mainline channel code sends a frame, 
transmission of the frame on the link  is suppressed, and 
the SIMIO preemptive trap is taken instead. The code 
examines the frame in the outbound header buffer, builds 
the appropriate response in the trace buffer,  and sets a 
latch. This causes the out-frame state machine (OFSM) to 
serialize and transmit the frame from the  trace buffer 
exactly as it does from the outbound header buffer  in 
normal  mode. 

In order for the frame transmitted by the simulated 
control unit to be received by the channel, the outbound 
link  must be wrapped back to the inbound link. This may 
be accomplished either by an internal electronic wrap, 
which connects the output of the serializer to the input of 
the deserializer, or by an external fiber optic wrap cable. 
The latter method has the advantage of checking the fiber 
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optic components. Both of these paths are also shown as 
dashed lines in Figure 7. 

generated  and  examined  by  means of the data generator  and 
the trace buffer.  The data generator  is  capable of generating 
both  an  incrementing  and a pseudorandom data pattern, and 
the last 64 bytes of the trace  buffer  can  be  loaded by the 
microprocessor with any data pattern. When the SIMIO 
code examines data from a data frame, it instructs the 
OFSM to compare data from the data buffer  with data from 
either the data generator or the trace buffer.  When the 
SIMIO code generates response data, it can specify the 
source  as either the data generator or the trace buffer. 

In the SIMIO mode, data for the data frames are 

Technology  and package 
Figure 8 is a photograph of a Model  9021 ESCON channel 
card with an optical duplex jumper cable attached. At the 
lower right is an uncapped channel logic  module, exposing 
the three logic and three array chips. All of the ES/9000 
machines use similar components and card layouts. The 
card shown contains two physically separate channels. The 
card technology is “pin in hole” on 2.54-mm  (100-mil) 
centers. There are three power  and four signal planes; 
the card connector, on the right-hand side of the card, 
contains 144 pins. Without the optical connectors, the 
card is about 120  mm wide and 180  mm tall.  The optical 
connectors are attached to the left-hand side of the card 
and add about 40  mm to its width. 

the optical connectors are the transmitter and receiver. 
These components are connected to the serializer/ 
deserializer modules, which are 28  mm square. Each 
serializer/deserializer contains two bipolar chips and 
several passive components. The transmitter, receiver, and 
serializer/deserializer operate at 200 MHz, thus requiring 
careful card layout. The card also contains many small 
components, such as crystals, decoupling capacitors, 
terminating resistors, and inductors. 

The logic modules, measuring 50  mm on a side, are the 
largest components. Their multilayer ceramic (MLC) 
substrates have 21 layers and a thickness of almost 4 mm. 
The substrates can hold  up to four logic chips (9.4  mm 
square) and six array chips (9.4  mm by 6.5 mm). 
Decoupling capacitors are provided on the substrates. 

Each logic chip is fabricated using the IBM  CMOS2 
process [20, 211. The chips contain random  logic and a 
number of embedded arrays. The ability to define arrays 
within the logic chips was vital in the design of the 
ESCON channel. The array chips are CMOS static arrays, 
containing 144 kilobits each, with an access time of  15 ns. 

The two gold-colored rectangular boxes next to each of 

Conclusions 
Because of its high degree of programmability and content- 
independent frame-transfer facilities, the ESCON channel 

Model 9021 ESCON channel card and MLC module. 

has proven to be a versatile frame processor suitable for 
many different functions. The  single hardware design 
provides two channel types for 18 different processor 
models in the ES/9000 computer line. The design  is equally 
adaptable to control units: Three have been completed and 
others are planned. The channel attachment bus provides a 
minimum-wire attachment mechanism for integration of the 
channel in a system. 

A significant saving in hardware development cost 
resulted from  having a common  design for all  of these 
functions. In addition, further savings in development, 
debugging,  and testing were realized by the ability to share 
code routines among the functions. 
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