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The  IBM  Enterprise  Systems  Connection 
(ESCON”) Architecture”  is  the  architecture  for 
the  new  fiber  optic  serial-i/O  channels  for  the 
processors in the  IBM  System/390@  family.  The 
architecture is based  on  message  exchanges, 
which  replace  the  byte-oriented  protocols of 
the  predecessor  parallel  interface  architecture. 
its  interconnection  topology  employs  a 
dynamic  crosspoint  switch.  This  paper 
describes  the  major  functional  components  of 
the  archltecture  and  discusses  some  of  the 
technical  problems  that  were  solved  during  its 
development. 

introduction 
The use of  fiber optics as the interconnection medium 
between processors and I/O devices provides a  number of 
benefits. Chief among these is the ability to provide both 
substantially higher data rates and longer  transmission 
distances compared with  the  parallel “copper” buses 
traditionally used for UO interconnection. The ultimate 
bandwidth limits of  fiber optics are dictated by the 

frequency of the optical signal that carries the data. The 
typical wavelength of the infrared radiation used for data 
transmission is approximately 1 micrometer meter), 
corresponding to a carrier frequency of 3 X 1014 Hertz. 
While  achieving true optical bandwidths is not yet 
practicable, serial fiber optic communications systems in 
use today provide data rates from 45 megabits per second 
(Mb/s) to several gigabits per second, at distances of 
several kilometers to several tens of kilometers. In 
contrast, the IBM System/390@  parallel electrical channels 
[l] are capable of 36 Mb/s, i.e., 4.5 megabytes per second 
(MB/s), at  a  maximum distance of 122 meters. [Special- 
purpose parallel electrical channels, such as the American 
National Standards Institute X3l9.3 High-Performance 
Parallel Interface [2] standard, are capable of as much as 
800 Mb/s (100 MB/s) but  at shorter distances.] 

Fiber optic transmission systems have very high noise 
immunity  and  low error rates. Error rates of less than one 
error in 10l2 bits are achievable [3]. This contributes to the 
ability to transmit over long distances and also permits use 
of  fiber optics in electrically noisy environments, such as 
the typical  manufacturing  facility, where long-distance 
electrical transmission requires special precautions. 
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Because the very high bandwidths of fiber optics can be 
achieved with serial transmission on one fiber  in each 
direction, cable bulk is reduced and connector reliability  is 
enhanced, the latter because a  bidirectional  fiber optic 
interconnection, or link, requires only two fibers, 
compared to (in the case of the System/390  parallel 
interface) 48 coaxial cables, with 96 connector contacts at 
each end of the transmission link.  Both cable bulk  and 
connector reliability are significant concerns in a computer 
system with  large  numbers of channels and I/O devices. 

An YO interface architecture is  a set of rules that govern 
how  information  specified by the I/O instructions of the 
processor is communicated on the transmission medium 
and  how the channel and I/O device cooperate to exchange 
this information. Some aspects of the architecture are 
determined by the nature of the transmission  medium  and 
its interconnection topology. Thus, it was necessary to 
design  a  new I/O interface architecture, in place of the 
parallel interface architecture, that describes how 
information is transferred on the serial fiber optic 
transmission  medium. The resulting architecture and 
related set of  IBM products is  called Enterprise Systems 
Connection (ESCOP),  and the architecture itself  is  called 
the ESCON architecture [4]. 

Fiber optics was chosen as the ESCON transmission 
medium  in order to meet the requirements for increased 
bandwidth  and distances compared to the predecessor 
parallel  channels. The large increases in processor speed in 
recent decades have  led to large increases in aggregate 
system I/O bandwidth  and in the data transfer rates 
required of individual 1/0 devices. Increased distances 
are needed to permit the high-speed interconnection 
of multiple computer systems within  a site (having 
dimensions of the order of a  few  kilometers), to enable 
printers and  terminal controllers to be  placed  near  their 
users, and to enable critical data-storage devices to be 
placed in secure locations. The current ESCON optical 
interconnection provides 200Mb/s duplex point-to-point 
links  using  long-wavelength (1300  nm) light-emitting  diode 
emitters and  multimode  fiber. The maximum  transmission 
distance of a  single  link is 2 or 3 km, depending on the 
cable being used. An optional feature called the E X O N  
Extended Distance Feature provides laser emitters and 
single-mode  fiber,  with  a  maximum transmission distance 
of 20 km [SI. The fiber optic technology  is the subject of 
a separate paper [3]  in this issue. 

Another goal  for ESCON I/O was a high degree of 
connectivity between processor channels and 1/0 devices. 
In recent years, there has been an increase in the degree of 
sharing of 1/0 devices by multiple systems and  by  multiple 
channels on the same system. After exploration of a 
number of interconnection topology alternatives [6], a 
dynamic crosspoint switch was selected as the basic 
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The current IBM product that implements the switching 
topology  is  called the ESCON Directorm and is described 
elsewhere in this issue [7]. The ESCON Director can 
provide 30 simultaneous connections, each capable of 
transferring data at the 200Mb/s rate of the attached links. 
It rapidly makes dynamic connections based on addressing 
information in the transmitted character streams. In 
addition, static (dedicated) connections can be created, 
and  permissible  dynamic connections can be  specified, by 
use of  an operator console or by host system software [8]. 
This replaces the static switches that are used  for  similar 
configuration-management functions with the parallel 
channels. 

be introduced into System/390 by changing  only the 
I/O-interface architecture and not changing  the  I/O 
architecture of the processor, the system stucture, or 
existing 1/0 application  software. This enabled most of the 
performance benefits of  fiber optics to be obtained while 
the cost of the  change  and the development  time were 
limited.  This  goal was largely  met,  although  some  software 
changes were eventually  made,  primarily in support of  new 
functions,  including  management of the  ESCON  Director 
and  system-wide  link-error  reporting  and  analysis.  (While 
the  constraint of  compatibility  with  existing system 
architecture  and  software  posed  many  challenges,  it  also 
provided  benefits by limiting the number  of  design  options.) 

The simplest method of introducing  fiber optics while 
preserving system compatibility  would have been to 
preserve as much as possible of the architecture of 
the parallel interface and  simply replace the physical 
transmission  medium. In this approach, the existing 
parallel-interface protocol is preserved, but the information 
that is normally placed on the parallel-interface lines is 
converted to a serial format for  transmission  on the fiber 
optic link. There are several ways of doing  this; however, 
none of these methods use the fiber optic bandwidth very 
efficiently or provide an opportunity to introduce new 
function. In addition, the parallel-interface protocol does 
not provide the function needed for establishing  dynamic 
connections through the switch. Therefore, it was decided 
to design  a completely new,  message-based interface 
architecture that directly maps the semantics of the I/O 
architecture of the processor onto messages on the 
fiber optic links  and provides opportunities for future 
introduction of  new function. The architecture makes 
efficient  use of the  link  bandwidth by maximizing the  number 
of data bytes transferred  per byte of control  information  and 
by minimizing the  number of “handshakes”  (message 
exchanges)  between  channel and VO device.  The latter is 
important,  because each handshake  results in  additional 
messages to be  processed as well as a  distance-dependent 
delay  equal to the  time  for the optical  signal to travel  from 
one  end of the l ink to the other and  return. 

An early decision was made that fiber optics should 
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In this paper, we make extensive use of the terminology 
and concepts of I/O programming as defined in the IBM 
Enterprise Systems Architecture/390m (ESA/39Om), the 
I/O architecture of the IBM Enterprise System/9000m 
(ES/9000m) processors. An overview of the ESA/390 
1/0 architecture is provided in the Appendix. 

ESCON structure 

Architectural levels 
In ESCON architecture, the I/O information flow is 
naturally divided into basic information-transfer semantics 
and channel-program semantics. This led to dividing the 
architecture into two levels of function. The levels of 
ESCON architecture, called the link level and the device 
level, are shown in Figure 1. The link level provides the 
actual information transfer across the physical path in the 
form of transmission frames (described below) containing 
data and control information. Included in the link level are 
the functions and protocols necessary for initializing the 
link,  maintaining the link in  an operational state, and 
providing primitive recovery and diagnostic actions. The 
device level includes the rules for execution of a channel 
program  using the facilities of the link level. It defines the 
data messages, control messages, and protocol that carry 
out the intent of the channel program. 

Architecturally defined entities 
The physical information transfer facilities defined by 
ESCON architecture consist of ESCON interfaces and 
links. An ESCON intet$ace consists of an optical emitter 
and receiver and the associated electronics as well as the 
connector for the fiber optic cable. The term link refers to 
a single  fiber optic point-to-point connection between two 
ESCON interfaces. 

The architecture is embodied  in channels, control units 
and their attached I/O devices, and E X O N  Directors. A 
channel directs the transfer of information between 110 
devices and  main storage and provides the common 
controls for the attachment of different types of 1/0 
devices. Each channel has one ESCON interface. An 
ES/9000 processor may be divided into several logical 
partitions, each of which functions as a separate processor. 
A single ESCON channel may be shared by multiple 
partitions. Architecturally, each of the sharing partitions 
has a separate channel “image,” which represents the 
shared channel. 

A control unit provides the logical capability necessary 
to operate and control one or more Z/O devices and adapts 
the characteristics of each 1/0 device to the requirements 
of the channel. A control unit has one or more ESCON 
interfaces. A single control unit may consist of multiple 
logical entities called control-unit images. Architecturally, 
each control-unit image  is treated as an independent 
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among  link level, device level, physical  path,  and logical path  are 
shown. 

control unit, with its own complement of 1/0 devices. 
Each ESCON interface on a control unit provides 
communication with multiple  images. The terms control 
unit and control-unit image are used interchangeably in the 
remainder of this paper. 

The ESCON Director provides the capability to 
interconnect any two links that are attached to it. The 
link attachment point on the E X O N  Director is called a 
dynamic-switch port, or simply port. Aport consists of an 
ESCON interface and the electronics that implements the 
port function defined by the architecture. 

Topology 
The architecture supports two topologies, point-to-point 
and switched point-to-point. The link-level and device-level 
functions and protocols are identical for both topologies. 
The point-to-point topology, illustrated in Figure 2(a), 
consists of a single  link between the ESCON interface of a 
channel and an E X O N  interface of a control unit. The 
switched point-to-point topology, illustrated in Figure 2(b), 
consists of a number of channels and control units with 
their ESCON interfaces each connected by a point-to-point 
link to a port on an ESCON Director. The ESCON 
Director permits any channel to communicate with any 
device attached to any control unit; however, the system 
configuration  definition, which is beyond the scope of this 
paper, generally restricts which channels can communicate 
with which devices in any particular installation. 

The basic function of the ESCON Director is to create 
a connection between two ports, thereby enabling the 
channel and control unit attached to those ports to 
communicate with each other. All ports can be 
simultaneously participating in connections, and each 
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Interconnection  topologies: (a) Point-to-point. (b) Switched 
point-to-point. D = VO device; L = link. 

connection can be transferring data at the maximum data 
rate of the individual links. Because each channel or 
control unit is connected directly to the ESCON Director 
by means of a separate link, the ESCON Director provides 
a degree of isolation among the channels and control units, 
so that failures or maintenance operations on one do not 
affect the others. Although  a failure of an ESCON Director 
affects all attached channels and control units, it has 
optional fault-tolerance capabilities. In addition, redundant 
paths between processors and devices can be provided 
through separate ESCON Directors. This protects the 
system against individual  link failures as well as against 
ESCON Director failures. 

Information format 
Information is transferred in  a synchronous bit stream. The 
bit stream is divided into transmission characters, which 
represent data bytes or perform control functions. There 
are two information structures: frames and sequences. 
The frame is the primary unit of information transfer. It 
consists of a group of transmission characters organized 

580 according to a  defined format that includes address 
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information, data, control information, and frame 
delimiters. The frame also includes a cyclic redundancy 
check (CRC)  field, which assists in detection of 
transmission errors in the frame (error correction is 
performed  using retransmission). A sequence is a special 
stream of transmission characters used for certain 
primitive  signaling functions which, because of unusual 
conditions, cannot be performed reliably using  frames. 

Addressing 
The ESCON Director makes it possible for one channel 
to communicate with multiple control units and for one 
control unit to communicate with multiple channels. (A 
channel can communicate with only one control unit at a 
time;  similarly, each control unit ESCON interface can 
communicate with only one channel at a  time.) Each 
channel may have multiple channel images. Each control 
unit may contain multiple control-unit images, and each 
control-unit image  may control multiple I/O devices. 

Addressing information in each frame causes  the frame 
to be directed to a  single destination out of many possible 
destinations. There are  three components to the address: 

Link address-selects  a particular ESCON interface, to 
which the ESCON Director then makes a connection. 
(The link-address information in each frame also contains 
a source address. The recipient of a frame uses the 
source address in the received frame as the destination 
address in  a response frame.) 
Logical  address-selects  a particular channel image or 
control-unit image  of those sharing the selected ESCON 
interface. 
Device address-selects  a particular I/O device of those 
controlled by the selected control-unit image. 

Between the link address, logical address, and device 
address, 28 bits of information are specified by the 
ESCON architecture for addressing the VO devices. This 
far exceeds the total device-addressing capacity of the 
ESN390 architecture. However, segmenting the addressing 
information into link,  logical, and device addresses 
simplifies the process of  defining the I/O configuration of a 
system. Configuration  definition is simplified because the 
device addresses and logical addresses on a particular 
control unit can be assigned at the time of manufacture. 
This  is possible because the unique link address assigned 
to each control unit ESCON interface attached to an 
ESCON Director guarantees that the total address of each 
device will be unique. Preassigning the logical and device 
addresses eliminates the need for them to be manually set 
into the control units during installation of a system. In 
addition, the ESCON architecture provides a  mechanism 
for automatically assigning  a unique link address to each 
ESCON interface, as is described below.  In contrast, on 
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the parallel interface, only  eight bits of addressing are 
provided. The 8-bit address of each device must  be 
manually set into the control unit when the device is 
installed. 

Because in the ESN390 architecture a program refers to 
a device by a subchannel number, software need not be 
concerned with the difference between the addressing 
structures on the parallel interface and ESCON 
architecture. The effect of the difference is confined to the 
channel itself. On the parallel interface, the channel uses 
the 8-bit device address to identify the subchannel for an 
operation. In the ESCON architecture, the channel must 
use the combination of  link address, logical address, and 
device address to identify the subchannel. 

Logical  path 
On the parallel interface, each channel interface on a 
control unit is associated with and connected to one and 
only one channel. In the ESN390 architecture, this 
association is  called a “channel path.” Because of the 
switching topology,  an ESCON interface on a control unit 
may be shared by more  than one channel, each of which 
may request dynamic connections to that interface. To 
make ESCON architecture compatible with the channel 
path as defined in the ESN390 architecture, it was 
necessary to define an association, equivalent to a channel 
path, between a channel image, the ESCON interface on 
the channel, a single ESCON interface on a control unit, 
and a single control-unit image.  This construct is called 
a logical channel path or, for short, a logical path. 

With the parallel interface, each channel path is 
established at the moment the control unit is physically 
connected to the channel. With the ESCON architecture, 
each logical path must be established by the channel with 
an exchange of messages in which the channel informs the 
control unit of the channel link  and  logical addresses. The 
link and the logical addresses become the unique  identifier 
of a channel path from the viewpoint of the control unit. 

Until a channel establishes a logical path to a control 
unit, the control unit cannot perform device-level 
operations with the channel. Only link-level functions 
can be performed. 

Link level of the architecture 
The link  level contains two distinct kinds of functions, 
which we term  low-level  signaling  and  logical functions. 
Low-level signaling includes the definition of the 
transmission code (described below) and certain primitive 
control functions. The primitive control functions 
(described below) are performed  using  defined sequences 
of transmission characters. The logical functions are 
performed with exchanges of frames. They include various 
link-level control functions and transport of data and 
control information for the device level. 
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Low-level signaling 

Transmission code 
The transmission code [9] maps each 8-bit data byte into a 
10-bit transmission character for transmission on the link. 
It also defines a number of control characters (also having 
ten bits) that are outside the data alphabet. One of the 
control characters is the idle character, which  is 
transmitted continuously between frames. Control 
characters are also the basis of ordered sets, which are 
used for various control functions. An ordered set is a 
defined combination of control characters or of control 
and data characters. The ordered sets are used for frame 
delimiters and sequences. An ordered set used as a frame 
delimiter consists of two or three control characters. An 
ordered set used as part of a sequence consists of the idle 
character and a different data character for each type of 
sequence. 

Frame delimiters 
Frame delimiters identify the beginning  and end of each 
frame and are also used for control functions, primarily 
related to the ESCON Director, in which the control 
operation must be identified quickly, independently of the 
contents of the frame, by hardware. The delimiter-ordered 
sets were designed to provide maximum  immunity against 
link errors. This  is important because the delimiters are 
not included  in the CRC for the frame. No single-bit error 
can cause a false delimiter to be detected within the data 
stream. Also, no  single-bit error can convert one delimiter 
into another, which is important in ensuring that the state 
of the connection through the ESCON Director is immune 
to alteration by link errors. A single-bit error can cause a 
delimiter  not to be recognized, in  which case higher-level 
functions are invoked for error recovery. 

The following delimiters are defined: (a) start of frame 
(SOF), either connect or passive; and (b) end of frame 
(EOF): disconnect, passive, or abort. The connect, 
disconnect, and passive delimiters control the ESCON 
Director switching operations, as described below. The 
abort EOF delimiter indicates that the destination is to 
ignore the frame. It is used to terminate a frame when an 
internal condition at the sender of the frame prevents 
complete transmission of the frame. 

Delimiter-controlled circuit switching 
The ESCON Director is a circuit switch. In order to 
communicate with another unit, a channel or control unit 
requests that a connection be created to the required 
destination. The request for a connection consists of the 
connect SOF delimiter followed by the link address in the 
first information frame sent to the other end. The two units 
communicate, using the connection that was created, by 
exchanging one or more frames. When the communication 
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is ended, one of the two units explicitly requests that the 
connection be removed. 

for creating and removing dynamic connections was 
considered key to providing  efficient channel utilization 
over a wide range of uses. If the request for a connection 
had been defined as part of the information content of the 
frame, it would have been necessary for the switch to store 
the whole  frame  and check its CRC  before  determining 
whether  a  connection was being  requested. To avoid the 
resulting  delays,  it was decided to use  unique  frame 
delimiters to control the connection  process.  The  connect 
SOF delimiter alerts the ESCON Director that a  connection 
is to be made  and that the Director can make the connection 
as soon as the destination  link address has arrived,  while 
the rest of the frame  is  still  arriving at the switch.  Although 
this process uses the destination  link address without 
checking the CRC of the frame, the destination  ESCON 
interface checks both the CRC  and the destination  address, 
thus detecting any routing errors that might result. 

The other frame delimiters are used as follows: The 
passive SOF delimiter indicates to the ESCON Director 
that this frame  is to be sent through the existing 
connection. The disconnect EOF delimiter alerts the 
ESCON Director control facility to break the existing 
connection  after the frame  is  sent  through  it to the destination. 
The passive EOF delimiter indicates that the frame is to be 
sent to its destination without breaking the connection. 

Sequences 
Under certain conditions, the use of frames for 
communication is either unreliable or inappropriate. (For 
example, if the error rate on a link is much  higher than 
expected, frames are likely to fail the CRC test.) Instead, 
sequences are used for communication. 

particular ordered set until some event, defined for the 
particular sequence, occurs. Events that terminate 
sequence transmission are the receipt of a sequence in 
response, expiration of a  defined  time period, and several 
others. Continuous repetition ensures that the sequence 
will be correctly recognized by the receiver-even in the 
presence of a high link-error rate. 

Minimizing the delay associated with the protocols used 

Each sequence consists of the continuous repetition of a 

The following sequences are defined: 

Not operational (NOS)-The sender is not receiving 
a signal or cannot synchronize with the signal it is 
receiving. 
Off-line  (0LS)“The sender is off-line. 
Unconditional disconnect (UD)-The sender does not 
know whether it is connected to another ESCON 
interface through the switch and is attempting to ensure 
that there is no connection. 

Transmission errors 
Transmission errors are caused by transient noise or 
malfunctions in the channel, control unit, or E X O N  
Director, including  a failed or failing  link. The architecture 
requires the receiver to detect the following types of 
transmission errors: 

Link-signal error: The amplitude or power of the 
received signal is below the value required for reliable 
communication, or the receiver has determined that it 
has lost synchronization with the incoming character 
stream. 
Code-violation error: The receiver has detected an 

CRC error: A received frame has failed the cyclic 
invalid transmission character. 

redundancy check. 

Character  Synchronization 
The transmission code requires that the receiver be 
synchronized with the correct transmission character 
boundaries as well as with the individual bit boundaries in 
the character stream. To ensure that receivers remain 
synchronized with the character boundaries, a stream of 
idle characters is transmitted whenever no frames or 
sequences are being sent. In addition, as described 
previously, each sequence consists of a continuous 
alternation of the idle character and  a data character. The 
idle character has the property that no combination of 
adjacent error-free data characters can result in that 10-bit 
pattern. This fact enables a receiver to synchronize with 
the transmission character boundaries in the incoming 
character stream. 

An indication that a receiver is out of synchronization is 
the detection of invalid transmission characters. However, 
the detection of a  single  invalid transmission character 
does not necessarily mean that the receiver is out of 
synchronization. The clock-recovery system in the receiver 
has sufficient “inertia” to prevent a  single transmission 
error from causing it to go out of synchronization. Also, 
a  single-bit error can cause an apparent misaligned  idle 
character to appear in  a stream of data characters. 
Therefore, a receiver does not simply  align its character 
boundaries with any detected idle character. In general, 
if loss of synchronization is declared too quickly and 
resynchronization occurs too quickly, the possibility exists 
that synchronization will be unstable. To ensure stability, 
the architecture includes rules for determining when the 
receiver is out of synchronization and for acquiring 
synchronization. 

Link-level logical functions 
The link level of the ESCON architecture defines the 

Unconditional  disconnect  response (UDR)-response to UD. functions and protocols necessary for link initialization, 
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sequence transmission and reception, frame transmission 
and reception, and link-error recovery. 

Frames 
Frames are classified as link-control frames and device 
frames. Link-control frames are used for various link- 
control and management functions. Device frames are used 
to transport data and for control functions associated with 
performing  an 1/0 operation. Every frame has delimiters, 
addressing information, and a CRC  field.  Most frames also 
have information fields. The information field of a link- 
control frame contains parameters that further describe the 
link-control function being performed. The information 
field  of a device frame contains data or device-level control 
information. 

Dynamic-connection rules 
As previously described, a channel or control unit requests 
the ESCON Director to make a connection to a specified 
destination by sending to the destination a frame that is 
headed by a connect  SOF delimiter and contains the link 
address of the desired destination. This frame, in general, 
includes information related to the function being 
requested. As this request frame is passing through the 
ESCON Director, the connection is created. However, the 
requester may consider the connection to exist only after it 
receives a response frame from the destination. Until then, 
the requester is not permitted to send any further frames, 
since the request frame may have been corrupted by a link 
error and never caused the connection to be created. In 
addition, queuing delays at the ESCON Director may 
cause the request frame to be delayed. 

When a channel or control unit requests a dynamic 
connection, there is no guarantee that the required 
destination will be available. The destination may already 
be involved  in another dynamic connection, or it  may be 
engaged in some activity that prevents it from accepting 
the connection request. A busy condition is  signaled by 
responding to the connection request with either a link- 
level-busy (LBY) frame or a port-busy (PBY) frame. LBY 
indicates that the busy condition was detected by  the 
destination ESCON interface. PBY indicates that the busy 
condition was detected by the ESCON Director. The 
information field of each of these frames contains a reason 
code, which describes the nature of the busy condition. 

Automatic link-address acquisition 
In order for communication to take place, each channel 
and each control unit must recognize its own  link address 
in the destination-address field of each frame. Each 
channel and control unit ESCON interface must thus be 
provided with a unique address to use. Manually setting 
the link address into each control unit would require 
considerable travel, time, and complexity in a topology 

that can be  spread out over a large site. Therefore, the 
architecture includes protocols that allow each channel and 
control unit ESCON interface to acquire its link address 
automatically from the ESCON Director. 

To acquire a link address, a channel or control unit 
sends a frame called “acquire-link-address,” which 
contains link-level addressing information that indicates 
that the sender is unidentified (has no link address). If the 
channel path is configured switched-point-to-point, the 
ESCON Director determines the link address associated 
with the port at which the frame was received and puts 
this link address in the destination address field  of a 
response frame that it sends to the requester. When the 
channel path is configured point-to-point, the protocols 
permit a channel to assign its own link address and a 
control unit to acquire its link address from the channel. 
A control unit performs this protocol on each of its 
ESCON interfaces. 

Initialization procedures 
To bring the links to an operational state, certain 
initialization procedures must be performed in a prescribed 
order. Link initialization is performed by the use of 
sequences. After link initialization is complete, further 
initialization steps are performed using exchanges of 
frames. 

To perform  link initialization, each ESCON interface 
transmits a prescribed sequence and simultaneously 
attempts to acquire bit and character synchronization from 
the received signal. Each interface indicates that it has 
acquired character synchronization by transmitting a 
prescribed response sequence. 

process described above, a channel is permitted to 
communicate with control units, and a control unit is 
permitted to communicate with channels. The next 
initialization step is the exchange-ID procedure. In this 
step, each ESCON interface obtains from the ESCON 
interface at the other end of the link the latter’s unique 
identifier.  The  identifier includes information such as the 
type of product and its serial number. It is used for 
verifymg the configuration and for problem determination. 

Using system configuration information, the channel 
determines those control units with which it will 
communicate. The channel uses this configuration 
information to establish logical paths. Logical-path 
establishment provides each control unit with the link and 
logical addresses that have been assigned to the channel 
image. The control unit uses the link and logical addresses 
in future communication with that channel image.  When a 
logical path is being established, the channel and control 
unit are essentially agreeing on the configuration and 
agreeing that all  of the necessary initialization procedures 
required to support device-level communication have been 

After becoming  identified by the link-address-acquisition 
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successfully completed. After this, either the channel or 
control unit can initiate device-level communication. 

State-change notijkation 
When  an ESCON Director lies between a channel and a 
control unit and no dynamic connection exists between the 
channel and the control unit, events on the link between 
the ESCON Director and the control unit are invisible to 
the channel. Similarly, events on the link from the channel 
to the ESCON Director are invisible to the control unit. 
However, the ESCON Director is capable of detecting 
these events and reporting them to the channels and 
control units that need the information. The mechanism 
used is the state-change-notification (SCN) link-control 
function. Changes of state  at a port caused by events that 
can affect  logical paths or affect the ability of channels and 
control units to communicate result in the ESCON 
Director sending an SCN frame. Examples of events for 
which an SCN frame is sent include completion of link- 
address acquisition (a  link is now available) and link 
failures. The  SCN frame is sent on  all ports that are 
permitted to make dynamic connections to the port 
undergoing the  state change. It contains, in its information 
field, the link address that the ESCON Director associates 
with the port undergoing the state change. 

When a channel or control unit receives an SCN frame, 
it determines whether it should establish logical paths or 
whether it already has any logical paths to the ESCON 
interface with the link address given  in the information 
field. If it should establish logical paths, it proceeds to do 
so; if it already has logical paths to that link address, it is 
necessary to test whether the logical paths still exist. The 
test is performed with the test-initialization (TIN) link- 
control function. If the response indicates that a logical 
path no longer exists, recovery action is started to re- 
establish the logical path. 

Switch-contention management 
The protocols for sending frames that initiate dynamic 
connections provide for the  case in which a channel 
attempts to initiate a dynamic connection to a control unit 
at the same time the control unit attempts to initiate a 
dynamic connection to that channel. This is commonly 
referred to as a “frames-passing scenario.” For example, 
when an UO device disconnects between commands in a 
chain and then attempts to reconnect in order to continue 
the chain, it is possible that, at the same moment, the 
channel is attempting to initiate a new 1/0 operation with a 
different 1/0 device on the same control unit. Only one of 
the two operations-the channel initiative to start a new 
operation with a second I/O device or the control unit 
request to continue the channel program already started 
with the first 1/0 device-may be permitted to continue if 
compatibility with the ESN390 architecture and operating 
system is to be maintained. 

It was decided that it is best to manage contention for 
this case at the end points, because the correct outcome 
depends on the function being performed. The end 
points have the information necessary to determine the 
appropriate “winner” in each case. This decision resulted 
in a new type of dynamic connection, called a “dialog-2 
connection,” that is created in the ESCON Director by 
two frames, each frame received by a different port but 
each frame requesting the same dynamic connection 
between the two ports. When a dialog-2 connection is 
created, the end points must resolve the contention and 
send the appropriate responses, so that the dynamic 
connection is “owned” by only one of the end points. 
It will be noted that having the end points resolve the 
contention is exactly what happens in the point-to-point 
topology. The result is  in  keeping with the goal of making 
the end-to-end protocol the same for the switched point- 
to-point topology and the point-to-point topology. 

In another type of contention, some unit attempts to 
initiate a dynamic connection with a second unit at the 
same time a third unit attempts to initiate a connection 
with the first  unit. This is  commonly referred to as a 
“three-party scenario.” Consider, for example, a channel 
attempting to connect with control unit A while control 
unit B is attempting to initiate a connection with the 
channel. If the control unit B request for a dynamic 
connection is serviced first, the channel request for a 
dynamic connection with control unit A cannot be allowed, 
because the channel port is already engaged  in a dynamic 
connection with another port (control unit B “won”). In 
this case the ESCON Director sends a port-busy frame to 
the channel with a reason code that indicates that the 
channel  port  is busy because it is already  connected to a 
source different  from the destination of the channel  request. 

Link-level recovery 
Certain errors leave the state of a dynamic connection in 
doubt. For example, if a channel or control unit sends a 
connection request and does not receive a response, either 
the request frame or the response frame may have been 
lost. (One cause of loss of a frame is a transmission error 
which makes a delimiter invalid.) Therefore, the sender 
of the connection request does not know whether the 
connection was made. The first concern in  performing  link- 
level recovery is establishing a known connection state  at 
the ESCON Director. The channel or control unit that is  in 
doubt as to whether it is connected to some other unit 
initiates the connection-recovery procedure. If a 
connection exists, the connection-recovery procedure 
removes it. The connection-recovery procedure involves 
the use of the UD and UDR sequences, mentioned above, 
in interlocked fashion. 

Other errors do not affect the state of the dynamic 
connection and therefore require other recovery actions. 
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Typically, these errors are associated with abnormal 
conditions such as malfunctions. When the recipient of a 
connection-request frame detects  one of these errors in the 
frame, it sends a response which breaks the connection 
that was created by the connection-request frame and 
indicates the unsuccessful delivery of the frame and the 
reason why. For this purpose, two link-control frames are 
defined:  link-level reject (LRJ) and port reject (PRJ). The 
information fields of these frames contain reason codes 
which describe the error that was detected. The reason 
code is  used by the recipient of the reject frame to 
determine the recovery action and as part of problem 
analysis. Retransmission of the frame is a common 
recovery action for those errors that are typically transient 
in nature. 

The most drastic recovery action is the removal of a 
logical path, which is done only after a reasonable number 
of retries have confirmed with a high level of certainty that 
communication over the logical path is no longer possible. 

Device  level of the  architecture 
The function of the device level is to provide the mapping 
between the I/O architecture as seen by the programmer 
[lo] and the information-transfer facilities of the link  level. 
The device-level architecture consists of frame formats and 
rules that convey the semantics of the channel program to 
the 1/0 device and provide for data transfer between the 
1/0 device and channel as well as for various control 
functions. One of the design goals for the device level, as 
noted earlier, was that the replacement of the parallel 
interface by the ESCON architecture should not require 
changes to the I/O architecture as seen by the programmer 
and therefore should be transparent to software. Channel 
programs originally written for 110 devices on the parallel 
interface can be used unchanged, with the same 110 
devices connected (through their control units) to ESCON 
channels. Another goal was to minimize the dependence of 
performance on distance; this was accomplished by having 
as few handshakes as possible.  In  almost  all cases, an 
1/0 operation in the ESCON architecture has fewer 
handshakes than the equivalent operation on the parallel 
interface. 

Existing I/O software depends on the assumption that 
the states of certain indicators associated with subchannels 
reflect the actual state of the I/O operations at  the I/O 
devices. To meet the goal of transparency to existing 
software, it was necessary to include protocols that 
preserve tracking the state of the I/O operation by the 
subchannel indicators. 

In this section, we use the terms I/O device and control 
unit. In general, we use 110 device when we discuss 
device-level functions that always concern a specific 1/0 
device. We use the term control unit when we discuss 
functions that may involve more than one 110 device or an 
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Table 1 Device  information  block  contents. 

Device-pame type Device information  block contents 

Data  Data 
Command  Flags,  CCW  command,  count 
Status 
Control 

Flags, status, count, supplemental  status 
Control function and parameters 

I/O device to be determined by the control unit at a later 
time. 

Basic device-level architectural constructs 
The primary purpose of the device level is to define the 
protocol for executing an 110 operation. An 1/0 operation 
is performed by a specific 1/0 device designated by the 
addressing information in the frames exchanged between 
the channel and the control unit. The basic divisions of the 
protocol, which are the same as on the parallel interface, 
are initiation, data transfer, and ending. Protocols are also 
provided for command chaining, data chaining, and various 
control functions. Some of these protocols are described 
below. (A complete description can be found in [4].) 

The information used to execute the device-level 
protocol is divided into four categories: command, data, 
status, and control, each of which is carried by a similarly 
named subtype of the device frame.  Command frames 
contain the contents of those fields of the channel 
command word (CCW) that the channel sends to the 1/0 
device. Data frames contain the contents of the buffer 
referenced by the CCW, either read from the 1/0 device or 
written to the I/O device. Status frames contain the device- 
status byte and other information that the 1/0 device sends 
to the channel at the end of the 1/0 operation. Control 
frames contain various types of control information. 

The information field of a device frame comprises 
1) a device header, containing an  information-field 
identifier (IFI), a device address, and device-header flags 
(DHF), and 2) a device-information block (DIB). The IFI 
and DHF contain control bits. N o  of the bits in the IFI 
denote the device-frame type (command, data, status, or 
control). The device-information block (DIB) contains 
information appropriate to each frame type. This 
information is summarized in Table 1. 

Initiation of first command of chain 
Figure 3 shows the protocol for initiating execution of the 
first  command of a chain. Each arrow represents one 
frame. The direction of the arrow indicates whether the 
frame is sent from the channel to the 1/0 device or from 
the 1/0 device to the channel. 

The channel initiates the 1/0 operation by sending a 
command  (CMD) frame, which contains the link  and 
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Protocol  for  initiating  first  command of chain.  CMD = command 
frame; CMR = command-response  frame; ACMR = accept- 
command-response  frame;  c = frame  begins  with  connect SOF 
delimiter. 

logical addresses of the control-unit image  (in the link 
header), the device address, the command code and  flags 
from the CCW, and a count field. For a write command, 
the count field contains the byte count from the CCW; for 
a read command, the count field contains the byte count 
for the first data request of the channel (see the section on 
data transfer, below). The CMD frame begins with a 
connect SOF delimiter and ends with a passive EOF 
delimiter, thus requesting a connection through the 
ESCON Director. If the device address is valid and the 1/0 
device is able to perform the command, the 1/0 device 
responds with a command-response (CMR) frame. The I/O 
device does not, however, commence performing the 
command at this point. Instead, it waits for the channel to 
respond to the CMR frame with  an accept-command- 
response (ACMR) frame. When the I/O device receives the 
ACMR frame, it  begins performing the command. 

Frames can be corrupted by transmission errors. For 
example, the 1/0 device may send the CMR frame, but 
the frame may be corrupted and thus not be received as 
a valid frame by the channel. If the protocol had not 
included the ACMR frame, the 1/0 device would have 
commenced execution of the 1/0 operation as soon as it 
sent the CMR.  If the channel did  not receive a CMR 
frame, it  would not know whether the original  CMD frame 
was received successfully, the CMD frame was lost, the 
CMR frame was lost, or something else abnormal 
happened at the 1/0 device. Thus, it  would not know 
whether the operation had been initiated. In this situation, 
a recovery action could cause undetected corruption of 
data. For example, if the command were to backspace a 
magnetic tape, loss of the CMR frame would mean that the 
channel would not  know the position of the tape. If it were 
to retry the backspace, the result might be to backspace 
the tape twice. If the backspace were followed by a write 
command, data would be lost. 

Inclusion of the ACMR frame in the initiation protocol 
586 ensures that the 1/0 device does not start the operation 
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unless the channel has received the CMR frame. If the 
channel does not receive a valid CMR frame, it does not 
send the ACMR frame, and it is guaranteed that the 1/0 
device has not started and will not start the operation. If 
the ACMR frame is corrupted, the 1/0 device will not start 
the operation, but the channel will assume that the 
operation has begun when, in fact, it has not. Since the 
operation has actually not started, the recovery action will 
not cause corruption of data. 

Whenever a channel or  1/0 device is expecting a 
response or other action, it starts a timer. If any of the 
three frames involved in command initiation is corrupted, 
the timer in either the channel or the I/O device will 
eventually exceed the time  limit and initiate a recovery 
action. Depending on the circumstances, this will cause 
either the channel to retry the command or an error to be 
signaled to software. 

Data transfer 
The rate of data transfer on any transmission medium  must 
be regulated by the throughput capabilities of the sender 
and receiver. On the original  IBM  Systern/360m parallel 
interface, the transfer of each byte of data was interlocked 
by control-signal handshakes. As data-transfer rate 
requirements increased with the increase in CPU speeds in 
later generations of processors, and transmission distance 
requirements increased, this interlock protocol became 
inadequate because the time consumed by the handshakes 
(due to signal propagation delays) at the longer distances 
limited the data-transmission rate. Eventually, the parallel 
interface was extended to incorporate the data-streaming 
protocol, which allows a stream of synchronizing pulses 
to be sent  by the 1/0 device, each of which results in 
transferring a byte. This protocol enables the I/O device 
to regulate the data-transfer rate without the performance 
degradation from a handshake with every byte. The 
ESCON architecture further extends this type of protocol. 

There are two components to ESCON flow control: rate 
pacing  and data-request pacing. Rate pacing controls the 
minimum  time (expressed as the minimum  number of idle 
characters) between successive data frames. Data-request 
pacing  allows the recipient of data to regulate the rate at 
which the sender sends data frames, without requiring a 
handshake for every frame. A stream of data-request 
frames is sent  by the data recipient to control the flow  of 
data. A data request may be for any amount of data, from 
one byte to the entire count of the CCW. Each data 
request causes the sender to transmit the requested 
amount of data. The data recipient sends a data request 
when it is able to receive the requested amount of data. A 
single data request may ask for so much data that the data 
sender must send multiple data frames; rate pacing applies 
within this group of data frames. If the recipient's buffer 
space for receiving data frames is nearly used up, it stops 
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sending data requests until it has transferred the buffer 
contents to memory. If this delay is  long enough, it results 
in a handshake, since the sender stops sending until  it 
receives another data request. Since each handshake 
results in a distance-dependent delay, as much data as 
possible should be sent without requiring a handshake, 
data requests should specify large amounts of data, and 
several outstanding data requests (see below) should be 
permitted. The optimum combinations of frame size, data 
request size, and number of outstanding data requests 
depend on the performance requirements of each 
implementation. 

the minimum number of idles (for each data-frame size it 
permits) that the control unit  must supply between data 
frames sent to  the channel, and the number of data 
requests it is willing to receive at any time (outstanding 
data requests). When each 1/0 operation is initiated, the 
control unit informs the channel, using  fields  in the 
command-response frame, of the maximum data-frame size 
it can receive and, for a read operation, the number of 
data requests it is  willing to receive at any time and the 
minimum number of idles it requires between successive 
data frames. The data-frame size it specifies must  be one 
of those permitted by the channel, as indicated when the 
logical path was established. 

Ending last command  of  chain 
The process of ending the execution of the last command 
of the chain consists of sending the device-status 
information to the channel, checking the number of bytes 
of data transferred, and breaking the connection through 
the E X O N  Director. The 1/0 device always initiates the 
ending process, whether the command was a read or a 
write. The ending protocol is illustrated, for a write 
command, in Figure 4. 

When the 1/0 device receives the final data frame, it 
sends a status (STA) frame to the channel. The STA frame 
contains information that describes the success or failure 
of the operation. The channel then prepares to present the 
status information to the program and sends an accept- 
status (ACC) frame to the I/O device. When the I/O device 
receives the ACC frame, it responds with a device-level- 
acknowledgment (DACK) frame ending with a disconnect 
EOF delimiter, which breaks the connection through the 
E X O N  Director. #en the channel receives the DACK, 
it makes the status information available to the program 
and sets the appropriate state information associated with 
the subchannel. 

The reason for the three-frame handshake in the ending 
procedure is to ensure that the channel and I/O device 
agree as to whether the channel did or did  not accept the 
status information. In some situations, the channel is 
unable to accept the status information and signals the 1/0 

#en a logical path is established, the channel specifies 

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 

Protocol  for  ending  last  command of chain  for  write  command. 
Data = final  data  frame;  STA = status  frame;  ACC = accept- 
status  frame;  DACK = device-level-acknowledgment frame; 
d = frame  ends  with  disconnect EOF delimiter. 

device to retain the status information for presentation 
at a later time. Unless the I/O device receives a response 
from the channel, it does not know whether or not the 
channel accepted the status information. If the STA 
frame or the channel response frame is corrupted by 
a link error, the 1/0 device does not receive a response 
and does not know whether or not to retain the status 
information. 

The final  DACK frame resolves the ambiguity. If the 
channel receives the DACK,  it knows that the 1/0 device 
received its response. If the channel does not receive the 
DACK, either the DACK or the channel response to the 
status frame has been corrupted. In either case, the 
channel can proceed as if the 1/0 device has not received 
the channel response. If the VO device has received and 
acted on the channel response to the STA frame, there 
is no  ambiguity  in the recovery process. If the channel 
accepted the status the first  time, the 1/0 device has no 
status information to present in the recovery action. If the 
channel did  not accept the status  the first  time, the 1/0 
device will re-present it  in the recovery action. 

9 Complete  protocol for single CCW 
Figure 5 illustrates how the protocols described in the 
previous sections are combined to execute a single write 
command.  When the system was initialized, the channel 
established the logical path and permitted the VO device to 
have two outstanding data requests. The program issues a 
write CCW with a count of  1280 bytes. The channel starts 
the I/O operation by sending the 1/0 device a command 
(CMD) frame with a CCW count of  1280 bytes. The VO 
device accepts the command and responds with a 
command-response (CMR) frame specifying a device- 
information block (DIB) of  64 bytes, meaning that it  will 
accept data frames, each holding 64 bytes of data. The 
CMR includes a data request (DR bit set) for 256 bytes, 
allowing the channel to send 256 bytes (four data frames) 
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Protocol  for  single  write,CCW.  Labels  above  arrows  denote  fields 
in frames; CMD = command frame; CMR = command- 
response  frame;  DR = data-request  bit; DIB = number of data 
bytes per  frame;  ACMR = accept-command-response  frame; 
Data = data  frame;  RDY = ready bit; E = end bit; CE = 
channel-end  bit; DE = device-end bit;  DRQ = data  request 
frame;  ACC = accept-status frame;  DACK = device-level 
acknowledgment;  c = frame  begins  with  connect SOF delimiter; 
d = frame  ends  with  disconnect EOF delimiter. 

Protocol  for  command  chaining  of  a  write  to  a  read.  Data = data 
frame;  STA = status  frame;  CMD = command  frame;  CMR = 
command-response  frame. 
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before it  must  wait  for another data request. The channel 
responds with  an accept-command-response (ACMR) 
frame  and  immediately  follows  it  with  a data frame 
containing 64 bytes of data and having the ready (RDY) bit 
set, giving the I/O device permission to send more data 
requests (DRQ frames). Since the I/O device is allowed to 
have  two DRQs outstanding at any time,  it sends two 
more.  (It should be understood that although the figure 
shows DRQs and data frames interspersed, DRQs are not 
interlocked with data frames; DRQs may be sent at any 
time at which they are permitted by RDY bits in data 
frames.) The channel then sends two more data frames and 
a  third data frame with the RDY bit set, giving the VO 
device permission to send one more DRQ, which  it does. 
The channel sends another data frame with the RDY bit 
set. At this point the I/O device could send another DRQ, 
but it does not do so until later. After three more data 
frames, the I/O device sends its last DRQ, signifying that 
it is the last by setting the end (E) bit in the DRQ. The 
channel now sends the remaining data frames, setting the 
E bit in the twentieth data frame. The I/O  device then 
responds to the E bit  with  a status (STA) frame containing 
a transfer count indicating that it received 1280 bytes. The 
device-status byte has only the channel-end (CE) and 
device-end (DE) bits set, indicating that no errors occurred 
and the operation is complete. The channel accepts the 
status, verifies that the transfer count is equal to the 
number of data bytes it sent, and responds with  an accept- 
status (ACC) frame.  When the I/O device receives the 
ACC, it considers the operation completed  and responds 
with  a  device-level  acknowledgment (DACK) frame 
containing  a disconnect EOF delimiter,  which breaks the 
connection through the ESCON Director. When the 
channel receives the DACK, it considers the operation 
completed  and makes the status information  available to 
the program. 

Command-chaining protocol 
Command  chaining provides sequential execution of 
multiple  I/O operations in the same channel program.  To 
preserve compatibility with existing software, each I/O 
operation must be concluded with the presentation of the 
device-status information. However, since the  chain 
continues, there is no need to go  through the full  ending 
and  initiation protocols described previously. Instead, the 
channel responds to the status frame of the  first  command 
by sending the command  frame for the second command. 
Further, during  command  chaining, there is no need for 
special precautions regarding synchronizing the states of 
the subchannel and  device. Therefore, there is no need for 
the accept-command-response frame. The command- 
chaining protocol is illustrated in Figure 6. 

removes the connection through the ESCON Director 
The ESCON architecture also includes a protocol that 
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between commands in a chain. This protocol is used when 
the device has long mechanical delays between commands. 
For details, see [l, 41. 

Error  handling 
The ESCON architecture contains extensive facilities for 
detecting, reporting, and recovering from various kinds of 
errors. In this section, we provide an overview of some of 
the key device-level facilities. 

Transmission-error  handling The selection of fiber optics 
permits the design of links that are orders of magnitude 
less sensitive to noise than links using electrical 
transmission at similar distances. The resulting low 
transmission-error rate means that retransmission of a data 
frame containing an error does not significantly improve 
performance compared to repeating (at the device level) 
the 1/0 operation from the beginning. Therefore, the 
ESCON architecture relies on the same command-retry 
procedures as on the parallel interface for recovery from 
errors during 1/0 operations. 

Unit check status and sense data When the 1/0 device 
detects certain types of errors, such as data errors on its 
storage medium  and  link errors in received information, it 
signals these errors  by terminating the 1/0 operation and 
presenting status with the unit-check bit set. It makes 
available sense data which further describe the error or 
indicate a recovery action that is to be performed. On the 
parallel interface, the program responds to the unit-check 
status by issuing a sense command to obtain the sense 
data. This can also be done in the ESCON architecture; 
however, the ESCON architecture also provides means for 
the 1/0 device to automatically send the sense data to the 
channel, thus avoiding the additional program activity 
required to issue the sense command. When control bits 
indicate that both the channel and the 1/0 device are 
capable of performing the automatic-sense operation, the 
1/0 device includes the sense data in the status frame with 
the unit-check bit, in a field called supplemental status. A 
corresponding facility in the processor 1/0 architecture, 
called concurrent sense, makes the sense data available to 
the program with the status information. 

Command retry The ESCON architecture provides the 
same channel-command-retry capability as the parallel 
interface. If the 1/0 device is capable of automatically 
retrying a command to recover from  an error, the device 
includes bits in the status frame which request that the 
channel retry the command. The channel responds by re- 
initiating the latest command. The ESCON architecture 
provides an additional facility, called channel-initiated 
command retry, that permits automatic recovery from 
channel-detected errors. When the channel detects an error 
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for which automatic retry is appropriate, it sends a frame 
to the 110 device that gives the device permission to 
request command retry. If the 1/0 device does request 
command retry, the channel reissues the command instead 
of reporting the error to software. This increases the 
proportion of errors that can be retried without invoking 
software and thus potentially improves system 
performance. It is particularly valuable in the case of 
elevated link-error rates, because it  allows the link to 
continue operating, without severe performance 
degradation, until a repair action can be scheduled at the 
convenience of the user. 

Summary 
The IBM Enterprise Systems Connection Architecture is 
the message-based architecture of the fiber optic 1/0 
interconnect system for the IBM Systed390 computer 
family. It replaces the parallel electrical bus system 
used since the first Systed360 computers appeared in 
1964. The architecture permits exploitation of the high 
data-transfer rate and long-distance capabilities of  fiber 
optics. Its interconnection topology  is based on a 
dynamic crosspoint switch that provides a high degree of 
connectivity among  multiple systems and their shared 110 
devices. One of the key constraints on the design was 
compatibility with channel programs written for the 
parallel interface and with most other 1/0 software. Other 
goals included high reliability and availability and, in 
particular, robustness to enable operation under conditions 
of degraded error rates. This paper has described some of 
the key features of the ESCON architecture. 

Appendix:  Systeml390 I/O programming 
To define some of the terminology used in this paper, this 
appendix provides a brief overview of Systed390  1/0 
programming as defined by the ESN390 Principles of 
Operation Manual [lo]. 

Figure 7 shows the data structure for I/O programming. 
To perform data transfer or other operations with  an 1/0 
device, the programmer writes a “channel program” which 
specifies the operations the device is to perform and which 
contains the addresses of data buffers in the processor 
main storage. In order to execute the channel program, the 
processor program issues the Start-Subchannel (SSCH) 
instruction, whose parameters include the address in  main 
storage of a control block called the Operation Request 
Block (ORB), and the identification number of a 
subchannel, which is the representation of the I/O device 
to the program. The ORB contains, among other things, 
the address of the channel program. Information associated 
with the subchannel includes the address of the 1/0 device. 
For devices attached to ESCON channels, this address 
includes the link address, logical address, and device 
address, as discussed in this paper. 
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Channel command word format. The numbers identify bit posi- 
tions in the @-bit CCW. 

A channel program consists of one or more channel 
command words (CCWs). Each CCW identifies a buffer  in 
processor memory. The buffer contains either data to be 
sent to the device or space for receiving data from the 
device. As described further below, each CCW may also 
contain a command to the device. Figure 8 shows the 
structure of a CCW as defined  in the ESA/390 architecture. 
The command-code field contains the command to the I/O 
device. Examples of commands are read, write, and seek. 
The byte-count field specifies the number of bytes of data 
to be transferred to or from the I/O device. The data- 
address field contains the address, in  System/390  main 
storage, of the data buffer. The flags  field contains a 
number of control flags,  most of which are outside the 
scope of this paper. 

When the channel program consists of more than one 
CCW, the CCWs are said to be chained together under 
control of the chain-data (CD) and chain-command (CC) 
flags. Chained CCWs are usually executed in the order in 
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actions of the device may modify this order. The CD  flag 
in a CCW indicates that the CCW that follows  in storage 
contains the address of a new  buffer to be used to continue 
data transfer for the current command. Data chaining thus 
permits “scatter-gather,’’ the use of a set of noncontiguous 
buffers for the data associated with one command. The CC 
flag  in a CCW indicates that the next CCW contains a new 
1/0 device command and a new  buffer address. 

The term Z/O operation denotes the execution of a CCW 
containing an  I/O device command; this includes any 
further data-chained CCWs. A channel program consists of 
one I/O operation or several 1/0 operations that are 
command-chained together. When discussing interface 
protocol, we refer to a command-chained channel program 
as a chain. Since an 1/0 operation involves a single 
command, we frequently use the term command in place 
of Z/O operation when discussing ESCON architecture. 

Typically, completion of a chain causes an interruption 
of the currently executing program  and causes a program 
to be executed that processes the interruption. The 
processor makes available to the interrupt-processing 
program information from which the program can 
determine the success or failure of the chain and the 
number of bytes of data transferred to  or from the I/O 
device. Included in the interruption information are a byte 
of device status, provided by the 1/0 device as part of the 
interface protocol, and a byte of channel status. These 
status  bytes indicate success or failure of the I/O operation 
and provide some information about the nature of any 
failure that might have occurred. In the  case of error 
conditions, the I/O device provides one or more bytes of 
sense data, which more fully describe the error condition. 
The sense data can be transferred to the channel 
subsequently using a sense CCW. For certain devices on 
ESCON channels, the sense data are automatically 
transferred to the channel at the end of the I/O operation. 
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