
The IBM
Enterprise
Systems
Connection
(ESCON)
Architecture

by J. C. Elliott
M. W. Sachs

The IBM Enterprise Systems Connection
(ESCON”) Architecture” is the architecture for
the new fiber optic serial-i/O channels for the
processors in the IBM System/390@ family. The
architecture is based on message exchanges,
which replace the byte-oriented protocols of
the predecessor parallel interface architecture.
its interconnection topology employs a
dynamic crosspoint switch. This paper
describes the major functional components of
the archltecture and discusses some of the
technical problems that were solved during its
development.

introduction
The use of fiber optics as the interconnection medium
between processors and I/O devices provides a number of
benefits. Chief among these is the ability to provide both
substantially higher data rates and longer transmission
distances compared with the parallel “copper” buses
traditionally used for UO interconnection. The ultimate
bandwidth limits of fiber optics are dictated by the

frequency of the optical signal that carries the data. The
typical wavelength of the infrared radiation used for data
transmission is approximately 1 micrometer meter),
corresponding to a carrier frequency of 3 X 1014 Hertz.
While achieving true optical bandwidths is not yet
practicable, serial fiber optic communications systems in
use today provide data rates from 45 megabits per second
(Mb/s) to several gigabits per second, at distances of
several kilometers to several tens of kilometers. In
contrast, the IBM System/390@ parallel electrical channels
[l] are capable of 36 Mb/s, i.e., 4.5 megabytes per second
(MB/s), at a maximum distance of 122 meters. [Special-
purpose parallel electrical channels, such as the American
National Standards Institute X3l9.3 High-Performance
Parallel Interface [2] standard, are capable of as much as
800 Mb/s (100 MB/s) but at shorter distances.]

Fiber optic transmission systems have very high noise
immunity and low error rates. Error rates of less than one
error in 10l2 bits are achievable [3]. This contributes to the
ability to transmit over long distances and also permits use
of fiber optics in electrically noisy environments, such as
the typical manufacturing facility, where long-distance
electrical transmission requires special precautions.

W o w r i g h t 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the J o w ~ l reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 J. C. ELLIOTT AND M. W. SACHS

Because the very high bandwidths of fiber optics can be
achieved with serial transmission on one fiber in each
direction, cable bulk is reduced and connector reliability is
enhanced, the latter because a bidirectional fiber optic
interconnection, or link, requires only two fibers,
compared to (in the case of the System/390 parallel
interface) 48 coaxial cables, with 96 connector contacts at
each end of the transmission link. Both cable bulk and
connector reliability are significant concerns in a computer
system with large numbers of channels and I/O devices.

An YO interface architecture is a set of rules that govern
how information specified by the I/O instructions of the
processor is communicated on the transmission medium
and how the channel and I/O device cooperate to exchange
this information. Some aspects of the architecture are
determined by the nature of the transmission medium and
its interconnection topology. Thus, it was necessary to
design a new I/O interface architecture, in place of the
parallel interface architecture, that describes how
information is transferred on the serial fiber optic
transmission medium. The resulting architecture and
related set of IBM products is called Enterprise Systems
Connection (ESCOP), and the architecture itself is called
the ESCON architecture [4].

Fiber optics was chosen as the ESCON transmission
medium in order to meet the requirements for increased
bandwidth and distances compared to the predecessor
parallel channels. The large increases in processor speed in
recent decades have led to large increases in aggregate
system I/O bandwidth and in the data transfer rates
required of individual 1/0 devices. Increased distances
are needed to permit the high-speed interconnection
of multiple computer systems within a site (having
dimensions of the order of a few kilometers), to enable
printers and terminal controllers to be placed near their
users, and to enable critical data-storage devices to be
placed in secure locations. The current ESCON optical
interconnection provides 200Mb/s duplex point-to-point
links using long-wavelength (1300 nm) light-emitting diode
emitters and multimode fiber. The maximum transmission
distance of a single link is 2 or 3 km, depending on the
cable being used. An optional feature called the E X O N
Extended Distance Feature provides laser emitters and
single-mode fiber, with a maximum transmission distance
of 20 km [SI. The fiber optic technology is the subject of
a separate paper [3] in this issue.

Another goal for ESCON I/O was a high degree of
connectivity between processor channels and 1/0 devices.
In recent years, there has been an increase in the degree of
sharing of 1/0 devices by multiple systems and by multiple
channels on the same system. After exploration of a
number of interconnection topology alternatives [6], a
dynamic crosspoint switch was selected as the basic

578 topology.

J. C. ELLIOTI AND M. W. SACHS

The current IBM product that implements the switching
topology is called the ESCON Directorm and is described
elsewhere in this issue [7]. The ESCON Director can
provide 30 simultaneous connections, each capable of
transferring data at the 200Mb/s rate of the attached links.
It rapidly makes dynamic connections based on addressing
information in the transmitted character streams. In
addition, static (dedicated) connections can be created,
and permissible dynamic connections can be specified, by
use of an operator console or by host system software [8].
This replaces the static switches that are used for similar
configuration-management functions with the parallel
channels.

be introduced into System/390 by changing only the
I/O-interface architecture and not changing the I/O
architecture of the processor, the system stucture, or
existing 1/0 application software. This enabled most of the
performance benefits of fiber optics to be obtained while
the cost of the change and the development time were
limited. This goal was largely met, although some software
changes were eventually made, primarily in support of new
functions, including management of the ESCON Director
and system-wide link-error reporting and analysis. (While
the constraint of compatibility with existing system
architecture and software posed many challenges, it also
provided benefits by limiting the number of design options.)

The simplest method of introducing fiber optics while
preserving system compatibility would have been to
preserve as much as possible of the architecture of
the parallel interface and simply replace the physical
transmission medium. In this approach, the existing
parallel-interface protocol is preserved, but the information
that is normally placed on the parallel-interface lines is
converted to a serial format for transmission on the fiber
optic link. There are several ways of doing this; however,
none of these methods use the fiber optic bandwidth very
efficiently or provide an opportunity to introduce new
function. In addition, the parallel-interface protocol does
not provide the function needed for establishing dynamic
connections through the switch. Therefore, it was decided
to design a completely new, message-based interface
architecture that directly maps the semantics of the I/O
architecture of the processor onto messages on the
fiber optic links and provides opportunities for future
introduction of new function. The architecture makes
efficient use of the link bandwidth by maximizing the number
of data bytes transferred per byte of control information and
by minimizing the number of “handshakes” (message
exchanges) between channel and VO device. The latter is
important, because each handshake results in additional
messages to be processed as well as a distance-dependent
delay equal to the time for the optical signal to travel from
one end of the l ink to the other and return.

An early decision was made that fiber optics should

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

In this paper, we make extensive use of the terminology
and concepts of I/O programming as defined in the IBM
Enterprise Systems Architecture/390m (ESA/39Om), the
I/O architecture of the IBM Enterprise System/9000m
(ES/9000m) processors. An overview of the ESA/390
1/0 architecture is provided in the Appendix.

ESCON structure

Architectural levels
In ESCON architecture, the I/O information flow is
naturally divided into basic information-transfer semantics
and channel-program semantics. This led to dividing the
architecture into two levels of function. The levels of
ESCON architecture, called the link level and the device
level, are shown in Figure 1. The link level provides the
actual information transfer across the physical path in the
form of transmission frames (described below) containing
data and control information. Included in the link level are
the functions and protocols necessary for initializing the
link, maintaining the link in an operational state, and
providing primitive recovery and diagnostic actions. The
device level includes the rules for execution of a channel
program using the facilities of the link level. It defines the
data messages, control messages, and protocol that carry
out the intent of the channel program.

Architecturally defined entities
The physical information transfer facilities defined by
ESCON architecture consist of ESCON interfaces and
links. An ESCON intet$ace consists of an optical emitter
and receiver and the associated electronics as well as the
connector for the fiber optic cable. The term link refers to
a single fiber optic point-to-point connection between two
ESCON interfaces.

The architecture is embodied in channels, control units
and their attached I/O devices, and E X O N Directors. A
channel directs the transfer of information between 110
devices and main storage and provides the common
controls for the attachment of different types of 1/0
devices. Each channel has one ESCON interface. An
ES/9000 processor may be divided into several logical
partitions, each of which functions as a separate processor.
A single ESCON channel may be shared by multiple
partitions. Architecturally, each of the sharing partitions
has a separate channel “image,” which represents the
shared channel.

A control unit provides the logical capability necessary
to operate and control one or more Z/O devices and adapts
the characteristics of each 1/0 device to the requirements
of the channel. A control unit has one or more ESCON
interfaces. A single control unit may consist of multiple
logical entities called control-unit images. Architecturally,
each control-unit image is treated as an independent

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Device Link Link Device
level level level level

Logical path
”””“”””””

4 e
Physical path

Channel Control unit

Connection between channel and control unit. The relationships
among link level, device level, physical path, and logical path are
shown.

control unit, with its own complement of 1/0 devices.
Each ESCON interface on a control unit provides
communication with multiple images. The terms control
unit and control-unit image are used interchangeably in the
remainder of this paper.

The ESCON Director provides the capability to
interconnect any two links that are attached to it. The
link attachment point on the E X O N Director is called a
dynamic-switch port, or simply port. Aport consists of an
ESCON interface and the electronics that implements the
port function defined by the architecture.

Topology
The architecture supports two topologies, point-to-point
and switched point-to-point. The link-level and device-level
functions and protocols are identical for both topologies.
The point-to-point topology, illustrated in Figure 2(a),
consists of a single link between the ESCON interface of a
channel and an E X O N interface of a control unit. The
switched point-to-point topology, illustrated in Figure 2(b),
consists of a number of channels and control units with
their ESCON interfaces each connected by a point-to-point
link to a port on an ESCON Director. The ESCON
Director permits any channel to communicate with any
device attached to any control unit; however, the system
configuration definition, which is beyond the scope of this
paper, generally restricts which channels can communicate
with which devices in any particular installation.

The basic function of the ESCON Director is to create
a connection between two ports, thereby enabling the
channel and control unit attached to those ports to
communicate with each other. All ports can be
simultaneously participating in connections, and each

J. C. ELLIOTT AND M. W. SACHS

Interconnection topologies: (a) Point-to-point. (b) Switched
point-to-point. D = VO device; L = link.

connection can be transferring data at the maximum data
rate of the individual links. Because each channel or
control unit is connected directly to the ESCON Director
by means of a separate link, the ESCON Director provides
a degree of isolation among the channels and control units,
so that failures or maintenance operations on one do not
affect the others. Although a failure of an ESCON Director
affects all attached channels and control units, it has
optional fault-tolerance capabilities. In addition, redundant
paths between processors and devices can be provided
through separate ESCON Directors. This protects the
system against individual link failures as well as against
ESCON Director failures.

Information format
Information is transferred in a synchronous bit stream. The
bit stream is divided into transmission characters, which
represent data bytes or perform control functions. There
are two information structures: frames and sequences.
The frame is the primary unit of information transfer. It
consists of a group of transmission characters organized

580 according to a defined format that includes address

J. C. ELLIO'IT AND M. W. SACHS

information, data, control information, and frame
delimiters. The frame also includes a cyclic redundancy
check (CRC) field, which assists in detection of
transmission errors in the frame (error correction is
performed using retransmission). A sequence is a special
stream of transmission characters used for certain
primitive signaling functions which, because of unusual
conditions, cannot be performed reliably using frames.

Addressing
The ESCON Director makes it possible for one channel
to communicate with multiple control units and for one
control unit to communicate with multiple channels. (A
channel can communicate with only one control unit at a
time; similarly, each control unit ESCON interface can
communicate with only one channel at a time.) Each
channel may have multiple channel images. Each control
unit may contain multiple control-unit images, and each
control-unit image may control multiple I/O devices.

Addressing information in each frame causes the frame
to be directed to a single destination out of many possible
destinations. There are three components to the address:

Link address-selects a particular ESCON interface, to
which the ESCON Director then makes a connection.
(The link-address information in each frame also contains
a source address. The recipient of a frame uses the
source address in the received frame as the destination
address in a response frame.)
Logical address-selects a particular channel image or
control-unit image of those sharing the selected ESCON
interface.
Device address-selects a particular I/O device of those
controlled by the selected control-unit image.

Between the link address, logical address, and device
address, 28 bits of information are specified by the
ESCON architecture for addressing the VO devices. This
far exceeds the total device-addressing capacity of the
ESN390 architecture. However, segmenting the addressing
information into link, logical, and device addresses
simplifies the process of defining the I/O configuration of a
system. Configuration definition is simplified because the
device addresses and logical addresses on a particular
control unit can be assigned at the time of manufacture.
This is possible because the unique link address assigned
to each control unit ESCON interface attached to an
ESCON Director guarantees that the total address of each
device will be unique. Preassigning the logical and device
addresses eliminates the need for them to be manually set
into the control units during installation of a system. In
addition, the ESCON architecture provides a mechanism
for automatically assigning a unique link address to each
ESCON interface, as is described below. In contrast, on

IBM 1. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

the parallel interface, only eight bits of addressing are
provided. The 8-bit address of each device must be
manually set into the control unit when the device is
installed.

Because in the ESN390 architecture a program refers to
a device by a subchannel number, software need not be
concerned with the difference between the addressing
structures on the parallel interface and ESCON
architecture. The effect of the difference is confined to the
channel itself. On the parallel interface, the channel uses
the 8-bit device address to identify the subchannel for an
operation. In the ESCON architecture, the channel must
use the combination of link address, logical address, and
device address to identify the subchannel.

Logical path
On the parallel interface, each channel interface on a
control unit is associated with and connected to one and
only one channel. In the ESN390 architecture, this
association is called a “channel path.” Because of the
switching topology, an ESCON interface on a control unit
may be shared by more than one channel, each of which
may request dynamic connections to that interface. To
make ESCON architecture compatible with the channel
path as defined in the ESN390 architecture, it was
necessary to define an association, equivalent to a channel
path, between a channel image, the ESCON interface on
the channel, a single ESCON interface on a control unit,
and a single control-unit image. This construct is called
a logical channel path or, for short, a logical path.

With the parallel interface, each channel path is
established at the moment the control unit is physically
connected to the channel. With the ESCON architecture,
each logical path must be established by the channel with
an exchange of messages in which the channel informs the
control unit of the channel link and logical addresses. The
link and the logical addresses become the unique identifier
of a channel path from the viewpoint of the control unit.

Until a channel establishes a logical path to a control
unit, the control unit cannot perform device-level
operations with the channel. Only link-level functions
can be performed.

Link level of the architecture
The link level contains two distinct kinds of functions,
which we term low-level signaling and logical functions.
Low-level signaling includes the definition of the
transmission code (described below) and certain primitive
control functions. The primitive control functions
(described below) are performed using defined sequences
of transmission characters. The logical functions are
performed with exchanges of frames. They include various
link-level control functions and transport of data and
control information for the device level.

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Low-level signaling

Transmission code
The transmission code [9] maps each 8-bit data byte into a
10-bit transmission character for transmission on the link.
It also defines a number of control characters (also having
ten bits) that are outside the data alphabet. One of the
control characters is the idle character, which is
transmitted continuously between frames. Control
characters are also the basis of ordered sets, which are
used for various control functions. An ordered set is a
defined combination of control characters or of control
and data characters. The ordered sets are used for frame
delimiters and sequences. An ordered set used as a frame
delimiter consists of two or three control characters. An
ordered set used as part of a sequence consists of the idle
character and a different data character for each type of
sequence.

Frame delimiters
Frame delimiters identify the beginning and end of each
frame and are also used for control functions, primarily
related to the ESCON Director, in which the control
operation must be identified quickly, independently of the
contents of the frame, by hardware. The delimiter-ordered
sets were designed to provide maximum immunity against
link errors. This is important because the delimiters are
not included in the CRC for the frame. No single-bit error
can cause a false delimiter to be detected within the data
stream. Also, no single-bit error can convert one delimiter
into another, which is important in ensuring that the state
of the connection through the ESCON Director is immune
to alteration by link errors. A single-bit error can cause a
delimiter not to be recognized, in which case higher-level
functions are invoked for error recovery.

The following delimiters are defined: (a) start of frame
(SOF), either connect or passive; and (b) end of frame
(EOF): disconnect, passive, or abort. The connect,
disconnect, and passive delimiters control the ESCON
Director switching operations, as described below. The
abort EOF delimiter indicates that the destination is to
ignore the frame. It is used to terminate a frame when an
internal condition at the sender of the frame prevents
complete transmission of the frame.

Delimiter-controlled circuit switching
The ESCON Director is a circuit switch. In order to
communicate with another unit, a channel or control unit
requests that a connection be created to the required
destination. The request for a connection consists of the
connect SOF delimiter followed by the link address in the
first information frame sent to the other end. The two units
communicate, using the connection that was created, by
exchanging one or more frames. When the communication

J. C. ELLIOlT AND M. W. SACHS

581

582

is ended, one of the two units explicitly requests that the
connection be removed.

for creating and removing dynamic connections was
considered key to providing efficient channel utilization
over a wide range of uses. If the request for a connection
had been defined as part of the information content of the
frame, it would have been necessary for the switch to store
the whole frame and check its CRC before determining
whether a connection was being requested. To avoid the
resulting delays, it was decided to use unique frame
delimiters to control the connection process. The connect
SOF delimiter alerts the ESCON Director that a connection
is to be made and that the Director can make the connection
as soon as the destination link address has arrived, while
the rest of the frame is still arriving at the switch. Although
this process uses the destination link address without
checking the CRC of the frame, the destination ESCON
interface checks both the CRC and the destination address,
thus detecting any routing errors that might result.

The other frame delimiters are used as follows: The
passive SOF delimiter indicates to the ESCON Director
that this frame is to be sent through the existing
connection. The disconnect EOF delimiter alerts the
ESCON Director control facility to break the existing
connection after the frame is sent through it to the destination.
The passive EOF delimiter indicates that the frame is to be
sent to its destination without breaking the connection.

Sequences
Under certain conditions, the use of frames for
communication is either unreliable or inappropriate. (For
example, if the error rate on a link is much higher than
expected, frames are likely to fail the CRC test.) Instead,
sequences are used for communication.

particular ordered set until some event, defined for the
particular sequence, occurs. Events that terminate
sequence transmission are the receipt of a sequence in
response, expiration of a defined time period, and several
others. Continuous repetition ensures that the sequence
will be correctly recognized by the receiver-even in the
presence of a high link-error rate.

Minimizing the delay associated with the protocols used

Each sequence consists of the continuous repetition of a

The following sequences are defined:

Not operational (NOS)-The sender is not receiving
a signal or cannot synchronize with the signal it is
receiving.
Off-line (0LS)“The sender is off-line.
Unconditional disconnect (UD)-The sender does not
know whether it is connected to another ESCON
interface through the switch and is attempting to ensure
that there is no connection.

Transmission errors
Transmission errors are caused by transient noise or
malfunctions in the channel, control unit, or E X O N
Director, including a failed or failing link. The architecture
requires the receiver to detect the following types of
transmission errors:

Link-signal error: The amplitude or power of the
received signal is below the value required for reliable
communication, or the receiver has determined that it
has lost synchronization with the incoming character
stream.
Code-violation error: The receiver has detected an

CRC error: A received frame has failed the cyclic
invalid transmission character.

redundancy check.

Character Synchronization
The transmission code requires that the receiver be
synchronized with the correct transmission character
boundaries as well as with the individual bit boundaries in
the character stream. To ensure that receivers remain
synchronized with the character boundaries, a stream of
idle characters is transmitted whenever no frames or
sequences are being sent. In addition, as described
previously, each sequence consists of a continuous
alternation of the idle character and a data character. The
idle character has the property that no combination of
adjacent error-free data characters can result in that 10-bit
pattern. This fact enables a receiver to synchronize with
the transmission character boundaries in the incoming
character stream.

An indication that a receiver is out of synchronization is
the detection of invalid transmission characters. However,
the detection of a single invalid transmission character
does not necessarily mean that the receiver is out of
synchronization. The clock-recovery system in the receiver
has sufficient “inertia” to prevent a single transmission
error from causing it to go out of synchronization. Also,
a single-bit error can cause an apparent misaligned idle
character to appear in a stream of data characters.
Therefore, a receiver does not simply align its character
boundaries with any detected idle character. In general,
if loss of synchronization is declared too quickly and
resynchronization occurs too quickly, the possibility exists
that synchronization will be unstable. To ensure stability,
the architecture includes rules for determining when the
receiver is out of synchronization and for acquiring
synchronization.

Link-level logical functions
The link level of the ESCON architecture defines the

Unconditional disconnect response (UDR)-response to UD. functions and protocols necessary for link initialization,

J. C. ELLIOTT AND M. W. SACHS IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

sequence transmission and reception, frame transmission
and reception, and link-error recovery.

Frames
Frames are classified as link-control frames and device
frames. Link-control frames are used for various link-
control and management functions. Device frames are used
to transport data and for control functions associated with
performing an 1/0 operation. Every frame has delimiters,
addressing information, and a CRC field. Most frames also
have information fields. The information field of a link-
control frame contains parameters that further describe the
link-control function being performed. The information
field of a device frame contains data or device-level control
information.

Dynamic-connection rules
As previously described, a channel or control unit requests
the ESCON Director to make a connection to a specified
destination by sending to the destination a frame that is
headed by a connect SOF delimiter and contains the link
address of the desired destination. This frame, in general,
includes information related to the function being
requested. As this request frame is passing through the
ESCON Director, the connection is created. However, the
requester may consider the connection to exist only after it
receives a response frame from the destination. Until then,
the requester is not permitted to send any further frames,
since the request frame may have been corrupted by a link
error and never caused the connection to be created. In
addition, queuing delays at the ESCON Director may
cause the request frame to be delayed.

When a channel or control unit requests a dynamic
connection, there is no guarantee that the required
destination will be available. The destination may already
be involved in another dynamic connection, or it may be
engaged in some activity that prevents it from accepting
the connection request. A busy condition is signaled by
responding to the connection request with either a link-
level-busy (LBY) frame or a port-busy (PBY) frame. LBY
indicates that the busy condition was detected by the
destination ESCON interface. PBY indicates that the busy
condition was detected by the ESCON Director. The
information field of each of these frames contains a reason
code, which describes the nature of the busy condition.

Automatic link-address acquisition
In order for communication to take place, each channel
and each control unit must recognize its own link address
in the destination-address field of each frame. Each
channel and control unit ESCON interface must thus be
provided with a unique address to use. Manually setting
the link address into each control unit would require
considerable travel, time, and complexity in a topology

that can be spread out over a large site. Therefore, the
architecture includes protocols that allow each channel and
control unit ESCON interface to acquire its link address
automatically from the ESCON Director.

To acquire a link address, a channel or control unit
sends a frame called “acquire-link-address,” which
contains link-level addressing information that indicates
that the sender is unidentified (has no link address). If the
channel path is configured switched-point-to-point, the
ESCON Director determines the link address associated
with the port at which the frame was received and puts
this link address in the destination address field of a
response frame that it sends to the requester. When the
channel path is configured point-to-point, the protocols
permit a channel to assign its own link address and a
control unit to acquire its link address from the channel.
A control unit performs this protocol on each of its
ESCON interfaces.

Initialization procedures
To bring the links to an operational state, certain
initialization procedures must be performed in a prescribed
order. Link initialization is performed by the use of
sequences. After link initialization is complete, further
initialization steps are performed using exchanges of
frames.

To perform link initialization, each ESCON interface
transmits a prescribed sequence and simultaneously
attempts to acquire bit and character synchronization from
the received signal. Each interface indicates that it has
acquired character synchronization by transmitting a
prescribed response sequence.

process described above, a channel is permitted to
communicate with control units, and a control unit is
permitted to communicate with channels. The next
initialization step is the exchange-ID procedure. In this
step, each ESCON interface obtains from the ESCON
interface at the other end of the link the latter’s unique
identifier. The identifier includes information such as the
type of product and its serial number. It is used for
verifymg the configuration and for problem determination.

Using system configuration information, the channel
determines those control units with which it will
communicate. The channel uses this configuration
information to establish logical paths. Logical-path
establishment provides each control unit with the link and
logical addresses that have been assigned to the channel
image. The control unit uses the link and logical addresses
in future communication with that channel image. When a
logical path is being established, the channel and control
unit are essentially agreeing on the configuration and
agreeing that all of the necessary initialization procedures
required to support device-level communication have been

After becoming identified by the link-address-acquisition

503

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 J. C. ELLIOTT AND M. W. SACHS

584

successfully completed. After this, either the channel or
control unit can initiate device-level communication.

State-change notijkation
When an ESCON Director lies between a channel and a
control unit and no dynamic connection exists between the
channel and the control unit, events on the link between
the ESCON Director and the control unit are invisible to
the channel. Similarly, events on the link from the channel
to the ESCON Director are invisible to the control unit.
However, the ESCON Director is capable of detecting
these events and reporting them to the channels and
control units that need the information. The mechanism
used is the state-change-notification (SCN) link-control
function. Changes of state at a port caused by events that
can affect logical paths or affect the ability of channels and
control units to communicate result in the ESCON
Director sending an SCN frame. Examples of events for
which an SCN frame is sent include completion of link-
address acquisition (a link is now available) and link
failures. The SCN frame is sent on all ports that are
permitted to make dynamic connections to the port
undergoing the state change. It contains, in its information
field, the link address that the ESCON Director associates
with the port undergoing the state change.

When a channel or control unit receives an SCN frame,
it determines whether it should establish logical paths or
whether it already has any logical paths to the ESCON
interface with the link address given in the information
field. If it should establish logical paths, it proceeds to do
so; if it already has logical paths to that link address, it is
necessary to test whether the logical paths still exist. The
test is performed with the test-initialization (TIN) link-
control function. If the response indicates that a logical
path no longer exists, recovery action is started to re-
establish the logical path.

Switch-contention management
The protocols for sending frames that initiate dynamic
connections provide for the case in which a channel
attempts to initiate a dynamic connection to a control unit
at the same time the control unit attempts to initiate a
dynamic connection to that channel. This is commonly
referred to as a “frames-passing scenario.” For example,
when an UO device disconnects between commands in a
chain and then attempts to reconnect in order to continue
the chain, it is possible that, at the same moment, the
channel is attempting to initiate a new 1/0 operation with a
different 1/0 device on the same control unit. Only one of
the two operations-the channel initiative to start a new
operation with a second I/O device or the control unit
request to continue the channel program already started
with the first 1/0 device-may be permitted to continue if
compatibility with the ESN390 architecture and operating
system is to be maintained.

It was decided that it is best to manage contention for
this case at the end points, because the correct outcome
depends on the function being performed. The end
points have the information necessary to determine the
appropriate “winner” in each case. This decision resulted
in a new type of dynamic connection, called a “dialog-2
connection,” that is created in the ESCON Director by
two frames, each frame received by a different port but
each frame requesting the same dynamic connection
between the two ports. When a dialog-2 connection is
created, the end points must resolve the contention and
send the appropriate responses, so that the dynamic
connection is “owned” by only one of the end points.
It will be noted that having the end points resolve the
contention is exactly what happens in the point-to-point
topology. The result is in keeping with the goal of making
the end-to-end protocol the same for the switched point-
to-point topology and the point-to-point topology.

In another type of contention, some unit attempts to
initiate a dynamic connection with a second unit at the
same time a third unit attempts to initiate a connection
with the first unit. This is commonly referred to as a
“three-party scenario.” Consider, for example, a channel
attempting to connect with control unit A while control
unit B is attempting to initiate a connection with the
channel. If the control unit B request for a dynamic
connection is serviced first, the channel request for a
dynamic connection with control unit A cannot be allowed,
because the channel port is already engaged in a dynamic
connection with another port (control unit B “won”). In
this case the ESCON Director sends a port-busy frame to
the channel with a reason code that indicates that the
channel port is busy because it is already connected to a
source different from the destination of the channel request.

Link-level recovery
Certain errors leave the state of a dynamic connection in
doubt. For example, if a channel or control unit sends a
connection request and does not receive a response, either
the request frame or the response frame may have been
lost. (One cause of loss of a frame is a transmission error
which makes a delimiter invalid.) Therefore, the sender
of the connection request does not know whether the
connection was made. The first concern in performing link-
level recovery is establishing a known connection state at
the ESCON Director. The channel or control unit that is in
doubt as to whether it is connected to some other unit
initiates the connection-recovery procedure. If a
connection exists, the connection-recovery procedure
removes it. The connection-recovery procedure involves
the use of the UD and UDR sequences, mentioned above,
in interlocked fashion.

Other errors do not affect the state of the dynamic
connection and therefore require other recovery actions.

J. C. ELLIO’IT AND M. W. SACHS IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Typically, these errors are associated with abnormal
conditions such as malfunctions. When the recipient of a
connection-request frame detects one of these errors in the
frame, it sends a response which breaks the connection
that was created by the connection-request frame and
indicates the unsuccessful delivery of the frame and the
reason why. For this purpose, two link-control frames are
defined: link-level reject (LRJ) and port reject (PRJ). The
information fields of these frames contain reason codes
which describe the error that was detected. The reason
code is used by the recipient of the reject frame to
determine the recovery action and as part of problem
analysis. Retransmission of the frame is a common
recovery action for those errors that are typically transient
in nature.

The most drastic recovery action is the removal of a
logical path, which is done only after a reasonable number
of retries have confirmed with a high level of certainty that
communication over the logical path is no longer possible.

Device level of the architecture
The function of the device level is to provide the mapping
between the I/O architecture as seen by the programmer
[lo] and the information-transfer facilities of the link level.
The device-level architecture consists of frame formats and
rules that convey the semantics of the channel program to
the 1/0 device and provide for data transfer between the
1/0 device and channel as well as for various control
functions. One of the design goals for the device level, as
noted earlier, was that the replacement of the parallel
interface by the ESCON architecture should not require
changes to the I/O architecture as seen by the programmer
and therefore should be transparent to software. Channel
programs originally written for 110 devices on the parallel
interface can be used unchanged, with the same 110
devices connected (through their control units) to ESCON
channels. Another goal was to minimize the dependence of
performance on distance; this was accomplished by having
as few handshakes as possible. In almost all cases, an
1/0 operation in the ESCON architecture has fewer
handshakes than the equivalent operation on the parallel
interface.

Existing I/O software depends on the assumption that
the states of certain indicators associated with subchannels
reflect the actual state of the I/O operations at the I/O
devices. To meet the goal of transparency to existing
software, it was necessary to include protocols that
preserve tracking the state of the I/O operation by the
subchannel indicators.

In this section, we use the terms I/O device and control
unit. In general, we use 110 device when we discuss
device-level functions that always concern a specific 1/0
device. We use the term control unit when we discuss
functions that may involve more than one 110 device or an

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Table 1 Device information block contents.

Device-pame type Device information block contents

Data Data
Command Flags, CCW command, count
Status
Control

Flags, status, count, supplemental status
Control function and parameters

I/O device to be determined by the control unit at a later
time.

Basic device-level architectural constructs
The primary purpose of the device level is to define the
protocol for executing an 110 operation. An 1/0 operation
is performed by a specific 1/0 device designated by the
addressing information in the frames exchanged between
the channel and the control unit. The basic divisions of the
protocol, which are the same as on the parallel interface,
are initiation, data transfer, and ending. Protocols are also
provided for command chaining, data chaining, and various
control functions. Some of these protocols are described
below. (A complete description can be found in [4].)

The information used to execute the device-level
protocol is divided into four categories: command, data,
status, and control, each of which is carried by a similarly
named subtype of the device frame. Command frames
contain the contents of those fields of the channel
command word (CCW) that the channel sends to the 1/0
device. Data frames contain the contents of the buffer
referenced by the CCW, either read from the 1/0 device or
written to the I/O device. Status frames contain the device-
status byte and other information that the 1/0 device sends
to the channel at the end of the 1/0 operation. Control
frames contain various types of control information.

The information field of a device frame comprises
1) a device header, containing an information-field
identifier (IFI), a device address, and device-header flags
(DHF), and 2) a device-information block (DIB). The IFI
and DHF contain control bits. N o of the bits in the IFI
denote the device-frame type (command, data, status, or
control). The device-information block (DIB) contains
information appropriate to each frame type. This
information is summarized in Table 1.

Initiation of first command of chain
Figure 3 shows the protocol for initiating execution of the
first command of a chain. Each arrow represents one
frame. The direction of the arrow indicates whether the
frame is sent from the channel to the 1/0 device or from
the 1/0 device to the channel.

The channel initiates the 1/0 operation by sending a
command (CMD) frame, which contains the link and

J. C. ELLIOTI AND M. W. SACHS

Protocol for initiating first command of chain. CMD = command
frame; CMR = command-response frame; ACMR = accept-
command-response frame; c = frame begins with connect SOF
delimiter.

logical addresses of the control-unit image (in the link
header), the device address, the command code and flags
from the CCW, and a count field. For a write command,
the count field contains the byte count from the CCW; for
a read command, the count field contains the byte count
for the first data request of the channel (see the section on
data transfer, below). The CMD frame begins with a
connect SOF delimiter and ends with a passive EOF
delimiter, thus requesting a connection through the
ESCON Director. If the device address is valid and the 1/0
device is able to perform the command, the 1/0 device
responds with a command-response (CMR) frame. The I/O
device does not, however, commence performing the
command at this point. Instead, it waits for the channel to
respond to the CMR frame with an accept-command-
response (ACMR) frame. When the I/O device receives the
ACMR frame, it begins performing the command.

Frames can be corrupted by transmission errors. For
example, the 1/0 device may send the CMR frame, but
the frame may be corrupted and thus not be received as
a valid frame by the channel. If the protocol had not
included the ACMR frame, the 1/0 device would have
commenced execution of the 1/0 operation as soon as it
sent the CMR. If the channel did not receive a CMR
frame, it would not know whether the original CMD frame
was received successfully, the CMD frame was lost, the
CMR frame was lost, or something else abnormal
happened at the 1/0 device. Thus, it would not know
whether the operation had been initiated. In this situation,
a recovery action could cause undetected corruption of
data. For example, if the command were to backspace a
magnetic tape, loss of the CMR frame would mean that the
channel would not know the position of the tape. If it were
to retry the backspace, the result might be to backspace
the tape twice. If the backspace were followed by a write
command, data would be lost.

Inclusion of the ACMR frame in the initiation protocol
586 ensures that the 1/0 device does not start the operation

J. C . ELLIOTl AND M. W. SACHS

unless the channel has received the CMR frame. If the
channel does not receive a valid CMR frame, it does not
send the ACMR frame, and it is guaranteed that the 1/0
device has not started and will not start the operation. If
the ACMR frame is corrupted, the 1/0 device will not start
the operation, but the channel will assume that the
operation has begun when, in fact, it has not. Since the
operation has actually not started, the recovery action will
not cause corruption of data.

Whenever a channel or 1/0 device is expecting a
response or other action, it starts a timer. If any of the
three frames involved in command initiation is corrupted,
the timer in either the channel or the I/O device will
eventually exceed the time limit and initiate a recovery
action. Depending on the circumstances, this will cause
either the channel to retry the command or an error to be
signaled to software.

Data transfer
The rate of data transfer on any transmission medium must
be regulated by the throughput capabilities of the sender
and receiver. On the original IBM Systern/360m parallel
interface, the transfer of each byte of data was interlocked
by control-signal handshakes. As data-transfer rate
requirements increased with the increase in CPU speeds in
later generations of processors, and transmission distance
requirements increased, this interlock protocol became
inadequate because the time consumed by the handshakes
(due to signal propagation delays) at the longer distances
limited the data-transmission rate. Eventually, the parallel
interface was extended to incorporate the data-streaming
protocol, which allows a stream of synchronizing pulses
to be sent by the 1/0 device, each of which results in
transferring a byte. This protocol enables the I/O device
to regulate the data-transfer rate without the performance
degradation from a handshake with every byte. The
ESCON architecture further extends this type of protocol.

There are two components to ESCON flow control: rate
pacing and data-request pacing. Rate pacing controls the
minimum time (expressed as the minimum number of idle
characters) between successive data frames. Data-request
pacing allows the recipient of data to regulate the rate at
which the sender sends data frames, without requiring a
handshake for every frame. A stream of data-request
frames is sent by the data recipient to control the flow of
data. A data request may be for any amount of data, from
one byte to the entire count of the CCW. Each data
request causes the sender to transmit the requested
amount of data. The data recipient sends a data request
when it is able to receive the requested amount of data. A
single data request may ask for so much data that the data
sender must send multiple data frames; rate pacing applies
within this group of data frames. If the recipient's buffer
space for receiving data frames is nearly used up, it stops

IBM J. RES. DEVELDP. VOL. 36 NO. 4 JULY 1992

sending data requests until it has transferred the buffer
contents to memory. If this delay is long enough, it results
in a handshake, since the sender stops sending until it
receives another data request. Since each handshake
results in a distance-dependent delay, as much data as
possible should be sent without requiring a handshake,
data requests should specify large amounts of data, and
several outstanding data requests (see below) should be
permitted. The optimum combinations of frame size, data
request size, and number of outstanding data requests
depend on the performance requirements of each
implementation.

the minimum number of idles (for each data-frame size it
permits) that the control unit must supply between data
frames sent to the channel, and the number of data
requests it is willing to receive at any time (outstanding
data requests). When each 1/0 operation is initiated, the
control unit informs the channel, using fields in the
command-response frame, of the maximum data-frame size
it can receive and, for a read operation, the number of
data requests it is willing to receive at any time and the
minimum number of idles it requires between successive
data frames. The data-frame size it specifies must be one
of those permitted by the channel, as indicated when the
logical path was established.

Ending last command of chain
The process of ending the execution of the last command
of the chain consists of sending the device-status
information to the channel, checking the number of bytes
of data transferred, and breaking the connection through
the E X O N Director. The 1/0 device always initiates the
ending process, whether the command was a read or a
write. The ending protocol is illustrated, for a write
command, in Figure 4.

When the 1/0 device receives the final data frame, it
sends a status (STA) frame to the channel. The STA frame
contains information that describes the success or failure
of the operation. The channel then prepares to present the
status information to the program and sends an accept-
status (ACC) frame to the I/O device. When the I/O device
receives the ACC frame, it responds with a device-level-
acknowledgment (DACK) frame ending with a disconnect
EOF delimiter, which breaks the connection through the
E X O N Director. #en the channel receives the DACK,
it makes the status information available to the program
and sets the appropriate state information associated with
the subchannel.

The reason for the three-frame handshake in the ending
procedure is to ensure that the channel and I/O device
agree as to whether the channel did or did not accept the
status information. In some situations, the channel is
unable to accept the status information and signals the 1/0

#en a logical path is established, the channel specifies

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Protocol for ending last command of chain for write command.
Data = final data frame; STA = status frame; ACC = accept-
status frame; DACK = device-level-acknowledgment frame;
d = frame ends with disconnect EOF delimiter.

device to retain the status information for presentation
at a later time. Unless the I/O device receives a response
from the channel, it does not know whether or not the
channel accepted the status information. If the STA
frame or the channel response frame is corrupted by
a link error, the 1/0 device does not receive a response
and does not know whether or not to retain the status
information.

The final DACK frame resolves the ambiguity. If the
channel receives the DACK, it knows that the 1/0 device
received its response. If the channel does not receive the
DACK, either the DACK or the channel response to the
status frame has been corrupted. In either case, the
channel can proceed as if the 1/0 device has not received
the channel response. If the VO device has received and
acted on the channel response to the STA frame, there
is no ambiguity in the recovery process. If the channel
accepted the status the first time, the 1/0 device has no
status information to present in the recovery action. If the
channel did not accept the status the first time, the 1/0
device will re-present it in the recovery action.

9 Complete protocol for single CCW
Figure 5 illustrates how the protocols described in the
previous sections are combined to execute a single write
command. When the system was initialized, the channel
established the logical path and permitted the VO device to
have two outstanding data requests. The program issues a
write CCW with a count of 1280 bytes. The channel starts
the I/O operation by sending the 1/0 device a command
(CMD) frame with a CCW count of 1280 bytes. The VO
device accepts the command and responds with a
command-response (CMR) frame specifying a device-
information block (DIB) of 64 bytes, meaning that it will
accept data frames, each holding 64 bytes of data. The
CMR includes a data request (DR bit set) for 256 bytes,
allowing the channel to send 256 bytes (four data frames)

J. C. ELLIOTT AND M. W. SACHS

587

588

Protocol for single write,CCW. Labels above arrows denote fields
in frames; CMD = command frame; CMR = command-
response frame; DR = data-request bit; DIB = number of data
bytes per frame; ACMR = accept-command-response frame;
Data = data frame; RDY = ready bit; E = end bit; CE =
channel-end bit; DE = device-end bit; DRQ = data request
frame; ACC = accept-status frame; DACK = device-level
acknowledgment; c = frame begins with connect SOF delimiter;
d = frame ends with disconnect EOF delimiter.

Protocol for command chaining of a write to a read. Data = data
frame; STA = status frame; CMD = command frame; CMR =
command-response frame.

_"I.x". .. ~

J. C. ELLIOTr AND M. W. SACHS

before it must wait for another data request. The channel
responds with an accept-command-response (ACMR)
frame and immediately follows it with a data frame
containing 64 bytes of data and having the ready (RDY) bit
set, giving the I/O device permission to send more data
requests (DRQ frames). Since the I/O device is allowed to
have two DRQs outstanding at any time, it sends two
more. (It should be understood that although the figure
shows DRQs and data frames interspersed, DRQs are not
interlocked with data frames; DRQs may be sent at any
time at which they are permitted by RDY bits in data
frames.) The channel then sends two more data frames and
a third data frame with the RDY bit set, giving the VO
device permission to send one more DRQ, which it does.
The channel sends another data frame with the RDY bit
set. At this point the I/O device could send another DRQ,
but it does not do so until later. After three more data
frames, the I/O device sends its last DRQ, signifying that
it is the last by setting the end (E) bit in the DRQ. The
channel now sends the remaining data frames, setting the
E bit in the twentieth data frame. The I/O device then
responds to the E bit with a status (STA) frame containing
a transfer count indicating that it received 1280 bytes. The
device-status byte has only the channel-end (CE) and
device-end (DE) bits set, indicating that no errors occurred
and the operation is complete. The channel accepts the
status, verifies that the transfer count is equal to the
number of data bytes it sent, and responds with an accept-
status (ACC) frame. When the I/O device receives the
ACC, it considers the operation completed and responds
with a device-level acknowledgment (DACK) frame
containing a disconnect EOF delimiter, which breaks the
connection through the ESCON Director. When the
channel receives the DACK, it considers the operation
completed and makes the status information available to
the program.

Command-chaining protocol
Command chaining provides sequential execution of
multiple I/O operations in the same channel program. To
preserve compatibility with existing software, each I/O
operation must be concluded with the presentation of the
device-status information. However, since the chain
continues, there is no need to go through the full ending
and initiation protocols described previously. Instead, the
channel responds to the status frame of the first command
by sending the command frame for the second command.
Further, during command chaining, there is no need for
special precautions regarding synchronizing the states of
the subchannel and device. Therefore, there is no need for
the accept-command-response frame. The command-
chaining protocol is illustrated in Figure 6.

removes the connection through the ESCON Director
The ESCON architecture also includes a protocol that

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

between commands in a chain. This protocol is used when
the device has long mechanical delays between commands.
For details, see [l, 41.

Error handling
The ESCON architecture contains extensive facilities for
detecting, reporting, and recovering from various kinds of
errors. In this section, we provide an overview of some of
the key device-level facilities.

Transmission-error handling The selection of fiber optics
permits the design of links that are orders of magnitude
less sensitive to noise than links using electrical
transmission at similar distances. The resulting low
transmission-error rate means that retransmission of a data
frame containing an error does not significantly improve
performance compared to repeating (at the device level)
the 1/0 operation from the beginning. Therefore, the
ESCON architecture relies on the same command-retry
procedures as on the parallel interface for recovery from
errors during 1/0 operations.

Unit check status and sense data When the 1/0 device
detects certain types of errors, such as data errors on its
storage medium and link errors in received information, it
signals these errors by terminating the 1/0 operation and
presenting status with the unit-check bit set. It makes
available sense data which further describe the error or
indicate a recovery action that is to be performed. On the
parallel interface, the program responds to the unit-check
status by issuing a sense command to obtain the sense
data. This can also be done in the ESCON architecture;
however, the ESCON architecture also provides means for
the 1/0 device to automatically send the sense data to the
channel, thus avoiding the additional program activity
required to issue the sense command. When control bits
indicate that both the channel and the 1/0 device are
capable of performing the automatic-sense operation, the
1/0 device includes the sense data in the status frame with
the unit-check bit, in a field called supplemental status. A
corresponding facility in the processor 1/0 architecture,
called concurrent sense, makes the sense data available to
the program with the status information.

Command retry The ESCON architecture provides the
same channel-command-retry capability as the parallel
interface. If the 1/0 device is capable of automatically
retrying a command to recover from an error, the device
includes bits in the status frame which request that the
channel retry the command. The channel responds by re-
initiating the latest command. The ESCON architecture
provides an additional facility, called channel-initiated
command retry, that permits automatic recovery from
channel-detected errors. When the channel detects an error

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

for which automatic retry is appropriate, it sends a frame
to the 110 device that gives the device permission to
request command retry. If the 1/0 device does request
command retry, the channel reissues the command instead
of reporting the error to software. This increases the
proportion of errors that can be retried without invoking
software and thus potentially improves system
performance. It is particularly valuable in the case of
elevated link-error rates, because it allows the link to
continue operating, without severe performance
degradation, until a repair action can be scheduled at the
convenience of the user.

Summary
The IBM Enterprise Systems Connection Architecture is
the message-based architecture of the fiber optic 1/0
interconnect system for the IBM Systed390 computer
family. It replaces the parallel electrical bus system
used since the first Systed360 computers appeared in
1964. The architecture permits exploitation of the high
data-transfer rate and long-distance capabilities of fiber
optics. Its interconnection topology is based on a
dynamic crosspoint switch that provides a high degree of
connectivity among multiple systems and their shared 110
devices. One of the key constraints on the design was
compatibility with channel programs written for the
parallel interface and with most other 1/0 software. Other
goals included high reliability and availability and, in
particular, robustness to enable operation under conditions
of degraded error rates. This paper has described some of
the key features of the ESCON architecture.

Appendix: Systeml390 I/O programming
To define some of the terminology used in this paper, this
appendix provides a brief overview of Systed390 1/0
programming as defined by the ESN390 Principles of
Operation Manual [lo].

Figure 7 shows the data structure for I/O programming.
To perform data transfer or other operations with an 1/0
device, the programmer writes a “channel program” which
specifies the operations the device is to perform and which
contains the addresses of data buffers in the processor
main storage. In order to execute the channel program, the
processor program issues the Start-Subchannel (SSCH)
instruction, whose parameters include the address in main
storage of a control block called the Operation Request
Block (ORB), and the identification number of a
subchannel, which is the representation of the I/O device
to the program. The ORB contains, among other things,
the address of the channel program. Information associated
with the subchannel includes the address of the 1/0 device.
For devices attached to ESCON channels, this address
includes the link address, logical address, and device
address, as discussed in this paper.

J. C. ELLIOTI AND M. W. SACHS

ESN390 architecture I/O-programming data structure.

Channel command word format. The numbers identify bit posi-
tions in the @-bit CCW.

A channel program consists of one or more channel
command words (CCWs). Each CCW identifies a buffer in
processor memory. The buffer contains either data to be
sent to the device or space for receiving data from the
device. As described further below, each CCW may also
contain a command to the device. Figure 8 shows the
structure of a CCW as defined in the ESA/390 architecture.
The command-code field contains the command to the I/O
device. Examples of commands are read, write, and seek.
The byte-count field specifies the number of bytes of data
to be transferred to or from the I/O device. The data-
address field contains the address, in System/390 main
storage, of the data buffer. The flags field contains a
number of control flags, most of which are outside the
scope of this paper.

When the channel program consists of more than one
CCW, the CCWs are said to be chained together under
control of the chain-data (CD) and chain-command (CC)
flags. Chained CCWs are usually executed in the order in

590 which they appear in the program; however, certain

actions of the device may modify this order. The CD flag
in a CCW indicates that the CCW that follows in storage
contains the address of a new buffer to be used to continue
data transfer for the current command. Data chaining thus
permits “scatter-gather,’’ the use of a set of noncontiguous
buffers for the data associated with one command. The CC
flag in a CCW indicates that the next CCW contains a new
1/0 device command and a new buffer address.

The term Z/O operation denotes the execution of a CCW
containing an I/O device command; this includes any
further data-chained CCWs. A channel program consists of
one I/O operation or several 1/0 operations that are
command-chained together. When discussing interface
protocol, we refer to a command-chained channel program
as a chain. Since an 1/0 operation involves a single
command, we frequently use the term command in place
of Z/O operation when discussing ESCON architecture.

Typically, completion of a chain causes an interruption
of the currently executing program and causes a program
to be executed that processes the interruption. The
processor makes available to the interrupt-processing
program information from which the program can
determine the success or failure of the chain and the
number of bytes of data transferred to or from the I/O
device. Included in the interruption information are a byte
of device status, provided by the 1/0 device as part of the
interface protocol, and a byte of channel status. These
status bytes indicate success or failure of the I/O operation
and provide some information about the nature of any
failure that might have occurred. In the case of error
conditions, the I/O device provides one or more bytes of
sense data, which more fully describe the error condition.
The sense data can be transferred to the channel
subsequently using a sense CCW. For certain devices on
ESCON channels, the sense data are automatically
transferred to the channel at the end of the I/O operation.

Acknowledgments
Many people have contributed to the development of the
ESCON architecture. In particular, we express our
appreciation to Paul Brown, John R. Hanagan, Karl
Hoppe, Allan Meritt, John Sorg, and Peter Tallman. We
also thank Robert Dugan, manager of IBM Enterprise
Systems Central 1/0 Architecture, for his support during
the development of the ESCON architecture.

Enterprise Systems Connection Architecture, ESCON,
ESCON Director, Enterprise Systems Architecture/390,
ESN390, Enterprise Systed9000, ES/9000, and Systed360
are trademarks, and Systed390 is a registered trademark, of
International Business Machines Corporation.

References
1. IBM Systeml360 and System1370 I10 Interface Channel to

Control Unit Original Equipment Manufacturers’

J. C. ELLIOTT AND M. W. SACHS IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992

Information, Order No. GA22-6974; available through IBM
branch offices.

Electrical, and Signalling Znterface Protocol
Requirements, American National Standard ANSI X3.183-
1991, American National Standards Institute, New York,
1991.

Ferraiolo, C. E. Hayward, C. D. Heath, A. L. Huffman,
W. R. Kelly, G. W. Peterson, and D. J. Stigliani, Jr.,
“IBM Enterprise Systems Multimode Fiber Optic
Technology,” ZBM J. Res. Develop. 36, 553-576 (1992,
this issue).

Interface, Order No. SA22-7202; available through IBM
branch offices.

Znte~ace Physical Layer, Order No. SA23-0394; available
through IBM branch offices.

Strangwayes, “Enterprise Systems Connection (ESCON)
Architecture-System Overview,” IBMJ, Res. Develop.
36, 535-551 (1992, this issue).

7. C. J. Georgiou, T. A. Larsen, P. W. Oakhill, and B.
Salimi, “The IBM Enterprise Systems Connection
(ESCON) Director: A Dynamic Switch for 200MbIs Fiber
Optic Links,” ZBM J. Res. Develop. 36, 593-616 (1992,
this issue).

8. Zntroducing the Enterprise Systems Connection Manager,
Order No. GC23-0422; available through IBM branch
offices.

9. A. X. Widmer and P. A. Franaszek, “A DC-Balanced,
Partitioned-Block, 8BIlOB Transmission Code,’’ IBM J ,

Res. Develop. 27, 440-451 (1983).

7201; available through IBM branch offices.

2. High Perjormance Parallel Interface Mechanical,

3. N. R. Aulet, D. W. Boerstler, G. DeMario, F. D.

4. ZBM Enterprise Systems Architecture1390 ESCON I10

5 . IBM Enterprke Systems Architecture1390 ESCON ZlO

6. S . A. Calta, J. A. deVeer, E. Loizides, and R. N.

10. IBM EM1390 Principles of Operation, Order No. SA22-

Received January 30, 1991; accepted for publication
June 19, 1991

Joseph C. Elliott ZBM Enterprise Systems, P.O. Box 390,
Poughkeepsie, New York 12602 (ELLIOTT at TDCSYS2). Mr.
Elliott is a senior engineer in the Enterprise Systems Central
System Architecture Department. His primary responsibility
since joining the department in 1980 has been the development
of new I 1 0 architecture, and he was the lead architect in the
development of the ESCON architecture. In 1967 Mr. Elliott
joined IBM in East Fishkill, New York, where he worked on
the design and development of process control systems, the
application of liquid crystal devices, and communication
systems. He received his B.S. degree in electrical engineering
from Drexel University in 1967 and his M.S. degree in
electrical engineering from Syracuse University in 1974. Mr.
Elliott has received an IBM Outstanding Innovation Award for
his work on the ESCON architecture; he has also received the
IBM Third-Level Invention Achievement Award.

Martin w. Sachs ZBM Research Division, Thomas J.
Watson Research Center, P. 0. Box 704, Yorktown Heights,
Nav Yo& 10598 (SACHS at YKTVMH, sachs@watsomibm.com).
Dr. Sachs is a research staff member in the Department of
Computer Sciences at the IBM Thomas J. Watson Research
Center. He received the A.B. degree in physics from Harvard
University in 1959 and the M.S. and Ph.D. degrees in physics,
specializing in nuclear physics, from Yale University in 1960
and 1964, respectively. From 1964 to 1966 (including one year
as a NATO postdoctoral fellow), he performed nuclear physics
research at the Weizmann Institute of Science in Israel. From
1967 to 1976, he was a member of the Yale University Wright
Nuclear Structure Laboratory. There, he continued research in
nuclear reactions and was responsible for the Yale half of an
IBM-Yale joint study in nuclear physics data acquisition and
for the laboratory’s subsequent activities in computer-based
data acquisition. In 1976, he joined the IBM Thomas J.
Watson Research Center, where he initially worked in the
computer systems aspects of signal processing and then began
his current work on the I10 architecture of general-purpose
computers. He has received IBM Outstanding Innovation
Awards for his research on serial 110 architecture and for his
contributions to ESCON architecture. He has also received
three IBM Invention Achievement Awards. Dr. Sachs is a
Senior Member of the Institute for Electrical and Electronics
Engineers, and a member of Sigma Xi, the Association for
Computing Machinery, and the American Physical Society.

591

IBM J. RES. DEVELOP. VOL. 36 NO. 4 JULY 1992 J. C. ELLIO‘IT AND M. W. SACHS

