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This paper deals with the optical recognition of
text data in documents such as engineering
drawings, land-use and land-register maps,
and utility maps. The automatic computer
acquisition of these documents is performed
through the basic steps of vectorization of the
line-structure and recognition of the text data
interspersed in the document. The latter data
are usually handwritten by professional
draftsmen, and may have any size, position,
and orientation. We review some of the
features appropriate to this particular OCR
problem, and suggest a special recognition
strategy. Numerous examples are given. The
results obtained with a prototype system on
actual land-register maps are reported.

1. Introduction
Traditionally, the recognition of hand-printed characters
has been considered of importance for applications in

which the automatic reading of forms written by hand is
needed. More recently, the recognition of hand-printed
characters has gained importance as part of a larger
application known as intelligent forms processing [1].

Another application that requires the recognition of
hand-printed characters is the processing of text data in
the automatic acquisition of engineering drawings and land-
use maps. Much literature on this acquisition problem
exists (surveys can be found in [2, 3]). However, only a
few papers deal with the particular OCR problem
associated with this application [4-6]. This particular OCR
problem can be very difficult—indeed, the symbols can be
of any size and orientation in the image frame; they are
often isolated, offering no contextual information; symbols
and lines may overlap; and the separation between
symbols arranged into strings may be imperfect.

The recognition rate for hand-printed characters cannot
be as good as, say, one for typeset data. This is
particularly true when characters are rotated. The
recognition rate depends on the number of writers and
their training: If this number is high, recognition can be
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Bays (hatched areas) and lakes (dotted areas).

very difficult. If the original documents were produced by
professional writers who were motivated to imitate some
specific font or style, the recognition rate can be
considerably higher [7].

In this paper, we illustrate character recognition
techniques that rely upon the use of features. A feature is
a property that can be measured on the objects to be
recognized. For plane figures such as characters, typical
examples of features are height, width, area, central
moments, number of horizontal or vertical strokes, number
of endpoints, and number of multiple points.

One of our concerns in this paper is to find features that
are completely invariant under motions of the plane such
as shifts, rotations, and contractions/dilations, and are
resistant to reasonable distortions as well as to noise. We
also suggest a strategy of recognition appropriate for these
features.

Some of our features are based on lakes (holes), bays
{concavities), and sides. Figure 1 illustrates lakes and bays;
sides are introduced later. The use of such features as
lakes and bays for OCR was first suggested by Unger in
1956 [8]. Munson [9] and Freeman [2] suggested extensions
of these ideas. A systematic account can be found in Duda
and Hart [10].

We emphasize that no great claims of originality are
intended for most of the concepts and methods that we
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discuss. However, we feel that the overall viewpoint of
this paper is novel. The amount of literature on OCR with
rotated characters is quite limited, and it seems desirable
to present a self-contained treatment of a possible
approach to this problem.

There is a considerable body of literature on hand-
printed character recognition. Among the classical papers,
we quote [11-13]. Recent surveys on the subject include
[14, 15]. An interesting recent research paper is [16]. A
recent survey of the general problem of character
recognition is found in [17]. A survey paper by one of the
main contributors to OCR is [7]. In the past few years,
handwritten-character recognition using dynamic
information has received much attention. Surveys of the
intense research activity in this field can be found in [18, 19].

We conclude this introductory section with a remark on
serifs. It is well known that in OCR a large number of
misclassifications originate from imperfect separation
between adjacent characters. With serif fonts, the fraction
of touching characters, hence the number of
misclassifications, tends to increase because serifs bridge
adjacent characters. In this paper, we ignore serifs, and
assume that writers are motivated to avoid serifs in hand-
printing characters. This greatly simplifies our exposition.
However, our methodology still applies if serifs are
present: What changes is the number of different shapes
that may correspond to any single character (see the
subsection on decomposition of symbols into shapes).

2. Overview of the application

The features and the strategy of recognition discussed in
this paper have been implemented within the character
recognition subsystem of a larger system designed for the
raster-to-vector conversion of engineering drawings and
land-use maps. The latter system has been implemented in
the framework of an independent technical effort, namely
the automatic acquisition of the maps of the Italian Land
Register Authority.

In this section we make some preliminary comments on
the application, and, more specifically, on the nature of the
original documents that are processed. More detailed
treatment of this kind of application can be found in
[20-22]. The overall map acquisition system that we
developed is reported in [23].

A land-register map consists of a set of interconnected
thin lines on a contrasting background. Text information is
always interspersed within the line structure, and
dotted/dashed lines are almost always present.

A portion of a land-register map is shown in Figure 2.
Continuous lines define the boundaries of land properties
and buildings; names identify streets; numbers identify
units or parcels of land property; dashed lines and special
cadastral signs (e.g., arrows) carry conventional
information.
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The standard image data that are input to the raster-to-
vector conversion program are the two-level images
produced by the raster digitization of the originals. An

important processing step is the separation of the text data

from lineal data (there can be spurious contacts between
the two types of data). The image pieces classified as

““lines” and those classified as ““symbols’’ are then routed

along different computation paths: The lines are
vectorized, while the symbols are submitted to the
recognition subsystem.

The symbols that can occur in a land-register map are
usually listed in the standards of the pertinent
administration. For the Italian Land Register Authority

they are 1) ten numerical digits; 2) 52 alphabetic characters

(lowercase and uppercase); and 3) 25 legal cadastral signs

(though only twelve of these signs are actually encountered

in maps).

A small fraction of the symbols are hand-printed by
means of a lettering guide; the rest are handwritten by
professional draftsmen. There may be a wide variety of
fonts (each draftsman has his own calligraphic style).
However, a fortunate circumstance has made recognition
somewhat easier—serifs are almost always absent.

The recognition task is quite difficult in this particular
instance of an OCR application. Indeed, the symbols may
appear in any size and orientation and are usually
scattered around in the picture in the most unpredictable
way. Symbols may be completely isolated, or may be
overlapped with fragments of lines.

Symbols arranged in strings often touch one another;
also, they are often aligned incorrectly. Thus, because the
baseline of a string can be evaluated with only limited
accuracy, it is not advisable to use this information for
recognition. (It can be used for only the broad distinction
between ““up” and ‘‘down”’—for deciding between, say,
6 and 9, b and q, and d and p.)

It must be noted that the organization of nonisolated
symbols into strings, though of limited use for the
recognition of symbols, is, however, an important
processing step. Indeed, we are eventually interested in
recognizing names and numbers, and in assigning them to
the appropriate geometric entities. We mention this here,
since we do not cover this topic in this paper. A detailed
treatment of string detection can be found in [20].

3. Shape features

In a digital image, an object, or figure, is represented by a
set of black points on a white background. By computing

certain features of this set, we can obtain a description of
the object.

Examples of features include the area (number of black
points), the diameter (greatest distance between any two
black points), the ratio between height and width, and,
say, the abscissa of the centroid of the object.
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Portion of a land-register map.

Note that the area and diameter both depend on the
object size, the ratio between height and width depends on
the orientation of the object, and the abscissa of the
centroid depends on the horizontal displacement of the
object. Hence, these features are not appropriate for
characterizing the shape of the object; objects of different
sizes, positions, and orientations may well have the same
shape.

However, if we divide the area by, say, the area of the
convex hull of the object, and the diameter by, say, the
perimeter of the convex hull, the two resulting features are
completely independent of any possible translation,
rotation, and variation in size of the object. In brief, they
are invariant under the similarity transformations of the
plane—motions of the plane within its own two dimensions
that are combinations of translations, rotations, and
scalings.

Since we are concerned with the recognition of hand-
printed characters of any size, position, and orientation,
we need features that do not change value under the
similarity transformations of the plane. This is the first
requirement to be set forth for the features that we intend
to study.

Various features display these invariance properties;
normalized moments and Hu invariants are very popular
examples, as well as the Fourier descriptors of the object
contour. Also, various interesting features with the
required invariance properties can be computed in terms of
both moments and the power spectrum of the object. 489
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Other similarity-transformation invariants can be derived
from medial-axis transformation (MAT), which maps the
object into its skeleton. The computation of geometric
properties from MAT is investigated in [24, 25}.

The second requirement for the features to be used in
the recognition of hand-printed characters is the following:
They should be as insensitive as possible to noise and to
certain transformations of the plane within its own two
dimensions, such as stretching along one direction and
rubber-sheet distortions. These more general motions of
the plane are usually present in hand-printed characters.

Unfortunately, the higher-order terms of both the Hu
invariants and the Fourier descriptors are very sensitive to
noise, while the low-order ones alone provide a very
incomplete and gross representation of a figure. Also, all of
these features are strongly affected by stretching and
rubber-sheet distortions.

Thus, we arrive at the problem of obtaining new features
satisfying the two requirements stated above. We need
features that are exactly invariant under similarity
transformations, are rather insensitive to noise (in
particular to quantization errors), and do not vary much
under stretching and local distortions of the plane.
Features that satisfy these requirements will be called
shape features.

An important class of shape features comprises
topological features, which do not change under the
topological transformations of the plane (one-to-one
continuous mappings whose inverse is also continuous).
Topological features are completely invariant under
similarity transformations, stretching, and any kind of
rubber-sheet distortions. Unfortunately, there are only two
independent topological features of a plane set: the number
of connected components and the number of holes [10].
Since two features are too few, we require some additional
features.

4. A set of shape features
Quite obviously, the number of lakes is an excellent shape
feature. Two other obvious candidate shape features are
the number of bays and the number of corners. A
combined use of these three numbers might seem
convenient, since these numbers are actually independent
as features. Indeed, it is possible to create as many
concavities as desired (in a continuous figure), while
keeping both the number of holes and the number of
corners fixed on certain given values. It is possible to
create as many holes (corners) as desired, while keeping
fixed both the number of corners (holes) and the number of
concavities. Unfortunately, both the number of bays and
the number of corners have serious limitations as features.
In this section we attempt to show why the number of
holes is such a good feature, and why the other two
numbers have limitations. Finally, we define certain new
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shape features which, according to our experiments, can
be quite useful in the recognition of rotated characters.

® Number of lakes
As mentioned previously, the number of lakes is a useful
recognition feature. Indeed, it provides a reasonably
reliable discrimination among three clusters of symbols:
no lakes, one lake, and two lakes (we are not interested in
shapes with more than two lakes). The discrimination is
reliable, since it seldom happens that lakes such as those
in the characters A, B, - - - are created or destroyed by
noise, at least if the sampling rate is adequate. Hence, one
can rely upon a threshold separating noisy from actual
lakes.

In discriminating between ““good”” and ““bad” shape
features, the following criteria are useful. A good shape
feature

¢ Has discriminating capability.

e Is distributed normally within each of the subpopulations
corresponding to symbols.

¢ Has small variance within each of these subpopulations.

e Is not strongly affected by the sampling rate.

¢ Is computationally cheap.

To meet the first requirement in this list, the distributions
over the symbol subpopulations should be as spaced as far
apart as possible, so that the global variance of the feature,
as computed on the overall population, is high.

® Bays and lids
The number of concavities must be handled with some
care in a recognition task; indeed, when using it as a
feature, we need a threshold to separate noise concavities
from true concavities. Strictly speaking, any threshold
value would be arbitrary, and would be a source of errors.
With reference to our criteria for good features, we can
be more specific. The number of bays should at least
discriminate between convex and nonconvex objects.
Since the discrimination of true vs. spurious bays is
somewhat ambiguous, we may detect bays on a convex
object while missing all the bays on a nonconvex one.
Thus, the variance of this feature within the
subpopulations it should discriminate from one another
(shapes with no bay, one bay, .. .) is high. Besides, this
feature is very sensitive to the sampling rate: If the
sampling rate is lowered, the area of the spurious bays
increases, and the performance of the feature decreases.
In practice, bays whose normalized area is greater than
0.03 very likely correspond to actual concavities in the
figure (the normalized area of a bay is the area of the bay
divided by the area of the convex hull of the overall
figure). If we discard all bays with a normalized area of
less than 0.03, we will very likely discard some true
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concavities also. However, it is unlikely that we will
discard large concavities. This remark perhaps suggests
that large concavities are more reliable as safe recognition
features than concavities. (In the prototype system
described in Section 6 we use only large concavities, i.e.,
concavities whose normalized area is no less than 0.03.)

Though number of bays is somewhat unreliable as a
feature, bays can be extremely useful in the recognition of
rotated characters. There is one proviso: One should not
try to use the bays themselves, but their lids instead. A lid
of a plane figure is a maximal portion of the perimeter of
the convex hull of the figure not belonging to the figure
itself. The arrow in Figure 3 represents a lid. Note that the
bay associated with the lid in that figure is concave, which
may produce the impression that there are two bays in the
figure.

Lids are very simple entities; they are vectors, each
equipped with a tail, a tip, and an orientation. We stipulate
that the orientation is chosen such that each lid leaves the
figure on the left (anticlockwise orientation).

Lids play an important role in this paper. We build
certain new features using lids that convey information on
shape. When there is more than one lid, the relative
positions of the successive lids are sometimes sufficient
information for recognition.

® Corners and sides

Obviously, corner detection has good possibilities as an aid
for recognition. The difference between an acute and an
obtuse angle is meaningful, and there is no reasonable
deformation that will carry, say, a regular triangle into a
square. It should then be reasonable to expect corner
detection to be a powerful tool for the recognition of plane
shapes.

However, in the presence of noise, corners actually
become very subjective: When corners are smoothed or
destroyed by noise, as in Figure 4(a), it may be difficult for
even the human eye to evaluate their positions, or even
their existence in a figure. Figures 4(a)—(c) suggest that
certain almost imperceptible degradations of an object can
transform a triangle into a blobby object without corners
at all—it is impossible to establish the stage in this
transformation at which the object ceases to be a triangle.
This demonstrates that any threshold separating objects
with and without corners would be somewhat arbitrary.

On the other hand, we maintain that almost the same
information associated with corners is conveyed by the
sides of a figure, when they exist. The absence or presence
of sides in the convex hull of a figure is relatively easy to
evaluate. If there are sides, their relative position conveys
as much information on shape as the relative position of
lids.

In this paper, we adopt the following, simplified,
definition of the term side. First, we note that the
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Tllustration of a lid.
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Triangles affected by noise.

boundary of the convex hull of a figure always consists of

a sequence of segments (see Figure 5). We normalize the

lengths of these segments by dividing them by their sum.

Segments whose normalized length is greater than a fixed

threshold, typically 0.15, are called sides. Examples of 491
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Perimeter of the convex hull.

Illustration of sides.

sides are given in Figure 6. (It is not so straightforward,
however, to actually implement the concept of sides in a
system. Some heuristics are needed, at least for merging
two consecutive sides that are almost parallel.)

Note that, since it is a vector, each side has a tail, a tip,
and an orientation. For orientation, we stipulate the same
convention as for lids.

There is experimental evidence that sides and lids are
quite independent as features. A possible explanation of
this fact is suggested by the following observations:
Objects without bays have no lids but may have sides; on
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the other hand, in an object with bays a side may include
one or more lids, and there can be short lids not included
in any side.

This (relative) independence may justify the claim that
lids and sides actually convey (relatively) independent
information on shape. In the next subsection, we define
various features in terms of lids and sides.

* New shape features

In the following, d(4, B) denotes the normalized distance
between points 4 and B. The normalization factor is the
perimeter of the convex hull. AB.CD denotes a scalar
product. The following terminology applies to both lids and
sides:

* Two lids (sides) AB, CD are near to one another if

" d(B, C) <t ord(D, A) < t,, where t, is a suitable

. threshold.

4 Two lids (sides) AB, CD are far from one another if

'd(B, C) = t, and d(D, A) = t,, where ¢, is a suitable
threshold.

Of course, we must avoid the case in which a pair of lids
or sides are simultaneously near to and far from one
another. Thus, we must have ¢, < ¢,. Typical values are
t, = 0.2 and #, = 0.25. Let us complete our terminology:

¢ Two lids (sides) AB, CD are consecutive if either there
are no lids (sides) between B and C, or there are no lids
(sides) between D and A.

¢ Two lids (sides) 4B, CD are cooperating or competing
according to whether AB.CD > 0 or AB.CD < 0.

e Two lids (sides) that are far and competing form a
twisted pair of lids (sides).

¢ A sequence of lids (sides), each (but the last) near and
consecutive to the following, forms a chain of lids (sides).

e If the last lid (side) in a chain of lids (sides) is near and
consecutive to the first, the chain forms a cycle of lids
(sides).

We are now able to define the following six shape features:

e By the lid-torsion (side-torsion) of a shape, we mean its
number of twisted pairs of lids (sides).

e The lid-chain-length (side-chain-length) of a shape is the
number of lids (sides) in its chain of lids (sides) {0, if
there is no chain of lids (sides)].

e The lid-cycle-length (side-cycle-length) of a shape is the
number of lids (sides) in its cycle of lids (sides) [0, if
there is no cycle of lids (sides)].

Figure 7 shows characters with different lid-torsion
values. Lid-torsion meets all the criteria for features, with
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the possible exception of the last (we discuss efficiency in
the subsection on computing the shape features). Lid-
torsion is a very stable property for numerous shapes.
Thus, for example, we found exactly two 2s having a lid-
torsion value different from 1 in a population of more than
70 000 handwritten characters. Over the same population,
no X was found with a lid-torsion different from 2.

Figure 8 shows characters with different lid-chain-length
and lid-cycle-length values. These features meet all of the
criteria except the last, to a satisfactory extent; however,
they are not as good as the lid-torsion. On a practical
basis, this amounts to stating that we can achieve good
results by using these features, but we cannot use them in
a straightforward way: We must implement techniques that
will provide reliable results from less reliable data.

The ““side” versions of these features are less reliable
than the corresponding “‘lid”* versions. Their use must be
supplemented with special recognition techniques that can
produce results that are more reliable than the input data.
We discuss this topic in Section 5.

We conclude this section by discussing four shape
features that can be useful in the recognition of hand-
printed characters. To our knowledge, the last three

Lid-torsion.= 0

Lid-torsion = 1

Lid-torsion = 2

Lid-torsion values for different characters.
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Lid-chaindength =3
Lidcyclelength =0

Lid-chain-length =3
Lid-cycle-length =3

Lid-chain-length = 1
Lid-cycle-length = 0

Lid-chain-length and lid-cycle-length values for different
characters.

features in this list have not previously been discussed in
the literature. The first is well known—it is mentioned here
since it cooperates efficiently with the other three.

~ Complexity is defined to be p*/4, where p is the
perimeter of the figure and A is the area. In the real
plane, the ““isoperimetric inequality’ states that
p’lA = 4 for any shape. This quantity increases when
the shape becomes elongated or irregular [24].

o Circularity is defined to be the ratio 4/C, where A4 is
again the area of the object, and C is the area of the
least circle that contains the object and is centered on its
centroid (Figure 9).

» By the symmetry of a plane figure, we mean the fraction
of figure points P whose symmetric P’ relative to the
centroid belongs to the figure.

» The color of the centroid is a feature which takes values
1 or 0 according to whether or not the centroid of the
object belongs to the object.

Let us comment briefly upon these features with
reference to our criteria for good features:
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Circularity.

¢ Complexity (as well as perimeter) is considerably
affected by the sampling rate. Also, since perimeter is
sensitive to noise, this feature has relatively high
variance over the symbol subpopulations.

e Circularity is a reasonable feature, with relatively high
discriminating capability. It becomes very good when the
centroid of the object is replaced by the centroid of its
convex hull. This last is much more stable (it is not
affected by the width of the lines); thus, the variance of
the feature over symbol subpopulations is lowered (a
different measure of circularity is proposed in [26]).

e Symmetry is not very good as a feature. Its variance

over the symbol subpopulations is high (it is very

sensitive to stretching).

The color of the centroid is a very interesting feature. It

has very small variance on certain symbols such as | and

O, and high variance on certain other symbols such as F

and G. It can be useful if the recognition strategy is

appropriate (this is discussed further in Section 5).

We suggest a special strategy for the use of these features
in the next section. We find it convenient, however, to
emphasize an important issue at this point. We must be
able to use a feature on only those shapes for which it
shows a stable behavior. For example, it should be
possible for us to use the color of the centroid on such
shapes as O and |, but not on such shapes as F and G.

5. How to use the features
® Principles of recognition theory

The task of any recognition application is to assign certain
objects to given classes C, C,, * - -, C, according to the
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values of certain features X, - -+, X . It is understood
that the objects to be recognized are value-bearing
individuals for X, - -+, X ; i.e., these quantities can be
measured, or computed, on each of these objects.

C,, -+, C_ are the classes of interest, or proper
classes. In a character recognition application, C,, -+,
C,, represent the different shapes to be discriminated (each
character or symbol usually corresponds to more than one
shape). C, is a special class, called the reject class; if an
object is classified as belonging to C,, it actually means
that the recognizer is unable to classify it as belonging to
exactly one of the proper classes C,, «++, C, .

X, *++, X can be regarded as coordinates in an
n-dimensional feature space, and the objects to be
recognized can be represented by points in that space.
(This notion of feature space is very general; it is just the
Cartesian product of the ranges of the n features.) In this
view, building up a recognizer amounts to defining m
subsets of the feature space, not necessarily pairwise
disjoint, to be used as decision regions for the proper
classes. An object is classified as belonging to a proper
class if its representative point P lies only in the
corresponding decision region. If P lies in more than one,
or none, of these regions, the recognizer realizes that it is
impossible to assign the object to exactly one proper class,
and rejects the object.

In the statistical approach to recognition, the feature
space is usually taken to be a real n-dimensional Euclidean
space, and the decision regions are usually defined by
putting thresholds on certain class probability density
functions. For example, if these density functions are
normal, by putting thresholds on them we obtain decision
regions that are hyperellipsoids. The density functions, in
turn, are estimated on suitable training samples (one
sample for each proper class). For example, if the density
functions are normal, an n-vector of means and ann X n
covariance matrix must be estimated for each of the proper
classes. Incidentally, if » is large, huge amounts of sample
data are needed.

® Suggested strategy
For various reasons, the statistical approach is not
appropriate for exploiting topological and shape features.
More generally, it is not suited for expressing requirements
on the topology of a figure.

We set forth the following two design issues for a
recognizer that uses shape features for classifying plane
shapes:

1. We suggest that a character recognizer should be
implemented as a question-answering system in which
the requirements for a symbol to be classified as
belonging to C;, i = 1, + -+, m, are stored as axioms in
some logical language, and the question to be answered
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(which of the C;s is correct) is stated as a theorem to be
proved (or refused) by means of the inference rules
available in the language. Thus, the approach that we
advocate will make a recognizer very much like a
knowledge-based system.

2. Each requirement set forth for a symbol to belong to
class C,i =1, +++, m, should be as stringent as
possible, with the constraint that the shapes actually
belonging to C; must satisfy that requirement with
probability 1. This device allows the addition of more
and more requirements with almost no danger that the
performance may begin to deteriorate at some specific
point. (This is discussed further in the next subsection.)

Before we give further details about these design issues,
we find it convenient to illustrate with an example the
recognition strategy we suggest.

The following is a (very simplified) set of requirements
that must be met by a symbol in order to be considered as
a candidate T. With the notations given in Figure 10,

. Number of lakes = 0.

. Number of large bays = 2.

. Lid-chain-length = 2.

. Lid-torsion = 0.

. Neither of the two lids is twice as long as the other.

. The angle between C,C, and C,C, is greater than 90°.

AN AW N

A few remarks may further clarify the situation:

¢ As long as we can rely upon a feature extractor that can
detect almost all actual lakes and actual large bays, we
may expect that requirements 1 and 2 are satisfied by
almost all Ts, i.e., with probability 1.

* Requirement 3 may fail to be satisfied if the normalized
distance between C, and C, is greater than ¢,. If we take
t, = 0.2 as suggested above, that distance will be less
than ¢, in a T even in extremely blurred images (in
normalized units of length, ¢, = 0.2 amounts to one fifth
of the whole perimeter of the convex hull of the figure).

¢ By the same token, requirement 4 is satisfied in almost

all Ts. Indeed, C,C, and C,C, can form a twisted pair in

a T if the normalized distance between C, and C, is

greater than ¢, > #,.

If one of the two lids in a T is twice as long as the other,

the T is so slanted that even the human eye is likely to

be unable to distinguish it from a Y.

With reference to Figure 10, it is quite evident that the

angle between C,C, and C,C, can be acute only in a

grossly deformed T. In other words, the probability that

this angle will be acute in a T can be taken to be 0.

In a recognizer implementing issues 1 and 2, each shape to
be recognized has a portion of the program (a box) fully
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dedicated to it. This box contains a collection of rules
involving features whose variance over the subpopulation
corresponding to the shape in question is low. Thus, in the
box corresponding to O we include the requirement that
the color of the centroid be white, in the box
corresponding to | we require it to be black, and in the
boxes corresponding to F and G we ignore the color of the
centroid.

® Formulating the rules

In this subsection, we explain the reasons for the second
of the two design issues that we set forth for a recognizer
implementing shape features.

The example given in the preceding subsection shows
how recognition can be done in a rule-based character
recognition system. It was seen that decision making is
possible provided certain numerical values are specified.
Thus, in rules 1 through 4 certain numerical values are
specified for certain features, while in rules 5 and 6 two
thresholds occur, one associated with the ratio between
the lengths of the lids and the other with the angle between
the same lids.

In general, we expect to have rules of the form

a<f<b, 0y

where f is any one of the features on which the recognition
system is based.

Regarding the actual use of such a system, we must
demonstrate, or at least explain, how these numerical
values can be determined. For example, with reference to
rule 6 in the above example, how do we know that the
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Shapes corresponding to 4.

angle between C,C, and C,C, must be greater than 90° and
not, say, 100°?

Traditionally, these numerical values are estimated from
samples of observations. In principle, we also suggest
some moderate use of training samples. However, we
strongly recommend a special modus operandi, as
explained below.

A commonly occurring situation in the design of
statistical recognition systems is the following. Intuitively,
one expects the classification error rate to decrease if the
dimensionality of the feature vector is increased, or at
worst, if the added features contain no new information, to
remain unchanged. However, this is not always the case.
In practice, the performance of a classifier often reaches a
peak corresponding to a certain set of features, and
decreases if more features are added [27].

This phenomenon is connected with the fact that the
sample sets that we can use are finite, allowing for the
estimation of a limited number of parameters. Adding new
features requires new parameters to be estimated, and
eventually the accumulated imprecision of the estimates
becomes too great. This phenomenon is by no means
confined to statistical recognition systems. It can occur
whenever we introduce new items such as @ and b in
Equation (1), i.e., new parameters that are estimated from
samples.
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Suppose, however, that we take for a a value not
greater than «, and for b a value not less than B8, where «
and B are the ideal values that would be estimated by
means of an infinite training sample. Our values for a and
b would actually be independent of the sample size. If the
values for @ and b in Equation (1) are estimated this way,
we may expect that the addition of the requirement
represented by Equation (1) does not imply that we are
asking too much of a finite sample; thus, it seems
reasonable that we should not see any degradation.

That is what we actually observed. If we assume ranges
that are almost surely satisfied, i.e., are satisfied with
probability 1, we may have no improvement in
performance, but we also have no degradation.

This criterion can be implemented in the following
procedure for evaluating the interval parameters in the
classifier rules. We determine a, b in Equation (1) from a
(very large) training sample as follows. The sample is
searched for the characters that bear the smallest (largest)
value of f; if the human eye can recognize one of these
characters, the corresponding value of f is taken to be the
value of a (of b) in Equation (1). If a character cannot be
recognized by the human eye, the characters are
discarded, and the procedure is iterated with the remaining
characters in the sample.

The critical premise of this method of rule formulation is
the following: Let us again refer to Equation (1) as the
typical rule. Quite obviously, the discriminating power of a
rule of this form is diminished if we take a so small and b
so large that a < a and b = B both hold with probability 1.

However, with the recognition strategy that we suggest,
the ability to discriminate shapes is an outcome of the
accumulation of numerous rules of the form (1). In turn,
such an accumulation of rules is made possible precisely
by choosing a, b satisfyinga < « and b = B with
probability 1.

® Decomposition of symbols into shapes

In general, each character, or sign, to be recognized can
be written in many shapes and forms. For this reason,
splitting the character or sign into more than one shape is
useful. (The versions of a character or sign which are to be
regarded as different from one another depend on the
feature set that we choose for recognition.)

To the recognizer, these shapes appear as different
characters to be discriminated. For example, Figure 11
shows four distinct shapes, all corresponding to 4: The
recognizer treats these shapes as different symbols.

A shape identification number (SIN) is assigned to each
shape. The recognizer returns a set of SINSs corresponding
to each query symbol. Each SIN is then translated into the
corresponding set of character identification numbers
(CINs). (In the great majority of cases, this last set will
contain exactly one CIN. However, it is possible that a
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shape may be shared by more than one character, in which
case the set will contain more than one element.)

o Computing the shape features

The computation of features invariant under many possible
motions is intrinsically complex, and may require a
significant amount of time. The OCR algorithm using
decision trees by Casey and Nagy [28] is a good example
to illustrate this fact. This is one of the most efficient
algorithms reported in the literature. However, the speed
of recognition depends on the quality of the input; if the
input is distorted or noisy, the time required for
recognition is noticeably increased [1].

It is advisable to choose an image representation suited
to the particular computations to be performed. For
example, Freeman’s chain code representation of the
border is well suited for features based on bays, corners,
and other singularities of the object contour [29].

Another image representation suited for the features
discussed in Section 3 is the graph representation. A
preliminary report on this image representation
can be found in [30], and a detailed study is in
preparation.*

However, even if the image representation is carefully
chosen, the computational complexity of the features
suggested in Section 3, particularly of those based on the
convex hull, is high; thus, an OCR system based on these
features is condemned to be slow. For vectorization
applications such as the one described in Section 2, the
time required for character recognition is not critical: The
overall time required for processing one drawing is bound
to the vectorization process.

Indeed, there are about two thousand characters and
special signs in one map, so, even with a slow OCR
subsystem, the time required for character recognition is a
small fraction of that required by the raster-to-vector
conversion (besides, the two processing tasks are
independent, and can be done in parallel).

® Use of context

Quite obviously, the methods discussed in this paper do
not allow for discriminating between, say, 6 and 9,

g and b, or d and p. In general, if two symbols can be
mapped into one another by a rotation, they cannot be
discriminated by these techniques.

In all cases in which it is impossible to use some
context, e.g., when the symbols are isolated, the
recognizer rejects these symbols. All rejected symbols are
submitted to an operator for visual recognition.

If a symbol rejected by the recognizer belongs to a
string, and the other elements of the string are
unambiguously classified, the information available is in

*S. Di Zenzo, ‘‘A New Binary Image Representation,”” unpublished work.
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Discriminating between mirror images.

general sufficient for resolving the ambiguity (possibly with
the aid of a dictionary).

6. Examples

® Discriminating between mirror images

It is well known that shape is in general not preserved in
mirror reflections. For example, an S is carried into a
different shape S’ by a mirror reflection: 8’ is quite
different from S, since there is no similarity transformation
of the plane that will carry S’ back into S. In a very noisy
and blurred image, S’ might be a 2. Similarly, a b is
mapped into a d by a mirror reflection.

A recognizer of rotated characters should embody the
capability to discriminate between such mirror images with
an expected error rate very close to 0. None of the
features discussed above can distinguish between mirror
images. Indeed, all the features discussed until now are not
sensitive to mirror reflections.

However, it is possible by means of lids (or sides) to
achieve an almost sure discrimination between mirror
images.

We give two examples.

To discriminate between S and 2 we can proceed as
follows (Figure 12): The list of requirements for a symbol
to be classified as an S includes the following items:

e There should be at least two large bays.

¢ The vector from the centroid of the first bay to that of
the second should form an obtuse angle with the lid of
the first bay.

Bays are arranged in order of decreasing area. However, it
is easy to verify that this criterion is independent of which
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Examples of the characters D and O.

of the two largest bays is taken as the first. On the other
side, the list of requirements for the symbol 2 includes the
following:

e There should be at least two large bays.

¢ The vector from the centroid of the first bay to that of
the second should form an acute angle with the lid of the
first bay.
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Our second example illustrates the discrimination
between b and d. We can proceed as follows (Figure 13):
The list of requirements for the symbol b includes the
following items:

¢ There should be one lake and at least one bay.

e The vector from the centroid of the lake to that of the
first bay should form an acute angle with the lid of the
first bay.

The list of requirements for the symbol d includes the
following:

¢ There should be one lake and at least one bay.

¢ The vector from the centroid of the lake to that of the
first bay should form an obtuse angle with the lid of the
first bay.

It is self-evident, and is confirmed by our experiments,
that these requirements for b and d are satisfied even in
grossly deformed bs and ds. We have experienced no error
in discriminating between mirror images in all of the
experiments done so far.

® Discriminating between D and O

In early OCR systems, discriminating between D and O
was a critical subtask. This is no longer true, at least for
unrotated characters. Thus, the misclassification rate of

D and O in most of the commercially available OCR
programs that rely upon knowledge of the baseline is about
average. If the characters are rotated, the discrimination
between D and O is still somewhat critical [4].

In this example, we discuss the discrimination of D and
O in the case of hand-printed characters of any size,
position, and orientation (Figure 14).

The following is the relevant subset of requirements that
should be met by a symbol to qualify as a candidate O
[Figure 14(b)}:

. Number of lakes = 1.

. Number of large bays = 0.
Color of centroid = 0.
Symmetry = 0.3.

. Circularity = 0.4.

. Side-chain-length < 1.

. Maximum side-length < 0.3.

The discrimination procedure is as follows:

* As in the example given in the subsection on strategy,
we assume that our system is equipped with a feature
extractor able to discard almost all noisy lakes and bays.
If that facility is in fact available, we may expect that
requirements 1 and 2 are satisfied by almost all Os.
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e The color of the centroid is useful when it is almost
surely 0 or almost surely 1. In other cases this feature
should not be used.

The theoretical value of both circularity and symmetry
for a perfectly round O is 1. This theoretical value is
replaced by the interval (0.3, 1) to account for noise and
distortion: This enlargement of a possible range of values
for a feature is very well suited to illustrate what we
would call the ““probability = 1°” strategy.

With reference to requirement 6, we assume that an O
may exhibit one or more sides, but not a pair of sides
that are both consecutive and near. This is a weak
assumption for Os that, at least in the intention of the
writer, are round. Note that an O like that in Figure
14(c) must be regarded as a new symbol, and must be
represented by a separate shape.

The first three requirements for D are exactly the same
as for O, and we do not repeat them. Requirements 4-7
are replaced by the following:

4'. 0.2 < symmetry < 0.95.

5'. 0.3 < circularity < 0.7.

6'. Side-chain-length = 1.

7'. Maximum-side-length = 0.3.

Let us try to explain the thresholds in 4'-7'. We imagine
that the convex hull of an ideal D is just a semicircle.
Then, an obvious computation shows that the normalized
length of the straight portion of the border is

2
= 04.
2+

With reference to this ideal shape of a D, one finds a
theoretical circularity of 0.423. The theoretical value of
symmetry depends on the line width, with a maximum of
0.931 when the line width is so large that the lake
disappears and the whole symbol becomes a semicircle.
Obviously, these very theoretical values serve as reference
values. In this context, here are a few comments on rules
4'-7":

e It is highly improbable that a distorted figure will exhibit
a symmetry value greater than the theoretical one. This
explains why the upper bound of the symmetry in 4’ is
not much greater than the theoretical value. The lower
bound for symmetry is very low; experience has shown
that the actual value of the symmetry of a figure whose
theoretical value is less than 1 may decrease to very low
values.

e The upper/lower bounds of circularity in 5’ are the
maximum/minimum circularity values measured on
isolated Ds recognized as such by the human eye.
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Table 1 Character classification results for a total of 71 796

characters.
Result of Number of Percentage
classification characters of total
characters
Successful 66387 92.47
recognition
Ambiguous 195 0.27
classification
Strict rejection 4722 6.57
Substitution 492 0.69

error

e It is required that a D must have a side of normalized
length at least 0.3. For an O, which theoretically should
not have sides, a side of length at most 0.3 is tolerated.
Thus, the decision regions of O and D turn out to be
disjoint. This choice excludes ambiguity between these
two symbols (which would produce a reject). Hence,
success or misclassification error are the only
possibilities.

7. Experiments

Table 1 summarizes the classification results over a sample
of 40 actual cadastral maps. The figures have been
computed as follows.

The recognition subsystem outputs a set of SINs
corresponding to each query symbol. From these, a set of
CINs is computed that we call SET. If SET = J or
|SET| > 1, the system is able to detect its inability to
recognize the symbol, and will reject it. If |SET| = 1, we
have success or error according to whether the unique
character identification number in SET is correct or not.

Ambiguous classifications occur when |SET| > 1, strict
rejection when |SET| = &.

Each map contains about 1800 alphameric characters
and special cadastral signs. The maps come from various
locations, and the estimated number of writers is 20.

8. Conclusions

In this paper, we have discussed a special OCR problem—
recognizing the characters and special symbols found in
land-register maps.

We have suggested a feature-based approach, using
features that are not sensitive to rotations, translations,
and scaling, and are resistant to noise and distortions
as well. Various features which, according to our
experimentation, have these properties have been
reviewed.

It has been suggested that a recognizer implementing

such features can be structured as a rule-based system, 499
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and an operational procedure has been specified for
evaluating the parameters that occur in the rules.

Though in this paper we have focused on land-register
maps, the approach presented here can be applied to other
kinds of technical drawings. The authors have undertaken
an effort to extend this OCR technology to utility maps.
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