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This paper  deals with the optical recognition of 
text data in documents  such  as  engineering 
drawings,  land-use  and  land-register  maps, 
and utility maps.  The automatic  computer 
acquisition of  these  documents is performed 
through the  basic  steps  of  vectorization of the 
line-structure  and  recognition  of  the  text data 
interspersed in the  document. The latter data 
are usually  handwritten  by  professional 
draftsmen,  and  may  have  any  size,  position, 
and  orientation. We review  some  of  the 
features  appropriate to this particular OCR 
problem,  and  suggest  a  special  recognition 
strategy.  Numerous  examples  are  given.  The 
results obtained  with  a  prototype  system on 
actual  land-register  maps  are  reported. 

1. Introduction 
Traditionally, the recognition of hand-printed characters 
has been considered of importance for applications in 

which the automatic reading of forms written by hand is 
needed. More recently, the recognition of hand-printed 
characters has gained importance as part of a larger 
application known as intelligent forms processing [ 11. 

Another application that requires the recognition of 
hand-printed characters is the processing of.text data in 
the automatic acquisition of engineering drawings and land- 
use maps.  Much literature on this acquisition problem 
exists (surveys can be found in [2, 31). However, only a 
few papers deal with the particular OCR problem 
associated with this application [4-61. This particular OCR 
problem can be very difficult-indeed, the symbols can be 
of any size and orientation in the image frame; they are 
often isolated, offering no contextual information; symbols 
and lines may overlap; and the separation between 
symbols arranged into strings may be imperfect. 

be as good as, say, one for typeset data. This is 
particularly true when characters are rotated. The 
recognition rate depends on the number of writers and 
their training: If this number is high, recognition can be 

The recognition rate for hand-printed characters cannot 
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Bays (hatched areas) and lakes (dotted areas). 

very difficult.  If the original documents were produced by 
professional writers who were motivated to imitate some 
specific font or style, the recognition rate can be 
considerably higher [7]. 

In this paper, we illustrate character recognition 
techniques that rely upon the use of features. A feature is 
a property that can be measured on the objects to be 
recognized. For plane figures such as characters, typical 
examples of features are height, width, area, central 
moments, number of horizontal or vertical strokes, number 
of endpoints, and number of multiple points. 

One of our concerns in this paper is to find features that 
are completely invariant under motions of the plane such 
as shifts, rotations, and contractions/dilations, and are 
resistant to reasonable distortions as well as to noise. We 
also suggest a strategy of recognition appropriate for these 
features. 

Some of our features are based on lakes (holes), bays 
(concavities), and sides. Figure 1 illustrates lakes and bays; 
sides are introduced later. The use of such features as 
lakes and bays for OCR was first suggested by Unger in 
1956 [8]. Munson [9] and Freeman [2] suggested extensions 
of these ideas. A systematic account can be found in Duda 
and Hart [lo]. 

We emphasize that no great claims of originality are 
488 intended for most of the concepts and methods that we 

discuss. However, we feel that the overall viewpoint of 
this paper is  novel. The amount of literature on OCR  with 
rotated characters is quite limited, and it seems desirable 
to present a self-contained treatment of a possible 
approach to this problem. 

There is a considerable body of literature on hand- 
printed character recognition. Among the classical papers, 
we quote [ll-131. Recent surveys on the subject include 
[14, 151. An interesting recent research paper is [16]. A 
recent survey of the general problem of character 
recognition is found in [17]. A survey paper by one of the 
main contributors to OCR is [7]. In the past few years, 
handwritten-character recognition  using dynamic 
information has received much attention. Surveys of the 
intense research activity  in  this  field can be  found  in [18, 191 

We conclude this introductory section with a remark on 
serifs. It is  well  known that in  OCR a large number of 
misclassifications originate from imperfect separation 
between adjacent characters. With  serif fonts, the fraction 
of touching characters, hence the number of 
misclassifications, tends to increase because serifs bridge 
adjacent characters. In this paper, we ignore serifs, and 
assume that writers are motivated to avoid serifs in hand- 
printing characters. This greatly simplifies our exposition. 
However, our methodology still applies if serifs are 
present: What changes is the number of different shapes 
that may correspond to any single character (see the 
subsection on decomposition of symbols into shapes). 

I 

I 

2. Overview of the  application 
The features and the strategy of recognition discussed in 
this paper have been implemented within the character 
recognition subsystem of a larger system designed for the 
raster-to-vector conversion of engineering drawings and 
land-use maps. The latter system has been implemented  ir 
the framework of an independent technical effort,  namely 
the automatic acquisition of the maps of the Italian Land 
Register Authority. 

In this section we  make some preliminary comments on 
the application, and, more  specifically, on the nature of th 
original documents that are processed. More detailed 
treatment of this kind of application can be found in 
[20-221. The overall map acquisition system that we 
developed is reported in [23]. 

A land-register map consists of a set of interconnected 
thin lines on a contrasting background. Text information i! 
always interspersed within the line structure, and 
dotted/dashed lines are almost always present. 

A portion of a land-register map is shown in Figure 2. 
Continuous lines define the boundaries of land properties 
and  buildings; names identify streets; numbers identify 
units or parcels of land property; dashed lines and special 
cadastral signs (e.g., arrows) carry conventional 
information. 

5 
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The standard image data that are input to the raster-to- 
vector conversion program are the two-level images 
produced by the raster digitization of the originals. An 
important processing step is the separation of the text data 
from lineal data (there can be spurious contacts between 
the two types of data). The image pieces classified as 
“lines” and those classified as “symbols” are then routed 
along  different computation paths: The lines are 
vectorized, while the symbols are submitted to the 
recognition subsystem. 

usually listed in the standards of the pertinent 
administration. For  the Italian Land Register Authority 
they are 1) ten numerical digits; 2) 52 alphabetic characters 
(lowercase and uppercase); and 3) 25 legal cadastral signs 
(though only twelve of these signs are actually encountered 
in maps). 

A small fraction of the symbols are hand-printed by 
means of a lettering guide; the rest are handwritten by 
professional draftsmen. There may be a wide variety of 
fonts (each draftsman has his own calligraphic style). 
However, a fortunate circumstance has made recognition 
somewhat easier-serifs are almost always absent. 

The recognition task is quite difficult  in this particular 
instance of an OCR application. Indeed, the symbols may 
appear in any size and orientation and are usually 
scattered around in the picture in the most unpredictable 
way. Symbols may be completely isolated, or may  be 
overlapped with fragments of lines. 

Symbols arranged in strings often touch one another; 
also, they are often aligned incorrectly. Thus, because the 
baseline of a string can be evaluated with only limited 
accuracy, it is not advisable to use this information for 
recognition. (It can be used for only the broad distinction 
between “up” and “down”-for  deciding between, say, 
6 and 9, b and q, and d and p.) 

It must  be noted that the organization of nonisolated 
symbols into strings, though of limited use for the 
recognition of symbols, is, however, an important 
processing step. Indeed, we are eventually interested in 
recognizing names and numbers, and in  assigning them to 
the appropriate geometric entities. We mention this here, 
since we do not cover this topic in this paper. A detailed 
treatment of string detection can be found in [20]. 

The symbols that can occur in a land-register map are 

3. Shape  features 
In a digital  image,  an object, or figure,  is represented by a 
set of black points on a white background. By computing 
certain features of this set, we can obtain a description of 
the object. 

Examples of features include the area (number of black 
points), the diameter (greatest distance between any two 
black points), the ratio between height and width, and, 
say, the abscissa of the centroid of the object. 

Portion of a land-register map. 

Note that the area and diameter both depend on the 
object size, the ratio between height and width depends on 
the orientation of the object, and the abscissa of the 
centroid depends on the horizontal displacement of the 
object. Hence, these features are not appropriate for 
characterizing the shape of the object; objects of different 
sizes, positions, and orientations may  well have the same 
shape. 

However, if we divide the area by, say, the area of the 
convex hull  of the object, and the diameter by, say, the 
perimeter of the convex hull, the two resulting features are 
completely independent of any possible translation, 
rotation, and variation in size of the object. In  brief, they 
are invariant under the similarity  transfonnations of the 
plane-motions of the plane within its own two dimensions 
that are combinations of translations, rotations, and 
scalings. 

Since we are concerned with the recognition of hand- 
printed characters of any size, position, and orientation, 
we need features that do not change value under the 
similarity transformations of the plane. This is the first 
requirement to be set forth for the features that we intend 
to study. 

Various features display these invariance properties; 
normalized moments and Hu invariants are very popular 
examples, as well as the Fourier descriptors of the object 
contour. Also, various interesting features with the 
required invariance properties can be computed in terms of 
both moments and the power spectrum of the object. 
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Other similarity-transformation invariants can be derived 
from medial-axis transformation (MAT), which maps the 
object into its skeleton. The computation of geometric 
properties from MAT is investigated in [24, 251. 

The second requirement for the features to be used in 
the recognition of hand-printed characters is the following: 
They should be as insensitive as possible to noise and to 
certain transformations of the plane  within its own two 
dimensions, such as stretching along one direction and 
rubber-sheet distortions. These more general motions of 
the plane are usually present in hand-printed characters. 

Unfortunately, the higher-order terms of both the Hu 
invariants and the Fourier descriptors are very sensitive to 
noise,  while the low-order ones alone provide a very 
incomplete and gross representation of a figure. Also, all  of 
these features are strongly affected by stretching and 
rubber-sheet distortions. 

Thus, we arrive at the problem of obtaining new features 
satisfylng the two requirements stated above. We  need 
features that are exactly invariant under similarity 
transformations, are rather insensitive to noise (in 
particular to quantization errors), and do not vary much 
under stretching and local distortions of the plane. 
Features that satisfy these requirements will be called 
shape features. 

An important class of shape features comprises 
topological features, which do not change under the 
topological transformations of the plane (one-to-one 
continuous mappings whose inverse is also continuous). 
Topological features are completely invariant under 
similarity transformations, stretching, and any kind of 
rubber-sheet distortions. Unfortunately, there are only two 
independent topological features of a plane set: the number 
of connected components and the number of holes [lo]. 
Since two features are  too few,  we require some additional 
features. 

4. A set of shape  features 
Quite obviously, the number of lakes is  an excellent shape 
feature. Two other obvious candidate shape features are 
the number of bays and the number of corners. A 
combined use of these three numbers might seem 
convenient, since these numbers are actually independent 
as features. Indeed, it is possible to create  as many 
concavities as desired (in a continuous figure),  while 
keeping both the number of holes and the number of 
corners fixed on certain given values. It is possible to 
create  as many holes (corners) as desired, while keeping 
fixed both the number of comers (holes) and the number of 
concavities. Unfortunately, both the number of bays and 
the number of corners have serious limitations as features. 

In this section we attempt to show why the number of 

490 numbers have limitations. Finally, we define certain new 
holes is such a good feature, and why the other two 

shape features which, according to our experiments, can 
be quite useful  in the recognition of rotated characters. 

Number of lakes 
As mentioned previously, the number of lakes is a useful 
recognition feature. Indeed, it provides a reasonably 
reliable discrimination among three clusters of symbols: 
no lakes, one lake, and two lakes (we are not interested in 
shapes with more than two lakes). The discrimination is 
reliable, since it seldom happens that lakes such as those 
in the characters A, B, - - are created or destroyed by 
noise, at least if the sampling rate is adequate. Hence, one 
can rely upon a threshold separating noisy from actual 
lakes. 

In discriminating between “good” and “bad” shape 
features, the following criteria are useful. A good shape 
feature 

Has discriminating capability. 
Is distributed normally within each of the subpopulations 
corresponding to symbols. 
Has small variance within each of these subpopulations. 

0 Is not strongly affected by the sampling rate. 
Is computationally cheap. 

To meet the first requirement in this list, the distributions 
over the symbol subpopulations should be as spaced as far 
apart as possible, so that the global variance of the feature, 
as computed on the overall population, is high. 

Bays and lids 
The number of concavities must be handled  with some 
care in a recognition task; indeed, when using  it as a 
feature, we need a threshold to separate noise concavities 
from true concavities. Strictly speaking, any threshold 
value would be arbitrary, and would be a source of errors. 

With reference to our criteria for good features, we can 
be more  specific. The number of bays should at least 
discriminate between convex and nonconvex objects. 
Since the discrimination of true vs. spurious bays is 
somewhat ambiguous, we may detect bays on a convex 
object while  missing all the bays on a nonconvex one. 
Thus, the variance of this feature within the 
subpopulations it should discriminate from one another 
(shapes with no bay, one bay, . . .) is high. Besides, this 
feature is very sensitive to the sampling rate: If the 
sampling rate is lowered, the area of the spurious bays 
increases, and the performance of the feature decreases. 

In practice, bays whose normalized area is greater than 
0.03 very likely correspond to actual concavities in the 
figure (the normalized area of a bay is the area of the bay 
divided by the area of the convex hull  of the overall 
figure). If we discard all bays with a normalized area of 
less than 0.03, we will very likely discard some true 
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concavities also. However, it  is  unlikely that we  will 
discard large concavities. This remark perhaps suggests 
that large concavities are more reliable as safe recognition 
features than concavities. (In the prototype system 
described in Section 6 we use only large concavities, i.e., 
concavities whose normalized area is no less than 0.03.) 

Though number of bays is somewhat unreliable as a 
feature, bays can be extremely useful  in the recognition of 
rotated characters. There is one proviso: One should not 
try to use the bays themselves, but their lids instead. A lid 
of a plane figure  is a maximal portion of the perimeter of 
the convex hull  of the figure not belonging to the figure 
itself. The arrow in Figure 3 represents a lid. Note that the 
bay associated with the lid  in that figure is concave, which 
may produce the impression that there are two bays in the 
figure. 

Lids are  very simple eiltities; they are vectors, each 
equipped with a tail, a tip, and an orientation. We stipulate 
that the orientation is chosen such that each lid leaves the 
figure on the left (anticlockwise orientation). 

certain new features using lids that convey information on 
shape. When there is  more than one lid, the relative 
positions of the successive lids are sometimes sufficient 
information for recognition. 

Lids play an important role in this paper. We  build 

Corners and sides 
Obviously, comer detection has good possibilities as an aid 
for recognition. The difference between an acute and an 
obtuse angle  is  meaningful, and there is no reasonable 
deformation that will carry, say, a regular triangle into a 
square. It should then be reasonable to expect corner 
detection to be a powerful tool for the recognition of plane 
shapes. 

However, in the presence of noise, corners actually 
become very subjective: When corners are smoothed or 
destroyed by noise, as in Figure 4(a),  it  may be difficult for 
even the human eye to evaluate their positions, or even 
their existence in a figure. Figures 4(a)-(c) suggest that 
certain almost imperceptible degradations of an object can 
transform a triangle into a blobby object without corners 
at all-it is  impossible to establish the stage in this 
transformation at which the object ceases to be a triangle. 
This demonstrates that any threshold separating objects 
with and without corners would be somewhat arbitrary. 

On the other hand, we maintain that almost the same 
information associated with corners is conveyed by the 
sides of a figure, when they exist. The absence or presence 
of sides in the convex hull  of a figure  is relatively easy to 
evaluate. If there are sides, their relative position conveys 
as much information on shape as the relative position of 
lids. 

In this paper, we adopt the following,  simplified, 
definition of the term side. First, we note that the 
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Illustration of a  lid. 

Triangles affected by noise. 

boundary of the convex hull of a figure always consists of 
a sequence of segments (see Figure 5). We normalize the 
lengths of these segments by dividing  them by their sum. 
Segments whose normalized  length  is greater than a fixed 
threshold, typically 0.15, are called sides. Examples of 491 
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" * TWO lids (sides) AB, CD are near to one another if 
~ d(B, C) I t ,  or d(D,  A )  I t , ,  where t ,  is a suitable 

1 g!isd;sides) AB, CD are far from one another if 
d(B, C) 2 t ,  and d(D,  A )  2 t,, where t ,  is a suitable 
threshold. 

Of course, we must  avoid the case in which a pair of lids 
or sides are simultaneously near to and far from one 
another. Thus, we must have t ,  < t , .  Typical values are 
t ,  = 0.2 and t ,  = 0.25. Let us complete our terminology: 

Two lids (sides) AB, CD are consecutive if either there 
are no lids (sides) between B and C, or there are no lids 
(sides) between D and A .  

according to whether AB.m > 0 or A3.m < 0. 

twistedpair of lids (sides). 

consecutive to the  following,  forms a chain of lids  (sides). 

" 

Two lids (sides) AB, CD are cooperating or competing 

Two lids (sides) that are far and competing form a 

A sequence of lids (sides), each (but the last) near and 

If the last lid (side) in a chain of lids (sides) is near and 
consecutive to the first, the chain forms a cycle of lids 

Illustration of sides. (sides). 

We are now able to define the following six shape features: 

sides are given  in Figure 6.  (It is not so straightforward, 
however, to actually implement the concept of sides in a 
system. Some heuristics are needed, at least for merging 
two consecutive sides that are almost  parallel.) 

and  an orientation. For orientation, we stipulate the same 
convention as for lids. 

There is experimental evidence that sides and lids are 
quite independent as features. A possible explanation of 
this fact is suggested by the following observations: 

Note that, since it is a vector, each side has a tail, a tip, 

492 Objects without bays have no lids but may have sides; on 

By the lid-torsion (side-torsion) of a shape, we mean its 
number of twisted pairs of lids (sides). 
The lid-chain-length (side-chain-length) of a shape is the 
number of lids (sides) in its chain of lids (sides) [0, if 
there is no chain of lids (sides)]. 
The lid-cycle-length (side-cycle-length) of a shape is the 
number of lids (sides) in its cycle of lids (sides) [0, if 
there is no cycle of lids (sides)]. 

Figure 7 shows characters with different lid-torsion 
values. Lid-torsion meets all the criteria for features, with 
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the possible exception of the last (we discuss efficiency  in 
the subsection on computing the shape features). Lid- 
torsion is a very stable property for numerous shapes. 
Thus, for example, we found exactly two 2s having a lid- 
torsion value different  from 1 in a population of more than 
70 OOO handwritten characters. Over the same population, 
no X was found with a lid-torsion different  from 2. 

Figure 8 shows characters with different  lid-chain-length 
and  lid-cycle-length values. These features meet all of the 
criteria except the last, to a satisfactory extent; however, 
they are not as good as the lid-torsion. On a practical 
basis, this amounts to stating that we can achieve good 
results by using these features, but we cannot use them in 
a straightforward way: We must implement techniques that 
will provide reliable results from less reliable data. 

The “side” versions of these features are less reliable 
than the corresponding “lid” versions. Their use must be 
supplemented with special recognition techniques that can 
produce results that are more reliable than the input data. 
We discuss this topic in Section 5. 

We conclude this section by discussing four shape 
features that can be useful  in the recognition of hand- 
printed characters. To our knowledge, the last three 

Lid-torsion = 0 

Lid-torsion = 1 

Lid-torsion = 2 

Lid-torsion values for different characters. 

Lid-chain-length  and  lid-cycle-length  values  for  different 
characters. 

features in this list have not previously been discussed in 
the literature. The first  is  well known-it is mentioned here 
since it cooperates efficiently with the other three. 

Complexity is defined to bep2/A, where p is the 
perimeter of the figure andA is the area. In the real 
plane, the “isoperimetric inequality” states that 
p21A h 457 for any shape. This quantity increases when 
the shape becomes elongated or irregular [24]. 
Circularity is defined to be the ratio AIC, where A is 
again the area of the object, and C is the area of the 
least circle that contains the object and is centered on its 
centroid (Figure 9). 
By the symmetry of a plane figure, we mean the fraction 
of figure points P whose symmetric P’ relative to the 
centroid belongs to the figure. 
The color of the centroid is a feature which takes values 
1 or 0 according to whether or not the centroid of the 
object belongs to the object. 

Let us comment briefly  upon these features with 
reference to our criteria for good features: 
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Circularity. 

Complexity (as well as perimeter) is considerably 
affected by the sampling rate. Also, since perimeter is 
sensitive to noise, this feature has relatively high 
variance over the symbol subpopulations. 
Circularity is a reasonable feature, with relatively high 
discriminating capability. It becomes very good when the 
centroid of the object is replaced by the centroid of its 
convex hull. This last is much  more stable (it is not 
affected by the width of the lines); thus, the variance of 
the feature over symbol subpopulations is lowered (a 
different measure of circularity is proposed in [26]).  
Symmetry is not very good as a feature. Its variance 
over the symbol subpopulations is high (it is very 
sensitive to stretching). 
The color of the centroid is a very interesting feature. It 
has very small variance on certain symbols such as I and 
0, and high variance on certain other symbols such as F 
and G. It can be useful if the recognition strategy is 
appropriate (this is discussed further in Section 5). 

We suggest a special strategy for the use of these features 
in the next section. We  find it convenient, however, to 
emphasize an important issue at this point. We must be 
able to use a feature on only those shapes for which it 
shows a stable behavior. For example, it should be 
possible for us to use the color of the centroid on such 
shapes as 0 and I, but not on such shapes  as F and G. 

5. How to use  the  features 

Principles  of  recognition  theory 
The task of any recognition application is to assign certain 

494 objects to given classes C,,, C,, , Cm according to the 
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values of certain features X , ,  * , X,,. It is understood 
that the objects to be recognized are value-bearing 
individuals for X , ,  * , X,,; i.e., these quantities can be 
measured, or computed, on each of these objects. 
C,, * , Cm are the classes of interest, orproper 

classes. In  a character recognition application, C,, - * , 
Cm represent the different shapes to be discriminated (each 
character or symbol usually corresponds to more than one 
shape). C,, is a special class, called the reject class; if an 
object is classified as belonging to C,, it actually means 
that the recognizer is unable to classify it as belonging to 
exactly one of the proper classes C,, * * , Cm . 

X , ,  - , X, can be regarded as coordinates in  an 
n-dimensional feature space, and the objects to be 
recognized can be represented by points in that space. 
(This notion of feature space is very general; it is just  the 
Cartesian product of the ranges of the n features.) In this 
view, building up a recognizer amounts to defining m 
subsets of the feature space, not necessarily pairwise 
disjoint, to be used as dechwn regions for the proper 
classes. An object is classified as belonging to a proper 
class if its representative point P lies only in the 
corresponding decision region. If P lies in more than one, 
or none, of these regions, the recognizer realizes that it is 
impossible to assign the object to exactly one proper class, 
and rejects the object. 

In the statistical approach to recognition, the feature 
space is usually taken to be a real n-dimensional Euclidean 
space, and the decision regions are usually defined by 
putting thresholds on certain class probability density 
functions. For example, if these density functions are 
normal, by putting thresholds on  them we obtain decision 
regions that are hyperellipsoids. The density functions, in 
turn, are estimated on suitable training samples (one 
sample for each proper class). For example, if the density 
functions are normal, an n-vector of means and  an n X n 
covariance matrix must be estimated for each of the proper 
classes. Incidentally, if n is  large,  huge amounts of sample 
data are needed. 

Suggested  strategy 
For various reasons, the statistical approach is not 
appropriate for exploiting topological and shape features. 
More generally, it is not suited for expressing requirements 
on the topology of a  figure. 

We set forth the following two design issues for a 
recognizer that uses shape features for classifying plane 
shapes: 

1. We suggest that a character recognizer should be 
implemented as a question-answering system in which 
the requirements for a symbol to be classified as 
belonging to Ci, i = 1, - , m, are stored as axioms in 
some logical  language, and the question to be answered 
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(which  of the Cis is correct) is stated as a theorem to be 
proved (or refused) by means of the inference rules 
available in the language. Thus, the approach that we 
advocate will  make a recognizer very much  like a 
knowledge-based system. 

2. Each requirement set forth for a symbol to belong to 
class Ci, i = 1, * , m, should  be as stringent as 
possible,  with the constraint that the shapes actually 
belonging to Ci must satisfy that requirement with 
probability 1. This device allows the addition of more 
and  more requirements with  almost no danger that the 
performance mapbegin to deteriorate at some specific 
point.  (This is discussed further in the next subsection.) 

Before we give further details about these design issues, 
we find it convenient to illustrate with  an example the 
recognition strategy we suggest. 

The following is a (very simplified) set of requirements 
that must  be  met  by a symbol in order to be considered as 
a candidate T. With the notations given  in Figure 10, 

1. Number of lakes = 0. 
2. Number of large bays = 2. 
3. Lid-chain-length = 2. 
4. Lid-torsion = 0. 
5. Neither of the two lids is twice as long as the other. 
6. The angle between C,C, and C,C4 is greater than 90" 
" 

A few remarks may further clarify the situation: 

As long as we can rely upon a feature extractor that can 
detect almost  all actual lakes and actual large bays, we 
may expect that requirements 1 and 2 are satisfied  by 
almost all Ts, Le., with  probability 1. 
Requirement 3 may  fail to be  satisfied if the normalized 
distance between C, and C, is greater than t , .  If we take 
t ,  = 0.2 as suggested  above, that distance will be less 
than t ,  in a T even in extremely blurred images (in 
normalized units of length, t ,  = 0.2 amounts to one fifth 
of the whole perimeter of the convex hull  of the figure). 
By the same token, requirement 4 is satisfied in almost 
all Ts. Indeed, C,C, and C,C4 can form a twisted  pair in 
a T if the normalized distance between C, and C, is 
greater than t, > t , .  
If one of the two lids in a T is twice as long as the other, 
the T is so slanted that even the human eye is likely to 
be unable to distinguish it from a Y. 
With reference to Figure 10, it is quite evident that the 
angle  between C,C, and C,C, can be acute only in a 
grossly deformed T. In other words, the probability that 
this angle  will  be acute in a T can be taken to be 0. 

" 

" 

In a recognizer  implementing issues 1 and 2, each shape to 
be  recognized has a portion of the program  (a box) fully 
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dedicated to it. This box contains a collection of rules 
involving features whose variance over the subpopulation 
corresponding to the shape in question is low.  Thus,  in the 
box corresponding to 0 we include the requirement that 
the color of the centroid be white, in the box 
corresponding to I we require it to be  black,  and in the 
boxes corresponding to F and G we ignore the color of the 
centroid. 

Formulating  the  rules 
In this subsection, we explain the reasons for the second 
of the two  design issues that we set forth for a recognizer 
implementing shape features. 

The example  given in the preceding subsection shows 
how  recognition can be done in a rule-based character 
recognition system. It was seen that decision  making is 
possible  provided certain numerical values are specified. 
Thus, in rules 1 through 4 certain numerical values are 
specified  for certain features, while in rules 5 and 6 two 
thresholds occur, one associated with the ratio between 
the lengths of the lids  and the other with the angle  between 
the same lids. 

In  general, we expect to have rules of the form 

a s f s b ,  (1) 

where f is any one of the features on which the recognition 
system is based. 

Regarding the actual use of such a system, we must 
demonstrate, or at least explain, how these numerical 
values can be determined. For example,  with reference to 
rule 6 in the above example, how do we know that the 
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Shapes corresponding to 4. 

" 

angle between C,C, and C,C, must be greater than 90" and 
not, say, loo"? 

Traditionally, these numerical values are estimated from 
samples of observations. In principle, we also suggest 
some moderate use of training samples. However, we 
strongly recommend a special modus operandi, as 
explained below. 

A commonly occurring situation in the design of 
statistical recognition systems is the following. Intuitively, 
one expects the classification error rate to decrease if the 
dimensionality of the feature vector is increased, or at 
worst, if the added features contain no  new information, to 
remain unchanged. However, this is not always the case. 
In practice, the performance of a classifier often reaches a 
peak corresponding to a certain set of features, and 
decreases if more features are added [27]. 

This phenomenon is connected with the fact that the 
sample sets that we can use are finite,  allowing for the 
estimation of a limited number of parameters. Adding  new 
features requires new parameters to be estimated, and 
eventually the accumulated imprecision of the estimates 
becomes too great. This phenomenon is by no means 
confined to statistical recognition systems. It can occur 
whenever we introduce new items such as a and b in 
Equation (l), i.e.,  new parameters that are estimated from 

496 samples. 

Suppose, however, that we take for a a value not 
greater than a, and for b a value not less than p, where a 
and p are the ideal values that would be estimated by 
means of an  infinite  training sample. Our values for a and 
b would actually be independent of the sample size. If the 
values for a and b in Equation (1) are estimated this way, 
we may expect that the addition of the requirement 
represented by Equation (1) does not imply that we are 
asking too much of a finite sample; thus, it seems 
reasonable that we should not see any degradation. 

that are almost surely satisfied, i.e., are satisfied with 
probability 1, we may have no improvement in 
performance, but we also have no degradation. 

This criterion can be implemented in the following 
procedure for evaluating the interval parameters in the 
classifier rules. We determine a ,  b in Equation (1) from a 
(very large) training sample as follows. The sample is 
searched for the characters that bear the smallest (largest) 
value off; if the human eye can recognize one of these 
characters, the corresponding value off is taken to be the 
value of a (of b)  in Equation (1). If a character cannot be 
recognized by the human eye, the characters are 
discarded, and the procedure is iterated with the remaining 
characters in the sample. 

The critical premise of this method of rule formulation is 
the following: Let us again refer to Equation (1) as the 
typical rule. Quite obviously, the discriminating power of a 
rule of this form  is  diminished if we take a so small and b 
so large  that a I a and b 2 p both hold with  probability 1. 

the ability to discriminate shapes is an outcome of the 
accumulation of numerous rules of the form (1). In turn, 
such an accumulation of rules is made possible precisely 
by choosing a ,  b satisfymg a I a and b 2 p with 
probability 1. 

That is what we actually observed. If we assume ranges 

However, with the recognition strategy that we suggest, 

Decomposition of symbols into shapes 
In general, each character, or sign, to be recognized can 
be written in many shapes and forms. For this reason, 
splitting the character or sign into more than one shape is 
useful. (The versions of a character or sign which are to be 
regarded as different  from one another depend on the 
feature set that we choose for recognition.) 

To the recognizer, these shapes appear as different 
characters to be discriminated. For example, Figure 11 
shows four distinct shapes, all corresponding to 4: The 
recognizer treats these shapes as different symbols. 

A shape identification  number (SIN) is  assigned to each 
shape. The recognizer returns a set of SINS corresponding 
to each query symbol. Each SIN is then translated into the 
corresponding set of character identification numbers 
(CINs). (In the great majority of cases, this last set will 
contain exactly one CIN. However, it is possible that a 
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shape may be shared by more than one character, in which 
case  the  set will contain more than one element.) 

Computing  the  shape features 
The computation of features invariant under many possible 
motions is intrinsically complex, and  may require a 
significant amount of time. The OCR algorithm  using 
decision trees by Casey and Nagy [28] is a good example 
to illustrate this fact. This is one of the most  efficient 
algorithms reported in the literature. However, the speed 
of recognition depends on the quality of the input; if the 
input is distorted or noisy, the time required for 
recognition is noticeably increased [l]. 

to the particular computations to be performed. For 
example, Freeman’s chain code representation of the 
border is well suited for features based on bays, corners, 
and other singularities of the object contour [29]. 

Another image representation suited for the features 
discussed in Section 3 is the graph  representation. A 
preliminary report on this image representation 
can be found in [30], and a detailed study is  in 
preparation.* 

However, even if the image representation is carefully 
chosen, the computational complexity of the features 
suggested in Section 3, particularly of those based on the 
convex hull,  is  high; thus, an OCR system based on these 
features is condemned to be  slow. For vectorization 
applications such as the one described in Section 2, the 
time required for character recognition is  not critical: The 
overall time required for processing one drawing is bound 
to the vectorization process. 

Indeed, there are about two thousand characters and 
special signs in one map, so, even with a slow OCR 
subsystem, the time required for character recognition is a 
small fraction of that required by the raster-to-vector 
conversion (besides, the two processing tasks are 
independent, and can be done in parallel). 

It is advisable to choose an  image representation suited 

Use of context 
Quite obviously, the methods discussed in this paper do 
not allow for discriminating between, say, 6 and 9, 
q and b, or d and p. In general, if two symbols can be 
mapped into one another by a rotation, they cannot be 
discriminated by these techniques. 

In  all cases in which it is impossible to use some 
context, e.g., when the symbols are isolated, the 
recognizer rejects these symbols. All rejected symbols are 
submitted to an operator for visual recognition. 

If a symbol rejected by the recognizer belongs to a 
string, and the other elements of the string are 
unambiguously classified, the information available is  in 

‘ S .  Di Zenzo, “A  New Binary  Image Representation,” unpublished work. 

Discriminating between mirror images. 

general sufficient for resolving the ambiguity (possibly with 
the aid of a dictionary). 

6. Examples 

Discriminating  between  mirror  images 
It is well known that shape is in general not preserved in 
mirror reflections. For example, an S is carried into a 
different shape S‘ by a mirror reflection: S‘ is quite 
different  from S, since there is no similarity transformation 
of the plane that will carry Sf back into S. In a very noisy 
and blurred image, S’ might be a 2. Similarly, a b is 
mapped into a d by a mirror reflection. 

A recognizer of rotated characters should embody the 
capability to discriminate between such mirror images  with 
an expected error rate very close to 0. None of the 
features discussed above can distinguish between mirror 
images. Indeed, all the features discussed until  now are not 
sensitive to mirror reflections. 

However, it is possible by means of lids (or sides) to 
achieve an almost sure discrimination between mirror 
images. 

We  give two examples. 
To discriminate between S and 2 we can proceed as 

follows (Figure 12): The list of requirements for a symbol 
to be classified as an S includes the following items: 

There should be at least two large bays. 
The vector from the centroid of the first bay to that of 
the second should form  an obtuse angle  with the lid of 
the first  bay. 

Bays are arranged in order of decreasing area. However, it 
is easy to verify that this criterion is independent of which 499 
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Examples of the  characters D and 0. 

of the two largest bays is taken as the first. On the other 
side, the list of requirements for the symbol 2 includes the 
following: 

There should be  at least two large bays. 
The vector from the centroid of the first bay to that of 
the second should form an acute angle  with the lid  of the 

498 first  bay. 

Our second example illustrates the discrimination 
between b and d. We can proceed as follows (Figure 13): 
The list of requirements for the symbol b includes the 
following  items: 

There should be one lake and at least one bay. 
The vector from the centroid of the lake to that of the 
first bay should form  an acute angle  with the lid  of the 
first  bay. 

The list of requirements for the symbol d includes the 
following: 

There should be one lake and at least one bay. 
The vector from the centroid of the lake to that of the 
first bay should form  an obtuse angle with the lid of the 
first  bay. 

It is self-evident, and is confirmed by our experiments, 
that these requirements for b and d are satisfied even in 
grossly deformed bs and ds. We have experienced no error 
in discriminating between mirror images in  all  of the 
experiments done so far. 

Discriminating between D and 0 
In early OCR systems, discriminating between D and 0 
was a critical subtask. This is no longer true, at least for 
unrotated characters. Thus, the misclassification rate of 
D and 0 in  most of the commercially available OCR 
programs that rely upon  knowledge of the baseline is about 
average. If the characters are rotated, the discrimination 
between D and 0 is  still somewhat critical [4]. 

0 in the case of hand-printed characters of any size, 
position, and orientation (Figure 14). 

should be met by a symbol to qualify as a candidate 0 
[Figure 14(b)]: 

In this example, we discuss the discrimination of D and 

The following is the relevant subset of requirements that 

1. Number of lakes = 1. 
2. Number of large bays = 0. 
3. Color of centroid = 0. 
4. Symmetry 2 0.3. 
5. Circularity h 0.4. 
6. Side-chain-length I 1. 
7. Maximum side-length I 0.3. 

The discrimination procedure is as follows: 

As in the example given  in the subsection on strategy, 
we assume that our system is equipped with a feature 
extractor able to discard almost  all noisy lakes and bays. 
If that facility is in fact available, we may expect that 
requirements 1 and 2 are satisfied by almost all Os. 
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The color of the centroid is  useful when it is almost 
surely 0 or almost surely 1. In other cases this feature 
should not be used. 
The theoretical value of both circularity and symmetry 
for a perfectly round 0 is 1. This theoretical value is 
replaced by the interval (0.3, 1) to account for noise and 
distortion: This enlargement of a possible range of values 
for a feature is very well suited to illustrate what we 
would call the “probability = 1” strategy. 
With reference to requirement 6, we assume that an 0 
may exhibit one or more sides, but not a pair of sides 
that are both consecutive and near. This is a weak 
assumption for Os that, at least in the intention of the 
writer, are round. Note that an 0 like that in Figure 
14(c) must be regarded as a new symbol, and must  be 
represented by a separate shape. 

The first three requirements for D are exactly the same 
as for 0, and we do not repeat them. Requirements 4-7 
are replaced by the following: 

4’. 0.2 I symmetry I 0.95. 
5’. 0.3 I circularity I 0.7. 
6’. Side-chain-length 2 1. 
7’. Maximum-side-length 2 0.3. 

Let us try to explain the thresholds in 4’-7’. We imagine 
that the convex hull  of an ideal D is just a semicircle. 
Then, an obvious computation shows that the normalized 
length of the straight portion of the border is 

2 
- Î 0.4. 
2 + T  

With reference to this ideal shape of a D, one finds a 
theoretical circularity of 0.423. The theoretical value of 
symmetry depends on the line width, with a maximum of 
0.931 when the line width is so large that the lake 
disappears and the whole symbol becomes a semicircle. 
Obviously, these very theoretical values serve  as reference 
values. In this context, here are a few comments on rules 
4”7’: 

It is highly improbable that a distorted figure  will exhibit 
a symmetry value greater than the theoretical one. This 
explains why the upper bound of the symmetry in 4’ is 
not  much greater than the theoretical value. The lower 
bound for symmetry is very low; experience has shown 
that the actual value of the symmetry of a figure whose 
theoretical value is less than 1 may decrease to very low 
values. 
The upper/lower bounds of circularity in 5’ are the 
maximum/minimum circularity values measured on 
isolated Ds recognized as such by the human eye. 

Table 1 Character  classification  results  for a total of 71  796 
characters. 

Result of Number of Percentage 

characters 
classification  characters of total 

Successful 66387 92.47 
recognition 

Ambiguous 195 0.27 
classification 

Strict  rejection 4722 6.57 

Substitution 492 0.69 
error 

It is required that a D must have a side of normalized 
length at least 0.3. For an 0, which theoretically should 
not have sides, a side of length at most 0.3 is tolerated. 
Thus, the decision regions of 0 and D turn out to be 
disjoint. This choice excludes ambiguity between these 
two symbols (which would produce a reject). Hence, 
success or misclassification error are the only 
possibilities. 

7. Experiments 
Table 1 summarizes the classification results over a sample 
of 40 actual cadastral maps. The figures have been 
computed as follows. 

The recognition subsystem outputs a set of SINS 
corresponding to each query symbol. From these, a set of 
CINs is computed that we call SET. If SET = 0 or 
ISETl > 1, the system is able to detect its inability to 
recognize the symbol, and will reject it. If lSfTl = 1, we 
have success or error according to whether the unique 
character identification number in SET is correct or not. 

Ambiguous classifications occur when (SET1 > 1, strict 
rejection when I S H  = 0. 

Each map contains about 1800 alphameric characters 
and special cadastral signs. The maps come from various 
locations, and the estimated number of writers is 20. 

8. Conclusions 
In this paper, we have discussed a special OCR  problem- 
recognizing the characters and special symbols found  in 
land-register maps. 

We have suggested a feature-based approach, using 
features that are not sensitive to rotations, translations, 
and scaling, and are resistant to noise and distortions 
as well. Various features which, according to our 
experimentation, have these properties have been 
reviewed. 

It has been suggested that a recognizer implementing 
such features can be structured as a rule-based system, 499 
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and  an  operational  procedure  has  been specified for 
evaluating  the  parameters  that occur in the rules. 

Though in  this paper we have  focused on land-register 
maps,  the  approach  presented  here  can  be applied to  other 
kinds of technical  drawings. The  authors  have  undertaken 
an effort to  extend  this OCR technology to utility  maps. 
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