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Prolog  is  widely  used in prototyping, 
especially in artificial  intelligence,  but it has 
yet  to  gain  widespread  acceptance in 
application  development.  We  think  that  the 
problems in this area  result  from  the 
programming  style  enforced in existing  Prolog 
systems.  Zephyr is  a new  Prolog  system 
refined  and  enhanced to help  solve  such 
problems. It allows  users to do  modular 
programming  by  always  using  a  compiler 
instead of an  interpreter. In this  paper, we 
describe  the  unique  features of  Zephyr  which 
make this  possible,  focusing  especially  on 
package,  metafunctions, and tables, and the 
implementation of the  system  on OSl2.@' 

Introduction 
With the inception of the fifth-generation computer project 
in Japan and the adoption of logic  programming as its 
basis, Prolog has become famous as a promising AI 
programming  language.  Many research-based and 
commercially based Prolog systems now exist and are 
widely used for the prototyping of searching, database 

querying, simulation, design,  planning, expert systems, 
compiler writing, natural-language processing, and so on. 
On the other hand, there are few really practical 
applications written in  Prolog. The many possible reasons 
for this gap  may be summarized as follows: 

Failure to meet application requirements such as 

Failure to develop applications themselves because of 
execution performance and memory size. 

software engineering problems. 

Our research motivation is that in terms of both 
language and system, a programming style that is effective 
for conventional programming  languages, which we call 
true compiler-based programming, helps solve the 
difficulties found in developing practical applications. 

True compiler-based programming supports program 
modularity, the sharing and reuse not only of source code 
but also of object code, separate compilation, executable 
module generation, and  debugging  in  compiled code. These 
are not  fully  realized in many current Prolog systems. 

To realize true compiler-based programming, the 
language  itself  must also be refined  and extended in the 
following aspects: the introduction of a package system to 
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provide name spaces for predicates, the use of interface 
definitions, the restriction of program modification, the 
introduction of closure for metaprogramming, the 
elimination of commands for the interpreter and  debugger 
from the actual language part, and so on. 

from conventional programming  languages, the key to 
supporting true compiler-based programming  in  Prolog  is 
to determine how to support these unique features, 
especially metafunctions and symbokr as data. 

The first section of this paper analyzes problems in 
current Prolog systems. The next section describes the 
approach adopted in the Zephyr Prolog system. The 
following two sections deal with details from the viewpoint 
of language features and an implementation of Zephyr 
Prolog on Operating System/2@ (OS/2@). The final section 
gives the results of our preliminary evaluation. 

Since Prolog has many unique features that distinguish it 

Problem  analysis 

In meeting  application  requirements 
In most practical applications, there  are many 
requirements and restrictions which are not always 
considered in prototype systems: 1) execution speed, 
2) working memory size, 3) application code size, 
4) openness to other systems, and 5) hiding of source 
code. Let us consider these points with regard to Prolog. 

1. &cution speed. After efficient compilation techniques 
were introduced by Warren [l], compilers became 
indispensable components for obtaining good 
performance in  Prolog systems. Much research based 
on his work has been done, but often the code still fails 
to clear the performance requirement and is then 
rewritten in a conventional language, such as C. This 
means that Prolog systems must be open to other 
languages to allow performance-critical parts of 
applications to be rewritten in conventional languages, 
even in compiler systems. Of course, compilers should 
also have more effective optimizing techniques. 

2. Working  memory size. Unique features in  Prolog, such 
as unijication,  backtracking, “lype-less ’’ variables, and 
single assignment, provide elegant and powerful ways 
of handling complex data  structures dynamically. To 
support these features, programs written in  Prolog 
require more memory than those in conventional 
languages. Optimization, done primarily in compilation, 
can reduce the size. For example, tail recursion 
optimization (TRO) [2] and clause indexing [l] eliminate 
redundant stack frames very quickly; thus, much more 
memory can be retrieved by “garbage collection” (GC) 
and used in further execution. Many existing Prolog 
systems do not allow  an application to be separated 
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application always includes the interpreter, debugger, 
and compiler, even though only the run-time library is 
necessary. In addition, Prolog possesses metafunctions 
such as call. A naive implementation always requires an 
interpreter at execution time. As a result, applications 
require more memory to run. To get  good performance, 
especially on the segmented architecture typical of 
microprocessor-based machines, it is effective to restrict 
the maximum size of one memory block (stack, heap, 
symbol table, etc.) to the segment size, even if there is 
a large surplus of memory. However, this prevents 
many applications which use much memory from 
running. 

applications, the maintenance cost is frequently related 
to the application code size. If an application includes a 
language processor, this raises the cost. 

4. Openness to other systems. In addition to performance, 
openness is very important for integration and 
communication with other systems, such as existing 
databases and window systems, and for taking 
advantage of existing code written in conventional 
programming  languages such as C and  FORTRAN. The 
method of communication and code utilization depends 
on the individual system. For example, it sometimes 
involves issuing subtasks or processes, but at  other 
times it is necessary to link object libraries. 

5. Source-code hiding. It is desirable to hide valuable 
source programs for applications, especially in the  case 
of commercial applications. That is true in  Prolog 
because the knowledge used in  an application may be 
described at a much  higher level, but it is not possible 
in an interpreter system. Even in a compiler system it is 
not possible if the system supports only on-memory 
compilation and not the functions required to save and 
load  compiled code. 

3.  Application  code size. For commercially based 

In developing  applications  themselves 
To build a large application, the program  must be divided 
into small pieces which can be developed and tested step 
by  step, shared among many people, and reused. This is 
true whatever language is used. In Prolog, unfortunately, 
neither the language nor the systems encourage this. For 
example, 

1. In the de facto standard Prolog, the so-called Edinburgh 
Prolog [3, 41, there is no certain way to avoid accidental 
conflicts of predicate names between separately 
developed programs. These occur frequently in the 
development of large systems and disturb that 
development. It is possible to avoid  name  conflicts only 
by using a compiler with special directives, but even 
this will  fail if metafunctions such as call and assert are 
used. 
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2. In most Prolog systems, the result of compilation 
depends on the environment in which it is done [3, 5-71, 
because of implementation requirements such as easy 
maintenance of a symbol table and a predicate table 
that are required not only at compilation time but also 
at execution time. As a result, object code is generated 
in a format that does not  allow  it to be used in  different 
environments. Programmers are therefore unable to 
share their programs as compiled code, to reuse them, 
to build their own object libraries, or to enhance 
existing libraries. All they can do is to keep and 
exchange source programs, and  recompile  them in each 
environment. (However, they may wish to hide the 
source code, as mentioned previously.) 

3. The programming scenario most  widely used in  Prolog 
is as follows: 

Build a source program  using a text editor. 
Start a Prolog session. 
Consult utility programs. 
Consult a user program. 
Debug  using the trace function of an interpreter. 
Invoke a text editor and fix bugs. 
Reconsult the program. 
(Repeat this cycle). 

To use a compiler in this cycle, the programmer must 
always invoke a compiler during or after (re)consult, 
which takes much extra time. Moreover, there is no 
way to debug  compiled programs in  most systems. 
Therefore, many Prolog users are discouraged from 
using a compiler. However, debugging a big  program by 
using  an interpreter is exhausting because it takes a 
long  time to reach a bug. 

4. Problems related to memory size, which are mentioned 
in application requirements, are more critical in 
application development because the use of an 
interpreter for debugging requires more memory than 
normal execution. 

Approaches 
True compiler-based programming, which we adopted to 
make Prolog more useful in the area of application 
development, needs careful consideration of both the 
system architecture and the language  design, which are 
mutually  affected. 

Architecture and implementation 
The basic features which a compiler-based system should 
have, and which are pursued in our work, are as follows: 

Separate compilation. This is essential for step-by-step 

Environment-independent compilation. This means that 
development and sharing and reuse of objects. 

object code does not depend on the environment in 
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which it is generated. With this feature, objects can be 
shared and reused in  different environments. 
Generation of object files in the format regarded as the 
standard on the operating system. This feature is 
indispensable in the use of libraries provided as objects 
and the use of objects implemented in Prolog in other 
systems; it  will increase the chance of Prolog being used 
in practical applications. 

regarded as the standard on the operating system. This 
enables an application to run by itself. 

sacrificing portability, we adopted an abstract machine, 
called the Abstract Prolog  Machine (A€"), for an 
internal phase of compilation. AF" is based on, but 
provides many extensions to, Warren's Abstract 
Machine  (WAM) [l], which allows  it to support Zephyr's 
new features for practical use. Optimization is done in 
two stages: . Prolog-to-"-code translation. Well-known 

Generation of executable modules in the format 

Optimization. To allow for optimization without 

optimization techniques, such as TRO, clause indexing, 
and get/put elimination are applied. 

data flow analysis on lower-level code, register 
allocation is effectively done on a real machine. 

. A€"-code-to-native-code translation. By control and 

Eficient garbage collection. Since the memory used for 
a failure computation is  reclaimed automatically during 
backtracking, garbage collection in Prolog is not as 
essential as in Lisp. Even so, there are programs that are 
necessarily executed in forward-loop style and therefore 
require garbage collection. If they are actual 
applications, it should not look as if they have stopped 
during garbage collection. To avoid this, we have applied 
to Prolog the technique known as generation-scavenging 
GC [SI, which is described in the section below on 
implementation in OS/2. 
Fast compilation. One of the disadvantages of using a 
compiler is that it takes much  longer to remake code 
after modification than with an interpreter, because of 
the compilation itself and linking. As with  linking, there 
is less chance of improving performance, because the 
standard linker must be used in order to generate 
standard modules. Consequently, we must try fast 
compilation to compensate for the disadvantage. 
Detecting all  errors  and possible erroneous parts. One of 
the advantages of using the compiler for development is 
that it always does program analysis and then detects 
and informs the programmer of errors and erroneous 
parts. For Prolog, the most common errors include 
simple syntax  errors and references to undefined 
predicates. The compiler attempts to find  all  of these 
errors. 
Debugging support. Because we separate the debugging 
function from the language proper, we must support 
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package(PackageName  [,PackageType] ). 
Declarations. . . 
Clauses., . 

endpackage(PackageNm). 

import(  [predicate,]  [PackageName : ]  Predicate). 

export(  [predicate,]  Predicate). 

I Style of import and export declarations. 

because they are most closely related to compiler-based 
programming. 

separate debuggers. We are working on this in several 
ways, using meta-level debugging  known as algorithmic 
debugging [9] and source-code debugging (CodeViewm, 
etc.). 

We have kept in  mind that there can be no restrictions on 
memory usage and that the system must be portable. 

Language 
In  designing the language,  we adopted as  its base the 
de facto standard, Edinburgh Prolog,  refined it, and added 
many extensions such as the following: 

Introduction ofpackage as a predicate name space and 

Refinement and enhancement of metafunctions. 
Introduction of table for persistent data. 
Introduction of new data types, such as character, string, 

Introduction of new control mechanisms, such as freeze, 

Support of SQL and external language interfaces. 
Separation of interpreteddebugger commands from the 

as a compilation unit. 

big integer, float, ratio, complex, and  infinite term. 

on-backtrack, and catch-and-throw. 

language proper. 

In the next section, we describe important new  language 
394 features, focusing especially on the first three of the above 
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Language  extensions 

9 Packages 
Modularity is one of the most important features required 
in large-application development. This means that 
separately developed programs cannot affect the behavior 
of other programs accidentally or by design without 
accessing them via interfaces open to others. Package is 
introduced to realize this modularity in  Prolog. 

In  a sense, Prolog is a  modular  programming  language 
because of the unique features of variables. The scope of a 
variable is limited to the clause in which it occurs, and 
variables cannot be overwritten after they are assigned 
values by unification. A collection of clauses whose head 
name and arity are the same is called apredicate. A 
predicate is the smallest functional unit in Prolog and 
corresponds to a function or a subroutine in conventional 
languages. But predicates in  Prolog tend to be used much 
more than functions in conventional languages to produce 
equivalent results, because a predicate is necessary in 
order to perform a simple operation such as a condition 
check, and another predicate is used to keep global values. 
Unfortunately, there is no way of controlling the scope of 
predicate names in standard Prolog,  and  it is impossible to 
remove the possibility of predicate-name conflict  with 
certainty. 

In Zephyr, a  package provides a name space for 
predicates and tables. (From now  on  in this subsection, we 
discuss only predicates for simplicity.) Because predicates 
in  a package are hidden  from other packages, their names 
never conflict with those of others. Explicit declarations 
are used to control the visibility of predicates. For 
example, predicates which are to be used from other 
packages should be declared as “exported” in the package 
where they are defined, and declared as “imported” in the 
package where they are used. 

controlling visibility. Thus, symbols are always unifiable  if, 
they have the same name, even when they occur in 
different  packages.  MPROLOG [lo] and  BIM  PROLOG [ll] 
have the capability to control visibility of symbols. As long 
as metafunctions are not used, a symbol simply expresses 
the name itself  and  is not used to bind something with it, 
as in Lisp [12]. Thus, in such a case, there are no serious 
problems related to the scope of symbols. Issues related to 
metafunctions are discussed in the next section. 

In Zephyr, a complete program consists of one or more 
packages. Each package consists of predicates made up of 
clauses and declarations. Figure 1 shows the style of a 
package. Each package name should be a symbol, and the 
package type should be either open or closed. If the type 

As for symbols, we have not introduced any way of 



is not  given,  it is assumed to be closed. The meaning of 
the package type is described, together with 
metafunctions. In a complete program, one and only one 
predicate whose name is main should be exported, and this 
predicate becomes an entry point. 

There are three kinds of declaration: importlqoH 
declaration, table declaration, and predicate declaration. 
The last two are discussed later. 

Import and export declarations are used to control the 
visibility of predicates. The style is shown in Figure 2. 
Predicate in the declaration is specified by the most 
general head pattern. For example, a predicate whose 
name is sort and whose arity is 2 can be specified as 

sort(-,S 
sort(ln,Out) 
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Notice that in an import declaration, a predicate can be 
declared with a package name that specifies the package 
which exports the predicate. This is important in the 
following senses: 

In Zephyr, more than one predicate with the same name 
and arity may be exported, and each is treated as 
independent. By specifying packages in import 
declarations, we can avoid  ambiguity of import and 
accidental name conflict  among exported predicates. 
It allows the system to look for specified packages, for 
example during linking, even if they are not explicitly 
given. 

It is also possible to import more than one predicate whose 
name and arity are the same in a package. To avoid 
ambiguity in calling predicates, we can specify a package 
for each goal  using the infix operator : as follows: 

quicksort : sort([l,3,2],X) 
bubblesort : sort([l,3,2],Y). 

This is also used to refer to built-in predicates redefined by 
the user. In Zephyr, built-in predicates are treated as if 
they were defined  in a package  called builtin and imported 
implicitly. It is possible to define a predicate whose name 
and arity are the same as those of some built-in predicate. 
In this case, the definition overrides the imported built-in 
predicate, but it is still possible to use the built-in 
predicate by specifying package builtin. For example, the 
following clause defines a new writem: 

h e 0  :- builtin : write@),  nl. 

A more complex and complete example is  given  in 
Figure 3. 

In the example, predicate p(X) is defined  in two 
packages and both are exported. To import and use them 
at  the same time without ambiguity, package qualification 

package(main). 
export(main). 
import(foo:p(X)). 
import(bar:p(X)). 
main:-  foo:p(X),  bar:p(X),  write()(),  fail. 
endpackage(main). 

package(fo0). 
export(p(>o). 
p(X) :- r(X). 

r(b). 
endpackage(fo0). 

package(bar). 
export(P(>o). 
p(X) :- r(X). 
r(b). 
r(c). 
endpackage(bar). 

1 Example of a program. 

is required in import declarations and predicate calls. 
Predicate r(X) is also defined  in two packages. These are 
not exported, however, and do not  affect each other. The 
symbol b occurs in package foo and in package bar, and 
these occurrences are unifiable. Thus, as a result of 
execution, symbol b is written. 

To summarize, packages and explicit specification of 
interfaces in Zephyr provide an  effective method of 
ensuring the modularity of programs. In addition, they 
allow the system, that is, compiler and linker, to detect 
errors resulting from simple mistakes. 

Metafunctions 
Prolog has unique features, which we call metafunctions, 
that treat data as programs and programs as data, as in 
Lisp. These features are realized by special built-in 
predicates such as call, clause, assert, and retract (which 
we call metapredicates). Standard Prolog has a single 
name space for a program, or set of predicates, and there 
is  no  ambiguity  in  mapping between symbols and 
predicates. 

multiple  name spaces depend on the characteristics of 
visibility control. If a symbol has limited scope, as in 
MPROLOG [lo] and BIM  PROLOG [ll], there is also no 

Approaches to defining metafunctions for Prolog with 
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ambiguity in mapping  between symbols and predicates. 
Therefore, metafunctions can be a natural extension of 
those for a single  name space. On the other hand, in 
Zephyr, there are multiple  name spaces only for 
predicates. Thus, we need a new  rule  for  mapping  between 
symbols and predicates. 

metafunctions. Such flexibility, however, would lose the 
reliability  and  modularity of a program. Instead, we apply 
visibility control also to metafunctions: Each name space 
has its own metafunctions, which  map a symbol to a 
predicate in that name space. 

Our solution is to treat metapredicates as if they were 
defined  in each package. This means that a metapredicate 
in a package works only for those predicates in that 
package. To use a metapredicate from another package, 
the metapredicate should  be exported and then imported 
into the package where it  is to be  used. Figure 4 shows an 
example of metapredicates. In the example, call(x) is 
defined  implicitly  in the packages foo and bar, and is 
exported from both. In  package main, two call(X) are 
imported and executed with an argument  term 
father(F,tom). The argument is interpreted in both the foo 
and bar packages. As a result, jack and jim are written. 

A possible approach might have been to extend each 
metapredicate so that it  would take an extra argument to 

The former approach provides simple  and  flexible 

396 specify the package in which a term is interpreted. We  did 
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not take this approach because the argument  specifying a 
package is given  dynamically,  and thus does not  allow a 
package to be compiled in a completely static way. That 
is, the compiler  must always generate a predicate table for 
future possible use of metapredicates, but this table  is 
hardly ever used. Moreover, all the predicates in any 
package  become  visible  when call is  used. This destroys 
the modularity which we are trying to introduce by means 
of packages. Furthermore, source programs cannot be 
hidden because the built-in predicate clause is able to get 
all the clauses as terms. 

The way in which we have introduced metapredicates is 
rather static, but it ensures modularity, even if 
metapredicates are used, because only the package  which 
exports a given metapredicate can be accessed by that 
metapredicate. However, this becomes a restriction on 
programming generic predicates. Suppose that we are 
writing a predicate to  do sorting, which takes a comparison 
operator as its argument.  In our approach, the comparison 
operator or call defined  in the same package  must  be 
imported explicitly, so we cannot write such a sorting 
program as a library. Therefore, we introduce a new data 
type called closure, which combines a term  and the name 
space of the package in which the closure is created, and 
makes  it  possible to interpret the term in the package later. 

There are two kinds of closure: goal closure and 
function closure. The difference  between  them  is that the 
latter takes real arguments when it is executed. Goal 
closure is created by a built-in predicate 

goal(GoalTenn, GoalClosure) 

and executed by 

call-code(GoalC1osure). 

Function closure is created by 

closure(ArgVars, GoalTem, FunctionClosure) 

and executed by 

apply(FunctionClosure, Parameters). 

The first  argument of the built-in predicate closure is a list 
of variables that occur in GoalTem and is unified  with the 
second argument of apply, Parameters, before really 
starting execution of the closure. 

even though  many recent Prolog systems [5, 6 ,  10, 11, 13, 
141 have methods to define  modules that are similar to 
those of our package, none of them have methods such as 
closure. 

Figure 5 is an  example of goal closure. Predicate 
countSolutions/2* counts how  many  times the given  goal 
succeeds. In this case, goal closure for nqueen(8,S) 

The idea of closure is not new;  it exists in Lisp [12]. But 

'In this paper, X/N denotes a predicate whose name is X and whose arity is N. 
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created in  package main is passed and executed in the 
package countSolutions. However, the execution is done 
as in package main and is not affected by clauses defined 
in countSolutions. 

genericQuickSorU3 is an alternative version of quick sort, 
but it takes a function closure as its third argument, which 
is used as a comparison operator. Comparison is done by 
apply with real arguments. Notice that execution of 
function closure may be done many times with  different 
arguments. This is the primary difference  from  goal 
closure. In the example, the comparison operator is @>; 
therefore, comparison is done in descending order on any 
terms. The result is [f(l),a,l]. 

Both countSolutions and genericQuicksort can be 
written and compiled without the programmer knowing 
which package  will use them, and these two packages can 
thus be used as libraries. 

Figure 6 is an example of function closure. 

package(countSo1utions). 
export(countSolutions(X,Y)). 
import(counter:new(X)). 
import(counter:inc(X)). 
import(counter:get(X,Y)). 

countSolutions(Code,N) :- 
new(Counter), 
do(Code,Counter), 
get(Counter,N). 

do(Code,Counter) :- 
call-oode(Code), 
inc(Counter), 
fail. 

do(-,-). 
endpackage(counLso1utions). 

package(main). 
export(main). 
import(countSolutions(X,Y)). 
main :- 

goal(nqueen(8,S),Code), 
countSolutions(Code,N), 
wriie(N),  nl. 

nqueen(X,Y) :- 

endpackage(main). 
... 

1 Example of goal closure. 
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package(genericQuickSsort). 
export(genericQuickSort(List,SortedList,CompareOp)). 

genericQuickSort(L,S,Op) :- gqsort(L,S,[],Op). 

gqsort([XIXs],S,T2,0p) :- 
partition(Xs,X,Littles,  Bigs,Op), 
gqsort(Littles,S,Tl,Op), 
gqsort(Bigs,Bs,T2,0p), 
T1 = [XIBS]. 

gqsort([l,X,X,-). 

partition([XIXs],Y,[XlLs],Bs,Op) :- 

partition([XIXs],Y,Ls,[XlBs],Op) :- 
apply(Op,[X,Yj), !, partition(Xs,Y,Ls,Bs,Op). 

partition(Xs,Y,Ls,Bs,Op). 
~artition([l,-,[b[l,-). 

endpackage(genericQuickS0rt). 

package(useGenericQuickSort). 
export(main). 
impott(genericQuickSort(ln,Out,Op)). 
main :- 

closure([X,y1, X@>Y  C), 
genericQuickSort([a,f(l),l],S,C), 
writen(S),  nl. 

endpackage(useGenericQuickSort). 

Closure is a very important mechanism on a compiler- 
based system. By  using closure, we can write subroutines 
which take goals as their arguments without losing 
generality. In fact, in our implementation, closure is used 
internally to support some built-in predicates, such as setof 
and bagof. 

Another important aspect of metafunctions is their 
ability to modify programs dynamically during execution. 
The modification is done by using the built-in predicates 
assert and retract. However, the unlimited use of assert 
and retract does not coincide with our general approach of 
making  it possible to compile statically and discard source 
information as much as possible. 

According to our study, the uses of assert and retract 
can be categorized as follows: 

Building a program interactively in an interpreter. 
Maintaining  global data. 
Actually modifying a program during execution. 

Y. ASAKAWA ET AL. 

397 



declare(  [predicate,] Predicate, dynamic). 

package(fibonacci). 
export(fib(X,Y)). 
declare(fib(X,Y),dynamic). 
fib(0,l). 
fib(1,l). 
fib(X,Y) :- 

x >  I ,  
X1 isX- 1, fib(Xl,Yl), 
X2 is X - 2, fib(X2,Y2), 
Y is  Y1 +Y2, 
asserta(fib(X,Y)). 

endpackage(fibonacci). 

1 Example of self-modification program. 
. . .. ~."." .."-.""""-.-";.-"-.-I-.-. ,.~-, 

The first use is a function of the programming environment 
rather than being a feature of the language. Therefore, 
we ignore it here. The second use is more common: 
Because a Prolog variable is localized to a clause, Prolog 
programmers tend to use assert and retract for this 
purpose. In Zephyr, as a result of the introduction of a 
new data type table, this usage is eliminated (see the next 
section for details). We have found that the third case still 
remains, and decided to support it  in a slightly restricted 
way. 

The approach was that any predicates modified or 
created during execution should be declared as dynamic in 
the style shown in Figure 7, and that assert and retract 
work only for them. Like call,  assert and retract do not 
affect dynamic predicates defined  in other packages. Since 
all dynamic predicates should be declared, a compiler can 
detect errors such as undefined predicate calls in the same 
way as for a completely static package. Predicates not 
declared as dynamic can be compiled  in the static way. 

Figure 8 is an example of a program  modification that 
398 calculates Fibonacci numbers. Once a Fibonacci number is 
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calculated, it  is stored as a fact by modifying the program, 
and the next time  it  is referred to in the recursive loop, it 
is used without being calculated again. Because fib/2 will 
be modified,  it is declared as dynamic and the modification 
is done by asserta, which is a variety of assert and always 
inserts a fact on top of the predicate. 

From the viewpoint of the implementation of Zephyr, 
most  compiled programs can run without source terms or 
predicate tables. However, once call appears in a source 
package, a predicate table of the package is required for its 
execution. In addition, there is a possibility that the built- 
in predicate clause will be invoked during execution of the 
call, which requires all source terms. Because this is a 
very rare case, we have restricted the default behavior 
here so that clause via call does not work. To make  it 
work, we must declare the package to be open by using 
the optional argument of the package statement. Of course, 
if clause appears in the  source explicitly, a predicate table 
and source terms must be generated. 

Tables 
A table resembles somewhat a variable or an array in 
conventional programming  languages, and is used to retain 
terms without losing them during backtracking. 

In most Prolog systems, this is done by using assert and 
retract, but it has many drawbacks: 

It disturbs the static compilation of programs. 
Its effect  on  program behavior is  difficult to understand. 
The modularity of data depends on that of predicates. 
It requires maintenance of the rule base, which is a time- 
consuming task in Prolog, thus making  it  difficult to 
obtain good performance. 

We know that using  global data is not consistent with 
the clear semantics of Prolog, but in real applications, it is 
indispensable. We have therefore introduced table to 
support global data clearly and safely, as a replacement for 
the inappropriate use of assert and retract. 

To introduce it, we took the same kind of approach as 
for (dynamic) predicates: 

All tables should be declared. 
The scope of a table is limited to the package in which it 

Import and aport declarations are necessary to control 
is generated. 

visibility. 

Figure 9 shows how tables are declared. Table in the 
declarations should be the most general term and should 
specify the name of the table and the dimension. A zero- 
dimensional table is  specified by a symbol and  is treated as 
a simple variable. For example 
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declare(table,  Table). 

import(table,  [PuckageNume : ] Table). 

export(table, Table). 

declare(table,wordCounter(W,A)). 
declare(table,flag). 

declare a two-dimensional table wordcounter and  a 
variable flag. 

by the built-in predicates 

gettable(Pattem, Value); 
put-table(Pattern, Value). 

Pattern should be a ground term which matches one of the 
tables declared in the package. On the other hand,  Value 
can take any Prolog term. The location where Value  is 
kept is uniquely  identified by Pattern. In other words, the 
whole of Pattern works as an index for a table. put-table 
places Value at the location identified by Pattern, and the 
previous value is discarded. get-table unifies  Value  with 
the term found at the location Pattern. If nothing is written 
at the location, the process ends in failure. 

Figure 10 is  a package to maintain counters, which are 
used as in Figure 5. The one-dimensional table counter is 
used to keep real values of counters that are identified by 
symbols generated by gensym. Since the table is not 
exported, it  is not accessed directly from other packages. 

In terms of implementation, a table is exactly the same 
as a hash table. The hash value of Pattern is used to 
identify the location quickly, and in the same amount of 
time for all cases. The pair of Pattern and  Value is stored 
at the location. The size of the table is automatically 
changed according to the number of entries actually used. 

Since we have also introduced static interfaces for 
tables, we need a  new  mechanism  similar to closure for 
predicates. We call it  a table descriptor. A table descriptor 
becomes necessary when we write a general package 
which works on any tables-for instance, sorting the 
elements of a  given table. A table descriptor is created by 
the built-in predicate 

table-descriptor(Table, Descriptor) 

and can be passed to other packages. To access the table 
using the descriptor, use 

Accessing and  changing  a value in a table are performed 

package(counter). 
export(new(Name)). 
export(inc(Name)). 
export(get(Name,Value)). 
Yo declare  put,  dec, ... 
import(gensym:gensym(X)). 
declare(table,counter(Name)). 
new(Name) :- 

gensym(Name), 
puttable(counter(Name),O). 

gettable(counter(Name),N), 
N1 is N+1, 
puttable(counter(Name),Nl). 

gettable(counter(Name),Value). 

inc(Name) :- 

get(Name,Value) :- 

%define put,  dec, ... 
endpackage(main). 

f Example of table. 

Table 1 New data types in Zephyr Prolog. 

Type 

Big integer 
Character 
Floating number 
Rational number 
Complex number 
String 
Infinite term 

Example 

12345678901234567890 
#'a 
1.2e-3 
#ratio(l,3) (= 1/3) 
#complex(l,2) (= 1 + 2i) 
$Zephyr Prolog$ 
f(#inf(l)) (= f(f(f(. . .)))) 

get-table(Descriptor, IdexList, Value); 
put-table(Descriptor,IndexLkt, Value). 

In this case, an access pattern is dynamically created from 
Descriptor and IndexList. 

Other extensions 

Data types 
Many new data types that are useful for practical 
applications but are not found in Edinburgh Prolog are 
introduced in Zephyr Prolog. The introduction is 
influenced by Common Lisp [12] and recent Prolog 
systems [5, 6, 141. New data types introduced in Zephyr 
Prolog are listed in Table 1. 399 
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One of the most important is the character data type. 
Because Edinburgh Prolog does not have a character data 
type, programmers in Edinburgh Prolog must write 
character code directly and debug it  with character code. 
The resulting programs are hard to read and not portable 
among  different character code sets. Introduction of the 
character data type helps solve these problems. Problems 
related to character code are also found in string syntax 
sugar, which is an alternative notation of a list of character 
codes. Ideally, the string syntax sugar of Edinburgh Prolog 
should be converted into a list of characters, for instance, 
from ABC to [#'A, #'B, #'C]. However, to maintain 
compatibility with Edinburgh Prolog, this translation is not 
used. 

Controls 
The following  new control mechanisms are introduced. 
They  are sometimes useful for improving performance and 
simplifying  programs. However, it is hard to define them in 
pure Prolog, or rather, it is hard to define  them so that 
they work efficiently  in pure Prolog [15]. 

freeze(Va/irr, Goal) suspends execution of Goal until Var is 
bound to a nonvariable term. This is the same as the 
mechanism introduced in  Prolog-I1 [16]. 
onbacktrack(Goa1) suspends execution of Goal until 
backtracking to an earlier point occurs. This effect 
cannot be eliminated by cut. 
catch(Goa1) executes Goal. It fails immediately when 
throw is executed during its execution. A combination of 
catch and throw allows a global exit from the execution 
of a goal. 

C-inteflace 
C-interface, introduced in Zephyr Prolog,  is a natural 
extension of the import and export of predicates. To use a 
C function in a Zephyr package, declare it  in the following 
way: 

import(c, PredicatePattern). 

A goal that matches the second argument is treated as a C 
function call. If the C function returns TRUE, the goal 
succeeds; otherwise it  fails. 

To use a Zephyr predicate from C, declare it  in the 
following  way: 

export(c, PredicatePattern). 

The predicate can be considered as a function for returning 
TRUE or  FALSE according to the SUCCESS or 
FAILURE of predicate execution. Note that even though 
the predicate succeeds with choice points, all  of them are 
removed because the predicate is treated as a C function. 

Since both C and  Prolog  allow recursive calls, we have 
400 placed  no  restriction  on  nested  calls  between C and  Prolog. 

Parameter passing between C and  Prolog  is done by 
using A€" registers, not the C stack, and automatic 
data conversion is not supported. This means that C 
programmers must know APM architecture. The reasons 
we adopted this strategy are as follows: 

If the C stack contains Prolog data such as  structures 
and lists, garbage collection cannot work correctly and 
may make dangling references, because the C stack is 
outside the control of Prolog memory management. 
There is no way to map any structure data of Prolog to 
C data without keeping tag information on C data. If tag 
information is used, there is no meaningful difference 
from  using the original Prolog data structure directly. 
Automated data conversion, especially for structure 
data, causes extensive overhead. In most cases, this 
makes the use of C meaningless. 

Implementation on OS/2 
In this section, we describe the implementation of Zephyr 
on  OS/2, focusing particularly on the realization of 
environment-independent separate compilation that 
generates standard objects. 

Originally, we initiated our project on VM/370 and on 
top of W P r o l o g  [13]. At that time,  all of the Zephyr 
compiler was written in Zephyr itself. By bootstrapping the 
compiler, we examined our approaches. There was an 
increasing demand for Prolog on personal computers and 
workstations. The biggest  problem  with DOS environments 
is that they do not allow more than 640 KB of memory 
without additional memory-management  tools. But on OS/2 
up to 16  MB  of memory is available, which allows many 
Prolog applications to run  on personal computers, thereby 
making  Prolog  familiar to a much wider range of users. 
This is why we implemented Zephyr on OS/2. 

libraries, preprocessors, and a debugging interpreter, and 
runs on the OS/2 l.X family. Zephyr thus runs in the 286 
mode even on a 386 machine.  This degrades performance, 
because APM is a 32-bit machine supporting large 
memory, and the implementation of Zephyr on the OS/2 
l.X family is something like an emulation of a 32-bit 
machine on a 16-bit  machine. 

For the implementation, we used the following 

The  OS/2 version includes a compiler, a symbolic linker, 

restrictions: 

The  maximum code size of a package is 64 KB. 
The maximum size of one item of structure data is 
64 KB. 

These help improve performance on a 286 machine by 
minimizing the occurrence of segment switching. We 
provide separate compilation, and Prolog  allows a nested 
data structure, so those restrictions are not serious. 
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Compile and link 
To  create an executable module  in Zephyr, the following 
process is needed: 

Preprocess if necessary (to use DCG or Prolog-style 

Compile each package. 
Link all objects with Zephyr and C libraries. 

SQL). 

Figure 11 shows this process, which is very similar to that 
in conventional languages such as C and FORTRAN, but 
is not common  among existing Prolog systems. 

The compiler compiles a package and generates an 
object file and a special file called a symbolic information 
file. Internally, as shown in  Figure 12, this compilation 
consists of two phases: generating an assembly code file 
and generating an object file. The latter is done by 
invoking IBM Macro As~emble r /2~  (MASW2). 

information: 
A symbolic information file contains the following 

Package name. 
Symbols that are used in the package: Each symbol is 
expressed by a name and  an internal identifier. 

Compilation 

I 

information 

Name, arity, and internal identifier for every predicate 
that is exported or imported, and additional package 
names for imports if they exist. 
Predicate table if metapredicates are used: This consists 
of predicate entries for all predicates, each with a name, 
arity, and internal identifier. 
Clauses represented as terms if the package is open. 

This information is necessary to support environment- 
independent separate compilation and  must be handled 
separately from standard objects. Symbols in  Prolog are 
needed at execution time, and, as mentioned  in the section 
on packages, symbols in Zephyr should be uniquely 
identified  among separately compiled packages. In 
addition, exported predicates are identified by two- 
dimensional name spaces indexed by package names and 
predicate names. Unfortunately, the name space 
management and naming convention (that is, the 
characters that are allowed  in a name  and the maximum 
length of the name) are completely different in Prolog and 
conventional systems, requiring a special linker. However, 
because we still wish to retain the capability to link Prolog 
objects with objects in other systems, we separate a 
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information 

f e l +  OS standard linker ‘x Executable 

Resolves import and export in every complete program. 
Internal identifiers are used to modify object files. For 
example, assume that fatherl2, whose internal identifier 
is P2, is exported from package foo and that the 
predicate is imported in another package, bar, with 
internal identifier P5. At first, all exported predicates are 
serialized like  symbols. Assume that fatherl2 in foo has 
the identifier PI  5 as a result. Next, by scanning exports, 
it is found that fatherl2 is exported with  identifier P15. 
Therefore, the identifier P5 in bar is changed to P15. 
This serialization and change of identifiers is reflected in 
object files. 
Collects predicate tables and source terms if they exist. 
Finally, generates an assembly code file  which contains 
all the data generated in the above processes and 
invokes MASMl2. 

After the front-end link process is  finished, LINK/2 is 
invoked with all  modified Zephyr objects, the data object, 
objects of other languages, Zephyr run-time routines, and 
C libraries (these are needed because most Zephyr run- 
time routines are written in C for portability). The 
generated module will run  by itself. 

Zephyr object into a standard object file and a symbolic 
information file. 

A symbolic linker consists of two components, a front- 
end linker and IBM Linker/2 (LINK/2), as shown in 
Figure 13. It accepts several Zephyr objects with symbolic 
information files, objects of other languages such as C, and 
libraries. First, the front-end linker collects those Zephyr 
objects which are provided explicitly by  the user and any 
Zephyr objects which are contained in Zephyr built-in 
libraries and used in user packages. Then, it 

Serializes all the symbols in every complete program and 
generates a symbol table. Internal identifiers are used to 
modify object files. For example, during compilation, a 
symbol may be referred to by the label SI, but the 
address is unresolved at the time. At link time there may 
be many labels SI for different  symbols. As a result of 
serialization, the same symbols become identified by the 
same labels, and thus the label SI in the package may be 
changed to, for example, S27. This change should be 
reflected in the object file. That is, the label SI in the 

402 object should be changed to the label S27. 

Code  generation 
The code-generation part of compilation consists primarily 
of two parts: Zephyr-to-APM-code translation, and APM- 
code-to-native-code translation. APM, adopted as an 
interim step, provides an  efficient and portable way to map 
Zephyr to conventional CPU architectures, and plays a 
central role. Two translation phases are described below, 
following  a discussion of new and important features of 
APM. 

APM 
Once the idea of using  an abstract machine for Prolog 
compilation was exploited by Warren [l], it became a 
popular way to implement  a  Prolog compiler, and  his 
abstract machine is now famous as  the Warren Abstract 
Machine  (WAM).  But the original WAM focuses only on 
the pure part of Prolog and gives little consideration to full 
support of the Prolog  language  and to practical aspects. To 
adopt the idea of an abstract machine for Zephyr, we 
introduced many refinements and enhancements into 
WAM. 

Memory organization A heap is added to the 
environment stack, choice point stack, global stack (called 
heap in  WAM), trail stack, and work stacks. It is used to 
maintain  global data such as symbols, tables, and predicate 
tables. The trail stack is used not only to keep variables to 
be undone during backtracking but also to keep goals to be 
executed during backtracking. 
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Data types The size of a data cell  is 32 bits, and to 
distinguish symbols from constants, its tag  field occupies 
three bits (two bits in  WAM). The basic types expressed 
by the 3-bit tag are variable, list, structure, constant, 
symbol, frozen variable, table, and code. A constant data 
item  may  be  an integer, character, or system constant, and 
has extra bits to distinguish  it  from others. The code is a 
pair, comprising an address in  APM code and its 
arguments, and is used to express closure. Floating 
numbers, big integers, strings, complex numbers, and ratio 
numbers are expressed as structure data with special 
function operators. 

Symbols and related instructions Because the original 
WAM was designed without regard to separate 
compilation, we need some refinements in this respect to 
design AF" starting from WAM. In WAM, there is no 
distinction between integers and symbols; both are treated 
as constant data. It  is supposed that all symbols already 
have identifiers at compilation time  and that the identifiers 
will never be changed in future execution or in another 
compilation. In Zephyr, because of separate compilation, 
the identifiers should be given at link  time, and during 
compilation symbols are treated as being of pointer data 
type, not constant type. All of the pointer data for one 
symbol refer to the same address, which contains the name 
of the symbol. Pointer data are mapped to internal 
identifiers during generation of an object file and a 
symbolic information file. 

To distinguish these two types, we introduced new APM 
instructions such as get-pointer,  put-pointer,  unify-pointer, 
and select-pointer. The  first three are simply counterparts 
of get-constant, etc., and select-pointer is an indexing 
instruction on pointers. For efficient  indexing, a hash table 
is used.  In WAM, symbol identifiers are uniquely given at 
compilation time and can be used directly as hash values. 
In A F " ,  real identifiers are not given at compilation time, 
and the pointers cannot be used as hash values. To make it 
possible to build a hash table at compilation time, we use a 
unique hash function for every compilation, and a hash 
value is kept at the location pointed to by the pointer data. 
During the execution of  an indexing instruction, the hash 
value is indirectly looked up from the pointer, and the 
location of its entry is calculated from the hash value and 
the hash table size. This process differs  from that of 
constant data, and therefore we have introduced new 
indexing instructions such as select-pointer. 

Table The tables are stored in the heap. Each table 
entry consists of the hash value of the index term, the 
index term, and the value term. The  hash value of 
structure data is calculated by adding the hash values of 
each argument term, function operator, and arity. By 
keeping the hash values of index terms, it is possible to 
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detect a mismatch quickly when two terms are mapped to 
the same entry but have different  hash values, and to 
resize a hash table efficiently when the table overflows. 

Index terms and value terms are also stored in the heap 
as continuous memory blocks, with the use of offsets for 
addressing instead of pointers. This allows  efficient garbage 
collection in the heap area. 

Garbage collection We use incremental garbage 
collection (GC), known as generation-scavenging GC  in 
Smalltalk [17]. Conventional GC starts when the whole 
global stack is exhausted, and scans all stacks. Incremental 
GC starts when a small area, which is called a GC 
window,  is exhausted, and only scans the global stack 
within the GC window. We placed the GC window at the 
end of the global stack to reduce the overhead of copying 
data during GC, and adopted a 64KB GC window on a 286 
machine to reduce the occurrence of segment switching 
during GC. According to our study [8], newly created cells 
tend to contain a large proportion of garbage, and because 
it focuses on them,  GC takes  less time. In addition, 
because incremental GC is done within a small memory 
area, it causes fewer page faults and cache misses, 
improving total system performance. On the other hand,  it 
has some drawbacks: It  does not collect garbage outside 
the GC window, and  it  may  be  invoked in some cases for 
which conventional GC would not occur. 

Figure 14 illustrates how incremental GC works on the 
global stack. (1) shows the state in  which the global stack 
is growing. If backtracking occurs beyond the GC window, 
the state will be as shown in (2). Some data cells of the old 
part are discarded, and the top of the global stack is set to 
the bottom of the GC window. (3) shows the  state in which 
a GC window  overflows and the garbage collector is 
invoked. The garbage collector scans the contents of the 
GC window and stack frames created after the previous 
GC. Living cells are then moved to the old part of the 
global stack. Finally, the top of the global stack is set to 
the bottom of the GC window, as shown in (4). 

Additional instructions APM has additional instructions 
to support new features of Zephyr and to improve 
compiler optimization. Examples are 

Support for the cut operation. 
Explicit variable initialization for safe GC. 
Explicit stack overflow checking. 
Creation of closure. 
Escape to underlying system. 
Tag checking. 
Support for new controls such as catch and throw, 

Instructions for read-mode-specific and write-mode- 
freeze, and on-backtrack. 

specific operations. 
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Zephyr to APM 
Compilation from Zephyr to APM is similar to WAM- 
based compilation; that is, it performs trail recursion 
optimization (TRO), GET/PUT elimination,  indexing, and 
management of registers/stacks. 

In addition, it performs the following  new operations: 

GC checking. Since APM instructions do not check 
global stack overflow, the compiler evaluates the possible 
maximum size of growth of the global stack in an 
execution block and generates code to check explicitly 
whether GC may be needed. This code is located just 
before the first access to the global stack in the block. 
Delay stack allocation. Stack allocation is a heavy task 
in  Prolog, so the code is located just before the first 
access to the environment stack in  a clause. 
Permanent variable initialization. For safe GC,  all 
permanent variables (variables allocated to environment 
stacks) must be initialized. The compiler generates 
initialization code for permanent variables not referred to 
in the first execution block of a clause, and places it just 
before the first  call instruction. 
Freeze checking. Code that checks whether variables 

404 bound to some delayed goals are bound to nonvariables 

is generated between the clause head code and the 
clause body code. 
Built-in compilation. Built-in predicates are compiled in 
one of the following ways: 

Run-time  calls.  Most built-ins, such as read(-) and 

call to predicates predefined  in Zephyr Prolog itself, 

. Expansion into several clauses (;, - >, etc.). 
In-line AF" code [var(X), etc.]. 

Error detection. The compiler detects all errors related 
to syntax and undefined predicate calls, and does not 
stop compilation at the first error. 

write(-), are compiled  in this way. 

that is, libraries [bagof( -,-,- ), etc.]. 

Generation of a symbolic information file. 
Generation of basic block information. Basic block 
information is additional information for code generation, 
containing 

Conditions on variables such as value, type, 

. Reference count. 
Visibility; i.e., local (accessed only in the package), 

.! (having access to other packages). 

dereference, and  mode. 

exported (accessed from other packages), or imported 

This information helps the code generator to create 
efficient and compact native code. Our previous work 
[18,  191 and recent research [20, 211 show that the first 
one is particularly helpful. However, the current version 
of the Zephyr compiler does not  fully  utilize  this. 

APM to native 
Since there is still  a semantic gap between APM and 
conventional CPUs but, on the other hand, a need for 
efficient  and portable code generation, we have introduced 
Zephyr Intermediate Language (ZIL), which is an 
assembly language for generalized CPUs with tag-handling 
capability. Thus, the code generation consists of two 
phases: APM-to-ZIL and ZIGto-native code. 

In translation from  APM to ZIL, the code generator 
uses basic block information to eliminate redundant ZIL 
code generation. For example, native translation generates 
tag-testing code and operation code for each possible tag. 
If the possible types are known, the tag-testing code may 
be simplified, and operation code for some tags can be 
eliminated. 

In translation from ZIL to native code, the generator 
does 

Control flow optimization, such as basic block 

Reiister allocation using register coloring [22]. 
str ightening  and  elimination of multiple jumps. 

However, for a 286 machine, register allocation is  not 
effective, since a 286 has few available general-purpose 
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registers. Thus, register allocation is inhibited. In addition, 
to reduce the amount of segment switching, which takes a 
lot of time  on a 286, the generator does 

Separation of the internal entry point and external entry 
point of an exported predicate. This makes it possible to 
generate near jump for calling a predicate defined in the 
same package, even though  it is exported. 

package-local subroutines. 

boundary. 

Generation of frequently used run-time routines as 

No spreading of structure data across a segment 

Libraries 
On OS/2, the Zephyr library includes 

A dynamic link library (DLL) version of Zephyr run-time 

A static version of Zephyr run-time code. 
Built-in/utility objects written in Zephyr. 
DLL for SQL support. 
A stream-I/O-based window server. 

code. 

One of the most important drawbacks of compiler-based 
programming is that it takes a long  time to remake a 
module  and execute it  again after program  modification. 
Separate compilation minimizes the size of the part that 
must be recompiled. Thus, the compilation time is not a 
serious problem. On the other hand, the linking  time is 
significant because libraries must be searched. The use of 
DLLs can provide a partial solution on OS/2. In a DLL, 
most address references are resolved; when linking  with 
user programs, it is only necessary to resolve function 
entries, and the linkage can be achieved in a fairly short 
time.  During execution using DLLs, however, it takes 
more time because it is necessary to load  and  maintain the 
DLLs. We therefore provide two types of run-time library: 
a DLL for the development cycle and a static library for 
final applications. 

Preprocessors 
Currently, two preprocessors are supported: a DCG 
preprocessor and  an SQL preprocessor. The DCG 
preprocessor is used to convert a package which includes 
DCG rules into a normal Zephyr package, which is 
compiled. 

The SQL preprocessor provides an elegant and efficient 
way of issuing queries to an SQL database managed by the 
OS/2 database manager. The program is written like a 
normal Zephyr package, except that it includes import 
database  declarations instead of import predicate 
declarations. The execution is optimized to minimize the 
number of SQL queries by a lazy  execution  mechanism. 
This will be discussed further in a future paper. 
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Sample screen showing debugging. 

Both DCG and SQL preprocessors are written in Zephyr 
itself, and run like conventional applications. For example, 
to use the DCG processor, it is acceptable to type 

[C:\ZEPHYR]dcg logc.dcg logic.zpl 

on the command  line. The preprocessed file logic.zpl will 
be generated from logic.dcg. 

Debugging 
Zephyr Prolog provides two kinds of debugging  facility: a 
debugging interpreter and  debugging  in  compiled code. 

The debugging interpreter is an  ongoing prototype that 
integrates interactive execution, box model tracing [23], 
algorithmic  debugging [9], and type inference based on 
abstract interpretation. The essential part of the system is 
described in another paper [24]. 

Debugging  in  compiled code is done by compiling 
packages with the DEBUG option. During execution of 
packages compiled  with the DEBUG option, functions can 
be used that do the following: 

Monitor the call and exit gates of the box model. 
Execute one step or N steps. 
Skip to specified predicate. 
Skip the current goal. 
Display variable bindings of the clause under execution 

Browse the source program being executed. 
Locate the cursor of the browser automatically on the 

with the original variable names. 

clause being executed. 

Figure 15 shows one screen using the debugging functions. 
As shown in the figure, each browsing source program and 
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Table 2 Results of rough  measurement on an IBM  PS/55 
(20-MHz  386)  by  using the naive  reverse  benchmark. 

Static DLL 

Compile  time 17 s 17 s 
Link  time 66 s 9 s  
Module size 340.5 KB 18.6 KB + DLL 
Execution  speed 14.5  =IPS* 13.4  =IPS* 

'LIPS = logical inference per second. 

the dialog for debugging are done in windows separate 
from the application window. 

These debugging facilities are realized by 

Considering all variables as permanent variables. This is 
necessary in order to be able to show all variable 
bindings at any time. 
Inserting a call of a debugging routine before the first 
goal of each clause. The debugging routine creates a 
frame that contains the depth of calls and mapping of 
variable cells to their names. 
Generating APM nop instructions before and after APM 
call instructions. These nop instructions are considered 
as calls to a routine that provides debug functions. One 
parameter of nop, nop number, is used to obtain goal 
information. 
Generating a debugging information file, which contains . Mapping of nop numbers to goal information, which 

contains the name, arity, and source position of the 
goal. 
Mapping of clause number to clause information, which 
contains the source file name, predicate name, 
predicate arity, source position, number of variables, 
number of goals, and the size of the frame for 
debugging. 

Preliminary  evaluation 
It is  difficult to judge whether a language system is well 
designed. The only effective way of doing so is to use the 
system extensively in numerous large applications, which 
could take years. But  while  implementing Zephyr, we 
became convinced that our approach in Zephyr (that is, 
compiler-based programming)  is effective in application 
development because Zephyr was used to implement many 
of its own components. For example, most built-in 
predicates are written in C, but currently there are 20 
packages written in Zephyr as built-ins or utilities, 
including metapredicates (such as setof, bagof), list- 
processing predicates (such as append,  reverse,  member), 
tracing, SQL support, sorting, record handling, DCG 
support, and stream-based window support. They are 
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recompile them for use in applications, thanks to the 
environment-independent separate compilation. Moreover, 
the user can easily extend the library. In fact, the number 
of utilities is still increasing through the addition of 
packages which have generality. The SQL preprocessor, 
the DCG processor, and the debugging interpreter are 
written in Zephyr. The debugging interpreter is one of the 
biggest applications, consisting of 14 packages with more 
than 6000 lines. 

Although performance is not the focus of this paper, we 
give the results of a rough measurement in Table 2. The 
measurements were obtained by the well-known  naive 
reverse benchmark program (one package, 63 lines in our 
case) on OS/2 1.1, running on the PS/55  Model 5570, which 
is a Japanese version of the PS/2@  with  an 80386@, 20-MHz 
CPU.  Since  we  had  difficulty  in  measuring the exact CPU 
time  on  OS/2,  it was measured by the response  time base 
when there was no other user session. 

The execution speed seems to be a little slow in 
comparison with that of Arity Prolog [SI running on DOS, 
but we know that this comes from supporting a large 
memory and many new data types, and from run-time 
routines written in  C. 

We can test a small  program within a minute using a 
DLL, but in a large application the link time  will be a 
problem. In fact, it takes more than one minute simply to 
link all the objects of the debugging interpreter. 

Conclusion  and  future  work 
In this paper we have shown that compiler-based 
programming, which is  normal in conventional 
programming  languages, can solve many of the difficulties 
found in large-application development in  Prolog. To do 
this, we have refined and extended the de facto standard, 
Edinburgh Prolog,  and have implemented a compiler 
system on OS/2. The system was carefully designed to be 
suitable for application development. In fact, the 
debugging interpreter, the SQL interface program, some 
preprocessors, and some of the built-in predicates are 
written in Zephyr itself. Several tasks remain as future 
work, such as full implementation of source-code 
debugging, an external language interface, and optimization 
basad on type inference. Porting our system to other 
operating environments will be valuable and  will provide 
nec ssary evidence of portability. Finally, we would  like 
our P ork to have a positive impact on the standardization 
of Pfolog. 
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