Zephyr:
Toward true
compiler-based
programming

in Prolog

by Y. Asakawa
H. Komatsu
H. Etoh
Y. Hama
K. Maruyama

Prolog is widely used in prototyping,
especially in artificial intelligence, but it has
yet to gain widespread acceptance in
application development. We think that the
problems in this area result from the
programming style enforced in existing Prolog
systems. Zephyr is a new Prolog system
refined and enhanced to help solve such
problems. It allows users to do modular
programming by always using a compiler
instead of an interpreter. In this paper, we
describe the unique features of Zephyr which
make this possible, focusing especially on
package, metafunctions, and tables, and the
implementation of the system on 0S/2.®

Introduction

With the inception of the fifth-generation computer project
in Japan and the adoption of logic programming as its
basis, Prolog has become famous as a promising Al
programming language. Many research-based and
commercially based Prolog systems now exist and are
widely used for the prototyping of searching, database

querying, simulation, design, planning, expert systems,
compiler writing, natural-language processing, and so on.
On the other hand, there are few really practical
applications written in Prolog. The many possible reasons
for this gap may be summarized as follows:

o Failure to meet application requirements such as
execution performance and memory size.

« Failure to develop applications themselves because of
software engineering problems.

Our research motivation is that in terms of both
language and system, a programming style that is effective
for conventional programming languages, which we call
true compiler-based programming, helps solve the
difficulties found in developing practical applications.

True compiler-based programming supports program
modularity, the sharing and reuse not only of source code
but also of object code, separate compilation, executable
module generation, and debugging in compiled code. These
are not fully realized in many current Prolog systems.

To realize true compiler-based programming, the
language itself must also be refined and extended in the
following aspects: the introduction of a package system to

©Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 391

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

Y. ASAKAWA ET AL.

392

provide name spaces for predicates, the use of interface
definitions, the restriction of program modification, the
introduction of closure for metaprogramming, the
elimination of commands for the interpreter and debugger
from the actual language part, and so on.

Since Prolog has many unique features that distinguish it
from conventional programming languages, the key to
supporting true compiler-based programming in Prolog is
to determine how to support these unique features,
especially metafunctions and symbols as data.

The first section of this paper analyzes problems in
current Prolog systems. The next section describes the
approach adopted in the Zephyr Prolog system. The
following two sections deal with details from the viewpoint
of language features and an implementation of Zephyr
Prolog on Operating System/2® (0S/2®). The final section
gives the results of our preliminary evaluation.

Problem analysis

® In meeting application requirements

In most practical applications, there are many
requirements and restrictions which are not always
considered in prototype systems: 1) execution speed,

2) working memory size, 3) application code size,

4) openness to other systems, and 5) hiding of source
code. Let us consider these points with regard to Prolog.

1. Execution speed. After efficient compilation techniques
were introduced by Warren {1], compilers became
indispensable components for obtaining good
performance in Prolog systems. Much research based
on his work has been done, but often the code still fails
to clear the performance requirement and is then
rewritten in a conventional language, such as C. This
means that Prolog systems must be open to other
languages to allow performance-critical parts of
applications to be rewritten in conventional languages,
even in compiler systems. Of course, compilers should
also have more effective optimizing techniques.

2. Working memory size. Unique features in Prolog, such
as unification, backtracking, ‘‘type-less’’ variables, and
single assignment, provide elegant and powerful ways
of handling complex data structures dynamically. To
support these features, programs written in Prolog
require more memory than those in conventional
languages. Optimization, done primarily in compilation,
can reduce the size. For example, tail recursion
optimization (TRO) [2] and clause indexing [1] eliminate
redundant stack frames very quickly; thus, much more
memory can be retrieved by “garbage collection” (GC)
and used in further execution. Many existing Prolog
systems do not allow an application to be separated
from the language processor itself; that is, an

Y. ASAKAWA ET AL.

application always includes the interpreter, debugger,
and compiler, even though only the run-time library is
necessary. In addition, Prolog possesses metafunctions
such as ecall. A naive implementation always requires an
interpreter at execution time. As a result, applications
require more memory to run. To get good performance,
especially on the segmented architecture typical of
microprocessor-based machines, it is effective to restrict
the maximum size of one memory block (stack, heap,
symbol table, etc.) to the segment size, even if there is
a large surplus of memory. However, this prevents
many applications which use much memory from
running.

3. Application code size. For commercially based
applications, the maintenance cost is frequently related
to the application code size. If an application includes a
language processor, this raises the cost.

4. Openness to other systems. In addition to performance,
openness is very important for integration and
communication with other systems, such as existing
databases and window systems, and for taking
advantage of existing code written in conventional
programming languages such as C and FORTRAN. The
method of communication and code utilization depends
on the individual system. For example, it sometimes
involves issuing subtasks or processes, but at other
times it is necessary to link object libraries.

5. Source-code hiding. 1t is desirable to hide valuable
source programs for applications, especially in the case
of commercial applications. That is true in Prolog
because the knowledge used in an application may be
described at a much higher level, but it is not possible
in an interpreter system. Even in a compiler system it is
not possible if the system supports only on-memory
compilation and not the functions required to save and
load compiled code.

® In developing applications themselves

To build a large application, the program must be divided
into small pieces which can be developed and tested step
by step, shared among many people, and reused. This is

true whatever language is used. In Prolog, unfortunately,
neither the language nor the systems encourage this. For
example,

1. In the de facto standard Prolog, the so-called Edinburgh
Prolog [3, 4], there is no certain way to avoid accidental
conflicts of predicate names between separately
developed programs. These occur frequently in the
development of large systems and disturb that
development. It is possible to avoid name conflicts only
by using a compiler with special directives, but even
this will fail if metafunctions such as call and assert are
used.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

2. In most Prolog systems, the result of compilation
depends on the environment in which it is done [3, 5-7],
because of implementation requirements such as easy
maintenance of a symbol table and a predicate table
that are required not only at compilation time but also
at execution time. As a result, object code is generated
in a format that does not allow it to be used in different
environments. Programmers are therefore unable to
share their programs as compiled code, to reuse them,
to build their own object libraries, or to enhance
existing libraries. All they can do is to keep and
exchange source programs, and recompile them in each
environment. (However, they may wish to hide the
source code, as mentioned previously.)

3. The programming scenario most widely used in Prolog
is as follows:

& Build a source program using a text editor.

o Start a Prolog session.

& Consult utility programs.

o Consult a user program.

& Debug using the trace function of an interpreter.
« Invoke a text editor and fix bugs.

o Reconsult the program.

o (Repeat this cycle).

To use a compiler in this cycle, the programmer must
always invoke a compiler during or after (re)consult,
which takes much extra time. Moreover, there is no
way to debug compiled programs in most systems.
Therefore, many Prolog users are discouraged from
using a compiler. However, debugging a big program by
using an interpreter is exhausting because it takes a
long time to reach a bug.

4. Problems related to memory size, which are mentioned
in application requirements, are more critical in
application development because the use of an
interpreter for debugging requires more memory than
normal execution.

Approaches

True compiler-based programming, which we adopted to
make Prolog more useful in the area of application
development, needs careful consideration of both the
system architecture and the language design, which are
mutually affected.

® Architecture and implementation
The basic features which a compiler-based system should
have, and which are pursued in our work, are as follows:

& Separate compilation. This is essential for step-by-step
development and sharing and reuse of objects.

& Environment-independent compilation. This means that
object code does not depend on the environment in

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

which it is generated. With this feature, objects can be

shared and reused in different environments.

Generation of object files in the format regarded as the

standard on the operating system. This feature is

indispensable in the use of libraries provided as objects
and the use of objects implemented in Prolog in other
systems; it will increase the chance of Prolog being used
in practical applications.

Generation of executable modules in the format

regarded as the standard on the operating system. This

enables an application to run by itself.

& Optimization. To allow for optimization without
sacrificing portability, we adopted an abstract machine,
called the Abstract Prolog Machine (APM), for an
internal phase of compilation. APM is based on, but
provides many extensions to, Warren’s Abstract
Machine (WAM) [1], which allows it to support Zephyr’s
new features for practical use. Optimization is done in
two stages:

« Prolog-to-APM-code translation. Well-known
optimization techniques, such as TRO, clause indexing,
and get/put elimination are applied.

« APM-code-to-native-code translation. By control and
data flow analysis on lower-level code, register
allocation is effectively done on a real machine.

» Efficient garbage collection. Since the memory used for

a failure computation is reclaimed automatically during

backtracking, garbage collection in Prolog is not as

essential as in Lisp. Even so, there are programs that are
necessarily executed in forward-loop style and therefore
require garbage collection. If they are actual
applications, it should not look as if they have stopped
during garbage collection. To avoid this, we have applied
to Prolog the technique known as generation-scavenging

GC [8], which is described in the section below on

implementation in OS/2.

Fast compilation. One of the disadvantages of using a

compiler is that it takes much longer to remake code

after modification than with an interpreter, because of
the compilation itself and linking. As with linking, there
is less chance of improving performance, because the
standard linker must be used in order to generate
standard modules. Consequently, we must try fast
compilation to compensate for the disadvantage.

& Detecting all errors and possible erroneous parts. One of
the advantages of using the compiler for development is
that it always does program analysis and then detects
and informs the programmer of errors and erroneous
parts. For Prolog, the most common errors include
simple syntax errors and references to undefined
predicates. The compiler attempts to find all of these
€ITOrS.

& Debugging support. Because we separate the debugging
function from the language proper, we must support

[4

L4

393

Y. ASAKAWA ET AL.

394

package(PackageName [, PackageType]).
Declarations...
Clauses:..
endpackage(PackageName).

§ Style of a package.

import([predicate,] [PackageName : | Predicate).
export([predicate,] Predicate).

% Style of import and export declarations.

separate debuggers. We are working on this in several
ways, using meta-level debugging known as algorithmic
debugging [9] and source-code debugging (CodeView™,
etc.).

We have kept in mind that there can be no restrictions on
memory usage and that the system must be portable.

® Language

In designing the language, we adopted as its base the

de facto standard, Edinburgh Prolog, refined it, and added
many extensions such as the following:

* Introduction of package as a predicate name space and
as a compilation unit.

* Refinement and enhancement of metafunctions.

e Introduction of table for persistent data.

» Introduction of new data types, such as character, string,
big integer, float, ratio, complex, and infinite term.

o Introduction of new control mechanisms, such as freeze,
on_backtrack, and catch-and-throw.

¢ Support of SQL and external language interfaces.

® Separation of interpreter/debugger commands from the
language proper.

In the next section, we describe important new language
features, focusing especially on the first three of the above

Y. ASAKAWA ET AL.

because they are most closely related to compiler-based
programming.

Language extensions

® Packages

Modularity is one of the most important features required
in large-application development. This means that
separately developed programs cannot affect the behavior
of other programs accidentally or by design without
accessing them via interfaces open to others. Package is
introduced to realize this modularity in Prolog.

In a sense, Prolog is a modular programming language
because of the unique features of variables. The scope of a
variable is limited to the clause in which it occurs, and
variables cannot be overwritten after they are assigned
values by unification. A collection of clauses whose head
name and arity are the same is called a predicate. A
predicate is the smallest functional unit in Prolog and
corresponds to a function or a subroutine in conventional
languages. But predicates in Prolog tend to be used much
more than functions in conventional languages to produce
equivalent results, because a predicate is necessary in
order to perform a simple operation such as a condition
check, and another predicate is used to keep global values.
Unfortunately, there is no way of controlling the scope of
predicate names in standard Prolog, and it is impossible to
remove the possibility of predicate-name conflict with
certainty.

In Zephyr, a package provides a name space for
predicates and tables. (From now on in this subsection, we
discuss only predicates for simplicity.) Because predicates
in a package are hidden from other packages, their names
never conflict with those of others. Explicit declarations
are used to control the visibility of predicates. For
example, predicates which are to be used from other
packages should be declared as ““exported’ in the package
where they are defined, and declared as ““imported”” in the
package where they are used.

As for symbols, we have not introduced any way of
controlling visibility. Thus, symbols are always unifiable if,
they have the same name, even when they occur in
different packages. MPROLOG [10] and BIM PROLOG [11]
have the capability to control visibility of symbols. As long
as metafunctions are not used, a symbol simply expresses
the name itself and is not used to bind something with it,
as in Lisp [12]. Thus, in such a case, there are no serious
problems related to the scope of symbols. Issues related to
metafunctions are discussed in the next section.

In Zephyr, a complete program consists of one or more
packages. Each package consists of predicates made up of
clauses and declarations. Figure 1 shows the style of a
package. Each package name should be a symbol, and the
package type should be either open or closed. If the type

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

is not given, it is assumed to be closed. The meaning of
the package type is described, together with
metafunctions. In a complete program, one and only one
predicate whose name is main should be exported, and this
predicate becomes an entry point.

There are three kinds of declaration: import/export
declaration, table declaration, and predicate declaration.
The last two are discussed later.

Import and export declarations are used to control the
visibility of predicates. The style is shown in Figure 2.
Predicate in the declaration is specified by the most
general head pattern. For example, a predicate whose
name is sort and whose arity is 2 can be specified as

sort(_,)
sort(In,Out)

Notice that in an import declaration, a predicate can be
declared with a package name that specifies the package
which exports the predicate. This is important in the
following senses:

¢ In Zephyr, more than one predicate with the same name
and arity may be exported, and each is treated as
independent. By specifying packages in import
declarations, we can avoid ambiguity of import and
accidental name conflict among exported predicates.

e It allows the system to look for specified packages, for
example during linking, even if they are not explicitly
given.

It is also possible to import more than one predicate whose
name and arity are the same in a package. To avoid
ambiguity in calling predicates, we can specify a package
for each goal using the infix operator : as follows:

quickSort : sort([1,3,2],X)
bubbleSort : sort([1,3,2},Y).

This is also used to refer to built-in predicates redefined by
the user. In Zephyr, built-in predicates are treated as if
they were defined in a package called builtin and imported
implicitly. It is possible to define a predicate whose name
and arity are the same as those of some built-in predicate.
In this case, the definition overrides the imported built-in
predicate, but it is still possible to use the built-in
predicate by specifying package builtin. For example, the
following clause defines a new write(X):

write(X) :— builtin : write(X), nl.

A more complex and complete example is given in
Figure 3.

In the example, predicate p(X) is defined in two
packages and both are exported. To import and use them
at the same time without ambiguity, package qualification

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

package(main).

export(main).

import(foo:p(X)).

import(bar:p(X)).

main:- foo:p(X), bar:p(X), write(X), fail.
endpackage(main).

package(foo).
export(p(X)).
P(X) :- r(X).

r(a).

r(b).
endpackage(foo).

package(bar).
export(p(X)).
p(X) - r(X).

r(b).

r(c).
endpackage(bar).

Example of a program.

is required in import declarations and predicate calls.
Predicate r(X) is also defined in two packages. These are
not exported, however, and do not affect each other. The
symbol b occurs in package foo and in package bar, and
these occurrences are unifiable. Thus, as a result of
execution, symbol b is written.

To summarize, packages and explicit specification of
interfaces in Zephyr provide an effective method of
ensuring the modularity of programs. In addition, they
allow the system, that is, compiler and linker, to detect
errors resulting from simple mistakes.

® Metafunctions

Prolog has unique features, which we call metafunctions,
that treat data as programs and programs as data, as in
Lisp. These features are realized by special built-in
predicates such as call, clause, assert, and retract (which
we call metapredicates). Standard Prolog has a single
name space for a program, or set of predicates, and there
is no ambiguity in mapping between symbols and
predicates.

Approaches to defining metafunctions for Prolog with
multiple name spaces depend on the characteristics of
visibility control. If a symbol has limited scope, as in
MPROLOG [10] and BIM PROLOG ([11], there is also no

Y. ASAKAWA ET AL.

395

396

package(main).
‘export(main).
import{foo:call(X)).
import(bar:cali(X)).
_main:- X = father(F,tom), p(X), write(F), fail.
p(X) = foorcall(X):
p(X) o bar:call()().j
endpackage(main).
package(foo).
export(call(X)).
tather(jack.tom).
endpackage(foo).

package(bar).
export(call(X)).
father(jim,tom).
endpackage(bar).

% Example of call.

ambiguity in mapping between symbols and predicates.
Therefore, metafunctions can be a natural extension of
those for a single name space. On the other hand, in
Zephyr, there are multiple name spaces only for
predicates. Thus, we need a new rule for mapping between
symbols and predicates.

The former approach provides simple and flexible
metafunctions. Such flexibility, however, would lose the
reliability and modularity of a program. Instead, we apply
visibility control also to metafunctions: Each name space
has its own metafunctions, which map a symbol to a
predicate in that name space.

Our solution is to treat metapredicates as if they were
defined in each package. This means that a metapredicate
in a package works only for those predicates in that
package. To use a metapredicate from another package,
the metapredicate should be exported and then imported
into the package where it is to be used. Figure 4 shows an
example of metapredicates. In the example, call(X) is
defined implicitly in the packages foo and bar, and is
exported from both. In package main, two call(X) are
imported and executed with an argument term
father(F ,tom). The argument is interpreted in both the foo
and bar packages. As a result, jack and jim are written.

A possible approach might have been to extend each
metapredicate so that it would take an extra argument to
specify the package in which a term is interpreted. We did

Y. ASAKAWA ET AL.

not take this approach because the argument specifying a
package is given dynamically, and thus does not allow a
package to be compiled in a completely static way. That
is, the compiler must always generate a predicate table for
future possible use of metapredicates, but this table is
hardly ever used. Moreover, all the predicates in any
package become visible when call is used. This destroys
the modularity which we are trying to introduce by means
of packages. Furthermore, source programs cannot be
hidden because the built-in predicate clause is able to get
all the clauses as terms.

The way in which we have introduced metapredicates is
rather static, but it ensures modularity, even if
metapredicates are used, because only the package which
exports a given metapredicate can be accessed by that
metapredicate. However, this becomes a restriction on
programming generic predicates. Suppose that we are
writing a predicate to do sorting, which takes a comparison
operator as its argument. In our approach, the comparison
operator or call defined in the same package must be
imported explicitly, so we cannot write such a sorting
program as a library. Therefore, we introduce a new data
type called closure, which combines a term and the name
space of the package in which the closure is created, and
makes it possible to interpret the term in the package later.

There are two kinds of closure: goal closure and
function closure. The difference between them is that the
latter takes real arguments when it is executed. Goal
closure is created by a built-in predicate

goal(GoalTerm, GoalClosure)

and executed by

call_code(GoalClosure).

Function closure is created by
closure(ArgVars, GoalTerm, FunctionClosure)
and executed by

apply(FunctionClosure, Parameters).

The first argument of the built-in predicate closure is a list
of variables that occur in GoalTerm and is unified with the
second argument of apply, Parameters, before really
starting execution of the closure.

The idea of closure is not new; it exists in Lisp [12]. But
even though many recent Prolog systems [35, 6, 10, 11, 13,
14] have methods to define modules that are similar to
those of our package, none of them have methods such as
closure.

Figure 5 is an example of goal closure. Predicate
countSolutions/2* counts how many times the given goal
succeeds. In this case, goal closure for nqueen(8,S)

*In this paper, X/N denotes a predicate whose name is X and whose arity is N.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

created in package main is passed and executed in the
package countSolutions. However, the execution is done
as in package main and is not affected by clauses defined
in countSolutions.

Figure 6 is an example of function closure.
genericQuickSort/3 is an alternative version of quick sort,
but it takes a function closure as its third argument, which
is used as a comparison operator. Comparison is done by
apply with real arguments. Notice that execution of
function closure may be done many times with different
arguments. This is the primary difference from goal
closure. In the example, the comparison operator is @>;
therefore, comparison is done in descending order on any
terms. The result is [f(1),a,1].

Both countSolutions and genericQuickSort can be
written and compiled without the programmer knowing
which package will use them, and these two packages can
thus be used as libraries.

package(countSolutions).
export(countSolutions(X,Y)).
import(counter:new(X)).
import(counter:inc(X}).
import(counter:get(X,Y)).

countSolutions(Code,N) :-
new(Counter),
do(Code,Counter),
get(Counter,N).

do(Code,Counter) :-
call_code(Code),
inc(Counter),
fail.

do(-,-).

endpackage(count.solutions).

package{main).

export(main).

import{countSolutions(X,Y)).

main :-
goal(nqueen(8,S),Code),
countSolutions(Code,N),
write(N), nl.

nqueen(X,Y) :-

endpackage(main).

Example of goal closure.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

package(genericQuickSsort).
export(genericQuickSort(List, SortedList,CompareOp)).

genericQuickSort(L,S,0p) :- ggsort(L,S,[],0p).

gqsort([(XIXs],8,T2,0p) -
partition(Xs,X Littles, Bigs,Op),
ggsort(Littles,S,T1,0p),
ggsort(Bigs,Bs,T2,0p),
T1 = [X|Bs].

gagsort([],X,X,-).

partition([XIXs],Y,[X|Ls],Bs,Op) :-
apply(Op,[X,Y]), }, partition(Xs,Y,Ls,Bs,Op).
partition([X|Xs],Y,Ls,[X|Bs],Op) -
partition{Xs,Y,Ls,Bs,Op).
partition([],-,[.[].-)-

endpackage(genericQuickSort).

package(useGenericQuickSort).
export(main).
import(genericQuickSort(In,Out,Op)).
main :-
closure([X,Y], X@>Y, C),
genericQuickSort([a,f(1),11,S,C),
writen(S), nl.
endpackage(useGenericQuickSort).

Example of generic quick sort.

i

Closure is a very important mechanism on a compiler-
based system. By using closure, we can write subroutines
which take goals as their arguments without losing
generality. In fact, in our implementation, closure is used
internally to support some built-in predicates, such as setof
and bagof.

Another important aspect of metafunctions is their
ability to modify programs dynamically during execution.
The modification is done by using the built-in predicates
assert and retract. However, the unlimited use of assert
and retract does not coincide with our general approach of
making it possibie to compile statically and discard source
information as much as possible.

According to our study, the uses of assert and retract
can be categorized as follows:

¢ Building a program interactively in an interpreter.

¢ Maintaining giobal data.
¢ Actually modifying a program during execution.

Y. ASAKAWA ET AL.

397

398

declare([predicate,] Predicate, dynamic).

Style of predicate declaration.

package(fibonacci).
export(fib(X,Y)).
declare(fib(X,Y),dynamic).
fib(0,1).
fib(1,1).
fib(X,Y) :-
X>1,
X1is X—1, fib(X1,Y1),
X2is X -2, fib{X2,Y2),
YisY1+Y2,
asserta(fib(X,Y)).
endpackage(fibonacci).

Example of self-modification program.

The first use is a function of the programming environment
rather than being a feature of the language. Therefore,

we ignore it here. The second use is more common:
Because a Prolog variable is localized to a clause, Prolog
programmers tend to use assert and retract for this
purpose. In Zephyr, as a result of the introduction of a
new data type fable, this usage is eliminated (see the next
section for details). We have found that the third case still
remains, and decided to support it in a slightly restricted
way.

The approach was that any predicates modified or
created during execution should be declared as dynamic in
the style shown in Figure 7, and that assert and retract
work only for them. Like call, assert and retract do not
affect dynamic predicates defined in other packages. Since
all dynamic predicates should be declared, a compiler can
detect errors such as undefined predicate calls in the same
way as for a completely static package. Predicates not
declared as dynamic can be compiled in the static way.

Figure 8 is an example of a program modification that
calculates Fibonacci numbers. Once a Fibonacci number is

Y. ASAKAWA ET AL.

calculated, it is stored as a fact by modifying the program,
and the next time it is referred to in the recursive loop, it
is used without being calculated again. Because fib/2 will
be modified, it is declared as dynamic and the modification
is done by asserta, which is a variety of assert and always
inserts a fact on top of the predicate.

From the viewpoint of the implementation of Zephyr,
most compiled programs can run without source terms or
predicate tables. However, once call appears in a source
package, a predicate table of the package is required for its
execution. In addition, there is a possibility that the built-
in predicate clause will be invoked during execution of the
call, which requires all source terms. Because this is a
very rare case, we have restricted the default behavior
here so that clause via call does not work. To make it
work, we must declare the package to be open by using
the optional argument of the package statement. Of course,
if clause appears in the source explicitly, a predicate table
and source terms must be generated.

® Tables
A table resembles somewhat a variable or an array in
conventional programming languages, and is used to retain
terms without losing them during backtracking.

In most Prolog systems, this is done by using assert and
retract, but it has many drawbacks:

» It disturbs the static compilation of programs.

« Its effect on program behavior is difficult to understand.

& The modularity of data depends on that of predicates.

& It requires maintenance of the rule base, which is a time-
consuming task in Prolog, thus making it difficult to
obtain good performance.

We know that using global data is not consistent with
the clear semantics of Prolog, but in real applications, it is
indispensable. We have therefore introduced table to
support global data clearly and safely, as a replacement for
the inappropriate use of assert and retract.

To introduce it, we took the same kind of approach as
for (dynamic) predicates:

& All tables should be declared.

& The scope of a table is limited to the package in which it
is generated.

& Import and export declarations are necessary to control
visibility.

Figure 9 shows how tables are declared. Table in the
declarations should be the most general term and should
specify the name of the table and the dimension. A zero-
dimensional table is specified by a symbol and is treated as
a simple variable. For example

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

declare(table, Table).
import(table, [PackageName : | Table).

export(table, Table).

Style of table declarations.

declare(table,wordCounter(W,A)).
declare(table,flag).

declare a two-dimensional table wordCounter and a
variable flag.

Accessing and changing a value in a table are performed
by the built-in predicates

get_table(Pattern, Value);
put_table(Pattern, Value).

Pattern should be a ground term which matches one of the
tables declared in the package. On the other hand, Value
can take any Prolog term. The location where Value is
kept is uniquely identified by Pattern. In other words, the
whole of Pattern works as an index for a table. put_table
places Value at the location identified by Pattern, and the
previous value is discarded. get_table unifies Value with
the term found at the location Pattern. If nothing is written
at the location, the process ends in failure.

Figure 10 is a package to maintain counters, which are
used as in Figure 5. The one-dimensional table counter is
used to keep real values of counters that are identified by
symbols generated by gensym. Since the table is not
exported, it is not accessed directly from other packages.

In terms of implementation, a table is exactly the same
as a hash table. The hash value of Pattern is used to
identify the location guickly, and in the same amount of
time for all cases. The pair of Pattern and Value is stored
at the location. The size of the table is automatically
changed according to the number of entries actually used.

Since we have also introduced static interfaces for
tables, we need a new mechanism similar to closure for
predicates. We call it a table descriptor. A table descriptor
becomes necessary when we write a general package
which works on any tables—for instance, sorting the
elements of a given table. A table descriptor is created by
the built-in predicate

table_descriptor(Table, Descriptor)

and can be passed to other packages. To access the table
using the descriptor, use

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

package(counter).
export(new(Name)).
export(inc{Name)).
export(get(Name,Value)).
% declare put, dec, ...
import(gensym:gensym(X)).
declare(table,counter(Name)).
new(Name) :-
gensym(Name),
put_table(counter(Name),0).
inc(Name) :-
get.table(counter(Name),N),
N1is N+1,
put-table(counter(Name),N1).
get(Name,Value) :-
get.table(counter(Name),Value).
% define put, dec, ...
endpackage(main).

§ Example of table.
i gt

Table 1 New data types in Zephyr Prolog.

Type Example
Big integer 12345678901234567890
Character #'a
Floating number 1.2e-3

Rational number
Complex number
String

Infinite term

#ratio(1,3) (= 1/3)
#complex(1,2) (= 1 + 2i)
$Zephyr Prolog$
f(#inf(1)) (= (£ . .))))

get_table(Descriptor, IndexList, Value);
put_table(Descriptor, IndexList, Value).

In this case, an access pattern is dynamically created from
Descriptor and IndexList.

o Other extensions

Data types

Many new data types that are useful for practical
applications but are not found in Edinburgh Prolog are
introduced in Zephyr Prolog. The introduction is
influenced by Common Lisp [12] and recent Prolog
systems [5, 6, 14]. New data types introduced in Zephyr
Prolog are listed in Table 1.

Y. ASAKAWA ET AL.

399

400

One of the most important is the character data type.
Because Edinburgh Prolog does not have a character data
type, programmers in Edinburgh Prolog must write
character code directly and debug it with character code.
The resulting programs are hard to read and not portable
among different character code sets. Introduction of the
character data type helps solve these problems. Problems
related to character code are also found in string syntax
sugar, which is an alternative notation of a list of character
codes. Ideally, the string syntax sugar of Edinburgh Prolog
should be converted into a list of characters, for instance,
from ABC to [#'A, #'B, #'C]. However, to maintain
compatibility with Edinburgh Prolog, this translation is not
used.

Controls

The following new control mechanisms are introduced.
They are sometimes useful for improving performance and
simplifying programs. However, it is hard to define them in
pure Prolog, or rather, it is hard to define them so that
they work efficiently in pure Prolog [15].

o freeze(Var, Goal) suspends execution of Goal until Var is
bound to a nonvariable term. This is the same as the
mechanism introduced in Prolog-II [16].

¢ on_backtrack(Goal) suspends execution of Goal until
backtracking to an earlier point occurs. This effect
cannot be climinated by cut.

o catch(Goal) executes Goal. It fails immediately when
throw is executed during its execution. A combination of
catch and throw allows a global exit from the execution
of a goal.

C-interface

C-interface, introduced in Zephyr Prolog, is a natural
extension of the import and export of predicates. To use a
C function in a Zephyr package, declare it in the following
way:

import(c, PredicatePattern).

A goal that matches the second argument is treated as a C
function call. If the C function returns TRUE, the goal
succeeds; otherwise it fails.

To use a Zephyr predicate from C, declare it in the
following way:

export(c, PredicatePattern).

The predicate can be considered as a function for returning
TRUE or FALSE according to the SUCCESS or
FAILURE of predicate execution. Note that even though
the predicate succeeds with choice points, all of them are
removed because the predicate is treated as a C function.
Since both C and Prolog allow recursive calls, we have
placed no restriction on nested calls between C and Prolog.

Y. ASAKAWA ET AL.

Parameter passing between C and Prolog is done by
using APM registers, not the C stack, and automatic
data conversion is not supported. This means that C
programmers must know APM architecture. The reasons
we adopted this strategy are as follows:

e If the C stack contains Prolog data such as structures
and lists, garbage collection cannot work correctly and
may make dangling references, because the C stack is
outside the control of Prolog memory management.

e There is no way to map any structure data of Prolog to
C data without keeping tag information on C data. If tag
information is used, there is no meaningful difference
from using the original Prolog data structure directly.

e Automated data conversion, especially for structure
data, causes extensive overhead. In most cases, this
makes the use of C meaningless.

Implementation on 0S/2

In this section, we describe the implementation of Zephyr
on 08/2, focusing particularly on the realization of
environment-independent separate compilation that
generates standard objects.

Originally, we initiated our project on VM/370 and on
top of VM/Prolog [13]. At that time, all of the Zephyr
compiler was written in Zephyr itself. By bootstrapping the
compiler, we examined our approaches. There was an
increasing demand for Prolog on personal computers and
workstations. The biggest problem with DOS environments
is that they do not allow more than 640 KB of memory
without additional memory-management tools. But on 0S/2
up to 16 MB of memory is available, which allows many
Prolog applications to run on personal computers, thereby
making Prolog familiar to a much wider range of users.
This is why we implemented Zephyr on OS/2.

The OS/2 version includes a compiler, a symbolic linker,
libraries, preprocessors, and a debugging interpreter, and
runs on the 0S/2 1.X family. Zephyr thus runs in the 286
mode even on a 386 machine. This degrades performance,
because APM is a 32-bit machine supporting large
memory, and the implementation of Zephyr on the OS/2
1.X family is something like an emulation of a 32-bit
machine on a 16-bit machine.

For the implementation, we used the following
restrictions:

¢ The maximum code size of a package is 64 KB.
* The maximum size of one item of structure data is
64 KB.

These help improve performance on a 286 machine by
minimizing the occurrence of segment switching. We
provide separate compilation, and Prolog allows a nested
data structure, so those restrictions are not serious.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

® Compile and link
To create an executable module in Zephyr, the following
process is needed:

e Preprocess if necessary (to use DCG or Prolog-style
SQL).

e Compile each package.

e Link all objects with Zephyr and C libraries.

Figure 11 shows this process, which is very similar to that
in conventional languages such as C and FORTRAN, but
is not common among existing Prolog systems.

The compiler compiles a package and generates an
object file and a special file called a symbolic information
file. Internally, as shown in Figure 12, this compilation
consists of two phases: generating an assembly code file
and generating an object file. The latter is done by
invoking IBM Macro Assembler/2™ (MASM/2).

A symbolic information file contains the following
information:

¢ Package name.
e Symbols that are used in the package: Each symbol is
expressed by a name and an internal identifier.

— >
Source DCG, SQL DCG, SQL
code preprocess L program
Y
Compilation
Object Symbolic
code information
Y
Linkage

Executable
module

Compilation and linkage flow.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

Source
code

Compilation

Symbolic
information

g Compilation internal flow.

e Name, arity, and internal identifier for every predicate
that is exported or imported, and additional package
names for imports if they exist.

e Predicate table if metapredicates are used: This consists
of predicate entries for all predicates, each with a name,
arity, and internal identifier.

e Clauses represented as terms if the package is open.

This information is necessary to support environment-
independent separate compilation and must be handled
separately from standard objects. Symbols in Prolog are
needed at execution time, and, as mentioned in the section
on packages, symbols in Zephyr should be uniquely
identified among separately compiled packages. In
addition, exported predicates are identified by two-
dimensional name spaces indexed by package names and
predicate names. Unfortunately, the name space
management and naming convention (that is, the
characters that are allowed in a name and the maximum
length of the name) are completely different in Prolog and
conventional systems, requiring a special linker. However,
because we still wish to retain the capability to link Prolog
objects with objects in other systems, we separate a

Y. ASAKAWA ET AL.

401

402

——
Object

Symbolic Library
code information
Zephyr
C
[o}}

OS standard linker -

Executable
module

Linkage internal flow.

Zephyr object into a standard object file and a symbolic
information file.

A symbolic linker consists of two components, a front-
end linker and IBM Linker/2 (LINK/2), as shown in
Figure 13. It accepts several Zephyr objects with symbolic
information files, objects of other languages such as C, and
libraries. First, the front-end linker collects those Zephyr
objects which are provided explicitly by the user and any
Zephyr objects which are contained in Zephyr built-in
libraries and used in user packages. Then, it

e Serializes all the symbols in every complete program and
generates a symbol table. Internal identifiers are used to
modify object files. For example, during compilation, a
symbol may be referred to by the label S1, but the
address is unresolved at the time. At link time there may
be many labels S1 for different symbols. As a result of
serialization, the same symbols become identified by the
same labels, and thus the label S1 in the package may be
changed to, for example, S27. This change should be
reflected in the object file. That is, the label S1 in the
object should be changed to the label S27.

Y. ASAKAWA ET AL.

¢ Resolves import and export in every complete program.
Internal identifiers are used to modify object files. For
example, assume that father/2, whose internal identifier
is P2, is exported from package foo and that the
predicate is imported in another package, bar, with
internal identifier P5. At first, all exported predicates are
serialized like symbols. Assume that father/2 in foo has
the identifier P15 as a result. Next, by scanning exports,
it is found that father/2 is exported with identifier P15.
Therefore, the identifier P5 in bar is changed to P15.
This serialization and change of identifiers is reflected in
object files.

e Collects predicate tables and source terms if they exist.

* Finally, generates an assembly code file which contains
all the data generated in the above processes and
invokes MASM/2.

After the front-end link process is finished, LINK/2 is
invoked with all modified Zephyr objects, the data object,
objects of other languages, Zephyr run-time routines, and
C libraries (these are needed because most Zephyr run-
time routines are written in C for portability). The
generated module will run by itself.

® Code generation

The code-generation part of compilation consists primarily
of two parts: Zephyr-to-APM-code translation, and APM-
code-to-native-code translation. APM, adopted as an
interim step, provides an efficient and portable way to map
Zephyr to conventional CPU architectures, and plays a
central role. Two translation phases are described below,
following a discussion of new and important features of
APM.

APM

Once the idea of using an abstract machine for Prolog
compilation was exploited by Warren [1], it became a
popular way to implement a Prolog compiler, and his
abstract machine is now famous as the Warren Abstract
Machine (WAM). But the original WAM focuses only on
the pure part of Prolog and gives little consideration to full
support of the Prolog language and to practical aspects. To
adopt the idea of an abstract machine for Zephyr, we
introduced many refinements and enhancements into
WAM.

Memory organization A heap is added to the
environment stack, choice point stack, global stack (called
heap in WAM), trail stack, and work stacks. It is used to
maintain global data such as symbols, tables, and predicate
tables. The trail stack is used not only to keep variables to
be undone during backtracking but also to keep goals to be
executed during backtracking.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

Data types The size of a data cell is 32 bits, and to
distinguish symbols from constants, its tag field occupies
three bits (two bits in WAM). The basic types expressed
by the 3-bit tag are variable, list, structure, constant,
symbol, frozen variable, table, and code. A constant data
item may be an integer, character, or system constant, and
has extra bits to distinguish it from others. The code is a
pair, comprising an address in APM code and its
arguments, and is used to express closure. Floating
numbers, big integers, strings, complex numbers, and ratio
numbers are expressed as structure data with special
function operators.

Symbols and related instructions Because the original
WAM was designed without regard to separate
compilation, we need some refinements in this respect to
design APM starting from WAM. In WAM, there is no
distinction between integers and symbols; both are treated
as constant data. It is supposed that all symbols already
have identifiers at compilation time and that the identifiers
will never be changed in future execution or in another
compilation. In Zephyr, because of separate compilation,
the identifiers should be given at link time, and during
compilation symbols are treated as being of pointer data
type, not constant type. All of the pointer data for one
symbol refer to the same address, which contains the name
of the symbol. Pointer data are mapped to internal
identifiers during generation of an object file and a
symbolic information file.

To distinguish these two types, we introduced new APM
instructions such as get_pointer, put_pointer, unify_pointer,
and select_pointer. The first three are simply counterparts
of get_constant, etc., and select_pointer is an indexing
instruction on pointers. For efficient indexing, a hash table
is used. In WAM, symbol identifiers are uniquely given at
compilation time and can be used directly as hash values.
In APM, real identifiers are not given at compilation time,
and the pointers cannot be used as hash values. To make it
possible to build a hash table at compilation time, we use a
unique hash function for every compilation, and a hash
value is kept at the location pointed to by the pointer data.
During the execution of an indexing instruction, the hash
value is indirectly looked up from the pointer, and the
location of its entry is calculated from the hash value and
the hash table size. This process differs from that of
constant data, and therefore we have introduced new
indexing instructions such as select_pointer.

Table The tables are stored in the heap. Each table
entry consists of the hash value of the index term, the
index term, and the value term. The hash value of
structure data is calculated by adding the hash values of
each argument term, function operator, and arity. By
keeping the hash values of index terms, it is possible to

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

detect a mismatch quickly when two terms are mapped to
the same entry but have different hash values, and to
resize a hash table efficiently when the table overflows.

Index terms and value terms are also stored in the heap
as continuous memory blocks, with the use of offsets for
addressing instead of pointers. This allows efficient garbage
collection in the heap area.

Garbage collection We use incremental garbage
collection (GC), known as generation-scavenging GC in
Smalitalk [17]. Conventional GC starts when the whole
global stack is exhausted, and scans all stacks. Incremental
GC starts when a small area, which is called a GC
window, is exhausted, and only scans the global stack
within the GC window. We placed the GC window at the
end of the global stack to reduce the overhead of copying
data during GC, and adopted a 64KB GC window on a 286
machine to reduce the occurrence of segment switching
during GC. According to our study [8], newly created cells
tend to contain a large proportion of garbage, and because
it focuses on them, GC takes less time. In addition,
because incremental GC is done within a small memory
area, it causes fewer page faults and cache misses,
improving total system performance. On the other hand, it
has some drawbacks: It does not collect garbage outside
the GC window, and it may be invoked in some cases for
which conventional GC would not occur.

Figure 14 illustrates how incremental GC works on the
global stack. (1) shows the state in which the global stack
is growing. If backtracking occurs beyond the GC window,
the state will be as shown in (2). Some data cells of the old
part are discarded, and the top of the global stack is set to
the bottom of the GC window. (3) shows the state in which
a GC window overflows and the garbage coliector is
invoked. The garbage collector scans the contents of the
GC window and stack frames created after the previous
GC. Living cells are then moved to the old part of the
global stack. Finally, the top of the global stack is set to
the bottom of the GC window, as shown in (4).

Additional instructions ~ APM has additional instructions
to support new features of Zephyr and to improve
compiler optimization. Examples are

¢ Support for the cut operation.

e Explicit variable initialization for safe GC.

¢ Explicit stack overflow checking.

e Creation of closure.

¢ Escape to underlying system.

e Tag checking.

¢ Support for new controls such as catch and throw,
freeze, and on_backtrack.

¢ Instructions for read-mode-specific and write-mode-

specific operations. 403

Y. ASAKAWA ET AL.

404

Incremental garbage collection.

Zephyr to APM
Compilation from Zephyr to APM is similar to WAM-
based compilation; that is, it performs trail recursion
optimization (TRO), GET/PUT elimination, indexing, and
management of registers/stacks.

In addition, it performs the following new operations:

GC checking. Since APM instructions do not check
global stack overflow, the compiler evaluates the possible
maximum size of growth of the global stack in an
execution block and generates code to check explicitly
whether GC may be needed. This code is located just
before the first access to the global stack in the block.
Delay stack allocation. Stack allocation is a heavy task
in Prolog, so the code is located just before the first
access to the environment stack in a clause.

Permanent variable initialization. For safe GC, all
permanent variables (variables allocated to environment
stacks) must be initialized. The compiler generates
initialization code for permanent variables not referred to
in the first execution block of a clause, and places it just
before the first call instruction.

¢ Freeze checking. Code that checks whether variables
bound to some delayed goals are bound to nonvariables

Y. ASAKAWA ET AL.

is generated between the clause head code and the

clause body code.

Built-in compilation. Built-in predicates are compiled in

one of the following ways:

« Run-time calls. Most built-ins, such as read(_) and
write(_), are compiled in this way.

« call to predicates predefined in Zephyr Prolog itself,
that is, libraries [bagof(_,_,_), etc.].

« Expansion into several clauses (;, —>, etc.).

« In-line APM code [var(X), etc.].

e Error detection. The compiler detects all errors related
to syntax and undefined predicate calls, and does not
stop compilation at the first error.

* Generation of a symbolic information file.

Generation of basic block information. Basic block

information is additional information for code generation,

containing

« Conditions on variables such as value, type,
dereference, and mode.

« Reference count.

« Visibility; i.e., local (accessed only in the package),
exported (accessed from other packages), or imported

1 (having access to other packages).

This information helps the code generator to create
efficient and compact native code. Our previous work
[18, 19] and recent research [20, 21] show that the first
one is particularly helpful. However, the current version
of the Zephyr compiler does not fully utilize this.

APM to native

Since there is still a semantic gap between APM and
conventional CPUs but, on the other hand, a need for
efficient and portable code generation, we have introduced
Zephyr Intermediate Language (ZIL), which is an
assembly language for generalized CPUs with tag-handling
capability. Thus, the code generation consists of two
phases: APM-to-ZIL and ZIL-to-native code.

In translation from APM to ZIL, the code generator
uses basic block information to eliminate redundant ZIL
code generation. For example, native translation generates
tag-testing code and operation code for each possible tag.
If the possible types are known, the tag-testing code may
be simplified, and operation code for some tags can be
eliminated.

In translation from ZIL to native code, the generator
does

¢ Control flow optimization, such as basic block
straightening and elimination of multiple jumps.
. Relister allocation using register coloring [22].

However, for a 286 machine, register allocation is not
effective, since a 286 has few available general-purpose

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

registers. Thus, register allocation is inhibited. In addition,
to reduce the amount of segment switching, which takes a
lot of time on a 286, the generator does

& Separation of the internal entry point and external entry
point of an exported predicate. This makes it possible to
generate near jump for calling a predicate defined in the
same package, even though it is exported.

& Generation of frequently used run-time routines as
package-local subroutines.

» No spreading of structure data across a segment
boundary.

& Libraries
On 0S/2, the Zephyr library includes

& A dynamic link library (DLL) version of Zephyr run-time

code.
& A static version of Zephyr run-time code.
& Built-in/utility objects written in Zephyr.
& DLL for SQL support.
& A stream-I/O-based window server.

One of the most important drawbacks of compiler-based
programming is that it takes a long time to remake a
module and execute it again after program modification.
Separate compilation minimizes the size of the part that
must be recompiled. Thus, the compilation time is not a
serious problem. On the other hand, the linking time is
significant because libraries must be searched. The use of
DLLs can provide a partial solution on OS/2. In a DLL,
most address references are resolved; when linking with
user programs, it is only necessary to resolve function
entries, and the linkage can be achieved in a fairly short
time. During execution using DLLs, however, it takes
more time because it is necessary to load and maintain the
DLLs. We therefore provide two types of run-time library:
a DLL for the development cycle and a static library for
final applications.

& Preprocessors

Currently, two preprocessors are supported: a DCG
preprocessor and an SQL preprocessor. The DCG
preprocessor is used to convert a package which includes
DCG rules into a normal Zephyr package, which is
compiled.

The SQL preprocessor provides an elegant and efficient
way of issuing queries to an SQL database managed by the
0S/2 database manager. The program is written like a
normal Zephyr package, except that it includes import
database declarations instead of import predicate
declarations. The execution is optimized to minimize the
number of SQL queries by a lazy execution mechanism.
This will be discussed further in a future paper.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

fM1=0.8765432))

iff(.lfiﬂ?'t?:fm. Elﬂixfﬂ%ﬂtﬂhll)).

select(IL] &.L).
S!l!ﬂ”lll] .l.l‘llll) i- select(L.XLE).

vt i - 0 e o, metmenin 1.

21602429

(V1] CALL: select/3

Sample screen showing debugging.

Both DCG and SQL preprocessors are written in Zephyr
itself, and run like conventional applications. For example,
to use the DCG processor, it is acceptable to type

[CAZEPHYRIdcg logic.deg logic.zpl

on the command line. The preprocessed file logic.zpl will
be generated from logic.deg.

& Debugging
Zephyr Prolog provides two kinds of debugging facility: a
debugging interpreter and debugging in compiled code.

The debugging interpreter is an ongoing prototype that
integrates interactive execution, box model tracing [23],
algorithmic debugging [9], and type inference based on
abstract interpretation. The essential part of the system is
described in another paper [24].

Debugging in compiled code is done by compiling
packages with the DEBUG option. During execution of
packages compiled with the DEBUG option, functions can
be used that do the following:

& Monitor the call and exit gates of the box model.

& Execute one step or N steps.

~ Skip to specified predicate.

« Skip the current goal.

& Display variable bindings of the clause under execution
with the original variable names.

& Browse the source program being executed.

» Locate the cursor of the browser automatically on the
clause being executed.

Figure 15 shows one screen using the debugging functions.

As shown in the figure, each browsing source program and 405

Y. ASAKAWA ET AL.

406

Table 2 Results of rough measurement on an IBM PS/55
(20-MHz 386) by using the naive reverse benchmark.

Static DLL
Compile time 17s 17s
Link time 66 s 9s
Module size 340.5 KB 18.6 KB + DLL
Execution speed 14.5 KLIPS* 13.4 KLIPS*

*LIPS = logical inference per second.

the dialog for debugging are done in windows separate
from the application window.
These debugging facilities are realized by

» Considering all variables as permanent variables. This is
necessary in order to be able to show all variable
bindings at any time.

» Inserting a call of a debugging routine before the first
goal of each clause. The debugging routine creates a
frame that contains the depth of calls and mapping of
variable cells to their names.

o Generating APM nop instructions before and after APM
call instructions. These nop instructions are considered
as calls to a routine that provides debug functions. One
parameter of nop, nop number, is used to obtain goal
information.

s Generating a debugging information file, which contains
« Mapping of nop numbers to goal information, which

contains the name, arity, and source position of the
goal.

« Mapping of clause number to clause information, which
contains the source file name, predicate name,
predicate arity, source position, number of variables,
number of goals, and the size of the frame for
debugging.

Preliminary evaluation

It is difficult to judge whether a language system is well
designed. The only effective way of doing so is to use the
system extensively in numerous large applications, which
could take years. But while implementing Zephyr, we
became convinced that our approach in Zephyr (that is,
compiler-based programming) is effective in application
development because Zephyr was used to implement many
of its own components. For example, most built-in
predicates are written in C, but currently there are 20
packages written in Zephyr as built-ins or utilities,
including metapredicates (such as setof, bagof), list-
processing predicates (such as append, reverse, member),
tracing, SQL support, sorting, record handling, DCG
support, and stream-based window support. They are
provided as compiled objects, and there is no need to

Y. ASAKAWA ET AL.

recompile them for use in applications, thanks to the
environment-independent separate compilation. Moreover,
the user can easily extend the library. In fact, the number
of utilities is still increasing through the addition of
packages which have generality. The SQL preprocessor,
the DCG processor, and the debugging interpreter are
written in Zephyr. The debugging interpreter is one of the
biggest applications, consisting of 14 packages with more
than 6000 lines.

Although performance is not the focus of this paper, we
give the results of a rough measurement in Table 2. The
measurements were obtained by the well-known naive
reverse benchmark program (one package, 63 lines in our
case) on OS/2 1.1, running on the PS/55 Model 5570, which
is a Japanese version of the PS/2® with an 80386%, 20-MHz
CPU. Since we had difficulty in measuring the exact CPU
time on OS/2, it was measured by the response time base
when there was no other user session.

The execution speed seems to be a little slow in
comparison with that of Arity Prolog [5] running on DOS,
but we know that this comes from supporting a large
memory and many new data types, and from run-time
routines written in C.

We can test a small program within a minute using a
DLL, but in a large application the link time will be a
problem. In fact, it takes more than one minute simply to
link all the objects of the debugging interpreter.

Conclusion and future work

In this paper we have shown that compiler-based
programming, which is normal in conventional
programming languages, can solve many of the difficulties
found in large-application development in Prolog. To do
this, we have refined and extended the de facto standard,
Edinburgh Prolog, and have implemented a compiler
system on OS/2. The system was carefully designed to be
suitable for application development. In fact, the
debugging interpreter, the SQL interface program, some
preprocessors, and some of the built-in predicates are
written in Zephyr itself. Several tasks remain as future
work, such as full implementation of source-code
debugging, an external language interface, and optimization
based on type inference. Porting our system to other
operating environments will be valuable and will provide
necegssary evidence of portability. Finally, we would like
ourilvork to have a positive impact on the standardization
of Prolog.

\
Acknowledgments
We would like to thank Toshiaki Kurokawa for his useful
advice on starting our project, Naoyuki Tamura for
working with us on the design, Mitsuru Ohba for managing
our work, and Yoshio Tozawa for encouraging us to write
this paper.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

Operating System/2, OS/2, and PS/2 are registered trademarks,
and Macro Assembler/2 is a trademark, of International
Business Machines Corporation.

CodeView is a trademark of Microsoft Corporation. 80386 is a
registered trademark of Intel Corporation.

References

1. D. H. D. Warren, “‘An Abstract Prolog Instruction Set,”
Technical Note 309, Artificial Intelligence Center, SRI
International, Stanford, CA, 1983.

2. D. H. D. Warren, ‘‘An Improved Prolog Implementation
Which Optimizes Tail Recursion,” Proceedings of the
Logic Programming Workshop, Debrecen, Hungary, 1980,
pp- 1-11.

3. D. L. Brown, DECsystem-10 PROLOG USER’S
MANUAL, University of Edinburgh, Scotiand, 1981.

4, W. F. Clocksin and C. S. Mellish, Programming in Prolog
(Third, Revised and Extended Edition), Springer-Verlag,
New York, 1987.

5. Arity/Prolog Compiler and Interpreter, Language Manual,
Arity Corp., Concord, MA, 1987.

6. Quintus Prolog Reference Manual, Quintus Computer
Systems, Inc., Palo Alto, CA, 1986.

7. TURBO PROLOG 2.0 Reference Guide, User’s Guide,
Borland International, Scotts Valley, CA, 1988.

8. H. Touati and T. Hama, ‘“A Light-Weight Prolog Garbage
Collectot,” Proceedings of the International Conference
or Fifth-Generation Computer Systems, Institute of New
Generation Computer Technology, Tokyo, 1988, pp.
922-930.

9. E. Shapiro, Algorithmic Program Debugging, MIT Press,
Cambridge, MA, 1983.

10. MPROLOG LANGUAGE REFERENCE Release 2.1,
Logicware International, Mississauga, Ont., Canada, 1985.

11. BIM_PROLOG MANUAL, B. 1. Moyle Associates, Inc.,
Minneapolis, MN, 1986.

12. G. L. Steele, Jr., COMMON LISP Reference Manual,
Digital Press, Cambridge, MA, 1984.

13. VM/Programming in Logic, Order No. SH20-6541, 1985;
available through IBM branch offices.

14. The SB-Prolog System, Version 2.2. A User Manual,
University of Arizona, Tucson, 1987.

15. M. Carlsson, ‘“‘Freeze, Indexing, and Other
Implementation Issues in the WAM,”’ Proceedings of the
4th International Conference on Logic Programming, MIT
Press, Cambridge, MA, 1987, pp. 40-58.

16. A. Colmerauer, Prolog-II Reference Manual and
Theoretical Model, Groupe d’Intelligence Artificielle,
Université d’Aix-Marseille II, Marseilles, France, 1982.

17. D. Ungar, ““The Design and Evaluation of a High
Performance Smalltalk System,”” ACM Distinguished
Dissertations, MIT Press, Cambridge, MA, 1987.

18. T. Kurokawa, N. Tamura, Y. Asakawa, and H. Komatsu,
““A Very Fast Prolog Compiler on Multiple Architecture,”
Proceedings of the 1986 ACM/IEEE Fall Joint Computer
Conference, Dallas, pp. 656—662.

19. N. Tamura, ‘‘Knowledge-Based Optimization in Prolog
Compiler,” Proceedings of the 1986 ACM/IEEE Fall Joint
Computer Conference, Dallas, pp. 237-240.

20. T. Hickey and S. Mudambi, ‘“Global Compilation of
Prolog,” J. Logic Program. 7, 193-230 (1989).

21. A. Taylor, “Removal of Dereferencing and Trailing in
Prolog Compilation,”” Proceedings of the Sixth
International Conference on Logic Programming,
Cambridge, MA, 1989.

22. G. J. Chaitin, M. A. Auslander, J. Cocke, M. E. Hopkins,
and P. W. Markstein, ““Register Allocation via Coloring,”
Computer Lang. 6, 47-57 (1981).

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

23. L. Byrd, “Understanding the Control Flow of Prolog
Programs,” Proceedings of the Logic Programming
Workshop, Debrecen, Hungary, 1980.

24. T. Hama, “Prolog Type System and Its Application to
Algorithmic Debugging,”” Proceedings of Software
Symposium *90, Japan Society for Software Science and
Technology (Tokyo), Kyoto, Japan, 1990, pp. 126-132.

Received November 7, 1990; accepted for publication
February 26, 1992

Yasuo Asakawa IBM Japan, Ltd., 1623-14 Shimotsuruma,
Yamato-shi, Kanagawa-ken 242, Japan (JL05032 at
YMTVM]1, asakawa@trlvml.vnet.ibm.com). Mr. Asakawa is a
Staff Software Engineer at the IBM Yamato Laboratory. He
received his B.E. and M.E. degrees in computer science from
the Tokyo Institute of Technology in 1982 and 1984,
respectively. After graduation, he joined the IBM Tokyo
Research Laboratory in 1984, and worked on two Prolog
compiler projects. Mr. Asakawa’s current interests are in
intelligent personal information systems based on artificial
intelligence and multimedia technology. He is currently
working in Multimedia Development at the Yamato
Laboratory.

Hideaki Komatsu IBM Research Division, Tokyo Research
Laboratory, 5-11, Sanban-cho, Chiyoda-ku, Tokyo 102, Japan
(KOMATSU at TRLVM, komatsu@trl.vnet.ibm.com). Mr.
Komatsu received his B.A. and M.A. degrees in electrical
engineering from Waseda University in 1983 and 1985,
respectively. He has been a Research Staff Member at the
IBM Tokyo Research Laboratory since 1985. His research
interests include fine-grain parallel architecture, compiler
optimization techniques for instruction-level parallelism (code
scheduling and register allocation), and compiler optimization
techniques for coarse-grain parallelism (massively parailel).
Mr. Komatsu is currently a member of the advanced compiler
group at the Tokyo Research Laboratory.

Hiroaki Etoh IBM Research Division, Tokyo Research
Laboratory, 5-11, Sanban-cho, Chiyoda-ku, Tokyo 102, Japan
(ETOH at TRLVM, etoh@trl.vnet.ibm.com). Mr. Etoh is a
Research Staff Member at the Tokyo Research Laboratory. He
received his B.E. and M.E. degrees from the Tokyo Institute
of Technology in 1983 and 1985, respectively. After
graduation, he joined the IBM Tokyo Research Laboratory in
1985, working on the Zephyr Prolog System. Mr. Etoh is
currently working on GUI building systems. His main interests
are in simulation and optimization in scheduling systems.

Toshiyuki Hama IBM Research Division, Tokyo Research
Laboratory, 5-11, Sanban-cho, Chiyoda-ku, Tokyo 102, Japan
(HAMA at TRLVM). Mr. Hama received the B.S. degree in
electrical engineering in 1984 and the M.S. degree in electronic
engineering in 1986, both from Tokyo University. He joined

IBM Japan in 1986 as an Associate Research Staff Member. 407

Y. ASAKAWA ET AL.

408

He worked on the Zephyr Prolog project for four years, with
responsibility for designing and implementing an abstract
Prolog machine. Mr. Hama’s interests include artificial
intelligence, logic programming, and nonmonotonic reasoning.

Keiichi Maruyama IBM Research Division, Tokyo
Research Laboratory, 5-11, Sanban-cho, Chiyoda-ku, Tokyo
102, Japan (MARUYAMK at TRLVM). Mr. Maruyama is a
Research Staff Member at the Tokyo Research Laboratory. He
received his B.E. and M.E. degrees from the University of
Tokyo in 1985 and 1987, respectively. After graduation, he
joined the IBM Tokyo Research Laboratory in 1987, working
on the Zephyr Prolog System. Mr. Maruyama is currently
working on scheduling systems. His main interests are in
knowledge-based systems and programming languages.

Y. ASAKAWA ET AL.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

