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Logic  programming  can  benefit  from  a typing 
concept  which  supports  many  software 
engineering  principles  such  as  data 
abstraction,  modularization,  etc.  From  a 
computational point of  view,  the  use  of  types 
can  drastically  reduce  the  search  space. 
Starting  from  these  observations, this paper 
gives  a  survey  of  many-sorted,  order-sorted, 
and  polymorphic  approaches to type  concepts 
in logic programming.  The  underlying 
unification procedures for ordinary  term 
unification,  order-sorted  unification,  and in 
particular for polymorphic  order-sorted 
unification are given in the  style  of solving a 
set  of  equations, giving a  common  basis for 
comparing  them. In addition,  the  realization  of 
these unification procedures on a Warren 
Abstract  Machine-like  architecture is 

described.  Special  emphasis is placed  on  the 
abstract  machine  developed  for PROTOS-L, 
a logic programming  language  based  on 
polymorphic  order-sorted  unification. 

1. Introduction 
Logic programming has proven a powerful  programming 
paradigm, representing the most successful tool that falls 
in the category of “declarative programming” and is also 
operationally feasible. In establishing a structural 
relationship between declarative and operational 
semantics, the central notion of unification  is  most 
important. As the heart of the so-called SLD resolution 
principle, it provides the basis for a simple albeit fully 
operational semantics that is compatible with its 
declarative counterpart [l]. In addition, with the 
pioneering work of D. H. Warren [2, 31, an efficient 
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implementation of unification and logic  programming 
became available. 

However, in comparing Prolog, the most prominent 
representative of the logic  programming  family,  with other 
programming  languages, one observes that certain major 
software engineering principles such as modularization and 
data abstraction are not directly supported in Prolog. 
Especially as applications grow  larger and more complex, 
such software engineering principles become more 
important. The basis for many of these principles can be 
given by a powerful type concept. It allows many common 
programming errors to be detected at compile  time which 
might otherwise be difficult to locate. Additionally, in AI 
applications such as theorem proving, it has been shown 
that the introduction of types with subtypes may 
drastically reduce the search space of a problem  (e.g.,  [4]). 
On the other hand, types should not burden the 
programmer or knowledge engineer by requiring too 
narrow or too strict a discipline. 

Starting from these observations, during the last few 
years there have been various attempts and suggestions to 
extend the logic  programming  paradigm  by,  among other 
things, the introduction of types; see, e.g.,  [5-131. The 
purpose of this paper, which extends and revises the work 
presented in  [14], is to investigate the extension of logic 
programming by types under three aspects, namely, to 
compare different classes of typing concepts, to present 
the unification procedures underlying them, and to show 
how the typed unification procedures can be realized  on a 
suitable extension of the Warren Abstract Machine 
(WAW 

In Section 2, an overview of many-sorted, order-sorted, 
and polymorphic !ype concepts is  given. Each of the 
various approaches can be classified as to whether it 
suffices to do static type checking, or whether types are 
also present at run  time. It is also interesting to note that 
in the cases where types must be considered at run  time, 
the type information can be dealt with completely within 
the unification. 

In Section 3, the underlying  unification procedures are 
investigated and compared to one another. As a common 
base allowing for easy comparison, we present each of 
them in the form of solving a set of equations (cf.  [15]). 
Special emphasis is put on the case of an order-sorted type 
concept with  polymorphism (cf. [16]), which has been 
incorporated into the logic  programming  language 
PROTOS-L [14,  171 and for which an abstract machine 
implementation has been developed. 

is the subject of Section 4, where in particular the 
PROTOS Abstract Machine (PAM) developed for 
PROTOS-L is described as an extension of the original 
WAM. Section 5 contains some conclusions and points out 

The realization of the underlying unification procedures 
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2. Type  concepts  in  logic  programming 

A many-sorted  approach 
In unsorted predicate logic, unary predicates define a 
subset of the universe for any interpretation. For instance, 
a Prolog  program containing the clauses 

car(ope1). 
car(ford). 
car(mercedes). 

where car does not occur in the head of any other clause 
will have the three constants opel,  ford, and mercedes in 
the set assigned to car in its standard interpretation (i.e., 
its minimal Herbrand model). 

Within  Prolog  it  is not possible to reason on this more 
abstract level of “cars”; rather, the level of the individuals 
of this set must be used. However, within the framework 
of algebraic abstract data type specifications [18,  191, the 
declaration 

sort car. 
operations opel: + car. 

ford: + car. 
mercedes: + car. 

within a specification yields essentially the same effect. 
Provided there are no other operations with target sort car 
and no equations are imposed  on the constants, the  set 
assigned to car in the standard interpretation of the 
specification  (Le., its initial model) contains the three 
constants opel,  ford,  mercedes. 

A first extension of Prolog to sorts could thus be to 
allow sort declarations together with the operations that 
yield objects of the respective sorts. Following  terminology 
used in abstract data type specifications, we call these 
operations constructors because they construct the 
elements of the given sort. Thus, the fragment of a Prolog 
program  given above would correspond to 

sort car. 
constructors opel,  ford,  mercedes. 

in a sorted version. In the following we use the more 
compact notation 

sort car := { opel,  ford,  mercedes }. 

Similarly, 

sort boat := { ferry,  steamer,  sailing-boat }. 

introduces the sort boat with its elements ferry,  steamer, 
sailing-boat. 

Given such sort declarations we can attach to every 
predicate p a declaration stating how many arguments p 
takes and of which sorts the arguments of p must be. For 
instance, the declaration 

predicate gofromfo-with: city x city x vehicle. 
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would require the first two arguments of go-fromto-with 
to be of sort city and the third argument to be of sort 
vehicle. 

program  and insisting on well-typed terms and literals 
already has some important consequences that lead us 
away from the usual Prolog situation: 

Requiring such declarations for all predicates in a logic 

The distinction between declarations and clauses defining 
a predicate, together with a notion of well-typedness, 
requires a type checker. 
Since type checking takes place with respect to a set of 
declarations, the unit for type checking cannot be a 
single clause or declaration, but should be a program 
part containing both a set of declarations and a set of 
clauses (e.g., a module). 
Since only well-typed programs should be executed, 
there is a distinction between the type checking phase 
and the execution phase of a program. In analogy to 
classical typed programming  languages, we refer to these 
phases as compile time and run time, respectively. If  all 
type checking can be done at compile  time we have 
static type checking, whereas type checking done at run 
time is called dynamic. 

In Prolog there is essentially no type checking, and 
every clause added to a program file can be given to the 
interpreter immediately. However, the third distinction 
listed above can be exploited in terms of efficiency. In the 
situation discussed so far, type checking is completely a 
compile-time activity, and no type information whatsoever 
need be present at run  time. Crucial to this observation is 
the fact that up to now  we have only considered sorts with 
no possibility of having subsort relations between them. 
Again  using abstract data type terminology, we refer to 
this case  as  the many-sorted case. The possible gains in 
run-time efficiency are based upon the fact that on the one 
hand no overhead due to type information occurs at run 
time, and on the other hand, because of well-typedness, 
any argument of a predicate is guaranteed to be of the 
specified sort. Therefore, the underlying unification need 
not deal with the whole universe of terms, but only with 
the terms which are of the given argument sort. An 
example for a logic  programming  language based on the 
many-sorted approach is Turbo-Prolog. 

Generally one can say that a many-sorted approach does 
require only a static type-checking phase-which can be 
realized by a preprocessor-and that every implementation 
for the unsorted case also works well for the many-sorted 
case. In particular, an abstract machine such as the 
Warren Abstract Machine  (WAM) [2, 31 does not have to 
be modified for the many-sorted case; however, it could 
be modified for efficiency reasons, as has been indicated 
above. 

[ A simple sort hierarchy with subsorts. 

An order-sorted approach 
An extension to the many-sorted approach is to allow 
subsort relationships between sorts. For instance, the sorts 
car and boat could both be seen as  subsorts of a common 
supersort vehicle. Likewise, there could also be a sort 
amphibious-vehicle as a common subsort to both car and 
boat, yielding the sort hierarchy shown in Figure 1. 

Order-sorted approaches allowing such sort hierarchies 
have been suggested in areas such as abstract data type 
specifications, automatic theorem proving,  and  logic 
programming. An order-sorted logic was given  in  1962 by 
Oberschelp [20]. Order-sorted algebra originated with 
Goguen [21] and was developed further by Goguen et al., 
e.g., [22, 231; it  is the basis for the specification language 
OBJ [24] and the logic  programming  language Eqlog [7]. 
Gogolla [25] studied and extended order-sorted algebra, in 
particular with respect to error-handling approaches. 
Walther [26,  271 has investigated order-sorted unification 
and has given correctness and completeness results for 
resolution and paramodulation with order-sorted 
unification,  and Huber and Varsek [lo] have used  this 
approach for an extended Prolog  with order-sorted 
resolution. Schmidt-Schaub [28] has developed an order- 
sorted deduction calculus with polymorphic function 
definitions,  and several other order-sorted approaches have 
been described in the literature. 

Extending the approach described in the preceding 
subsection, we  add to every sort declaration an 
enumeration of its (direct) subsorts separated by + +, if 
there are any. For instance, the sort hierarchy shown in 
Figure 2 could be defined as follows: 

sort vehicle : = airplane + + boat + + car. 

sort airplane := { bo747, dcl0, airbus }. 

sort car := amphibious-vehicle 
++ { opel,  ford,  mercedes }. 
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A sort  hierarchy  with  subsort  relationships  and  maximal  sort 
vehicle and city 

sort boat := arnphibious-vehicle 
+ + { ferry,  steamer,  sailing-boat }. 

sort amphibious-vehicle := { amphil, amphi2,  amphi3 }. 

sort city := { stuttgart,  frankfurt, 

The following are two predicate definitions  using these sort 
definitions: 

predicate go-direct: city x city x vehicle. 

london,  calais,  dover }. 

go-direct(stuttgart,  frankfurt,  X) :- X:airplane. 
go-direct(frankfurt,  london,  X) :- X:airplane. 
go-direct(stuttgart,  calais,  X) :- X:car. 
go-direct(dover,  london,  X) :- X:car. 
go-direct(calais,  dover,  X) :- X:boat. 

predicate gofromto-with: city x city x vehicle. 
gofrom-to-with(From, To, With) :- 

go-direct(Frorn,  To,  With). 
gofrom-to-with(Frori1, To, With) :- 

yo-direct(Frorn,  Over,  With) & 
gofrom-towith(Over, To, With). 

go-direct(a,  b,  v) means that there is a direct way of 
getting from city a to city b using only vehicle v. The 
predicate gofrorn-to-with takes the same arguments as 
go-direct. The  intended  meaning of go-frorn-to-with(a, b, v) 
is that there is a way of going from city a to city b using 
only vehicle V, but possibly going via some other cities. 
Correspondingly, there are two clauses defining the 
predicate go-from-to-with as given above. 

'7- go-fmm-to-with(stuttgart, london, v) (1) 
asking for a vehicle V which can be used to go from 
stuttgart to london. 

We assume the usual Prolog evaluation strategy (i.e., 
left-to-right and depth-first search), but instead of ordinary 

Now consider the query 
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The  original sort restriction of the variable V in query (1) is 
vehicle due to the declaration of go-fromto-with. The first 
solution to (1) leaves the variable V uninstantiated but 
sharpens its sort restriction to airplane: 

V = X:airplane. 

Obviously, this solution represents a more abstract answer 
than enumerating all elements of the sort airplane as 
would have to be done in the unsorted case. Enforcing 
backtracking first resets the sort of V to vehicle. Resolving 
with the third clause of go-direct restricts the sort of V to 
car. Further resolving the remaining subgoal with the fifth 
clause of go-direct leads to the unification of the variable 
V with sort restriction car and a variable X, with sort 
restriction boat. Order-sorted unification yields a variable 
whose sort restriction is the greatest common subsort 
of the two sorts in the given sort hierarchy, i.e., 
arnphibious-vehicle in this case. After one more resolution 
step, the second solution 

V = X:arnphibious-vehide 

to query (1) is given. 

case, where each sort would correspond to a unary 
predicate and each sort restriction to a subgoal calling this 
predicate, we can observe that the sorted version provides 
a higher level of abstraction, thus providing  more compact 
solutions and avoiding possibly expensive backtracking. As 
far as the last point  is concerned, the left-to-right, depth- 
first search strategy may be even more complete in the 
order-sorted case if there are infinitely many backtracking 
points in the unsorted version which are covered by a 
subsort in the order-sorted version. 

Whereas the observations made for the many-sorted 
case above about type checking at compile  time, type- 
checkable units, etc., essentially still hold  in the order- 
sorted case, this is not true with respect to the absence of 
type information at run time. 

However, when  looking at the degenerate order-sorted 
case without any subsort relationship at all, one obviously 
can neglect the sort information completely at run  time, 
since this is just the many-sorted case presented above. 
More generally, all sort information concerning maximal 
sorts (vehicle or city in the example above) can be 
neglected at run  time (see Section 3). 

By comparing the order-sorted case to the unsorted 

Polymorphic  type  concepts 
A serious drawback of both a many-sorted approach 
and  an order-sorted approach as discussed so far is the 
fact that it is not possible to achieve the effect of 
parameterizing a structured sort over some other sort. For 
instance, in the many-sorted setting lists must be defined 
explictly for every sort. To give  an example, the sort 
list-nat of lists over natural numbers would be given by 
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sort list-nat : = { [ ]ga t ,  
*gat:  nat x list-nat }, 

If we wish additionally to use lists over the sort car, we 
must  define a new sort and  new constructors: 

sort list-car : = { []-car, 
*-car:  car x list-car }. 

Moreover, for every predicate operating on lists we must 
have an extra version for every list variant, e.g., 

predicate append-nat:  list-nat x list-nat x list-nat. 
predicate append-car:  list-car x list-car x list-car. 
... 
where every predicate version must be defined  explicitly. 

parameterization. This concept has been studied 
extensively in abstract data type theory (cf.  [19]) and has 
been applied to logic  programming in Eqlog [7]. For 
instance, in Eqlog one can introduce a parameterized 
module 

One method of overcoming this difficulty is to introduce 

module LIST@: :ELEM) 

which refers to a formal parameter specification ELEM. 
The functions and predicates operating on lists are defined 
by referring to the names introduced in ELEM. Instances 
of a parameterized module are obtained by replacing the 
formal parameter X: :ELEM with an actual parameter, e.g., 
NAT or CITY, yielding the resulting instance, such as 
LIST(NAT) or LIST(CITY). Thus, there need be only one 
definition for every list predicate such as append, namely 
in the parameterized LIST module. 

An advantage of such a parameterized concept is that 
apart from  formal sort, function, and predicate names the 
parameter specification may also contain requirements for 
these; for instance, a parameterized specification for sets 
would require an equality relation on the elements. 
However, every instance of such a parameterized module 
must be generated explicitly, and for all names stemming 
from the parameterized specification different  new  names 
must be used in every instance. 

A related way of avoiding  multiple  definitions for the 
same structure is the concept of polymorphism [29,  301. 
As with the parameterized specifications outlined above, 
parameter variables also exist in the polymorphic case. 
However, they range over all sorts and it is not possible to 
restrict them by a parameter specification. Thus, there are 
no function or predicate symbols in the formal parameters, 
nor any constraints. On the other hand, in the polymorphic 
case it is not necessary to generate any instance explicitly, 
and the same names from a polymorphic definition are 
used in every instance. 

In the following, we denote such sort variables by a and 
p. A polymorphic sort declaration for lists (here and later, 

we  use the standard Prolog  notation  for  lists)  would  then be 

sort Sst(a) := { [I, [-I-]: a x lis$(a)}. (2) 

Similarly, the polymorphic sort definition 

sort pair(a,p) : = { mkpair: a x p } 

defines ordered pairs over two sorts. 

instances of them are automatically available, for 
example, 

list(city) 
list(airp1anes) 
list(boat) 
list(list(city)) 
pair(boat,city) 
pair(car,list(city)) 

With such polymorphic sort functions at hand, all 

... 
In  [5], a polymorphic type system for  Prolog is proposed 

that allows parametric polymorphism (for a discussion of 
different  polymorphism concepts, see [31]).  In this 
approach the user must  give sort declarations for the 
function and predicate symbols in a way similar to that for 
the many-sorted setting (see the preceding subsection), but 
with the additional polymorphic sort declarations. Mycroft 
and  O’Keefe [5]  define a notion of well-typedness such 
that (again as in the many-sorted case)  static type checking 
is  sufficient and no run-time type information is needed. 
Using (2)  and the syntax of Section 2, the polymorphic 
definition of the append predicate is 

predicate append:  list(a) x list(a) x list(a). 

append([l, L L). 
append([HITl,L [HITLI :- appendCT, L, TU. (3) 

There have been several other approaches to a 
polymorphic type system for logic  programming. Dietrich 
and Hag1  [9] extend the approach of Mycroft  and  O’Keefe 
[5] to an order-sorted setting. To ensure that static type 
checking is  sufficient,  data-flow information within the 
program clauses is required in certain cases. Such data 
flow  could be provided by a mode system, or in some 
cases it  could be provided by giobal analysis, but the 
necessity for such information restricts the generality of 
this approach. 

Another extension of  [5] which deals with subsorts is 
reported in  [32]. However, in this case dynamic type 
checking is needed. The dynamic type checking is  not 
achieved by using a special unification  algorithm but by a 
reduction to the ordinary Prolog case: A preprocessor 
inserts system-defined literals into the body of a clause in 
order to ensure sort-correct instantiations, reporting a rsn- 
time error otherwise. For instance, given the predicate 
declarations 379 
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Table 1 Polymorphically order-sorted unification. 

tl t2 Result 

X:list(car) [ford,  opel] [ford,  opel] 
X:list(car) [ford,  airbus,  opel] fail 
X:list(car) [ford,  Y:vehicle,  opel] [ford,  Y:car,  opel] 
X:list(car) Y:list(boat) Z:list(amphibious-vehicle) 

predicate p: car. 

predicate q: vehicle. 

... 

... 
the clause 

in the definition of p is translated to 

p(X) :- instantiated(X) & q(X). 

Therefore, computing with uninstantiated sort-restricted 
variables, as demonstrated in the travel world example in 
the section on the order-sorted approach, is not possible; 
the advantages of order-sortedness are thus severely 
restricted in this framework. 

The three approaches to a polymorphic type system 
discussed so far are all operational approaches: They do 
not provide a semantic notion of a type, but only a 
syntactic one. Their aim is to guarantee by static type 
checking that no type error can occur at run time,  and the 
operational semantics is the same as the semantics of the 
untyped  version (except for the third  approach, as indicated 
by the example given above). There are approaches to a 
polymorphic type system for logic  programming that also 
provide a semantic notion of a type [ l l ,  121, but in 
contrast to the syntactic approaches discussed above, they 
have to take the type information into account at run  time, 
requiring a special unification  algorithm as in the order- 
sorted case. 

The approach of Hanus [ l l ]  extends the polymorphic 
concept of Mycroft and  O’Keefe  [5]. By removing the 
restrictions of Mycroft  and  O’Keefe [5] on the use of type 
expressions, Hanus also allows for ad hoc polymorphism 
[31]. Besides a model-theoretic semantics, sound and 
complete deduction relations involving a special 
polymorphic unification are given. For instance, consider 
the polymorphic append predicate given  in  (3).  Adding the 
specialized clause 

append([opel, ford], [rnercedes],  [opel,  ford,  rnercedes]).  (4) 

is possible in this approach. It is not  allowed  in [5], since 
in that framework clause (4)  is  not  well-typed because the 

380 types of the arguments in the head of  (4)-list(car)-are 
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not of the most general type-list(a)-declared for the 
predicate append in  (3). 

Whereas Hanus [ l l ,  331 uses ad hoc polymorphism a 
exploits it, for example, for higher-order programming 
techniques but does not consider subsorts, the approacl 
Smolka [12] combines parametric polymorphism with a] 
order-sorted approach. In this framework a sound and 
complete deduction relation for the corresponding mod( 
theoretic semantics is  defined that uses polymorphically 
order-sorted unification. To give  an example, let us extc 
the travel world program in Figure 2 by the standard 
definition of polymorphic lists as given  in  (3). As in the 
polymorphic cases above, we now have not only a finitc 
set of sorts but infinitely  many sorts denoted by sort t e ~  
which show up in the unification procedure: Besides a 
sort constant such as car or vehicle, the sort restriction 
of a variable can be a sort term such as list(car) or 
list(list(vehic1e)). To illustrate polymorphically order-sor 
unification, we list in Table 1 the unification results for 
different values of the terms tl and t2. 

The partial order on the (monomorphic) sort constanl 
induces a partial order on sort terms as shown in the ta 
For instance, list(amphibious-vehicle) is a subsort of 
list(car) because amphibious-vehicle is a subsort of car. 

In addition to this induced sort relationship, the 
approach of Smolka [I21 allows explicit definitions of 
subsort relationships between polymorphic sorts such a 

sort Ip(a,p) := list(a) ++ pair(a,p). 

Thus, in this case the computation of the greatest lowel 
bound of two sort restrictions requires taking into accol 
those explicit subsort relationships between polymorphi 
sorts which can be handled by sort-rewriting systems. 
For instance, in  trying to unify  X:lp(car,airplane) and 
Y:list(boat), the sort restriction of X would have to be 
rewritten first as list(car). Several conditions for such 
sort-rewriting systems must be satisfied [12],  and their 
use in a logic  programming  language could slow down t 
unification procedure. On the other hand, the important 
optimization of neglecting any maximal sort informatior 
blocked in  many cases (cf. Section 3): For instance, if 
list(a) has no supersort, then list(vehicle),  list(city), 
list(list(city)), etc. will also be maximal, and such sort 
information can be neglected as well. However, if list(a 
a subsort of,  e.g., Ip(a,p), then no list instance at all  wi 
be maximal. 

The type system of the logic  programming  language 
PROTOS-L  [14, 171 is derived  from the type system in TI 
[12,  161. However, PROTOS-L does not allow  explicit 
subsort relationships between polymorphic types for thc 
reasons discussed above. On the other hand,  PROTOS- 
supports the explicit  definition of maximal sorts in orde 
reduce the  sort information that must be considered at 1 

time; these points are addressed in  more detail in the nc 
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section and  in Section 4, which presents a WAM extension 
for the polymorphic type concept of PROTOS-L. 

3. Unification  and  typed  unification 

Term unification 
The rules for ordinary term  unification are given in 
Figure 3 in the style of equation-solving ([15]; for a survey 
on work in  unification theory, see [34]), with the rules for 
elimination (E), decomposition (D), variable binding (B), 
and orientation (0). The idea  is to start with a set of 
equations E = {t l  = t i ,  , t, L t:} representing the 
pairs of terms to be unified, and to transform E into a set 
of equations E’ that is  in solved form by using the four 
given rules. 

exists: 

CI If there is an equation f ( t l ,  - , t ,) = g( t ; ,  * - , t b )  

C2 If there is  an equation x t in E such that x z t 

There are two conditions which indicate that no solution 

in E with f # g, then no solution exists. 

and x occurs in t ,  then no solution exists. 

E’ is in solved form if  it is of the form 

E’ = {zi = t, I i E (1, e . .  , n}} ,  

where zi are variables that do not occur elsewhere in E’. 
In this case the substitution represented by {z l / t , ,  . - - , 
z,/t,} is the most general unifier  of the unification  problem 
given by the original set of equations E .  

Order-sorted unijication 
The rules for order-sorted unification are given  in Figure 4. 
Note that the rules for elimination, decomposition, and 
orientation look exactly as in the unsorted case. However, 
now every variable is of a particular fixed sort, and the 
difference from the unsorted case occurs in rules (Bl) and 
(B2) when binding a variable. 

A precondition for these rules to work correctly is that 
the sort  structure must satisfy the following conditions: 

There are only finitely many sorts, and the subsort 
relationship is a partial order such that two different 
sorts have at most one common  maximal subsort. 

Additionally, there are the following requirements: 

There is no overloading of function symbols; Le., for 
every function symbol f with arity n ,  there is exactly one 
arity declaration f : s1 * sn + s. 
Sorts  are not empty; i.e., for every sort there is a ground 
term of that sort. 
The unification problems considered involve only well- 
sorted  terms;  i.e., the argument sort of ti infltl, * * * , t,) 
must be of a subsort of si for f :  s1 s, -+ s. 

Note that the first condition could be weakened by 
allowing certain cases of overloading; see for instance 
Waldmann [35]. 381 
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The rules for order-sorted unification. 

Now there are two situations in  addition to those for the 
unsorted case such that there is no solution: 

C3 If there is  an equation x A t in E such that the sort 
of t is strictly greater than the sort of x, then no 
solution exists. 

C4 If there is an equationx = y in E such that the sorts 
of x and y do not have a common subsort, then no 
solution exists. 

If none of the conditions Cl-C4 is satisfied and E' is in 
solved form, E' = {zi t, I i E (1, * , n}}, then 

{zi/ti I zi = ti E E' and z, occurs in the original set of 
equations E }  

represents a most general unifier  of the original  unification 
problem E. 

Consider the rules for order-sorted unification as given 
in Figure 4. Comparing the rules to the unsorted version 
(Figure 3) reveals two places where sort information is 
involved, namely (Bl) and (B2). In (Bl), a subsort test 
s' 5 s is required, involving the sort s of the variable 
x and the sort s'  of t .  Thus, if t is a variable, s t  is 
its sort, and if t is the nonvariable term f ( t l ,  , t n ) ,  
s' is the target sort of the top-level function symbol 

382 f : s ,  " ' S "  + s f  o f t .  
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To give  an example, binding the term ope1 (of sort car) 
to variable Y: amphibious-vehicle would  not be possible 
under rule (Bl), but binding the term amphil of sort 
amphibious-vehicle to Y: car would be possible. 

However, it is interesting to note that under the 
requirements given above (in particular, no overloading 
and only well-sorted unification problems) when trying to 
apply (Bl), the rules will never try to bind a variable of 
sort city to a term of sort car, nor, conversely, a variable 
of sort vehicle to a term of sort city. Therefore, whenever 
the variable X involved  in (Bl) is either of sort vehicle or 
of sort city (i.e., the sort of X is maximal with respect to 
the subsort relationship), the subsort test will always be 
successful. 

A similar observation is true for the other binding rule 
(B2). Under the given requirements, if either of the 
involved variables x and y in the equation x y is of a 
maximal sort (vehicle or city in our example), the other one 
is either of the same sort or of a subsort thereof. If the 
sort s ofx is maximal, rule (B2) cannot be applied, and 
(Bl) must be used instead. Otherwise, if  in (B2) the sort s' 
of y is maximal  and s is nonmaximal,  we have s < s', and 
the sort of the resulting variable z (i.e., s) is determined 
completely by the nonmaximal sort. In fact, we  could 
simplify (B2) in this case by not introducing a new variable 
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but by orienting the equation toy  = x and just doing the 
binding as in (Bl). 

We conclude that in both places where sort information 
is involved, the sort information for variables of maximal 
sorts  is redundant. Thus, if we leave out the redundant 
sort  tests for variables of maximal sorts  as indicated 
above, both (Bl) and (B2) reduce to special cases of the 
binding rule (B) in the unsorted case. 

well-sorted  unification  problem E = {t, = ti, - , t,, = ti}: 
Thus, we could do the following optimization for a given 

1. Transform E into E’ by replacing every variable x of a 
maximal sort with an “unsorted” variable xu. 

2. Transform E’ into E” using the rules in Figure 4 with 
the modified version of (Bl) and (B2) [Le., effectively 
applying rule (B)] when binding  an “unsorted” variable. 

3. Replace every c ‘ ~ n ~ ~ r t e d ’ ’  variable xu from E‘ with the 
original sorted variable x .  

In the degenerate order-sorted case where all sorts are 
maximal,  all sort information therefore becomes 
redundant. This means that in step 2 above we do just 
ordinary unsorted unification. Of course, this comes as no 
surprise, since that case is just the many-sorted case 
where, for well-sorted unification problems, the unsorted 
unification rules work well.  In [12] this optimization is 
suggested and elaborated in detail for the more general 
polymorphic order-sorted case discussed below. 

Polymo?phic order-sorted unification 
We now present the rules for polymorphically order-sorted 
unification as it is used in the logic  programming  language 
PROTOS-L; the general case with additional explicit 
subsort relationships between polymorphic sorts is given 
in [12]. 

First, let us recall the order-sorted unification rules 
discussed in the previous section. There, we considered 
every variable to be of a fixed sort. However, one could 
also use unsorted variables and introduce the sort 
restrictions on the variables by a special predicate. This 
yields certain technical advantages; for instance, when 
unifymg two variables X : car and Y: boat one can 
produce a new sort restriction for the variables (i.e., 
X: amphibious-vehicle) instead of introducing a new 
variable as done by the rules in Figure 4. We have already 
used  this  approach  informally  in our discussion in Section 2. 

Thus, in addition to the set E of equations we now also 
have a set P = {t ,:  T,, - - , t , , :~ , , }  of sort restrictions with 
value terms ti and sort terms 5 .  We call P aprejix if all ti 
are variables that are pairwise distinct. As in the order- 
sorted case, we consider only well-sorted unification 
problems P & E ,  which now means that P is a prefix 
having a sort restriction for every variable in E and that 
for every equation t = t’ in E there exists a sort term r 
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such that both t and t ’  belong to r under the sort 
restrictions given  in P .  

well-sorted unification  problem P & E is first transformed 
such that maximal sort information is neglected: Every 
maximal sort is replaced recursively by the special symbol 
T. For a sort term r the approximation of r is defined by 

For the optimized version of the unification rules, such a 

4 7  = T  if T is a sort variable; 
$ 7  = T  if T is a sort constant 

that is  maximal 
in the partial order 
on the sorts; 

4 t ( r l ,  , T,,) = T if $ r l = . * . =  JT,,= T; 
1 if [ ( r l ,  - * , T,,) cannot 

be instantiated 
(see below); 

t( .1 T ~ ,  - , 4 7,) otherwise. 

The approximation 4 P of a prefix P is obtained by 
replacing all sort terms in P with their approximations. 

Analogously to the computation of greatest common 
subsorts in the order-sorted case, one now needs to 
compute the infimum of two sort terms. For 
instance, the infimum of list(car) and list(boat) yields 
list(amphibious-vehicle). However, whereas there is no 
common subsort of, e.g., airplane and car, the infimum  of 
list(airp1ane) and list(car) is well-defined, Le., the set 
consisting of exactly the empty list. 

denotes the “empty” sort which becomes a subsort of 
every other sort. Then the infimum  of list(airp1ane) and 
list(car) is list(l), since there is a ground term of sort 
list(l), namely the empty list [ 1. In other words, list(l) 
can be instantiated or is inhabited. However, given the 
definition of standard pairs as above, the infimum  of,  e.g., 
pair(airplane,city) and pair(car,city) is  not inhabited, since 
pair(1,city) cannot be instantiated. Thus, the infimum  of 
the two sort terms is 1. 

Thus, another special symbol I is introduced above that 

In general the infimum  inf (7, 7‘) of two sort term 
approximations rand 7‘ is given by 

inf(T, T) = T, 

inf(r,  T) = T, 

inf(7, 7‘) = T” if r and r ’  are  sort 
constants with 
maximal  common 
subsort r”, 

inf(t(71, * Y 7”)~ ( ( ( 7  * * 7 7:)) 

= (t(inf(r,, T;), - if this term 
inf (r,,, r i )  can be instantiated, 

inf(r, 7’) = 1 otherwise. 383 
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Using this infimum operation, the rules for polymorphic 
order-sorted unification are given  in Figure 5, again under 
the assumption that there is no overloading of function 
symbols and that only well-sorted unification problems are 
considered. Let P & E be a well-sorted unification 
problem and let these rules transform the approximation 
P' & E into the form P & E". The P & E" is in solved 
form  and presents a solution if E" is in solved form  (in the 
sense of the order-sorted approach), P" is a prefix that 
does not contain x : 1, the variables in P do not occur on 
the left-hand sides of  an equation in E", and every right- 
hand side of an equation in E" is well-sorted under the 
prefix P .  

Analogously to the unsorted case (compare the three 
steps at the end of the subsection on the order-sorted 
approach), one can now solve a well-sorted unification 

384 problem by 

1. Transforming P into the approximation P' . 
2. Transforming P' & E into P & E" using rules (E)-(0) 

3. Transforming P" into P by replacing the 
and (ES)-(DS) from Figure 5. 

approximations in P with the actual sort information 
from the original  prefix P and the substitution defined 
by E". 

The third step uses the retract operation, which 
transforms an approximation rand a sort term r' that is an 
upper bound of r into the retraction r t r' as follows: 
T ? T  = 7, 

7 t r 1  = r if T and r '  are sort 
constants and 
r is a subsort of r ' ,  

'371' * , t * * * 9 q = 5(71 t 7;' * - * , 7, t T i ) ;  

T t  T' undefined otherwise. 
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The upper bounds for the sort term approximations in P” 
are obtained by applying the substitution up defined by E” 
to the original  prefix P and transforming u,,(P) again into 
aprefix,sayP,..Ifx:risnowinP”andx:r’isinP,,, 
then x : T t 7’ will be in P”‘. 

In this section we have discussed three unification 
procedures related to untyped, order-sorted, and 
polymorphic order-sorted logic  programming, respectively. 
By presenting them in the uniform framework of equation- 
solving transformations, we have obtained a common basis 
for comparing them.  Using SLD resolution with the 
correspondingly extended unification yields for any of the 
three cases an operational semantics. This operational 
semantics can be realized on a suitable abstract machine, 
and in the following section we will show how the different 
transformation rules are reflected  in such an abstract- 
machine implementation. 

4. Abstract  machines 
As noted in the Introduction, an  efficient implementation 
of logic  programming and its required term unification 
became available with the Warren Abstract Machine. In 
this section we present an extension of the WAM to order- 
sorted and polymorphically order-sorted unification.  We 
start with a short presentation of the original WAM. 

The Warren Abstract Machine 
For a detailed description of the WAM we refer to [2 ,  31 
or [36]. Here, we give only a brief overview of the 
machine  model that allows us to describe the extensions 
and modifications later on. 

The machine  model of the WAM consists essentially of 
the following: 

1. The code area containing the machine code of the 

2. Three stacks: 
program. 

The global stack, containing all structures that are 
generated during program execution. Structures are 
represented by the top-level function symbol followed 
by the arguments of the structure. 

execution structure of the program and backtracking 
information. In particular, the local stack contains 
choice points for alternative clauses for a goal and 
environments containing the status information needed 
for evaluating the rest of a clause. 
The trail stack, containing the addresses of the 
variables that have been bound during program 
execution and that have to be reset upon 
backtracking. 

The local stack, containing information on the 

3. A set of registers defining the current machine state, 
e.g., a next-instruction pointer, pointers to the tops of 
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the three stacks, a pointer to the last choice point, etc., 
and a special set of argument registers. 

An actual implementation will also contain additional 
components, such as a Jymbol table containing the arity 
and the print names for every function and predicate 
symbol occurring in the program. 

classes: 
The instruction set of the WAM can be divided into five 

1. The get instructions are used for the arguments in the 
head of a clause in order to unify them with incoming 
arguments. 

2. The put instructions are used for the arguments in the 
body of a clause in order to build  up the arguments of 
the subgoals. 

arguments within a structure. 

the management of procedure calls, choice points, and 
environments. 

5. The switch instructions are used to select only a subset 
of  all alternative clauses from the set of all clauses of a 
predicate, depending on the value of the given 
arguments. 

3 .  The uniJL instructions are used for the deeper-nested 

4. The environment and choice instructions are used for 

Additionally, there are some lower-level instructions that 
are called by certain instructions above (e.g., there is a 
low-level uniJL instruction, and the low-level instruction 
fail is  called  in order to initiate backtracking). 

Extending the WAM to typed unijication 
As pointed out in Section 2, the many-sorted case does not 
need special treatment at run  time; therefore, the WAM 
needs no  modification. However, in the order-sorted case, 
types are present at run  time. 

Order-sorted WAM extensions have been suggested in 
[lo, 371, and in [38] an abstract machine implementation of 
PROTOS-L without polymorphism  is  given. The subsort 
relationships between the sorts are compiled into a square 
matrix such that both a subsort test and the computation 
of the greatest lower bound of two sorts can be done in 
constant time. However, the matrix implementation is 
not easily extendible to separate compilation of modules, 
and it requires space that is quadratic in the number of 
sorts. 

Instead of  going into the details of the order-sorted 
WAM extensions, we move directly to the polymorphic 
order-sorted case as it  has  been  incorporated in  PROTOS-L. 
We call this WAM extension the PROTOS Abstract 
Machine (PAM) [14, 391, and in the following, we describe 
its differences from the WAM. 

The  first difference is that the sort  structure of a 
program  must be stored in the machine. This is done 
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primarily in a new sort table containing the following 
information: 

The sort constants and their subsort relationships 
(e.g., airplane and city having  no subsorts; vehicle having 
subsorts airplane,  boat, and car). 
The arity of the polymorphic sorts [e.g., list(a) has arity 
1, while pair(a,p) has arity 21. 
Information on how sort terms can be instantiated. [For 
example, the instantiation information for the sort term 
list(a) states that a may be the “empty” sort 1 because 
[I is a term of sort list(1). For  the sort term pair(a,p) it 
is required that both a and B be instantiated by a sort 
other than 1, since otherwise there would be no term of 
that pair sort.] 
Additionally, the symbol table must contain the arity of 
the function symbols in order to determine the target 
sort of the top-level function symbol of a term [e.g., ope1 
is of sort car, stuttgart of sort city, and the list 
constructor “a’’ has list(a) as its target sort]. 

The second major difference is the representation of 
variables. In the WAM variables are represented by 
pointers. Binding a variable simply requires pointing to the 
value (e.g., a structure in the global stack), and a free 
variable is a pointer to itself. 

three classes: 
In the polymorphic PAM the variables are divided into 

The free variables, which are treated in the same manner 
as the free variables in the ordinary Prolog case. These 
are the variables for which no sort information is 
relevant at run time;  i.e., the approximation of their sort 
restriction is T. 

(monomorphic) sort constant. These are represented as 
in the nonpolymorphic PAM; i.e., each mono variable 
has a sort constant attached to it. 

The mono variables, whose sort restriction is a 

Thepoly variables, whose sort restriction is a 
nonconstant sort term. The sort restriction of these 
variables is a pointer to the respective sort term. The 
sort terms themselves are represented as regular terms, 
i.e.,  in the global stack where the polymorphic sort 
symbol is followed by its arguments. 

The trail stack must record the previous sort restrictions of 
the variables. For the free variables this information is 
void; for the mono variables it is a sort constant to be 
stored on the trail stack, and in the case ofpoly variables 
it is a pointer to the global stack. 

consider the unification rules given in Figure 5. Because 
rules (E)-(0) are effectively the same as in the unsorted 

To determine the changes for the instruction set, 

386 case (Figure 3), they do not cause any changes, except 

C. BEIERLE 

that the binding rule (B) refers to rules (ES)-(DS). Rules 
(ES)-(DS) manipulate the sort restrictions. For the 
elimination of a monomorphic sort restriction (ES), the 
target sort of the function symbol (which is recorded in the 
symbol table) must be in the subsort relationship 
(documented in the sort table) to the required sort. For the 
other elimination  rule (ES‘), no action is required at all. 

The merging of two sort restrictions (MS) requires the 
computation of the infimum  of the two sort terms. The 
information required is the subsort relationship for the 
monomorphic sorts and the instantiability of polymorphic 
sorts, which are both contained in the sort table. 

The decomposition of a sort restriction (DS) requires 
that the arguments of a polymorphic sort term, such as 
pair(car,airplane), be propagated to the arguments of a 
value term, such as mkpairv: vehicle,\/:  vehicle), yielding 
mkpairv: car,Y: airplane) in the given example. 

The instructions that must be modified because of these 
observations are the get, put, and unifr instructions, which 
are the instructions used for the unification of terms. They 
are generated by the compiler, depending on the 
occurrences of a variable or a term in a clause. 

For example, suppose that the ith argument of the head 
of a clause is a (temporary) variable represented by X,. All 
one must do in the unsorted case is set X,  to the value of 
the ith incoming argument Ai because at this point Xn is 
guaranteed to be free. This is achieved by the WAM 
instruction 

get-x-variable X,, Ai . 
However, in the P A M  case the sort restriction of Xn must 
be taken into account. Following the distinctions made 
above, X,  is either afree, a mono, or apoly variable. 
Accordingly, the WAM instruction get-x-variable is 
replaced by three PAM instructions: 

1. get-x-free X, ,  Ai. 
2. get-x-mono X,, Ai, s. 
3. get-x-poly x,, A,, st. 

The first instruction corresponds exactly to the WAM case 
because no sort-related action need be performed. The 
second instruction is generated for a variable with the sort 
constants as its restriction. The execution of this 
instruction creates a new value cell on the global stack 
with sort restriction s, which  is then unified  with Ai in 
order to ensure that A, is of sort s (possibly by further 
restricting the sort of Ai if it  is a variable). Analogously, 
the third instruction generates a new value cell with the 
polymorphic sort restriction st, where st is a pointer to a 
sort term on the global stack. The  unification  with A, then 
ensures that A, satisfies the sort restriction. 

Thus, the three PAM instructkns represent three special 
cases of the general unification procedure where at compile 
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time  it is guaranteed that one of the two terms (namely X“)  
to be unified is an  unbound variable. On the other hand, 
for the second and any subsequent occurrence of X,, in the 
head of a clause, the full  unification  is required. In the 
WAM case this is achieved by the instruction 

g&-x-value Xn , Ai , 
and the only difference for the PAM case is that 
polymorphic order-sorted unification is used instead of 
ordinary term  unification. 

and  unify instructions: If a WAM instruction is used for 
the first occurrence of a variable (i.e., get-y-variable, 
put-x-variable,  put-y-variable,  unify-x-variable, 
unify-y-variable), it is replaced by three PAM instructions 
for afree, a mono, and apoly variable, respectively. For 
these as well as for all  remaining instructions, the extended 
unification  is used. 

However, except for the extended trail information, the 

Analogous  modifications are made for all other get, put, 

entire execution control including the management of 
choice points and environments can be treated as in the 
WAM case. For the switch instructions, an additional 
optimization is possible. For the exclusion of alternative 
clauses it  is  now also possible to take into account the sort 
restrictions for the variables. For instance, having the 
clauses 

p(opel, . . .) :- . . . 
p(mercedes, . . .) : - . . . 
p(ferry, . . .) :- . . . 
for the predicate p and a call to p with uninstantiated 
variable X in its first argument, indexing (on the first 
argument) would not yield any selective effect in the WAM 
case. However, if X has a sort restriction, indexing does 
gain something in the sorted case: For instance, the sort 
restriction X: airplane would switch directly to the third 
clause and rule out all other clauses immediately. 

The remaining sort-related modifications required in the 
PAM case are instructions for the retraction of the actual 
sort of a variable from its original sort and its 
approximation, as well as some additional lower-level 
instructions, e.g., for the computation of the infimum of 
two sort terms. 

p(bo747, . . .) :- . . . 

Implementation 
There are numerous WAM implementations based more 
or less directly on D. H. Warren’s  original  design [2, 31. 
Within the European EUREKA project PROTOS (“Logic 
Programming Tools for Building Expert Systems”), the 
PAM with the features described above has been 
implemented in C and is available on the IBM RT Personal 
Computer@ 6150, the IBM RISC System/600Om processor, 
and the IBM  PS/2@ under the AIX@ operating system 
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[39, 401. A compiler for PROTOS-L that generates PAM 
code has been developed using the TEL system [16, 411. 
Static type checking and type inferencing done at compile 
time  could be derived from this system. However, TEL‘s 
run-time unification  is  not correct because the ordinary 
term unification of the underlying Prolog system is  used. 
The PAM provides the first abstract machine 
implementation for polymorphic order-sorted unification; 
several applications written in PROTOS-L and running 
on the PAM have already been developed. Within the 
PROTOS project, PROTOS-L is being used for the 
development of a knowledge-based planning system in the 
chemical production area. 

5. Conclusions and further work 
There are two main motivations for the introduction of 
types into the logic  programming  paradigm.  One stems 
from a software engineering point of view, since a typing 
concept  can support various software  engineering  principles 
such as data abstraction, modularization, static consistency 
checks, etc., which are vital in large applications. On the 
other hand, from a computational point of view, the use of 
types with subtypes can drastically reduce the search 
space, especially in AI applications. 

Starting from these observations, in this paper we have 
given a survey of many-sorted, order-sorted and 
polymorphic type concepts as used in logic  programming. 
When the typing concept supports computations with 
subtypes, types are also present at run  time  through  typed 
unification.  In order to compare the related unification 
procedures, we have presented them in the uniform 
framework of equation-solving transformations. Both for 
an order-sorted and for a polymorphic order-sorted type 
concept, we have argued that the classical Warren 
Abstract Machine can be extended to the corresponding 
typed unification, putting special emphasis on polymorphic 
order-sorted unification as it has been realized in the 
PAM, the core implementation component of  the logic 
programming  language PROTOS-L. 

Additional features of the PAM, some of which have 
been added since this paper was written (summer 1990) 
and are not described here, include a module concept 
allowing for separate compilation, the integration of a 
deductive database component, and  an object-oriented 
interface to the OSF/Motif system [14, 17,  42, 431; all of 
these features have already been used successfully in 
various planning applications [44]. 

In [40] the PAM is described in  more detail. It is shown 
that representing the three classes of typed variables (Le., 
free, mono, andpoly) in the PAM by special tags leads to 
the situation that the type extension in the PAM is truly 
orthogonal to that in the WAM. Any untyped program is 
carried out in the PAM with the same efficiency as in the 
WAM: Adding the trivial one-sorted type information to 
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such a program reveals that the P A M  code will contain 
only the free case for variables. Apart from the minor 
difference of representing a free (unconstrained) variable 
not by a self-reference (as in the WAM) but by a special 
tag, the generated and executed code is thus exactly the 
same for both the WAM and the PAM. On the other hand, 
any typed program  exploiting, e.g., the possibilities of 
computing with subtypes can take advantage of the type 
constraint handling facilities in the PAM, which would 
have to be simulated by additional explicit program clauses 
in an untyped version. Moreover, in [45] a mathematical 
correctness proof for the PAM, based on the WAM 
correctness proof  in [46, 471, is given. 

In order to allow “extra-logical” features, in particular 
meta-programming, the PROTOS-L type system as 
discussed in this paper would need to be extended. Meta- 
primitives like negation-as-failure, set-of, etc., as well as 
the concept of call-back procedures needed in the object- 
oriented interface to OSFWotif, have already been built 
into the current prototype system. In order to allow 
general meta-calls the type system still has to be extended, 
e.g., toward higher-order logic;  an approach in this 
direction is, for instance, AProlog [8]. In the recent work 
of Kwon et al. [48], which aims at developing an abstract 
machine for AProlog, a  WAM-based implementation 
scheme for a first-order logic  programming  language with 
ML-style typing (with the possibility of ad hoc 
polymorphism and the necessity for run-time type 
checking) is presented, and an extension to an alternative 
PROTOS-L implementation is outlined. In Godel [13] types 
play the central role in providing a  logical semantics for 
meta-programming constructs. For most Godel programs 
static type checking is  sufficient, but in some cases Godel 
types also have to  be considered at run time. 

Among the additional extensions of PROTOS-L we are 
currently investigating is the extension of the type concept 
by descriptions of types with attributes. As in frame- or 
object-oriented approaches, the elements of a type are not 
defined by enumerating  them or by defining the constructors 
generating them, but by giving  a set of attributes 
characterizing them. This yields a much more flexible type 
description method, since (for instance) adding an attribute 
to an already existing type should not invalidate any 
existing program part. A term of such an attributed type 
would consist of a list of attribute-value pairs (cf. [49]). 
The design of an  efficient abstract machine for such an 
extended type concept is the subject of current research. 
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