Logic
programming
with typed
unification

by C. Beierle

and its realization

on an abstract
machine

Logic programming can benefit from a typing
concept which supports many software
engineering principles such as data
abstraction, modularization, etc. From a
computational point of view, the use of types
can drastically reduce the search space.
Starting from these observations, this paper
gives a survey of many-sorted, order-sorted,
and polymorphic approaches to type concepts
in logic programming. The underlying
unification procedures for ordinary term
unification, order-sorted unification, and in
particular for polymorphic order-sorted
unification are given in the style of solving a
set of equations, giving a common basis for
comparing them. In addition, the realization of
these unification procedures on a Warren
Abstract Machine-like architecture is

described. Special emphasis is placed on the
abstract machine developed for PROTOS-L,
a logic programming language based on
polymorphic order-sorted unification.

1. Introduction

Logic programming has proven a powerful programming
paradigm, representing the most successful tool that falls
in the category of ““declarative programming’ and is also
operationally feasible. In establishing a structural
relationship between declarative and operational
semantics, the central notion of unification is most
important. As the heart of the so-called SLD resolution
principle, it provides the basis for a simple albeit fully
operational semantics that is compatible with its
declarative counterpart [1]. In addition, with the
pioneering work of D. H. Warren [2, 3], an efficient

©Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 375

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

C. BEIERLE

376

implementation of unification and logic programming
became available.

However, in comparing Prolog, the most prominent
representative of the logic programming family, with other
programming languages, one observes that certain major
software engineering principles such as modularization and
data abstraction are not directly supported in Prolog.
Especially as applications grow larger and more complex,
such software engineering principles become more
important. The basis for many of these principles can be
given by a powerful type concept. It allows many common
programming errors to be detected at compile time which
might otherwise be difficult to locate. Additionally, in Al
applications such as theorem proving, it has been shown
that the introduction of types with subtypes may
drastically reduce the search space of a problem (e.g., [4]).
On the other hand, types should not burden the
programmer or knowledge engineer by requiring too
narrow or too strict a discipline.

Starting from these observations, during the last few
years there have been various attempts and suggestions to
extend the logic programming paradigm by, among other
things, the introduction of types; see, €.g., [5-13}. The
purpose of this paper, which extends and revises the work
presented in [14], is to investigate the extension of logic
programming by types under three aspects, namely, to
compare different classes of typing concepts, to present
the unification procedures underlying them, and to show
how the typed unification procedures can be realized on a
suitable extension of the Warren Abstract Machine
(WAM).

In Section 2, an overview of many-sorted, order-sorted,
and polymorphic type concepts is given. Each of the
various approaches can be classified as to whether it
suffices to do static type checking, or whether types are
also present at run time. It is also interesting to note that
in the cases where types must be considered at run time,
the type information can be dealt with completely within
the unification.

In Section 3, the underlying unification procedures are
investigated and compared to one another. As a common
base allowing for easy comparison, we present each of
them in the form of solving a set of equations (cf. [15]).
Special emphasis is put on the case of an order-sorted type
concept with polymorphism (cf. [16]), which has been
incorporated into the logic programming language
PROTOS-L [14, 17] and for which an abstract machine
implementation has been developed.

The realization of the underlying unification procedures
is the subject of Section 4, where in particular the
PROTOS Abstract Machine (PAM) developed for
PROTOS-L is described as an extension of the original
WAM. Section 5 contains some conclusions and points out
some further work.

C. BEIERLE

2. Type concepts in logic programming

® A many-sorted approach

In uynsorted predicate logic, unary predicates define a
subset of the universe for any interpretation. For instance,
a Prolog program containing the clauses

car(opel).
car(ford).
car(mercedes).

where car does not occur in the head of any other clause
will have the three constants opel, ford, and mercedes in
the set assigned to car in its standard interpretation (i.e.,
its minimal Herbrand model).

Within Prolog it is not possible to reason on this more
abstract level of ““cars’’; rather, the level of the individuals
of this set must be used. However, within the framework
of algebraic abstract data type specifications [18, 19], the

declaration

sort car.

operations opel: — car.
ford: — car.

mercedes: — car.

within a specification yields essentially the same effect.
Provided there are no other operations with target sort car
and no equations are imposed on the constants, the set
assigned to car in the standard interpretation of the
specification (i.e., its initial model) contains the three
constants opel, ford, mercedes.

A first extension of Prolog to sorts could thus be to
allow sort declarations together with the operations that
yield objects of the respective sorts. Following terminology
used in abstract data type specifications, we call these
operations constructors because they construct the
elements of the given sort. Thus, the fragment of a Prolog
program given above would correspond to

sort car.
constructors opel, ford, mercedes.

in a sorted version. In the following we use the more
compact notation

sort car := { opel, ford, mercedes }.
Similarly,
sort boat := { ferry, steamer, sailing_boat }.

introduces the sort boat with its elements ferry, steamer,
sailing_boat.

Given such sort declarations we can attach to every
predicate p a declaration stating how many arguments p
takes and of which sorts the arguments of p must be. For
instance, the declaration

predicate go_from_to_with: city x city x vehicle.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

would require the first two arguments of go_from_to_with
to be of sort city and the third argument to be of sort
vehicle.

Requiring such declarations for all predicates in a logic
program and insisting on well-typed terms and literals
already has some important consequences that lead us
away from the usual Prolog situation:

* The distinction between declarations and clauses defining
a predicate, together with a notion of well-typedness,
requires a type checker.

® Since type checking takes place with respect to a set of
declarations, the unit for type checking cannot be a
single clause or declaration, but should be a program
part containing both a set of declarations and a set of
clauses (e.g., a module).

* Since only well-typed programs should be executed,
there is a distinction between the type checking phase
and the execution phase of a program. In analogy to
classical typed programming languages, we refer to these
phases as compile time and run time, respectively. If all
type checking can be done at compile time we have
static type checking, whereas type checking done at run
time is called dynamic.

In Prolog there is essentially no type checking, and
every clause added to a program file can be given to the
interpreter immediately. However, the third distinction
listed above can be exploited in terms of efficiency. In the
situation discussed so far, type checking is completely a
compile-time activity, and no type information whatsoever
need be present at run time. Crucial to this observation is
the fact that up to now we have only considered sorts with
no possibility of having subsort relations between them.
Again using abstract data type terminology, we refer to
this case as the many-sorted case. The possible gains in
run-time efficiency are based upon the fact that on the one
hand no overhead due to type information occurs at run
time, and on the other hand, because of well-typedness,
any argument of a predicate is guaranteed to be of the
specified sort. Therefore, the underlying unification need
not deal with the whole universe of terms, but only with
the terms which are of the given argument sort. An
example for a logic programming language based on the
many-sorted approach is Turbo-Prolog.

Generally one can say that a many-sorted approach does
require only a static type-checking phase—which can be
realized by a preprocessor—and that every implementation
for the unsorted case also works well for the many-sorted
case. In particular, an abstract machine such as the
Warren Abstract Machine (WAM) [2, 3] does not have to
be modified for the many-sorted case; however, it could
be modified for efficiency reasons, as has been indicated
above.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

7y
N

amphibious_ vehicle

A simple sort hierarchy with subsorts.

i
1

® An order-sorted approach

An extension to the many-sorted approach is to allow
subsort relationships between sorts. For instance, the sorts
car and boat could both be seen as subsorts of a common
supersort vehicle. Likewise, there could also be a sort
amphibious_vehicle as a common subsort to both car and
boat, yielding the sort hierarchy shown in Figure 1.

Order-sorted approaches allowing such sort hierarchies
have been suggested in areas such as abstract data type
specifications, automatic theorem proving, and logic
programming. An order-sorted logic was given in 1962 by
Oberschelp [20]. Order-sorted algebra originated with
Goguen [21] and was developed further by Goguen et al.,
e.g., [22, 23]; it is the basis for the specification language
OBI [24] and the logic programming language Eqlog [7].
Gogolla [25] studied and extended order-sorted algebra, in
particular with respect to error-handling approaches.
Walther [26, 27] has investigated order-sorted unification
and has given correctness and completeness results for
resolution and paramodulation with order-sorted
unification, and Huber and Varsek [10] have used this
approach for an extended Prolog with order-sorted
resolution. Schmidt-Schaub [28] has developed an order-
sorted deduction calculus with polymorphic function
definitions, and several other order-sorted approaches have
been described in the literature.

Extending the approach described in the preceding
subsection, we add to every sort declaration an
enumeration of its (direct) subsorts separated by ++, if
there are any. For instance, the sort hierarchy shown in
Figure 2 could be defined as follows:

sort vehicle := airplane ++ boat ++ car.

sort airplane := { bo747, dc10, airbus }.

amphibious_vehicle
++ { opel, ford, mercedes }.

sort car

C. BEIERLE

377

378

. airplane boat - o city

amphibious _vehicle

A sort hierarchy with subsort relationships and maximal sort
vehicle and city.

sert boat

:= amphibious_vehicle
++ { ferry, steamer, sailing_boat }.

sert amphibious_vehicle := { amphi1, amphi2, amphi3 }.

sort City := { stuttgart, frankfurt,

london, calais, dover }.

The following are two predicate definitions using these sort
definitions:

predicate go_direct: city x city x vehicle.
go_direct(stuttgart, frankfurt, X) : — X:airplane.
go_direct(frankfurt, london, X) :— X:airplane.
go_direct(stuttgart, calais, X) :— X:car.
go_direct(dover, london, X) :— X:car.
go_direct(calais, dover, X) :— X:boat.

predicate go_from_to_with: city x city x vehicle.
go_from_to_with(From, To, With) : —
go_direct(From, To, With).
go_from_to_with(Frora, To, With) :~
go_direct(From, Over, With) &
go_from_to_with(Over, To, With).

go_direct(a, b, v) means that there is a direct way of
getting from city a to city b using only vehicle v. The
predicate go_from_to_with takes the same arguments as
go_direct. The intended meaning of go_from_to_with(a, b, v)
is that there is a way of going from city a to city b using
only vehicle v, but possibly going via some other cities.
Correspondingly, there are two clauses defining the
predicate go_from_to_with as given above.

Now consider the query

7—- go_from_to_with(stuttgart, london, V) 1
asking for a vehicle V which can be used to go from
stuttgart to london.

We assume the usual Prolog evaluation strategy (i.e.,
left-to-right and depth-first search), but instead of ordinary
term unification we now use order-sorted unification [14].

C. BEIERLE

The original sort restriction of the variable V in query (1) is
vehicle due to the declaration of go_from_to_with. The first
solution to (1) leaves the variable V uninstantiated but
sharpeas its sort restriction to airplane:

V = X:airplane.

Obviously, this solution represents a more abstract answer
than enumerating all elements of the sort airplane as
would have to be done in the unsorted case. Enforcing
backtracking first resets the sort of V to vehicle. Resolving
with the third clause of go_direct restricts the sort of V to
car. Further resolving the remaining subgoal with the fifth
clause of go_direct leads to the unification of the variable
V with sort restriction car and a variable X, with sort
restriction boat. Order-sorted unification yields a variable
whose sort restriction is the greatest common subsort

of the two sorts in the given sort hierarchy, i.e.,
amphibious_vehicle in this case. After one more resolution
step, the second solution

V = X:amphibious_vehicle

to query (1) is given.

By comparing the order-sorted case to the unsorted
case, where each sort would correspond to a unary
predicate and each sort restriction to a subgoal calling this
predicate, we can observe that the sorted version provides
a higher level of abstraction, thus providing more compact
solutions and avoiding possibly expensive backtracking. As
far as the last point is concerned, the left-to-right, depth-
first search strategy may be even more complete in the
order-sorted case if there are infinitely many backtracking
points in the unsorted version which are covered by a
subsort in the order-sorted version.

Whereas the observations made for the many-sorted
case above about type checking at compile time, type-
checkable units, etc., essentially still hold in the order-
sorted case, this is not true with respect to the absence of
type information at run time.

However, when looking at the degenerate order-sorted
case without any subsort relationship at all, one obviously
can neglect the sort information completely at run time,
since this is just the many-sorted case presented above.
More generally, all sort information concerning maximal
sorts (vehicle or city in the example above) can be
neglected at run time (see Section 3).

® Polymorphic type concepts

A serious drawback of both a many-sorted approach

and an order-sorted approach as discussed so far is the
fact that it is not possible to achieve the effect of
parameterizing a structured sort over some other sort. For
instance, in the many-sorted setting lists must be defined
explictly for every sort. To give an example, the sort
list_nat of lists over natural numbers would be given by

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

sort list_nat:= {[]_nat,

o_nat: nat x list_nat}.

If we wish additionally to use lists over the sort car, we
must define a new sort and new constructors:

sort list_car:= {[]_car,

e_car: car X list_car}.

Moreover, for every predicate operating on lists we must
have an extra version for every list variant, e.g.,

predicate append_nat: list_nat x list_nat x list_nat.
predicate append_car: list_car x list_car X list_car.

where every predicate version must be defined explicitly.

One method of overcoming this difficulty is to introduce
parameterization. This concept has been studied
extensively in abstract data type theory (cf. [19]) and has
been applied to logic programming in Eqlog [7]. For
instance, in Eqlog one can introduce a parameterized
module

module LIST(X::ELEM)

which refers to a formal parameter specification ELEM.
The functions and predicates operating on lists are defined
by referring to the names introduced in ELEM. Instances
of a parameterized module are obtained by replacing the
formal parameter X::ELEM with an actual parameter, e.g.,
NAT or CITY, yielding the resulting instance, such as
LIST(NAT) or LIST(CITY). Thus, there need be only one
definition for every list predicate such as append, namely
in the parameterized LIST module.

An advantage of such a parameterized concept is that
apart from formal sort, function, and predicate names the
parameter specification may also contain requirements for
these; for instance, a parameterized specification for sets
would require an equality relation on the elements.
However, every instance of such a parameterized module
must be generated explicitly, and for all names stemming
from the parameterized specification different new names
must be used in every instance.

A related way of avoiding multiple definitions for the
same structure is the concept of polymorphism [29, 30].
As with the parameterized specifications outlined above,
parameter variables also exist in the polymorphic case.
However, they range over all sorts and it is not possible to
restrict them by a parameter specification. Thus, there are
no function or predicate symbols in the formal parameters,
nor any constraints. On the other hand, in the polymorphic
case it is not necessary to generate any instance explicitly,
and the same names from a polymorphic definition are
used in every instance.

In the following, we denote such sort variables by « and
B. A polymorphic sort declaration for lists (here and later,

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

we use the standard Prolog notation for lists) would then be
sort list(a) := {[], [LL]: « xlist(a)}. (2)
Similarly, the polymorphic sort definition

sort pair(a,B) := { mkpair: a X B}

defines ordered pairs over two sorts.

With such polymorphic sort functions at hand, all
instances of them are automatically available, for
example,

list(city)
list(airplanes)
list(boat)
list(list(city))
pair(boat,city)
pair(car list(city))

In [5], a polymorphic type system for Prolog is proposed
that allows parametric polymorphism (for a discussion of
different polymorphism concepts, see [31]). In this
approach the user must give sort declarations for the
function and predicate symbols in a way similar to that for
the many-sorted setting (see the preceding subsection), but
with the additional polymorghic sort declarations. Mycroft
and O’Keefe [5] define a notion of well-typedness such
that (again as in the many-sorted case) static type checking
is sufficient and no run-time type information is needed.
Using (2) and the syntax of Section 2, the polymorphic
definition of the append predicate is

predicate append: list(a) X list(a) x list(a).
append((], L L.
append((HT], L, [HITL] :— append(T, L, TL). 3)

There have been several other approaches to a
polymorphic type system for logic programming. Dietrich
and Hagl [9] extend the approach of Mycroft and O’Keefe
[5] to an order-sorted setting. To ensure that static type
checking is sufficient, data-flow information within the
program clauses is required in certain cases. Such data
flow could be provided by 2 mode system, or in some
cases it could be provided by giobal analysis, but the
necessity for such information restricts the generality of
this approach.

Another extension of [5] which deals with subsorts is
reported in [32]. However, in this case dynamic type
checking is needed. The dynamic type checking is not
achieved by using a special unification algorithm but by a
reduction to the ordinary Prolog case: A preprocessor
inserts system-defined literals into the body of a clause in
order to ensure sort-correct instantiations, reporting a run-
time error otherwise. For instance, given the predicate

declarations 379

C. BEIERLE

380

Table 1 Polymorphically order-sorted unification.

t1 t2 Result

X:list(car) [ford, opel] [ford, opel]

Xlist(car) [ford, airbus, opel} fail

Xlist(car) [ford, Y:vehicle, opel] [ford, Y:car, opel]
Xlist(car) Y:list(boat) Z:list(amphibious_vehicle)

predicate p: car.

predicate q: vehicle.

the clause

p(X) := q(X).
in the definition of p is translated to

p(X) :— instantiated(X) & q(X).

Therefore, computing with uninstantiated sort-restricted
variables, as demonstrated in the travel world example in
the section on the order-sorted approach, is not possible;
the advantages of order-sortedness are thus severely
restricted in this framework.

The three approaches to a polymorphic type system
discussed so far are all operational approaches: They do
not provide a semantic notion of a type, but only a
syntactic one. Their aim is to guarantee by static type
checking that no type error can occur at run time, and the
operational semantics is the same as the semantics of the
untyped version (except for the third approach, as indicated
by the example given above). There are approaches to a
polymorphic type system for logic programming that also
provide a semantic notion of a type [11, 12], but in
contrast to the syntactic approaches discussed above, they
have to take the type information into account at run time,
requiring a special unification algorithm as in the order-
sorted case.

The approach of Hanus [11] extends the polymorphic
concept of Mycroft and O’Keefe [5]. By removing the
restrictions of Mycroft and O’Keefe [5] on the use of type
expressions, Hanus also allows for ad hoc polymorphism
[31]. Besides a model-theoretic semantics, sound and
complete deduction relations involving a special
polymorphic unification are given. For instance, consider
the polymorphic append predicate given in (3). Adding the
specialized clause

append([opel, ford), [mercedes], [opel, ford, mercedes]). 4)

is possible in this approach. It is not allowed in [5], since
in that framework clause (4) is not well-typed because the
types of the arguments in the head of (4)—list(car)—are

C. BEIERLE

not of the most general type—list{a)—declared for the
predicate append in (3).

Whereas Hanus [11, 33] uses ad hoc polymorphism and
exploits it, for example, for higher-order programming
techniques but does not consider subsorts, the approach of
Smolka [12] combines parametric polymorphism with an
order-sorted approach. In this framework a sound and
complete deduction relation for the corresponding model-
theoretic semantics is defined that uses polymorphically
order-sorted unification. To give an example, let us extend
the travel world program in Figure 2 by the standard
definition of polymorphic lists as given in (3). As in the
polymorphic cases above, we now have not only a finite
set of sorts but infinitely many sorts denoted by sort terms
which show up in the unification procedure: Besides a
sort constant such as car or vehicle, the sort restriction
of a variable can be a sort term such as list(car) or
list(list(vehicle)). To illustrate polymorphically order-sorted
unification, we list in Table 1 the unification results for
different values of the terms t1 and t2.

The partial order on the (monomorphic) sort constants
induces a partial order on sort terms as shown in the table.
For instance, list(amphibious_vehicle) is a subsort of
list(car) because amphibious_vehicle is a subsort of car.

In addition to this induced sort relationship, the
approach of Smolka [12] allows explicit definitions of
subsort relationships between polymorphic sorts such as

sort Ip(a,B) := list(a) ++ pair(a,B).

Thus, in this case the computation of the greatest lower
bound of two sort restrictions requires taking into account
those explicit subsort relationships between polymorphic
sorts which can be handled by sort-rewriting systems.

For instance, in trying to unify X:Ip(car,airplane) and
Y:list(boat), the sort restriction of X would have to be
rewritten first as list(car). Several conditions for such
sort-rewriting systems must be satisfied {12], and their
use in a logic programming language could slow down the
unification procedure. On the other hand, the important
optimization of neglecting any maximal sort information is
blocked in many cases (cf. Section 3): For instance, if
list(a) has no supersort, then list(vehicle), list(city),
list(list(city)), etc. will also be maximal, and such sort
information can be neglected as well. However, if list(a) is
a subsort of, e.g., Ip(a,B), then no list instance at all will
be maximal.

The type system of the logic programming language
PROTOS-L [14, 17] is derived from the type system in TEL
[12, 16]. However, PROTOS-L does not allow explicit
subsort relationships between polymorphic types for the
reasons discussed above. On the other hand, PROTOS-L
supports the explicit definition of maximal sorts in order to
reduce the sort information that must be considered at run
time; these points are addressed in more detail in the next

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

E & x=x

(E) , - if x'is a variable
E&f(t, -, t)=f(t), -, 1)

(D) LI | =gt

E&t=t& - &t=t
®) E & x=t if x is a variable, ¢ is a variable or a nonvariable term, and

o(E) & x=t x-occurs in E but not in ¢, and where o = {x/t}
©) E & t=x if x is a variable and ¢ is not a variable
E & x=t :

The rules for ordinary term unification.

R

section and in Section 4, which presents a WAM extension
for the polymorphic type concept of PROTOS-L.

3. Unification and typed unification

® Term unification
The rules for ordinary term unification are given in
Figure 3 in the style of equation-solving ([15]; for a survey
on work in unification theory, see [34]), with the rules for
elimination (E), decomposition (D), variable binding (B),
and orientation (O). The idea is to start with a set of
equations E = {t, =¢], -+, t =t} representing the
pairs of terms to be unified, and to transform E into a set
of equations E’ that is in solved form by using the four
given rules.

There are two conditions which indicate that no solution
exists:

C1 1If there is an equation f(¢, *+-, ¢) = g(¢], -+, t)
in E with f # g, then no solution exists.

C2 If there is an equationx = ¢ in E such thatx # ¢
and x occurs in ¢, then no solution exists.

E’ is in solved form if it is of the form
E' ={z;=¢t|i€{l, -, n}},

where z, are variables that do not occur elsewhere in E'.
In this case the substitution represented by {zl/tl, O
z,/t } is the most general unifier of the unification problem
given by the original set of equations E.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

¢ Order-sorted unification
The rules for order-sorted unification are given in Figure 4.
Note that the rules for elimination, decomposition, and
orientation look exactly as in the unsorted case. However,
now every variable is of a particular fixed sort, and the
difference from the unsorted case occurs in rules (B1) and
(B2) when binding a variable.

A precondition for these rules to work correctly is that
the sort structure must satisfy the following conditions:

e There are only finitely many sorts, and the subsort
relationship is a partial order such that two different
sorts have at most one common maximal subsort.

Additionally, there are the following requirements:

e There is no overloading of function symbols; i.e., for
every function symbol f with arity n, there is exactly one
arity declaration f:s, -5 — 5.

e Sorts are not empty; i.e., for every sort there is a ground
term of that sort.

e The unification problems considered involve only well-
sorted terms; i.c., the argument sort of £, in f{¢,, -+ - , ¢,)
must be of a subsort of 5, for f:s, «++ 5, — 5.

Note that the first condition could be weakened by
allowing certain cases of overloading; see for instance
Waldmann [35].

C. BEIERLE

381

382

E& x=x

(E) ekt if x is a variable

E
E&f(t, -, 0)=ft, -, 1)

@ E&t=t& v &1=t,
E & x=t
(B1)
olE) & x=t
E&x=y
(B2)
o(E) & x=7 & y=2
E & t=x
©) ———
E & x=t

The rules for order-sorted unification.

if x is'a variable of sort s, ris'a variable or a nonvariable
term-of sort 5’ s’ = §, and x occurs'in E but not in-7 and
where o = {x/}

if x is a variable of sort s, y is'a variable of sort s', x # y,
s'# 5,z is 4 new variable of sort s” where s” is the
greatest common subsort of s and s, and where

o ={xlz, ylz}

if x is a variable and ¢ is not a variable

Now there are two situations in addition to those for the
unsorted case such that there is no solution:

C3 If there is an equation x = ¢ in E such that the sort
of ¢ is strictly greater than the sort of x, then no
solution exists.

C4 If there is an equationx =y in E such that the sorts
of x and y do not have a common subsort, then no
solution exists.

If none of the conditions CI-C4 is satisfied and E’ is in
solved form, E' = {z, = ¢, |i € {1, -+, n}}, then

{z/t,| z, = t, € E’ and 2, occurs in the original set of
equations E}

represents a most general unifier of the original unification
problem E.

Consider the rules for order-sorted unification as given
in Figure 4. Comparing the rules to the unsorted version
(Figure 3) reveals two places where sort information is
involved, namely (B1) and (B2). In (B1), a subsort test
s' < s is required, involving the sort s of the variable
x and the sort s’ of ¢. Thus, if ¢ is a variable, s’ is
its sort, and if # is the nonvariable term f(z,, <+ -, ¢),

s’ is the target sort of the top-level function symbol
fis s, >s oft.

C. BEIERLE

To give an example, binding the term opel (of sort car)
to variable Y:amphibious_vehicle would not be possible
under rule (B1), but binding the term amphi1 of sort
amphibious_vehicle to Y:car would be possible.

However, it is interesting to note that under the
requirements given above (in particular, no overloading
and only well-sorted unification problems) when trying to
apply (B1), the rules will never try to bind a variable of
sort city to a term of sort car, nor, conversely, a variable
of sort vehicle to a term of sort city. Therefore, whenever
the variable X involved in (B1) is either of sort vehicle or
of sort city (i.e., the sort of X is maximal with respect to
the subsort relationship), the subsort test will always be
successful.

A similar observation is true for the other binding rule
(B2). Under the given requirements, if either of the
involved variables x and y in the equationx = y is of a
maximal sort (vehicle or city in our example), the other one
is either of the same sort or of a subsort thereof. If the
sort s of x is maximal, rule (B2) cannot be applied, and
(B1) must be used instead. Otherwise, if in {B2) the sort s’
of y is maximal and s is nonmaximal, we have s < s’, and
the sort of the resulting variable z (i.e., s) is determined
completely by the nonmaximal sort. In fact, we could
simplify (B2) in this case by not introducing a new variable

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

but by orienting the equation to y = x and just doing the
binding as in (B1).

We conclude that in both places where sort information
is involved, the sort information for variables of maximal
sorts is redundant. Thus, if we leave out the redundant
sort tests for variables of maximal sorts as indicated
above, both (B1) and (B2) reduce to special cases of the
binding rule (B) in the unsorted case.

Thus, we could do the following optimization for a given
well-sorted unification problem E = {r, =¢,,--+,¢, =¢}:

1. Transform E into E’ by replacing every variable x of a
maximal sort with an ‘“‘unsorted”” variable x,.

2. Transform E' into E” using the rules in Figure 4 with
the modified version of (B1) and (B2) [i.e., effectively
applying rule (B)] when binding an ““‘unsorted”” variable.

3. Replace every “unsorted” variable x, from E’ with the
original sorted variable x.

In the degenerate order-sorted case where all sorts are
maximal, all sort information therefore becomes
redundant. This means that in step 2 above we do just
ordinary unsorted unification. Of course, this comes as no
surprise, since that case is just the many-sorted case
where, for well-sorted unification problems, the unsorted
unification rules work well. In [12] this optimization is
suggested and elaborated in detail for the more general
polymorphic order-sorted case discussed below.

® Polymorphic order-sorted unification

We now present the rules for polymorphically order-sorted
unification as it is used in the logic programming language
PROTOS-L; the general case with additional explicit
subsort relationships between polymorphic sorts is given
in [12].

First, let us recall the order-sorted unification rules
discussed in the previous section. There, we considered
every variable to be of a fixed sort. However, one could
also use unsorted variables and introduce the sort
restrictions on the variables by a special predicate. This
yields certain technical advantages; for instance, when
unifying two variables X:car and Y:boat one can
produce a new sort restriction for the variables (i.e.,
X:amphibious_vehicle) instead of introducing a new
variable as done by the rules in Figure 4. We have already
used this approach informally in our discussion in Section 2.

Thus, in addition to the set E of equations we now also
have a set P = {t,:7,, * -+, ¢ :7,} of sort restrictions with
value terms ¢, and sort terms 7,. We call P a prefix if all ¢,
are variables that are pairwise distinct. As in the order-
sorted case, we consider only well-sorted unification
problems P & E, which now means that P is a prefix
having a sort restriction for every variable in E and that
for every equation ¢ = ¢’ in E there exists a sort term 7

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

such that both ¢ and ¢’ belong to 7 under the sort
restrictions given in P.

For the optimized version of the unification rules, such a
well-sorted unification problem P & E is first transformed
such that maximal sort information is neglected: Every
maximal sort is replaced recursively by the special symbol
T. For a sort term 7 the approximation of r is defined by

l7 =T
I =T

if 7 is a sort variable;
if 7 is a sort constant
that is maximal
in the partial order
on the sorts;

VErp oo, r) =T if r=cr=)1, =T;
1 if é(r,,+++,) cannot
be instantiated
(see below);
£ 1,-+, |7) otherwise.

The approximation | P of a prefix P is obtained by
replacing all sort terms in P with their approximations.

Analogously to the computation of greatest common
subsorts in the order-sorted case, one now needs to
compute the infimum of two sort terms. For
instance, the infimum of list(car) and list(boat) yields
list(amphibious_vehicle). However, whereas there is no
common subsort of, e.g., airplane and car, the infimum of
list(airplane) and list(car) is well-defined, i.e., the set
consisting of exactly the empty list.

Thus, another special symbol 1 is introduced above that
denotes the “empty’” sort which becomes a subsort of
every other sort. Then the infimum of list(airplane) and
list(car) is list(L), since there is a ground term of sort
list(L), namely the empty list []. In other words, list(.L)
can be instantiated or is inhabited. However, given the
definition of standard pairs as above, the infimum of, e.g.,
pair(airplane,city) and pair(car,city) is not inhabited, since
pair(L,city) cannot be instantiated. Thus, the infimum of
the two sort terms is L.

In general the infimum inf(7, 7') of two sort term
approximations 7 and 7’ is given by

inf(T, 7) =7,
inf(r, T) =7,
inf(r, 7') =7 if 7 and 7' are sort
constants with
maximal common
subsort 7,
in(&(r,, 1), 7}y 7))
= (¢é(inf(r, 7)), - -+ if this term
inf(r,, 7)) can be instantiated,
inf(7, 7') =1 otherwise. 383

C. BEIERLE

384

P& E&x=x

E
i P&E
PEE&S(t, =, t)5f, 1)
@) PEE&t2H &&=t
: . = if x oceurs:in E-but not in ¢, and where o = {x/¢#} and
B) Bl ekl P &t i rreduces to the prefix P’ using the rules
P& olE) & x=t (ES)+ -+ (DS)
©) M if £.is ot a variable
P& E & x=t
(ES) P&f(tl,;.,tn):s s vios s and g 2
P&fU,-no5t): T
(ES) @,)
P
~ P&x:r&x:v
(MS) s e
P& xinf(r,)
E&flt, -)i fr, 2o, 1) iff:n -7 > Hoy,+++, a)and

(DS)

E&t: lo(r)& &1 : |6(r)

The rules for polymorphic order-sorted unification.

Using this infimum operation, the rules for polymorphic
order-sorted unification are given in Figure 5, again under
the assumption that there is no overloading of function
symbols and that only well-sorted unification problems are
considered. Let P & E be a well-sorted unification
problem and let these rules transform the approximation
P’ & E into the form P” & E". The P” & E" is in solved
form and presents a solution if E” is in solved form (in the
sense of the order-sorted approach), P” is a prefix that
does not contain x: L, the variables in P" do not occur on
the left-hand sides of an equation in E”, and every right-
hand side of an equation in E" is well-sorted under the
prefix P".

Analogously to the unsorted case (compare the three
steps at the end of the subsection on the order-sorted
approach), one can now solve a well-sorted unification
problem by

C. BEIERLE

where 0={a /7, ** ", a7}

1. Transforming P into the approximation P’'.

2. Transforming P’ & E into P" & E" using rules (E)—(O)
and (ES)~(DS) from Figure 5.

3. Transforming P" into P” by replacing the
approximations in P with the actual sort information
from the original prefix P and the substitution defined
by E".

The third step uses the retract operation, which
transforms an approximation r and a sort term 7' that is an
upper bound of 7 into the retraction 7 7 7 as follows:
Thr =7,

7 t if r and 7’ are sort

constants and
7 is a subsort of 7/,
Erypy eyt)V E(r, e,) = Er Mo, e, M 1)

Tt undefined otherwise.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

The upper bounds for the sort term approximations in P"
are obtained by applying the substitution o, defined by E”
to the original prefix P and transforming o,.(P) again into
a prefix, say P,,. If x: 7 is now in P" and x: 7' is in Pp,,
thenx: 71 7 will be in P”.

In this section we have discussed three unification
procedures related to untyped, order-sorted, and
polymorphic order-sorted logic programming, respectively.
By presenting them in the uniform framework of equation-
solving transformations, we have obtained a common basis
for comparing them. Using SLD resolution with the
correspondingly extended unification yields for any of the
three cases an operational semantics. This operational
semantics can be realized on a suitable abstract machine,
and in the following section we will show how the different
transformation rules are reflected in such an abstract-
machine implementation.

4. Abstract machines

As noted in the Introduction, an efficient implementation
of logic programming and its required term unification
became available with the Warren Abstract Machine. In
this section we present an extension of the WAM to order-
sorted and polymorphically order-sorted unification. We
start with a short presentation of the original WAM.

® The Warren Abstract Machine
For a detailed description of the WAM we refer to [2, 3]
or [36]. Here, we give only a brief overview of the
machine model that allows us to describe the extensions
and modifications later on.

The machine model of the WAM consists essentially of
the following:

1. The code area containing the machine code of the
program.
2. Three stacks:

o The global stack, containing all structures that are
generated during program execution. Structures are
represented by the top-level function symbol followed
by the arguments of the structure.

The local stack, containing information on the
execution structure of the program and backtracking
information. In particular, the local stack contains
choice points for alternative clauses for a goal and
environments containing the status information needed
for evaluating the rest of a clause.

The trail stack, containing the addresses of the
variables that have been bound during program
execution and that have to be reset upon
backtracking.

3. A set of registers defining the current machine state,

e.g., a next-instruction pointer, pointers to the tops of

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

the three stacks, a pointer to the last choice point, etc.,
and a special set of argument registers.

An actual implementation will also contain additional
components, such as a symbol table containing the arity
and the print names for every function and predicate
symbol occurring in the program.

The instruction set of the WAM can be divided into five
classes:

1. The get instructions are used for the arguments in the
head of a clause in order to unify them with incoming
arguments.

2. The put instructions are used for the arguments in the
body of a clause in order to build up the arguments of
the subgoals.

3. The unify instructions are used for the deeper-nested
arguments within a structure.

4. The environment and choice instructions are used for
the management of procedure calls, choice points, and
environments.

5. The switch instructions are used to select only a subset
of all alternative clauses from the set of all clauses of a
predicate, depending on the value of the given
arguments.

Additionally, there are some lower-level instructions that
are called by certain instructions above (e.g., there is a
low-level unify instruction, and the low-level instruction
fail is called in order to initiate backtracking).

® Extending the WAM to typed unification

As pointed out in Section 2, the many-sorted case does not
need special treatment at run time; therefore, the WAM
needs no modification. However, in the order-sorted case,
types are present at run time.

Order-sorted WAM extensions have been suggested in
{10, 37], and in [38] an abstract machine implementation of
PROTOS-L without polymorphism is given. The subsort
relationships between the sorts are compiled into a square
matrix such that both a subsort test and the computation
of the greatest lower bound of two sorts can be done in
constant time. However, the matrix implementation is
not easily extendible to separate compilation of modules,
and it requires space that is quadratic in the number of
sorts.

Instead of going into the details of the order-sorted
WAM extensions, we move directly to the polymorphic
order-sorted case as it has been incorporated in PROTOS-L.
We call this WAM extension the PROTOS Abstract
Machine (PAM) [14, 39], and in the following, we describe
its differences from the WAM.

The first difference is that the sort structure of a

program must be stored in the machine. This is done 385

C. BEIERLE

386

primarily in a new sort table containing the following
information:

e The sort constants and their subsort relationships

(e.g., airplane and city having no subsorts; vehicle having
subsorts airplane, boat, and car).

The arity of the polymorphic sorts [e.g., list(a) has arity
1, while pair(e,B) has arity 2].

Information on how sort terms can be instantiated. [For
example, the instantiation information for the sort term
list(r) states that « may be the “empty’” sort L because
[1is a term of sort list(_L). For the sort term pair(a,f) it
is required that both « and 8 be instantiated by a sort
other than L, since otherwise there would be no term of
that pair sort.]

Additionally, the symbol table must contain the arity of
the function symbols in order to determine the target
sort of the top-level function symbol of a term [e.g., opel
is of sort car, stuttgart of sort city, and the list
constructor “‘s’” has list() as its target sort].

The second major difference is the representation of
variables. In the WAM variables are represented by
pointers. Binding a variable simply requires pointing to the
value (e.g., a structure in the global stack), and a free
variable is a pointer to itself.

In the polymorphic PAM the variables are divided into
three classes:

e The free variables, which are treated in the same manner
as the free variables in the ordinary Prolog case. These
are the variables for which no sort information is
relevant at run time; i.e., the approximation of their sort
restriction is T.

The mono variables, whose sort restriction is a
(monomorphic) sort constant. These are represented as
in the nonpolymorphic PAM; i.e., each mono variable
has a sort constant attached to it.

The poly variables, whose sort restriction is a
nonconstant sort term. The sort restriction of these
variables is a pointer to the respective sort term. The
sort terms themselves are represented as regular terms,
i.e., in the global stack where the polymorphic sort
symbol is followed by its arguments.

The trail stack must record the previous sort restrictions of
the variables. For the free variables this information is
void; for the mono variables it is a sort constant to be
stored on the trail stack, and in the case of poly variables
it is a pointer to the global stack.

To determine the changes for the instruction set,
consider the unification rules given in Figure 5. Because
rules (E)}-(O) are effectively the same as in the unsorted
case (Figure 3), they do not cause any changes, except

C. BEIERLE

that the binding rule (B) refers to rules (ES)-(DS). Rules
(ES)~(DS) manipulate the sort restrictions. For the
elimination of a monomorphic sort restriction (ES), the
target sort of the function symbol (which is recorded in the
symbol table) must be in the subsort relationship
(documented in the sort table) to the required sort. For the
other elimination rule (ES'), no action is required at all.

The merging of two sort restrictions (MS) requires the
computation of the infimum of the two sort terms. The
information required is the subsort relationship for the
monomorphic sorts and the instantiability of polymorphic
sorts, which are both contained in the sort table.

The decomposition of a sort restriction (DS) requires
that the arguments of a polymorphic sort term, such as
pair(car,airplane), be propagated to the arguments of a
value term, such as mkpair(X:vehicle,Y : vehicle), yielding
mkpair(X:car,Y : airplane) in the given example.

The instructions that must be modified because of these
observations are the get, put, and unify instructions, which
are the instructions used for the unification of terms. They
are generated by the compiler, depending on the
occurrences of a variable or a term in a clause.

For example, suppose that the ith argument of the head
of a clause is a (temporary) variable represented by X . All
one must do in the unsorted case is set X to the value of
the ith incoming argument A, because at this point X is
guaranteed to be free. This is achieved by the WAM
instruction

get_x_variable X, A, .

However, in the PAM case the sort restriction of X must
be taken into account. Following the distinctions made
above, X is either a free, a mono, or a poly variable.
Accordingly, the WAM instruction get_x_variable is
replaced by three PAM instructions:

1. get x_free X, A..
2. getx_monoX ,A,s.
3. get_x_poly X , A, st.

The first instruction corresponds exactly to the WAM case
because no sort-related action need be performed. The
second instruction is generated for a variable with the sort
constant s as its restriction. The execution of this
instruction creates a new value cell on the global stack
with sort restriction s, which is then unified with A, in
order to ensure that 4, is of sort s (possibly by further
restricting the sort of A4, if it is a variable). Analogously,
the third instruction generates a new value cell with the
polymorphic sort restriction sz, where st is a pointer to a
sort term on the global stack. The unification with 4, then
ensures that 4, satisfies the sort restriction.

Thus, the three PAM instructions represent three special
cases of the general unification procedure where at compile

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

time it is guaranteed that one of the two terms (namely X)
to be unified is an unbound variable. On the other hand,
for the second and any subsequent occurrence of X in the
head of a clause, the full unification is required. In the
WAM case this is achieved by the instruction

get x value X , 4,

and the only difference for the PAM case is that
polymorphic order-sorted unification is used instead of
ordinary term unification.

Analogous modifications are made for all other get, put,
and unify instructions: If a WAM instruction is used for
the first occurrence of a variable (i.e., get_y_variable,
put_x_variable, put_y_variable, unify_x_variable,
unify_y_variable), it is replaced by three PAM instructions
for a free, a mono, and a poly variable, respectively. For
these as well as for all remaining instructions, the extended
unification is used.

However, except for the extended trail information, the
entire execution control including the management of
choice points and environments can be treated as in the
WAM case. For the switch instructions, an additional
optimization is possible. For the exclusion of alternative
clauses it is now also possible to take into account the sort
restrictions for the variables. For instance, having the
clauses

p(opel,..) :—...
p(mercedes,...) —...
p(bo747,..) :—...

p(ferry,...) —...

for the predicate p and a call to p with uninstantiated
variable X in its first argument, indexing (on the first
argument) would not yield any selective effect in the WAM
case. However, if X has a sort restriction, indexing does
gain something in the sorted case: For instance, the sort
restriction X:airplane would switch directly to the third
clause and rule out all other clauses immediately.

The remaining sort-related modifications required in the
PAM case are instructions for the retraction of the actual
sort of a variable from its original sort and its
approximation, as well as some additional lower-level
instructions, e.g., for the computation of the infimum of
two sort terms.

® [mplementation

There are numerous WAM implementations based more

or less directly on D. H. Warren’s original design [2, 3].
Within the European EUREKA project PROTOS (“Logic
Programming Tools for Building Expert Systems’”), the
PAM with the features described above has been
implemented in C and is available on the IBM RT Personal
Computer® 6150, the IBM RISC System/6000™ processor,
and the IBM PS/2® under the AIX® operating system

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

[39, 40]. A compiler for PROTOS-L that generates PAM
code has been developed using the TEL system [16, 41].
Static type checking and type inferencing done at compile
time could be derived from this system. However, TEL’s
run-time unification is not correct because the ordinary
term unification of the underlying Prolog system is used.
The PAM provides the first abstract machine
implementation for polymorphic order-sorted unification;
several applications written in PROTOS-L and running
on the PAM have already been developed. Within the
PROTOS project, PROTOS-L is being used for the
development of a knowledge-based planning system in the
chemical production area.

5. Conclusions and further work

There are two main motivations for the introduction of
types into the logic programming paradigm. One stems
from a software engineering point of view, since a typing
concept can support various software engineering principles
such as data abstraction, modularization, static consistency
checks, etc., which are vital in large applications. On the
other hand, from a computational point of view, the use of
types with subtypes can drastically reduce the search
space, especially in Al applications.

Starting from these observations, in this paper we have
given a survey of many-sorted, order-sorted and
polymorphic type concepts as used in logic programming.
When the typing concept supports computations with
subtypes, types are also present at run time through typed
unification. In order to compare the related unification
procedures, we have presented them in the uniform
framework of equation-solving transformations. Both for
an order-sorted and for a polymorphic order-sorted type
concept, we have argued that the classical Warren
Abstract Machine can be extended to the corresponding
typed unification, putting special emphasis on polymorphic
order-sorted unification as it has been realized in the
PAM, the core implementation component of the logic
programming language PROTOS-L.

Additional features of the PAM, some of which have
been added since this paper was written (summer 1990)
and are not described here, include a module concept
allowing for separate compilation, the integration of a
deductive database component, and an object-oriented
interface to the OSF/Motif system [14, 17, 42, 43]; all of
these features have already been used successfully in
various planning applications [44].

In [40] the PAM is described in more detail. It is shown
that representing the three classes of typed variables (i.e.,
free, mono, and poly) in the PAM by special tags leads to
the situation that the type extension in the PAM is truly
orthogonal to that in the WAM. Any untyped program is
carried out in the PAM with the same efficiency as in the
WAM: Adding the trivial one-sorted type information to

C. BEIERLE

387

whose kernel is embodied by the PAM, I would like to
thank all members of the PROTOS project team at IBM in
Stuttgart, in particular Gregor Meyer and Heiner Semle.
Harald Ganzinger, Michael Hanus, and Gert Smolka made
helpful comments on an earlier version of this paper.
Thanks also to the anonymous referees of this paper for
their valuable suggestions, and to Birgit Wendholt for
some additional hints. The work reported here was carried
out in PROTOS (“Logic Programming Tools for Building

such a program reveals that the PAM code will contain
only the free case for variables. Apart from the minor
difference of representing a free (unconstrained) variable
not by a self-reference (as in the WAM) but by a special
tag, the generated and executed code is thus exactly the
same for both the WAM and the PAM. On the other hand,
any typed program exploiting, e.g., the possibilities of
computing with subtypes can take advantage of the type
constraint handling facilities in the PAM, which would

388

have to be simulated by additional explicit program clauses

Expert Systems”’), an international EUREKA project

in an untyped version. Moreover, in [45] a mathematical (EUS6).
correctness proof for the PAM, based on the WAM
correctness proof in [46, 47], is given. References
In order to allow “‘extra-logical’”” features, in particular 1. J. W. Lloyd, Foundations of Logic Programming.

meta-programming, the PROTOS-L type system as
discussed in this paper would need to be extended. Meta-
primitives like negation-as-failure, set-of, etc., as well as
the concept of call-back procedures needed in the object-
oriented interface to OSF/Motif, have already been built
into the current prototype system. In order to allow
general meta-calls the type system still has to be extended,
e.g., toward higher-order logic; an approach in this
direction is, for instance, AProlog [8]. In the recent work
of Kwon et al. [48], which aims at developing an abstract
machine for AProlog, a WAM-based implementation
scheme for a first-order logic programming language with
ML-style typing (with the possibility of ad hoc
polymorphism and the necessity for run-time type
checking) is presented, and an extension to an alternative
PROTOS-L implementation is outlined. In Godel [13] types
play the central role in providing a logical semantics for
meta-programming constructs. For most Gddel programs
static type checking is sufficient, but in some cases Godel
types also have to be considered at run time.

Among the additional extensions of PROTOS-L we are
currently investigating is the extension of the type concept
by descriptions of types with attributes. As in frame- or

2.

Symbolic Compuzation, Springer-Verlag, Berlin, 1984.

D. H. D. Warren, ‘‘Compiling Predicate Logic Programs,”
D. A. I Research Report, University of Edinburgh,
Edinburgh, Scotland, U.K., 1977.

. D. H. D. Warren, ““‘An Abstract PROLOG Instruction

Set,”” Technical Report 309, SRI International, Menlo
Park, CA, 1983.

. C. Walther, ““’A Mechanical Solution of Schubert’s

Steamroller by Many-Sorted Resolution,” Artif. Intell. 26,
217-224 (1985).

. A. Mycroft and R. A. O’Keefe, ““A Polymorphic Type

System for Prolog,” Artif. Intell. 23, 295-307 (1984).

. Functional and Logic Programming, D. DeGroot and G.

Lindstrom, Eds., Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1986.

. J. A. Goguen and J. Meseguer, ‘““Eqlog: Equality, Types,

and Generic Modules for Logic Programming,” Functional
and Logic Programming, D. DeGroot and G. Lindstrom,
Eds., Prentice Hall, Inc., Englewood Cliffs, NJ, 1986, pp.
295-263.

. G. Nadathur and D. Miller, ‘An Overview of AProlog,”

Proceedings of the Fifth International Conference and
Symposium on Logic Programming, K. Bowen and R.
Kowalski, Eds., MIT Press, Cambridge, MA, 1988, pp.
810-827.

. R. Dietrich and F. Hagl, ‘A Polymorphic Type System

with Subtypes for Prolog,”” Proceedings of the 2nd
European Symposium on Programming: Lecture Notes in
Computer Science, Volume 300, Springer-Verlag, Berlin,
1988, pp. 79-93.

. . 10. M. Huber and I. Varsek, ‘““Extended Prolog for Order-
object-oriented approaches, the elements of a type are not Sorted Resolution,” Proceedings of the 4th IEEE
defined by enumerating them or by defining the constructors Symposium on Logic Programming, San Francisco, 1987,
generating them, but by giving a set of attributes pp- 34-45.

. . o . 11. M. Hanus, ‘“‘Horn Clause Specifications with Polymorphic
characterizing them. This yields a much more flexible type Types,” Dissertation, FB Informatik, Universitét
description method, since (for instance) adding an attribute Dortmund, Dortmund, Germany, 1988.

ot ; ; 12. G. Smolka, “‘Logic Programming over Polymorphically
to .an. already existing type should not mvahd'ftte any Order-Sorted Types,” Dissertation, FB Informatik,
existing program part. A term of such an attributed type Universitit Kaiserslautern, Kaiserslautern, Germany,
would consist of a list of attribute-value pairs (cf. [49]). 1989.
The design of an efficient abstract machine for such an 13. P. M. Hill and J. W. Lloyd, “The Gdel Report
. . (Preliminary Version),”” TR-91-02, Dept. of Computer
extended type concept is the subject of current research. Science, University of Bristol, Bristol, UK, March 1991.
14. C. Beierle, ““Types, Modules and Databases in the Logic
RT Personal Computer, PS/2, and AIX are registered Programming Language PROTOS-L,”” Sorts and Types for
trademarks, and RISC System/6000 is a trademark, of Artificial Intelligence. Proceedings of the Workshop,
International Business Machines Corporation. Eringerfeld, April 1989, K. H. Blasius, U. Hedtstlick, and
C.-R. Rollinger, Eds., Lecture Notes in Artificial
Acknowledgments Intelligence, Volume 418, Springer-Verlag, Berlin, 1990.
15. A. Martelli and U. Montanari, ‘““‘An Efficient Unification

For their contributions and support toward the
development and realization of the PROTOS-L system,

C. BEIERLE

Algorithm,”” ACM Trans. Programming Lang. & Syst. 4,
258-282 (1982).

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

. G. Smolka, ‘““TEL (Version 0.9), Report and User
Manvual,”” SEKI-Report SR 87-17, FB Informatik,
Universitit Kaiserslautern, Kaiserslautern, Germany,
1988.
C. Beierle, S. Béttcher, and G. Meyer, Draft Report of
the Logic Programming Language PROTOS-L, TWBS
Report 175, IBM Germany, Scientific Center, Institute for
Knowledge-Based Systems, Stuttgart, 1991.
J. A. Goguen, J. W. Thatcher, and E. G. Wagner, “An
Initial Algebra Approach to the Specification, Correctness
and Implementation of Abstract Data Types,”” Current
Trends in Programming Methodology IV: Data and
Structuring, R. Yeh, Ed., Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1978, pp. 80-144.
H. Ehrig and B. Mahr, ‘““Fundamentals of Algebraic
Specification 1—Equations and Initial Semantics,”” EATCS
Monographs on Theoretical Computer Science, Volume 6,
Springer-Verlag, Berlin, 1985.
A. Oberschelp, “Untersuchungen zur mehrsortigen
Quantorenlogik,”” Math. Ann. 145, 297-333 (1962).
J. A. Goguen, “Order Sorted Algebra,” Semantics and
Theory of Computation Report No. 14, University of
California, Los Angeles, 1978.
J. A. Goguen and J. Meseguer, ‘““Order-Sorted Algebra I:
Partial and Overloaded Operators, Errors and
Inheritance,” Technical Report, Computer Science
Laboratory, SRI International, Menlo Park, CA, 1987.
G. Smolka, W. Nutt, J. A. Goguen, and J. Meseguer,
““Order Sorted Equational Computation,” Resolution of
Equations irn Algebraic Structures, H. Ait-Kaci and M.
Nivat, Eds., Academic Press, Inc., New York, 1989.
K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J.
Meseguer, ““Principles of OBJ2,”” Proceedings of the 12th
ACM Conference on Principles of Programming
Languages, B. Reid, Ed., Association for Computing
Machinery, New York, 1985, pp. 52-66.
M. Gogolla, ““Uber partiell geordnete Sortenmengen und
deren Anwendung zur Fehlerbehandlung in abstrakten
Datentypen,”” Dissertation, Technische Universitit
Braunschweig, Braunschweig, Germany, 1986.
C. Walther, “A Many-Sorted Calculus Based on
Resolution and Paramodulation,” Research Notes in
Artifical Intelligence, Pitman, London, and Morgan
Kaufmann, Los Altos, CA, 1987.
C. Walther, ‘““Many-Sorted Unification,”” J. ACM 35, 1-17
(1988).
M. Schmidt-Schaub, ‘A Many-Sorted Calculus with
Polymorphic Functions Based on Resolution and
Paramodulation,”” Proceedings of the 9th International
Conference on Artificial Intelligence, Morgan Kaufmann,
Los Altos, CA, 1985, pp. 1162-1168.
R. Milner, ““A Theory of Type Polymorphism in
Programming,” J. Computer Syst. Sci. 17, 348-375 (1978).
L. Damas and R. Milner, ‘Principal Type-Schemes for
Functional Programs,” Proceedings of the 9th ACM
Symposium on Principles of Programming Languages,
1982, pp. 207-212.
L. Cardelli and P. Wegner, “On Understanding Types,
Data Abstraction and Polymorphism,”” ACM Comput.
Surv. 17, 471-522 (1985).
G. Dayantis, ‘““Types, Modules and Abstraction in Logic
Programming,”” Algebraic and Logic Programming, J.
Grabowski, P. Lescanne, and W. Wechler, Eds.,
Akademie-Verlag, Berlin, 1988, pp. 127-136.
M. Hanus, ““Horn Clause Programs with Polymorphic
Types: Semantics and Resolution,”” Theor. Comput. Sci.
(Netherlands) 89, 63-106 (1991).
. J. Siekmann, “Unification Theory,”” J. Symbolic
Computation 7, 207-274 (1989).

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

35. U. Waldmann, ““Unification in Order-Sorted Signatures,”

Forschungsbericht Nr. 298, FB Informatik, Universitat
Dortmund, Dortmund, Germany, 1989.

36. H. Ait-Kaci, Warren’s Abstract Machine: A Tutorial

37.

40.

41.

42.

43.

44,

45.

46.

Reconstruction, M.1.T. Press, Cambridge, MA, 1991.

H. J. Biirckert, ‘“‘Extending the WARREN Abstract

Machine to Many-Sorted Prolog,”” SEKI-Memo-85-07, FB

Informatik, Universitit Kaiserslautern, Kaiserslautern,

Germany, 1985.

. B. Miiller, ‘‘Design and Implementation of an Abstract
Machine for Order-Sorted Logic Programs,”” Studienarbeit
Nr. 711, Universitat Stuttgart und IBM Deutschland
GmbH, Stuttgart, Germany, October 1988 (in German).

. H. Semle, “Extension of an Abstract Machine for Order-

Sorted Prolog to Polymorphism,”” Diplomarbeit Nr. 583,

Universitit Stuttgart und IBM Deutschland GmbH,

Stuttgart, Germany, April 1989 (in German).

C. Beierle, G. Meyer, and H. Semle, “Extending the

Warren Abstract Machine to Polymorphic Order-Sorted

Resolution,” Logic Programming: Proceedings of the 1991

International Symposium, V. Saraswat and K. Ueda,

Eds., MIT Press, Cambridge, MA, pp. 272-286.

W. Nutt and G. Smolka, ‘“‘Implementing TEL,” SEKI-

Report, FB Informatik, Universitat Kaiserslautern,

Kaiserslautern, Germany, 1992, in preparation.

G. Meyer, “Rule Evaluation on Databases in the

PROTOS-L System,”” Diplomarbeit Nr. 630, Universitit

Stuttgart und IBM Deutschland GmbH, Stuttgart,

Germany, December 1989 (in German).

H. Jasper, ““A Logic-Based Programming Environment for

Interactive Applications,” Proceedings of Human

Computer Interaction International, Stuttgart, 1991.

C. Beierle, ‘“Knowledge Based PPS Applications in

PROTOS-L,” in Logic Programming in Action, Lecture

Notes in Artificial Intelligence, Vol. 636, G. Comyn, N. E.

Fuchs, and M. J. Ratcliffe, Eds., Springer-Verlag, Berlin,

1992.

C. Beierle and E. Borger, ““Correctness Proof for the

WAM with Types,”” Computer Science Logic—CSL™91, E.

Borger, H. Kleine Biining, G. Jager, and M. M. Richter,

Eds., Lecture Notes in Computer Science, Springer-

Verlag, Berlin, 1992 (in press).

E. Borger and D. Rosenzweig, ‘‘From Prolog Algebras

Towards WAM—A Mathematical Study of

Implementation,” Computer Science Logic, E. Borger, H.

Kleine Biining, M. M. Richter, and W. Schonfeld, Eds.,

Lecture Notes in Computer Science, Volume 533,

Springer-Verlag, Berlin, 1991, pp. 31-66.

47. E. Borger and D. Rosenzweig, “WAM Algebras—A

48.

49.

Mathematical Study of Implementation, Part 11,”” Russian
Conference on Logic Programming 91, Lecture Notes in
Computer Science, Springer-Verlag, 1992 (in press).

K. Kwon, G. Nadathur, and D. S. Wilson, “Implementing
Logic Programming Languages with Polymorphic Typing,”
Technical Report CS-1991-39, Duke University, Durham,
NC, October 1991.

H. Ait-Kaci and R. Nasr, “LOGIN: A Logic Programming
Language with Built-in Inheritance,”” J. Logic

Program. 3, 185-215 (1986).

Received November 20, 1990; accepted for publication
June 18, 1992

C. BEIERLE

389

390

Christoph Beierle IBM Germany Scientific Center
Heidelberg, Institute for Knowledge Based Systems, P.O. Box
80 08 80, D-7000 Stuttgart 80, Germany (BEIERLE at
DSOLILOG.BITNET). Dr. Beierle received a Diploma degree
in computer science from the University of Bonn in 1980.
From 1981 to 1986 he was a research associate at the
Universities of Bonn and Kaiserslautern, where he worked
primarily in the area of formal foundations of software
development and verification. In 1985, he received his Ph.D. in
computer science from the University of Kaiserslautern, with
a thesis on algebraic implementation techniques. From 1986 to
1987, he held an IBM Postdoctoral Fellowship in the LILOG
(Linguistic and Logic Methods) project at IBM Germany,
doing work on knowledge representation formalisms used for
natural-language processing. Since 1988 Dr. Beierle has been
with the Institute for Knowledge Based Systems of IBM
Germany. He is project leader for the international EUREKA
project PROTOS (Logic Programming Tools for Building
Expert Systems), in which advanced extensions of logic
programming are developed and applied to knowledge-based
planning applications. In 1991, Dr. Beierle received an IBM
Outstanding Innovation Award for his work on the PROTOS-L
system.

C. BEIERLE

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

