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This paper describes two logic programming
systems with the expressive power of full
clausal first-order logic and with a
nonmonotonic component. They provide a
direct generalization of pure Prolog and can be
implemented using the same technology as
Prolog processors. The inference engine of
both systems is based on the weak-model
elimination method which, in the case of the
second system, is extended to incorporate
defaults.

1. Introduction
This paper first addresses the foundations of a class of
logic programming systems that provide a direct
generalization of pure Prolog to cope with full first-order
logic and with nonmonotonic reasoning. Systems in this
class can be implemented using the same technology
as Prolog processors, as a consequence of the judicious
choice of a variation of weak-model elimination as the
basic refutation method and the adoption of defaults to
capture nonmonotonic reasoning. Then, the paper outlines
two specific systems that are completely operational.
More precisely, the first contribution of this paper
consists in defining an adaptation of weak-model

elimination (WME) [1] that is sound and complete with
respect to computing answers when the logic programs and
queries are expressed by sets of generic clauses. The
proofs of these two results are far more complex than the
corresponding results for SLD resolution (see [2]), the
basis of Prolog systems. The question of computing only
definite answers is also settled, using a new result
regarding refutations in WME. Such results provide the
foundations for a class of logic programming systems with
the expressive power of full first-order logic.

The second contribution of this paper is to adapt WME
as the underlying refutation method of default logic [3] for
the class of clausal defaults. Within this broader scope, the
notion of an answer to a query posed to a logic program
with defaults raises interesting questions that are briefly
discussed. Defaults provide a much more flexible
nonmonotonic formalism than negation by finite failure [4],
the treatment of negation commonly adopted to extend the
expressive power of lbgic programs and queries in Prolog.

Finally, this paper outlines two logic programming
systems, STORK and PENGUIN, whose foundations
follow from the results stated above. STORK is a full
clausal first-order system supporting classical negation as
well as negation by finite failure, whereas PENGUIN
extends STORK with clausal defaults to capture
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nonmonotonic reasoning. The paper also discusses some
extralogical facilities, which were carefully designed to
extend the meaning they have in Prolog, or to deal

with new programming issues arising in these logic
programming systems.

STORK and PENGUIN are both coded in Prolog and
are completely operational. The implementation started
with the familiar idea of building Prolog interpreters in
Prolog, adapted to the specific characteristics of model
elimination. The Prolog code suffered successive
optimizations until it achieved an adequate behavior in
terms of space and memory. By using this strategy, the
implementations could reuse all input-output and
workspace management extralogical predicates of Prolog,
among others.

A detailed account of the results reported here can be
found in Casanova et al. [5] and Guerreiro et al. [6]. The
logic programming systems are fully described in Silva
et al. {7]. An early implementation of the original weak-
model elimination method is described in Fleisig et al. [8],
and a more recent implementation proposal, using the
same principles as Prolog interpreters, is sketched in
Stickel [9] and Casanova and Walter [10]. Other attempts
to extend Prolog to the expressive level of full first-order
logic can be found in Lloyd and Topor [11], Aida et al.
{12], and Poole and Goebel [13]. A proposal for a
nonclausal system with many inference rules is described
in Bowen [14].

The organization of this paper is as follows. Section 2
first reviews the weak-model elimination method. It then
recalls default logic, concentrating on a special class of
defaults and using weak-model elimination as the
underlying refutation method. Section 3 introduces the
definitions of program, query, and answer. It centers on
the question of computing answers, using generic clauses,
and then incorporating defaults. Section 4 describes the
two logic programming systems, and Section 5 contains the
conclusions.

2. Preliminaries

8 Weak-model elimination

Weak-model elimination (WME) has several attractive
characteristics. First, it accepts as input sets of generic
clauses, that is, sets of clauses with an arbitrary number
of positive or negative literals. Moreover, WME is input-
linear, does not use factoring, and yet is refutationally
complete. To achieve completeness, the inference rules of
WME sometimes maintain the resolved literals within the
derived clauses and keep the literals (resolved or not)
ordered within a clause. To distinguish these extended
clauses from ordinary clauses, they will be called chains.
Moreover, resolved literals in a chain will be enclosed
within brackets.
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More precisely, a resolved literal (or an R-literal) is an
expression of the form [L], where L is a literal. An element
is a literal or an R-literal. An elementary chain is any
sequence of literals, and a chain is any sequence of
elements. The symbol (] will denote the empty chain,
which is elementary by definition. Each chain C
represents, by convention, the universal closure of the
disjunction of its literals, in the sense that any structure
for the first-order alphabet in question satisfies C if and only
if it satisfies the formula that C represents. Hence, the
R-literals of a chain do not influence its semantics. From
these definitions, it should be clear that elementary chains
and clauses are one and the same concept and will be used
interchangeably in this text.

The next definitions are basic for the inference rules of
the method and assume familiarity with the notion of
unification. In what follows, B'B” denotes the
concatenation of two chains B’ and B”, and |L| indicates
the atom of a literal L. Two literals L’ and L” can be
canceled by a substitution 0 if and only if 6 is a most
general unifier (mgu) of {|L’|, |L’[} and L'6 and L" are
complementary.

Let A’ be a chain and let A" be an elementary chain. Let
B be a renaming of the variables of A" such that A"8 has
variables distinct from those of A’. Let L’ be the ieftmost
element of A’, and suppose that L’ is a literal. A chain A is
an extension of A’ by A" (with mgu 6 and renaming B) if
and only if there exists a literal L” of A” and a substitution
# such that L' and L"8 can be canceled by 6 and A = B"B’,
where B” is the chain A”B¢ with the literal L"86 removed
and B’ is a chain A’@ with the literal L' replaced by [L'8].

Let A’ be a chain. Let L’ be the leftmost element of A’,
and suppose that L' is a literal. A chain A is a reduction of
A’ (with mgu 6) if and only if there exists an R-literal [M’]
of A’ and a substitution & such that L' and M’ can be
canceled by 6 and A is A’¢ with the literal L' removed.

A chain A is a contraction of a chain A’ if and only if A
is the chain obtained by removing from A’ all R-literals
that are to the left of the leftmost literal. If A has only
R-literals, the result becomes the empty chain.

A chain A is a full extension of A’ by A" if and only if A
is the contraction of an extension of A’ by A”. A chain A
is a full reduction of a chain A' if and only if A is the
contraction of a reduction of A'.

The weak-model elimination method works with the
class of all sets of first-order chains; it has no axioms and
two inference rules, full extension and full reduction,
defined as follows:

Full extension: If A’ and A" are chains and A is a full
extension of A’ by A", then derive A from
A’ and A",

Full reduction: If A’ is a chain and A is a full reduction of
A’, then derive A from A’.
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A WME deduction of a chain C from a set S of
elementary chains is any finite sequence of chains
E = (E, -, E,) such that C is the last chain of E, there is
i < nsuchthat E, ---, E, the prefix of E, consists of
chains in § and, for eachj € [i + 1, n], E, is derived from
EJ._T, the parent chain of Ej, by full reduction or full
extension, in the latter case using an auxiliary chain from
the prefix of E. The chain E, is called the initial chain of E.
A WME refutation from a set of elementary chains 8 is a
WME deduction of the empty chain from S.

The WME method defined above is slightly different
from the original version of Loveland [1], but the results
therein can be easily adapted to establish that WME is
refutationally sound and complete.

® Clausal default logic

In this section, we first adapt the basic definitions of
default logic [3] to a special class of normal defaults, called
clausal defaults. Then we present a variation of Reiter’s
default proof theory for clausal defaults which is based on
WME.

The clausal default is any expression of the form A:C,
where the prerequisite A of the default is a conjunction of
literals and the consequent C of the default is a clause. A
clausal default theory is a pair A = (D, P), where P is a
finite set of elementary chains and D is a finite set of
clausal defaults. We will denote by consequent(D) the set
of the consequents of all defaults in D. We also accept :C
as a clausal default.

The clausal default A:C should be understood as a
convenient way of expressing the open normal default
A:MF/F, in the notation of Reiter [3], where F is a
disjunction of the literals in the clause C. Therefore, since
we will limit ourselves to clausal defaults, we will be
concerned with a particular case of open normal defaults.

The semantics for clausal default theories follows from
the concept of extensions for open default theories. Then,
given a clausal default theory A = (D, P), a clausal default
A:C in D should be interpreted as a generator of the set of
defaults Ag:Cé, for all substitutions 8 of the variables in
A and C by terms of the Herbrand universe for the current
alphabet. The clausal default Ag:C@ therefore reads:

C6 can be assumed “‘by default” if the prerequisite Ag is
believed and C4 is consistent with the beliefs.

Let A = (D, P) be a clausal default theory and let Q
be a disjunction of conjunctions of literals. Let CL(—3Q)
denote a clausal representation of the negation of the
existential closure of Q. Intuitively, a refutation with
defaults from A and Q is a sequence of WME refutations
such that the first is a WME refutation from the chains in
PU CL(—3Q) U consequent(D) with initial chain in
CL(—3Q) and, after the first, each WME refutation
intends to refute the negation of the conjunction of the
prerequisites of the defaults used on the preceding WME
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refutation, with the appropriate substitutions, from the
chains in P U consequent(D) [but not in CL{—3Q)]. The
sequence should also satisfy a global consistency test,
verifying whether the use of the defaults is acceptable.

To record the substitutions affecting each use of each
default in each WME refutation in the sequence, we will
use default literals. This section then redefines the notion
of chain and the inference rules of WME to register such
substitutions. An indexed chain is a pair of the form
(C, N), where C is a chain and N is a set of literals. The
indexing of A = (D, P) is the set of pairs of the form
(C, @), where C, € P, or the form (C,, {§(X)}), for each
default A,:C, in D, where X, is a list of the variables
occurring in A; and C, and 8, is a new predicative symbol
whose arity is the length of X, called a default literal. The
indexing of Q consists of the set of pairs (G, ), where
C, € CL(—3Q). The default literal §,(X ) will record the
substitutions applied to the variables of the default A:C,.
But to effect this recording, the inference rules of WME
had to be modified, as we now describe.

An indexed chain (A, L) is a full indexed reduction of an
indexed chain (A’, L') if and only if A is a full reduction of
A’ with mgu 6 and L = L'6. An indexed chain (A, L) is a
full indexed extension of (A’, L') by an elementary indexed
chain (A", L") if and only if A is a full extension of A’ by
A’, with mgu 6 and renaming B of A", and L = L'6 U L"B6.

Let R be an indexed WME refutation from the chains in
the indexing of A and Q. Suppose that R terminates in
(O, S). A default ¢ is returned by R iff there is a pair
(C,, {8,(x,)}) in the indexing of A, corresponding to some
default A :C, in D, and there exists a literal of the form ()
in § such that ¢ is A 6:C,8 where 8 = {)'(i/T}.

Let A,:C, be a default in D and (C,, {8,(X)}) be the
corresponding pair in the indexing of A. This default is
fired in R iff there exists an indexed chain in R derived by
indexed full extension with (C, {8,(X)}) as auxiliary chain.
Then, each default A:C, fired in R, as well as each default
corresponding to a default literal in the initial chain of R,
if any, generates a descendent default in the set of defaults
returned by R.

A candidate WME refutation sequence with defaults
from A = (D, P) and Q is a finite sequence R =
Ry, ***, R) of indexed WME refutations such that

1. R, is an indexed WME refutation from the indexing of A
and the indexing of Q, with initial chain in indexing of Q.

2. For 0 =i =k, let D, be the set of defaults returned by
R; M be the set of default literals corresponding to the
defaults in D; D" be the set of defaults in D, which are
the descendents of the defaults fired in R;; and B, be the
chain representing the negation of the conjunction of
the prerequisites of all defaults in D”. Then,
(a) For 1 <i < k, R, must be an indexed WME

refutation, with initial chain {(B_,, M,_,)} from the 363

R. A. de T. GUERREIRO, A. S. HEMERLY, AND M. A. CASANOVA




364

.. program(a,fortran)
.- program(b,pascal) :
. program{(c;fortran) program(c,pascal)

. calls(@b)

. calls(b,c)

. —calls(x,y) depends(x,y)

. —calls(x,z) —depends(z,y) depends(x,y)

M

indexed chains in the indexing of A together with
the pair (B_,, M_,).
(b) DY = @.

i-12

A WME refutation sequence with defaults from A =
(D, P) and Q is a candidate WME refutation sequence
with defaults that satisfies the following additional
condition:

Consistency test Let C be the set of consequents of all
defaults occurring in D,. If P is satisfiable, there is a
substitution @ of the variables occurring in C by ground
terms of the Herbrand universe over the current alphabet
such that P U C@ is satisfiable.

It follows from the results in Reiter [3] and from the
soundness and completeness theorem for computing
definite answers (see ‘“Computing answers with WME”
below) that the WME method, adapted to account for
clausal defaults as described above, is refutationally
correct and complete.

When using the results in Reiter [3], one must, however,
take into account the following observations. Recall that
the class of top-down default proofs in [3] is defined as a
restriction of the class of admissible refutation sequences,
defined very similarly to our sequences. The restriction is
actually a test that relates the descendents of the defaults
fired in each refutation of an admissible refutation
sequence. In our definition of the WME refutation
sequence with defaults, this test can be ignored for the
following reasons.

First, recall that the test becomes necessary in two
cases: 1) when a derived clause is reused as an auxiliary
clause in one of the refutations in the sequence; 2) when
a refutation in the sequence uses more than once clauses
originating from the negation of the prerequisites of
the defaults fired in the previous refutation. However, in
our approach, the first case never holds because WME is
input-linear, and the second case can be avoided by the use
of clausal defaults. Indeed, the negation of the conjunction
of the prerequisites of the defaults fired in a refutation of a
WME refutation sequence with defaults maps into a single
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chain that can be viewed as a query. Hence, the second
case of the test reduces to computing definite answers to
this query, which we know how to do through the
variation of WME that is presented at the end of the
subsection on computing answers with WME and has been
directly incorporated into our definition of WME refutation
sequences with defaults [condition 2(a)].

3. Computing answers

o Programs, queries, and answers

Recall that a program P is a finite set of clauses and a
query Q is a disjunction of conjunctions of literals, that is,
a quantifier-free formula in disjunctive normal form. A
query is definite iff it is a single conjunction of literals;
otherwise it is indefinite.

An answer A to a query Q over a program P is either
False or a disjunction of instances of conjunctions in Q
over the alphabet of P and Q, that is, a disjunction of
conjunctions obtained from those in Q by substituting
variables by terms of the alphabet used to write P and Q.
An answer is definite iff it consists of a single conjunction;
otherwise it is indefinite [15].

An answer A to Q over P is correct iff P logically
implies VA, the universal closure of A. Finally, an answer
A to Q over P is more general than an answer B to @ over
P iff VA logically implies VB. We let False be an answer
simply because it will be the most general answer to any
query over an inconsistent program.

For example, the set of clauses shown in Box 1 is a
program, which we call DIC, in which clause 3 indicates
that ¢ is an ordinary program written in FORTRAN or
Pascal and clauses 6 and 7 indicate that x depends on y
if x calls y directly or transitively. The formula below is a
query, which we call DEP[a]:

(depends(a, x) A program(x,pascal)) V (depends(a, x)
/\ program(x,fortran)).

It asks for a program written in FORTRAN or Pascal on
which program a depends. An answer A to DEP[a] over
DIC would be

depends(a,b) A program(b,pascal).

Indeed, the conjunction in A is an instance of the first
conjunction in DEP[a]. It is in fact a correct answer
because DIC logically implies VA. A second correct
answer to DEP[a] over DIC would be

(depends(a,c) A program(c,fortran)) Vv
(depends(a,c) A program(c,pascal)).

Therefore, an indefinite query may have both indefinite
and definite answers.

As another example, the formula which follows is also a
query (call it Lang):
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program(c, x).

It asks for the language in which program ¢ is written. It
has only one correct answer, which is

program(c,fortran) \/ program(c,pascal).

Therefore, a definite query may have indefinite answers. It
is also possible that a definite query may have both
indefinite and definite answers.

A program with defaults is a pair A = (D, P), where
P is a finite set of elementary chains and D is a finite set of
clausal defaults. The definitions of query and answer are
not modified. The definition of correct answer is now
based on the concept of extensions of default theories, as
we shall see. We present here a simple example for
illustration.

For example, the set of clauses and defaults shown in
Box 2 is a program in which clause 4 represents the default
bird(y)-fly(y)fly(y), which means that ““if y is a bird and it
is consistent to assume that y flies, then y flies.”” The
formula fly(x) is a query for the program above. The
correct answer to this query is fly(canary).

® Computing answers with WME

Recall that CL(—3Q) denotes the clausal representation of
the negation of the existential closure of a query Q. Given
a WME refutation R from the elementary chains in a
program P and in CL(—3Q), it is possible to show that the
substitutions applied to the free variables of chains in
CL(—3Q) during the construction of R induce a correct
answer to Q over P. However, to recover such
substitutions is not exactly simple, because CL{—3Q) may
possibly contain more than one chain, and each of those
chains may be used more than once in R. This section
then introduces answer literals to register such
substitutions [16].

An activated chain is a pair of the form (C, L), where C
is a chain and L is a set of literals. The activation of P is
the set activate(P) consisting of the activated chains
(C, @), where C € P. The activation of a query Q of the
form Q, V -+ -V Q, is the set activate(Q) of activated
chains (~Q, {r(X)}), i =1,++<, n, where ~Q, by
convention, is the chain consisting of the complement of
the literals of Q,, X, is a list of the variables of Q, and r, is
a predicate symbol, not in the original alphabet, whose
arity is equal to the length of X,. The literal r(X,) is the
answer literal for Q, in the activation of Q.

The activation of a query Q therefore produces a clausal
representation of the negation of the existential closure of
Q, with each elementary chain annotated with an answer
literal whose function is to record the substitutions applied
to the variables of the chain. For that purpose, the
inference rules of WME and the notions of WME
deduction and WME refutation are also modified to
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3. —fly(penguin)
4. bird(y):fly(y)

1. bird(penguin)
2. bird{canary)

@

account for answer literals in a manner similar to that
described in Section 2 for default literals.

An answer A to Q over P is WME-computed if and only
if there is an activated WME refutation R from activate(P)
U activate(Q) such that either R terminates in ((J, &), in
which case A must be equal to False, or R terminates in
(0, L), with L # &, and A is a disjunction of all
conjuncts B such that there is (~Q, {r(X)}) €
activate(Q) and ri(T) € L such that B is equal to Q6,
where 8 = {X/t}.

The following example illustrates how the method
computes a definite answer to an indefinite query.
Consider again the program DIC and the query DEP[a]
introduced in Section 2. An activated WME refutation
from the set of chains in the activation of DIC and DEP[a]
is shown in Box 3. Hence, A = depends(a,b) A
program(b,pascal) is a WME-computed answer to
DEP[a] over DIC, since r,(b) in step 12 indicates
that b was substituted for the variable v of the chain in
step 9.

The WME method, modified as described above, is
sound and complete for computing answers in the
following sense:

Theorem 1 (Soundness and Completeness Theorem) [17]
Let P be a program and Q be a query.

(a) Every WME-computed answer to Q over P is correct.
(b) Given any correct answer A to Q over P, there is a
WME-computed answer which is more general than A.

We will conclude this section with another variation of
weak-model elimination that computes only definite
answers.

Let S be a set of activated elementary chains and T be a
subset of 8. We say that an activated WME refutation R
from S has initial support from T iff the initial activated
chain of R is in T and no activated chain in T is ever used
as an auxiliary chain in derivations in R.

Let Q be a query to a program P. An answer A to Q
over P is WME-computed with initial support from Q iff
there is an activated WME refutation R from activate(P)

U activate(Q), with initial support from activaze(Q),
that computes A. Note that, since just one chain from
activate(Q) is used in R, A is a definite answer. In fact, we

can prove the following. 365
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egram(a,fmtran), ﬁ)‘ L
ram(b,pascal), )

(pre
(calls(@b), §)

‘(—ﬁd‘ep'ends(‘a';’u)‘w 0
- (—depends(a,v) —p
10. (—calls(ay) {*ﬂdﬁpﬂ
11. (—program(b,pascal)
12. O, {r,(1) '

oo Non LW

ram(c,fort’r‘a r~:pmgvam(c,pascal) ¢)

(callsoe). ®)
(—calls(x,y) depend: ;), 9) -
~ (calls(x,z) —d ¥)s denmdS(x,y), ﬂ)

Theorem 2 (Soundness and Completeness Theorem for
Definite Answers) [17]
Let P be a program and Q be a query.

(a) Let A be an answer to Q over P that is WME-
computed with initial support from Q. Then, A is
definite and correct.

(b) Given any definite correct answer A to Q over P, there
is a definite answer B to Q over P such that B is
WME-computed with initial support from Q and B is
more general than A.

o Computing answers with clausal defaults

The computation of answers now combines two notions
described in preceding subsections: activation and
indexing. We show that the inference rules now work with
triples of the form (C, L, M), where C is a chain, L is a set
of answer literals for computing answers of a query,
following the description above, and M is a set of default
literals for monitoring the defaults used in a refutation, as
described in Section 2. Note that the answer literals record
all of the substitutions applied to variables of chains from
the query during the construction of each refutation in a
WME refutation sequence with defaults and in the
consistency test.

The definition of the WME refutation sequence with
defaults immediately induces the following notion of
computed answer. Let A = (D, P) be a program with
defaults and Q be a query to A. An answer A to Q over A
is WME-computed by defaults iff there exists a WME
refutation sequence with defaults R from the activation and
indexing of A and Q such that the last refutation in R
terminates with (], S, E); the consistency test for R uses
the substitution @; and either § = J, in which case E = &
and A must be equal to False, or § # J, and A is a
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disjunction of all conjuncts B such that there is (~Q,
{r(X)}, D) in the activation and indexing of Q and there is
r(f) € S such that B is equal to Qyf, where y = {X, ).

This definition is not reasonable, because it admits
answers with arbitrary instantiations, coming from the
substitution @ generated for the consistency test. On the
other hand, by the semantics itself of open defaults, it is
not possible to abandon such substitution under the risk of
invalidating the correctness of WME refutation sequences
with defaults. For example, let A = (D, P) be a program,
where D = {bird(y):fly(y)} and P = {bird(z), —fly(penguin),
—fly(ostrich), yellow(canary)}. Consider the query Q =
fly(x). Consider the WME refutation sequence with
defaults R = (R, R,), from A and Q, constructed as
follows. First, R, is an indexed and activated WME
refutation from the activation and indexing of A and Q
shown in Box 4.

Note that R, returns the default bird(x):fly(x). Hence,
R, must be an indexed and activated WME refutation from
the chains in the indexing and activation of A and the
chain representing the negation of the prerequisite of
bird(x):fly(x) (chain 1.2 in Box 5). Note that chain 1.2
carries on the set of answer literals and the set of default
literals from chain 0.3. This is necessary to correctly
compute answers.

By the definition of the WME refutation sequence with
defaults, we must also test the consistency of the set
E = {bird(z), —fly(penguin), —fly(ostrich), yellow(canary)}
U {fly(x)6} for some substitution 8 of x by a term of the
Herbrand universe of the alphabet in question. Indeed, by
taking 8 = {x/canary}, the set E becomes consistent.
Hence, fly(canary) is the answer WME-computed by the
refutation R, for this choice of 6.

Note that the choice of @ is entirely arbitrary. On the
other hand, it is not possible to ignore 6, since the set
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{bird( z), —fly(penguin), —fly(ostrich), yellow(canary)}
U {fly(x)} is not satisfiable. Intuitively, the default in D can
not be fired for a substitution of x by, for example, penguin.

To solve the above dilemma, we propose to always base
the consistency test on a class of substitutions that change
each variable by a new constant not appearing in P, D, and
Q, whose intuitive semantics would be ““the typical
individual such that. . ..”” In the current example, we
introduce the new constant p,, understood as ‘‘the typical
bird.”” Consider again the refutation with defaults R,
except that the substitution of the consistency test is now,
by definition, 8 = {x/p,}. Since, for this choice of 6, the
set {bird(z), —fly(penguin), —fly(ostrich), yellow(canary)}

U {fly(x)6} is consistent, we have that fly(p,) is the new
computed answer by the refutation R. Intuitively, this
answer indicates that “‘the typical bird”” flies. Note that the
introduction of p; is similar to the Skolemization of the
formula 3 x(fly( x)), except for the intuitive interpretation
of the Skolem constant introduced (i.e., the typical element).

In order to formalize these concepts, we first redefine
the answer to extend it to programs with defaults. An
answer A to a query Q over a program A = (D, P) is either
False or a disjunction of instances of conjunctions in Q
over the alphabet of A and Q, that is, a disjunction of
conjunctions obtained from those in Q by substituting
terms for variables over the alphabet in question.

We now formally define relativized answers and then
relativized answers computed by defaults. Let A = (D, P)
be a program with defaults and Q be a query to A. Let £
be the first-order language used.

We will work with relations in the Herbrand universe.
An answer A, relativized by a relation R on the Herbrand
universe of the alphabet in question, to the query Q over
the program A is either False or an expression of the form
A¥(R = K), where K is an answer to the query Q over the
program A and ¥ is a list of some of the variables of Q
with the same length as the arity of R. The variables in y
are called the connection variables. The intended meaning
of such an expression is “If & € R, then K{y/e}.”

An answer A to Q over A is correct iff there is an
extension E of A such that E logically implies VA. This
definition extends to relativized answers. A relativized
answer AY(R = K) to Q over A is correct iff, for every
element & of R, there is an extension E of A such that E
logically implies V(K{y/e}).

We say that a Herbrand structure H is a model for an
open formula F iff H is a model for VF. A Herbrand
structure H is a model for a relativized answer AY(R = K)
iff H is a model for K{y/&}, for each & € R.

Given two answers (respectively relativized answers) A
and A, to @ over A, we say that A, is more general than
A, iff every Herbrand model of A is also a model of A,.

Assume now that &£ contains an enumerable family of
constants. A relativized answer A to Q over A is computed
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(originating from A)
(originating from Q)
(extension of 0.2 by 0.1)

)

0.1 (fiy(»),8.{6(»)})
0.2 (—fly(x),{r(x)},9)
0.3 (O{rx)}1{6(x)p)

1.1 (bird(z),8,0)
1.2 (=bird(x); {re)}, {6(x))
13 @A)k 8(0)

{from A)
{from the negation of the prerequisite)
(extension of 1.2'by 1.1)

®)

by defaults iff there exists a candidate WME refutation
sequence with defaults (R,, - -+, R,) from the activation
and indexing of A and Q such that the last refutation in R,
ends in ((J, S, E), C is the set of consequents of all
defaults returned by R,, and either $ = (J, in which

case A must be equal to False, or § # (J and A is of

the form Ay(CONSIST[P, C] = K), where K is a
disjunction of all conjunctions B such that there is

(~Q, [r,(X)], A) in the activation and indexing of Q

and there is ri(T) € 8 such that B is equal to Q,y, where

y = {%/t}, and ¥ is the list of all variables in C. We define
CONSIST[P, C] as the relation in the Herbrand universe
of &£ as follows:

& € CONSIST[P, C] iff P U C{y/a} is consistent.

The intuitive semantics of AJ(CONSIST[P, C] = K) is
that ““for all tuples of terms & in the Herbrand universe,
if 8 € CONSISTI[P, C], then K{y/8} is an answer.”

Given a relativized answer AYy(CONSIST[P, C] = K),
computed by defaults, the tuples in CONSIST[P, C] are
called typical elements. Assume that CONSIST[P, C] has
arity n; then, the n-tuples over the Herbrand universe that
are not typical elements are called atypical elements.

Consider again our previous example, where P =
{bird( z), —fly(penguin), —fly(ostrich), yellow(canary)},

D = {bird(y):fiy(y)}, and Q = fly(x). The relativized
answer computed by defaults is A x(CONSIST]P, {fiy(x)}]
= fly(x)). Note that this relativized answer is more general
than, for example, fly(canary). Actually, for this relativized
answer, canary is a typical element and penguin is an
atypical element.

Theorem 3 (Soundness and Completeness Theorem for
Relativized Answers computed by defaults) [18]

Let & be the first-order logic language, A = (D, P) be a
program with defaults, and Q be a query to A. Assume

that £ contains an enumerable family of constants. 367
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. . ”* Program ROMAN - Y
. man(marcus). S
pompeian(marcus).
ruler{caesar).
.- tryassassinate(marcus;caesar).
. hate(marcus,otavio).
.- —pompeian(X) | roman(X). G
. —roman(Y) | loyalto(Y,caesar) | hate(Y, caesar).
. -loyalto(Z, f(2))
. —man(X) | —lryassassinate(X,Y) | memperor(Y) | loyalto(X,Y)

)

© W NP ORI N -

(a) Every relativized answer computed by defaults to Q
over A is correct.

(b) Given any correct answer to Q over A, there is a
relativized answer computed by defaults which is more
general.

Finally, we observe that the consistency test sanctioning a
refutation sequence with defaults can be implemented as a
test for the finite failure to refute the consequents, together
with the original set of clauses from the program.

4. A short description of two logic programming
systems

® The STORK system

STORK is a full first-order logic system supporting
classical negation as well as negation by finite failure, and
offering a collection of extralogical predicates, patterned
after those defined for Prolog, or designed to deal with
programming aspects arising only in general-clause logic
programming. STORK extends both the declarative and
the operational semantics of Prolog, including the
extralogical features, in such a way that a Prolog program
retains its original meaning in STORK.

Syntax of the basic STORK language
The definitions of a STORK atom, constant, variable,
term, and atomic formula or predicate are as for the basic
Prolog language. A STORK clause is a list of atomic
formulas, negated or not, separated by the symbol |. A
STORK program is a sequence of STORK clauses, each
one ending with a period (.). We also allow the inclusion of
comments in a STORK program between the delimiters /*
and */.

An admissible query is either a predicate or an
expression of the form (Q), =Q, P |Q, or P & Q,
where P and Q are admissible queries. A STORK query is
an admissible query followed by a period (.).

An answer is a disjunction of conjunctions originated
from the query by substitutions. The priority among the
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connectives maintains the following order, from the higher
to the lower weight: —, &, |. The programmer can use
“(” and )’ to modify this order.

Box 6 shows an example of a STORK program. For
instance, the intended meaning of clause 7 is that “If Y is
Roman, then either Y is loyal to Caesar or Y hates
Caesar,”” and that of clause 9 is ““If X is a man, X tries to
assassinate Y, and Y is an emperor, then X is not loyal to Y.”

A STORK query over the program ROMAN is

hate(marcus,X).
This query has two correct answers:

hate(marcus,otavio).
hate(marcus,caesar).

Operational semantics of the basic STORK language
This section introduces an operational semantics for the
STORK language by defining the STORK abstract
machine.

Given a STORK program P and a STORK query Q, the
machine initially maps the STORK program clauses into a
list of elementary chains. Then, the machine adds to the
end of this list the set of the chains originating from
CL(—3Q). The machine constructs, in pre-order, the set
of all refutation trees (based on WME) from these chains,
whose roots are the chains originating from CL(—3Q).

The machine will stop when it reaches a successful
branch, returning the correct answer corresponding to this
branch, or when all trees are built, when it returns Fail.
However, the machine may produce no answer if it
traverses an infinite branch.

The construction of each refutation tree observes the
following rules:

e The full-reduction rule is exhaustively applied before the
full-extension rule.
e In the application of the full-reduction rule, the R-literals
in the chain in question are selected from left to right.
e In the application of the full-extension rule,
« The entry chains are selected in the order in which
they appear in the program.
« The literals in each entry chain are selected from
left to right.

For example, let Q be the query hate(marcus,X) over
the program ROMAN. Note that the clausal representation
of the negated query generates only one activated chain,
(—hate(marcus,X), {r(x)}), where r(x) is the associated
answer literal. Then, the STORK machine will construct
just one WME refutation tree [see Box 7, in which atoms
are denoted by their initial letters, except for the predicate
man to distinguish it from marcus, and nodes are
numbered in the order they are generated]. Note that the
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1I (=h(m,x), {r(x)})

full ext. by 5
2 (@ {r))

full ext. by 6

full ext. by 2

full ext. by 9

full ext. by 1

full ext. by 4

full ext. by 3

4 (—wp(m)lhr(m)lll(m,05llﬁh(m.c)], {re))

5 (im,0)|[=h(m,c)l.{r(c)})

8 (—man(m)|—t(m,c)|—e(c)[[i(m,)][[—h(m,c)], {r(c)})
7 (=t(m,c)|—e()|li(m.c)ll[—o(m,c)], {re)}

8 (—e()|llm.c)ll[-o(m.c)], {rc)})

9 @ {rc})
@

full ext. by 7
3. (=r(m)|i(m,c)|[=h(m,c)), {rCe))

tree has two success branches. Therefore, the machine will
return the answer corresponding to the first success branch
detected, i.e., hate(marcus,otavio). If requested, the
machine will return the other correct answer,
hate(marcus,caesar).

Some extralogical facilities of STORK

STORK borrows several extralogical predicates directly
from Prolog, such as arithmetic predicates, comparison
predicates, input/output predicates, workspace
management predicates, and debugging predicates. In
particular, STORK has the metapredicate =%, for
negation by finite failure, the extralogical predicate cut,
and the metapredicate call, which in STORK also correctly
handles indefinite answers. But STORK also uses
extralogical predicates specially designed to deal with
programming aspects arising only in general-clause logic
programming. As an example of a new predicate, we have
the metapredicate @, which is similar to call, but
computes only definite answers. For reasons of brevity, we
discuss here only the cut and the call predicates,
establishing a parallel between them and the corresponding
Prolog predicates.
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The cut predicate  The extralogical predicate cut, denoted
/, is the main control predicate of the backtracking
operation. Cut behaves as a predicate which simply
succeeds on being called. However, if backtracking later
returns to the cut, the system discontinues the search in
the subtree whose root is the node immediately superior.
Thus, the cut causes the remainder of that subtree to be
pruned from the WME refutation tree.

Note that the effects, in a Prolog program and in the
corresponding STORK program, of the Prolog cut and the
STORK cut are similar. For example, consider the
following Prolog program and its corresponding STORK
program:

a</&b. a|/|—b.
a. a.

Then, considering the same goal (query) for both:

<a. a.
GOAL : <« a. Fail
OMS FAIL

The cut in the first clause blocks backtracking, the second
clause is not evaluated, and both machines return Fail.
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L 1 —p(b)
fll ext byl 'I full ext. by 1 ;
|  2pMia@il-plll -~ 7p0lab)i-pb)]
':ifll]l red ; full ext. by 2 full ext. ~By4“ o 'ft;il ext by 4
 3qBl-e®]  40@(-pO)  SaBi-pH]  8aW)-pw)
X o l mllexibys X
®

The processing of the STORK and Prolog machines is
in fact identical for Horn clause programs which do and do
not contain cut. However, in general, the STORK cut
possibly prunes more branches than the Prolog cut, simply
because the STORK machine has the option of applying
two distinct inference rules, full extension or full
reduction, and may select more than one literal to apply
them.

The next example illustrates how the STORK cut may
prune successful branches just because the strategy of the
STORK machine is to apply all possible reductions before
any extensions. Thus, as in Prolog, cut must be used
with care.

Consider the following program and query:

1. p) [ pX) | /] a(X).
2. —p(a).
3. —q(a).

and query: p(b). Its negation is
4, —p(b).

A refutation tree, not considering the cut, is shown in
Box 8. When the cut is taken into account, the successful
branch ending on node 5, and those to the right of it, are
not evaluated. Therefore, the STORK machine returns Fail
and skips the computation of a correct answer.

The call(C) predicate  The cali(C) predicate evaluates C
as a subquery. The argument C must be equivalent to a
conjunction of predicates when call(C) is actually
executed. More precisely, during the construction of a
tree, if the chain labeling node r is of the form

call(C) | L, | - 4| L,,, the STORK machine will call itself
recursively, having as arguments the original program and

R. A. de T. GUERREIRO, A. S. HEMERLY, AND M. A. CASANOVA

the query C. However, recall that STORK, unlike Prolog,
may compute an answer which is a disjunction, even if the
query is a simple conjunction. Hence, each answer to the
recursive call will have the generic form C6,| - <|(C6,, where
6., 1 < k = n, is the substitution applied to the conjunction
equivalent to C. Therefore, for each such answer, the
machine will generate a new descendent of n labeled with
L6, | L6, b6, |- Ly6,

For example, consider the following program:

q(@).

a(b).

p(@) | p().

Then,

addcl(q(a)).

Answer: addcl(q(a)).
addcl(q(b)).

Answer: addcl(q(b)).
addcl(p(a)|p(b)).

Answer: addcl(p(a) | p(b)).
call(p(X))&q(X).

Answer: call(p(a)) & q(a) | call(p(b)) & q(b).

Note that the argument of call has an indefinite answer; it
is p(a) | p(b).

® The PENGUIN system

The PENGUIN system extends STORK to support clausal
defaults. The refutation procedure for PENGUIN is based
on the method discussed in Section 3.

Syntax of the basic PENGUIN language

The basic PENGUIN alphabet consists of the basic
STORK alphabet augmented with the symbol T. The
special symbol : also has a specific function.
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The definitions of a PENGUIN atom, variable, term,
atomic formula, and clauses are taken directly from
STORK. The concept of a PENGUIN constant is
extended to incorporate the atoms Tn, where n is a
number. These atoms represent the typical constants and,
as shown in Section 3, cannot be used in programs or
queries, being introduced exclusively by the PENGUIN
machine.

A PENGUIN default is an expression of the form A:B,
where A is a conjunction of PENGUIN atomic formulas,
negated or not, and B is a PENGUIN clause. A
PENGUIN program is a finite sequence of PENGUIN
defaults and PENGUIN clauses, each one ending with a
period. A PENGUIN gquery is defined exactly as in
STORK. The priority among connectives and the notation
for comments are the same as in STORK.

For example, consider the facts “Anne is a student,”
““John is retired,”” ““If X is retired, then X does not work.”
Consider the default ““Generally, a student does not
work.”” The corresponding PENGUIN program is shown
in Box 9.

Operational semantics of the basic PENGUIN language
In many aspects, the operation of the PENGUIN machine
is very similar to the operation of the STORK machine,
described earlier. The strategy adopted by the STORK
machine to construct the refutation trees in pre-order is
also adopted by the PENGUIN machine, including the
order of application of the inference rules and the selection
function. A more detailed discussion of PENGUIN can be
found in Silva [19].

During the construction of a refutation tree, when the
PENGUIN machine finds a failure branch, it immediately
tries to fire the defaults. This mechanism does not ensure
that answers computed without defaults will be
preferentially returned.

The sequence of actions of the PENGUIN machine is
briefly described below:

1. Initially, given a PENGUIN program A = (D, P) and a
PENGUIN query Q, the machine maps the PENGUIN
program clauses directly into a list of indexed and
activated elementary chains followed by the set of
indexed and activated chains generated from CL(—3Q)
and the list of indexed and activated chains originated
from the consequents of the PENGUIN defaults.

Thus, the list of chains is composed of chains from
the program clauses, chains from the query, and
chains from the consequents of the defaults, in this
order.

2. The machine constructs a refutation tree whose root is
a chain generated from the query. When it finds a
successful node, the machine returns the set of defaults
used in this refutation. If this set is empty, the machine
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/* Program WORK - */
d,: student(Z):—work(Z).
p,: student(anne).
p,: retired(john).
p,: —retired(X)| —work(X).

©
1." (student(anne),#.d) . originating from p,
2. {retired(john),d,0) . originating from p,
3. (—retired(x)|—work(x),§,§) . originating from p,
4. (—work(z),8,{d, (@)} . ‘originating from d,
5. (—work(y).{r,(¥)},®) . originating from the
query
(10)

stops and the corresponding answer is shown. If the set
is not empty, the machine proceeds as follows.

3. The list of chains is now composed only of the chains
generated from the PENGUIN clauses followed by the
consequents of the PENGUIN defaults. From this list,
the machine constructs a refutation tree whose root and
initial support is the chain representing the negation of
the conjunction of prerequisites of all defaults fired in
the previous refutation. Note that this chain in the root
is not reused as an auxiliary chain. When it finds a
successful branch, the machine returns the set of
defaults fired in this refutation, calling itself recursively.
If this chain is empty, it is necessary to know whether
the refutation sequence is valid. Then, a consistency
test is performed, as discussed below. If the test
succeeds, a correct answer was computed and it is
returned.

4. If there is no successful branch or the consistency test
fails, the machine returns Fail, causing a backtracking
to step 3. After all branches of all possible refutation
trees have been tried and no answer is computed, a new
chain generated from the query is selected and the
process is restarted at step 1.

Observe that the theory corresponding to the program
clauses and the consequents of the defaults employed in
the refutation must be satisfiable.
The consistency test mentioned above is executed by
constructing a set of refutation trees. The roots of the trees
are the indexed and activated chains originated from
instances of the consequents, i.e., instances obtained by
substituting typical constants for variables. The test fails if 3N
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.i ('ﬂWOTk (Y) ${r1 (y)} ’¢)

LA Tree

| fullext.byd4

full ext. by 3 l -
(—retired(y)|[work(y)l, {r, ()}.9) 4 (@, {ry}d, 0
full ext. by 2 ‘ | ’
3 (@r,(john)}.B)
5 (student(y).{r, )14, 0
full ext. by 1 L
6 (0,{r, (anne)}{d, (anne)})
(1)

the machine finds some success branch and succeeds if all
branches of all trees are finite failure branches.

The machine can also produce no answer if it traverses
an infinite branch.

For example, let Q be the query —~work(X) over the
program WORK. The indexing and activation of the
program and the query results in the sequence shown in
Box 10.

The refutation trees are shown in Box 11. The query has
two correct answers. The machine will return the first
answer detected, i.e., —work(john), which does not use
defaults. If required, the machine will return the other
correct answer, —work(anne). To compute this last
answer, the machine performs the consistency test trying
to refute —work(anne) from chains 1, 2, and 3. Since no
such refutation is possible, the consistency test succeeds.

PENGUIN extralogical facilities

Defaults bring up new programming aspects, which
demand the special extralogical predicates incorporated in
PENGUIN. For brevity, we present here only the def,
calldef, and defanswer predicates.

The def(OP) predicate  The extralogical predicate
def(OP) operates as a switch which allows or prevents the
use of defaults in computing an answer to the query. If the
argument is on, the defaults may be used; if it is off, the
defaults are disregarded. If the argument is a variable, it
returns the current option, on or off. When a PENGUIN
session starts, the option is set to on. Note that different
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executions of calldef generate independent queries and,
thus, independent def(OP) settings.

The calldef(C) predicate  The calldef(C) predicate has a
semantics similar to that of the call(C) predicate. The
argument C is a conjunction of predicates and works as a
subquery. However, unlike the call(C) predicate, this
subquery may be proved, possibly by considering a
different extension of the theory, as a function of the
particular defaults corresponding to the program. Thus, the
calldef(C) isolates the defaults used.

For example, consider the program

true:a(X).
true:—a(X).

We can easily see that a(1) and —a(1) are correct answers
for this program, but they belong to different extensions.
Then,

a(1)&call(—a(1)).

Fail

a(1)&calldef(—a(1)).

Answer: a(1) & calldef( —a(1))

The defanswer(OP) predicate  The extralogical predicate
defanswer(OP) authorizes or prevents the printing of the
defaults used for computing an answer, depending whether
the argument OP is on or off. If the argument is a variable,
it will be instantiated with the current option of the
defanswer state. When a PENGUIN session starts, this
option is set to on.
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For example, consider again the same program

b(X).
b(X):a(X).

Then

a(X).

Answer: a(TO0)
defanswer{on)&a(X).

Answer:  defanswer(on) & a( T 1)
Defaults: (b(T 1) :a(T 1))

5. Conclusions

This paper has described the foundations of two logic
programming systems, STORK and PENGUIN, with the
expressive power of full first-order logic and with a
nonmonotonic component, which provide a direct
generalization of pure Prolog and can be implemented
using the same technology as Prolog processors.

The inference engine of STORK is based on a version of
the weak-model elimination method. This refutation
method offers an interesting alternative for the
construction of logic programming systems because it
accepts generic clauses, is input-linear, and does not use
factoring, but in spite of these characteristics, maintains
completeness. The search space can also be reduced by
filters that restrict the application of the inference rules.
The refutation procedure for PENGUIN is an extension of
weak-model elimination along the lines of Reiter’s default
logic. It implements the consistency test required by the
use of defaults through a strategy quite similar to that
adopted to implement negation by finite failure.

STORK and PENGUIN provide more expressive power
than Prolog. In particular, they enable the programmer to
use classical as well as finite failure negation, choosing the
one that best suits his application. Moreover, PENGUIN
also allows the representation of default information; that
is, it permits carrying on nonmonotonic reasoning using
defaults and, possibly, finite failure negation. STORK and
PENGUIN are both coded in Prolog and are completely
operational.
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