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This  paper  describes two logic  programming 
systems  with  the  expressive  power  of  full 
clausal  first-order  logic  and  with  a 
nonmonotonic  component.  They  provide a 
direct  generalization of pure  Prolog  and  can  be 
implemented  using  the  same  technology as 
Prolog  processors.  The  inference  engine  of 
both  systems  is  based  on  the  weak-model 
elimination  method  which, in the case  of the 
second  system, is  extended to incorporate 
defaults. 

1. Introduction 
This paper first addresses the foundations of a class of 
logic  programming systems that provide a direct 
generalization of pure Prolog to cope with  full first-order 
logic and with nonmonotonic reasoning. Systems in this 
class can be implemented using the same technology 
as Prolog processors, as a consequence of the judicious 
choice of a variation of weak-model  elimination as the 
basic refutation method and the adoption of defaults to 
capture nonmonotonic reasoning. Then, the paper outlines 
two specific systems that are completely operational. 

More precisely, the first contribution of this paper 
consists in  defining an adaptation of weak-model 

elimination  (WME) [l] that is sound and complete with 
respect to computing answers when the logic programs and 
queries are expressed by sets of generic clauses. The 
proofs of these two results are far more complex than the 
corresponding results for SLD resolution (see [2]), the 
basis of Prolog systems. The question of computing only 
definite answers is also settled, using a new result 
regarding refutations in WME. Such results provide the 
foundations .for a class of logic  programming systems with 
the expressive power of  full first-order logic. 

The second contribution of this paper is to adapt WME 
as the underlying refutation method of default logic [3] for 
the class of clausal defaults. Within this broader scope, the 
notion of an answer to a query posed to a logic  program 
with defaults raises interesting questions that are briefly 
discussed. Defaults provide a much  more  flexible 
nonmonotonic formalism than negation by finite failure [4], 
the treatment of negation commonly adopted to extend the 
expressive power of iogic programs and queries in  Prolog. 

Finally, this paper outlines two logic  programming 
systems, STORK and PENGUIN, whose foundations 
follow  from the results stated above. STORK is a full 
clausal first-order system supporting classical negation as 
well as negation by finite failure, whereas PENGUIN 
extends STORK with clausal defaults to capture 
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nonmonotonic reasoning. The paper also discusses some 
extralogical facilities, which were carefully designed to 
extend the meaning they have in  Prolog, or to deal 
with new  programming issues arising  in these logic 
programming systems. 

are completely operational. The implementation started 
with the familiar  idea of building  Prolog interpreters in 
Prolog, adapted to the specific characteristics of model 
elimination. The Prolog code suffered successive 
optimizations until  it achieved an adequate behavior in 
terms of space and memory. By using this strategy, the 
implementations could reuse all input-output and 
workspace management extralogical predicates of Prolog, 
among others. 

A detailed account of the results reported here can be 
found in Casanova et al. [5] and Guerreiro et al. [6]. The 
logic  programming systems are fully described in Silva 
et al. [7]. An early implementation of the original weak- 
model  elimination method is described in  Fleisig et al. [8], 
and a more recent implementation proposal, using the 
same principles as Prolog interpreters, is sketched in 
Stickel [9] and Casanova and Walter [lo]. Other attempts 
to extend Prolog to the expressive level of  full first-order 
logic can be found in Lloyd and Topor [ll], Aida et al. 
[12], and Poole and Goebel [13]. A proposal for a 
nonclausal system with many inference rules is described 
in  Bowen [14]. 

The organization of this paper is as follows. Section 2 
first reviews the weak-model elimination method. It then 
recalls default logic, concentrating on a special class of 
defaults and using weak-model elimination as the 
underlying refutation method. Section 3 introduces the 
definitions of program, query, and answer. It centers on 
the question of computing answers, using generic clauses, 
and then incorporating defaults. Section 4 describes the 
two logic  programming systems, and Section 5 contains the 
conclusions. 

S,TORK and PENGUIN  are both coded in Prolog and 

2. Preliminaries 

Weak-model elimination 
Weak-model  elimination (WME) has several attractive 
characteristics. First, it accepts  as input sets of generic 
clauses, that is, sets of clauses with an arbitrary number 
of positive or negative literals. Moreover, WME is input- 
linear, does not use factoring, and yet is refutationally 
complete. To achieve completeness, the inference rules of 
WME sometimes maintain the resolved literals within the 
derived clauses and keep the literals (resolved or not) 
ordered within a clause. To distinguish these extended 
clauses from ordinary clauses, they will be called chains. 
Moreover, resolved literals in a chain will be enclosed 
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More precisely, a resolved literal (or an R-literal) is an 
expression of the form [L], where L is a literal. An element 
is a literal or an R-literal. An elementary chain is any 
sequence of literals, and a chain is any sequence of 
elements. The symbol 0 will denote the empty chain, 
which is elementary by definition. Each chain C 
represents, by convention, the universal closure of the 
disjunction of its literals, in the sense that any structure 
for  the  first-order  alphabet in question  satisfies C if and  only 
if it  satisfies the formula that C represents. Hence, the 
R-literals of a chain do not  influence its semantics.  From 
these definitions,  it  should be clear  that  elementary  chains 
and clauses are one  and the same concept  and  will be used 
interchangeably in this  text. 

The next definitions are basic for the inference rules of 
the method and assume familiarity with the notion of 
unification.  In what follows, B ' B  denotes the 
concatenation of two chains B' and B", and 1Ll indicates 
the atom of a literal L. Two literals L' and L" can be 
canceled by a substitution 0 if and only if 0 is a most 
general unifier  (mgu) of {IL'I, ICl} and L'O and L"0 are 
complementary. 

p be a renaming of the variables of A" such that A"p has 
variables distinct from those of A'. Let L' be the leftmost 
element of A', and suppose that L' is a literal. A chain A is 
an extension of A' by A" (with mgu 0 and renaming p) if 
and only if there exists a literal L" of A" and a substitution 
B such that L' and L"p can be canceled by 0 and A = BB', 
where B is the chain A"p0 with the literal L"p0 removed 
and B' is a chain A'B with the literal L'O replaced by [L'O]. 

Let A' be a chain. Let L' be the leftmost element of A', 
and suppose that L' is a literal. A chain A is a reduction of 
A' (with mgu 0) if and only if there exists an R-literal [M'] 
of A' and a substitution 0 such that L' and M' can be 
canceled by 0 and A is A'B with the literal L'O removed. 

is the chain obtained by removing  from A' all R-literals 
that are to the left of the leftmost literal. If A has only 
R-literals, the result becomes the empty chain. 

is the contraction of an extension of A' by A. A chain A 
is afull reduction of a chain A' if and only if A is the 
contraction of a reduction of A'. 

The weak-model elimination method works with the 
class of  all sets of first-order chains; it has no axioms and 
two inference rules, full extension and full reduction, 
defined as follows: 

Full extension: If A' and A" are chains and A is a full 

Let A' be a chain and let A" be an elementary chain. Let 

A chain A is a contraction of a chain A' if and only if A 

A chain A is a full  extension of A' by A" if and only if A 

extension of A' by A", then derive A from 
A' and A". 

Full reduction: If A' is a chain and A is a full reduction of 
A', then derive A from A'. 
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A W E  deduction of a chain C from a set S of 
elementary chains is any finite sequence of chains 
E = (E,, * * e  , E,,) such that C is the last  chain of E, there is 
i 5 n such that E,, . - , Ei, theprefi of E, consists of 
chains in S and, for each j E [i + 1, n], Ej is derived from 
Ei-,, the parent chain of Ej, by full reduction or full 
extension, in the latter case using an auxiliary  chain from 
the prefix of E. The chain Ei is called the initial  chain of E. 
A W E  refutation from a set of elementary chains S is a 
WME deduction of the empty chain from S. 

The WME method defined above is slightly different 
from the original version of Loveland [l], but the results 
therein can be easily adapted to establish that WME is 
refutationally sound and complete. 

Clausal  default logic 
In this section, we  first adapt the basic definitions of 
default logic [3] to a special class of normal defaults, called 
clausal defaults. Then we present a variation of Reiter’s 
default proof theory for clausal defaults which is based on 
WME. 

The clausal default is any expression of the form A:C, 
where theprerequisite A of the default is a conjunction of 
literals and the consequent C of the default is a clause. A 
clausal  default theory is a pair A = (D, P), where P is a 
finite set of elementary chains and D is a finite set of 
clausal defaults. We  will denote by consequent(D) the set 
of the consequents of  all defaults in D. We also accept :C 
as a clausal default. 

The clausal default A:C should be understood as a 
convenient way of expressing the open normal default 
A W / F ,  in the notation of Reiter [3], where F is a 
disjunction of the literals in the clause C. Therefore, since 
we  will  limit ourselves to clausal defaults, we  will be 
concerned with a particular case of open normal defaults. 

The semantics for clausal default theories follows  from 
the concept of extensions for open default theories. Then, 
given a clausal default theory A = (D, P), a clausal default 
A:C in D should be interpreted as a generator of the set of 
defaults AB:CB, for all substitutions B of the variables in 
A and C by terms of the Herbrand universe for the current 
alphabet. The clausal default AB:CB therefore reads: 
CB can be assumed “by default” if the prerequisite AB is 
believed  and CB is consistent with the beliefs. 

Let A = (D, P) be a clausal default theory and  let Q 
be a disjunction of conjunctions of literals. Let C L ( 4 Q )  
denote a clausal representation of the negation of the 
existential closure of Q. Intuitively, a refutation with 
defaults from A and Q is a sequence of WME refutations 
such that the first is a WME refutation from the chains in 
P U C L ( l 3 Q )  U consequent(D) with initial chain in 
C L ( l 3 Q )  and, after the first, each WME refutation 
intends to refute the negation of the conjunction of the 
prerequisites of the defaults used on the preceding WME 
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refutation, with the appropriate substitutions, from the 
chains in P U consequent(D) [but not in CL(13Q)I.  The 
sequence should also satisfy a global consistency test, 
verifymg whether the use of the defaults is acceptable. 

To record the substitutions affecting each use of each 
default in each WME refutation in the sequence, we  will 
use default literals. This section then redefines the notion 
of chain and the inference rules of WME to register such 
substitutions. An indexed  chain is a pair of the form 
(C, N), where C is a chain and N is a set of literals. The 
indexing of A = (D, P) is the set of pairs of the form 
(Ci, la), where Ci E P, or the form (Ci, {Si($)}), for each 
default Ai:Ci in D, where R i  is a list of the variables 
occurring in Ai  and Ci and S i  is a new predicative symbol 
whose arity is the length of R i, called a default literal. The 
indexing of Q consists of the set of pairs (Ci, a), where 
Ci E C L ( 4 Q ) .  The default literal Si(Zi) will record the 
substitutions applied to the variables of the default Ai:Ci. 
But to effect this recording, the inference rules of WME 
had to be modified, as we  now describe. 

An indexed chain (A, L) is afull indexed reduction of an 
indexed chain (A’, L’) if and only if A is a full reduction of 
A’ with mgu 0 and L = L’B. An indexed chain (A, L) is a 
full indexed  extension of (A’, L‘) by an elementary indexed 
chain (A“, L”) if and only if A is a full extension of A’ by 
A“, with mgu 0 and renaming p of A”, and L = L’O U Lpe. 

Let R be an indexed WME refutation from the chains in 
the indexing of A and Q. Suppose that R terminates in 
(0, S). A default + is returned by R iff there is a pair 
(Ci, {Si&)}) in the indexing of A, corresponding to some 
default Ai:Ci in D, and there exists a literal of the form SiF) 
in S such that + is A iB:CiO where B = {RiE}. 

Let Ai:Ci be a default in D and (Ci, {Si(Xi)}) be the 
corresponding pair  in the indexing of A. This default is 
fired in R iff there exists an indexed chain in R derived by 
indexed full extension with (Ci, {Si($)}) as auxiliary chain. 
Then, each default Ai:Ci fired  in R ,  as well as each default 
corresponding to a default literal in the initial chain of R ,  
if any, generates a descendent default in the set of defaults 
returned by R .  

from A = (D, P) and Q is a finite sequence R = 
(Ro, , R,) of indexed WME refutations such that 

1. R,, is  an  indexed WME refutation  from the indexing  of A 
and the indexing  of Q, with  initial  chain  in  indexing of Q. 

2. For 0 5 i 5 k, let Di be the set of defaults returned by 
Ri; Mi be the set of default literals corresponding to the 
defaults in Di; D“’ be the set of defaults in Di which are 
the descendents of the defaults fired  in Ri; and Bi be the 
chain representing the negation of the conjunction of 
the prerequisites of  all defaults in D“’. Then, 
(a)  For 1 5 i 5 k, Ri must be an indexed WME 

A candidate W E  refutation sequence with defaults 

refutation, with  initial chain {(Bi-,, Mi-,)} from the 363 
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indexed chains in the indexing of A together with 
the pair (Bi-,, Mi-,). 

(b) D(k) = 0. 

A W E  refutation sequence with defaults from A = 
(D, P) and Q is a candidate WME refutation sequence 
with defaults that satisfies the following additional 
condition: 

Consistency test Let C be the set of consequents of  all 
defaults occurring in Dk. If P is satisfiable, there is a 
substitution 0 of the variables occurring in C by ground 
terms of the Herbrand universe over the current alphabet 
such that P U CO is satisfiable. 

It follows from the results in Reiter [3] and  from the 
soundness and completeness theorem for computing 
definite answers (see “Computing answers with WME” 
below) that the WME method, adapted to account for 
clausal defaults as described above, is refutationally 
correct and complete. 

take into account the following observations. Recall that 
the class of top-down default proofs in  [3] is defined as a 
restriction of the class of admissible refutation sequences, 
defined very similarly to our sequences. The restriction is 
actually a test that relates the descendents of the defaults 
fired  in each refutation of an admissible refutation 
sequence. In our definition of the WME refutation 
sequence with defaults, this test can be ignored for the 
following reasons. 

First, recall that the test becomes necessary in two 
cases: 1) when a derived clause is reused as an auxiliary 
clause in one of the refutations in the sequence; 2) when 
a refutation in the sequence uses more than once clauses 
originating from the negation of the prerequisites of 
the defaults fired  in the previous refutation. However, in 
our approach, the first case never holds because WME is 
input-linear,  and the second case can be avoided by the use 
of clausal defaults. Indeed, the negation of the conjunction 
of the prerequisites of the defaults fired  in a refutation of a 

364 WME refutation sequence with defaults maps into a single 

When using the results in Reiter [3], one must, however, 

chain that can be viewed as a query. Hence, the second 
case of the  test reduces to computing definite answers to 
this query, which we  know  how to do through the 
variation of WME that is presented at the end of the 
subsection on computing answers with WME and has been 
directly incorporated into our definition of WME refutation 
sequences with defaults [condition 2(a)]. 

3. Computing answers 

Programs, queries, and answers 
Recall that aprogram P is a finite set of clauses and a 
query Q is a disjunction of conjunctions of literals, that is, 
a quantifier-free formula  in disjunctive normal form. A 
query is definite iff it is a single conjunction of literals; 
otherwise it is indefinite. 

False or a disjunction of instances of conjunctions in Q 
over the alphabet of P and Q, that is, a disjunction of 
conjunctions obtained from those in Q by substituting 
variables by terms of the alphabet used to write P and Q. 
An answer is definite iff it consists of a single conjunction; 
otherwise it  is indefinite [15]. 

implies VA, the universal closure of A. Finally, an answer 
A to Q over P is more general than an answer B to Q over 
P iff VA logically  implies VB. We let False be an answer 
simply because it  will be the most general answer to any 
query over an inconsistent program. 

For example, the set of clauses shown in Box 1 is a 
program, which we call DIC, in which clause 3 indicates 
that c is  an ordinary program written in FORTRAN or 
Pascal and clauses 6 and 7 indicate that x depends on y 
if x calls y directly or transitively. The formula  below is a 
query, which we call DEP[a]: 

(depends(a,x) A program(x,pascal)) V (depends(a,x) 

An answer A to a query Q over a program P is either 

An answer A to Q over P is correct iff P logically 

A program(x,fortran)). 

It asks for a program written in FORTRAN or Pascal on 
which program a depends. An answer A to DEP[al over 
DIC would be 

depends(a,b) A program(b,pascal). 

Indeed, the conjunction in A is an instance of the first 
conjunction in DEP[a]. It is  in fact a correct answer 
because DIC logically  implies VA. A second correct 
answer to DEP[a] over DIC would be 

(depends(a,c) A program(c,fortran)) V 
(depends(a,c) A program(c,pascal)). 

Therefore, an  indefinite query may have both indefinite 
and definite answers. 

As another example, the formula which follows is also a 
query (call it Lang): 
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program(c,x). 

It asks for the language in which program c is written. It 
has only one correct answer, which is 

program(c,fortran) V program(c,pascal). 

Therefore, a definite query may have indefinite answers. It 
is also possible that a definite query may have both 
indefinite  and  definite answers. 

Aprogram with defaults is a pair A = (D, P ) ,  where 
P is a finite set of elementary chains and D is a finite set of 
clausal defaults. The definitions of query and answer are 
not  modified. The definition of correct answer is now 
based on the concept of extensions of default theories, as 
we shall see. We present here a simple example for 
illustration. 

For example, the set of clauses and defaults shown in 
Box 2 is a program  in which clause 4 represents the default 
bird(y):fly(y)/fly(y), which means that “ify is a bird  and  it 
is consistent to assume that y flies, then y flies.” The 
formula fly(x) is a query for the program above. The 
correct answer to this query is Ry(canary). 

Computing answers with W E  
Recall that CL(73Q)  denotes the clausal representation of 
the negation of the existential closure of a query Q. Given 
a WME refutation R from the elementary chains in a 
program P and in CL(73Q) ,  it is possible to show that the 
substitutions applied to the free variables of chains in 
C L ( 4 Q )  during the construction of R induce a correct 
answer to Q over P .  However, to recover such 
substitutions is  not exactly simple, because C L ( l 3 Q )  may 
possibly contain more than one chain, and each of those 
chains may be used  more than once in R .  This section 
then introduces answer literals to register such 
substitutions [16]. 

is a chain and L is a set of literals. The activation of P is 
the set activate(P) consisting of the activated chains 
(C, 0), where C E P. The activation of a query Q of the 
form Q, V - V Qn is the set activate(Q) of activated 
chains (-Qi, {ripi)}), i = 1, , n, where -Qi, by 
convention, is the chain consisting of the complement of 
the literals of Qi, R i  is a list of the variables of Qi, and ri is 
a predicate symbol, not in the original alphabet, whose 
arity is equal to the length of R i .  The literal ri(Ri) is the 
answer literal for Qi in the activation of Q. 

representation of the negation of the existential closure of 
Q, with each elementary chain annotated with an answer 
literal whose function is to record the substitutions applied 
to the variables of the chain. For that purpose, the 
inference rules of  WME and the notions of WME 
deduction and  WME refutation are also modified to 

An activated chain is a pair of the form (C, L), where C 

The activation of a query Q therefore produces a clausal 
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account for answer literals in a manner similar to that 
described in Section 2 for default literals. 

An answer A to Q over P is WVE-computed if and only 
if there is an activated WME refutation R from activate(P) 
U activate(Q) such that either R terminates in (0, 0), in 
which case A must be equal to False, or R terminates in 
(0, L), with L f 0, and A is a disjunction of all 
conjuncts B such that there is (-Qi, {ri(q)}) E 
activate(Q) and ri@) E L such that B is equal to Q,@, 
where 0 = {Tjt}. 

The following example illustrates how the method 
computes a definite answer to an indefinite query. 
Consider again the program DIC and the query DEP[a] 
introduced in Section 2. An activated WME refutation 
from the set of chains in the activation of DIC and DEP[a] 
is shown in Box 3. Hence, A = depends(a,b) A 
program(b,pascal) is a WME-computed answer to 
DEP[a] over DIC, since r,(b) in step 12 indicates 
that b was substituted for the variable v of the chain in 
step 9. 

sound and complete for computing answers in the 
following sense: 

The WME method, modified as described above, is 

Theorem 1 (Soundness and Completeness Theorem) 11 71 
Let P be a program and Q be a query. 

(a)  Every WE-computed answer to Q over P is correct. 
(b) Given any correct answer A to Q over P ,  there is a 

WME-computed answer which is more general than A. 

We  will conclude this section with another variation of 
weak-model elimination that computes only definite 
answers. 

Let S be a set of activated elementary chains and T be a 
subset of S. We say that an activated WME refutation R 
from S has initial support from T iff the initial activated 
chain of R is in T and no activated chain in T is ever used 
as an auxiliary chain in derivations in R .  

Let Q be a query to a program P .  An answer A to Q 
over P is WVE-computed with  initial supportfrom Q iff 
there is  an activated WME refutation R from activate(P) 
U activate(Q), with initial support from activate(Q), 
that computes A. Note that, since just  one chain from 
activate(Q) is used in R ,  A is a definite answer. In fact, we 
can prove the following. 
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Theorem 2 (Soundness and Completeness Theorem for 
Definite Answers) [I 71 
Let P be a program  and Q be a query. 

(a) Let A be an answer to Q over P that is  WME- 
computed with  initial support from Q. Then, A is 
definite and correct. 

(b) Given any definite correct answer A to Q over P, there 
is a definite answer B to Q over P such that B is 
WME-computed  with  initial support from Q and B is 
more general than A. 

Computing answers with clausal defaults 
The computation of answers now combines two notions 
described in preceding subsections: activation and 
indexing.  We show that the inference rules now work with 
triples of the form (C, L, M), where C is a chain, L is a set 
of answer literals for computing answers of a query, 
following the description above, and M is a set of default 
literals for monitoring the defaults used in a refutation, as 
described in Section 2. Note that the answer literals record 
all  of the substitutions applied to variables of chains from 
the query during the construction of each refutation in a 
WME refutation sequence with defaults and in the 
consistency test. 

defaults immediately induces the following notion of 
computed answer. Let A = (D, P) be a program  with 
defaults and Q be a query to A. An answer A to Q over A 
is W34E-computed by defaults iff there exists a WME 
refutation sequence with defaults R from the activation and 
indexing of A and Q such that the last refutation in R 
terminates with (0, S, E); the consistency test for R uses 
the substitution 8; and either S = 0, in which case E = 0 

The definition of the WME refutation sequence with 

366 and A must be equal to False, or S f 0, and A is a 

disjunction of all conjuncts B such that there is (-Qi, 
{r&Ri)}, 0) in the activation and indexing of Q and there is 
ri(t) E S such that B is equal to QiyO, where y = {RiK}. 

This definition  is not reasonable, because it admits 
answers with arbitrary instantiations, coming  from the 
substitution 0 generated for the consistency test. On the 
other hand, by the semantics itself of open defaults, it  is 
not possible to abandon such substitution under the risk of 
invalidating the correctness of  WME refutation sequences 
with defaults. For example, let A = (D, P) be a program, 
where D = {bird(y):Ry(y)} and P = {bird(z),  7fly(penguin), 
lfly(ostrich),  yellow(canary)}. Consider the query Q = 
fly(x). Consider the WME refutation sequence with 
defaults R = (R,, R , ) ,  from A and Q, constructed as 
follows. First, R, is  an indexed and activated WME 
refutation from the activation and indexing of A and Q 
shown in Box 4. 

Note that R, returns the default bird(x):Ry(x). Hence, 
R, must be an indexed and activated WME refutation from 
the chains in the indexing and activation of A and the 
chain representing the negation of the prerequisite of 
bird(x):fly(x) (chain 1.2 in Box 5). Note that chain 1.2 
carries on the set of answer literals and the set of default 
literals from chain 0.3. This is necessary to correctly 
compute answers. 

By the definition of the WME refutation sequence with 
defaults, we must also test the consistency of the set 
E = {bird(z),  7fly(penguin), lfly(ostrich),  yellow(canary)} 
U {fly( x)0} for some substitution 0 of x by a term of the 
Herbrand universe of the alphabet in question. Indeed, by 
taking 0 = {x/canary}, the set E becomes consistent. 
Hence, fly(canaty) is the answer WME-computed by the 
refutation R ,  for this choice of 0. 

Note that the choice of 0 is entirely arbitray. On the 
other hand, it is not possible to ignore 0, since the set 
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{bird(z), lfly(penguin), lfly(ostrich), yellow(canary)} 
U {fly&)} is not satisfiable. Intuitively, the default in D can 
not be fired  for a substitution of x by,  for  example, penguin. 

To solve the above dilemma, we propose to always base 
the consistency test on a class of substitutions that change 
each variable by a new constant not appearing in P, D, and 
Q, whose intuitive semantics would be “the typical 
individual such that. . . .” In the current example, we 
introduce the new constant po, understood as  “the typical 
bird.” Consider again the refutation with defaults R ,  
except that the substitution of the consistency test is  now, 
by definition, 0 = {dp,,}. Since, for this choice of 0, the 
set {bird(z), lfly(penguin), lfly(ostrich),  yellow(canary)} 
U {fly(x)B} is consistent, we have that fly(p,) is the new 
computed answer by the refutation R .  Intuitively, this 
answer indicates that “the typical bird” flies. Note that the 
introduction of po is similar to the Skolemization of the 
formula 3 x(fly( x) ) ,  except for the intuitive interpretation 
of the  Skolem constant introduced (i.e., the typical  element). 

In order to formalize these concepts, we first  redefine 
the answer to extend it to programs with defaults. An 
answer A to a query Q over a program A = (D, P) is either 
False or a disjunction of instances of conjunctions in Q 
over the alphabet of A and Q, that is, a disjunction of 
conjunctions obtained from those in Q by substituting 
terms for variables over the alphabet in question. 

We  now formally define relativized answers and then 
relativized answers computed by defaults. Let A = (D, P) 
be a program  with defaults and Q be a query to A. Let 2 
be the first-order language used. 

We  will work with relations in the Herbrand universe. 
An answer A, relativized by a relation R on the Herbrand 
universe of the alphabet in question, to the query Q over 
the program A is either False or an expression of the form 
AV(R 3 K), where K is  an answer to the query Q over the 
program A and 9 is a list of some of the variables of Q 
with the same length as the arity of R. The variables in 7 
are called the connection  variables. The intended meaning 
of such an expression is “If B E R, then K{jVB}.” 

An answer A to Q over A is correct iff there is an 
extension E of A such that E logically  implies VA. This 
definition extends to relativized answers. A relativized 
answer AV(R 3 K) to Q over A is correct iff, for every 
element B of R, there is an extension E of A such that E 
logically  implies V(K{V/B}). 

We say that a Herbrand structure H is a model for an 
open formula F iff H is a model for VF. A Herbrand 
structure H is a model for a relativized answer AV(R 3 K) 
iff H is a model for K{Y/G}, for each 6 E R. 

Given two answers (respectively relativized answers) A, 
and A, to Q over A, we say that A, is more  general  than 
A, iff every Herbrand model of A, is also a model of A,. 

Assume now that 2 contains an enumerable family of 
constants. A relativized  answer A to Q over A is computed 
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by defaults iff there exists a candidate WME refutation 
sequence with defaults (R1, * , R,) from the activation 
and  indexing of A and Q such that the last refutation in R,  
ends in (0, S, E), C is the set of consequents of all 
defaults returned by R,, and either S = 0, in which 
case A must be equal to False, or S f 0 and A is of 
the form  AV(CONSIST[P, C] 3 K), where K is a 
disjunction of all conjunctions 6 such that there is 
(-Qi, [ri(T)], A) in the activation and indexing of Q 
and there is ri& E S such that B is equal to Qiy, where 
y = {YE}, and 7 is the list of  all variables in C. We define 
CONSIST[P, C] as the relation in the Herbrand universe 
of 3 as follows: 

B E CONSIST[P, C] iff P U C{y/B} is  consistent. 

The intuitive semantics of  AV(CONSIST[P, C] 3 K) is 
that “for all tuples of terms B in the Herbrand universe, 
if B E CONSIST[P, C], then K{V/B} is  an answer.” 

Given a relativized answer AV(CONSIST[P, C] 3 K), 
computed by defaults, the tuples in CONSIST[P, C] are 
called typical elements. Assume that CONSIST[P, C] has 
arity n; then, the n-tuples over the Herbrand universe that 
are not typical elements are called atypical  elements. 

Consider again our previous example, where P = 
{bird(z), lfly(penguin),  lfly(ostrich),  yellow(canary)}, 
D = {bird(y):fly(y)}, and Q = fly(x). The relativized 
answer computed by defaults is Ax(CONSIST[P, {fly(x)}] 
$ fly(x)). Note that this relativized answer is more general 
than, for example, fly(canary). Actually, for this relativized 
answer, canary is a typical element and penguin is an 
atypical element. 

Theorem 3 (Soundness  and  Completeness  Theorem for 
Relativized  Answers  computed by defaults) 1181 
Let 2 be the first-order logic  language, A = (D, P) be a 
program with defaults, and Q be a query to A. Assume 
that 2 contains an enumerable family of constants. 367 
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(a)  Every relativized answer computed by defaults to Q 

(b) Given any correct answer to Q over A, there is a 
over A is correct. 

relativized answer computed by defaults which is more 
general. 

Finally, we observe that the consistency test sanctioning a 
refutation sequence with defaults can be implemented as a 
test for the finite failure to refute the consequents, together 
with the original set of clauses from the program. 

4. A short description of two logic  programming 
systems 

The STORKsystem 
STORK is a full first-order logic system supporting 
classical negation as well as negation by finite failure, and 
offering a collection of extralogical predicates, patterned 
after those defined for Prolog, or designed to deal with 
programming aspects arising only in general-clause logic 
programming. STORK extends both the declarative and 
the operational semantics of Prolog,  including the 
extralogical features, in such a way that a Prolog  program 
retains its original  meaning in STORK. 

Syntax of the basic STORK  language 
The definitions of a STORK atom, constant, variable, 
term, and atomic formula or predicate are as for the basic 
Prolog  language. A STORK clause is a list of atomic 
formulas, negated or not, separated by the symbol I. A 
STORKprogram is a sequence of STORK clauses, each 
one ending with a period (.). We also allow the inclusion of 
comments in a STORK program between the delimiters /* 
and */. 

An admissible query is either a predicate or an 
expression of the form (Q), 4 ,  P I Q, or P & Q, 
where P and Q are admissible queries. A STORK  query is 
an  admissible query followed by a period (.). 

An answer is a disjunction of conjunctions originated 
368 from the query by substitutions. The priority among the 
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connectives maintains the following order, from the higher 
to the lower weight: 1, &, I. The programmer can use 
“(” and “)” to modify this order. 

Box 6 shows an example of a STORK program. For 
instance, the intended meaning of clause 7 is that “If Y is 
Roman, then either Y is loyal to Caesar or Y hates 
Caesar,” and that of clause 9 is  “If X is a man, X tries to 
assassinate Y, and Y is an emperor,  then X is  not  loyal to Y.” 

A STORK query over the program  ROMAN  is 

hate(marcus,X). 

This query has two correct answers: 

hate(marcus,otavio). 
hate(marcus,caesar). 

Operational semantics of the basic STORK language 
This section introduces an operational semantics for the 
STORK language by defining the STORK abstract 
machine. 

Given a STORK program P and a STORK query Q, the 
machine  initially  maps the STORK program clauses into a 
list of elementary chains. Then, the machine adds to the 
end of this list the set of the chains originating  from 
C L ( l 3 Q ) .  The  machine constructs, in pre-order, the set 
of  all refutation trees (based on  WME)  from these chains, 
whose roots are the chains originating  from C L ( 4 Q ) .  

The machine will stop when it reaches a successful 
branch, returning the correct answer corresponding to this 
branch, or when all trees are built, when it returns Fail. 
However, the machine may produce no answer if it 
traverses an  infinite branch. 

The construction of each refutation tree observes the 
following rules: 

The full-reduction rule is exhaustively applied before the 

In the application of the full-reduction rule, the R-literals 
in the chain in question are selected from left to right. 
In the application of the full-extension rule, 

The  entry  chains  are  selected in the  order in which 

The literals in each  entry chain are  selected  from 

full-extension rule. 

they  appear in the program. 

left to right. 

For example, let Q be the query hate(marcus,X) over 
the program ROMAN. Note that the clausal representation 
of the negated query generates only one activated chain, 
(lhate(marcus,X),  {r(x)}), where r(x) is the associated 
answer literal. Then, the STORK machine  will construct 
just one WME refutation tree [see Box 7, in  which atoms 
are denoted by their initial letters, except for the predicate 
man to distinguish it  from marcus, and nodes are 
numbered in the order they are generated]. Note that the 
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tree has two success branches. Therefore, the machine  will 
return the answer corresponding to the first success branch 
detected, i.e., hate(marcus,otavio). If requested, the 
machine will return the other correct answer, 
hate(marcus,caesar). 

Some extralogical facilities of STORK 
STORK borrows several extralogical predicates directly 
from  Prolog, such as arithmetic predicates, comparison 
predicates, inputloutput predicates, workspace 
management predicates, and  debugging predicates. In 
particular, STORK has the metapredicate l%, for 
negation by finite failure, the extralogical predicate cut, 
and the metapredicate call, which in STORK also correctly 
handles indefinite answers. But STORK also uses 
extralogical predicates specially designed to deal with 
programming aspects arising only in general-clause logic 
programming. As an example of a new predicate, we  have 
the metapredicate @, which is similar to call, but 
computes only definite answers. For reasons of brevity, we 
discuss here only the cut and the call predicates, 
establishing a parallel between them and the corresponding 
Prolog predicates. 

The cut predicate The extralogical predicate cut, denoted 
/, is the main control predicate of the backtracking 
operation. Cut behaves as a predicate which simply 
succeeds on being called. However, if backtracking later 
returns to the cut, the system discontinues the search in 
the subtree whose root is the node immediately superior. 
Thus, the cut causes the remainder of that subtree to be 
pruned from the W E  refutation tree. 

Note that the effects, in a Prolog program and in the 
corresponding STORK program, of the Prolog cut and the 
STORK cut are similar. For example, consider the 
following  Prolog  program  and its corresponding STORK 
program: 

a + / & b .  
a. 

a I I I l b .  
a. 

Then, considering the same goal (query) for both: 

+a. 
GOAL : c a. 

OMS FAIL 

a. 
Fail 

The cut in the first clause blocks backtracking, the second 
clause is not evaluated, and both machines return Fail. 369 
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The processing of the STORK and Prolog machines is 
in fact identical for Horn clause programs which do and do 
not contain cut. However, in general, the STORK cut 
possibly prunes more branches than the Prolog cut, simply 
because the STORK machine has the option of applying 
two distinct inference rules, full extension or full 
reduction, and may select more than one literal to apply 
them. 

The next example illustrates how the STORK cut may 
prune successful branches just because the strategy of the 
STORK machine is to apply all possible reductions before 
any extensions. Thus, as in Prolog, cut  must be used 
with care. 

Consider the following  program  and query: 

A refutation tree, not considering the cut, is shown in 
Box 8. When the cut  is taken into account, the successful 
branch ending on node 5, and those to the right of it, are 
not evaluated. Therefore, the STORK machine returns Fail 
and skips the computation of a correct answer. 

The ca//(C)predicate The call(C) predicate evaluates C 
as a subquery. The argument C must be equivalent to a 
conjunction of predicates when call(C) is actually 
executed. More precisely, during the construction of a 
tree, if the chain labeling node n is of the form 
call(C) I 4 1- .I k, the STORK machine  will call itself 

370 recursively, having as arguments the original  program and 
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the query C. However, recall that STORK, unlike  Prolog, 
may compute an answer which is a disjunction, even if the 
query is a simple conjunction. Hence, each answer to the 
recursive call  will have the generic form CO,l. .Ice,,, where 
e,, 1 I k 5 n, is the substitution applied to the conjunction 
equivalent to C. Therefore, for each such answer, the 
machine  will generate a new descendent of n labeled with 
4 '1 I. * .I L e 1  1. * *I4 en I* * * I k ' n *  

q (a). 
q(b). 
P(4 I P(b). 

For example, consider the following  program: 

Then, 

addcl(q(a)). 
Answer: addcl(q(a)). 
addcl(q(b)). 
Answer: addcl(q(b)). 
addcl(p(a)lp(b)). 
Answer: addcl(p(a) I p(b)). 
call(Po())~q~)o. 
Answer: call(p(a)) & q(a) I call(p(b)) & q(b). 

Note that the argument of call has an  indefinite answer; it 
is Pb) I P(b). 

The PENGUIN qstem 
The PENGUIN system extends STORK to support clausal 
defaults. The refutation procedure for PENGUIN is based 
on the method discussed in Section 3. 

Syntax of the basic PENGUIN language 
The basic PENGUIN  alphabet consists of the basic 
STORK alphabet augmented with the symbol T. The 
special symbol : also has a specific function. 
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The definitions of a PENGUIN atom, variable, term, 
atomic formula, and clauses  are taken directly from 
STORK. The concept of a PENGUIN  constant is 
extended to incorporate the atoms En, where n is a 
number. These atoms represent the typical constants and, 
as shown in Section 3, cannot be used in programs or 
queries, being introduced exclusively by the PENGUIN 
machine. 

A PENGUIN default  is an expression of the form AB, 
where A is a conjunction of PENGUIN atomic formulas, 
negated or not, and B is a PENGUIN clause. A 
PENGUINprogram is a finite sequence of PENGUIN 
defaults and PENGUIN clauses, each one ending  with a 
period. A PENGUIN query is defined exactly as in 
STORK. The priority among connectives and the notation 
for comments are the same as in STORK. 

For example, consider the facts “Anne is a student,” 
“John is retired,” “If X is retired, then X does not work.” 
Consider the default “Generally, a student does not 
work.” The corresponding PENGUIN program is shown 
in Box 9. 

Operational semantics of the basic PENGUIN language 
In many aspects, the operation of the PENGUIN machine 
is very similar to the operation of the STORK machine, 
described earlier. The strategy adopted by the STORK 
machine to construct the refutation trees in pre-order is 
also adopted by the PENGUIN machine, including the 
order of application of the inference rules and the selection 
function. A more detailed discussion of PENGUIN can be 
found in Silva [19]. 

During the construction of a refutation tree, when the 
PENGUIN machine  finds a failure branch, it immediately 
tries to fire the defaults. This mechanism does not ensure 
that answers computed without defaults will be 
preferentially returned. 

briefly described below: 

1. Initially, given a PENGUIN program A = (D, P) and a 
PENGUIN  query Q, the machine maps the PENGUIN 
program clauses directly into a list of indexed and 
activated elementary chains followed by the set of 
indexed and activated chains generated from CL(13Q)  
and the list of indexed and activated chains originated 
from the consequents of the PENGUIN defaults. 
Thus, the list of chains is composed of chains from 
the program clauses, chains from the query, and 
chains from the consequents of the defaults, in this 
order. 

2. The machine constructs a refutation tree whose root is 

The sequence of actions of the PENGUIN machine  is 

a chain generated from the query. When  it  finds a 
successful node, the machine returns the set of defaults 
used in this refutation. If this set is empty, the machine 
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1. (student(anne),$l,@ . originating from pl 
2. (retiredaohn),$l,$l) . originating from p2 
3. (-fetired(x)lTwork(x),$l,$l) . originating from p3 
4. (lwork(z),$l,{dl (ZH) . originating from d, 
5. (lWork(Y)*{r, ( Y M  . originating from the 

(1 0) 

query 

stops and the corresponding answer is shown. If the set 
is  not empty, the machine proceeds as follows. 

3. The list of chains is  now composed only of the chains 
generated from the PENGUIN clauses followed by the 
consequents of the PENGUIN defaults. From this list, 
the machine constructs a refutation tree whose root and 
initial support is the chain representing the negation of 
the conjunction of prerequisites of  all defaults fired  in 
the previous refutation. Note that this chain in the root 
is not reused as an auxiliary chain. When  it  finds a 
successful branch, the machine returns the set of 
defaults fired  in this refutation, calling  itself recursively. 
If this chain is empty, it is necessary to know whether 
the refutation sequence is valid. Then, a consistency 
test is performed, as discussed below. If the test 
succeeds, a correct answer was computed and it  is 
returned. 

4. If there is  no successful branch or the consistency test 
fails, the machine returns Fail, causing a backtracking 
to step 3. After all branches of  all possible refutation 
trees have been tried and no answer is computed, a new 
chain generated from the query is selected and the 
process is restarted at step 1. 

Observe that the theory corresponding to the program 
clauses and the consequents of the defaults employed in 
the refutation must be satisfiable. 

The consistency test mentioned above is executed by 
constructing a set of refutation trees. The roots of the trees 
are the indexed and activated chains originated from 
instances of the consequents, Le., instances obtained by 
substituting typical constants for variables. The test fails if 
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the machine  finds  some success branch and succeeds if all 
branches of  all trees are finite  failure branches. 

an  infinite branch. 
The machine can also produce no answer if it traverses 

For example, let Q be the query lwork(X) over the 
program WORK. The indexing  and activation of the 
program  and the query results in the sequence shown in 
Box 10. 

two correct answers. The machine  will return the first 
answer detected, i.e., lwork(john), which does not use 
defaults. If required, the machine will return the other 
correct answer, lwork(anne). To compute this last 
answer, the machine performs the consistency test trying 
to refute lwork(anne) from chains 1, 2, and 3. Since no 
such refutation is possible, the consistency test succeeds. 

The refutation trees are shown in Box 11. The query has 

PENGUIN extralogical  facilities 
Defaults  bring  up  new  programming aspects, which 
demand the special extralogical predicates incorporated in 
PENGUIN. For brevity, we present here only the def, 
calldef, and defanswer predicates. 

The def(0P) predicate The extralogical predicate 
def(0P) operates as a switch which  allows or prevents the 
use of defaults in computing  an answer to the query. If the 
argument is on, the defaults may  be used; if it is off, the 
defaults are disregarded. If the argument  is a variable, it 
returns the current option, on or off. When a PENGUIN 

372 session starts, the option is set to on. Note that different 

executions of calldef generate independent queries and, 
thus, independent def(0P) settings. 

The ca//def(C)predicate The calldef(C) predicate has a 
semantics similar to that of the call(C) predicate. The 
argument C is a conjunction of predicates and works as a 
subquery. However, unlike the call(C) predicate, this 
subquery may  be proved, possibly by considering a 
different extension of the theory, as a function of the 
particular defaults corresponding to the program. Thus, the 
calldef(C) isolates the defaults used. 

For example, consider the program 

true:a(X). 
true:la(X). 

We can easily see that a(1) and ,a(l) are correct answers 
for this program, but they belong to different extensions. 
Then, 

a(l)&call(la(i)). 
Fail 
a(l)&calldef(la(l)). 
Answer: a(1) & calldef( la(1))  

The defanswer(0P)predicate The extralogical predicate 
defanswer(0P) authorizes or prevents the printing of the 
defaults used for computing  an answer, depending whether 
the  argument OP is on or off. If the argument is a variable, 
it  will  be instantiated with the current option of the 
defanswer state. When a PENGUIN session starts, this 
option  is set to on. 
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For example,  consider again the  same program 

bo(). 
b(X):a(X). 

Then 

Answer: a( I 0) 
defanswer(on)&a(X). 
Answer:  defanswer(on) & a( T 1) 
Defaults: (b( T 1) : a( T 1)) 

5. Conclusions 

- 
- - 

This  paper  has  described  the  foundations of two logic 
programming systems,  STORK  and  PENGUIN,  with  the 
expressive  power of full first-order logic and  with a 
nonmonotonic  component,  which provide a direct 
generalization of pure Prolog and  can  be implemented 
using the  same technology as Prolog processors. 

the  weak-model elimination method.  This refutation 
method offers an interesting alternative  for  the 
construction of logic programming systems  because it 
accepts  generic  clauses, is  input-linear, and  does  not  use 
factoring, but in spite of these  characteristics, maintains 
completeness.  The  search  space  can  also  be  reduced  by 
filters that  restrict  the application of the inference  rules. 
The refutation procedure  for  PENGUIN is an  extension of 
weak-model  elimination  along the  lines of Reiter’s  default 
logic. It implements the  consistency  test required by  the 
use of defaults  through a strategy  quite similar to  that 
adopted  to implement  negation by finite failure. 

STORK  and  PENGUIN  provide  more  expressive  power 
than Prolog. In particular, they  enable  the  programmer  to 
use classical as well as finite failure  negation, choosing  the 
one  that  best  suits his  application. Moreover,  PENGUIN 
also allows the  representation of default  information; that 
is,  it permits  carrying  on  nonmonotonic  reasoning using 
defaults and,  possibly, finite failure  negation. STORK  and 
PENGUIN  are  both  coded in Prolog and  are  completely 
operational. 
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