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This  paper  defines  a  default  logic 
interpretation  for  normal  programs  that  has  the 
following  major  characteristics.  First, it directly 
captures  the  true  nature of  SLDNF  resolution 
as  an  extension of  SLD resolution.  Second,  it 
is  semantically  convincing,  but it requires 
neither  an  elaborated  nonstandard 
interpretation  nor  a  radical  rewriting  of  the 
program  clauses  that  would  make  it  difficult to 
understand  their  meaning.  Last,  it  extends 
known  results  for  stratified  normal  programs 
to programs  that  satisfy  a  weaker  condition. 

1. Introduction 
The basis for the vast majority of logic  programming 
systems is a refutation method, called SLD (Structured 
Logic Design) resolution [l, 21, which accepts only definite 
programs whose clauses do not  admit negative literals in 
their body. When one relaxes this restriction and switches 
to so-called normal programs, the refutation method 
usually adopted becomes SLDNF (SLD with Negation by 
Failure) resolution, which extends SLD resolution with the 
negation-by-finite-failure (NFF) rule [3]. Roughly, the NFF 
rule states that a negative literal 1 L  should be canceled 
from the body of a clause if the query +L fails  finitely  in 
the presence of the program clauses. 

We note at least three important and distinct 
characteristics of the NFF rule: NFF is easy to implement 
in  Prolog systems; NFF is a nonmonotonic rule justified  on 
the grounds of the so-called “Closed- World Assumption” 
(CWA) [4]; and it is very difficult to define a semantics for 
normal programs for which SLDNF resolution is sound 
and complete. The first characteristic is undoubtedly the 
greatest argument in favor of the adoption of the NFF 
rule. The second characteristic can be taken either in favor 
of or against the use of NFF, depending on whether the 
CWA holds for the application in question. 

The third characteristic can best be examined with the 
help of a very simple example. Consider the question of 
expressing a disjunction p V q as a program clause. If we 
naively take the symbol + to mean (reverse) implication 
and 1 to mean true negation, then the formula p V q and 
the clauses p + l q  and q + l p  are all equivalent. But 
this equivalence is  false, because negated literals are 
treated by the NFF rule. Indeed, let P, = {p + Tq} and 
P2 = {q + ~ p }  be two normal programs. Let Q be the 
query +p. Then, in an extended Prolog system, the 
answer of Q to P, will be TRUE, whereas the answer of 
Q to P2 will be FALSE. 

This apparently incorrect behavior will certainly shock 
naive Prolog users, but it can be explained by resorting, 
for example, to Clark‘s theory of program completion [3]. 
Indeed, denote by comp(S) the completion of a program 
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S. Then, comp(P,) = { p o l q ,  -4) and comp(P,) = 
{q e l p ,  lp}. Hence, p is indeed a logical consequence of 
comp(P,) but not of comp(P,), which correctly explains the 
previous answers, and also justifies the bizarre behavior of 
extended Prolog systems. 

although NFF indeed extends in some sense the 
expressiveness of pure Prolog systems, it greatly 
complicates the theory, to the point of raising serious 
questions with respect to basic soundness. 

The goal of this paper is to use defaults to provide a 
simple and intuitive explanation for SLDNF. The natural 
choice would be to use CWA defaults, that is, defaults of 
the form ( : lL / lL ) ,  where 1 L  is a ground-negative literal. 
However, CWA defaults create certain problems, as 
discussed in Section 3, and are then replaced by another 
class of defaults, called barred CWA defaults, that offer 
the following advantages. First, they directly capture the 
true nature of SLDNF as an extension of SLD resolution. 
Second, they  are semantically convincing, as proved at the 
end of Section 3, but they require neither an elaborated 
nonstandard semantics nor a radical rewriting of the 
program clauses that would make it  difficult to understand 
their meaning.  Finally, the semantics induced by barred 
CWA defaults coincides with known results for stratified 
programs, but it "captures more," since the basic result 
described in Section 3 requires a condition weaker than 
stratification. 

From this simple discussion, it becomes clear that, 

Alternative semantics for normal programs that account 
for SLDNF resolution have been extensively investigated. 
Comprehensive surveys can be found in [5,6]. The closest 
approach to ours is that taken in [7], which also maps 
normal programs into default theories. However, their 

formulas with no free variables. Otherwise, the default is 
open. A normal default is a default of the form (a: w/w). 

For the purposes of this paper, it is also important to 
recall that a CWA default is a default of the form 
(:TA/lA), where A is a ground-atomic formula over the 
first-order language  in question. 

A default  theory is a pair A = (D, W), where D is a 
set of defaults and W is a set of first-order sentences. A 
default theory is open, closed, or normal iff D is a set of 
open, closed, or normal defaults. 

A default theory is associated with a set of first-order 
theories, its extensions. The following theorem 
characterizes extensions as proposed  in  Theorem 2.1 of [8]. 

Theorem 1 
Let E be a set of sentences and let A .= (D, W) be a 
default theory. Define = Wand, for i L 0, 

where a E E ,  and+31,.. . ,+,$EE . I 
Then, E is an extension for A iff 

OD 

E = u Ei. 
i=o 

Given a default theory A = (D, W )  and an extension E of 
A, the set of generating  defaults for E with respect to A is 

Gen(E, A) 

mapping  is far more complex than ours, and they 
investigate only the case of stratified programs. 

This paper is organized as follows. Section 2 reviews the 
basic concept of default theory and SLDNF resolution that 

Given a set of defaults D, we also define Conseq(D) as the 
set of the consequents and Prereq(D) as the set of the 
prerequisites of the defaults in D. 

we need in the paper. Section 3 describes the default 
interpretation we use to explain SLDNF resolution. 
Section 4 proves the major results of the paper. Finally, 
Section 5 contains the conclusions. 

2. Preliminaries 

Defaults 
We  review  in this section some basic concepts of default 
logic. A detailed development can be found in [8].  

A default is an expression of the form (a: PI, e ,  P,/w), 
where a, PI, * - - , P,, and w are all first-order formulas. The 
formulas a and w are called, respectively, the prerequisite 
and the consequent of the default, whereas the formulas 
PI , * e ,  P, are called the justifications. A default is closed 

348 iff a, PI, * , P, and w are sentences, that is, first-order 

Lemma 1 
Suppose that E is an extension of a default theory 
A = (D,  W). Then 

E = Th( W U Conseq(Gen(E, A))). 

Corollary 1 
Let A = (D, W) be a default theory. 

(a) A has an inconsistent extension iff W is inconsistent. 
(b) If A has an inconsistent extension, then that is its only 

extension. 

Theorem 2 (Minimality  of extensions) 
Let A = (D, W) be a default theory. If E and F are 
extensions of A and if E G F ,  then E = F .  
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Theorem 3 (Semimonotonicity of  normal default theories) 
Let A = (D, W )  and A’ = ( D ’ ,  W )  be two normal default 
theories such that D’ C D .  For every extension E’ of A’, 
there is  an extension E of A such that E’ C E .  

SLD and SLDNF resolution 
In this section we briefly  review SLD resolution and 
SLDNF resolution (abbreviated SLD and SLDNF). The 
reader familiar  with [2, Ch. 31 may skip directly to 
Section 3. 

We first recall some concepts directly related to SLD. 
An expression of the form A + B,, - a ,  B, is a definite 
clause iff A, B,, a ,  B, are positive literals. An expression 
of the form +B,, - , B, is a goal iff B,, * - , B, are positive 
literals. The literals B,, - * a ,  B, are called the body of the 
definite clause or the goal, and the literal A is  called the 
head of the definite clause. The empty clause 0 is also 
considered to be a goal. Aprogram is a set of definite 
clauses. Note that a goal +B1 , a ,  B, represents the 
negation of B, A - - A  B,. We refer the reader to [2] for the 
definitions of SLD refutation and  SLD tree. In particular, 
we assume through the examples that the selection 
function always selects the leftmost literal. 

closure of a formula F by VF (or 3F). 

+B,, e, B,. An answer to G from P is a substitution for 
the variables occurring in G. An answer a to G from P is 
correct iff V(B, A. * .A Bn)a is a logical consequence of P. 
An answer a is more general than an answer p iff there is 
a substitution y such that p is the composition of a with y. 
Finally,  an answer a to G from P is computed by SLD iff 
there is an SLD refutation R from P U {G} such that a is 
the composition of the substitutions used in R ,  restricted 
to the variables in G. 

In what follows, we denote the universal (or existential) 

Let P be a program and G be a goal of the form 

SLD correctly computes answers in the following sense. 

Theorem 4 (Soundness and completeness of SLD with 
respect to answers) 121 

(a) If a is an answer to a goal G from a program P which 
is computed by SLD, then a is correct. 

(b) If a is a correct answer to a goal G from a program P, 
then there is an answer p to G from P computed by 
SLD which is more general than a. 

SLDNF extends SLD to cope with negative literals and, 
hence, is set in a slightly different context. Briefly, a 
program clause and a normal goal are defined  similarly to 
definite clauses and  goals, except that the literals in the 
body may be both positive and negative. A  normal 
program is a set of program clauses. 

We again refer the reader to [2] for the definitions of 
SLDNF refitation and SLDNF tree. We just recall here 
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that the process of constructing an SLDNF refutation or 
an SLDNF tree from P U {G} will succeed only if, for 
every negative literal lp ( t )  that is selected, 

Tp(t) is ground. 
There is a finitely  failed SLDNF tree for P U {+p(t)}, in 
which case -p(t) was canceled, or there is an SLDNF 
refutation from P U {+-p(t)}, in which case Tp(t) was not 
canceled. 

The notions of answer and computed answer extend 
directly to the context of SLDNF. However, the notion 
of correct answer does not, because it has long been 
recognized that the first-order reading of normal programs 
is  not compatible with SLDNF; that is, SLDNF computes 
incorrect answers if we identify a program clause of the 
form A + B,, e ,  B, with the formula V(B, A * - - A B, j A), 
and  similarly for goals. Extending Theorem 4 above to 
SLDNF is in fact the major theme of this paper. 

straightforward to implement by extending a processor 
based on SLD, such as a standard Prolog interpreter. 
However, the way SLDNF processes negative literals has 
some special characteristics that we highlight  in the rest of 
this section. 

We  begin by emphasizing that SLDNF is  an inherently 

The key advantage of SLDNF is that it is 

recursive process in the sense that, to construct an 
SLDNF refutation or an SLDNF tree, one may have to 
build other SLDNF refutations and trees. But the process 
does not involve self-loops; that is, if an SLDNF tree T 
(or refutation)  is  required  during the construction of another 
SLDNF tree T’ (or refutation), then T’ is not required to 
build T .  Thus, it is possible to define a rank for ground- 
negative literals with respect to a given  normal  program P 
as follows. For every ground-negative literal lp(t) ,  

(a) lp ( t )  has rank 0 with respect to P iff there is either a 
finitely  failed SLDNF tree or an SLDNF refutation 
from P U {+p(t)} where no negative literal is selected. 

(b) lp ( t )  has rank  k + 1 with respect to P iff there is either 
a finitely  failed SLDNF tree or an SLDNF refutation 
from P U {+p(t)} where all negative literals that are 
selected are ground and have rank less than or equal to 
k, and at least one has rank k .  

Thus, we may consider that the canceling of a negative 
literal proceeds in stages according to the rank of selected 
negative literals. 

The search for an SLDNF refutation from a program 
and a goal  may  fail for many reasons, such as when an 
open negative literal is selected at any depth of the 
recursion, or when the process of canceling a negative 
literal diverges either because an  infinite branch of a tree is 
reached or because an  infinite  number of trees is required. 
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We conclude this section with a very simple example of 
this last phenomenon. 

Example I 
Let P be the normal  program (clauses 1 and 2) and G be 
the normal  goal (clause 3) below: 

There is no SLDNF refutation from P U {G} essentially 
because, if one tries to build  an SLDNF tree from 
P U {+p(a)}, one will have to build a tree from 
P U {+q(f(a))}, and  from P U {+p(f(a))}, and from 
P U {cq(f(f(a)))}, and so on (see the box above). 

3. Three  default  logic  interpretations  for 
normal  programs  and  goals 
In Section 2 we stressed that SLDNF has the flavor of a 
procedural method that may invoke itself recursively. As a 
consequence, there is little hope of  defining clean 
semantics for normal programs and goals for which 
SLDNF is complete except, perhaps, for special classes of 
normal programs and goals. Therefore, we direct our 
efforts toward obtaining semantics which explain (the 
soundness of) SLDNF resolution as tightly as possible, but 
which do not directly reflect the procedural nature of the 
method. 

We list the definitions and simple lemmas in this section, 
leaving the proofs of the more important results to 
Section 4. 

Basic  definitions 
We provide semantics for normal programs and goals 
indirectly by interpreting them into default logic. The 
definitions  in this section convey the general idea. 

In what follows, if A is a conjunction of literals 
A, A - - A A,, let 3A indicate the existential closure of A 
and +A indicate the goal +A,, - e ,  A,. 

Definition 1 
A default logic interpretation for normal programs and 
goals is a function @ that maps each normal  program P 
into a default theory @(P) and each conjunction of literals 

350 A into a formula @(A). 
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Definition 2 
Let @ be a default  logic interpretation for normal programs 
and  goals. 

(a) SLDNF is 3-sound with respect to @ iff, for every 
normal  program P and every normal  goal 4 ,  for 
every answer a to +Q from P, if a is computed by 
SLDNF, then there is  an extension of @(P) containing 
W@(Q)a. 

(b) SLDNF is W-sound with respect to @ iff, for every 
normal  program P and every normal  goal +Q, for 
every answer a to 4 from P, if a is computed by 
SLDNF, then every extension of @(P) contains 
W@(Q)a. 

Definition 3 
Let @ be a default logic interpretation for normal programs 
and  goals. 

(a) SLDNF is 3-complete with respect to @ iff, for every 
normal  program P and every normal  goal +A, for 
every answer a to +Q from P, if there is an extension 
of @(P) that contains W@(Q)a, then there is  an answer 
p to +Q from P computed by SLDNF such that p is 
more general than a. 

(b) SLDNF is W-complete with respect to @ iff, for every 
normal program P and every normal goal +A, for 
every answer a to +Q from P, if every extension of 
@(P) contains W@(Q)a, then there is  an answer p to 
+Q from P computed by SLDNF such that /3 is more 
general than a. 

Note that the prefixes W- and 3- suggest how the 
extensions are quantified in the above definitions. Also 
observe that W-soundness is a more stringent notion than 
3-soundness, but W-completeness is less restrictive than 
3-completeness. Hence, one should strive to find a natural 
default logic interpretation for normal programs and goals 
for which SLDNF is W-sound and, hopefully, 3-complete. 
We leave to later subsections the definition of the 
interpretations we consider, limiting ourselves in the next 
subsection to indicating why CWA defaults do not provide 
an appropriate basis. 

An interpretation based on CWA defaults 
A natural strategy to explain SLDNF in terms of default 
logic  would  be to define  an interpretation that maps each 
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normal  program into the closed  normal default theory 
whose defaults are the CWA defaults. More precisely: 

Definition 4 (Default logic interpretation C) 
C is the interpretation that maps each normal  program P 
into the default theory @(P) = (C, P), where C is the set of 
all  CWA defaults over the underlying alphabet, and that 
maps each conjunction of literals into itself. 

However, SLDNF is  not  V-sound with respect to C 
essentially because, on one hand, default logic requires 
using the standard first-order semantics when reasoning 
about the extensionsof a default theory, but, on the other 
hand, SLDNF is incompatible with the first-order reading 
of normal clauses and  goals. The following example 
illustrates this point  well. 

Example 2 
Let P be the normal  program and G be the normal  goal 
defined by the clauses below: 

Assume that the only nonlogical symbols of the underlying 
first-order language are the constant a and the two unary 
predicate symbols p and q. 

Then, there is an SLDNF refutation R from P U {G} 
consisting of G followed  by the empty clause. Moreover, 
the answer computed by R is the empty substitution E. 

However, if we adopt the standard first-order reading, 
clause 1 is equivalent to the first-order sentence 
q(a) V p(a). Then, C(P) = (C, P) has just two extensions, 
one containing p(a)  and 7q(a), viz., that generated by 
firing the default (:Tq(a)/lq(a)), and one containing q(a) 
and -p(a), viz., that generated by firing the default 
(:lP(aV-P(a))- 

Hence, SLDNF is not V-sound  with respect to C, since 
lp(a) does not  belong to both extensions. 

An interpretation based on barred CWA defaults 
We introduce in this subsection a default logic 
interpretation for normal programs for  which SLDNF is 
V-sound. The general idea is to treat a predicate symbol 
preceded by 1 as the name of a different predicate 
symbol. Thus, lp(t) in principle does not denote the 
negation of p(t). To emphasize this aspect, we transform 
every negative literal Tp(t) into the barred  literal p(t) and 
propagate this transformation to normal programs and 
goals. However, a ground-negative literal -p(t) and its 
barred transform p(t) remain related by the cWA default 
(:lp(t)/p(t)), which intuitively says to accept p(t) as valid if 
it is consistent to assume -q(t). Finally, we define the 
interpretation c, which maps a normal  program P into the 
default theory c(P) = ( E ,  p), where I? is the set of all cWA 
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defaults over the underlying alphabet and P is the barred 
transform of P, and which maps each conjunction of 
literals into its barred transform. 

We  give precise definitions  below for these concepts, 
and show that barred literals in some sense behave as 
negated literals in the context of defaults. We then 
show in Section 4 that SLDNF is V-sound with respect to 
c. All definitions that follow are relative to a fixed  first- 
order alphabet A .  

Definition 5 

(a) The barred augmented alphabet corresponding to A,  
denoted by 6, is obtained by adding to A the new 
symbol p as an n-ary predicate symbol, for each n-ary 
predicate symbol p in A.  

(b) A positive literal M over 2 is a barred literal iff M is of 
the form p(t). A positive literal M over 6 is apositive 
nonbarred  literal iff M is of the form p(t). 

(c) A positive literal M over d is the barred complement of 
a positive literal L over A iff M is of the form p(t) and L 
is of the form p(t). The barred complement of L is 
denoted by 1. 

(d) The barred  transform of a negative literal over A of the 
form +(t) is the literal p(t) over 6. 

(e)  Let P be a program clause (respectively, a normal  goal, 
a conjunction of literals, or a set of program clauses). 
The barred  transform of P, denoted by P, is the 
definite clause (respectively, the goal, the conjunction 
of literals, or the set of definite clauses) obtained by 
replacing each occurrence in P of a negative literal 
with its barred transform. 

( f )  A cWA default is a closed, non-normal default of the 
form (:lL/L), denoted by S,, where L is a ground- 
positive nonbarred literal and is the barred 
complement of L. We also say that 1 L  is the 
just$cation and that L is the consequent of (:TL/L). 
We denote the set of  all cWA defaults by e. 

Definition 6 (Default logic interpretation c) 
is the interpretation that maps each normal  program P 

into the default theory c(P) = (I?, P), where is the set of 
all cWA defaults over the underlying alphabet and P is the 
barred transform of P, and that maps each conjunction of 
literals A into its barred transform A. 

The following  example, which should be compared with 
Example 2, illustrates the interpretation c. 
Example 3 
Let P and G be  as in Example 2.  Then, P is the (definite 
clause) program  and is the goal  defined by the clauses 
below: 

1. q(a) + P(a) . P  
2. +(a) .G 
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Recall from Example 2 that p and q are the only predicate 
symbols and that a is the only constant, by assumption. 
Also recall that the empty substitution E is an answer 
computed by SLDNF [therefore, the universal closure of 
lp(a)& is simply lp(a)]. 

Now, c(P) = (e, P) has  just  one extension E ,  which is 
generated by firing the default = (:lp(a)/p(a)), but not 
the default = (:lq(a)/tj(a)). Indeed, nothing prevents the 
default from  firing, which means that any extension of 
c(P) must  contain p(a) and,  hence, q(a), in  view of clause 1. 
But this in turn implies that can never be fired. 

Note that, since E(lp(a)) = p(a), since the universal 
closure of p(a)s is equivalent to p(a), and since E contains 
p(a), E also contains the universal closure of c(lp(a))&. 
Therefore, P and G are not a counterexample for the 
V-soundness of SLDNF with respect to c, whereas they 
are for the V-soundness of SLDNF with respect to C. 

Furthermore, observe that, when compared with 
Example 2, the only change is that clause 1 in P, after the 
transformation induced by c, becomes the first-order 
equivalent of the sentence q(a) V +(a), whereas, after the 
transformation induced by C, it was  the first-order 
equivalent of the sentence q(a) V p(a). 

We  now state two properties of that we  will need to 
prove the main results in Section 4. They follow directly 
from theorems stated in the subsection on defaults. 

Lemma 2 
Let P be a normal program. 

(a) A set E of sentences over d is  an extension of c(P) iff 
E = Th(PU T ) ,  where T = {L I (:7L/r))EC A L q E } .  

(b) c(P) has no inconsistent extension. 

Proof 

(a) From Theorem 1, we know that E is an extension 
of c(P) iff E = E, U E ,  U E,, where E, = P, 
E ,  = Th(E,) U T ,  and E, = Th(E,) ,  since 
%(E,) = Th(Th(E,))  = Th(E, ) .  Therefore, 
E = Th(Th(P) U T )  = Th(P U T ) .  

(b) Since P is a set of definite clauses, it is always 
consistent; hence, the lemma  follows  from Corollary 
1. 0 

The next list of results provides a semantic justification 

Given a set of sentences or a set of clauses S, we 
for the transformation e. 
denote by B, the Herbrand base for S. Also, given a set of 
definite clauses D, we denote by M ( D )  the unique minimal 
Herbrand model of D and by TD the mapping that takes 
each Herbrand interpretation I of D into the Herbrand 
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TJZ) = {A E B, I A + A,, * * * ,A, is a ground instance 
of a clause in D and {A,, - - ,  A,} GI). 

Theorem 5 
Let P be a normal  program and E be an extension of c(P). 
Let 

T = { ~ I ( : T L / L ) E C A L $ E } ~ ~ ~ Q = P U T .  

(a) E has a unique minimal Herbrand model M ( E ) .  
(b) N E E iff N E M ( E ) ,  for any ground-positive literal 

(c) B E T,  t w iff B E T, for any ground-positive barred 

(d) L E  E iff i 4 E ,  for any ground-positive nonbarred 
literal L. 

(e) M(E) satisfies 1 L  iff I: E M ( E ) ,  for any ground-positive 
nonbarred literal L. 

( f )  M ( E )  is a model of P. 

(barred or not) N. 

literal B. 

Proof 

(a) Q has a unique minimal Herbrand model, since Q is a 
set of definite clauses, and so does E ,  since E = 
Th(Q), by Lemma 2 and the definition of Q. 

(b)  Let N be a ground-positive literal (barred or not). 
Then, 

N E E iff Q I= N by Lemma 2 and definition of Q, 
iff N E M ( Q )  by Theorem 6.2 of [2], 

since N E B,, and 
iff N E M ( E )  since M(Q)  = M ( E ) ,  by Lemma 2 

and the definition of Q. 

(c) Let B be a ground-positive barred literal. Then, 
B E  T,  t w iff B E T ,  because B cannot be the head of 
any ground instance of a clause in P, since the program 
clauses in P cannot have negative literals as their 
heads. 

(d)  Let L be a ground-positive nonbarred literal. Then, 

L E E  iff i$T by definition of T ,  
iff i q  T, t by (c), 
iff L$!M(Q) by Theorem 6.5 of [2], and 
iff i $ E  by (b) and since M( Q)  = M ( E ) ,  

by Lemma 2 and the 
definition of Q. 

(e) Let L be a ground-positive nonbarred literal. Then, 
M(E) satisfies 1 L  iff L$M(E) ,  by definition of 
satisfiability in Herbrand interpretations, iff L E M ( E ) ,  
by (b) and (d). 

) First observe that the alphabet d contains the alphabet 
A.  Hence, M(E)  is in fact a Herbrand interpretation for 
P. It suffices to show that, for any ground instance B 
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of a normal clause in P, if M(E) satisfies the body of 8, 
then M(E) also satisfies the head of B. 

Let B be a ground instance of a normal clause in P 
and suppose that M(E)  satisfies the body of B. Let 
be  the barred transform of B. Note that if 1 L  is a 
negative literal in the body of B, then M(E)  satisfies r, 
by (e). Hence, directly from our assumption, we obtain 
that 

M(E) satisfies the body of B. (*) 

M(y(P, I ) ) .  We then define the Gelfond-Lifschitz  operator 
rp for P as rP(Z) = M(y(P,Z)). It can be proved that the 
fixed points of rp are minimal models of P [9]. Finally, we 
say that a Herbrand interpretation Z for P is a stable model 
of P iff rp(Z) = Z. 

We also need some auxiliary definitions. Let A be a 
first-order alphabet and d be the corresponding barred 
augmented alphabet. If Z is a Herbrand structure for A,  
define 

But is also a ground instance of a clause in P and a(z) = u {T I is a nonbarred ground atom and @ '1, 
M(E)  is a model of P, since P is contained in E.  
Therefore, we also have 

M(E) satisfies B. 

and, if Z is a Herbrand structure for 1, define 

p(Z) = {L I L is a nonbarred ground atom and L E I } .  
(**I 

Thus, from (*) and (**), we obtain that M(E)  satisfies 
the head of B. Finally, note that the head of B 
coincides with the head of B, since the head of B is not 
a negative literal. Hence, M ( E )  satisfies the head of B, 
as  was to be shown. 0 

Note that these simple results follow essentially because 
the  barred  transform  of a normal program is a definite 
clause  program and that, as item (c) shows, barred  literals 
(representing  negative  information)  can only be  generated 
by firing  defaults, which is consistent with the intuitive 
idea behind the  syntax of normal programs. 

Item (a) should be compared with Corollary 3.10  in [7], 

We are now ready to prove the following result. 

Theorem 6 
Let P be a normal  program. Then, 

(a) If E is an extension of c(P) and M(E) is its unique 
minimal  model, then P(M(E)) is a stable model 
of P. 

(b) If Z is a stable model of P, then a(Z) is the unique 
minimal  model of an extension E of c(P) and 
E = Th(P U T), where T = {r I (:TL/~) E e A L e  I } .  

Proof 

which shows that every extension of a positivistic default 
theory has a unique Herbrand model, whereas item (d) 
should be compared with Lemma  3.1  in [7]. Now, item (e) 
indicates that a ground-barred literal indeed behaves as 
the negation of L with respect to the unique minimal 

(a) Let T = {E I (:,L/r)EZA L q E }  and Q = PUT.  
Let M(Q) be the unique  minimal  model of Q. Let 
G = y(P, P(M(E)))  and M(G) be the unique minimal 
model of G. Then, we have - 

Herbrand model of each extension of c(P). Finally, item p(M(E))  = p(M(Q)) since E = Th( i j  U T )  = Th(Q) 
( f )  shows that the default logic interpretation ultimately and, thus, M ( E )  = M(Q), 
associates with each normal  program P a set of Herbrand 
interpretations which are the minimal models of the 
extensions of C(P). 

We can also show that the set of unique minimal 
Herbrand models of the extensions of c(P) corresponds 
exactly to the set of stable models of P [9]. 

= p(Ta t w )  since M(Q) = Ta f w ,  

= T , f w  since LE T iff L@ P ( M ( E ) ) ,  
= M(G) by definition of T ,  and 
= r , ( p ( M ( E ) ) )  by definition of rp and G. 

by definition of T ,  

We  first  recall the definition of stable models. The GL 
transformation is the mapping y that takes a normal 
program P and a Herbrand interpretation Z for P into a 
new  program y(P,Z), obtained from P by performing the 
following two reductions: 

Removing  from P all clauses in which the body contains 

Removing  from the body of each remaining clause those 
a negative literal -A such that A E Z. 

negative literals 1 A  such that A $l Z. 

Note that the new  program y(P,Z) contains only definite 
clauses and, hence, has a unique minimal Herbrand model 

Hence, B(M(E)) = I'p(P(M(E))),  which implies that 
p(M(E))  is a stable model of P. 

(b) Suppose that Z is a stable model of P. Then, Z = rp(Z). 
Let E = Th(P U T), where T = {E I (:L/r) E e A 
L I}. Note that, if L is a nonbarred ground-positive 
literal, then L 4 Z iff L $l a(Z) iff L $ E .  Hence, T = 
{E I (:,L/L)EE A L$lE},  which implies that E is 
indeed an extension of c(P). 

Let M(E)  be the unique minimal  model of E ,  which 
exists by Theorem 5(a). Let G = y(P,Z) and M(G) be 
the unique minimal  model of G. We  now show that 
Z = M ( E ) .  Indeed, 
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M(E) = TpUT o by definition of T and E ,  
= t o) since L E T  iff ~$1, 
= a(M(G)) by definition of T ,  
= a(rp(Z)) by definition of rP, and 
= a(Z) since Z is a stable model of P. 0 

This concludes the preliminary discussion of e. 
An  interpretation  based  on NFF defaults 

Given a normal program P, we now introduce a third 
default logic interpretation, m, which is  much closer to 
SLDNF than the default logic interpretation e, since the 
former directly encodes the way negative literals are 
canceled in SLDNF. We then prove in Section 4 that 
SLDNF is  V-sound and 3-complete with respect to N. 

Definition 7 
Let P be a normal  program. A default 8, is an NFF 
default for P iff there is a finitely  failed SLDNF tree for 
P U {+L}. We denote the  set of  all F F  defaults for P by 
Np . 

Definition 8 (Default  logic  interpretation m) 
m is the interpretation that maps each normal  program P 
into the default theory N(P) = (Np, F), where Np is the set 
of  all F F  defaults for P and P is the barred transform of 
P, and that maps each conjunction of literals A into its 
barred transform x. 
4. Results 
We prove in this section results whose major implications 
(P is a normal program) are  as follows: 

(a) c(P) may have no extensions, whereas N(P) always 

(b) SLDNF is very strong in the sense that, given a 
has a unique extension. 

ground-negative literal l L ,  if there is a finitely  failed 
SLDNF tree for P U {+L}, then 8, can always be fired 
in c(P); that is, it belongs to the set of generating 
defaults of all extensions of c(P), if there is one. 

(c) Moreover, given a ground-negative literal l L ,  if there 
is an SLDNF refutation for P U {cL}, then S, can 
never be fired  in c(P); that is, it does not  belong to the 
set of generating defaults of any extension of c(P), if 
there is one. 

(d) As a consequence, if 8, belongs to the set of generating 
defaults of some extension of c(P), but not all, then 
there is neither a finitely  failed SLDNF tree for 
P U {+L} nor an SLDNF refutation for P U {+L}. 

(e) However, given a ground-negative literal l L ,  there 
may be neither a finitely  failed SLDNF tree nor an 
SLDNF refutation for P U {+L}, and yet 8, may  belong 
to the set of generating defaults of  all extensions of 
c(P), if there is one. 

3-soundness with respect to CWA  defaults 
We show in this subsection that SLDNF is 3-sound with 
respect to C. The result follows  from a property of 
SLDNF posed as a challenge to the reader in [2, Example 
32, Ch. 31. 

Theorem 7 
Let P be a normal  program and G be a normal  goal. If 
P U {G} has a finitely  failed SLDNF tree, then P U {G} is 
consistent. 

proof 
Let P be a normal  program and G be a normal  goal. 
Suppose that P U {G} has a finitely  failed SLDNF tree T.  
Define the failure  support of T, FS(T) ,  as the set of 
literals that correspond to the following: 

Let H be a leaf of T and M be the literal selected from H. 
Then, FS(T) contains all ground instances of M. 
Let H be an internal node of T and M be the literal 
selected from H. Suppose that M is positive and that 
H, , * - - , H, are the children of H in T.  Then, FS( T )  
contains 

All ground instances of M that do not unify  with the 

All ground instances of M that unify with the head of a 
head of any clause in P. 

ground instance A + B, ,  * , B, and 
( B , ; * * , B , } n F S ( T )  f 0. 

Define H(P) as the set of  all positive literals L such that 
L is the head of a ground instance of a clause in P. We 
shall prove that H = H(P) - FS(T) is a model for P U {G}. 

We first show that H is a model of G by showing that H 
is a model of  all ground instances of G. Suppose that G 
is of the form +MI, - , M,. Let cp be a substitution such 
that (+MI, e ,  M,)cp is ground. First observe that 
{MI cp, * e ,  Mqq} n FS(T)  f 0, because otherwise T 
would not be a failed tree. Let io E [l, q] be such that 
M,cpEFS(T). 

Suppose that MBcp is negative, that is, of the form 1 A .  
Then P U {+A} has a successful SLDNF tree and, hence, 
A E H ( P )  and A $ F S ( T ) .  Hence, A EH, which  implies 
that H is a model of l ( M ,  Q A * A M,cp). Suppose that 
MiOp is positive. Then MiocpE FS(T)  immediately implies 
that Mi0q 4 H .  Hence, H is a model of l ( M ,  cp A - - - A  Mqcp). 
Therefore, H is a model for all  ground instances of G; 
hence, H is a model for G. 

be a clause of P. Let cp be a substitution such that 
(C+L,;..,l,,)cpis ground. If Ccp$FS(T),  then CcpEH 
and, hence, H is a model for (C + 4, * - ,  L,)cp. If 
C q E F S ( T ) ,  then(L,cp;..,L,cp}nFS(T) f 0. As 
previously proved for the goal,  we  may conclude that H 
is a model for (4, * - - , L,,)cp. Hence, H is a model for 

We  now show that H is a model of P. Let C + L , ; . . ,  L, 
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(C + L, , - * ,  L&. Therefore, H is a model of  all ground 
instances of all clauses of P .  Therefore, H is a model 
for P .  0 

Theorem 8 
Let P be a normal  program  and +Q be a normal  goal. If a 
is an answer to +Q from P computed by SLDNF, then 
there is an extension of C(P)  that contains VQa. 

Proof 
Let R be an SLDNF refutation from P U {+a} that 
computes a. Let D = { 4 , ,  * a ,  lL,,} be the set of negative 
literals selected in R .  We shall show that P U D is 
consistent. 

Indeed, for each i E [l, n], the SLDNF tree for P U {+Li} 
is finitely  failed. Hence, the SLDNF tree for 
P U {+L,, e ,  &} is finitely  failed. Therefore, by the 
previous theorem, P U (-4, e ,  I,,} is consistent; that is, 
P U D is consistent. 

Now, if P U D is consistent, then the normal default 
theory (4, P), where S, = {S, I 1 L  ED},  has exactly one 
extension. Moreover, R induces a refutation (using linear 
resolution) from P U D U {+Q} that still computes a. 
Hence, by [l], we know that P U D I = VQa. Since E = 
Th(P U D ) ,  we then have VQa € E .  Now, since D C C, by 
Theorem 3, there is an extension of c(P) = (C, P )  that 
contains VQa. 0 

V-soundness and 3-completeness with  respect to NFF 
defaults 
Let P be a normal  program and G be a normal  goal. To a 
first approximation, one may say that, if a ground-negative 
literal Tp(t) is canceled in  an SLDNF refutation from 
P U {G}, then it  is consistent with P. This assertion is  in 
principle warranted by the existence of a finitely  failed 
SLDNF tree T from P U {+p(t)}. However, close scrutiny 
reveals that it is false, since the construction of T may 
require canceling other negative literals; that is, it  may 
recursively invoke SLDNF. Hence, a better approximation 
would be to say that, if a ground-negative literal lp ( t )  is 
canceled, then it  is consistent with P and  with all other 
ground-negative literals that can be canceled. This 
recursive statement is  not paradoxical, and  it can be 
formulated in the context of the default logic interpretation 
m to mean that all defaults belonging to the set Np can be 
simultaneously fired. This implies that m ( P )  has a unique 
extension, which is our first result. 

Theorem 9 
Let P be a normal  program. Then, N ( P )  has a unique 
extension, which  is E = Th(P U Conseq(Np)). 

Proof 
We show that, for every default 8, ENp, +L is 
consistent with P U Conseq(Np). Hence, by Lemma 2, 
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E = nt(P u Conseq(Np)) is an extension of N ( P )  = (Np, P). 
Therefore, by the minimality of extensions (Theorem 2), 
since Np is the set of  all defaults of @ P ) ,  E is the only 
extension. 

Suppose that there is S, ENp such that +L is not 
consistent with P U Conseq(Np). Since this set contains 
only definite clauses, there is then an SLD refutation R 
from P U Conseq(Np) U {+L}. Let R be the sequence of 
goals obtained by replacing each occurrence of M in R 
with l M ,  for each barred literal 0 E Conseq(Np). Observe 
that M E Conseq(Np) iff M is ground and there is a finitely 
failed SLDNF tree for P U {+M}, by definition of Np. 
Hence, R is  an SLDNF refutation for P U {+L}. Therefore, 
there is no failed SLDNF tree for P U {+L}, which implies 
that 8, @Np, a contradiction. 0 

Theorem 10 (V-soundness of  SLDNF  with respect to fl) 
Let P be a normal  program and +Q be a normal  goal. Let 
E be the unique extension of m(P). If a is  an answer to 
4 from P computed by SLDNF, then Vaa belongs to E .  

Proof 
Suppose that a is an answer to +Q from P computed by 
SLDNF. Then, there is an SLDNF refutation R for 
P U {+a} such that a is the composition of the 
substitutions in R ,  restricted to the variables in Q. Let 
be the sequence of goals obtained by replacing each 
occurrence of 1 M  in R with M, for each  negated  literal 
1 M .  Since R is  an SLDNF refutation, if - I M  was canceled 
in R ,  then TM is  ground  and there is a finitely  failed 
SLDNF tree for P U {+M}. Hence, 8, ENp. Therefore, 
R is an SLD refutation from P u Conseq(Np) u {+a}. 
Moreover, R and R perform the same substitutions. Thus, 
a is also the composition of the substitutions in R ,  
restricted to the variables in a. Hence, we may 
conclude that P U Conseq(Np) t Vas, by Theorem 7.1 
of  [2] (soundness of SLD resolution). Since 
E = Th(P U Conseq(Np)), by Theorem 9, we  finally obtain 
that V a a  belongs to E .  0 

Theorem I1 ( 3-completeness of  SLDNF  with respect to fl) 
Let P be a normal  program and +Q be a normal  goal. Let 
E be the unique extension of m(P). Let a be an answer to 
4 from P .  If V a a  belongs to E ,  then there is an answer 
p to +Q from P computed by SLDNF such that p is  more 
general than a. 

Proof 
Suppose that a is an answer to +Q from P such that VGa 
belongs to E .  Then, since E = Th( P U Conseq(Np), a is 
in fact a correct answer to +a from P U Conseq(Np). By 
Theorem 8.6 of  [2] (completeness of SLD resolution), there 
is  an answer p to +a from P U Conseq(Np) computed by 
SLD such that p is  more general than a. We show that p 
is  an answer to +Q from P computed by SLDNF. 
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Let r? be an SLD refutation for P U Conseq(flp) U {+a} 
that computes p. As in the proof of Theorem 10, there is 
then an SLDNF refutation R for P U {+a} that computes 
p. Therefore, p is  an answer to +Q from P computed by 
SLDNF such that p is more general than a. 0 

V-soundness with respect to barred CWA defaults 
The results in the preceding subsection are somewhat 
unsatisfactory because the definition of NFF defaults 
refers directly to SLDNF. The results in this subsection, 
however, build  upon them to prove that SLDNF is 
V-sound with respect to c (with one proviso).  This  is a much 
more satisfactory situation, because provides a superior 
default logic interpretation for normal programs and goals, 
since defaults are defined independently of SLDNF. 

Let Ext(A) denote the set of  all extensions of a default 
theory A. 

Theorem 12 
Let P be a normal program. Let ,!? be the unique extension 
of N ( P ) .  Suppose that c(P) has at least one extension. 
Then, E C rl Ext(c(P)). 

Proof 
Suppose that c(P) has at least one extension, and let 
F be an extension of c(P). We shall prove that 
Np C Gen(F, c ( P ) ) .  Hence, E C F, which implies that 
E c n Ejct(C(P)). 

In fact, we prove that, if there is a finitely  failed SLDNF 
tree for P U {el}, then S, E Gen(F, c(P)) and, if there is 
an SLDNF refutation  for P U {el}, then S, $ Gen(F, c(P)). 
The proof is by induction  on the rank  (with respect to P) of 
the ground-negative  literals (see Section 2 for the definition 
of rank). 

Basis Let 1 L  be a ground-negative literal, and suppose 
that TL has rank 0 with respect to P. 

Case 1: There is an SLDNF refutation R for P U {+L} 
where no negative literal is selected. Then, R induces an 
SLD refutation I? for P U {+L}. Therefore, L E  Th(P) 
and, hence, LEF, which implies that 8, $ Gen(F, c(P)). 

P U {+L} where no negative literal is selected. We show 
that L $ F .  Hence, since S, C and F is  an extension 
of c(P) = (e, P), by Lemma 2, we have that 
8, E Gen(F, c(P)). 

Case 2: There is a finitely  failed SLDNF tree T for 

Suppose by contradiction that L E  F .  First observe that 
P U Conseq(Gen(F, c(P))) is a set of definite clauses 
and recall that F = Th(p U Conseq(Gen(F, c(P)))). 
Then, by the completeness of SLD resolution for 
definite clauses, there is an SLD refutation r? for 

356 P U Conseq(Gen(F, c(P))) U {+L}. Construct a 
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sequence of normal goals R by replacing each 
occurrence of m in I? with l M ,  for each barred literal 
a E Conseq(Gen(F, c(P))). Note that the last goal in R is 
the empty clause 0. Then, by construction of T, there is a 
branch p of T that corresponds to a prefix of R .  Let C be 
the goal  labeling the leaf of p. Since T has failed, C z 0; 
that is, C is  not the last goal  in R .  Let C, be the leftmost 
literal of C. Since 1 L  has rank 0, C, is  not a negative 
literal. Moreover, again as T has failed, C, does not  unify 
with the head of any clause in P. This is a contradiction, 
since C is not the last goal in R .  Therefore, L$F, as  was 
to be shown. 

Induction step Let i > 0. Suppose that the result holds 
for ground-negative literals with rank j < i. Let 1 L  be a 
ground-negative literal with rank i with respect to P. 

Case I: There is an SLDNF refutation R for P U { e l }  
where all negative literals selected have rank j < i. Let 
1 M  be a negative literal canceled in R .  Then, there is a 
finitely  failed SLDNF tree for p U {+M}. Hence, since 
- I M  has rank less than i, by the induction hypothesis, 
8, E Gen(F, c(P)). Then, R induces an SLD refutation r? 
for P U Conseq(Gen(F, c(P))) U {el}. Therefore, LE F, 
which implies that S, $ Gen(F, c(P)). 

P U {el} where all negative literals selected have rank 
j < i. We show that L $ F. Hence, since S, C c and F is 
an extension of c(P) = (E,  P), by Lemma 2, we have 
that S, E Gen(F, c(P)). 

Suppose by contradiction that L E F. First observe that 

Case 2: There is a finitely  failed SLDNF tree T for 

is U Conseq(Gen(F, c(P))) is a set of definite clauses, 
and recall that F = Th(p U Conseq(Gen(F, c(P)))). 
Then, by the completeness of SLD resolution for 
definite clauses, there is an SLD refutation r? for 
P U Conseq(Gen(F, c(P))) U {cL}. Construct a 
sequence of normal goals R by replacing each 
occurrence of  in r? with l M ,  for each barred literal 

E Conseq(Gen(F, c (P) ) ) .  Note that the last goal  in R is 
the empty clause 0. Then, by construction of T,  there is a 
branch p of T that corresponds to a prefix of R .  Let C be 
the goal  labeling the leaf  of 0. Since T has failed, C # 0; 
that is, C is not the last goal  in R .  

Let C, be the leftmost literal of C. Suppose that C, is 
positive. Then, C, can be canceled with the head of some 
clause in P, since C is  not the last goal  in R .  But, in this 
case, p can be extended further, contradicting the 
assumption that T has finitely  failed. 

1 D .  Since r? does not terminate in E ,  the literal 
was canceled with the head of some clause in 
P U Conseq(Gen(F, c(P))). By construction of P, 
this clause cannot be in P. Hence, we have that 

Suppose now that C, is a negative literal of the form 

- 
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E Conseq(Gen(F, c(P))); that is, S, E Gen(F, c(P)). On 
the other hand, since T has finitely  failed and C is a leaf  of 
T ,  there must be an SLDNF refutation from P U {+D}. 
Moreover, TD has rank j < if Hence, by the induction 
hypothesis, S, 4 Gen(F, c(P)), a contradiction. Hence, 
LeF, as was to be shown. 0 

Corollary 2 (Wsoundness of SLDNF  with respect to 6 
Let P be a normal  program  and +Q be a normal  goal. 
Suppose that c(P) has at least one extension. If a is an 
answer to cQ from P computed by SLDNF, then all 
extensions of C(P) contain v&. 

Proof 
The proof  follows  from Theorem 10 and Theorem 12. 0 

Note that, to apply this theorem, we must  first prove 
that c(P) has at least one extension. This condition is 
necessary essentially because the construction of an 
SLDNF refutation is a local process, in the sense that one 
is required to exhibit a finitely  failed SLDNF tree only for 
the ground-negative literals that are selected. On the other 
hand, the construction of extensions for c(P) is a global 
process where all cWA defaults are candidates for firing. 
The next example illustrates this point. 

Example 4 
Suppose that the only predicate symbols are p and q, and 
that both are unary. Also, assume that a is the only 
constant. Then, the cWA defaults are 8, = (:lp(a)/p(a)) 
and 8, = (:lq(a)/tj(a)). 

Let P = {p(a) + 7p(a)} and Q = +q(a). 
Then, c(P) = ({S,, S,}, P) has no extension, because S, 

and p(a) c p(a) block the existence of any extension. 
However, there is an SLDNF refutation R from P U {a}, 

since there is a finitely  failed SLDNF tree for P U {eq(a)}. 
Note that the fact that there is no SLDNF tree for 
P U {+p(a)} obviously has no  effect  on the construction of 
R ,  since -p(a) is never selected. 

A possible solution to this problem  would be to modify 
the definition of extension to allow the discarding of 
defaults when constructing extensions. This alternative is 
explored in [lo]. We address a different alternative in the 
next subsection. 

The role of stratification 
We prove in this subsection that c maps stratified normal 
programs [ l l ]  into default theories that have exactly one 
extension. Therefore, the proviso of Corollary 2 may  be 
replaced by stratification. 

Let ps(L) denote the predicate symbol of the literal L. 
The following  definitions are from [2]. 

Definition 9 
A level mapping for a normal  program P is a mapping A 
from the set of predicate symbols of P into the non- 
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negative integers. We refer to the level of a predicate 
symbol s as A(s). 

Definition IO 
A normal  program P is stratified iff P has a level mapping 
such that, for every program clause A +- L, , - * * , L,,, in P, for 
l s i s m :  

1. A(ps(L,)) 5 A(ps(A)), if Li is a positive literal. 
2. A(ps(Li)). < A(ps(A)), if Li is a negative literal. 

Definition 1 I 
Let P be a stratified normal program. 

(a) The relation < over the predicate symbols occurring in 
P is defined as follows: 

s, < s, iff A(s,) < A(s,), for every level mapping A for P. 

(b) The canonical level mapping for P is the level mapping 
K~ defined as 

Kp(%) = #{s, I s, < s, 
and s, is a predicate symbol occurring in P}, 

for each predicate symbols s, occurring in P. 

A relation among predicate symbols on stratified normal 
programs similar to < can be  found  in [5]. Note that 
s, < s, iff %(s,) < %(s,). Clearly, since P is stratified, the 
relation < and the canonical level mapping for P are well 
defined. The following  lemma  follows directly from the 
definition of stratification. 

Lemma 3 
Let P be a stratified normal program. Let A and B be sets 
of barred literals. If there is a nonbarred literal L such that 
L E  Th(p U A )  - Th(P U B ) ,  then there exists a barred 
literal M such that E Th(P U A )  - Th(P U B )  and 
PS(M) < PS(L). 

Proof 
Let L be a nonbarred literal such that LE Th(P U A )  - 
Th(P U B ) .  Thus, we have P U A  t L and P U B  f L. Then 
there is a set A ’ L A  such that A ’ # 0 and whose 
elements are effectively used in the deduction of L. As 
P U B f L , w e o b t a i n A f - B # O . T h e n l e t M E A ’ - B .  
Clearly, since M is used in the deduction of L, we have 

We are now ready to state the main theorem of this 
PS(M) < PS(L). 0 

subsection. 

Lemma 4 
Let P be a stratified normal  program. Then, c(P) has 
exactly one extension. 
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Proof 
We first prove  that c(P) has  at  most  one  extension. 
Suppose,  by  contradiction,  that c(P) has two extensions, 
E and F. Then,  by  Lemma 2, E = Th(p  U {L I 8, Et? A 
L$E}) a n d F  = Th(pU{L I6,ECA L$F}) .  Since 
E # F , w e h a v e t h a t ( E - F ) U ( F - E ) # D . L e t M b e  
the  set of all predicate  symbols s of barred literals L such 
that L E (E  - F )  U ( F  - E). Let so be  one of the minimal 
elements of M with  respect  to  the relation <. Let 
Lo  E (E - F )  U ( F  -E) such  that ps(L0) = so. Without 
loss of generality, suppose  that Lo E (E - F ) .  Then,  by 
Theorem 5(d), Lo E F and Lo $ E .  By the  previous lemma, 
there is then a barred literal 4 such  that E F and 5 $ E, 
and ps(4) < ps(L,) = so, a contradiction,  since  we  have 
assumed  that so is minimal in M .  Hence,  since  we  obtain 
L E  E iff E F, we  conclude  that E = F. 

- 

- 

We  now  prove  that c(P) has  at  least  one  extension.  Let 

co = Th(P);  

C,,, = Th(CiU{rI %@s(L)) = i and L$Ci}), for  each i 2 0, 

and 

D, = {S,l ~,(ps(L)) = i and L$Ci}, for each i > 0. 

Let E = uCi, D’ = uDi, and D” = (6, I 6,EC and 
L$E}. 

By a simple  induction, we  obtain E = 
Th(P U Conseq(D‘)). Thus,  we shall prove  that E is  an 
extension of c(P), by showing that D’ = D“. Indeed, if 
D’ = D”, since E = Th(p  U Conseq(D’)), we  have  that 
E = Th(p  U Conseq(D”)), which implies that E is an 
extension of c(P), by  Lemma 2(a). 

6, $ D ’ ,  then, taking i = ~,(ps(L)), we  have  that L E  C,, 
which implies that L E  E and  that 6, $ Dl’. Hence, 
D” C D r .  

We first prove  that D“ C D ’ .  Recall that 8, = (:7L/L). If 

We  now  prove  that D’ C D”. Suppose  by  contradiction 
that D’ - D” # 0 and  let 6, ED’ - D“. Hence, taking 
i = ~,(ps(L)), we  have  that L$  Ci and L E  E. Therefore, 
there  exists j > i such  that L E  Ci, by definition of E. But 
we  can  also  prove  that 

Cj = Th U u  Conseq(D,) . i ’-I k=i i 
i ”I k = i  1 

Hence,  we  have  that 

L E Th Ci Uu Conseq(D,) - Th(CJ. 

But, by  Lemma 3, there is M such  that 

j-1 
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and 

K,(ps(M)) < K,(ps(L)) = i, 

a contradiction,  since ~,(ps(M)) < i and M $ Th(Ci). Then, 
D’ = D”. 0 

We  then immediately obtain  Corollary 3. 

Corollary 3 
Let P be a stratified  normal  program and +Q be a normal 
goal. If a is an  answer  to 4 from P computed  by 
SLDNF,  then  the  only  extension of c(P) contains V b .  

Proof 
The proof follows from  Theorem 10, Theorem 12, and 
Lemma 4. 0 

This  last result  implies that  SLDNF  is V-sound with 
respect  to e, in a very  special  sense,  for  the  class of 
stratified  normal  programs. 

5. Conclusions 
We  have  described in this  paper default logic 
interpretations  for normal programs  that provide  an 
intuitive  justification for SLDNF resolution. We  prove  that 
SLDNF resolution is strongly  sound (V-sound) with 
respect  to  the  interpretation e, provided that  the resulting 
default theories had at  least  one  extension. We have  also 
shown  that  this  proviso  can  be replaced by stratification, 
the  requirement usually adopted in alternative  semantics 
for normal  programs. 

References 
1. M. A. Casanova, F. A. C. Giorno, and A. L. Furtado, 

Programa@o em Lbgica e a Linguagem Prolog, 
Bliicher Publishing, SLo Paulo, Brazil, 1987. 

Springer-Verlag, New York, 1987. 

Databases, H. Gallaire and J. Minker, Eds., Plenum 
Press, New York, 1978. 

4. R. Reiter, “On Closed World Databases,” Logic and 
Databases, H. Gallaire and J. Minker, Eds., Plenum 
Press, New York, 1978. 

5 .  T.  C. Przymusinski, “On the Declarative Semantics of 
Stratified Deductive Databases and Logic Programs,” 
Foundations of Deductive Databases and Logic 
Programming, J. Minker, Ed., Morgan Kaufmann, Los 
Altos, CA, 1988,  Ch. 5. 

6 .  H. Przymusinski and T. C. Przymusinski, “Semantic 
Issues in Deductive Databases and Logic Programs,” 
Technical Report, Department of Computer Science, 
University of Texas at El Paso. 

7. N. Bidoit  and C. Froidevaux, “General Logical Databases 
and Programs: Default Logic Semantics and 
Stratification,” Technical  Repot? L.R.I.  U.A. 410, CNRS, 
UniversitC Paris Sud, Paris. 

8. R. Reiter, “A Logic for Default Reasoning,” Artif. Intell. 
13, 81-132  (1980). 

9. M. Gelfond  and V. Lifschitz, “The Stable Model 
Semantics for Logic Programming,” Proceedings of the 
Fifh Logic Programming Symposium, R. Kowalski and 

2. J. W. Lloyd, Foundations of Logic Programming, 2nd ed., 

3. K. L. Clark, “Negation as Failure,” Logic and 

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992 



K. Bowen, Eds., Association for Logic Programming, MIT 
Press, Cambridge, MA, 1988,  pp.  1070-1080. 

Hemerly, “Contributions to a Proof Theory for Generic 
Defaults,” Proceedings of the 9th  European Conference 
on Artijicial Intelligence, Stockholm, Sweden, 1990,  pp. 
213-218. 

Theory of a Declarative Knowledge,” Foundations  of 
Deductive Databases and Logic Programming, J. Minker, 
Ed., Morgan Kaufmann, Los Altos, CA,  1988,  Ch. 2. 

10.  R.  A. de  T. Guerreiro, M. A. Casanova, and A. S .  

11. K. R. Apt, H. A. Blair, and A. Walker, “Towards a 

Marco  Antonio  Casanova ZBM Brasil, Rio Scientific 
Center, Av. Pres. Vargas, 824122 andar, 20.071-001, 
Rio de Janeiro, M, Brasil (CASANOVA at  RZOWSC, 
casanova@vnet.ibm.com). Dr. Casanova received a BSc. 
in electronic engineering from the Military Institute of 
Engineering of Brazil in  1974,  an M A .  in computer science 
from the Pontifical Catholic University of Rio de Janeiro in 
1976,  and a Ph.D.  in applied mathematics from Harvard 
University in  1979. In November 1982,  he joined the IBM 
Brazil Scientific Center, where he is now a Research Manager. 
From 1980 to 1982,  he was Assistant Professor at  the 
Department of Informatics of the Catholic University in Rio, 

Received September 26, 1990; accepted for publication the year 1981-1982. Dr. Casanova is author of the book f i e  
where he also acted as Graduate Program Coordinator during 

November 6, 1991 Concurrency Control Problem for Database  Systems, 
published by Springer-Verlag; he is a co-author of the books 
(in Portuguese) Principles of Dktributed Database Systems, 
Logic Programming and Prolog, and Fundamentals of 
Multimedia Systems. He has also published several technical 
papers in international scientific journals. His academic 
interests include database theory, database management 
systems, and  logic  programming. 

Andrea  Silva  Hemerly ZBM Brasil, Rio Scientific Center, 
Av. Pres. Vargas, 824122 andar,  20.071-001, RW de Janeiro, 
M, Brasil  (ANDREASZ at RZOVMSC, andrea@vnet.ibm.com). 
Ms. Hemerly received a B.Sc.  in  civil engineering 
from the University of Espirito Santo, Brazil, and  an  M.Sc.  in 
computer science from the Pontifical Catholic University of 
Rio de Janeiro; she is currently completing requirements for a 
D.Sc. at the Catholic University. In Decemtyr 1988, she 
joined the IBM Brazil Rio Scientific Center, where she is now 
a Researcher. Her academic interests include database, logic 
programming,  and  artificial intelligence; she has published 
several technical papers in international scientific journals. 

Ramiro  Affonso de Tadeu Guerreiro ZBM Brasil, 
Industria, Maquinas e Services Ltd., Av. Pasteur 138-146, 
URCA, Rio de Janeiro, M, B r a d   ( W Z R O G  at RIOSYSl, 
ramirog@riosysl. vnet.ibm. corn). Dr. Guerreiro received a 
B.Sc.  in metallurgical engineering from the Military Institute of 
Engineering, Brazil,  in  1981, an M.Sc.  in mathematics from 
the Pure and  Applied Mathematics Institute, IMPA,  in  1982, 
and a D.Sc. in computer science from the Pontifical Catholic 
University of Rio de Janeiro in  1990. In August 1983  he joined 
IBM Brazil, where he is now a Marketing Specialist for 
Customer Information Systems-Latin America. From 1987 
to 1991,  Dr. Guerreiro was a Researcher at the IBM  Rio 
Scientific Center. His academic interests include logic, 
artificial intelligence, and database theory; he has published 
several technical papers in international scientific journals. 

359 

IBM J. RES. DEVELQP. VOL. 36 NO. 3 MAY 1992 M. A. CASANOVA, A. S. HEMERLY, P IND R. A. de T. GUERREIRO 


