Explaining
SLDNF
resolution

with non-
normal defaults

M. A. Casanova
A. S. Hemerly
R. A. de T. Guerreiro

by

This paper defines a default logic
interpretation for normal programs that has the
following major characteristics. First, it directly
captures the true nature of SLDNF resolution
as an extension of SLD resolution. Second, it
is semantically convincing, but it requires
neither an elaborated nonstandard
interpretation nor a radical rewriting of the
program clauses that would make it difficult to
understand their meaning. Last, it extends
known resuits for stratified normal programs
to programs that satisfy a weaker condition.

1. Introduction

The basis for the vast majority of logic programming
systems is a refutation method, called SLD (Structured
Logic Design) resolution [1, 2], which accepts only definite
programs whose clauses do not admit negative literals in
their body. When one relaxes this restriction and switches
to so-called normal programs, the refutation method
usually adopted becomes SLDNF (SLD with Negation by
Failure) resolution, which extends SLD resolution with the
negation-by-finite-failure (NFF) rule [3]. Roughly, the NFF
rule states that a negative literal —L should be canceled
from the body of a clause if the query «L fails finitely in
the presence of the program clauses.

We note at least three important and distinct
characteristics of the NFF rule: NFF is easy to implement
in Prolog systems; NFF is a nonmonotonic rule justified on
the grounds of the so-called ““Closed-World Assumption”
(CWA) [4]; and it is very difficult to define a semantics for
normal programs for which SLDNF resolution is sound
and complete. The first characteristic is undoubtedly the
greatest argument in favor of the adoption of the NFF
rule. The second characteristic can be taken either in favor
of or against the use of NFF, depending on whether the
CWA holds for the application in question.

The third characteristic can best be examined with the
help of a very simple example. Consider the question of
expressing a disjunction p V q as a program clause. If we
naively take the symbol < to mean (reverse) implication
and — to mean true negation, then the formula p V q and "
the clauses p <~ —q and q «—p are all equivalent. But
this equivalence is false, because negated literals are
treated by the NFF rule. Indeed, let P, = {p < —q} and
P, = {q< —p} be two normal programs. Let Q be the
query <p. Then, in an extended Prolog system, the
answer of Q to P, will be TRUE, whereas the answer of
Q to P, will be FALSE.

This apparently incorrect behavior will certainly shock
naive Prolog users, but it can be explained by resorting,
for example, to Clark’s theory of program completion [3].
Indeed, denote by comp(S) the completion of a program

©Copyright 1992 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

347

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

348

S. Then, comp(P,) = {p<+—q, —q} and comp(P,) =

{q < —p, —p}. Hence, p is indeed a logical consequence of
comp(P,) but not of comp(P,), which correctly explains the
previous answers, and also justifies the bizarre behavior of
extended Prolog systems.

From this simple discussion, it becomes clear that,
although NFF indeed extends in some sense the
expressiveness of pure Prolog systems, it greatly
complicates the theory, to the point of raising serious
questions with respect to basic soundness.

The goal of this paper is to use defaults to provide a
simple and intuitive explanation for SLDNF. The natural
choice would be to use CWA defaults, that is, defaults of
the form (:—L/—L), where —L is a ground-negative literal.
However, CWA defaults create certain problems, as
discussed in Section 3, and are then replaced by another
class of defaults, called barred CWA defaults, that offer
the following advantages. First, they directly capture the
true nature of SLDNF as an extension of SLD resolution.
Second, they are semantically convincing, as proved at the
end of Section 3, but they require neither an elaborated
nonstandard semantics nor a radical rewriting of the
program clauses that would make it difficult to understand
their meaning. Finally, the semantics induced by barred
CWA defaults coincides with known results for stratified
programs, but it ““captures more,”’ since the basic result
described in Section 3 requires a condition weaker than
stratification.

Alternative semantics for normal programs that account
for SLDNF resolution have been extensively investigated.
Comprehensive surveys can be found in [5, 6]. The closest
approach to ours is that taken in [7}, which also maps
normal programs into default theories. However, their
mapping is far more complex than ours, and they
investigate only the case of stratified programs.

This paper is organized as follows. Section 2 reviews the
basic concept of default theory and SLDNF resolution that
we need in the paper. Section 3 describes the default
interpretation we use to explain SLDNF resolution.
Section 4 proves the major results of the paper. Finally,
Section 5 contains the conclusions.

2. Preliminaries

® Defaults
We review in this section some basic concepts of default
logic. A detailed development can be found in [8].

A default is an expression of the form (a: 8, - -, B /w),
where @, B,,* * *, B,, and w are all first-order formulas. The
formulas a and w are called, respectively, the prerequisite
and the consequent of the default, whereas the formulas
B, -+, B, are called the justifications. A default is closed
iff @, B,,* -+, B, and o are sentences, that is, first-order

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

formulas with no free variables. Otherwise, the default is
open. A normal default is a default of the form (a: w/w).

For the purposes of this paper, it is also important to
recall that a CWA default is a default of the form
(:—mA/—A), where A is a ground-atomic formula over the
first-order language in question.

A default theory is a pair A = (D, W), where D is a
set of defaults and W is a set of first-order sentences. A
default theory is open, closed, or normal iff D is a set of
open, closed, or normal defaults.

A default theory is associated with a set of first-order
theories, its extensions. The following theorem
characterizes extensions as proposed in Theorem 2.1 of [8].

Theorem 1
Let E be a set of sentences and let A= (D, W) be a
default theory. Define E, = W and, for i = 0,

Bp"', ﬁm
—_—c

a.
E,., = Th(E) U {w| D,

w

where ¢ €E and -8, - ',—|ﬂr,,¢E]-

Then, E is an extension for A iff

E=J E,.

i=0
Given a default theory A = (D, W) and an extension E of
A, the set of generating defaults for E with respect to A is

Gen(E, A)

a:B, B
= {# €D |a€E and =By ',—|Bm¢E} .
w
Given a set of defaults D, we also define Conseg(D) as the
set of the consequents and Prereg(D) as the set of the
prerequisites of the defaults in D.

Lemma 1
Suppose that E is an extension of a default theory
A = (D,W). Then

E = Th(W U Conseq(Gen(E, A))).

Corollary 1
Let A = (D, W) be a default theory.

(a) A has an inconsistent extension iff W is inconsistent.
(b) If A has an inconsistent extension, then that is its only
extension.

Theorem 2 (Minimality of extensions)

Let A = (D, W) be a default theory. If E and F are
extensions of A and if ECF, then E=F.

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

Theorem 3 (Semimonotonicity of normal default theories)
Let A = (D, W) and A’ = (D', W) be two normal default
theories such that D’ C D. For every extension E' of A’,
there is an extension E of A such that E' CE.

® SLD and SLDNF resolution

In this section we briefly review SLD resolution and
SLDNF resolution (abbreviated SLD and SLDNF). The
reader familiar with [2, Ch. 3] may skip directly to
Section 3.

We first recall some concepts directly related to SLD.
An expression of the form A<B,,- -+, B is a definite
clause iff A, B,,- - -, B, are positive literals. An expression
of the form «B,,- -+, B, is a goal iff B,,- - -, B, are positive
literals. The literals B, - - -, B, are called the body of the
definite clause or the goal, and the literal A is called the
head of the definite clause. The empty clause [is also
considered to be a goal. A program is a set of definite
clauses. Note that a goal <B,,- -+, B, represents the
negation of B, A--- AB,. We refer the reader to [2] for the
definitions of SLD refutation and SLD tree. In particular,
we assume through the examples that the selection
function always selects the leftmost literal.

In what follows, we denote the universal (or existential)
closure of a formula F by VF (or 3F).

Let P be a program and G be a goal of the form
«B,,-+,B,. An answer to G from P is a substitution for
the variables occurring in G. An answer « to G from P is
correct iff V(B, A\ - - AB) is a logical consequence of P.
An answer «a is more general than an answer B iff there is
a substitution y such that g is the composition of a with y.
Finally, an answer a to G from P is computed by SLD iff
there is an SLD refutation R from P U {G} such that « is
the composition of the substitutions used in R, restricted
to the variables in G.

SLD correctly computes answers in the following sense.

Theorem 4 (Soundness and completeness of SLD with
respect to answers) [2]

(a) If a is an answer to a goal G from a program P which
is computed by SLD, then « is correct.

(b) If a is a correct answer to a goal G from a program P,
then there is an answer 8 to G from P computed by
SLD which is more general than a.

SLDNF extends SLD to cope with negative literals and,
hence, is set in a slightly different context. Briefly, a
program clause and a normal goal are defined similarly to
definite clauses and goals, except that the literals in the
body may be both positive and negative. A normal
program is a set of program clauses.

We again refer the reader to [2] for the definitions of
SLDNF refutation and SLDNF tree. We just recall here

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

that the process of constructing an SLDNF refutation or
an SLDNF tree from P U {G} will succeed only if, for
every negative literal —p(t) that is selected,

e —p(t) is ground.

e There is a finitely failed SLDNF tree for P U {<p(t)}, in
which case —p(t) was canceled, or there is an SLDNF
refutation from P U {«-p(t)}, in which case —p(t) was not
canceled.

The notions of answer and computed answer extend
directly to the context of SLDNF. However, the notion
of correct answer does not, because it has long been
recognized that the first-order reading of normal programs
is not compatible with SLDNF; that is, SLDNF computes
incorrect answers if we identify a program clause of the
form A< B,,- - -, B, with the formula V(B, A---AB, > A),
and similarly for goals. Extending Theorem 4 above to
SLDNEF is in fact the major theme of this paper.

The key advantage of SLDNF is that it is
straightforward to implement by extending a processor
based on SLD, such as a standard Prolog interpreter.
However, the way SLDNF processes negative literals has
some special characteristics that we highlight in the rest of
this section.

We begin by emphasizing that SLDNF is an inherently
recursive process in the sense that, to construct an
SLDNF refutation or an SLDNF tree, one may have to
build other SLDNF refutations and trees. But the process
does not involve self-loops; that is, if an SLDNF tree T
(or refutation) is required during the construction of another
SLDNF tree T’ (or refutation), then 7" is not required to
build T. Thus, it is possible to define a rank for ground-
negative literals with respect to a given normal program P
as follows. For every ground-negative literal —p(t),

(a) —p(t) has rank 0 with respect to P iff there is either a
finitely failed SLDNF tree or an SLDNF refutation
from P U {«<p(t)} where no negative literal is selected.

(b) —p(t) has rank k + 1 with respect to P iff there is either
a finitely failed SLDNF tree or an SLDNF refutation
from P U {«p(t)} where all negative literals that are
selected are ground and have rank less than or equal to
k, and at least one has rank k.

Thus, we may consider that the canceling of a negative
literal proceeds in stages according to the rank of selected
negative literals.

The search for an SLDNF refutation from a program
and a goal may fail for many reasons, such as when an
open negative literal is selected at any depth of the
recursion, or when the process of canceling a negative
literal diverges either because an infinite branch of a tree is

reached or because an infinite number of trees is required. 349

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

350

<—7(a) @q(’f(a)) <p(f(a) <q(f(f(@))
< —aq(f(a) < —p(f(a)) < —qf(f(a)) < -pff@))
We conclude this section with a very simple example of Definition 2

this last phenomenon.

Example 1
Let P be the normal program (clauses 1 and 2) and G be
the normal goal (clause 3) below:

1. pX) <—q(f(x)).
2. g(x) «—p(x).
3. «<—p(a).

There is no SLDNF refutation from P U {G} essentially
because, if one tries to build an SLDNF tree from

P U{<p(a)}, one will have to build a tree from

P U{<q(f(a))}, and from P U {«p(f(a))}, and from

P U {<q(f(f(a)))}, and so on (see the box above).

3. Three default logic interpretations for
normal programs and goals
In Section 2 we stressed that SLDNF has the flavor of a
procedural method that may invoke itself recursively. As a
consequence, there is little hope of defining clean
semantics for normal programs and goals for which
SLDNF is complete except, perhaps, for special classes of
normal programs and goals. Therefore, we direct our
efforts toward obtaining semantics which explain (the
soundness of) SLDNF resolution as tightly as possible, but
which do not directly reflect the procedural nature of the
method.

We list the definitions and simple lemmas in this section,
leaving the proofs of the more important results to
Section 4.

® Basic definitions
We provide semantics for normal programs and goals
indirectly by interpreting them into default logic. The
definitions in this section convey the general idea.

In what follows, if A is a conjunction of literals
A A--AA,, let A indicate the existential closure of A
and <A indicate the goal «<A,, -+, A,.
Definition 1
A default logic interpretation for normal programs and
goals is a function ® that maps each normal program P’
into a default theory ®(P) and each conjunction of literals
A into a formula ®(A).

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

Let ® be a default logic interpretation for normal programs
and goals.

(a) SLDNEF is 3-sound with respect to @ iff, for every
normal program P and every normal goal «Q, for
every answer o to <Q from P, if a is computed by
SLDNF, then there is an extension of ®(P) containing
Vo(Q)a.

(b) SLDNF is V-sound with respect to ® iff, for every
normal program P and every normal goal «<Q, for
every answer a to «<Q from P, if « is computed by
SLDNEF, then every extension of ®(P) contains
Vo(Q)a.

Definition 3
Let ® be a default logic interpretation for normal programs
and goals.

(a) SLDNF is 3-complete with respect to ® iff, for every
normal program P and every normal goal <A, for
every answer « to <Q from P, if there is an extension
of ®(P) that contains Y®(Q)a, then there is an answer
B to «Q from P computed by SLDNF such that g is
‘more general than a.

(b) SLDNF is V-complete with respect to @ iff, for every
normal program P and every normal goal <A, for
every answer « to «<Q from P, if every extension of
®(P) contains V®(Q)e, then there is an answer B to
«Q from P computed by SLDNF such that g is more
general than a.

Note that the prefixes V- and 3- suggest how the
extensions are quantified in the above definitions. Also
observe that V-soundness is a more stringent notion than
3-soundness, but V-completeness is less restrictive than
3-completeness. Hence, one should strive to find a natural
default logic interpretation for normal programs and goals
for which SLDNF is V-sound and, hopefully, 3-complete.
We leave to later subsections the definition of the
interpretations we consider, limiting ourselves in the next
subsection to indicating why CWA defaults do not provide
an appropriate basis.

® An interpretation based on CWA defaults

A natural strategy to explain SLDNF in terms of default
logic would be to define an interpretation that maps each

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

normal program into the closed normal default theory
whose defaults are the CWA defaults. More precisely:

Definition 4 (Default logic interpretation C)

C is the interpretation that maps each normal program P
into the default theory C(P) = (C, P), where C is the set of
all CWA defaults over the underlying alphabet, and that
maps each conjunction of literals into itself.

However, SLDNF is not V-sound with respect to C
essentially because, on one hand, default logic requires
using the standard first-order semantics when reasoning
about the extensions of a default theory, but, on the other
hand, SLDNF is incompatible with the first-order reading
of normal clauses and goals. The following example
illustrates this point well.

Example 2
Let P be the normal program and G be the normal goal
defined by the clauses below:

1. g(a) «—p(a) P
2. «-p(a) .G

Assume that the only nonlogical symbols of the underlying
first-order language are the constant a and the two unary
predicate symbols p and q.

Then, there is an SLDNF refutation R from P U {G}
consisting of G followed by the empty clause. Moreover,
the answer computed by R is the empty substitution &.

However, if we adopt the standard first-order reading,
clause 1 is equivalent to the first-order sentence
q(a) V p(a). Then, C(P) = (C, P) has just two extensions,
one containing p(a) and —q(a), viz., that generated by
firing the default (:-~q(a)/—q(a)), and one containing q(a)
and —p(a), viz., that generated by firing the default
(:—p(@)/—p(a)).

Hence, SLDNF is not V-sound with respect to C, since
—p(a) does not belong to both extensions.

® An interpretation based on barred CWA defaults

We introduce in this subsection a default logic
interpretation for normal programs for which SLDNF is
V-sound. The general idea is to treat a predicate symbol
preceded by — as the name of a different predicate
symbol. Thus, —p(t) in principle does not denote the
negation of p(t). To emphasize this aspect, we transform
every negative literal —p(f) into the barred literal p(t) and
propagate this transformation to normal programs and
goals. However, a ground-negative literal —p(t) and its
barred transform p(t) remain related by the CWA default
(:—p(t)/p(t)), which intuitively says to accept p(t) as valid if
it is consistent to assume —p(t). Finally, we define the
interpretation C, which maps a normal program P into the
default theory C(P) = (C, P), where C is the set of all CWA

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

defaults over the underlying alphabet and P is the barred
transform of P, and which maps each conjunction of
literals into its barred transform.

We give precise definitions below for these concepts,
and show that barred literals in some sense behave as
negated literals in the context of CWA defaults. We then
show in Section 4 that SLDNF is V-sound with respect to
C. All definitions that follow are relative to a fixed first-
order alphabet 4.

Definition 5

(a) The barred augmented alphabet corresponding to A4,
denoted by A, is obtained by adding to 4 the new
symbol P as an n-ary predicate symbol, for each n-ary
predicate symbol p in 4.

(b) A positive literal M over A4 is a barred literal iff M is of
the form p(t). A positive literal M over 4 is a positive
nonbarred literal iff M is of the form p(t).

(c) A positive literal M over 4 is the barred complement of
a positive literal L over A iff M is of the form p(t) and L
is of the form p(t). The barred complement of L is
denoted by L.

(d) The barred transform of a negative literal over A of the
form —p(t) is the literal p(t) over 4.

(e) Let P be a program clause (respectively, a normal goal,
a conjunction of literals, or a set of program clauses).
The barred transform of P, denoted by |3, is the
definite clause (respectively, the goal, the conjunction
of literals, or the set of definite clauses) obtained by
replacing each occurrence in P of a negative literal
with its barred transform.

(f) A CWA default is a closed, non-normal default of the
form (:—L/L), denoted by 8 , where L is a ground-
positive nonbarred literal and L is the barred
complement of L. We also say that —L is the
justification and that L is the consequent of (:—L/L).
We denote the set of all CWA defaults by C.

Definition 6 (Default logic interpretation C)
€ is the interpretation that maps each normal program P
into the default theory C(P) = (T, P), where C is the set of
all CWA defaults over the underlying alphabet and P is the
barred transform of P, and that maps each conjunction of
literals A into its barred transform A.

The following example, which should be compared with

Example 2, illustrates the interpretation C.

Example 3 _
Let P and G be as in_Example 2. Then, P is the {definite
clause) program and G is the goal defined by the clauses

below:
1. q(a) < p(a) P
2. «<p(a) .G 351

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

352

Recall from Example 2 that p and g are the only predicate
symbols and that a is the only constant, by assumption.
Also recall that the empty substitution ¢ is an answer
computed by SLDNF [therefore, the universal closure of
—p(a)e is simply —p(a)].

Now, C(P) = (C, P) has just one extension E, which is
generated by firing the default 5p = (:—p(a)/p(a)), but not
the default §, = (:—q(a)/q(a)). Indeed, nothing prevents the
default §, from firing, which means that any extension of
C(P) must contain p(a) and, hence, g(a), in view of clause 1.
But this in turn implies that §, can never be fired.

Note that, since C(—p(a)) = p(a), since the universal
closure of p(a)e is equivalent to p(a), and since E contains
p(a), E also contains the universal closure of C(—p(a))e.
Therefore, P and G are not a counterexample for the
V-soundness of SLDNF with respect to T, whereas they
are for the V-soundness of SLDNF with respect to C.

Furthermore, observe that, when compared with
Example 2, the only change is that clause 1 in P, after the
transformation induced by T, becomes the first-order
equivalent of the sentence q(a) V —p(a), whereas, after the
transformation induced by C, it was the first-order
equivalent of the sentence q(a) \V p(a).

We now state two properties of C that we will need to
prove the main results in Section 4. They follow directly
from theorems stated in the subsection on defaults.

Lemma 2
Let P be a normal program.

(a) A set E of sentences over 4 is an extension of C(P) iff
E = Th(PUT), where T = {L | (—L/L)e€ A L&E).

(b) C(P) has no inconsistent extension.
Proof

(a) From Theorem 1, we know that E is an extension
of C(P) iff E = E,UE, UE,, where E, = P,
E =ThE)UT, and E, = Th(E,), since
Th(E,) = Th(Th(E,)) = Th(E,). Therefore,
E = Th(TR(P)UT) = TR(PUT).

(b) Since P is a set of definite clauses, it is always
consistent; hence, the lemma follows from Corollary

1. 0O

The next list of results provides a semantic justification
for the transformation C.

Given a set of sentences or a set of clauses S, we
denote by By the Herbrand base for S. Also, given a set of
definite clauses D, we denote by M(D) the unique minimal
Herbrand model of D and by T, the mapping that takes
each Herbrand interpretation I of D into the Herbrand
interpretation

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

T,I) = {A€B,|A<A,,--+ A is a ground instance
of a clause in D and {A,,*++,A } C1}.

Theorem 5
Let P be a normal program and E be an extension of C(P).
Let

T={|(-LLHEC ALEE}andQ=PUT.

(a) E has a unique minimal Herbrand model M(E).

(b) NEE iff N € M(E), for any ground-positive literal
(barred or not) N.

(¢c) BET, 1 wiff BET, for any ground-positive barred
literal B.

(d) LEE iff L¢ E, for any ground-positive nonbarred
literal L.

(e) M(E) satisfies —L iff L € M(E), for any ground-positive
nonbarred literal L.

(f) M(E) is a model of P.

Proof

(a) Q has a unique minimal Herbrand model, since Q is a
set of definite clauses, and so does E, since E =
Th(Q), by Lemma 2 and the definition of Q.

(b) Let N be a ground-positive literal (barred or not).
Then,

NEE iff Q=N by Lemma 2 and definition of Q,
iff NEM(Q) by Theorem 6.2 of [2],
since NEB,, and
iff NEM(E) since M(Q) = M(E), by Lemma 2
and the definition of Q.

(c) Let B be a ground-positive barred literal. Then,
BET, T wiff BET, because B cannot be the head of
any ground instance of a clause in P, since the program
clauses in P cannot have negative literals as their
heads.

(d) Let L be a ground-positive nonbarred literal. Then,

LEE iff L&T by definition of T,
ifL¢T, 1 @ by (o),
iff L& M(Q) by Theorem 6.5 of [2], and
if L¢E by (b) and since M(Q) = M(E),
by Lemma 2 and the
definition of Q.

(¢) Let L be a ground-positive nonbarred literal. Then,
M(E) satisfies —L iff L & M(E), by definition of
satisfiability in Herbrand interpretations, iff L € M(E),
by (b) and (d).

(f) First observe that the alphabet A contains the alphabet
A. Hence, M(E) is in fact a Herbrand interpretation for
P. It suffices to show that, for any ground instance B

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

of a normal clause in P, if M(E) satisfies the body of B,
then M(E) also satisfies the head of B.

Let B be a ground instance of a normal clause in P
and suppose that M(E) satisfies the body of B. Let B
be the barred transform of B. Note that if —L is a
negative literal in the body of B, then M(E) satisfies L,
by (e). Hence, directly from our assumption, we obtain
that

M(E) satisfies the body of B. *)

But B is also a ground instance of a clause in P and
M(E) is a model of P, since P is contained in E.
Therefore, we also have

M(E) satisfies B. (**)
Thus, from (*) and (**), we obtain that M(E) satisfies
the head of B. Finally, note that the head of B
coincides with the head of B, since the head of B is not
a negative literal. Hence, M(E) satisfies the head of B,
as was to be shown. []

Note that these simple results follow essentially because
the barred transform of a normal program is a definite
clause program and that, as item (c) shows, barred literals
(representing negative information) can only be generated
by firing defaults, which is consistent with the intuitive
idea behind the syntax of normal programs.

Item (a) should be compared with Corollary 3.10 in [7],
which shows that every extension of a positivistic default
theory has a unique Herbrand model, whereas item (d)
should be compared with Lemma 3.1 in [7]. Now, item (e)
indicates that a ground-barred literal L indeed behaves as
the negation of L with respect to the unique minimal
Herbrand model of each extension of T(P). Finally, item
(f) shows that the default logic interpretation T ultimately
associates with each normal program P a set of Herbrand
interpretations which are the minimal models of the
extensions of C(P).

We can also show that the set of unique minimal
Herbrand models of the extensions of C(P) corresponds
exactly to the set of stable models of P [9].

We first recall the definition of stable models. The GL
transformation is the mapping vy that takes a normal
program P and a Herbrand interpretation 7 for P into a
new program y(P,I), obtained from P by performing the
following two reductions:

¢ Removing from P all clauses in which the body contains
a negative literal —A such that AEL

¢ Removing from the body of each remaining clause those
negative literals —A such that A€ L.

Note that the new program y(P, I) contains only definite
clauses and, hence, has a unique minimal Herbrand model

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

M(y(P, I)). We then define the Gelfond—Lifschitz operator
I, for P as I',(I) = M(y(P,I)). It can be proved that the
fixed points of I', are minimal models of P [9]. Finally, we
say that a Herbrand interpretation I for P is a stable model
of Piff [(I) = L.

We also need some auxiliary definitions. Let 4 be a
first-order alphabet and A4 be the corresponding barred
augmented alphabet. If I is a Herbrand structure for A4,
define

a(I) = IU{L|L is a nonbarred ground atom and L& 1},
and, if I is a Herbrand structure for 4, define
B(I) = {L|Lis a nonbarred ground atom and LEI}.

We are now ready to prove the following result.

Theorem 6
Let P be a normal program. Then,

(a) If E is an extension of C(P) and M(E) is its unique
minimal model, then B(M(E)) is a stable model
of P.

(b) If I'is a stable model of P, then a(I) is the unique
minimal model of an extension E of C(P) and
E = Th(PUT), where T = {L | :(—L)EC A L& 1}

Proof

(@) Let T = {L | (—~LA)EC ALEE}and Q = PUT.
Let M(Q) be the unique minimal model of Q. Let
G = y(P, B(M(E))) and M(G) be the unique minimal
model of G. Then, we have

BM(E)) = BM(Q)) since E = TR(PUT) = Th(Q)

and, thus, M(E) = M(Q),

= B(Ty1 w) since M(Q) = T, 1 o,

by definition of T,
=T,lw since LE T iff L& B(M(E)),
= M(G) by definition of T, and

= T(B(M(E))) by definition of T, and G.

Hence, BM(E)) = I',(B(M(E))), which implies that
B(M(E)) is a stable model of P.

(b) Suppose that I is a stable model of P. Then, I = I',(I).
LetE = TR(PUT), where T = {L | (L/L)EC A
L& I}. Note that, if L is a nonbarred ground-positive
literal, then L& I iff L€ ofI) iff L E. Hence, T =
{L| (—L/L)EC A LEE}, which implies that E is
indeed an extension of T(P).

Let M(E) be the unique minimal model of E, which
exists by Theorem 5(a). Let G = y(P,I) and M(G) be
the unique minimal model of G. We now show that

I = M(E). Indeed, 353

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

354

ME) =T, .%o by definition of T and E,
= a(T,tw) since LETiff LEI,
= a(M(G)) by definition of T,
= a(l(I)) by definition of I',, and
= a(l) since I is a stable model of P. [J

This concludes the preliminary discussion of C.

& An interpretation based on NFF defaults

Given a normal program P, we now introduce a third
default logic interpretation, N, which is much closer to
SLDNF than the default logic interpretation C, since the
former directly encodes the way negative literals are
canceled in SLDNF. We then prove in Section 4 that
SLDNF is V-sound and 3-complete with respect to N.

Definition 7

Let P be a normal program. A CWA default § is an NFF
default for P iff there is a finitely failed SLDNF tree for
P U {«L}. We denote the set of all NFF defaults for P by
N..
Definition 8 (Default logic interpretation N)

N is the interpretation that maps each normal program P
into the default theory N(P) = (N,,P), where N, is the set
of all NFF defaults for P and P is the barred transform of
P, and that maps each conjunction of literals A into its
barred transform A.

4. Results
We prove in this section results whose major implications
(P is a normal program) are as follows:

(a) C(P) may have no extensions, whereas N(P) always
has a unique extension.

(b) SLDNF is very strong in the sense that, given a
ground-negative literal L, if there is a finitely failed
SLDNEF tree for P U {<L}, then §_can always be fired
in €(P); that is, it belongs to the set of generating
defaults of all extensions of C(P), if there is one.

(c) Moreover, given a ground-negative literal —L, if there
is an SLDNF refutation for P U {«-L}, then § can
never be fired in C(P); that is, it does not belong to the
set of generating defaults of any extension of C(P), if
there is one.

(d) As a consequence, if § belongs to the set of generating
defaults of some extension of C(P), but not all, then
there is neither a finitely failed SLDNF tree for
P U{«L} nor an SLDNF refutation for P U {«L}.

(e) However, given a ground-negative literal L, there
may be neither a finitely failed SLDNF tree nor an
SLDNF refutation for P U {«L}, and yet § may belong
to the set of generating defaults of all extensions of
C(P), if there is one.

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

& I-soundness with respect to CWA defaults

We show in this subsection that SLDNF is 3-sound with
respect to C. The result follows from a property of
SLDNF posed as a challenge to the reader in [2, Example
32, Ch. 3].

Theorem 7

Let P be a normal program and G be a normal goal. If
P U {G} has a finitely failed SLDNF tree, then P U {G} is
consistent.

Proof

Let P be a normal program and G be a normal goal.
Suppose that P U{G} has a finitely failed SLDNF tree T.
Define the failure support of T, FS(T), as the set of
literals that correspond to the following:

& Let H be a leaf of T and M be the literal selected from H.
Then, FS(T) contains all ground instances of M.
& Let H be an internal node of T and M be the literal
selected from H. Suppose that M is positive and that
H,,** -, H, are the children of H in T. Then, FS(T)
contains
«~ All ground instances of M that do not unify with the
head of any clause in P.

~ All ground instances of M that unify with the head of a
ground instance A« B,,--+,B, and
{B,,:-+,B}NFS(T) = &.

Define H(P) as the set of all positive literals L such that
L is the head of a ground instance of a clause in P. We
shall prove that H = H(P) — FS(T) is a model for P U {G}.

We first show that H is a model of G by showing that H
is a model of all ground instances of G. Suppose that G
is of the form <M, -+, Mq. Let ¢ be a substitution such
that (<M,,---, M,)¢ is ground. First observe that
Mg, .M ¢} NFS(T) # &, because otherwise T
would not be a failed tree. Let i, €[1,q] be such that
M, e EFS(T).

Suppose that M, ¢ is negative, that is, of the form —A.
Then P U {<A} has a successful SLDNF tree and, hence,
A€EH(P) and A¢ FS(T). Hence, A€ H, which implies
that H is a model of —(M,p A+ - - AM,¢). Suppose that
M, ¢ is positive. Then M, ¢ € FS(T) immediately implies
that M_ ¢ & H. Hence, H is a model of ~(M,p A+ - AM,).
Therefore, H is a model for all ground instances of G;
hence, H is a model for G.

We now show that H is a model of P. Let C«L, -,
be a clause of P. Let ¢ be a substitution such that
(C«L,,:++,L)epis ground. If Co¢ FS(T), then CopEH
and, hence, H is a model for (C<L,---,L)¢. If
CoEFS(T), then {L ¢, **,L g} NFS(T) # &. As
previously proved for the goal, we may conclude that H
is a model for (L, - -, L,)¢. Hence, H is a model for

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

(C<L,. -,)¢. Therefore, H is a model of all ground
instances of all clauses of P. Therefore, H is a model
for P. (O

Theorem 8

Let P be a normal program and «<Q be a normal goal. If
is an answer to <Q from P computed by SLDNF, then
there is an extension of C(P) that contains VQa.

Proof

Let R be an SLDNF refutation from P U {«<Q} that
computes a. Let D = {=L,,+++, L, } be the set of negative
literals selected in R. We shall show that PUD is
consistent.

Indeed, for each i €[1, n], the SLDNF tree for PU {<L}
is finitely failed. Hence, the SLDNF tree for
PuU{<L,, -+, L} is finitely failed. Therefore, by the
previous theorem, PU{<L,,--+,L } is consistent; that is,
PUD is consistent.

Now, if P U D is consistent, then the normal default
theory (8,, P), where §, = {§ | =L €D}, has exactly one
extension. Moreover, R induces a refutation (using linear
resolution) from P U D U {«Q} that still computes a.
Hence, by [1], we know that PUD |= VQa. Since E =
Th(P U D), we then have YQa € E. Now, since D C C, by
Theorem 3, there is an extension of C(P) = (C, P) that
contains VQa. [J

® V-soundness and 3-completeness with respect to NFF
defaults

Let P be a normal program and G be a normal goal. To a
first approximation, one may say that, if a ground-negative
literal —p(t) is canceled in an SLDNF refutation from

P U{G}, then it is consistent with P. This assertion is in
principle warranted by the existence of a finitely failed
SLDNEF tree T from P U {«<p(t)}. However, close scrutiny
reveals that it is false, since the construction of T may
require canceling other negative literals; that is, it may
recursively invoke SLDNF. Hence, a better approximation
would be to say that, if a ground-negative literal —p(t) is
canceled, then it is consistent with P and with all other
ground-negative literals that can be canceled. This
recursive statement is not paradoxical, and it can be
formulated in the context of the default logic interpretation
N to mean that all defaults belonging to the set N, can be
simultaneously fired. This implies that N(P) has a unique
extension, which is our first result.

Theorem 9
Let P be a normal program. Then, N(P) has a unique
extension, which is E = Th(P U Conseg(N,)).

Proof
We show that, for every default § EN,, «<Lis
consistent with P U Conseg(N,). Hence, by Lemma 2,

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

E = Th(P U Conseq(N,)) is an extension of N(P) = (N;, P).
Therefore, by the minimality of extensions (Theorem 2),
since N, is the set of all defaults of N(P), E is the only
extension.

Suppose that there is § €N, such that <L is not
consistent with P U Conseq(N,). Since this set contains
only definite clauses, there is then an SLD refutation R
from P U Conseq(N,) U{«<L}. Let R be the sequence of
goals obtained by replacing each occurrence of M in R
with —M, for each barred literal M € Conseg(N,). Observe
that M € Conseq(N,) iff M is ground and there is a finitely
failed SLDNF tree for P U {«M}, by definition of N,.
Hence, R is an SLDNF refutation for P U {<L}. Therefore,
there is no failed SLDNF tree for P U {«L}, which implies
that 8 & N,, a contradiction. [J

Theorem 10 (V-soundness of SLDNF with respect to N)
Let P be a normal program and «<Q be a normal goal. Let
E be the unique extension of N(P). If & is an answer to
«<Q from P computed by SLDNF, then VQa belongs to E.

Proof

Suppose that « is an answer to «Q from P computed by
SLDNF. Then, there is an SLDNF refutation R for

P U{<Q} such that « is the composition of the
substitutions in R, restricted to the variables in Q. Let R
be the sequence of goals obtained by replacing each
occurrence of =M in R with M, for each negated literal
—M. Since R is an SLDNF refutation, if —=M was canceled
in R, then —M is ground and there is a finitely failed
SLDNF tree for P U{<M}. Hence, 8, €N,. Therefore,

R is an SLD refutation from P U Conseq(N,) U {<Q}.
Moreover, R and R perform the same substitutions. Thus,
a is also the composition of the substitutions in R,
restricted to the variables in Q. Hence, we may

conclude that P U Conseq(N,) + VQa, by Theorem 7.1

of [2] (soundness of SLD resolution). Since

E = Th(P U Conseq(N,)), by Theorem 9, we finally obtain
that VQa belongs to E. [

Theorem 11 (3-completeness of SLDNF with respect to N)
Let P be a normal program and «<—Q be a normal goal. Let
E be the unique extension of N(P). Let « be an answer to

«Q from P. If YQa belongs to E, then there is an answer

B to <Q from P computed by SLDNF such that 8 is more
general than a.

Proof

Suppose that « is an answer to «<Q from P such that YQa
belongs to E. Then, since E = Th(P U Conseq(N,)), « is
in fact a correct answer to «<Q from P U Conseq(N,). By
Theorem 8.6 of [2] (completeness of SLD resolution), there
is an answer B to <Q from P U Conseq(N,) computed by
SLD such that B8 is more general than a. We show that B

is an answer to «Q from P computed by SLDNF. 355

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

356

Let R be an SLD refutation for P U Conseg(N,) U {<Q}
that computes B. As in the proof of Theorem 10, there is
then an SLDNF refutation R for P U {«Q} that computes
B. Therefore, B is an answer to «Q from P computed by
SLDNF such that 8 is more general than «. [J

® Y-soundness with respect to barred CWA defaults
The results in the preceding subsection are somewhat
unsatisfactory because the definition of NFF defaults
refers directly to SLDNF. The results in this subsection,
however, build upon them to prove that SLDNF is
V-sound with respect to T (with one proviso). This is a much
more satisfactory situation, because C provides a superior
default logic interpretation for normal programs and goals,
since CWA defaults are defined independently of SLDNF.
Let Ext(A) denote the set of all extensions of a default
theory A.

Theorem 12

Let P be a normal program. Let E be the unique extension
of N(P). Suppose that C(P) has at least one extension.
Then, E C N Ext(C(P)).

Proof

Suppose that C(P) has at least one extension, and let
F be an extension of C(P). We shall prove that

N, CGen(F, C(P)). Hence, E C F, which implies that
E € N Exx(T(P)).

In fact, we prove that, if there is a finitely failed SLDNF
tree for P U {«L}, then § € Gen(F, C(P)) and, if there is
an SLDNF refutation for P U {«L}, then § & Gen(F,C(P)).
The proof is by induction on the rank (with respect to P) of
the ground-negative literals (see Section 2 for the definition
of rank).

Basis Let —L be a ground-negative literal, and suppose
that —L has rank 0 with respect to P.

® Case 1: There is an SLDNF refutation R for P U {«L}
where no negative literal is selected. Then, R induces an
SLD refutation R for P U{«<L}. Therefore, L € Th(P)
and, hence, L€ F, which implies that § & Gen(F, C(P)).
o Case 2: There is a finitely failed SLDNF tree T for
P U{<L} where no negative literal is selected. We show
that L& F. Hence, since & CC and F is an extension
of C(P) = (T, P), by Lemma 2, we have that
8 E€Gen(F,C(P)).

Suppose by contradiction that L € F. First observe that
P U Conseq(Gen(F, T(P))) is a set of definite clauses
and recall that F = Th(P U Conseq(Gen(F, T(P)))).
Then, by the completeness of SLD resolution for
definite clauses, there is an SLD refutation R for

P U Conseq(Gen(F, T(P))) U {«L}. Construct a

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de¢e T. GUERREIRO

sequence of normal goals R by replacing each

occurrence of M in R with —M, for each barred literal

M € Conseq(Gen(F, T(P))). Note that the last goal in R is
the empty clause (. Then, by construction of T, there is a
branch B of T that corresponds to a prefix of R. Let C be
the goal labeling the leaf of 8. Since T has failed, C = [J;
that is, C is not the last goal in R. Let C, be the leftmost
literal of C. Since —L has rank 0, C, is not a negative
literal. Moreover, again as T has failed, C, does not unify
with the head of any clause in P. This is a contradiction,
since C is not the last goal in R. Therefore, L& F, as was
to be shown.

Induction step Let i > 0. Suppose that the result holds
for ground-negative literals with rank j < i. Let ~L be a
ground-negative literal with rank i with respect to P.

& Case 1: There is an SLDNF refutation R for P U {«L}
where all negative literals selected have rank j < i. Let
—M be a negative literal canceled in R. Then, there is a
finitely failed SLDNF tree for P U {<M}. Hence, since
—M has rank less than i, by the induction hypothesis,

8, € Gen(F, T(P)). Then, R induces an SLD refutation R
for P U Conseq(Gen(F, C(P))) U {«L}. Therefore, LEF,
which implies that § & Gen(F, C(P)).

o Case 2: There is a finitely failed SLDNF tree T for
P U{«L} where all negative literals selected have rank
j < i. We show that L& F. Hence, since 8 CC and F is
an extension of C(P) = (C,P), by Lemma 2, we have
that 8 € Gen(F, C(P)).

Suppose by contradiction that L € F. First observe that
P U Conseq(Gen(F, C(P))) is a set of definite clauses,
and recall that F = Th(P U Conseq(Gen(F, T(P)))).
Then, by the completeness of SLD resolution for
definite clauses, there is an SLD refutation R for
P U Conseq(Gen(F, T(P))) U {«L}. Construct a
sequence of normal goals R by replacing each
occurrence of M in R with —M, for each barred literal
Me Conseq(Gen(F, C(P))). Note that the last goal in R is
the empty clause [J. Then, by construction of T, there is a
branch B of T that corresponds to a prefix of R. Let C be
the goal labeling the leaf of B. Since T has failed, C # [J;
that is, C is not the last goal in R.

Let C, be the leftmost literal of C. Suppose that C, is
positive. Then, C, can be canceled with the head of some
clause in P, since C is not the last goal in R. But, in this
case, B can be extended further, contradicting the
assumption that T has finitely failed.

Suppose now that C, is a negative literal of the form
—D. Since R does not terminate in C, the literal D
was canceled with the head of some clause in
P U Conseq(Gen(F, C(P))). By construction of P,

this clause cannot be in P. Hence, we have that

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

D € Conseq(Gen(F, T(P))); that is, &, € Gen(F, T(P)). On
the other hand, since T has finitely failed and C is a leaf of
T, there must be an SLDNF refutation from P U {<D}.
Moreover, —D has rank j < i. Hence, by the induction
hypothesis, 8, & Gen(F, C(P)), a contradiction. Hence,
L& F, as was to be shown. (J

Corollary 2 (V-soundness of SLDNF with respect to C)
Let P be a normal program and «-Q be a normal goal.
Suppose that C(P) has at least one extension. If @ is an
answer to < Q from P computed by SLDNF, then all
extensions of C(P) contain VQa.

Proof
The proof follows from Theorem 10 and Theorem 12. (]
Note that, to apply this theorem, we must first prove
that C(P) has at least one extension. This condition is
necessary essentially because the construction of an
SLDNEF refutation is a local process, in the sense that one
is required to exhibit a finitely failed SLDNF tree only for
the ground-negative literals that are selected. On the other
hand, the construction of extensions for C(P) is a global
process where all CWA defaults are candidates for firing.
The next example illustrates this point.

Example 4

Suppose that the only predicate symbols are p and q, and
that both are unary. Also, assume that a is the only
constant. Then, the CWA defaults are 8, = (:—p(a)/p(a))
and 9, = (-—q(a)/g(a)).

Let P = {p(a) < —p(a)} and Q = <q(a).

Then, C(P) = {8,, 8.} P) has no extension, because 8,
and p(a) < p(a) block the existence of any extension.

However, there is an SLDNF refutation R from P U{Q},
since there is a finitely failed SLDNF tree for P U {<q(a)}.
Note that the fact that there is no SLDNF tree for
P U {«p(a)} obviously has no effect on the construction of
R, since —p(a) is never selected.

A possible solution to this problem would be to modify
the definition of extension to allow the discarding of
defaults when constructing extensions. This alternative is
explored in [10]. We address a different alternative in the
next subsection.

® The role of stratification
We prove in this subsection that € maps stratified normal
programs [11] into default theories that have exactly one
extension. Therefore, the proviso of Corollary 2 may be
replaced by stratification.

Let ps(L) denote the predicate symbol of the literal L.
The following definitions are from [2].

Definition 9
A level mapping for a normal program P is a mapping A
from the set of predicate symbols of P into the non-

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

negative integers. We refer to the level of a predicate
symbol s as A(S).

Definition 10

A normal program P is stratified iff P has a level mapping
such that, for every program clause A« L,,---,L_in P, for
l<ism:

1. Alps(L)) = A(ps(A)), if L, is a positive literal.
2. Mps(L))-< A(ps(A), if L, is a negative literal.

Definition 11
Let P be a stratified normal program.

(a) The relation < over the predicate symbols occurring in
P is defined as follows:

s, <s, iff A(s)) < A(s,), for every level mapping A for P.

(b) The canonical level mapping for P is the level mapping
K defined as

Kp(S) = #{s| s, <5,
and s, is a predicate symbol occurring in P},

for each predicate symbols s, occurring in P.

A relation among predicate symbols on stratified normal
programs similar to < can be found in [5]. Note that

s, < 8, iff .(S,) < Ko(8,). Clearly, since P is stratified, the
relation < and the canonical level mapping for P are well
defined. The following lemma follows directly from the
definition of stratification.

Lemma 3

Let P be a stratified normal program. Let A and B be sets
of barred literals. If there is a nonbarred literal L such that
LE Th(P UA) — Th(P UB), then there exists a barred
literal M such that M € Th(P UA) — Th(P U B) and

ps(M) < ps(L).

Proof
Let L be a nonbarred literal such that LE Th(P UA) —
Th(P UB). Thus, we have PUA L and PUB ¥ L. Then
there is a set 4’ C A such that 4’ # & and whose
elements are effectively used in the deduction of L. As
PUB | L, we obtain A’ —B = . Then let MEA’ - B.
Clearly, since M is used in the deduction of L, we have
ps(M) < ps(L). O

We are now ready to state the main theorem of this
subsection.

Lemma 4
Let P be a stratified normal program. Then, C(P) has

exactly one extension. 357

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

358

Proof
We first prove that C(P) has at most one extension.
Suppose, by contradiction, that C(P) has two extensions,
E and F. Then, by Lemma 2, E = Th(PU{L | § €C A
LEE}) and F = Th(PU{L | § €C A LEF}). Since
E # F, we have that (E—-F)U(F~E) # J. Let M be
the set of all predicate symbols s of barred literals L such
that L € (E — F) U (F — E). Let s, be one of the minimal
elements of M with respect to the relation <. Let
L,E(E - F) U (F — E) such that ps(L) = s,. Without
loss of generality, suppose that L , € (E — F). Then, by
Theorem 5(d), L., €F and L, & E. By the previous lemma,
there is then a barred literal L, such that L, EF and L, ¢ E,
and ps{L,) <ps(L,) = s,, a contradiction, since we have
assumed that s; is minimal in M. Hence, since we obtain
LEE iff LEF, we conclude that E = F.

We now prove that C(P) has at least one extension. Let

C, = Th(P);
C., = Th(CU{L| x(ps(l)) = iand L&C}), for each i = 0,

and
D, = {8 | «.(ps(L)) = iand L& C}, for each i > 0.

LetE = UC,D’' = UD, and D" = {3, | § €C and
LEE}.

By a simple induction, we obtain E =
Th(P U Conseq(D')). Thus, we shall prove that E is an
extension of C(P), by showing that D' = D". Indeed, if
D' = D", since E = Th(P U Conseq(D')), we have that
E = Th(P U Conseg(D")), which implies that E is an
extension of C(P), by Lemma 2(a).

We first prove that D" C D’. Recall that § = (:— L/L). If
8 € D', then, taking i = k,(ps(L)), we have that LEC,,
which implies that L E E and that § & D". Hence,
D'CD'.

We now prove that D' C D". Suppose by contradiction
that D' — D" = and let § €D’ — D". Hence, taking
i = i,(ps(L)), we have that L¢& C, and L €E. Therefore,
there exists j > i such that L€ C, by definition of E. But
we can also prove that

Jj-1

C= Th(CI Ul Conseq(D)

k=i

Hence, we have that
j-1

Le Th(Ci uly Conseq(D)

k=i

~ Th(C).

But, by Lemma 3, there is M such that
j-1

Me Th(c, ulU Conseq(,) | - Th(C)

k=i

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

and

Kp(PS(M)) < kp(ps(L)) =,

a contradiction, since «,(ps(M)) < i and M ¢ Th(C). Then,
D/ = DN. D
We then immediately obtain Corollary 3.

Corollary 3

Let P be a stratified normal program and «<Q be a normal
goal. If @ is an answer to <Q from P computed by
SLDNF, then the only extension of C(P) contains VQe.

Proof
The proof follows from Theorem 10, Theorem 12, and
Lemma 4. []

This last result implies that SLDNF is V-sound with
respect to C, in a very special sense, for the class of
stratified normal programs.

5. Conclusions

We have described in this paper default logic
interpretations for normal programs that provide an
intuitive justification for SLDNF resolution. We prove that
SLDNEF resolution is strongly sound (V-sound) with
respect to the interpretation C, provided that the resulting
default theories had at least one extension. We have also
shown that this proviso can be replaced by stratification,
the requirement usually adopted in alternative semantics
for normal programs.

References

1. M. A. Casanova, F. A. C. Giorno, and A. L. Furtado,
Programacdo em Logica e a Linguagem Prolog,

Bliicher Publishing, Sao Paulo, Brazil, 1987.

2. 1. W. Lloyd, Foundations of Logic Programming, 2nd ed.,
Springer-Verlag, New York, 1987.

3. K. L. Clark, ‘““Negation as Failure,”” Logic and
Databases, H. Gallaire and J. Minker, Eds., Plenum
Press, New York, 1978.

4. R. Reiter, “On Closed World Databases,”” Logic and
Databases, H. Gallaire and J. Minker, Eds., Plenum
Press, New York, 1978.

5. T. C. Przymusinski, “On the Declarative Semantics of
Stratified Deductive Databases and Logic Programs,”’
Foundations of Deductive Databases and Logic
Programming, J. Minker, Ed., Morgan Kaufmann, Los
Altos, CA, 1988, Ch. 5.

6. H. Przymusinski and T. C. Przymusinski, ‘“Semantic
Issues in Deductive Databases and Logic Programs,”
Technical Report, Department of Computer Science,
University of Texas at El Paso.

7. N. Bidoit and C. Froidevaux, ‘‘General Logical Databases
and Programs: Default Logic Semantics and
Stratification,”” Technical Report L.R.I. U.A. 410, CNRS,
Université Paris Sud, Paris.

8. R. Reiter, ‘A Logic for Default Reasoning,”” Artif. Intell.
13, 81-132 (1980).

9. M. Gelfond and V. Lifschitz, ““The Stable Model
Semantics for Logic Programming,”” Proceedings of the
Fifth Logic Programming Symposium, R. Kowalski and

IBM 1. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

K. Bowen, Eds., Association for Logic Programming, MIT
Press, Cambridge, MA, 1988, pp. 1070-1080.

10. R. A. de T. Guerreiro, M. A. Casanova, and A. S.
Hemerly, ““Contributions to a Proof Theory for Generic
Defaults,” Proceedings of the 9th European Conference
on Artificial Intelligence, Stockholm, Sweden, 1990, pp.
213-218.

11. K. R. Apt, H. A. Blair, and A. Walker, ‘“Towards a
Theory of a Declarative Knowledge,”” Foundations of
Deductive Databases and Logic Programming, J. Minker,
Ed., Morgan Kaufmann, Los Altos, CA, 1988, Ch. 2.

Received September 26, 1990; accepted for publication
November 6, 1991

IBM J. RES. DEVELOP. VOL. 36 NO. 3 MAY 1992

Marco Antonio Casanova IBM Brasil, Rio Scientific
Center, Av. Pres. Vargas, 824/22 andar, 20.071-001,

Rio de Janeiro, RJ, Brasil (CASANOVA at RIOVMSC,
casanova@vnet.ibm.com). Dr. Casanova received a B.Sc.

in electronic engineering from the Military Institute of
Engineering of Brazil in 1974, an M.Sc. in computer science
from the Pontifical Catholic University of Rio de Janeiro in
1976, and a Ph.D. in applied mathematics from Harvard
University in 1979. In November 1982, he joined the IBM
Brazil Scientific Center, where he is now a Research Manager.
From 1980 to 1982, he was Assistant Professor at the
Department of Informatics of the Catholic University in Rio,
where he also acted as Graduate Program Coordinator during
the year 1981-1982. Dr. Casanova is author of the book The
Concurrency Control Problem for Database Systems,
published by Springer-Verlag; he is a co-author of the books
(in Portuguese) Principles of Distributed Database Systems,
Logic Programming and Prolog, and Fundamentals of
Muitimedia Systems. He has also published several technical
papers in international scientific journals. His academic
interests include database theory, database management
systems, and logic programming.

Andrea Silva Hemerly IBM Brasil, Rio Scientific Center,
Av. Pres. Vargas, 824/22 andar, 20.071-001, Rio de Janeiro,
RJ, Brasil (ANDREASI at RIOVMSC, andrea@vnet.ibm.com).
Ms. Hemerly received a B.Sc. in civil engineering

from the University of Espirito Santo, Brazil, and an M.Sc. in
computer science from the Pontifical Catholic University of
Rio de Janeiro; she is currently completing requirements for a
D.Sc. at the Catholic University. In December 1988, she
joined the IBM Brazil Rio Scientific Center, where she is now
a Researcher. Her academic interests include database, logic
programming, and artificial intelligence; she has published
several technical papers in international scientific journals.

Ramiro Affonso de Tadeu Guerreiro IBM Brasil,
Industria, Maquinas e Services Ltd., Av. Pasteur 138-146,
URCA, Rio de Janeiro, RJ, Brasil (RAMIROG at RIOSYS],
ramirog@riosys1.vnet.ibm.com). Dr. Guerreiro received a
B.Sc. in metallurgical engineering from the Military Institute of
Engineering, Brazil, in 1981, an M.Sc. in mathematics from
the Pure and Applied Mathematics Institute, IMPA, in 1982,
and a D.Sc. in computer science from the Pontifical Catholic
University of Rio de Janeiro in 1990. In August 1983 he joined
IBM Brazil, where he is now a Marketing Specialist for
Customer Information Systems-Latin America. From 1987

to 1991, Dr. Guerreiro was a Researcher at the IBM Rio
Scientific Center. His academic interests include logic,
artificial intelligence, and database theory; he has published
several technical papers in international scientific journals.

359

M. A. CASANOVA, A. S. HEMERLY, AND R. A. de T. GUERREIRO

