A trace-driven
study of CMS
file references

G. P. Bozman
H. H. Ghannad
E. D. Weinberger

by

This paper presents a detailed study of file
reference patterns by users of a VM/CMS
interactive system. The data were collected
from two different IBM locations via CMON,

a CMS monitoring facility. We present
background information about the CMS file
system, the CMON program, and our data-
reduction programs, as well as a discussion of
the results. Some earlier studies of this type
have been restricted to a static analysis of the
existing files. However, as is shown in this
paper, a static analysis does not reliably
reflect dynamic file reference behavior. By
using both static statistics and dynamic
statistics, it is possible to better understand
how file systems are used, to evaluate
possible changes, and to provide distribution
parameters for modeling. More recent studies
of other interactive systems have measured
dynamic activity patterns. We compare our
results with these when appropriate.

Introduction

One of the important performance-sensitive components of
any operating system is the file system. Any operating
system, whether general- or special-purpose, must provide
an efficient way of storing, retrieving, and maintaining files
in secondary storage. The importance of the file system
has increased because the availability of high-capacity
direct-access storage devices (DASDs) now enables
diverse populations of users to store data such as

programs, electronic mail, graphic data, drafts of technical
papers, and even books. This diversity of file usage must
be understood by computer systems capacity planners,
designers of new operating systems, and those interested
in improving the performance of existing systems.

Understanding the workload imposed on a file system in
an interactive environment was the main objective of the
study described in this paper. A secondary goal was to
investigate whether the load patterns could be generated
synthetically in order to simulate file systems with larger
user loads than we were able to trace.

Some earlier studies of this type {1, 2] have been
restricted to a static analysis of the existing files.
However, as is shown in this paper, a static analysis does
not reliably reflect dynamic file reference behavior. By
using both static and dynamic statistics, it is possible to
better understand how file systems are used, evaluate
possible changes, and provide distribution parameters for
modeling. More recent studies of other interactive systems
[3-5] have measured dynamic activity patterns. We
compare our results with these when appropriate.

Workload studies can be done at several different levels
depending on the objective of the study. At the highest
level, an application program designer might be interested
in understanding the relative frequency of the commands
issued by the users of the program—for example, the
editing commands issued by a user during an editing
session. At the other extreme, a hardware designer might
be interested in the frequency of occurrence of each type
of machine instruction, such as loading a register from
main storage or comparing the contents of one register to
another. Our study fell somewhere between: the

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

815

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

816

commands seen at the interface to the file system. Such
commands typically involve opening, closing, reading,
writing, erasing, and renaming files, and searching
directories for the existence of a file or files.

This study was first done at the IBM Thomas J. Watson
Research Center in Hawthorne, New York, and was
later repeated more extensively at the IBM Kingston
Programming Center. The nature of the systems involved,
in terms of the user population, is described later in this
paper. We compare and contrast the results from the two
systems where appropriate.

A synopsis of our findings is as follows:

¢ File system activity is bursty and is dominated by
reading.

® Most files are read/written sequentially.

* Most read and write activity is for small amounts of
data, but access to large files accounts for most of the
bytes transferred.

e All of the above characteristics are similar to results
found in studies of other file systems, primarily UNIX™.

The VM/370 operating system

The VM/370 system consists of two major components.
The control program, or CP, is the manager of the real
resources of the system. It contains the scheduler,
dispatcher, device management, real storage management,
accounting, security, and recovery functions. It provides
each logged-on user with a virtual machine that is identical
in architecture to the real hardware on which CP runs. The
Conversational Monitor System, CMS, runs in each virtual
machine and provides a command processor, a file system,
and a user execution environment.

® How the control program (CP) handles file activity

The purpose of the control program is to give each user
the appearance of having a full System/370™ CPU with a
device configuration at its disposal. From the standpoint of
the file system, the most important function CP performs is
to divide real DASD volumes into an arbitrary number of
minidisks. The minidisks consist of a range of contiguous
cylinders on a real volume. By adjusting I/O requests
issued by the virtual machine, CP ensures that each
minidisk appears to begin with a cylinder (Count Key Data
DASD) or block (Fixed-Block Architecture DASD)
numbered 0 and extends for the appropriate number of
cylinders or blocks. CP also restricts access to each
minidisk to authorized users.

® CMS operating system

CMS provides an environment for running commands and
user programs. CMS commands are merely programs
stored as executable images, either in primary storage or in
the file system. In addition to command resolution and a

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

file system, CMS also provides console support, virtual
storage management, and virtual device support.

® CMS file system

The files and directories, which are managed by the CMS
file system, are stored in the minidisks that are provided
by CP. The user identifies a minidisk to be ACCESSed"
via a mode letter, which is a single alphabetic character.
The mode letter ‘A’ usually designates the user’s primary
(read/write-accessible) work area; the mode letters “S”
and “Y”” designate the system minidisks (that store
programs supplied by IBM). Many installations add other
minidisks that contain program libraries of interest to large
groups of users. This was the case in both systems that we
studied. The “S,”” ““Y,”” and other local minidisks of this
type are ACCESSed read-only and collectively provide
systems routines and programs of general interest such as
compilers and electronic mail tools.

In effect, each user has his or her own instance of a file
system that has access to its own DASD space. The file-
sharing capabilities of the CMS system are limited by the
fact that the file system runs in the user’s virtual machine,
allowing each user to change the content or state of his
own file system at any time.” The major problem is that
the file directory and allocation bit map are maintained in
the virtual memory of each user who has ACCESSed the
minidisk. This aspect of CMS effectively limits file sharing
to the situation in which many virtual machines can
ACCESS the same minidisk in read-only mode, but at
most one virtual machine can ACCESS the minidisk in
read/write mode. File sharing at the read/write level is
somewhat problematic with the traditional minidisk file
system and is not often done.

Objectives

Our primary objective was to understand the load imposed
on a file system in an interactive time-sharing environment.
Some specific questions we had upon undertaking this
study were the following:

. What is the relative rate for each type of file activity?

. What is the size distribution of file accesses?

. What is the frequency of accesses to the same file?

. What is the distribution of interarrival times for file
system requests?

5. What are the static and dynamic distributions of file sizes?

£ W N =

In addition, we wanted to explore the feasibility of
generating synthetic file system workloads so that, for

! The ACCESS command in CMS connects the minidisk to a mode letter which is
in a search path. Additionally, it reads the file directory and, if the user has write
capability, the allocation bit map into the user’s virtual memory. In this paper we
capitalize ACCESS when we are referring to the CMS command.

2 The Shared File System (SFS) available in CMS SP/6 provides file sharing and
other new facilities through a file server. The traditional minidisk file system
remains accessible.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

example, systems with very large user populations might
be modeled.

The next several sections deal with data collection.
Readers not interested in this aspect of the study may skip
to the section on analysis of the results.

Data collection

® Static data collection

For the Hawthorne study, we wrote a program which was
invoked when a user logged on and recorded the file sizes
for all of the minidisks which the user had ACCESSed at
that time. This missed some of the minidisks which were
dynamically ACCESSed during a user’s session but,
nevertheless, gave us a large and representative sample of
the static file size distribution on the system. We also
made a simple modification to CP so that we could
uniquely identify each minidisk. Thus, the files on
minidisks ACCESSed by more than one user were only
counted once.

Because this program took up to several minutes to
execute for users who had a large number of files
ACCESSed, we refined this procedure for the Kingston
study. At Kingston we identified beforehand most of the
minidisks which were shared among users, and modified
the program to avoid repetitively collecting statistics for
these minidisks. Instead we ACCESSed these minidisks
during one of our own sessions and ran the program once.

® Dynamic data collection

VM/370 has a monitoring capability in the CP component
of the operating system. This monitor provides information
about the operation of the system and about the state and
resource consumption of each virtual machine.
Unfortunately, it is not feasible for the monitor to gain
knowledge of what is happening within a virtual machine.
The monitor also lacks information about the current state
of file directories and has no allocation maps from which
to infer the meaning of file system operations based on the
I/O operations to minidisks. Thus, while it would seem
that CP would be a logical central point from which to
collect file system data, a collector that interfaces directly
with CP is not practicable.

® CMS monitor (CMON)

CMON is a CMS monitor, developed by David N. Smith
of the IBM Thomas J. Watson Research Center, that
allows the collection of information about the activities
within CMS for a particular user. It collects trace
information about specific events within the CMS machine
being monitored. For this study CMON was extended to
provide information at the occurrence of each logical /O
operation as well as during other lower-frequency
operations such as OPEN, CLOSE, and STATE (which

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

determines the existence of a file with a given identifier on
a given minidisk). We could therefore determine the actual
number of bytes read or written by each access.

® Data-reduction programs

The data reduction of both the static data and the
(dynamic) CMON user traces was done by a set of Pascal
programs written for this purpose. The reduction of the
CMON data was more involved than one might think.
CMON monitored exactly what the file system did at the
file access level, which means that the implementation
details of CMS functions could affect the statistics that
were gathered.

A good example of such a detail is the process by which
files are updated via certain text editors (e.g., XEDIT).
These editors copy the file to virtual memory, where the
file undergoes modification by the user. At the end of the
editing session, in order to perform an afomic update, the
modified version is written to a temporary disk file, the
previous, unmodified version of the file is erased, and the
temporary file is renamed appropriately. To collect data on
generic file system activity, the reduction program must
realize that all writes to the temporary file are actually
writes to the file being edited.

Difficulties such as this were overcome by searching for
these known patterns of file system activity as a part of the
first-level data-reduction program. For example, a ““write a
new file”” event that results from editing a previously
existing file was distinguished from the genuine creation
of a new file by looking for a characteristic
“write/erase/rename”” pattern of file activity. The output of
the first-level data-reduction program is a report of a single
user’s generic file system activity by minidisk.

We also wrote several other Pascal and REXX programs
to further reduce data collected from individual users, to
obtain cumulative statistics, and to answer specific
questions that came up during the study.

Selected systems and users
The monitoring of the two systems that were used for this
study was done about eight months apart. The first system
which was studied (Hawthorne) was the one that the
authors used daily. It was used for a variety of work such
as program development and testing, preparing papers for
publication, and sending and receiving electronic mail.

Twenty-one users were selected randomly from the
directory of enrolled users. The users selected had to be
contacted individually, since they had to agree to the
installation of CMON; this was the factor most responsible
for the small size of the sample.

Although we had no good a priori reason for believing
that a sample of 21 users would be adequate, we employed
several a posteriori techniques to verify that our data were

representative. A visual inspection of the traces revealed 817

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

818

0.200

0.150

Kingston
0.100

Hawthorne []

0.050

0.000

8 9
83

Size of file (byte range)

ige

| Static distribution: fraction of all files by file size.

usage patterns that seemed to be representative on the
basis of our prior experience with VM. Comparing our
findings with those of a previous, less detailed study [6]
performed on the IBM Yorktown system, we noted
excellent agreement in every case where comparison was
possible. We computed the coefficient of variation (the
ratio of the standard deviation to the mean) for each of the
statistics we gathered, and found that this ratio was quite
small (typically 0.1). For the statistic with the largest
coefficient of variation, we computed the 95% confidence
intervals assuming a student’s T distribution, and
discovered that they were well within one standard
deviation.

The resulting user population was composed of a wide
variety of user types, including a secretary, a new user, an
expert user working hard to meet a software development
deadline, and three service machines. (A service machine
is a virtual machine that is not directly associated with a
user but provides function for a set of users via
communication among virtual machines.) After the users
agreed to participate, they were monitored until we
obtained traces for a day that they thought was typical for
them. This was usually the first day of monitoring, but

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

occasionally an unanticipated interruption would create an
atypical session.

The selection of the users and system in the second case
(Kingston) was done differently, since we had the
experience of a preliminary study. To better determine the
sample size, we used the largest coefficient of variation
from the first study to compute the sample size for the
second study. We used a confidence interval method and
calculated the sample size (50) which gave us 95%
confidence that our mean would fall within one percent of
the true mean. Since we did the confidence interval
analysis with the largest coefficient of variation, the above
confidence level would also be a lower bound with all of
the other statistics we observed from the first study.
However, the sample size (number of users to be
monitored) that we computed was valid only if the two
populations were the same, or if all of the coefficients of
variation which would be observed in the second study
remained smaller than the largest from the first. Of course,
we did not know this, and therefore we wanted to get a
larger sample, if possible, as a contingency.

The IBM Kingston location, which was the site of our
second study, had 22 VM systems. We were especially
interested in a VM system that supported PROFS, which
is an IBM office-system product in wide use. Since many
VM systems are dedicated to running PROFS, we were
interested in discovering how it might affect file system load.

We were able to select a system in Kingston that had
significant PROFS use. We obtained two weeks of
accounting data from this system in order to ensure that
our sample was selected from the set of users who used
the system on a regular basis. We then randomly selected
users and were able to get 60 acceptable volunteers.

Preparation and problems encountered

The programs required for the study resided on a minidisk
of a virtual machine that we maintained. This minidisk was
ACCESSed by the users in the study when they logged on,
and activity traces were begun at that time. The trace was
terminated when the user logged off. Because of this, we
advised users to disconnect’ instead of logging off when
they were discontinuing their sessions for short periods
(e.g., for lunch or a meeting).

At Hawthorne, once users were set up for monitoring,
we received traces until we requested them to delete our
initialization command from their log-on procedure. At
Kingston, we enhanced our routines to enable us to add
and delete users to be monitored without their awareness,
as long as they had agreed to participate in our study and
had installed an EXEC* which we had sent them.

3 This process disconnects the user’s terminal from the system without terminating
the session.

4 EXECs are command procedures that are very frequently used to package
together other programs with conditional execution based on run-time parameters.
In CMS there are three different EXEC interpreters: EXEC, EXEC2, and REXX.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

We encountered no major problem in gathering data
from users in Hawthorne. However, this was not the case
at Kingston, where we encountered two problems that we
had not anticipated. The I/O interrupt vector used by
CMON was used in an incompatible manner by a version
of APL and by a compress/decompress routine that was
optionally invoked by some users to compress their files
upon writing them onto their minidisks and decompress
them when they were read. Neither of these programs had
been used at Hawthorne. We therefore lost the subset of
our volunteers who used either of these tools.

When we started to reduce the trace data, we found that
some of the volunteers did not log on at all (or for only
very short periods), for unexpected business or personal
reasons. Because of these problems, we ended up with 45
acceptable sessions from 34 users.

After reducing all the data and using the largest
coefficient of variation, we repeated the confidence interval
analysis and were able to conclude that our 95%
confidence level remained valid with this set of sessions.

Analysis of the results

The amount of data that was gathered was very large, and,
depending upon one’s objectives, could be reduced and
presented in many different ways. Here, we present results
which we believe are of general interest.

& Static data

We were interested in gathering static statistics (i.e.,
statistics about the CMS files as they reside on disks).
Static statistics provided us with information on the mean
file size and what percentage of secondary storage is
occupied by files whose size falls within a given range.

We observed that, in general, the data from the two
systems correspond. Figure 1 depicts the distribution of
the number of files by file size for the two systems. We
broke up the range of possible sizes into bins bounded
above by successive powers of two. (The first bin was
associated with accesses of 256 bytes or less, the next bin
was associated with accesses of 257-512 bytes, the next
with accesses of 513-1024 bytes, etc.) Therefore, the
horizontal axis is the range of size in bytes by bin. The
number below each bar represents the upper limit for the
size, and the exclusive lower limit is the number below the
previous bar. The vertical axis is the ratio of the number
of files of a given size to the total number of files counted
(but not all files) on each system.

For both systems, the median file size was less than four
kilobytes (KB) which is the recommended block size for
minidisks (for I/O performance).’ This is similar to
the distribution found on the TOPS-10 system by
Satyanarayanan [2], where 50% of the files were less than
2880 bytes (five blocks of 128 36-bit words each).

5 Four kilobytes is the largest block size supported by the CMS file system.

IBM J. RES. DEVELOP. VOL. 35 NO. 56 SEPTEMBER/NOVEMBER 1991

0.300
0.250
0.200 |-
Kingston
0.150 |-
DHawthome

0.100 - i
' 8
&

Size of file (byte range)

SPKBEr

Static distribution: fraction of storage utilization by file size.

For many of the user minidisks which we examined, the
median was about half of that, or about 2 KB. The mean
file size was considerably larger than the median in both
systems, indicating that the relatively few very large files
occupied a significant percentage of the allocated
secondary storage. The overall mean static file size was
24 409 bytes. This distribution is comparable to that found
in [2], although the exact mean is not available for
comparison.

The distribution of the percentage of storage occupied
versus file sizes is shown in Figure 2. Although at 4KB
blocking there is a considerable amount of wasted space in
the large number of small files, the space utilization is so
dominated by the small number of large files that, overall,
the wasted space is only about 10% of the total space
used.

The static data also allowed us to investigate any
correlation between the static distribution of file sizes as
they reside on the minidisks and the dynamic activity
distributions such as the size of the read accesses.

In Figures 3 and 4 the fraction of files for each size
range is compared to the fraction of files read in the same
range. The correlation is strong for the Hawthorne data;

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

819

820

O.ZSDF
0:200 ¢
0.150

0100 F

0.000

Hawthorne: static fraction of all files by file size vs. dynamic frac-
tion of total files read by read event size.

the coefficient of correlation is 0.90. The correlation for the
Kingston data is not as strong; the coefficient of
correlation is 0.60. However, if the range 1-256 bytes
(smallest files) is excluded, the coefficient of correlation is
0.89.

Figures 5 and 6 compare the fraction of total storage
occupied to the fraction of total bytes read for each size
range. Here the coefficients of correlation are —0.22 for
Hawthorne and 0.60 for Kingston. We investigated why
there is more space being used by large files than being
read dynamically. Many of the large files are really
libraries of macros (MACLIBs) and run-time routines
(TXTLIB and LOADLIB). This is an anomaly of the way
in which the CMS file system supports MVS libraries. All
of the members of these libraries are placed in one file
along with an imbedded directory. When they are invoked
by a compiler or loader, typically only a small subset of
the members are actually read. Therefore, a read access to
one of these very large files will appear as a partial read of
significantly fewer bytes than the file size.

& Dynamic file system activities

Dynamic file system activities are the results of application
requests to the file system. In addition to reading and

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

0250}

Coamof f

' 0.15‘6;: L

Kingston: static fraction of all files by file size vs. dynamic frac-
tion of total files read by read event size.

writing files, they include directory searches, directory
listings, and erasing and renaming files.

File read events

We discovered that most user commands caused a
surprising number of files to be read in a relatively short
burst of activity. We knew, of course, that the common
use of EXECs often caused more file reading. The surprise
was how much the EXECs were nested with other EXECs
and programs. The fool-builders had used modular
techniques to the extent that commands that we
anticipated might read a few files would read 10 to 20.
Even experienced CMS users were surprised when we
showed them traces of their own activity. Burstiness was
also seen on the UNIX systems studied by Ousterhout

et al. [5] and Floyd [4].

On both systems, most files were read in their entirety
and sequentially. This was true for 86% of the files at
Hawthorne and 88% at Kingston. This is greater than the
results found by Floyd [4] and Ousterhout et al. [5] on
UNIX systems, where 68% and 67% of the files opened for
reading were completely read. Most of the nonsequential
accesses in CMS were almost sequential in the sense that
only a few records were read out of order or more than

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

0.300

0.250

0.200

0.150

0.100

0.050

0.000°

Hawthorne: static fraction of storage utilization by file size vs.
dynamic fraction of total bytes read by read event size.

once. This situation arises frequently in the processing of
EXECs. The three CMS EXEC language processors
[EXEC, EXEC2, and REXX] are called in a fixed order to
identify the language in which the EXEC is written by
reading the first record of the file. If the wrong command
processor gets the EXEC file first, the command processor
will terminate without closing the file. Thus, the first
record of the file is often read more than once, but the rest
of the file is read sequentially. The sequential nature of
reading on CMS is largely due to compilers, EXEC
processors, text processors, and editors reading the entire
file into virtual memory. However, we note that the CMS
file system does not offer an indexed access method.

It is important to observe that some of the frequently
used tools in CMS (most notably the most popular editor,
browser, and text processor) exist in shared memory, and
their use is not reflected as file system activity. This tends
to understate CMS file activity in comparison with a
system that must access all data via the file system.

Table 1 shows read event statistics for both systems.

(A read event is the read activity of any file from open to
close.) The first row is the total number of reads observed.
The values from the two systems cannot be compared,
since the number of users was different. The second row is

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

0.300

0.250 |-

0.200 -

0.150

0.100

0.050

0.000

Size of file/read access (byte range)

Kingston: static fraction of storage utilization by file size vs. dy-
namic fraction of total bytes read by read event size.

Table 1 File read events.

Hawthorne Kingston
Total 21861 31692
Average per user 1041.00 704.77
Standard deviation 834.43 665.61
Average per user per hour 149.28 123.19

Percent of all events 7.94 11.65
Bytes read per user per hour 1.42 MB 1.00 MB

this value normalized to the average number of read events
per user per session. The third row is the standard
deviation of user activity. In order to discount differences
in session length (e.g., the sessions of two users at
Hawthorne were much longer than average), we also
normalized for time. The fourth row shows the average
number of read events per user per hour. The Hawthorne
users read 48% more files per session and 21% more per
hour. This was largely a resuit of the following:

1. At Hawthorne, two very active users accounted for a

disproportionate share of the file system activity (e.g.,
they read 43% of the total bytes accessed). These two

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

821

822

0.250

0.200

0.150

0.100

0.050

0.000

Fraction of total files read by read event size.

users were each developing a (different) large software
system and compiling a large number of programs. This
dominance of activity by a small subset of the active
users seems to be typical of the Research Center
distribution: A sample of daily accounting data showed
that 1.3% of users performed 30% of the I/O events.
While a similar distribution was seen at Kingston, the
traces were not dominated as much by a few very
active users.

2. To a greater extent than their counterparts in Kingston,
the tool builders at Hawthorne had developed tools
from many smaller, modular components. This resulted
in long bursts of read activity as the result of a single
user command. We almost always had difficulty moving
Hawthorne tools to Kingston, because there were
usually EXECs and programs being called that were not
present on the Kingston system.

The fifth row shows the percentage of all file system
events that were read events. We later discuss the overall
file system event distribution further.

The last row of Table 1 shows the number of bytes read
per user per hour. This indicates that in addition to reading
more files per hour, the users at Hawthorne also read

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

0.300
0.250 |-
0.200 -
Kingstonf]
0.150 |-
Hawthorne]
0.100 |-
0.050 |~
i
0000 m.I§I§§ |
§OUH9BEREIEE &
A

Size of read event - (byte range)

Fraction of total bytes read by read event size.

somewhat larger files on average (9741 bytes per read
access at Hawthorne and 8312 bytes per read access at
Kingston). This too, was largely accounted for by the
dominance of the two active users there. Also, we noticed
a greater amount of text processing (involving rather large
files) at Hawthorne. Figure 7 shows the relative fraction of
read accesses by the size of the access. For example, very
small read accesses (up to 256 bytes) accounted for only
7.4% of the total file accesses at Hawthorne, but over
three times that amount at Kingston.

Although most of the read activities involved a small
number of bytes (4 KB or less), a large percentage of bytes
read per hour were done by read requests that involved
large sizes. Figure 8 shows the distribution of bytes
accessed per hour by a given access size.

The read event/write event ratio was 9.4 at Hawthorne
and 10.2 at Kingston. The bytes read/bytes written ratio
was 5.2 at Hawthorne and 7.4 at Kingston. The 4 KB
block read/write ratio was 4.9 at Hawthorne and 7.3 at
Kingston. This is very similar to Floyd’s byte read/write
ratio on UNIX of 5.25 [4].

We also found that, at both sites, approximately 50% of
the files that were read, were read more than once.
Approximately 90% of all read requests were done to the

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

Table 2 File write events.

0.90
Hawthorne Kingston
Total 3029 3133 080
Average per user 144.24 69.62
Standard deviation 122.19 98.39 0.70
Average per user per hour 15.92 11.92 g
Percent of all events 1.10 1.15 &
Bytes written per user per hour 274 KB 135 KB E 0.60
g 0.50,
HE
Table 3 File write events by event type. 'g 040
g
Hawthorne Kingston _§ 0.30
Average per user per hour 15.92 11.92 g 0.20
UPDATE 8.61 4.85
REPLACE 1.59 1.63
NEW 5.71 5.44 0.10
Bytes written per user per hour 274 KB 135 KB . , , \
UPDATE 8 KB (3%) 22 KB (17%) 0-001 0 0 0 o
REPLACE 47 KB (16%) 32 KB (24%) .
NEW 219 KB (82%) 80 KB (60%) Lifetime (s)

above files. This indicated that a data cache would be
beneficial, and a later study confirmed that this was indeed
the case [7].

File write events 0.90
The statistics for file write events are given in Table 2. The
Hawthorne users were more active writers as well as 0.80
readers. The average number of bytes written per access at
Hawthorne was 17 624, compared with 11 597 bytes written
per access at Kingston. This was also largely a result of
the dominance of two active users at Hawthorne.

Table 3 shows the write event comparison broken down
by the type of write event. An update event involved the
replacement of a part but not all of the file or, more
commonly, an append to the end of a file. A replace event
involved the replacement of the entire file due to an edit or
copy operation (editors in CMS read the entire file into
memory and replace it in its entirety on a file or save
operation). A new event involved the creation of a file.

The lifetime distribution of new files is shown in Figure
9. This graph shows the cumulative fraction of files created
during a session that were either erased or replaced in
their entirety. Recall that CMS editors replace the entire
file. New files in CMS have a somewhat longer lifetime Lifetime (s)
than those found in [5], where 80% of the new files in
UNIX environments were deleted or replaced in less than

200 seconds. In our study less than 60% of the new files - F}Qu?@ 20

were erased or replace d within 200 seconds Fraction of written blocks (excluding append writes) erased/re-
) | placed as a function of lifetime.

0.70

0.60

0.50

0.40

0.30

Cumulative fraction of blocks erased/replaced

0.20

0.10

0.00

Figure 10 shows the same distribution at the block level.
A greater fraction of the space used by new files is being

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991 G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

823

824

0.80

0.70

0.60

0.50

040

0.30

Cumulative fraction of blocks erased/replaced

0.20

0.10

. Figure 11

Fraction of all written blocks erased/replaced as a function of life-
time.

released than the files themselves. Figure 11 is the same as
Figure 10, except that all written blocks are considered.
That is, blocks appended to existing files are included as
well as blocks written as new or totally replaced files. This
is of interest when considering the upper bound of 1/0
activity that a cache can avoid [8]. As shown here, in the
CMS environment, an infinite cache could avoid 96% of
I/O activity (at the block level) in Kingston and 95% at
Hawthorne (100% of reads and the fraction of replaced or
erased blocks adjusted by the read/write ratio).

Files were also generally written sequentially. This was
true of 93% of the files at Hawthorne and 97% at
Kingston. We considered append writes that extended a
file to be sequential. This is very close to the UNIX data
in [5], where 97% of the write-only accesses were
sequential.

In both systems the locality of reference of file writes
was nearly the same. In both cases, a little less than 30%
of the files were written more than once, and
approximately 70% of the write requests were made to
those files.

Figure 12 shows the ratio of write events by a given byte
size range to all write events. It corresponds to Figure 7
for read events. The Kingston and Hawthorne distributions

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

are similar, and in both cases a very large number of
accesses involved a small number of bytes. At Hawthorne
58% of the write events involved 256 bytes or less. At
Kingston this was true of 37% of the write events. We
found that this was largely due to the use, in CMS, of

1) small files to keep track of the state of many variables
associated with user sessions (e.g., whether they have
perused the latest bulletin board articles) and 2) the IBM
VNET internal network for file and mail transfer. Sending
and receiving network files causes a short entry to be
appended to an activity log on the user’s private minidisk.

Figure 13 shows a comparison of the distribution of
bytes written per hour by the size of the write event. A
very large percentage of bytes written per hour involved
large files, although a majority of write events were 4 KB
or less in size. This was significantly different from the
corresponding read distribution shown in Figure 8. We
found that these very large files were largely APL work-
spaces, compiler work files, and program listings at
Hawthorne. This type of file was also present at Kingston,
but the largest files were the temporary work files of an
application program unique to that environment.

In summary, most file access events transferred a
relatively small number of bytes, while most of the bytes
transferred were in accesses associated with larger files. At
Hawthorne 61% of the read events per hour were for 4 KB
or less, but 84% of the bytes read per hour were in events
that transferred more than 4 KB. At Kingston 70% of the
read events per hour were for 4 KB or less, but 91% of the
bytes read per hour were in events that transferred more
than 4 KB. There was an even greater difference in the
write distribution. At Hawthorne 83% of the write events
per hour were transfers of 4 KB or less, while 98% of the
bytes transferred per hour were in events that transferred
more than 4 KB. At Kingston 70% of the write events per
hour involved transfers of 4 KB or less, while 96% of the
bytes transferred per hour were in events that transferred
more than 4 KB. Similar distributions were found in UNIX
[5], where 80% of all file accesses were to files less than 10
KB, while 70% of all bytes transferred involved files larger
than 10 KB, and [4] where 75% of all opened files were
under 4 KB but 67% of all bytes were read from files more
than 20 000 bytes long. Bach and Gomes [3] also found a
similar event distribution in UNIX, where 75% of the open
files were smaller than 4 KB, but they did not measure the
bytes-accessed distribution.

Summary of all file system activities

One of our objectives was determining CMS logical file

activity rates. These rates are shown in Table 4 for all file

system activities. Write events are listed by type. This

table shows the rate of all file system commands.
FULIST and FILELIST are full-screen file directory

presentation programs that are very popular. Many users

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

0.60

0.50

040

0.30

0.20

0.10

0.00

Size of write event (byte range)

Fraction of total files written by write event size.

remain in this mode for extended periods of time. We were

interested in the frequency of these commands because,
when issued, they read entire file directories.

The STATE command, which is the CMS directory
search primitive, dominates at both sites. We incremented
this count for each directory searched (i.e., looking for
file QUEENS PASCAL globally with ten minidisks
ACCESSed would result in an increment of 10 if not
found, and, for example, 5 if found on the fifth minidisk
searched). The larger number at Hawthorne is due to a
larger number of minidisks being ACCESSed on average.
The special case of STATE for a writable minidisk is used
by programs such as editors and compilers to determine
where to write output.

Distribution of times between file system
events

It is also of interest for modeling purposes to know the
distribution of times between file system events (the
interarrival time distribution). This distribution was even
more repeatable than the previous distributions. It showed
a three-part structure: a sharp peak between 10 and 100
ms, a time of the order of a disk access time, another peak

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

0.300

0.250

0.200

0.150

0.100

0.050

Size of write event (byte range)

Fraction of total bytes written by write event size.

Table 4 File system event rate per user per hour.

Type Hawthomne Kingston
READ 149.28 123.19
WRITE UPDATE 8.61 4.85
WRITE REPLACE 1.59 1.63
WRITE NEW 5.71 5.44
RENAME 2.36 2.59
ERASE 7.64 6.57
FULIST/FILELIST 1.87 1.72
STATE 1551.68 802.50
STATE (R/W disks) 8.20 8.64

between 1 and 20 s, a time of the order of an active user’s
response time, and a slow decay thereafter, refiecting the
distribution of users becoming active after a period of
inactivity (e.g., responding to the sudden arrival of
electronic mail). However, since two of these three parts
are primarily determined by user interaction, the
interarrival times can be divided into two groups. The first
is primarily due to the “‘burst’ effect of file accesses after
a user enters a command such as a compilation which
causes multiple file references. The second group is

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

825

826

Table 5 Arrival rate coefficient of variation comparison.

Interval Hawthorne Kingston
(s)
0-3600 12.58 13.29
1-100 1.47 1.40
2-100 1.26 1.22
3-100 1.13 1.10
3-60 0.93 0.91
3-80 1.03 1.02

primarily caused by user interactions which create activity
after a period of (short or long) quiescence.

With any interarrival time boundary used to arbitrarily
separate these two groups, there was some overlap. Some
user interactions, especially those performed with function
keys, could occur very rapidly, and many “‘bursts’” could
have their component file references separated by intervals
of CPU consumption (e.g., the compilation of a large
program) or the dispatching policy of the operating system.
However, by using a boundary of 1-3 s we were able to
get a good fit using an exponential distribution. The mean
interarrival times for this distribution, which depend on the
number of users and their activities, were different for the
two systems. The mean arrival rates per user were also
different. This was somewhat expected, because of the
difference in number of users and the type of activities in
which they were engaged.

A necessary (but not sufficient) condition of the
exponential distribution is that the coefficient of variation
is 1. That is, the mean and standard deviations for this
distribution are the same. As further corroboration of the
exponential fit, we calculated the coefficient of variation
for interarrival times up to an hour. We also calculated it
for smaller intervals that tended to exclude the bursts of
file system commands caused by a user command and for
very long interarrival times which were often caused by
users who remained logged on (at our request) while
performing other work such as attending meetings. The
results are shown in Table 5. We were surprised by the
similarity of the distributions for both systems. The
interarrival times, which were between 3 and 80 s, had a
coefficient of variation that was 1.03 in the Hawthorne
case and 1.02 in the Kingston case. We believe this time
range is made up largely of user-entered commands and
excludes most of the file event bursts and long interruptions.

Conclusions

Both the Hawthorne and Kingston systems were similar to
systems studied previously, especially various UNIX
systems, in the following respects:

» Static file size distribution was similar to that found in
[2] for a TOPS-10 system.

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

& There was considerably more read activity than write
activity; this was very close to the result found for
UNIX by Floyd [4].

«~ File accesses in both CMS and UNIX were bursty.

& Most files were read sequentially and in their entirety;
this is similar to (but exceeds) conditions found in two
UNIX systems [4, 5].

« Most files were written sequentially, as in UNIX [5].

& Most read and write accesses were for small amounts of
data, but the accesses to large files accounted for most
of the bytes transferred. This strongly resembled the
findings of the UNIX studies of Floyd [4] and
Ousterhout et al. [5].

» New files tended to have short lifetimes similar to (but
not quite as short as) those found by Ousterhout et al.

[5].

This similarity, despite significant differences in the file
systems and the manner in which files are used, suggests
that these general patterns are likely to be seen in other
systems as well.

Comparing Hawthorne to Kingston, we found that the
two systems were similar (different) in the following
respects:

» Both systems exhibited temporal locality of file reference
for both reading and writing. This, in conjunction with
the high read/write ratios, suggested a benefit from using
a cache to improve /O response time. This in fact
turned out to be the case, as subsequent work confirmed
[7].

» The static distributions of both files and space were o
similar (although there were more very small files at
Hawthorne).

& On both systems, over 90% of the read events were less
than 16 KB {although there were many more small read
events at Kingston).

~ On both systems, fewer than a third of the bytes read
were from read events that were less than 16 KB.

& Small write events (<256 bytes) dominated on both
systems (although this was much more true of
Hawthorne).

« On both systems, write events to large files accounted
for most of the bytes accessed (although very large files
dominated even more at Kingston).

& Both systems had high (but different) read/write ratios.

& The rate of WRITE REPLACE, WRITE NEW,
RENAME, ERASE, directory listing—FULIST and
FILELIST—and R/W STATEs were similar for both
systems (the rates of READs, WRITE UPDATEs, and
STATEs were significantly higher at Hawthorne).

& The interarrival distribution of user commands appeared
to be exponential on both systems (although the rates
differed significantly).

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991]

We found some correlation between the static file size
distribution (fraction of all files by file size) and the
distribution of the fraction of files read by read event size.
The comparison of static space utilization by file size with
the fraction of bytes read by read event size was mixed,
giving a negative correlation coefficient at Hawthorne and
a positive one at Kingston.

We concluded that it would be possible, although
certainly not trivial, to build a model of CMS file system
activity. This model could be table-driven so that, given
the proper metrics, any VM/CMS system could be
modeled. However, detailed inspection of the traces
showed that the distributions were strongly affected by the
popular tools and applications being used. As these tools
and applications evolved and changed, the distributions
would also be likely to change. Therefore, any model
would probably not be robust and would require frequent
(and tedious) validation using traces.

Finally, a note of caution. This study was done in the
mid-1980s, when most of the population at both
Hawthorne and Kingston still used mainframe timesharing
services. We expect that, to the extent that the work
performed is similar, file reference patterns on
workstations are similar. However, as technology changes
encourage different modes of work, it is likely that file
reference patterns will also change. For example, although
there was some use of graphics on VM during this period,
it was not as prevalent as it has become on workstations.
Extensive use of graphics and image data is likely to
increase the amount of data transferred per user and also
to affect the dynamic reference distribution. In fact, a
recent UNIX study indicates a significant increase in file
activity in a distributed workstation environment [9].

UNIX is a registered trademark of UNIX Systems
Laboratories, Inc.

System/370 is a trademark of International Business Machines
Corporation.

References

1. S. J. Mullender and A. S. Tanenbaum, ‘‘Immediate Files,””
Software Pract. & Exper. 14, No. 4, 365-368 (April 1984).

2. M. Satyanarayanan, ‘‘A Study of File Sizes and Functional
Lifetimes,”” Proceedings of the Eighth ACM Symposium on
Operating Systems Principles, Pacific Grove, CA, 1981, pp.
96-108.

3. M. J. Bach and R. Gomes, ‘“Measuring File System
Activity in the UNIX System,”” European UNIX Users’
Group, London, Spring 1988, pp. 43-52.

4. R. A. Floyd, “‘Short Term File Reference Patterns in a
UNIX Environment,”” Technical Report 177, University of
Rochester, New York, March 1986.

5. J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M.
Kupfer, and J. Thompson, ‘A Trace-Driven Analysis of the
UNIX 4.2 BSD File System,”” Proceedings of the Tenth
ACM Symposium on Operating Systems Principles, Orcas
Island, WA, December 1985, pp. 35-50.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

6. W. Pope, “Dynamic Access of CMS Files,”” Research
Report RC-10483, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, September 1984.

7. G. P. Bozman, “VM/XA SP2 Minidisk Cache,”” IBM Syst.
J. 28, No. 1, 165-174 (1989).

8. J. Ousterhout and F. Douglis, ‘“Beating the 1/O Bottleneck:
A Case for Log-Structured File Systems,”” Oper. Syst. Rev.
23, No. 1, 11-28 (1989).

9. M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and
J. Ousterhout, ‘“Measurements of a Distributed File
System,”” Proceedings of the Thirteenth ACM Symposium
on Operating Systems Principles, Pacific Grove, CA,
October 1991, pp. 198-212.

Received March 27, 1990; accepted for publication
January 21, 1992

Gerald P. Bozman IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown Heights,
New York 10598. Mr. Bozman is a programmer with a special
interest in operating systems. Recently he has worked on
System Managed Storage for MVS/DFP™ and the Parallel
Processing Compute Server, a prototype System/390™
multicomputer.

Hossein H. Ghannad IBM Networking Systems, Via Paolo
Di Dono 44, 00143, Rome, Italy. Mr. Ghannad is an advisory
performance analyst in the NetView®/Distribution Manager
design department of the Rome Networking Systems
Laboratory. He joined the IBM Communication Systems
Division in 1981 as an associate programmer. Mr. Ghannad
has performed numerous modeling activities, performance
evaluations, and measurements for the DPPX/8100, VM/SP
HPO, and VM/XA™ operating systems. His performance-
evaluation activities on VM products from 1983 to 1987
included workload characterization of the VM/CMS file system
and modeling and analysis of the intersystem serialization
mechanism. The work described in this paper was done
primarily while he was on assignment at the IBM Thomas J.
Watson Research Center from 1985 to 1986. Mr. Ghannad
joined the VTAM™ organization at Research Triangle Park as
an advisory performance analyst in 1987. He received an IBM
Excellence Award in 1989 for identifying inefficient searches in
VTAM and proposing solutions to improve their performance.
He also developed an OS/2®-based tuning tool prototype for
VTAM while at Research Triangle Park. At present, Mr.
Ghannad is on assignment to the IBM Networking Systems
Laboratory in Rome. He has a B.A. in mathematics from the
University of Wisconsin at Oshkosh, an M.A. in mathematics
from Morgan State University in Baltimore, and an M.S. in
computer science from the University of Virginia, and is a
graduate of the IBM Systems Research Institute. Mr. Ghannad
has taught several courses, both before and after joining IBM.
He developed the Computer Performance Evaluation course
and has taught it annually at several IBM Mid-Hudson Valley
locations and at Research Triangle Park. He has also published
several papers on computer performance modeling.

E. D. Weinberger RTC, 17th Floor, Hong Kong Bank, 140
Broadway, New York, New York 10005. After receiving his
B.S. in mathematics from MIT in 1973, Dr. Weinberger was a
programmer in the aerospace industry until he began graduate
training in mathematics in 1981 at New York University. He
continued working in the computer industry while in graduate
school, first at a small software firm developing a PC-based

827

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

828

system to draft legal documents, and then participating in the
research that led to this paper. Subsequently, he became
interested in the way biological evolution implements parallel
solutions to the problem of finding optimally fit organisms.
This topic was the subject of his 1987 dissertation and
postdoctoral research at the University of Pennsylvania and
then at the Max-Planck Society in Géttingen, Germany.
Between postdoctoral university assignments, Dr. Weinberger
developed the data-compression algorithm now used by

Prodigy Services, as well as a new file-compression technique.

He is now a consultant to the financial industry in New York
City.

MVS/DFP, System/390, VM/XA, and VTAM are trademarks, and NetView and
OS/2 are registered trademarks, of International Business Machines Corporation.

G. P. BOZMAN, H. H. GHANNAD, AND E. D. WEINBERGER

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

