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In this paper,  we describe a general 
interprocedural framework for  partitioning a 
program dependence graph into parallel tasks 
for execution on a multiprocessor system. 
Partitioning techniques are necessary to 
execute  a parallel program at the appropriate 
granularity for a given target multiprocessor. 
The problem is  to determine the best trade-off 
between parallelism and overhead. It is 
desirable for  the  partitioning to be performed 
automatically, so that the programmer can 
write a parallel program without being 
burdened by details of the overhead target 
multiprocessor, and so that the same parallel 
program can be made to execute efficiently on 
different multiprocessors. For  each  procedure, 
the  partitioning algorithm attempts to minimize 
the estimated parallel execution time.  The 
estimated parallel execution time reflects a 
trade-off  between parallelism and overhead 
and is minimized at an optimal intermediate 

granularity of parallelism. Execution-profiling 
information is used to obtain accurate 
execution-time estimates.  The partitioning 
framework has  been completely implemented 
in the PTRAN system at the IBM Thomas J. 
Watson  Research  Center. Partitioned parallel 
programs generated by  this prototype system 
have  been  executed on  the IBM 3090'" and RP3 
multiprocessor systems. 

1. Introduction 
Partitioning is the bridge between ideal parallelism and 
useful parallelism. Ideal parallelism is the parallelism 
revealed by the control and  data dependences [l] of a 
program. Any  two statement execution  instances that  are 
not directly or indirectly related by control or data 
dependences can potentially be executed in parallel. Useful 
parallelism is a subset of ideal parallelism that is suitable 
for execution on a specified multiprocessor system [2, 31. 
The best  choice of useful parallelism depends on statement 
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execution times, synchronization, communication and 
scheduling overheads, and resource limits such as the 
number of processors available. The problem  is to 
determine the best trade-off between parallelism  and 
overhead. It is desirable for the partitioning to be 
performed automatically, so that the programmer can write 
a parallel program without being burdened by details of the 
overhead of the target multiprocessor, and so that the 
same parallel  program can be made to execute efficiently 
on different multiprocessors. 

performed on a parallel program: control partitioning- 
partition the program into parallel tasks so as to balance 
parallelism  and overhead optimally [2],  and data 
partitioning-partition data across tasks so as to further 
reduce communication overhead and improve data locality 
[4]. There is a close interaction between these forms of 
partitioning; together, they yield a complete partition of 
the program control and data structures. This paper 
concentrates on control partitioning, because our 
experience has primarily been with uniform shared- 
memory multiprocessor systems in which data partitioning 
is not  an issue; on such multiprocessor systems, data 
locality is  implicitly achieved by control partitioning [5, 61. 

The  program dependence graph (PDG) [l] is a popular 
and general representation of control and data 
dependences in a parallel program. A PDG node represents 
an arbitrary sequential computation (e.g., a basic block, a 
statement, or an operation). An edge in a PDG represents 
a control dependence or a data dependence. PDGs do not 
contain any artificial sequencing constraints from the 
program text; they reveal the ideal parallelism  in a 
program. PDGs can represent automatically detected 
parallelism as well as programmer-specified  parallelism. 
They have been shown to be useful for solving a variety of 
problems, including optimization [l], vectorization [7], 
translation to dataflow machines [8, 91, code generation for 
large-instruction-word machines [lo, 111,  merging versions 
of a program [12], and automatic detection and 
management of parallelism [3,  13-15]. Therefore, PDGs are 
a natural choice for program representation for the 
partitioning problem. Useful parallelism  is represented by a 
partition of the PDG into subgraphs (tasks) so that all the 
nodes within a task execute sequentially but the tasks 
themselves can be executed concurrently. 

In this paper, we describe a general interprocedural 
framework for partitioning the PDG  of each procedure into 
parallel tasks for execution on a specified multiprocessor 
system. Our approach is interprocedural in that procedures 
are visited in a bottom-up traversal of the call graph, and 
the results obtained from partitioning the PDG of a 
procedure are incorporated at all call sites for that 
procedure. For each procedure, the partitioning algorithm 

There are two kinds of partitioning that can be 

780 attempts to minimize the estimated average parallel 

execution time for a single  call to that procedure. Thus, 
when finally partitioning the main procedure at the root of 
the call graph, the partitioning algorithm attempts to 
minimize the estimated parallel execution time for the 
entire program. The estimated parallel execution time 
reflects a trade-off between parallelism  and overhead and is 
minimized at an optimal granularity of parallelism. 
Execution profiling information is used to obtain accurate 
estimates of average sequential and parallel execution 
times [ 161. 

The partitioning framework has been completely 
implemented in the PTRAN compiler system at IBM 
[3,  13-15]. The input to the PTRAN compiler is usually a 
sequential FORTRAN program, though the compiler also 
accepts PARALLEL DO constructs in the input. Though the 
PTRAN implementation deals only with the FORTRAN 
language, the partitioning framework is applicable to any 
programming  language for which a PDG can be computed 
(e.g., C and Pascal). The PTRAN analyzer [13] uncovers 
the ideal  parallelism in the program by building a PDG for 
each procedure. The useful  parallelism is then selected by 
the PTRAN partitioner (or process former), which  is the 
subject of this paper. The output generated by the PTRAN 
compiler is a parallel FORTRAN program, in  which the 
useful  parallelism is expressed by PARALLEL DO and 
PARALLEL  SECTIONS constructs (similar to doall and 
cobegi n-coend, respectively [17]). These constructs are 
part of the IBM VS FORTRAN 2.5 parallel  language [18], 
which  is supported on the IBM  3090TM multiprocessor 
system. These constructs were also supported (with 
slightly  different syntax) by the IBM Parallel FORTRAN 
language [19]. The partitioned PDGs generated by PTRAN 
have also been targeted to (i.e., translated for execution 
on) the RP3 multiprocessor system [20] and can easily be 
targeted to other multiprocessor systems that support 
similar parallel extensions to FORTRAN. 

The novelty of the approach presented in this paper is 
that it provides a general partitioning framework that 
supports both automatically detected and user-specified 
parallelism, exploits both loop parallelism and nonloop 
(statement) parallelism, allows arbitrary nesting of 
parallelism, both within and across procedure calls, and 
uses architectural parameterization to target to different 
multiprocessor systems. 

The rest of the paper is organized as follows. Section 2 
describes the target multiprocessor model assumed in this 
work. Section 3 reviews the definition of the PDG  and 
discusses in detail the forward control dependence graph 
(FCDG), a variant of the PDG that is used by PTRAN. 
Section 4 describes how the FCDG  is annotated with 
average execution frequencies and  how execution-profile 
information is used to obtain accurate estimates of average 
frequencies. Section 5 describes how frequency values and 
execution times of primitive operations are used to 
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estimate average sequential execution times. Section 6 
defines the initial task tree obtained from the FCDG. 
Section 7 defines the parallel execution time of a task tree, 
which is the cost function to be minimized by the general 
partitioning algorithm described in Section 8. Section 8 
also contains a partitioning example and some 
experimental results. Section 9 describes a specialized 
partitioning algorithm for loop-only parallelism; this 
algorithm  is also used as a pre-pass to the general 
partitioning algorithm described in Section 8. Section 10 
discusses how various loop transformations such as loop 
distribution, loop vectorization, and loop fusion can be 
incorporated into the partitioner. Finally, Section 11 
discusses related work, and Section 12 contains the 
conclusions of this paper. 

2. Multiprocessor  model 
The output generated by the PTRAN partitioner is a 
partition of the PDG,  for each procedure in the program. 
A PDG partition is represented by a tusk tree structure, in 
which a task corresponds to a sequential computation 
defined by a PDG subgraph, and an edge  in the task tree 
corresponds to a parallel construct (PARALLEL DO or 
PARALLEL  SECTIONS) that relates a child task to its parent 
task. 

The PARALLEL DO statement denotes the beginning of a 
parallel loop, in which all iterations may be executed 
concurrently. Its syntax is  like that of the FORTRAN DO 
statement-it specifies an index variable with expressions 
for lower and upper bounds and optionally specifies a step 
expression and a target statement label. The PARALLEL DO 
construct has an  implicit “barrier synchronization” at the 
end: The statement following the PARALLEL DO construct is 
executed only after all iterations of the PARALLEL DO have 
completed execution. The task containing the PARALLEL DO 
statement is called the parent task. The task containing 
iterations of the PARALLEL DO is called the child task. Le tp  
be the number of processors working on the PARALLEL DO 
construct; thenp instances of the child task are created at 
run time, each to execute approximately llp of the loop 
iterations. The run-time system determines how  loop 
iterations are assigned to processors. Currently, the run- 
time systems implemented on the IBM 3090 multiprocessor 
use a fixed-chunk-size approach, in which fixed-size groups 
(chunks) of loop iterations are assigned to processors. 
Other possibilities for run-time scheduling of parallel loops 
include guided self-scheduling [21] and factoring [22,  231. A 
PARALLEL DO statement may be annotated with directives to 
specify the number of processors that should be used to 
work on the loop and the chunk size that should be used 
when assigning loop iterations to processors. 

of a group of “sections” (tasks) that may  be executed in 
parallel. It is terminated by an END SECTIONS statement. 

The PARALLEL  SECTIONS statement denotes the beginning 
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Each task begins  with a declaration of the form SECTION i, 
where i is a positive integer constant that identifies the 
task being  defined. The SECTION i declaration may be 
followed by a clause of the form WAITING@,, n,, * a). If 
the WAITING clause is present, it means that task i can start 
execution only after tasks n , ,   n 2 ,  * - have completed. As 
a simple way of ensuring that the precedence constraints 
are acyclic, the WAITING clause is  allowed to refer only to 
tasks that have been previously declared in the PARALLEL 
SECTIONS statement. Like the PARALLEL DO, the PARALLEL 
SECTIONS statement has an  implicit barrier synchronization 
at the end. Figure 5 in Section 8 shows a parallel 
program containing PARALLEL DO and PARALLEL  SECTIONS 
constructs. 

The PARALLEL DO and PARALLEL  SECTIONS constructs 
specify tusks at compile  time that may  be dynamically 
instantiated at run  time. Note that the parallelism 
expressed by these constructs may be arbitrarily nested 
and  may cross procedure boundaries (e.g., if a procedure 
containing a parallel construct is itself called from  within a 
parallel construct). As with other parallel language systems 
that support nested parallelism, the VS FORTRAN 2.5 and 
Parallel FORTRAN run-time systems [18,  191  begin 
program execution by creating a fixed number of operating 
system processes (called “FORTRAN processors”), 
usually one for each real processor. After this, all task 
scheduling is performed by executing library routines on 
the FORTRAN processors, without requesting any 
services from the operating system. Each FORTRAN 
processor selects work to  do from a shared queue. The 
VS FORTRAN 2.5 and Parallel FORTRAN run-time 
systems can be executed on both the MVS and VM 
operating systems [18,  191. 

the partitioner are as follows (assuming that all  time 
parameters are expressed as multiples of the processor 
cycle time): 

Execution times of primitive operations (add, multiply, 
etc.). These values are used to compute the local 
execution time, cost(u),  of each node u in the PDG. 
P (2 l),  the average number of processors available to 
the user. P need not be an integer. For example, P may 
be set to 3.5 for a four-way multiprocessor in which the 
system uses half the available time slices on one of the 
four processors. 

The target multiprocessor parameters currently used by 

Ts,ar,-up, the start-up overhead of a task. 
Tfork-join, the total fork-join overhead incurred in a parent 
task (PARALLEL DO or PARALLEL  SECTIONS) for creating and 
terminating its child tasks. Tfork-join is modeled as a linear 
function of k ,  the number of child tasks created by the 
parent task: Tfork-join = Tparent + kTchild (k is the number of 
processors executing a PARALLEL DO construct or the 
number of sections in a PARALLEL  SECTIONS construct). 
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Tsignal and TWa, are the signal and  wait overheads of a 
WAITING clause in the PARALLEL  SECTIONS construct. For 
each pair of tasks (Ti, q), such that task 5 waits for 
task Ti, Tsignal is added to the execution time of task Ti 
and TWa, is added to the execution time of task q. 

The values of Tstart.”p’ Tparent’ T&il,j’ Tsignal’ and Twa, depend 
on the implementation of the run-time system as well as 
the hardware characteristics of the target multiprocessor. 
In the future, we shall also include memory-access costs in 
our model,  using parameters for the cache and other levels 
of the memory hierarchy as in [6]. 

3. Program  dependence  graph 

Background 
Aprogram dependence graph (PDG) consists of a set of 
nodes connected by control dependence edges and data 
dependence edges [l]. A PDG node represents an arbitrary 
sequential computation (e.g., a basic block, a statement, or 
an operation). The current PTRAN implementation uses a 
statement-level PDG. A control or data dependence edge  is 
an ordered pair of the form (na,  nb) (indicating a 
dependence from node na  to node nb), augmented with 
some context information. For a control dependence edge, 
the context information is the branch label or predicate 
value that caused the dependence [l]. For a data 
dependence edge, the context information includes the 
nature of the dependence (flowlantiloutput) [24], the pair 
of readhvrite accesses (contained within nodes na and nb) 
that caused the dependence, the direction vector [25] of 
the dependence, and, possibly, the dktance vector [26] of 
the dependence. 

Building a PDG  from a sequential program is a well- 
known procedure. The starting point is to build a control 
flow graph (CFG) for the program [27]. Each node in the 
CFG corresponds directly to a node in the resulting PDG. 
An algorithm for computing the PDG control dependence 
edges from the control flow graph was given in [l]; an 
improved version of the algorithm appears in [28]. The 
PDG data dependence edges are data flow edges (def-use, 
use-def, and  def-def chains) [27] that have been refined or 
eliminated by data dependence tests for array accesses 
[3, 25, 291. The control dependence edges and the PDG 
nodes together form the control dependence subgraph of 
the PDG;  similarly, the data dependence edges and the 
PDG nodes together form the data dependence subgraph 
of the PDG. 

We devote the remainder of this section to discussing 
the forward control dependence graph (FCDG) 
[15, 30, 311, a variant of the standard definition of a PDG 
control dependence subgraph [l]’. The major advantages 

uses the  standard definition for a PDG data dependence subgraph [l, 241. 
I Only the definition of control dependence is affected by this variation. Our work 
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of the FCDG over the standard PDG control dependence 
subgraph is that the FCDG has a hierarchical structure that 
is consistent with the loop-nesting structure of the original 
CFG, and that the FCDG is acyclic, thus simplifying the 
algorithms for identifymg nonloop parallelism and for 
process formation [3, 15, 31, 321. However, the definition 
of the FCDG presented in this section reflects the current 
PTRAN implementation [3] and differs slightly from earlier 
definitions of forward control dependence presented in 
[15, 30, 311. 

computing the FCDG  is the original control flow graph 
(CFG). The FCDG  is computed from the CFG as follows: 

As in computing the PDG, the starting point for 

Compute the interval structure (Definition 2 below) of 
the CFG [33, 341. The interval structure captures the 
program loop-nesting structure in hdr,  hdr-parent, 
and hdr-  lca data structures. 
Build the augmented control flow graph (ACFG) by 
insertingpreheader and postexit nodes (along  with 
appropriate incoming and outgoing edges) into the CFG. 
The locations of thepreheader and postexit nodes are 
determined by the CFG interval structure [15]. 
Compute the forward control flow graph (FCFG) from 
the ACFG by inserting an exits node for each interval, 
retargeting each back edge (Definition 2) in the interval 
to the exits node, and inserting edges from the exits 
node to eachpostexit node of the interval [3]. The 
FCFG is a variant of the ACFG in which each back 
edge  from the ACFG is made to go  in the “forward” 
direction to a special exits node. Therefore, the FCFG 
is an acyclic graph. 
Finally, compute the forward control dependence graph 
(FCDG) from the FCFG, by using any of the known 
algorithms to compute control dependence [l, 281. The 
control dependence edges along with the set of FCFG 
nodes define the FCDG. For a given node Y in the 
FCDG,  we  define the control conditions of node Y as 
the set 

CC(Y 1 
= {(X, L)IY is control dependent on X with label L}. 

Two nodes are said to be identically control dependent 
if and only if they have the same set of control 
conditions in the FCDG. 

The following subsections describe these steps in more 
detail by discussing interval structure, the augmented 
control pow graph, the forward control flow graph, and the 
forward control dependence graph. 

Interval  structure 
We start with a definition of the control flow graph. 
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Definition I A control flow graph CFG = (N,, E,, T,) 
consists of 

N,, a set of nodes. 
E, G N, x N, x { T ,  F, U ,  Zi}, a set of labeled control 
flow  edges. If any two edges, ( a , ,  b , ,  1,) and (a2 ,  b,, 12), 
in Ec have the same source and destination nodes, they 
must have distinct labels (i.e., a ,  = a,  A b ,  = b, 3 

Tc, a node-type mapping. T,(n) identifies the type of 
1, f 4 ) -  

node n as one of the following values: cfgtop, cfgbot, 
preheader, posten’t, exits,  other. 0 

We assume that CFG contains two distinguished nodes 
of type cfgtop and cfgbot, respectively, and that for any 
node N in CFG, there exist directed paths from cfgtop to 
N and from N to cfgbot. The node typespreheader, 
postexit, and exits are reserved for special nodes created 
during the construction of the ACFG and the FCFG. The 
node type other is used for all other nodes. 

The notation used for CFG edge labels is as follows: 
Labels T and F represent true and false conditional 
branches, respectively. Label U represents an 
unconditional branch. Labels of the form Z,  represent 
pseudo control-flow edges and indicate that the 
corresponding branch can never be taken in the original 
program. However, the insertion of these pseudo edges 
provides a convenient structure to the FCDG, as described 
later. We assume that we  may use an unlimited  number of 
labels of the form Z ,  for pseudo edges in order to maintain 
the property that all edges from a CFG node have distinct 
labels. 

The loop-nesting structure of the original CFG is  defined 
by its interval structure [33, 341 (see Definition 2 below). 
Currently, PTRAN considers only single-entry loops as 
candidates for loop parallelism.  In practice, this is not a 
significant restriction. All structured loops (e.g., do, whi 1 e, 
repeat-until) are single-entry even though they may 
contain multiple exits; also, most unstructured loops (built 
out of goto statements) found in real programs are single- 
entry  as well. A multiple-entry loop can be transformed 
into multiple single-entry loops by node splitting [27, 351, 
in which a separate copy of the loop is  included  with each 
loop entry. Node splitting is practical only when the 
expansion in code size does not become prohibitive. 

Definition 2 [33, 341 A back edge in CFG is an  edge 
(x ,  h, I )  such that node h dominates node x (node x is 
called a latch node, and node h is  called a header node) 
[27]. A back edge defines a strongly connected region 
str(h, x ) ,  which consists of the nodes and edges belonging 
to all paths from node h to node x ,  along  with the back 
edge (x ,  h, 1) .  Consider the set B(h) # 0 of back edges 
targeted to header node h.  The union of the strongly 
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connected regions  defined by the back edges in B(h) is 
called the interval with header h denoted by Z(h). 

of interval 1’ if Z ,  is a subgraph of I , .  An interval may 
contain arbitrarily many subintervals. We represent 
interval nesting by a mapping  called hdr-parent, in which 
hdr-parent(h,) = h, indicates that the interval with 
header node h, is  an immediate subinterval of the interval 
with header node h,.  hdr-parent(h) = 0 indicates that 
the interval with header node h is the outermost interval.’ 
hdr-parent defines a directed tree on  all header nodes. 
hdr-lca is a mapping such that hdr-lca(h,,  h2) = h, 
indicates that header node h, is the least common ancestor 
of header nodes h, and h, in this tree. 

Finally, we observe that a node may be contained within 
several enclosing intervals. We use the term node-n 
interval to mean the innermost interval containing node n, 
and  we  define hdr(n) to be the header node of the 
innermost interval containing node n .  0 

Definition 2 is based on the definition of intervals in [34], 
which is essentially equivalent to the definitions formulated 
by Schwartz and Sharir [33] and by Graham and Wegman 
[36]. However, it differs  from the definition of intervals 
due to Allen  and Cocke [37] (also in [27] and [35]), which 
does not require an interval to be strongly connected. This 
distinction is discussed in detail in [3]. 

As mentioned earlier, PTRAN considers only single- 
entry loops as candidates for loop parallelism. For the sake 
of simplicity, the current implementation of the partitioner 
invokes the partitioning algorithm  only for procedures that 
contain no multiple-entry loops-i.e., for procedures that 
have a reducible [27, 35, 38, 391 CFG. This is  an ad hoc 
restriction that can be removed in the future by serializing 
only the region corresponding to the multiple-entry loop, 
while attempting to exploit parallelism outside that region. 
Each serialized multiple-entry loop can simply be replaced 
by a single acyclic node in the CFG, thus satisfying the 
partitioner requirement that the CFG be reducible. The 
advantage of working with a reducible CFG is that it has a 
unique interval structure. 

Augmented control flow graph (ACFG) 
The next step after determining the interval structure is to 
build  an augmented control flow graph (ACFG) [15]. 
Compared to the original CFG, the ACFG makes loop 
structure evident by the insertion of preheader and 
postexit nodes. Formally, ACFG = (Na,  Ea, T,) is 
computed from CFG = (Nc,  Ec, T,) as follows: 

1. Initialize, Na + N,; Ea + E,; Ta + Tc. 

Intervals may be nested, interval Z ,  being a subinterval 

2 Strictly speaking, there may be several outermost intervals that  are not connected 
together strongly. For convenience, we assume that there is  exactly one outermost 
inteNal-the one containing the ENTRY node. This assumption is satisfied if the 
Outermost intewal is required only  to  he connected rather  than strongly connected. 
One could also add pseudo control flow edges that result in a single strongly 
connected Outermost interval. 
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2.  For  each  header node  h in CFG, 
(a)  Create a  new preheader  node p h ,  add it to N,, 

and  designate it as  the  preheader of h 
[i.e., T,@h) = preheader].  

(b)  For  each  control flow edge (u ,  h ,  I) in Ec in CFG, 
if hdr-lca[hdr(u),  h] z h,  then  (we  have an 
interval entry), 
Replace (u ,  h, I )  with (u ,  p h ,  I) in ACFG. 

[i.e., add edge (ph ,   h ,  U )  to E,]. 
(c) Add an unconditional branch  fromph  to h 

3 .  For  each  control flow edge (u ,  u ,  1 )  in CFG, 
if hdr-lca[hdr(u),  hdr(u)] z hdr(u), then (we  have 
an interval exit) 
(a)  Create a newpostexit  node,pe,  and add it to N,. 
(b) Replace edge (u,  u ,  I )  with edges (u ,  pe, I) and 

(c) Add  apseudo  control flow edge from  the 
(pe ,  V, U ) .  

preheader node of the node-u interval to  the new 
postexit node pe. The edge  label has  the form Z , .  
(Each new pseudo control flow edge receives a 
distinct label.) 

Figure 1 shows a FORTRAN  program and its ACFG. 
The three pairs of preheader-postexit nodes (PH1, PEl), 
( P H 2 ,   P E 2 ) ,  (PH3, P E 3 )  arise from the intervals defined 
by  the  three DO loops in the  program.  Labels Z,,, Z, ,   Z, ,  Z3 
identify the four pseudo control flow edges in the 
example ACFG. Note that the STOP statement is 
represented by an unconditional branch to cfgbot.  Also 
note that each DO statement contains a conditional branch 
denoting a null-iteration-range test: If the branch condition 
evaluates to T ,  at least one iteration is executed and the 
flow  of control is passed on to the preheader node; if the 
branch condition evaluates to F, no iteration is executed 
and the loop body is skipped. The END DO statement serves 
the purpose of a repeat-until test performed at the end of 
each iteration. 

Forward control flow graph (FCFG) 
The forward control flow graph, FCFG = (Nf, E,, Tf), is 
then computed from the augmented control flow graph 
ACFG = (N,,  Ea,  T,) as follows [3 ] :  

1. Initialize, N, +- N,; E, +- E,; T, +- T,. 
2 .  For  each interval in ACFG, 

(a) Add an exits node, e, to Nf- 
(b) Add pseudo control flow edges in E, from node e 

to  each postexit nodepe in the interval. The labels 
of the  edges have the form Zi. 

3 .  For  each  back  edge (u ,  h,  I )  in ACFG, 
Replace edge (u,  h ,  I) in E,  with  edge (u,  e, I), where 
e is  the exits node  for the header-h  interval. 
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The only difference between an ACFG  and its FCFG is 
that the back edges from the ACFG are “rewired” to their 
corresponding exits nodes in the FCFG. An exits node 
summarizes all possible paths for the remaining iterations 
in the interval and is  followed by a branch to all postexit 
nodes in the interval. If the interval has a single postexit 
node, the insertion of a new exits node  is unnecessary, 
since all back edges can be directly rewired to the postexit 
node (this is the case for all intervals in Figure 1). 

Forward control dependence graph (FCDG) 
Having constructed the FCFG as described in the previous 
subsection, we compute the FCDG by using any known 
algorithm to compute control dependence [l, 281. The 
control dependence edges, along  with the set of FCFG 
nodes, define the FCDG. Figure 2 shows the FCDG 
derived from the ACFG of Figure 1 (thefreq, cost, and 
seqtime annotations are discussed later, in Sections 4 
and 5 ) .  

We  now summarize the important properties of the 
FCDG: 

The FCDG  is acyclic (follows  from the fact that the 
FCFG is acyclic). 
If the CFG is a structured control flow graph (obtained 
from begi n-end, i f - then-e l  se, and whi 1 e control 
structures only [40]), the FCDG  must be a tree (each 
node can have at most one control condition-see [30] 
for details). Note that the FCDG in Figure 2 is  not a 
tree because node 18 has two control conditions 
(predecessors in the FCDG). This  is consistent with the 
fact that the original control flow graph in Figure 1 is  not 
structured (because of the STOP statement). 

dependent on the preheader nodes of  all intervals that 
enclose the node (follows  from the pseudo edges inserted 
in the ACFG construction). 

An  FCDG node  is directly or indirectly control 

For a structured program, the FCDG looks quite similar 
to the abstract syntax  tree [27] of the program.  This is 
because the control flow  information of a structured 
program  is captured accurately by the program syntax. 
Many  parallelizing compilers for structured programming 
languages  (e.g., the SISAL [41, 421 and  Id [43] compilers) 
depend on the program syntax for  providing control 
dependence information. However, the program syntax 
cannot provide control dependence information for 
unstructured programs, and the more general approach of 
computing PDG control dependences or of computing the 
FCDG (as in PTRAN) must  be  used instead. Not only is 
the FCDG  more  general than an abstract syntax tree, but it 
also has a simpler execution model  and semantics. In  an 
abstract syntax tree, each control structure is assigned a 
distinct node type with special-case semantics, whereas in 
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Forward  control  dependence  graph  (FCDG)  for  program of Figure 1 (frequency  values  obtained  from execution profile, for  input N = 
800 OOO). 

the PDG/FCDG approach, all control structures are 
expressed using the same primitives of basic blocks and 
conditional and unconditional branches. Finally, the 
algorithmic complexity of computing the FCDG  from the 
CFG is just linear in the size of the FCDG. 

In conclusion, we state that the FCDG is a simple, 
general, and  efficient representation of the control 
dependences in a program. Experiences with control 
dependence in the PTRAN system [15] and elsewhere 
[l,  7, 10-121 have shown that it  is a powerful 
representation for various analyses, optimizations, and 
transformations. The following sections demonstrate that 
the FCDG also lends itself very naturally to solving the 
partitioning problem. 786 
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4. Automatic  execution  profiling-Determining 
average  execution  frequencies 
Automatic execution profiling is an empirical means of 
obtaining average loop frequencies and conditional-branch 
probabilities in a program. A counter-based profiling 
system has been implemented in PTRAN as a support 
facility for the partitioning framework [3, 161. When 
profiling  is requested, PTRAN generates an instrumented 
program that is equivalent to the input  program but 
augmented with  profiling statements to initialize  and 
update counter variables. The instrumented program  is 
then executed by the user for any input that he chooses, 
and the final values of the counter variables are stored in 
the program database. 
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To address the efficiency concerns associated with 
counter-based profilers, we developed three effective 
optimizations that reduce the number of counters required 
to profile a program [3, 161. These optimizations usually 
reduce the overhead of counter-based profiling to 5% or 
less, thus making  it practical for profiling to be performed 
on every run (sequential or parallel) of a user program. In 
other work, a spanning-tree algorithm is used for optimized 
counter-based profiling [44, 451. Table 1 compares the 
overhead of the QP  profiling tool [45] with that of PTRAN 
for four FORTRAN SPEC benchmark programs. (The 
“slow” and “quick” entries are for unoptimized and 
optimized profiling, respectively.) For these programs, the 
PTRAN profiler uses many fewer counter operations than 
the QP tool. Though the spanning-tree algorithm  from 
[44, 451 subsumes two of the three profiling optimizations 
performed by PTRAN, the third profiling optimization 
performed by PTRAN (updating iteration counts at loop 
entry/exit) has a big impact in reducing the number of 
counter increments. Another reason for the difference in 
profiling overhead is that PTRAN  profiling  is performed for 
a statement-level CFG, which usually contains fewer basic 
blocks than the instruction-level CFG used in [44, 451. 

Regardless of how the  frequency  information  is  obtained, 
it is  used to label  all  edges  in the FCDG  with relative 
frequency  values,  according to the following  definition. 

Definition 3 Given an edge (u,  v ,  1 )  in the forward 
control dependence subgraph (FCDG), the execution 
frequency of the edge  is denotedfreq(u, 1 ). We use 
freq(u, 1 )  instead offreq(u, v ,  I )  because the frequency 
of edge (u,  v ,  1 ) depends only on the control condition 
(u ,  I )  and not on the target node v .  Also,freq(u, I )  is a 
nonintegral value in general, because it represents an 
average execution frequency over all execution instances 
of node u .  freq(u, I )  is defined as follows: 

When u is a preheader node and I is U (the label that 
identifies loop entry); i.e., when (u,  v ,  1 )  represents a 
loop-control dependence: 

freq(u, I )  = average number of iterations for the u 
interval 

header node is executed each time the 
interval (loop) is entered. 

= average number of times the interval 

In this casefieq(u, 1 )  2 1. 
For all other cases; i.e., when (u ,  v ,  1 )  represents a 
branch-control dependence: 

freq(u, I )  = branch probability of label 1 in node u 
= fraction of times that node u takes the 

branch labeled 1. 

In this case, 0 5 freq(u, I )  5 1. 0 
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Table 1 Comparison of the profiling  algorithms in [45] with 
the PTRAN profiling  algorithm. 

~~ 

SPEC Number  of  counter  increments 
benchmark 

QP tool QP tool PTRAN 
(slow) (quick) 

DODUC 130,897,009 45,651,338 6,380,840 
NASA7 298,530,617 254,628,038 1,235,007 
MATRIX300 60,035,631 54,951,383 1,451,143 
TOMCATV 35,012,274 27,762,776 236,389 

As an example, the edges of the FCDG  in Figure 2 are 
annotated with relative frequency values based on the 
execution profile obtained from an input value of 
N = 800000. (A frequency value is shown only once for 
each label.) 

5. Determining  average  execution  times 
In this section, we describe how average execution times 
can be computed for all nodes in the FCDG.  Once 
frequency values have been obtained as described in the 
previous section, the other necessary input is the 
execution times ofprimitive operations (e.g., load, store, 
add, and multiply).  We do not discuss the possible 
techniques for obtaining the costs of primitive operations, 
except to point out that these costs depend on the target 
architecture. For the purpose of this description, it is 
assumed that the primitive operation costs have already 
been accumulated for each FCDG node and that cost(u) is 
the sum of the primitive operation costs for node u .  One 
approach for estimating primitive operation costs is 
described in [46]. 

We  define the average sequential execution time of node 
u ,  seqtime(u), to be the sum of cost(u) and the 
frequency-weighted execution times of the children of node 
u in the FCDG. The computation of seqtime(u) is based 
on two simple rules (further details are given  in [16]): 

1. seqtime(u) = cost(u) + Z(U,V,,)EFCDG freq(u.  Z)seqtime(v). 

This rule assumes  that  the execution  time of node v 
is  independent of which conditional branch  caused it 
to  execute. 

includes seqtime(entry), where entry is the entry node 
of the FCDG of the called subprogram. This rule 
assumes that the execution time of a procedure call is 
independent of the call site. 

2. If node u is a procedure or function call, cost(u) also 

Rules 1 and 2 implicitly dictate how the execution-time 
values should be computed. Rule 1 requires that the nodes 
be visited in a bottom-up traversal of FCDG.  Rule 2 
requires that the procedures be visited in a bottom-up 
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traversal of the call graph, so that the root procedure 
(main program) is visited last. For the purpose of this 
discussion, we assume that the call graph is acyclic, which 
is a reasonable assumption for FORTRAN programs. In 
previous work [2], we discussed how cyclic call graphs and 
recursive programs can be handled for the single- 
assignment programming  language SISAL [41]. Those 
interprocedural techniques are equally applicable to the 
partitioning framework described in this paper. 

Reference [16] also describes how this approach to 
computing average execution times can be generalized to 
compute execution-time vuriunce. To define variance 
precisely, let Xu be the random variable corresponding to 
the execution time of node v .  So far, we have discussed 
the computation of the average execution time of node v 
[i.e., seqtime(v)], which is the expected value of X,  
[denoted by E(XV)]. By extending rules 1 and 2 above to 
compute the expected value of X,' [denoted by E(XVz)], we 
obtain the variance by using the well-known  definition, 
vur(Xu) = ,!?(Xu2) - [E(Xn)IZ. The standard deviation is 
defined by std-dev(XV) = w, and the normalized 
standard deviation standard deviation is  defined by 
( .(Xv) = std_dev(XJseqtime(v). 

This framework for computing average execution times 
and variance has been implemented in  PTRAN. The 
average execution times are used to guide the partitioner 
component, as described in later sections. An interesting 
application of variance information is for determining the 
optimal chunk size for the execution of parallel loops on 
multiprocessors [47]. When the execution time of the loop 
body has zero variance, the preferred chunk size value for 
N iterations on P processors is NIP rounded up, since that 
provides perfect load balancing with the smallest overhead. 
However, when the variance is large, the optimal chunk 
size value decreases so as to provide better load  balancing, 
despite the increased overhead due to a larger number of 
chunks. We intend to use the variance information in the 
future to guide the run-time system in selecting an 
appropriate chunk size for a parallel loop. Variance 
information will also be useful in determining whether a 
region of code should be scheduled at compile  time or at 
run  time. If the variance is small, the execution times are 
fairly predictable, and we can use compile-time scheduling 
algorithms such as those in [2, 481 to map computations 
directly onto the processors; if the variance is large, the 
execution times are less predictable, and run-time 
scheduling is a better choice. 

The nodes of the FCDG  in Figure 2 are annotated with 
cost and seqtime values computed using the relative 
frequency values determined in Section 4. The cost values 
were obtained by using  an internal trace option in the 
VS FORTRAN compiler. An option in  PTRAN  is used to 
automatically pick up the cost values from the listing  file 
generated by the VS  FORTRAN compiler. The cost values 

v .  S A R K A R  

are scalar execution times estimated from the operations 
revealed by the intermediate program representation used 
by the VS FORTRAN compiler; these estimates are 
approximate because they do not reflect the actual 
instructions that are selected for a statement when target 
code is generated. 

6. Task-tree  definition  and  initialization 
Sections 4 and 5 described how the FCDG is annotated 
with average execution frequencies and average sequential 
execution times. This section defines a tuskpartition as a 
mapping (tuskid) from nodes to tasks and defines a tusk 
tree as the reduced graph obtained by applying the tuskid 
mapping  on the FCDG. This section also describes how 
the initial task tree is constructed to provide the starting 
point for the partitioning algorithm  in Sections 8 and 9. 
The partitioning algorithm iteratively merges adjacent tasks 
in the task tree on the basis of critical-path-length values 
and overhead values until the task tree is reduced to a 
single task. Among  all task  trees in this iterative sequence, 
the one with the smallest parallel-execution-time value is 
selected as the optimized task partition for the current 
procedure. 

A task partition is  defined for a single procedure. It is 
simply a mapping, called tuskid, from nodes to tasks that 
specifies which nodes belong to the same task. For 
example, if tuskid(u) = tuskid(v), nodes u and v belong 
to the same task. By applying a given tuskid mapping on 
the FCDG we obtain a reduced graph on the tasks, 
containing the edges 

E, = {[tuskid(u),  tuskid(v), (u, I)] I tuskid(u) 7t tuskid(v) 
and (u, v ,  I )  is an  edge in FCDG}. 

An edge in E,  has the form [T,,  Tb, (u,  I)], where T, is 
the source task, Tb is the destination task, and (u, I)  is the 
control condition of the edge in FCDG that corresponds to 
edge [T,,  T,,, (u,  l ) ]  in E,. 

Since the parallel FORTRAN language generated by 
PTRAN can express only structured parallelism, the 
reduced graph defined by edges in E, must be a fan-out 
tree (i.e.,  must  not contain any fan-in tasks). Recall that it 
is possible that FCDG is not a fan-out tree, because an 
FCDG node may have multiple predecessors (e.g., node 18 
in Figure 2). To obtain a tree-structured task partition from 
a non-tree-structured FCDG, we first  merge each fan-in 
node in the FCDG  with its dominator in the FCDG. This 
yields a program  with structured parallelism,  while 
permitting unstructured sequential code to occur within a 
task. This tree-structure constraint will be removed in 
future work, when unstructured models of parallelism such 
as the MGOTO operator in [49] are considered. 

Thus, for a given tuskid mapping that satisfies the tree- 
structure constraint on tuskid, the set of edges in the tusk 
tree is  given by E,, the set of edges in the reduced graph. 
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The task-tree edges define the parallel constructs present 
in the partitioned program as follows. Consider a parent 
task Ti with m child tasks, ql, , qm, for control 
condition (u ,  1 )  (defined by the task tree edges 
[Ti ,  ?;l, (u ,  l ) ] ,  * - , [Ti, qm, (u,  l ) ] ) .  Two cases arise 
(examples of both cases can be seen later, in Figure 3): 

1. (u,  1 ) represents a null-iteration-range branch 
condition. In this case, control condition (u ,  1 )  
represents a PARALLEL DO construct. Node u (contained 
in task Ti) must correspond to a DO statement or a 
PARALLEL DO statement in the input program. Letph be 
the preheader node for this loop. ph  represents the 
execution of multiple iterations of the loop (Definition  3) 
and is contained in task Tph = taskid(ph), which must 
be one of the child tasks in the set {ql * , qm}. When 
node u is executed in task q. and the null-iteration- 
range test for node u returns a branch-condition value 
of 1 = T ,  p new tasks are created as dynamic 
instantiations of T,,, to execute loop iterations in 
parallel, as described in Section 2. The value ofp is 
selected by  the compiler and the parallel run-time 
system as the ideal  number of processors for the given 
loop. If the loop contains a loop-carried dependence, 
the compiler forcesp = 1 so as to serialize the loop 
(the partitioning algorithm  will then merge  child tasks 
ql, * - , qm with parent task Ti). As described later, a 
parloop mapping  is  used to identify loops that may 
legally be executed in parallel. 

2. (u ,  1 )  does not represent a null-iteration-range branch 
condition. In this case, control condition (u ,  1 )  
represents a PARALLEL  SECTIONS construct. When the 
(u,  1 )  control condition is reached in task Ti (i.e., when 
the branch with  label 1 is taken from node u in task Ti) ,  
m new tasks are created corresponding to q.l, , l ; m ,  

as described in Section 2. As described later, wait-pred 
and wait-succ mappings identify the necessary 
synchronization among the m child tasks in the task 
tree. 

The initial task tree reveals the maximum possible 
parallelism that can be exploited in the input program, 
given the constraints imposed by its control and data 
dependences and by the structure of the parallel constructs 
supported by the target multiprocessor. The steps involved 
in constructing the initial task tree are as follows: 

1. Initialize. Start by  placing each FCDG node in a 
separate task, taskid(u) = u .  

2. merge fan-in nodes. If the FCDG  is  not a fan-out 
tree, each fan-in node is merged  with its dominator [27] 
in the FCDG,  along with all intermediate nodes. The 
resulting task graph is a fan-out tree. The merging  is 
performed by successive applications of the 

merge-  children transformation described later, in 
Section 8. 

3. Identifiparallel loops. The control and data 
dependence constraints derived for the program are 
used to determine whether iterations of a given loop can 
be executed concurrently. If there are any loop-cam'ed 
control or data dependences, the loop must be executed 
sequentially. A premature exit from within a DO loop is 
an example of a loop-carried control dependence. Loop- 
carried data dependences occur when different loop 
iterations may perform conflicting read/write accesses 
on a shared variable. Constant propagation, induction 
variable analysis, and privatization enhance loop 
parallelization by removing potential loop-carried 
data dependences [3,  13,  321. The result of this step is 
stored in a Boolean  mapping  called parloop. 
parlooplph) = true indicates that it is legal to execute 
the loop with preheader nodeph as a PARALLEL DO. 

4. Identifi waiting constraints. The previous step 
ensures that all loop-carried dependences are satisfied 
by executing some loops sequentially. This step ensures 
that all loop-independent data dependences are satisfied, 
by using waiting synchronizations wherever necessary 
[31]. The result of this step is stored in two task-set 
mappings  called wait-pred and wait-succ; 
wait-pred(Ta) is the set of tasks that T, must wait for 
(by using the WAITING clause in the PARALLEL  SECTIONS 
construct), and wait-succ is  simply the inverse of 
wait-pred. If tasks T,  and T,, are related by a waiting 
synchronization, T, and Tb must be identically control- 
dependent siblings in the task  tree (i.e., they must have 
the same parent task, T,, and the edges from T, to T, 
and Tb must have the same control condition). The set 
of waiting synchronizations among task-tree siblings can 
be determined from the loop-independent data 
dependences computed for the program  [31j. Note that 
the parent-child  waiting synchronizations are implicit  in 
the PARALLEL DO and PARALLEL  SECTIONS constructs 
represented by the task tree. 

Figure 3 shows the initial task tree obtained for the 
program shown in Figures 1 and 2. the parloop-mapping 
values are shown as annotations to the preheader nodes. 
The synchronization edges (waiting constraints) are shown 
as dotted arrows. Note that nodes 6 ,  7, and  18 were placed 
together in the same task because node 18  is a fan-in node 
and node 6 is its dominator in the FCDG. Also, each of 
the sibling node pairs- (PH1, PEl ) ,  (PH2, PE2), and 
(PH3,  PE3)"were merged for convenience, so that for a 
given DO node u,  there is at most one task-tree edge  with a 
control condition of the form (u ,  T ) .  This merging  of 
preheader and postexit nodes does not incur any loss of 
useful parallelism, since it involves only pseudo-nodes, 
which have zero cost. 789 
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Initial task tree  for  program of Figure 1 .  

790 

The definitions of execution frequencies and execution 
times in an  FCDG (Sections 4 and 5) can now  be extended 
to a task tree  as follows: 

freq[Ta, (u ,  I)] is the relative execution frequency of 
control condition (u ,  1 )  in the task tree, just like 
freq(u, I )  in the FCDG. Usuallyfreq[Ta, (u ,  l ) ]  = 
freq(u, I). The only exception occurs for branch 
conditions related to a PARALLEL DO construct-Le., 
when (u ,  1 )  represents a null-iteration-range branch 
condition. Letph be the preheader node for the loop 
represented by node u .  In the FCDG, we defined 
freq(ph, U) = n to be the average number of iterations 
in the loop with preheader nodeph. In the task tree, 
control condition (u ,  T )  represents the concurrent 
execution of multiple instances of the child task, and 
control condition (ph, U )  represents the execution of 
iterations within a single instance of the child task. 

V. SARKAR 

Therefore,freq[Ta, (u,  T ) ]  = p, the average number of 
execution instances created for the child task, and 
freq[taskid(ph),  (ph, U)] = n/p, the average number 
of iterations executed within one instance of the child 
task. 

For the task tree in Figure 3,freq[T8, (8, T ) ]  
is set equal to 4 (the number of processors), and 
freq[TpH,, (PHI, U ) ]  is set equal to 80000014 = 200000, 
sinceparloop(PH1) = T identifies a loop that can be 
executed in parallel. However, parloop(PH2) = F 
identifies a loop that must be executed serially and 
therefore hasfreq[T,,, (11, T ) ]  set equal to 1 and 
freq[TpH2, (PH2, v)] set equal to 800000. As with the 
FCDG, the task-tree relative edge frequencies can be 
used to compute total task frequencies (for a single call 
of the procedure) as follows: 

totfre4[taski~(cfstop)] = 1, 
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totfreq(Tb) = 2 f r e d T a 9  ( u 9  l)1 t o t f r e d T a ) -  

[c,Tb,(u,l)jeb 

Just as we defined cost(u) to be the average local 
execution time of  FCDG node u (i.e., the sum of the 
primitive operation costs in node u) ,  we  define cost[Ta] 
to be the average "local" execution time of task T,- 
Le., the total execution time of  all operations and 
statements local to task T,. The term cost[Ta] is 
obtained as a frequency-weighted sum of the cost(u) 
values for all FCDG nodes that belong to task T,: 

 cost(^,) = 2 [totfreq(u)/totfreq(~,)] cost(u). 
&id(U)=Ta 

If totfreq[Ta] equals zero, cost[Ta] is also set to zero. 
Finally, seqtime[Ta] is the average sequential execution 
of task T, and its children: 

seqtime( Ta) = cost( TJ 

+ freq[Ta, (u, ~l seq t ime(~ , ) .  
(Ta,Tb,(u,i 

We conclude this section on task-tree initialization by 
discussing a simple prepartitioning optimization called 
threshold merge. Since the execution time of the 
partitioning algorithm is a function of the size of the initial 
task tree, it  is sometimes desirable to further reduce the 
size of the initial task tree for efficiency reasons by using a 
granularity threshold value, seqtimemin [2]. The value of 
seqtimemin should be chosen to suit the granularity of the 
target multiprocessor system (e.g., set seqtimefin = TstaReup). 
We use seqtimemin  to merge tasks in the initial 
task tree, so as to obtain a smaller task tree that 
maximizes the number of tasks while ensuring that each 
task T, satisfies seqtime[T,] 2 seqtimemin (the only 
exception occurs when seqtime[cfgtop] < seqtimemin, in 
which case the entire procedure is merged into a single 
task anyway). This merging can be done without using any 
data dependence information, as follows: 

1. Use  seqtimemin  to identifyfnnge nodes in the task tree. 
Node T, is a fringe node if and only if seqtime(T,) < 
seqtimemin and each ancestor T, of Tf has 
seqtime( T,) L seqtimemin. 

Td into task T,, using the merge-children 
transformation described in Section 8. 

2. For each descendant Td of a fringe node T,, merge task 

3. For each fringe node T,, let ( T I ,  * , Tk)  be the 
sequence of nodes that are identically control dependent 
with Tf in the task tree. Use a dynamic programming 
algorithm (similar to the one in [50]) to partition 
(TI, - , Tk) into the maximum  number of 
subsequences such that each subsequence has 
Z,seqtime(T,) L seqtimemin. Each subsequence is then 

merged into a single task, using the merge-siblings 
transformation described in Section 8. 

The possibility of using only threshold-merge as a task- 
partitioning algorithm was investigated for parallel SISAL 
programs in  [51]. The main  limitation of that approach is 
that data dependence information is not used when 
building the partition. 

7. Partition  cost  function 
In this section, we describe how a task partition is 
evaluated. An important feature of our work is that we 
present a single objective cost function that can be used to 
compare two different task partitions and decide which one 
is better. This is in contrast to other work (e.g.,  [52,  531)  in 
which the objectives are to maximize  parallelism and 
minimize overhead, but there is no suggestion of  how the 
two should be tFaded off. The cost function defined  in this 
section is used by the partitioning algorithms in Sections 8 
and 9. The cost function can also be used to provide 
feedback to the user about the estimated parallel execution 
time and speedup of the partitioned program. 

The cost function to be minimized is partime, the 
estimated parallel execution time of the task  tree on the 
target multiprocessor. Though the value of partime 
depends on P (the number of processors available), the 
complexity of computingpartime is linear in the size of the 
task tree and does not depend on P .  The rules for 
computingpartime in a task tree are more complicated 
than the rules presented in Section 6 for computing 
seqtime, because partime must take the parallelism into 
account as well. We  begin with a few  definitions: 

parfreq[Ta, (u,  1 )] is the relative parallelfrequency of 
the task-tree edge  from Ta with control condition (u,  1 ). 
Usually,pa@eq[T,, (u,  l)] is the same as the relative 
sequential  frequency  for task-tree edges,freq[T,, (u, l ) ] ,  
defined in Section 6. The  only  exception occurs for 
control condition (u ,  T ) ,  where FCDG node u is a 
PARALLEL DO statement created by the user or the 
compiler; since this control condition represents the 
parallel execution of multiple instances of the child task, 
we setparfreq[T,, (u,  771 = 1. 
#forks[Ta, (u ,  l ) ]  is the average number offorks 
performed by task T, when taking the conditional branch 
represented by control condition (u ,  1). If (u, 1 )  
corresponds to a PARALLEL DO, #forks[Ta, (u, l ) ]  = 
freq[Ta, (u ,  1 )] is the average number of child task 
execution instances created for the PARALLEL DO. If (u ,  I )  
corresponds to a PARALLEL  SECTIONS construct, 

the number of parallel sections created by the PARALLEL 
SECTIONS construct. 

( '9 ' ) I  = I ' I T , ,  Tb ,  ( '9 '11 E ET}II is 
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#wait@,) = Ilwait-pred(Ta)ll is the average number of 
waits performed by task T, in a PARALLEL  SECTIONS 
construct. 

signals performed by task T, in a PARALLEL  SECTIONS 
construct. 
labels(Ta) = {(u, 1) I 3 [ T , ,  Tb, (u,  l ) ]  E ET} is the set of 
control conditions (labels) emanating from task T, in E,. 
ovhd(T,) is the total overhead for task T,, based on the 
target-multiprocessor overhead parameters mentioned in 
Section 2: 

#signals(Ta) = Ilwait-succ(T,)II is the average number of 

The fork-join overhead incurred by task T, is based on 
the Tparent and Tchild overhead parameters defined in 
Section 2. The synchronization overhead incurred by 
task T, is assumed be directly proportional to the 
number of predecessor and successor tasks of T, in 
wait-pred and wait-succ respectively. I f  the 
synchronization overhead is further optimized (e.g., by 
using counting semaphores as in [54]), then the reduced 
number of synchronization operations should be used 
instead of #waits and #signals. We also define 
total-ovhd = EtaskTa totfreq(T,)ovhd(T,) to be the total 
overhead incurred by all tasks in the task tree. 
total- time( T,) is the average total sequential execution 
time  (including overhead) of task T, and its children. 
It is computed like seqtime(T,), which was defined in 
Section 6: 

With the above definitions, the following rules show how 
partime can be recursively computed for all tasks by a 
bottom-up traversal of the task tree, using two 
intermediary cost values for control conditions, 
label- critpath and label-partime: 

label-critpath. For any control condition (u ,  1 ) in 
the task  tree, compute label-critpath[T,, (u ,  l ) ] ,  the 
criticalpath length o f  the child tasks with control 
condition (u,  1 )  and parent task T, (task T, is  uniquely 
defined, because a control condition must have a unique 
parent task in the task tree). I f  (u ,  I )  represents a 
PARALLEL  SECTIONS construct, the label-critpath value is 
set to the critical path length of the precedence graph 
defined by the wait-pred and wait-succ relations, 

computed usingpartime(T,) as the execution time for 
child task T,. For a PARALLEL DO construct, the 
label- critpath value equals the partime value for a single 
execution instance of  its child task. 
label-partime. For any control condition (u,  1 )  in 
the task tree, compute label-partime[T,, (u,  l ) ] ,  the 
estimated parallel execution time of the child tasks with 
control condition (u,  I )  and parent task T,: 

label_partime[T,, (u, 1 )] 

= max {labe-critpath[T,, (u, l ) ] ,  2 total-time(T,)/P}. 
[T, ,T , . (Ui ) l€E,  

label_partime[T,, (u ,  l ) ]  differs from labeLcritpath(T,, 
u,  1 )  because it uses total-time(T,) and the number of 
processors, P ,  to enforce a stronger lower bound on the 
parallel execution time. 

the parallel execution time of task T,: 

partime(T,) = cost(Ta) + ovhd(Ta) 

partime. For a given task T,,  computepartime(T,), 

+ 2 max (parSeq[Ta,  (u, 111 label-partime[T,, (u, 01, 

freq[T,,  (u, l ) ]  2 total-time(T,,)/P}. 

(u, l )Elak/S(rJ 

[ra,Tb.(41 )I% 

partime(T,) is obtained from the frequency-weighted 
sum of the parallel execution times of  the control 
conditions in labels(Ta). As in label-partime, the 
total-time(T,)/P term is used to obtain a stronger lower 
bound on the parallel execution time. 

As with the computation of average sequential execution 
times in Section 5, the computation ofpartime is 
interprocedural. The partime and total- time values 
obtained for the root task of a partitioned procedure are 
stored as summary information to be used at all  call sites 
of the procedure. This interprocedural approach requires 
that the procedures be partitioned in a bottom-up traversal 
of the call graph, so that the summary information for a 
procedure is available whenever any of  its call sites is 
examined. 

The quantity partime nicely expresses the trade-off 
between parallelism  and overhead in a way that takes into 
account the number of processors available on the target 
multiprocessor. I f  the granularity of  the task partition is 
too fine, partime will be large because of excessive 
overhead (defined by the ovhd values). If the granularity is 
too coarse, the values of  label-critpath and label-partime 
will  be large because of  loss of parallelism, causing 
partime to be large once again. partime is usually 
minimized at some intermediate granularity. 

the estimated parallel execution time  defined bypartime 
Apart from  helping us determine an optimal granularity, 



can be shown to provide lower and upper bounds on the 
actual parallel execution time, partimeaoua,, of the task 
partition on the given multiprocessor: 

(1 - €)partime I partimeactual < 2(1 + elpartime, 

where E is the relative error in the compile-time estimates 
of frequencies, execution times, and overhead values. A 
proof of a similar result was provided in [2]. This result 
assumes that the tasks are scheduled with no unforced 
idleness and that the overhead components of different 
tasks can be executed in parallel. The factor of two is a 
worst-case upper bound, based on a result due to Graham 
[55]. This worst-case upper bound is achieved only when 
the mar terms are nearly equal in the calculations of 
label-partime and partime described above. If, as is 
usually the case, one term is significantly larger than the 
other in each l l ~ x  operation performed, the upper bound 
will be =( l  + €)partime, without the factor of two [2]. 

is an extension of the F ( n )  macro-dataflow partition cost 
function defined in [2, 561. 

The task-tree partime cost function defined  in this paper 

8. Partitioning  algorithm 

Description of algorithm 
The partitioning algorithm attempts to minimize the 
partime value of a given procedure. It  starts with the initial 
task  tree defined  in Section 6 and iteratively merges tasks 
on the basis of overhead and critical-path-length values. 
Tasks are merged  using two primitive  merge 
transformations on the task tree: 

1. Start with the initial task tree defined  in Section 6. 
2. Repeat steps 3, 4, and 5 until no further merging  is 

possible (i.e.,  until  all nodes have been placed in the 
same task). Keep track of the best partihe value 
obtained among  all partitions generated during the 
following iterations. 

3. Pick the task with the largest average decrease in 
overhead. Call the selected task T,. The average 
decrease in overhead for a task is calculated by 
summing the decrease in total-ovhd obtained over all 
possible merging choices for the task and then dividing 
by the number of merging choices. The average 
decrease in overhead can be computed efficiently 
(usually in constant time per merging choice) by 
examining only the parent, children, and siblings of the 
task in the task tree [see the definitions of ovhd(T,) and 
totaI-ovhd in Section 71. 

4. Evaluate the parent, sibling,  and  child tasks of T, as 
candidates for merging  with T,. Of these tasks, pick the 
one that yields the smallest value of the critical path 
length (critpath) of the entire task tree, when it is 
merged  with T,. For each merging choice, it takes at 
most  time linear in the size of the task tree to evaluate 
the new critical path length.  Call the selected task Tb. 

merge- children. Update all the task-tree data structures 
incrementally in at most  time  linear in the height of the 
task tree and the number of sibling tasks of Ta and Tb. 

6. When no further merging  is possible, reconstruct the 
partition with the best partime value by  reinitializing the 
task tree and repeating steps 3, 4, and 5 ,  until the 
partition with the bestpartime value is obtained. 

5 .  Merge tasks T, and Tb using merge-siblings or 

1. merge_siblings(T,, T,) merges tasks T,  and T,, which 
must have the same parent task and control condition in 
the task tree. The effect of merge-siblings is to 
combine two separate sections (tasks) from a PARALLEL 
SECTIONS construct into a single section (task). 

2. merge-chiIdren[T,, (u, I ) ]  merges task T, with all its 
child tasks that have control condition (u ,  1 ). The effect 
of merge-children is to replace a PARALLEL DO with a 
sequential loop or to replace a PARALLEL  SECTIONS 
construct with a sequential execution of the sections. 

The iterative merging is continued until the entire 
procedure is in a single task. The partime values are 
calculated for all intermediate partitions, and the partition 
with the smallest value of partime is reconstructed and 
passed on to the code generator as the optimized task 
partition for the current procedure. (Since the task tree is 
incrementally updated in each iteration, it is more efficient 
to reconstruct the optimized task partition at the end than 
to store a copy of the partition in each iteration.) 

The general structure of the partitioning algorithm is as 
follows: 

The  main issue in the partitioning algorithm is the choice 
of tasks to be merged  in each iteration. In step 3, task T, 
with the largest average decrease in overhead is chosen as 
the primary candidate for merging. The goal of this step is 
to obtain the largest reduction in the overhead component 
ofpartime. In previous work [2], the task with the largest 
total overhead was selected. However, experience has 
shown that selection of the task with the largest average 
decrease in overhead usually leads to a larger overhead 
reduction. In step 4, the task that yields the smallest 
critical path length when merged  with T, is chosen. This 
rule attempts to find a task that can be  merged  with T,, 
while  giving  up as little parallelism as possible. These 
choices were also used  in previous work on partitioning 
SISAL programs [Z, 56, 571. 

partitioning algorithm was to choose the pair of tasks 
(T,, Tb) that yields the smallest value ofpartime in each 
iteration (i.e., a greedy algorithm to minimize partime). In 
practice, however, the greedy algorithm turned out to be a 
poor choice, because it  would often return the sequential 

An alternative rule that was considered for the 
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Final task tree for program of Figure 1. 
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partition as the best partition (due to the large overhead of 
fine-grain  parallelism, the sequential partition usually has a 
smallerpartime value than that of the initial task tree). 
Instead, by choosing task Tb as the one that yields the 
smallest criticalpath length in step 4, we force the 
partitioning algorithm to explore intermediate partitions 
with more parallelism and to avoid the sequential partition 
as long as possible. 

The wait-pred and wait-succ constraints have a subtle 
influence on which pairs of tasks can be merged by 
merge-siblings( T,, Tb). In particular, the merge  must  not 
introduce a cycle in the waiting constraints. This condition 
will be satisfied if and only if there is no directed path of 
length greater than one between T, and Tb in wait-pred or 
wait-succ. In previous work on partitioning SISAL 

programs for macro-dataflow execution [2, 561, we avoided 
introducing a cycle by imposing a convexity constraint and 
merging  all tasks in the convex hull of T, and Tb in the 
data dependence graph. In the present work, we  merge 
tasks T, and Tb only if their convex hull consists of just 
T, and Tb. It is easy to prove that any valid set of sibling 
tasks can be merged by successive calls to merge-siblings, 
with this constraint. 

Note that merge-children [T,, (u,  1 )] merges task T, 
with all of the T, child tasks that have control condition 
(u ,  1 ). This all-or-nothing approach was chosen for the 
sake of simplicity. If we  allow a single  child task 
(say, task Tb) to be merged  with its parent, we may have 
to split the original PARALLEL SECTIONS construct into two 
PARALLEL SECTIONS constructs, one for the Tb predecessor 
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Table 2 Performance  measurements for final task  tree of Figure 4. 

Task freq uarfreq cost ovhd total- time partime 

CFGTOP . . . 30008  1260 2.14 x 10’ 7.27 X lo7 
8: DO I= . . . 1 1 2  1270 1.37 x 10’ 3.42 X lo7 
PH1 ... 4  1 3.42 X io7 10 3.42 X io7 3.42 X io7 
11: DO J =  . . . 1 1 3.84 X 10’ 10 3.84 X lo7 3.84 X lo7 
14: DO K= . . . 1 1 3.84 X io7 10 3.84 X lo7 3.84 X lo7 
17: WRITE . . . 1  1 30000  10  30010  30010 

~~ 

sibling tasks and one for the Tb successor sibling tasks 
(according to the waiting constraints). Also, for any sibling 
of Tb (say, Ts)  that could be executed concurrently with 
task Tb, we have to decide which of the two new PARALLEL 
SECTIONS constructs should contain Ts. Further merges of 
individual  child tasks could lead to further fragmentation of 
the PARALLEL  SECTIONS constructs. These complications are 
avoided by requiring that all  child tasks with the same 
control condition be merged simultaneously with the 
parent. It would be easy to extend this rule to allow 
merging an individual  child task with its parent in certain 
benign cases (e.g., if the task has empty wait-pred and 
wait-succ sets). However, an extension for the general 
case would be more complicated. 

partitioning algorithm now  follows. Let N be the number 
of tasks in the initial task tree. Steps 3, 4, and 5 are 
performed at most N times, because each iteration reduces 
the number of tasks  by at least one3.  Step 4 takes constant 
time if we store the “average decrease in overhead” 
values for  all tasks in a heap data structure. The 
complexity of maintaining the heap data structure is as 
follows. For any task, we  define adjacency as the sum of 
numbers of parent, sibling,  and  child tasks. We define A as 
the maximum adjacency over all tasks in the task tree. 
Initializing and maintaining the heap takes a total of 
O[N(logN + A ) ]  time during the whole algorithm, since it 
takes O(A) time to compute a new “average decrease in 
overhead” value. Step 5 takes O(AH) time, where H is 
the maximum  height of the task tree, sinceA is the 
number of candidate tasks considered for Tb, and O(H) is 
the time required to compute a new critical path length 
value. 

Thus, the total execution time complexity is O[N(logN 
+ A H ) ] .  In the best case (i.e., when each task has at most 
a small, constant number of children and siblings), A is 
constant and H = O(logN), yielding  an O(N log N )  
execution time. In the worst case, A = O(N)  and 
H = O(N), yielding an O(N3)  execution time. Empirical 

A rudimentary worst-case execution-time analysis of the 

when the partitioner considers different values forp, the number of processors to 
3 The only  case in which a  merging iteration does not reduce the number of tasks is 

be assigned to a parallel loop. Using the approach from [2], we successively try to 
se tp  to the values P ,  P /2 ,  P/4, . . . , 1, where P is the number of physical 

could be N log ( P )  in the worst case, which can still be assumed to be U(N) in 
processors available to the user (Section  2). Therefore, the number of iterations 

practice if log ( P )  is assumed to be a constant. 

evidence shows that, in practice, the actual execution time 
is almost always O(N log N ) .  

Partitioning example and experimental results 
Figure 4 shows the final task tree obtained by applying this 
partitioning algorithm to the initial task tree in Figure 3. 
The target multiprocessor parameters used (cf. Section 2) 
were 

P = four processors. 
Tstart-up = 10 cycles. 
Tfork-join = 60 + 300k cycles, where k is the number of 
child tasks created (Le., Tparent = 60 and Tchild = 300). 
Tsignal = TWa, = 0. For the sake of simplicity, the cost of 
a waiting synchronization was assumed to be zero. 

Table 2 summarizes the freq, parji-eq, cost, ovhd, 
total- time, and partime values of all tasks in the final task 
tree (thefreq andparji-eq entries give the corresponding 
values for the task-tree edge connecting a task to its 
parent). The task-tree edge with control condition (8, T )  is 
the only edge withparfreq < freq; it represents a 
PARALLEL DO for which four instances of the child task are 
created at run time. The partime value of the root task is 
7.27 X lo7 cycles; this is the estimated parallel execution 
time of the entire program. Since the estimated sequential 
execution time of the program was 2.14 X lo8 cycles 
(Figure 2), the estimated speedup of the partitioned 
program  is 2.14 X 108/7.27 X lo7 = 2.9. 

task tree is shown in Figure 5. It contains a PARALLEL 
SECTIONS construct and a PARALLEL DO construct, as 
dictated by the final task  tree in Figure 4. The estimated 
sequential execution times from Figure 2 are shown to the 
right of the output code. (An option in PTRAN is used to 
control the inclusion of these seqtime values in the output 
code listing.) 

To corroborate the estimated execution times with their 
actual values, we executed the sequential and parallel 
versions of this example program on an IBM 3090 system4. 

The Parallel FORTRAN code generated from the final 

The measurements were made using the Parallel FORTRAN run-time system [19]. 
The parallel  program used for the measurements was generated by FTRAN but 
differed slightly from the code  shown in Figure 5 because of syntactic differences 
between the VS FORTRAN 2.5 parallel language [18] and the Parallel FORTRAN 
language [19]. The measurement version of the program contained the PARALLEL 

and also contained a call to PXSPIN to  set the bury-wait tuning parameter BW to 1ooO. 
LOOP and PARALLEL CASES keywords instead of PARALLEL DO and PARALLEL SECTIONS, 
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In both cases, we measured the elapsed wall-clock time. 
For greater accuracy, we enclosed each program in a 
sequential loop with 100 iterations. The resulting 
measurements of elapsed time were 270 s and 94 s for the 
sequential and parallel versions, respectively. Therefore, 
the actual speedup obtained was 270194, which also 
equals 2.9! 

The average sequential execution time measured for a 
single instance of the example program is 270/100 = 2.7 s. 
Since the cycle time of the 3090 system is 15 ns, this 
amounts to an execution time of 2.7115 X = 1.8 x 10' 
cycles. However, the estimated seqtime value in Figure 2 
is 2.14 X 10' cycles, which is an overestimate by about 
20%. Similarly, the average parallel execution time of a 
single instance of the example program is 0.94 s, or 
0.94115 X = 6.27 X lo7 cycles, whereas the estimated 
partime value in Figure 4 is 7.27 X lo7 cycles, an 
overestimate of about 16%. Further experimentation is 
necessary to evaluate the accuracy of execution-time 
estimates for different programs. 

Table 3 contains parallel-execution-time measurements 
for a small collection of programs from the GENESIS [58], 
PERFECT [59], and SPEC [60] benchmark sets. These 
programs are much larger than the example program 
discussed in Figures 1-5 and are more representative of 
real applications. The first  column of numbers contains the 
sequential execution times for these programs (measured 
on  an  IBM 30905 system using the Parallel FORTRAN 
compiler [19]). The second column of numbers contains 
the elapsed times obtained by using the automatic 
parallelization facility of the Parallel FORTRAN compiler 
and executing the program  on four processors. The third 
column of numbers contains the elapsed times (also on 
four processors) obtained by using  PTRAN as a source-to- 
source translator followed by the Parallel  FORTRAN 
compiler (with automatic parallelization turned off). 
Although the automatic parallelization performed by 
PTRAN resulted in better performance compared to the 
automatic parallelization performed by the Parallel 
FORTRAN compiler, the actual performance improvement 
compared to the sequential code was quite modest. The 
performance was limited because of serial regions in these 
programs that were not amenable to automatic 
parallelization. Similar results have been reported by other 
researchers [61]. For these programs, the partitioning 
techniques described in this paper served the purpose of 
eliminating useless parallelism  and  avoiding anomalous 
situations in which the parallelized code runs slower than 
the sequential code. The partitioning techniques will  be 
more  useful for PDGs with larger amounts of parallelism; 
such PDGs should result from programs in which the 
serial regions are explicitly parallelized by the user- 
e.g., by using PARALLEL DO statements or array-language 
notation. 

V. SARKAR 

9. Partitioning  for  loop-only  parallelism 
As described in the previous section, the partitioning 
algorithm deals with loop parallelism and nonloop 
parallelism  in a common framework. The problem of 
finding a partition with the smallest value ofpartime is 
NP-complete [2]. The task-partitioning algorithm in 
Section 8 is an approximation algorithm that works well in 
practice. It is generally intractable to use an exponential- 
time optimal algorithm for partitioning task trees from real 
programs, considering that the initial task tree often 
contains 500 to 1000 nodes. 

However, it  is generally tractable to use an exponential- 
time  algorithm for loop-only parallelism, since very few 
programs have more than ten parallel loops in a loop nest. 
Exponential-time loop-nest-traversal algorithms are 
frequently used in commercial vectorizing and parallelizing 
compilers (e.g., [62]). The PTRAN partitioner performs a 

loop-only pre-pass," which identifies the optimal set of 
loops to be serialized if there is no nonloop parallelism in 
the program  (i.e., if wait-pred and wait-succ impose a 
total order rather than a partial order on each set of sibling 
tasks with the same control condition). Loops that are 
serialized in this loop-only pre-pass are then marked as 
sequential before the general partitioning algorithm of 
Section 8 is performed. The justification for this approach 
is that if a loop is made sequential when only loop 
parallelism is considered, it should also be made sequential 
if nonloop parallelism  is considered as well. If the target 
multiprocessor system supports only loop parallelism, the 
output of the loop-only pre-pass can be passed directly to 
the code generator. 

The loop-only pre-pass consists of the following steps: 

" 

1. Start with the initial task tree defined in Section 6. 
2. For each task T, with control condition 

(u,  1 )  E labels(T,) such that (u,  I )  does not 
correspond to a PARALLEL DO construct, perform 
merge-children [T,, (u,  I )I. All  of the control 
conditions in the resulting task tree now correspond to 
parallel loops. In the case of the program of Figure 1, 
the initial task tree from Figure 3 is collapsed into 
just two tasks-one containing nodes {PHl, 9, 10, 
PEl}, and the other containing all the remaining 
nodes. 

3. For each PARALLEL DO in the task tree, perform a local 
analysis of execution times and overheads to determine 
whether it  is never profitable to execute the loop 
concurrently (e.g., when seqtime < Tp,,,,,). If so, 
perform meqe-children[T,,  (u, I)], where (u,  I )  is the 
control condition of the PARALLEL DO. 

4. Remove the root task so as to decompose the task tree 
into subtrees. Each subtree corresponds to a nest of 
parallel loops with its root at the task containing the 
preheader node of the outermost loop in the loop nest. 
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Output Parallel  FORTRAN  code  generated from final  task  tree for program of Figure 1. 

~ ~ .~~ 

Table 3 Comparison of sequential and  parallel (on four processors)  execution  times. 

Benchmark program Elapsed time on  an  IBM 309OJ system 
( 4  

Sequential Automatic parallelization 
by Parallel FORTRAN 

compiler 

Automatic 
parallelization 

by PTRAN 

CG2BIG (GENESIS) 244 
QCDlV (GENESIS) 899 
XYVEC3  (GENESIS) 262 
TFS (PERFECT) 288 
NASA7  (SPEC) 259 
TOMCATV (SPEC) 218 

244 
475 
176 
185 
261 

(terminates prematurely) 

90 
387 
170 
162 
178 
130 

The nest of parallel loops may have a general tree 
structure; we do not require the nest to be linear or to 
consist only of adjacent loops. 

5. For each subtree (loop nest), find the optimal subset of 
parallel loops that should be executed concurrently in 
order to obtain the smallest partime value for the entire 
loop nest. In the worst case, the execution time of this 
step will be O(L X 2 L ) ,  where L is the number of 
parallel loops in the loop nest. 

10. Incorporating  loop  transformations  into  the 
partitioner 
The partitioning algorithm described in the previous 
sections assumes a k e d  loop configuration for the input 
program. However, loop transformations are the driving 
force behind  many of today’s vectorizing and parallelizing 
compilers [25]. Various loop transformations have been 
defined over the years in order to deal with different 
optimization goals. Loop transformations such as 797 
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interchange, reversal, skewing, blocking, coalescing, and 
parallelization can change only the execution order of 
iterations in a perfect loop nest and are known as iteration- 
reordering loop transformations [63]. Other loop 
transformations, such as distribution, fusion, alignment, 
unrolling,  and  peeling, can change the execution order of 
iterations and statements in the loop body and are known 
more generally as statement-reordering loop 
transformations. 

Loop transformations are usually applied to a single loop 
nest at a time.  The  definition of a loop nest assumed in 
loop transformations is usually more restrictive than the 
definition in Section 9. (E.g.,  loop transformations usually 
assume that all loops are DO loops, that the loop nests are 
linear, and that the loops are perfectly nested.) Even for 
this restricted model,  it  is  highly intractable to determine 
the best choice of loop transformations for a given loop 
nest. Many transformation systems (e.g., Parafrase [64]) 
perform loop transformations on  all loop nests in some 
predetermined sequence. Because of the inherent 
complexity of the loop-transformation problem, some 
transformation systems (e.g., ParaScope [65,  661) allow the 
programmer to interactively specify the desired sequence 
of loop transformations. 

In the previous sections, we described how the PTRAN 
partitioner addresses the problem of selecting an optimized 
task partition by using a global framework for average 
execution times and frequencies. Incorporating loop 
transformations within this global framework would surely 
make the transformation problem harder than that for a 
single  loop nest. However, we perform two important 
simplifications that make the combined  problem of task 
partitioning and loop transformations tractable, while  still 
yielding a good optimized solution to the general problem: 

1. Divide and  conquer We decompose the entire 
partitioning and loop-transformation process into three 
stages-prepartitioning, partitioning, and 
postpartitioning. We then examine each loop 
transformation separately and carefully decide at which 
stage it should be performed, trying to place as few 
loop transformations in the partitioning stage as 
possible. For instance, it  is appropriate to perform loop 
vectorization in the prepartitioning stage since it is a 
transformation with a large number of constraints. Once 
the decision to vectorize has been  made in the 
prepartitioning stage, it  will  not be revoked by the later 
stages; thus the expense of backtracking is avoided. 

framework can be used to identify the hot spots in the 
input program, i.e., the regions  which dominate the 
program execution time.  We  need  not spend any effort 
on partitioning or transforming regions with negligible 
execution time, since doing so will  have little or no 

2. Focus on hot spots Our global execution-time 

impact on the performance of the optimized program. 
We discuss one form of hot-spot analysis in Section 6, 
where the granularity threshold value seqtimemin is used 
to control the size of the initial task tree. Similarly,  we 
can perform parallelizing  loop transformations only on 
loops whose total execution time contribution is larger 
than some factor (say, E) of the program sequential 
execution time. It is important to make E depend on the 
number of processors, P, because the execution time of 
a region  may become more  significant as the remainder 
of the program  is parallelized. In  [2],  we proposed a 
value of E = O.Ol/P when performing node expansion 
for compile-time scheduling. 

The remainder of this section is organized as follows. 
The next subsection briefly discusses some of the loop 
transformations that are suitable for the prepartitioning 
stage. The following subsection discusses how the loop 
fusion transformation can be incorporated into the 
partitioning stage. The last subsection briefly discusses 
some of the loop transformations that are suitable for the 
postpartitioning stage. 

Prepartitioner loop transformations 

Loop distribution 
Most loop-transformation systems (e.g., Parafrase [64]) 
begin by distributing loops around strongly connected 
components of the dependence graph [25, 671. This 
approach of full  distribution (also known as  r-block 
partitioning) provides the greatest flexibility in choosing 
individual loop configurations and task partitions and is a 
natural candidate for the prepartitioning stage. However, if 
the final code contains several distributed loops, it may 
incur excessive overhead because of poor data locality and 
extra increment-and-test code. After the flexibility of full 
distribution has been exploited in the prepartitioning stage, 
we suggest performing  loop  fusion in the partitioning stage 
in order to remove (as far as possible) the overheads 
introduced by loop distribution. Name-only  distribution 
[68] is a more coarse-grained form of loop distribution that 
has also been proposed as a way of obtaining the benefits 
of loop distribution without excessive overhead. 

Locality-improving  loop  transformations 
Recent work has shown how  loop transformations, such as 
interchange, reversal, skewing, and blocking (tiling), can 
be  used to restructure innermost loop nests for improved 
data-access locality in the cache and other levels of the 
memory hierarchy [S, 6, 69-71]. These transformations are 
crucial for efficient  use of modern high-performance 
uniprocessor and multiprocessor systems. More 
importantly, the performance degradation that results from 
not  performing these transformations becomes more severe 



as the number of processors increases in a multiprocessor 
system [5]. Therefore, it is important to perform such 
locality-improving loop transformations in the 
prepartitioning stage. 

Loop vectorization 
Loop vectorization has been studied in great detail 
[25,  671. In fact, the whole area of automatic parallelization 
was initially motivated by the need  for compilers that do a 
good job of loop vectorization. The decision to vectorize a 
loop depends on control and data dependences, on 
hardware constraints (not all operations can be executed in 
vector mode), and on cost considerations (number of 
iterations of the loop, memory access costs, etc.) [62]. 
As mentioned earlier in this section, we suggest that loop 
vectorization should be performed in the prepartitioning 
stage because it has a large number of constraints. Loop 
vectorization is performed by strip-mining the loop on the 
basis of the hardware vector length [25]; the outer 
sectioning loop is still eligible for other loop 
transformations, such as parallelization and interchange. 

Loop fusion 
As mentioned earlier, we depend on loop fusion to remove 
(as far as possible) any overheads that are introduced by 
loop distribution. There is a strong interaction between the 
considerations for loop fusion and task partitioning, so it  is 
natural to perform loop fusion  in the partitioning stage. For 
instance, loop fusion  may  tend to fuse two loops together 
to reduce the number of cache misses, whereas the 
partitioner may tend to place them in separate tasks for the 
sake of parallelism (thus making them ineligible for fusion). 
By incorporating the loop-fusion decisions in the 
partitioner, we can trade loop-fusion  benefits  with 
parallelism  benefits in a common framework. Also, the 
structure of our partitioning algorithm lends itself quite 
nicely to loop fusion. We start with a fine-grained  initial 
task tree and with  fully distributed loops. As we merge 
tasks, we can also decide how the loops within a task 
should be fused. 

Most commercial vectorizing and parallelizing compilers 
attempt to fuse only adjacent loops that originate from the 
same source statement (e.g., by distribution of a DO loop or 
by translation of a Fortran 90 WHERE construct into multiple 
loop nests). Our proposed loop-fusion  algorithm is more 
general in that it  may fuse any set of loops that are 
potentially fusible; the loops may be nonadjacent and  may 
not even have been derived from the source statement. 

To incorporate loop fusion within the partitioning 
algorithm, we employ a procedure that selects an 
optimized fusion  configuration for all loops in a given task. 
This procedure is described in  [72] and uses an extended 
version of the max-flow/min-cut  algorithm [73]. As each 
iteration of the partitioning algorithm considers different 
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pairs of tasks to merge, the fusion procedure can be used 
to estimate the fusion benefits that will result from each 
possible merge. These fusion costs  are then incorporated 
into the global partirne value used to identi@ the best 
partition. This approach enforces the constraint that only 
loops in the same parallel task are eligible for fusion. 

Postpartitioner loop transformations 
After the partitioner has determined how the program 
should be decomposed into parallel tasks, it is important to 
perform intratask code optimizations so as to improve the 
sequential execution times of the tasks  as well. Our goal  is 
to obtain speedup via parallelism without slowing  down the 
individual tasks due to reduced optimization. Loop 
transformations that are used to improve the sequential 
execution time of a program should be performed in the 
postpartitioning stage. Loop unrolling is an important 
technique for exposing more instruction-level parallelism. 
Scalar replacement [74] is a technique for replacing array 
accesses with a scalar temporary in order to obtain an 
improved register allocation. Such transformations can be 
applied profitably to intratask computations. 

11. Related work 
The general problem of determining the optimal granularity 
of program decomposition has been addressed in other 
work, as discussed below. However, these approaches 
differ  from the work presented in this paper by assuming a 
more restrictive program  model and/or a more restrictive 
parallel execution model. There has also been much 
previous work in the area of graph partitioning to minimize 
intercluster communication. While  it  may be possible to 
use some of those techniques for partitioning programs to 
minimize communication overhead, the graph model 
assumed is usually too abstract for those results to be 
applicable to program graphs. 

Some of the ideas in our work on partitioning PDGs for 
fork-join execution evolved from our previous work on 
partitioning SISAL programs for macro-dataflow execution 
[2,  561. However, there are fundamental differences 
between the two pieces of work because of differences in 
the language  model (FORTRAN is  an imperative language, 
whereas SISAL is an applicative, single-assignment 
language)  and in the parallel execution model  (fork-join vs. 
macro-dataflow). In this paper, the FCDG  is used to 
uncover the structure of the FORTRAN  program  from the 
control flow graph, to store average execution frequencies 
and average execution times, and to provide the basis for 
determining the final task partition. In SISAL [41], the 
graphical program representation (IF1) is derived from the 
syntax of the program; IF1 cannot express imperative and 
unstructured language features, such as those found in 
FORTRAN. Also, the target model  in the present work is 
a structured fork-join parallel program, as opposed to the 
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macro-dataflow execution model assumed in  [2,  561. 
Macro-dataflow is a more restrictive model because it does 
not allow the possibility of a parent macro-actor creating 
other macro-actors and then suspending itself  until their 
completion. Recently, we have extended the SISAL 
partitioner to support a fork-join parallel execution model 
[57], but the differences in the language models 
(FORTRAN vs. SISAL) still remain. 

language and execution models, the work described in this 
paper contains several novel extensions and 
improvements, compared with our earlier work in  [2,  561. 
Section 4 describes optimizations for efficient execution 
profiling that are based on the FCDG; these optimizations 
could also be used in a syntax-based representation such 
as IF1. Section 5 mentions how the approach to computing 
average execution times can be extended to compute 
variance as well. Compile-time estimation of variance 
helps quantify the “execution-time predictability” of a 
region of code and provides confidence intervals on the 
estimated execution times. As discussed in Section 7, the 
partime cost function is a refinement of the cost function 
defined  in  [2, 561 and has been found to yield better task 
partitions. There are important differences between the 
partitioning algorithm in Section 8 and the earlier algorithm 
in  [2].  In Section 8, the first task selected as a merging 
candidate is the one with the largest average decrease in 
overhead; in  [2], it is the one with the largest total 
overhead. In the merging  of sibling tasks, Section 8 
considers only task pairs (Ta, Tb) such that 
convexhull(Ta, Tb) = {Ta, Tb}; in  (21, any two sibling tasks 
could be merged by merging the entire set of tasks 
convexhuZZ(Ta, Tb) in a single step. Also, the algorithm  in 
Section 8 returns the partition found to have the smallest 
partime value, whereas  the algorithm  in [2] returns the 
partition found to have the smallest F(lI)  value (a different 
cost function). Finally, Sections 9 and 10 describe 
important loop transformations and optimizations that were 
not considered in  [2]  and describe how they are 
incorporated into the general partitioning framework. 

McCreary and Gill propose a graph-decomposition 
technique for decomposing a dataflow graph into “clans” 
(tasks) [75]. The program representation is assumed to be a 
weighted acyclic dataflow graph. The decomposition 
technique is based on a result due to Ehrenfeucht and 
Rosenberg [76] that is used to parse the dataflow graph 
into a hierarchy of clans. There are three kinds of nodes in 
the parse tree: linear, primitive, and independent. 
Parallelism is exploited only within independent nodes. 
The parse tree can be viewed as a task tree, with a fork 
operation at each independent node. To determine how 
much  parallelism should be exploited at an independent 
node, it is further assumed that its child nodes have 
identical execution and communication times. Moreover, 

Apart from the fundamental differences in parallel 

the acyclic dataflow-graph representation is restrictive 
because it does not include loops and conditionals, and the 
execution-time model  is restrictive because all children of 
an independent node are assumed to have the same 
execution time. 

Bokhari uses a polynomial-time sum-bottleneck-path 
algorithm for the optimal assignment (partitioning) of 
modules of a parallel program to processors in a host- 
satellite multicomputer system [77,  781. The algorithm  finds 
the optimal solution for two restricted parallel program 
structures: a multiple-chain structure and a single-tree 
structure. The objective function to be  minimized has the 
form 

1 Max (total execution time of  all modules 
assigned to processor i, 

over the host-satellite link) 
communication time incurred by processor i 

l s i s P  

This is a simple cost function that is really a lower bound 
on the execution time of the bottleneck processor. Note 
that this cost function ignores intermodule precedence 
constraints. Also, the module assignments (partitions) have 
a very restricted structure: A chain can be partitioned only 
into contiguous subchains, and a tree can be mapped only 
onto a single-level processor tree in which the root 
processor must be the host system. With these 
simplifications  and restrictions, the partitioning problem  is 
no  longer NP-complete and can be solved optimally in 
polynomial  time.  Though the restricted problem structure 
is  useful for certain signal-processing and image-processing 
applications, it is far removed from the general program 
model assumed in our work, namely the PDG. The  PDG 
captures the control and data dependences that occur in a 
program  with arbitrary control flow and data flow.  In 
contrast, the program  model assumed in  [77,  781 is a static 
collection of modules with a restricted interconnection 
structure. 

The chain-partitioning algorithm  from [77,  781 was also 
independently presented by Polychronopoulos in  [79,  801. 
Both versions of the chain-partitioning algorithm take 
B(m3n) time  and B(rn3n) space to find  an  optimal chain 
partition for m modules on n processors. In other work, 
we described a dynamic-programming  algorithm (similar to 
the one in [SO]) for the same problem that finds  an optimal 
chain partition in O(m ’n) time  and B (rn *) space. 
Experimental measurements show that the average 
execution time of the algorithm  is usually O(m ’) in 
practice, rather than O(m ’n) .  

We have also done some work in the area of static 
(compile-time) scheduling [2, 481. This approach first 
expands (unrolls) the program graph of the main procedure 
and then maps computations onto processors in order to 



minimize the estimated parallel execution time  (which 
includes synchronization and communication overhead). 
The output of the scheduler is a partition of the program 
graph into threads (one per processor) that may have 
arbitrary synchronizations and communications among 
themselves. This execution model  differs  from the fork-join 
execution model because threads cannot be created 
dynamically during program execution. Also, this approach 
was developed for SISAL programs and has all the 
restrictions, discussed earlier, due to the language  model. 
It would  be interesting to generalize the compile-time 
scheduling work for a FORTRAN-language  model,  using 
some of the extensions presented in this paper (the FCDG, 
the initial task tree, etc.). In fact, there is  now a growing 
interest in using a static scheduling approach for executing 
FORTRAN programs on distributed-memory 
multiprocessor systems [81]. 

The area of optimizing loop-only parallelism has 
received considerable attention in the literature [25]. The 
framework presented in this paper includes both loop 
parallelism and nonloop parallelism. Future advances in 
the area of optimizing  loop  parallelism can be incorporated 
into the partitioning framework using the techniques 
discussed in Section 10. 

The general problem of determining the optimal chunk 
size of a parallel loop in the presence of overhead and 
variance was studied by Kruskal and Weiss [47]. The 
chunking approach from [47] has been extended by Flynn 
and Hummel [22] to a sequence of multiple batches, each 
batch using a progressively smaller chunk size than the 
previous batch (this approach is calledfuctoring). Rules 
for approximating the optimal  number of batches and the 
optimal chunk size for each batch are also given in [22]. 
Experimental results for the factoring approach are given 
in [82]. Both the chunking [47] and the factoring [22] 
approaches are performed on the basis of estimated loop 
iteration execution times, variances, and scheduling- 
overhead values. Since these cost values are an inherent 
part of the partitioning framework presented in this paper, 
the chunking and factoring approaches to run-time 
scheduling should benefit  from the compile-time cost 
estimates determined by the partitioner. 

communication, the partitioning algorithm due to 
Kernighan and Lin [83] is well  known. The problem 
addressed there is that of finding  an optimal partition of a 
graph into k clusters of equal size, such that the sum of the 
intercluster edge weights is minimized; [83] contains an 
approximation algorithm for this problem.  This  algorithm 
assumes that all node weights are equal. To handle 
arbitrary node weights, [83] suggests replacing a node of 
weight W with W nodes of weight 1, mutually connected 
by edges of sufficiently high cost. Though this replacement 
correctly models a node with a nonunit weight, it  is 

In the area of graph partitioning to minimize intercluster 
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achieved at the expense of increasing the time and space 
requirements of the algorithm. 

An optimal algorithm for partitioning trees was given by 
Lukes in [84]. The problem addressed is that of 
partitioning a tree into clusters so that the sum of the node 
weights in each cluster is less than a given size and the 
sum of the intercluster edge  weights is minimized. This 
objective function is more general than that of Kernighan 
and  Lin because nodes may have arbitrary weights and the 
clusters need not be of equal size. However, the 
partitioning algorithm  is  more restrictive because it can be 
applied  only to trees instead of to general graphs. Also, a 
structural constraint is placed on the tree partition similar 
to that of partitioning a chain into contiguous subchains: 
An arbitrary order and direction is  imposed on the nodes 
and edges of the tree, and only adjacent nodes (according 
to this order) may  belong to the same cluster. 

12. Conclusions 
In this paper, we have presented a general interprocedural 
framework for partitioning a program dependence graph 
into parallel tasks. The framework is novel in that it 
exploits both loop  parallelism  and nonloop parallelism, 
supports both automatically detected and user-specified 
parallelism, and uses parameterization to specify the 
different multiprocessor systems, all within a common 
framework and environment. This approach can be used to 
run the same parallel program  on a variety of shared- 
memory multiprocessors. Such a system greatly simplifies 
the problems of creating, debugging, and porting efficient 
parallel programs on different multiprocessor systems. 
Though the partitioning techniques have been implemented 
in PTRAN, the basic approach is general and is applicable 
to any environment for which a program dependence graph 
representation can be obtained. 
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