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In this paper, we describe a general
interprocedural framework for partitioning a
program dependence graph into paraliel tasks
for execution on a multiprocessor system.
Partitioning techniques are necessary to
execute a parallel program at the appropriate
granularity for a given target multiprocessor.
The problem is to determine the best trade-off
between parallelism and overhead. It is
desirable for the partitioning to be performed
automatically, so that the programmer can
write a parallel program without being
burdened by details of the overhead target
multiprocessor, and so that the same parallel
program can be made to execute efficiently on
different multiprocessors. For each procedure,
the partitioning algorithm attempts to minimize
the estimated parallel execution time. The
estimated parallel execution time reflects a
trade-off between parallelism and overhead
and is minimized at an optimal intermediate

granularity of parallelism. Execution-profiling
information is used to obtain accurate
execution-time estimates. The partitioning
framework has been completely implemented
in the PTRAN system at the IBM Thomas J.
Watson Research Center. Partitioned parallel
programs generated by this prototype system
have been executed on the IBM 3090™ and RP3
multiprocessor systems.

1. Introduction

Partitioning is the bridge between ideal parallelism and
useful parallelism. 1deal parallelism is the parallelism
revealed by the control and data dependences [1] of a
program. Any two statement execution instances that are
not directly or indirectly related by control or data
dependences can potentially be executed in parallel. Useful
parallelism is a subset of ideal parallelism that is suitable
for execution on a specified multiprocessor system [2, 3].
The best choice of useful parallelism depends on statement

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

779

V. SARKAR




780

execution times, synchronization, communication and
scheduling overheads, and resource limits such as the
number of processors available. The problem is to
determine the best trade-off between parallelism and
overhead. It is desirable for the partitioning to be
performed automatically, so that the programmer can write
a parallel program without being burdened by details of the
overhead of the target multiprocessor, and so that the
same parallel program can be made to execute efficiently
on different multiprocessors.

There are two kinds of partitioning that can be
performed on a parallel program: control partitioning—
partition the program into parallel tasks so as to balance
parallelism and overhead optimally [2], and data
partitioning—partition data across tasks so as to further
reduce communication overhead and improve data locality
[4]. There is a close interaction between these forms of
partitioning; together, they yield a complete partition of
the program control and data structures. This paper
concentrates on control partitioning, because our
experience has primarily been with uniform shared-
memory multiprocessor systems in which data partitioning
is not an issue; on such multiprocessor systems, data
locality is implicitly achieved by control partitioning [5, 6].

The program dependence graph (PDG) [1] is a popular
and general representation of control and data
dependences in a parallel program. A PDG node represents
an arbitrary sequential computation (e.g., a basic block, a
statement, or an operation). An edge in a PDG represents
a control dependence or a data dependence. PDGs do not
contain any artificial sequencing constraints from the
program text; they reveal the ideal parallelism in a
program. PDGs can represent automatically detected
parallelism as well as programmer-specified parallelism.
They have been shown to be useful for solving a variety of
problems, including optimization [1], vectorization [7],
translation to dataflow machines [8, 9], code generation for
large-instruction-word machines [10, 11], merging versions
of a program [12], and automatic detection and
management of parallelism [3, 13-15]. Therefore, PDGs are
a natural choice for program representation for the
partitioning problem. Useful parallelism is represented by a
partition of the PDG into subgraphs (tasks) so that all the
nodes within a task execute sequentially but the tasks
themselves can be executed concurrently.

In this paper, we describe a general interprocedural
framework for partitioning the PDG of each procedure into
parallel tasks for execution on a specified multiprocessor
system. Our approach is interprocedural in that procedures
are visited in a bottom-up traversal of the call graph, and
the results obtained from partitioning the PDG of a
procedure are incorporated at all call sites for that
procedure. For each procedure, the partitioning algorithm
attempts to minimize the estimated average parallel
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execution time for a single call to that procedure. Thus,
when finally partitioning the main procedure at the root of
the call graph, the partitioning algorithm attempts to
minimize the estimated parallel execution time for the
entire program. The estimated parallel execution time
reflects a trade-off between parallelism and overhead and is
minimized at an optimal granularity of parallelism.
Execution profiling information is used to obtain accurate
estimates of average sequential and parallel execution
times [16].

The partitioning framework has been completely
implemented in the PTRAN compiler system at IBM
[3, 13-15]. The input to the PTRAN compiler is usually a
sequential FORTRAN program, though the compiler also
accepts PARALLEL DO constructs in the input. Though the ®
PTRAN implementation deals only with the FORTRAN
language, the partitioning framework is applicable to any
programming language for which a PDG can be computed
(e.g., C and Pascal). The PTRAN analyzer [13] uncovers
the ideal parallelism in the program by building a PDG for
each procedure. The useful parallelism is then selected by
the PTRAN partitioner (or process former), which is the
subject of this paper. The output generated by the PTRAN
compiler is a parallel FORTRAN program, in which the
useful parallelism is expressed by PARALLEL DO and
PARALLEL SECTIONS constructs (similar to doall and
cobegin-coend, respectively [17]). These constructs are
part of the IBM VS FORTRAN 2.5 parallel language [18],
which is supported on the IBM 3090™ multiprocessor
system. These constructs were also supported (with
slightly different syntax) by the IBM Parallel FORTRAN
language [19]. The partitioned PDGs generated by PTRAN o
have also been targeted to (i.e., translated for execution
on) the RP3 multiprocessor system [20] and can easily be
targeted to other multiprocessor systems that support
similar parallel extensions to FORTRAN.

The novelty of the approach presented in this paper is
that it provides a general partitioning framework that
supports both automatically detected and user-specified
parallelism, exploits both loop parallelism and nonloop o
(statement) parallelism, allows arbitrary nesting of
parallelism, both within and across procedure calls, and
uses architectural parameterization to target to different
multiprocessor systems.

The rest of the paper is organized as follows. Section 2
describes the target multiprocessor model assumed in this
work. Section 3 reviews the definition of the PDG and
discusses in detail the forward control dependence graph
(FCDG), a variant of the PDG that is used by PTRAN.
Section 4 describes how the FCDG is annotated with
average execution frequencies and how execution-profile
information is used to obtain accurate estimates of average
frequencies. Section 5 describes how frequency values and
execution times of primitive operations are used to
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estimate average sequential execution times. Section 6
defines the initial task tree obtained from the FCDG.
Section 7 defines the parallel execution time of a task tree,
which is the cost function to be minimized by the general
partitioning algorithm described in Section 8. Section 8
also contains a partitioning example and some
experimental results. Section 9 describes a specialized
partitioning algorithm for loop-only parallelism; this
algorithm is also used as a pre-pass to the general
partitioning algorithm described in Section 8. Section 10
discusses how various loop transformations such as loop
distribution, loop vectorization, and loop fusion can be
incorporated into the partitioner. Finally, Section 11
discusses related work, and Section 12 contains the
conclusions of this paper.

2. Multiprocessor model

The output generated by the PTRAN partitioner is a
partition of the PDG, for each procedure in the program.
A PDG partition is represented by a task tree structure, in
which a task corresponds to a sequential computation
defined by a PDG subgraph, and an edge in the task tree
corresponds to a parallel construct (PARALLEL DO or
PARALLEL SECTIONS) that relates a child task to its parent
task.

The PARALLEL DO statement denotes the beginning of a
parallel loop, in which all iterations may be executed
concurrently. Its syntax is like that of the FORTRAN DO
statement—it specifies an index variable with expressions
for lower and upper bounds and optionally specifies a step
expression and a target statement label. The PARALLEL DO
construct has an implicit ““barrier synchronization®” at the
end: The statement following the PARALLEL DO construct is
executed only after all iterations of the PARALLEL DO have
completed execution. The task containing the PARALLEL DO
statement is called the parent task. The task containing
iterations of the PARALLEL DO is called the child task. Let p
be the number of processors working on the PARALLEL DO
construct; then p instances of the child task are created at
run time, each to execute approximately 1/p of the loop
iterations. The run-time system determines how loop
iterations are assigned to processors. Currently, the run-
time systems implemented on the IBM 3090 multiprocessor
use a fixed-chunk-size approach, in which fixed-size groups
(chunks) of loop iterations are assigned to processors.
Other possibilities for run-time scheduling of parallel loops
include guided self-scheduling [21] and factoring [22, 23]. A
PARALLEL DO statement may be annotated with directives to
specify the number of processors that should be used to
work on the loop and the chunk size that should be used
when assigning loop iterations to processors.

The PARALLEL SECTIONS statement denotes the beginning
of a group of ““sections’ (tasks) that may be executed in
parallel. It is terminated by an END SECTIONS statement.
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Each task begins with a declaration of the form SECTION i,
where i is a positive integer constant that identifies the
task being defined. The SECTION i declaration may be
followed by a clause of the form WAITING(n,, n,, - - ). If
the WAITING clause is present, it means that task i can start
execution only after tasks n,, n,, - - - have completed. As
a simple way of ensuring that the precedence constraints
are acyclic, the WAITING clause is allowed to refer only to
tasks that have been previously declared in the PARALLEL
SECTIONS statement. Like the PARALLEL DO, the PARALLEL
SECTIONS statement has an implicit barrier synchronization
at the end. Figure 5 in Section 8 shows a parallel

program containing PARALLEL DO and PARALLEL SECTIONS
constructs.

The PARALLEL DO and PARALLEL SECTIONS constructs
specify tasks at compile time that may be dynamically
instantiated at run time. Note that the parallelism
expressed by these constructs may be arbitrarily nested
and may cross procedure boundaries (e.g., if a procedure
containing a parallel construct is itself called from within a
parallel construct). As with other parallel language systems
that support nested parallelism, the VS FORTRAN 2.5 and
Parallel FORTRAN run-time systems [18, 19] begin
program execution by creating a fixed number of operating
system processes (called “FORTRAN processors™),
usually one for each real processor. After this, all task
scheduling is performed by executing library routines on
the FORTRAN processors, without requesting any
services from the operating system. Each FORTRAN
processor selects work to do from a shared queue. The
VS FORTRAN 2.5 and Parallel FORTRAN run-time
systems can be executed on both the MVS and VM
operating systems [18, 19].

The target multiprocessor parameters currently used by
the partitioner are as follows (assuming that all time
parameters are expressed as multiples of the processor
cycle time):

¢ Execution times of primitive operations (add, multiply,
etc.). These values are used to compute the local
execution time, cost(u), of each node u in the PDG.

¢ P (=1), the average number of processors available to
the user. P need not be an integer. For example, P may
be set to 3.5 for a four-way multiprocessor in which the
system uses half the available time slices on one of the
four processors.

® T rup> the start-up overhead of a task.
oT the total fork-join overhead incurred in a parent

fork-join”

task (PARALLEL DO or PARALLEL SECTIONS) for creating and
terminating its child tasks. T, is modeled as a linear

fork-join
function of k, the number of child tasks created by the
parent task: T, =T + kT, (k is the number of

fork-join parent child

processors executing a PARALLEL DO construct or the

number of sections in a PARALLEL SECTIONS construct). 781
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* T, and T, are the signal and wait overheads of a
WAITING clause in the PARALLEL SECTIONS construct. For
each pair of tasks (T}, T)), such that task T, waits for
task T, Tsignal is added to the execution time of task T,
and T, is added to the execution time of task T]

The values of Tstm_up, Tpmm, T, Tsigm], and T, depend
on the implementation of the run-time system as well as
the hardware characteristics of the target multiprocessor.
In the future, we shall also include memory-access costs in
our model, using parameters for the cache and other levels

of the memory hierarchy as in [6].
3. Program dependence graph

® Background

A program dependence graph (PDG) consists of a set of
nodes connected by control dependence edges and data
dependence edges [1]. A PDG node represents an arbitrary
sequential computation (e.g., a basic block, a statement, or
an operation). The current PTRAN implementation uses a
statement-level PDG. A control or data dependence edge is
an ordered pair of the form (n_, n,) (indicating a
dependence from node n, to node n,), augmented with
some context information. For a control dependence edge,
the context information is the branch label or predicate
value that caused the dependence [1]. For a data
dependence edge, the context information includes the
nature of the dependence ( flow/anti/output) [24], the pair
of read/write accesses (contained within nodes n_ and n,)
that caused the dependence, the direction vector [25] of
the dependence, and, possibly, the distance vector [26] of
the dependence.

Building a PDG from a sequential program is a well-
known procedure. The starting point is to build a control
flow graph (CFG) for the program [27]. Each node in the
CFG corresponds directly to a node in the resulting PDG.
An algorithm for computing the PDG control dependence
edges from the control flow graph was given in [1]; an
improved version of the algorithm appears in [28]. The
PDG data dependence edges are data flow edges (def-use,
use-def, and def-def chains) [27] that have been refined or
eliminated by data dependence tests for array accesses
[3, 25, 29]. The control dependence edges and the PDG
nodes together form the control dependence subgraph of
the PDG; similarly, the data dependence edges and the
PDG nodes together form the data dependence subgraph
of the PDG.

We devote the remainder of this section to discussing
the forward control dependence graph (FCDG)

[15, 30, 31], a variant of the standard definition of a PDG
control dependence subgraph [1]'. The major advantages

! Only the definition of control dependence is affected by this variation. Our work
uses the standard definition for a PDG data dependence subgraph [1, 24].
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of the FCDG over the standard PDG control dependence
subgraph is that the FCDG has a hierarchical structure that
is consistent with the loop-nesting structure of the original
CFG, and that the FCDG is acyclic, thus simplifying the
algorithms for identifying nonloop parallelism and for
process formation [3, 15, 31, 32]. However, the definition
of the FCDG presented in this section reflects the current
PTRAN implementation [3} and differs slightly from earlier
definitions of forward control dependence presented in
[15, 30, 31].

As in computing the PDG, the starting point for
computing the FCDG is the original control flow graph
(CFG). The FCDG is computed from the CFG as follows:

1. Compute the interval structure (Definition 2 below) of
the CFG [33, 34]. The interval structure captures the
program loop-nesting structure in hdr, hdr_parent,
and hdr_lIca data structures.

2. Build the augmented control flow graph (ACFG) by
inserting preheader and postexit nodes (along with
appropriate incoming and outgoing edges) into the CFG.
The locations of the preheader and postexit nodes are
determined by the CFG interval structure [15].

3. Compute the forward control flow graph (FCFG) from
the ACFG by inserting an exits node for each interval,
retargeting each back edge (Definition 2) in the interval
to the exits node, and inserting edges from the exits
node to each postexit node of the interval [3]. The
FCFG is a variant of the ACFG in which each back
edge from the ACFG is made to go in the ““forward™
direction to a special exits node. Therefore, the FCFG
is an acyclic graph. ®

4. Finally, compute the forward control dependence graph
(FCDG) from the FCFG, by using any of the known
algorithms to compute control dependence [1, 28]. The
control dependence edges along with the set of FCFG
nodes define the FCDG. For a given node Y in the
FCDG, we define the control conditions of node Y as
the set

CC(Y)
= {(X, L)Y is control dependent on X with label L}.

Two nodes are said to be identically control dependent
if and only if they have the same set of control
conditions in the FCDG.

The following subsections describe these steps in more
detail by discussing interval structure, the augmented
control flow graph, the forward control flow graph, and the
forward control dependence graph.

® [Interval structure
We start with a definition of the control flow graph.
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Definition 1
consists of

A control flow graph CFG = (N, E, T )

¢ N, a set of nodes.

*E CN_xN_x{T,F,U,Z}, aset of labeled control
flow edges. If any two edges, (a,, b,, /) and (a,, b,, 1,),
in E_ have the same source and destination nodes, they
must have distinct labels (i.e.,a, =a, A b, = b, >
I #1).

e T, a node-type mapping. T (n) identifies the type of
node n as one of the following values: cfgtop, cfgbot,
preheader, postexit, exits, other. []

We assume that CFG contains two distinguished nodes
of type cfgtop and cfgbot, respectively, and that for any
node N in CFG, there exist directed paths from cfgtop to
N and from N to cfgbot. The node types preheader,
postexit, and exits are reserved for special nodes created
during the construction of the ACFG and the FCFG. The
node type other is used for all other nodes.

The notation used for CFG edge labels is as follows:
Labels T and F represent true and false conditional
branches, respectively. Label U represents an
unconditional branch. Labels of the form Z, represent
pseudo control-flow edges and indicate that the
corresponding branch can never be taken in the original
program. However, the insertion of these pseudo edges
provides a convenient structure to the FCDG, as described
later. We assume that we may use an unlimited number of
labels of the form Z, for pseudo edges in order to maintain
the property that all edges from a CFG node have distinct
labels.

The loop-nesting structure of the original CFG is defined
by its interval structure [33, 34] (see Definition 2 below).
Currently, PTRAN considers only single-entry loops as
candidates for loop parallelism. In practice, this is not a
significant restriction. All structured loops (e.g., do, while,
repeat-until) are single-entry even though they may
contain multiple exits; also, most unstructured loops (built
out of goto statements) found in real programs are single-
entry as well. A multiple-entry loop can be transformed
into multiple single-entry loops by node splitting [27, 35],
in which a separate copy of the loop is included with each
loop entry. Node splitting is practical only when the
expansion in code size does not become prohibitive.

Definition 2 [33, 34] A back edge in CFG is an edge

(x, h, 1) such that node & dominates node x (node x is
called a latch node, and node h is called a header node)
[27]. A back edge defines a strongly connected region
str(h, x), which consists of the nodes and edges belonging
to all paths from node 4 to node x, along with the back
edge (x, h, ). Consider the set B(h) # & of back edges
targeted to header node /. The union of the strongly
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connected regions defined by the back edges in B(k) is
called the interval with header h denoted by I{(h).

Intervals may be nested, interval I, being a subinterval
of interval I, if 1, is a subgraph of I,. An interval may
contain arbitrarily many subintervals. We represent
interval nesting by a mapping called hdr_parent, in which
hdr_parent(h)) = h, indicates that the interval with
header node &, is an immediate subinterval of the interval
with header node h,. hdr_parent(h) = 0 indicates that
the interval with header node 4 is the outermost interval.’
hdr_parent defines a directed tree on all header nodes.
hdr_Ica is a mapping such that hdr_Ica(h , h,) = h,
indicates that header node 4, is the least common ancestor
of header nodes A, and 4, in this tree.

Finally, we observe that a node may be contained within
several enclosing intervals. We use the term node-n
interval to mean the innermost interval containing node n,
and we define sdr(n) to be the header node of the
innermost interval containing node n. [

Definition 2 is based on the definition of intervals in [34],
which is essentially equivalent to the definitions formulated
by Schwartz and Sharir [33] and by Graham and Wegman
[36]. However, it differs from the definition of intervals
due to Allen and Cocke [37] (also in [27] and [35]), which
does not require an interval to be strongly connected. This
distinction is discussed in detail in [3].

As mentioned earlier, PTRAN considers only single-
entry loops as candidates for loop parallelism. For the sake
of simplicity, the current implementation of the partitioner
invokes the partitioning algorithm only for procedures that
contain no multiple-entry loops—i.e., for procedures that
have a reducible [27, 35, 38, 39] CFG. This is an ad hoc
restriction that can be removed in the future by serializing
only the region corresponding to the multiple-entry loop,
while attempting to exploit parallelism outside that region.
Each serialized multiple-entry loop can simply be replaced
by a single acyclic node in the CFG, thus satisfying the
partitioner requirement that the CFG be reducible. The
advantage of working with a reducible CFG is that it has a
unique interval structure.

® Augmented control flow graph (ACFG)

The next step after determining the interval structure is to
build an augmented control flow graph (ACFG) [15].
Compared to the original CFG, the ACFG makes loop
structure evident by the insertion of preheader and
postexit nodes. Formally, ACFG = (N, E,, T is
computed from CFG = (N, E_, T,) as follows:

1. Initialize, N, « N E, < E; T, < T,.

2 Strictly speaking, there may be several outermost intervals that are not connected
together strongly. For convenience, we assume that there is exactly one outermost
interval—the one containing the ENTRY node. This assumption is satisfied if the
outermost interval is required only to be connected rather than strongly connected.
One could also add pseudo control flow edges that result in a single strongly
connected outermost interval.
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2. For each header node # in CFG,

(a) Create a new preheader node ph, add it to Na,
and designate it as the preheader of h
[i.e., T,(ph) = preheader].

(b) For each control flow edge (u, &, ) in E_in CFG,
if hdr_Ica[hdr(u), h] # h, then (we have an
interval entry),

Replace (u, h, I} with (u, ph, I) in ACFG.

(c) Add an unconditional branch from ph to A

[i.e., add edge (ph, h, U) to E ].

3. For each control flow edge (u, v, /) in CFG,

if hdr_Icalhdr(u), hdr(v)] # hdr(u), then (we have

an interval exit)

(a) Create a new postexit node, pe, and add it to N,.

(b) Replace edge (u, v, [) with edges (u, pe, I} and
(pe, v, U).

(c) Add a pseudo control flow edge from the
preheader node of the node-u interval to the new
postexit node pe. The edge label has the form Z..
(Each new pseudo control flow edge receives a
distinct label.)

Figure 1 shows a FORTRAN program and its ACFG.
The three pairs of preheader-postexit nodes (PH1, PE1),
(PH2, PE2), (PH3, PE3) arise from the intervals defined
by the three DO loops in the program. Labels Z, Z , Z,, Z,
identify the four pseudo control flow edges in the
example ACFG. Note that the STOP statement is
represented by an unconditional branch to cfgbot. Also
note that each DO statement contains a conditional branch
denoting a null-iteration-range test: If the branch condition
evaluates to T, at least one iteration is executed and the
flow of control is passed on to the preheader node; if the
branch condition evaluates to F, no iteration is executed
and the loop body is skipped. The END DO statement serves
the purpose of a repeat-until test performed at the end of
each iteration.

® Forward control flow graph (FCFG)

The forward control flow graph, FCFG = (N, E, T), is
then computed from the augmented control flow graph
ACFG = (N, E,, T,) as follows [3]:

1. Initialize, N, <~ Nj; E, < E; T, < T,.
2. For each interval in ACFG,
(a) Add an exits node, e, 10 N,.
(b) Add pseudo control flow edges in E; from node e
to each postexit node pe in the interval. The labels
of the edges have the form Z..
3. For each back edge (u, h, I) in ACFG,
Replace edge (u, h, I) in E, with edge (u, e, [), where
e is the exits node for the header-k interval.
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The only difference between an ACFG and its FCFG is
that the back edges from the ACFG are “‘rewired” to their
corresponding exits nodes in the FCFG. An exits node
summarizes all possible paths for the remaining iterations
in the interval and is followed by a branch to all postexit
nodes in the interval. If the interval has a single postexit
node, the insertion of a new exits node is unnecessary,
since all back edges can be directly rewired to the postexit
node (this is the case for all intervals in Figure 1).

® Forward control dependence graph (FCDG)
Having constructed the FCFG as described in the previous
subsection, we compute the FCDG by using any known
algorithm to compute control dependence [1, 28]. The
control dependence edges, along with the set of FCFG
nodes, define the FCDG. Figure 2 shows the FCDG
derived from the ACFG of Figure 1 (the freq, cost, and
seqtime annotations are discussed later, in Sections 4
and 5).

We now summarize the important properties of the
FCDG:

¢ The FCDG is acyclic (follows from the fact that the
FCFQG is acyclic).

o If the CFG is a structured control flow graph (obtained
from begin-end, if-then-else, and while control
structures only [40]), the FCDG must be a tree (each
node can have at most one control condition—see [30]
for details). Note that the FCDG in Figure 2 is not a
tree because node 18 has two control conditions
(predecessors in the FCDG). This is consistent with the
fact that the original control flow graph in Figure 1 is not
structured (because of the STOP statement).

¢ An FCDG node is directly or indirectly control
dependent on the preheader nodes of all intervals that
enclose the node (follows from the pseudo edges inserted
in the ACFG construction).

For a structured program, the FCDG looks quite similar
to the abstract syntax tree [27] of the program. This is
because the control flow information of a structured
program is captured accurately by the program syntax.
Many parallelizing compilers for structured programming
languages (e.g., the SisaL [41, 42] and Id [43] compilers)
depend on the program syntax for providing control
dependence information. However, the program syntax
cannot provide control dependence information for
unstructured programs, and the more general approach of
computing PDG control dependences or of computing the
FCDG (as in PTRAN) must be used instead. Not only is
the FCDG more general than an abstract syntax tree, but it
also has a simpler execution model and semantics. In an
abstract syntax tree, each control structure is assigned a

distinct node type with special-case semantics, whereas in 785
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Forward control dependence graph (FCDG) for program of Figure 1 (frequency values obtained from execution profile, for input N =
800 000).

the PDG/FCDG approach, all control structures are
expressed using the same primitives of basic blocks and
conditional and unconditional branches. Finally, the
algorithmic complexity of computing the FCDG from the
CFG is just linear in the size of the FCDG.

In conclusion, we state that the FCDG is a simple,
general, and efficient representation of the control
dependences in a program. Experiences with control
dependence in the PTRAN system [15] and elsewhere
[1, 7, 10-12] have shown that it is a powerful
representation for various analyses, optimizations, and
transformations. The following sections demonstrate that
the FCDG also lends itself very naturally to solving the
partitioning problem.
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4. Automatic execution profiling—Determining
average execution frequencies

Automatic execution profiling is an empirical means of
obtaining average loop frequencies and conditional-branch
probabilities in a program. A counter-based profiling
system has been implemented in PTRAN as a support
facility for the partitioning framework [3, 16]. When
profiling is requested, PTRAN generates an instrumented
program that is equivalent to the input program but
augmented with profiling statements to initialize and
update counter variables. The instrumented program is
then executed by the user for any input that he chooses,
and the final values of the counter variables are stored in
the program database.
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To address the efficiency concerns associated with
counter-based profilers, we developed three effective
optimizations that reduce the number of counters required
to profile a program [3, 16]. These optimizations usually
reduce the overhead of counter-based profiling to 5% or
less, thus making it practical for profiling to be performed
on every run (sequential or parallel) of a user program. In
other work, a spanning-tree algorithm is used for optimized
counter-based profiling [44, 45]. Table 1 compares the
overhead of the QP profiling tool [45] with that of PTRAN
for four FORTRAN SPEC benchmark programs. (The
“slow”” and ““quick’” entries are for unoptimized and
optimized profiling, respectively.) For these programs, the
PTRAN profiler uses many fewer counter operations than
the QP tool. Though the spanning-tree algorithm from
[44, 45] subsumes two of the three profiling optimizations
performed by PTRAN, the third profiling optimization
performed by PTRAN (updating iteration counts at loop
entry/exit) has a big impact in reducing the number of
counter increments. Another reason for the difference in
profiling overhead is that PTRAN profiling is performed for
a statement-level CFG, which usually contains fewer basic
blocks than the instruction-level CFG used in [44, 45].

Regardless of how the frequency information is obtained,
it is used to label all edges in the FCDG with relative
frequency values, according to the following definition.

Definition 3 Given an edge (u, v, [) in the forward
control dependence subgraph (FCDG), the execution
frequency of the edge is denoted freq(u, /). We use
freq(u, 1) instead of freq(u, v, I} because the frequency
of edge (u, v, I) depends only on the control condition
(u, 1) and not on the target node v. Also, freq(u, I) is a
nonintegral value in general, because it represents an
average execution frequency over all execution instances
of node u. freq(u, !) is defined as follows:

¢ When u is a preheader node and / is U (the label that
identifies loop entry); i.e., when («, v, ) represents a
loop-control dependence:

freq(u, 1)

average number of iterations for the u
interval

average number of times the interval
header node is executed each time the
interval (loop) is entered.

In this case freq(u, l) = 1.
e For all other cases; i.e., when (u, v, /) represents a
branch-control dependence:

freq(u, 1) = branch probability of label [ in node u
= fraction of times that node u takes the
branch labeled /.

In this case, 0 < freq(u, ) < 1. O
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Table 1 Comparison of the profiling algorithms in [45] with
the PTRAN profiling algorithm.

SPEC Number of counter increments
benchmark
QP tool QP tool PTRAN
(slow) (quick)

DODUC 130,897,009 45,651,338 6,380,840
NASA7 298,530,617 254,628,038 1,235,007
MATRIX300 60,035,631 54,951,383 1,451,143
TOMCATV 35,012,274 27,762,776 236,389

As an example, the edges of the FCDG in Figure 2 are
annotated with relative frequency values based on the
execution profile obtained from an input value of
N = 800000. (A frequency value is shown only once for
each label.)

5. Determining average execution times

In this section, we describe how average execution times
can be computed for all nodes in the FCDG. Once
frequency values have been obtained as described in the
previous section, the other necessary input is the
execution times of primitive operations (e.g., load, store,
add, and multiply). We do not discuss the possible
techniques for obtaining the costs of primitive operations,
except to point out that these costs depend on the target
architecture. For the purpose of this description, it is
assumed that the primitive operation costs have already
been accumulated for each FCDG node and that cost(u) is
the sum of the primitive operation costs for node u. One
approach for estimating primitive operation costs is
described in [46].

We define the average sequential execution time of node
u, seqtime(u), to be the sum of cost(u) and the
frequency-weighted execution times of the children of node
u in the FCDG. The computation of seqtime(u) is based
on two simple rules (further details are given in [16]):
freq(u, l)seqtime(v).

1. seqtime(u) = cost(u) + 2, , ; crepg

This rule assumes that the execution time of node v
is independent of which conditional branch caused it
to execute.

2. If node u is a procedure or function call, cost(u) also

includes seqtime(entry), where entry is the entry node
of the FCDG of the called subprogram. This rule
assumes that the execution time of a procedure call is
independent of the call site.

Rules 1 and 2 implicitly dictate how the execution-time
values should be computed. Rule 1 requires that the nodes
be visited in a bottom-up traversal of FCDG. Rule 2

requires that the procedures be visited in a bottom-up 787
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traversal of the call graph, so that the root procedure
(main program) is visited last. For the purpose of this
discussion, we assume that the call graph is acyclic, which
is a reasonable assumption for FORTRAN programs. In
previous work {2], we discussed how cyclic call graphs and
recursive programs can be handled for the single-
assignment programming language SisAL [41]. Those
interprocedural techniques are equally applicable to the
partitioning framework described in this paper.

Reference [16] also describes how this approach to
computing average execution times can be generalized to
compute execution-time variance. To define variance
precisely, let X be the random variable corresponding to
the execution time of node v. So far, we have discussed
the computation of the average execution time of node v
[i.e., seqtime(v)], which is the expected value of X
[denoted by E(X )]. By extending rules 1 and 2 above to
compute the expected value of Xf [denoted by E (XUZ)], we
obtain the variance by using the well-known definition,
var(X,) = E(X’) — [E(X,)]*. The standard deviation is
defined by std_dev(X)) = Vvar(X ), and the normalized
standard deviation standard deviation is defined by
o(X)) = std_dev(X )/seqtime(v).

This framework for computing average execution times
and variance has been implemented in PTRAN. The
average execution times are used to guide the partitioner
component, as described in later sections. An interesting
application of variance information is for determining the
optimal chunk size for the execution of parallel loops on
multiprocessors [47]. When the execution time of the loop
body has zero variance, the preferred chunk size value for
N iterations on P processors is N/P rounded up, since that
provides perfect load balancing with the smallest overhead.
However, when the variance is large, the optimal chunk
size value decreases so as to provide better load balancing,
despite the increased overhead due to a larger number of
chunks. We intend to use the variance information in the
future to guide the run-time system in selecting an
appropriate chunk size for a parallel loop. Variance
information will also be useful in determining whether a
region of code should be scheduled at compile time or at
run time. If the variance is small, the execution times are
fairly predictable, and we can use compile-time scheduling
algorithms such as those in [2, 48] to map computations
directly onto the processors; if the variance is large, the
execution times are less predictable, and run-time
scheduling is a better choice.

The nodes of the FCDG in Figure 2 are annotated with
cost and seqtime values computed using the relative
frequency values determined in Section 4. The cost values
were obtained by using an internal trace option in the
VS FORTRAN compiler. An option in PTRAN is used to
automatically pick up the cost values from the listing file
generated by the VS FORTRAN compiler. The cost values

V. SARKAR

are scalar execution times estimated from the operations
revealed by the intermediate program representation used
by the VS FORTRAN compiler; these estimates are
approximate because they do not reflect the actual
instructions that are selected for a statement when target
code is generated.

6. Task-tree definition and initialization
Sections 4 and 5 described how the FCDG is annotated
with average execution frequencies and average sequential
execution times. This section defines a task partition as a
mapping (taskid) from nodes to tasks and defines a task
tree as the reduced graph obtained by applying the taskid
mapping on the FCDG. This section also describes how
the initial task tree is constructed to provide the starting
point for the partitioning algorithm in Sections 8 and 9.
The partitioning algorithm iteratively merges adjacent tasks
in the task tree on the basis of critical-path-length values
and overhead values until the task tree is reduced to a
single task. Among all task trees in this iterative sequence,
the one with the smallest parallel-execution-time value is
selected as the optimized task partition for the current
procedure.

A task partition is defined for a single procedure. It is
simply a mapping, called taskid, from nodes to tasks that
specifies which nodes belong to the same task. For
example, if taskid(u) = taskid(v), nodes u and v belong
to the same task. By applying a given taskid mapping on
the FCDG we obtain a reduced graph on the tasks,
containing the edges

E, = {[taskid(u), taskid(v), (u, 1)1 | taskid(u) = taskid(v) ®
and (u, v, 1) is an edge in FCDG}.

An edge in E has the form [T,, T, (u, )], where T, is
the source task, T, is the destination task, and (u, /) is the
control condition of the edge in FCDG that corresponds to
edge [T,, T, (u, I)] in E.

Since the parallel FORTRAN language generated by
PTRAN can express only structured parallelism, the
reduced graph defined by edges in E; must be a fan-out o
tree (i.e., must not contain any fan-in tasks). Recall that it
is possible that FCDG is not a fan-out tree, because an
FCDG node may have multiple predecessors (e.g., node 18
in Figure 2). To obtain a tree-structured task partition from
a non-tree-structured FCDG, we first merge each fan-in
node in the FCDG with its dominator in the FCDG. This
yields a program with structured parallelism, while
permitting unstructured sequential code to occur within a
task. This tree-structure constraint will be removed in
future work, when unstructured models of parallelism such
as the MGOTO operator in [49] are considered.

Thus, for a given taskid mapping that satisfies the tree-
structure constraint on taskid, the set of edges in the task
tree is given by E_, the set of edges in the reduced graph.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991




The task-tree edges define the parallel constructs present
in the partitioned program as follows. Consider a parent
task T, with m child tasks, le, cee, ij, for control
condition (#, /) (defined by the task tree edges

(T, Ty, u, DY, » -+, [T, T,,,, (u, I)]). Two cases arise
(examples of both cases can be seen later, in Figure 3):

1. (u, l) represents a null-iteration-range branch
condition. In this case, control condition (u, /)
represents a PARALLEL DO construct. Node u (contained
in task T,) must correspond to a D0 statement or a
PARALLEL DO statement in the input program. Let ph be
the preheader node for this loop. ph represents the
execution of multiple iterations of the loop (Definition 3)
and is contained in task T, = taskid(ph), which must
be one of the child tasks in the set {T;, -+, T, }. When
node u is executed in task T, and the null-iteration-
range test for node # returns a branch-condition value
of I = T, p new tasks are created as dynamic
instantiations of T; to execute loop iterations in
parallel, as described in Section 2. The value of p is
selected by the compiler and the parallel run-time
system as the ideal number of processors for the given
loop. If the loop contains a loop-carried dependence,
the compiler forces p = 1 so as to serialize the loop
(the partitioning algorithm will then merge child tasks

T,, +--, T, with parent task T,). As described later, a
Darloop mapping is used to identify loops that may
legally be executed in parallel.

2. (u, 1) does not represent a null-iteration-range branch
condition. In this case, control condition (u, /)
represents a PARALLEL SECTIONS construct. When the
(u, 1) control condition is reached in task T; (i.e., when
the branch with label / is taken from node u in task T),
m new tasks are created corresponding to T}.l, v, T,'m’

as described in Section 2. As described later, wait_pred

and wait_ succ mappings identify the necessary
synchronization among the m child tasks in the task
tree.

The initial task tree reveals the maximum possible
parallelism that can be exploited in the input program,
given the constraints imposed by its control and data
dependences and by the structure of the parallel constructs
supported by the target multiprocessor. The steps involved
in constructing the initial task tree are as follows:

1. Initialize. Start by placing each FCDG node in a
separate task, taskid(u) = u.

2. Merge fan-in nodes.  If the FCDG is not a fan-out
tree, each fan-in node is merged with its dominator [27]
in the FCDG, along with all intermediate nodes. The
resulting task graph is a fan-out tree. The merging is
performed by successive applications of the
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merge_children transformation described later, in
Section 8.

3. Identify parallel loops.  The control and data
dependence constraints derived for the program are
used to determine whether iterations of a given loop can
be executed concurrently. If there are any loop-carried
control or data dependences, the loop must be executed
sequentially. A premature exit from within a D0 loop is
an example of a loop-carried control dependence. Loop-
carried data dependences occur when different loop
iterations may perform conflicting read/write accesses
on a shared variable. Constant propagation, induction
variable analysis, and privatization enhance loop
parallelization by removing potential loop-carried
data dependences [3, 13, 32]. The result of this step is
stored in a Boolean mapping called parloop.
parloop(ph) = true indicates that it is legal to execute
the loop with preheader node ph as a PARALLEL DO.

4. Identify waiting constraints. ~ The previous step
ensures that all loop-carried dependences are satisfied
by executing some loops sequentially. This step ensures
that all loop-independent data dependences are satisfied,
by using waiting synchronizations wherever necessary
[31]. The result of this step is stored in two task-set
mappings called wait_pred and wait_succ;
wait_pred(T)) is the set of tasks that T, must wait for
(by using the WAITING clause in the PARALLEL SECTIONS
construct), and wait_succ is simply the inverse of
wait_pred. If tasks T, and T, are related by a waiting
synchronization, 7, and 7, must be identically control-
dependent siblings in the task tree (i.e., they must have
the same parent task, 7, and the edges from T, to T,
and T, must have the same control condition). The set
of waiting synchronizations among task-tree siblings can
be determined from the loop-independent data
dependences computed for the program [31]. Note that
the parent—child waiting synchronizations are implicit in
the PARALLEL DO and PARALLEL SECTIONS constructs
represented by the task tree.

Figure 3 shows the initial task tree obtained for the
program shown in Figures 1 and 2. The parloop-mapping
values are shown as annotations to the preheader nodes.
The synchronization edges (waiting constraints) are shown
as dotted arrows. Note that nodes 6, 7, and 18 were placed
together in the same task because node 18 is a fan-in node
and node 6 is its dominator in the FCDG. Also, each of
the sibling node pairs— (PH1, PE1), (PH2, PE2), and
(PH3, PE3)—were merged for convenience, so that for a
given DO node u, there is at most one task-tree edge with a
control condition of the form («, T). This merging of
preheader and postexit nodes does not incur any loss of
useful parallelism, since it involves only pseudo-nodes,
which have zero cost.

V. SARKAR
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Eyw=0 ]

Initial task tree for program of Figure 1.

The definitions of execution frequencies and execution
times in an FCDG (Sections 4 and 5) can now be extended
to a task tree as follows:

* freq[T,, (u, I)] is the relative execution frequency of
control condition (u, !) in the task tree, just like
freq(u, 1) in the FCDG. Usually freq[T,, (u, I)] =
freq(u, I). The only exception occurs for branch
conditions related to a PARALLEL DO construct—i.e.,
when (u, ) represents a null-iteration-range branch
condition. Let ph be the preheader node for the loop
represented by node u. In the FCDG, we defined
freq(ph, U) = n to be the average number of iterations
in the loop with preheader node ph. In the task tree,
control condition (4, T) represents the concurrent
execution of multiple instances of the child task, and
control condition (ph, U) represents the execution of
iterations within a single instance of the child task.
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Therefore, freq(T,, (u, T)] = p, the average number of
execution instances created for the child task, and
freqltaskid(ph), (ph, U)] = n/p, the average number
of iterations executed within one instance of the child
task.

For the task tree in Figure 3, freq[T,, (8, T)]
is set equal to 4 (the number of processors), and
freq|T,,,, (PH1, U)] is set equal to 800000/4 = 200000,
since parloop(PH1) = T identifies a loop that can be
executed in parallel. However, parloop(PH2) = F
identifies a loop that must be executed serially and
therefore has freq[T,,, (11, T)] set equal to 1 and
freq[T,,,, (PH2, U)] set equal to 800000. As with the
FCDG, the task-tree relative edge frequencies can be
used to compute total task frequencies (for a single call
of the procedure) as follows:

totfreq(taskid(cfgtop)] = 1,
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> freqlT,, (u, D) totfreq(T)).

{7, Tos et YJEET

totfreq(T,) =

¢ Just as we defined cos#(u) to be the average local
execution time of FCDG node u (i.e., the sum of the
primitive operation costs in node u), we define cos¢[T ]
to be the average ““local’”” execution time of task T,—
i.e., the total execution time of all operations and
statements local to task T,. The term cost[T,] is
obtained as a frequency-weighted sum of the cost(u)
values for all FCDG nodes that belong to task T,:

> ltotfreg(u)totfreq(T,)] cost(u).

taskid(u)=T,

cos(T)) =

If totfreq[T,] equals zero, cost[T,] is also set to zero.

¢ Finally, seqtime|T,] is the average sequential execution
of task T, and its children:

seqtime(T)) = cost(T))

Ly

(T Ty )JEET

freq[T,, (u, I)]seqtime(T,).

We conclude this section on task-tree initialization by
discussing a simple prepartitioning optimization called
threshold merge. Since the execution time of the
partitioning algorithm is a function of the size of the initial
task tree, it is sometimes desirable to further reduce the
size of the initial task tree for efficiency reasons by using a
granularity threshold value, seqtime_, [2]. The value of
seqtime . should be chosen to suit the granularity of the
target multiprocessor system (e.g., set seqtime,, = T, ).
We use seqtime_,, to merge tasks in the initial
task tree, so as to obtain a smaller task tree that
maximizes the number of tasks while ensuring that each
task T, satisfies seqtime[T,] = seqtime_,, (the only
exception occurs when seqtime[cfgtop] < seqtime_, ,
which case the entire procedure is merged into a single
task anyway). This merging can be done without using any
data dependence information, as follows:

in

1. Use seqtime_,, to identify fringe nodes in the task tree.
Node T is a fringe node if and only if seqtime(T,) <
seqtime_ . and each ancestor T, of T, has
seqtime(T,) z seqtime_, .

2. For each descendant T, of a fringe node T}, merge task
T, into task T, using the merge_ children
transformation described in Section 8.

3. For each fringe node T, let (T, - -+, T} be the
sequence of nodes that are identically control dependent
with T, in the task tree. Use a dynamic programming
algorithm (similar to the one in [50]) to partition
(T,, -++, T,) into the maximum number of
subsequences such that each subsequence has
3, seqtime(T) = seqtime . Each subsequence is then

i
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merged into a single task, using the merge_siblings
transformation described in Section 8.

The possibility of using only threshold-merge as a task-
partitioning algorithm was investigated for parallel SisaL
programs in [51]. The main limitation of that approach is
that data dependence information is not used when
building the partition.

7. Partition cost function

In this section, we describe how a task partition is
evaluated. An important feature of our work is that we
present a single objective cost function that can be used to
compare two different task partitions and decide which one
is better. This is in contrast to other work (e.g., [52, 53]) in
which the objectives are to maximize parallelism and
minimize overhead, but there is no suggestion of how the
two should be traded off. The cost function defined in this
section is used by the partitioning algorithms in Sections 8
and 9. The cost function can also be used to provide
feedback to the user about the estimated parallel execution
time and speedup of the partitioned program.

The cost function to be minimized is partime, the
estimated parallel execution time of the task tree on the
target multiprocessor. Though the value of partime
depends on P (the number of processors available), the
complexity of computing partime is linear in the size of the
task tree and does not depend on P. The rules for
computing partime in a task tree are more complicated
than the rules presented in Section 6 for computing
segtime, because partime must take the parallelism into
account as well. We begin with a few definitions:

e parfreq|T,, (u, )] is the relative parallel frequency of
the task-tree edge from 7, with control condition (u, /).
Usually, parfreg|T,, (u, 1)] is the same as the relative
sequential frequency for task-tree edges, freq[T,, (u, [)],
defined in Section 6. The only exception occurs for
control condition (x, T), where FCDG node u is a
PARALLEL DO statement created by the user or the
compiler; since this control condition represents the
parallel execution of multiple instances of the child task,
we set parfreg|T,, (u, T)] = 1.

#forks|[T,, (u, 1)] is the average number of forks
performed by task T, when taking the conditional branch
represented by control condition (u, [). If (u, I)
corresponds to a PARALLEL DO, #forks[T,, (u, [)] =
freq|T,, (u, 1)] is the average number of child task
execution instances created for the PARALLEL DO. If (u, /)
corresponds to a PARALLEL SECTIONS construct,
#forks(T,, (u, )] = [{T, | AT, T,, (u, 1)) € EY is
the number of parallel sections created by the PARALLEL
SECTIONS construct.
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o #waits(T)) = |wait_pred(T)| is the average number of
waits performed by task 7, in a PARALLEL SECTIONS
construct.

o #signals(T,) = |wait_succ(T,)| is the average number of

signals performed by task 7, in a PARALLEL SECTIONS

construct.

labels(T,) = {(w, 1) | A[T,, T,, (u, I)] € E } is the set of

control conditions (labels) emanating from task 7, in E.

ovhd(T) is the total overhead for task T, based on the

target-multiprocessor overhead parameters mentioned in

Section 2:

ovhd(T) =T,

start-up

+ #waits(T)T,

wait

+ > freqlT, (u, )]

(] )Elabels(T,)

x AT,

+ #signals(T )T,

signal

went T #forks(T,, (u, DIT,, .}
¢ The fork-join overhead incurred by task 7, is based on
the T, and T, overhead parameters defined in
Section 2. The synchronization overhead incurred by
task T, is assumed be directly proportional to the
number of predecessor and successor tasks of T, in
wait_pred and wait_succ respectively. If the
synchronization overhead is further optimized (e.g., by
using counting semaphores as in [54]), then the reduced
number of synchronization operations should be used
instead of #waits and #signals. We also define
total_ovhd = 3, totfreq(T,)ovhd(T,) to be the total
overhead incurred by all tasks in the task tree.
toral_time(T)) is the average fotal sequential execution
time (including overhead) of task T, and its children.
It is computed like seqtime(T,), which was defined in
Section 6:

total_time(T) = cos{(T,) + ovhd(T)

+ > freqlT,w,1)] Y total_time(T,).

(] Elabels(T,) [T, Ty )JEET

With the above definitions, the following rules show how
partime can be recursively computed for all tasks by a
bottom-up traversal of the task tree, using two
intermediary cost values for control conditions,
label_ critpath and label_ partime:

e label_ critpath. For any control condition (u, /) in
the task tree, compute label_critpath[T,, (u, 1)], the
critical path length of the child tasks with control
condition (u, /) and parent task T, (task T, is uniquely
defined, because a control condition must have a unique
parent task in the task tree). If (u, /) represents a
PARALLEL SECTIONS construct, the label_ critpath value is
set to the critical path length of the precedence graph
defined by the wair_pred and wait_ succ relations,
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computed using partime(T,) as the execution time for
child task T,. For a PARALLEL DO construct, the

label_ critpath value equals the partime value for a single
execution instance of its child task.

label_partime. For any control condition (u, /) in
the task tree, compute label_partime[T,, (4, !)], the
estimated parallel execution time of the child tasks with
control condition (u, /) and parent task T,:

label_partime[T,, (u, 1)]

= max {label_critpath{T,, (u, 1)), 2 total_time(T)/P}.
[T To]EE
label_partime{T,, (u, )] differs from label_ critpath(T,
u, 1) because it uses total_time(T,) and the number of @
processors, P, to enforce a stronger lower bound on the
parallel execution time.
e partime. For a given task T,, compute partime(T,),
the parallel execution time of task T,:

partime(T,) = cos(T,) + ovhd(T)

+ > max {parfreq[T,, (u, 1)] label_partimel[T,, (u, )],

(.1 Y€ labels(T,)

freq(T,, i, N1,

[T, Tos (0 JEET

total_time(T,)(P}.

partime(T,) is obtained from the frequency-weighted
sum of the parallel execution times of the control
conditions in labels(T,). As in label_partime, the
total_time(T )/P term is used to obtain a stronger lower
bound on the parallel execution time.

As with the computation of average sequential execution
times in Section 5, the computation of partime is
interprocedural. The partime and total_ time values
obtained for the root task of a partitioned procedure are
stored as summary information to be used at all call sites
of the procedure. This interprocedural approach requires
that the procedures be partitioned in a bottom-up traversal
of the call graph, so that the summary information for a o
procedure is available whenever any of its call sites is
examined.

The quantity partime nicely expresses the trade-off
between parallelism and overhead in a way that takes into
account the number of processors available on the target
multiprocessor. If the granularity of the task partition is
too fine, partime will be large because of excessive
overhead (defined by the ovhd values). If the granularity is
too coarse, the values of label_ critpath and label_partime
will be large because of loss of parallelism, causing
partime to be large once again. partime is usually
minimized at some intermediate granularity.

Apart from helping us determine an optimal granularity,
the estimated parallel execution time defined by partime
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can be shown to provide lower and upper bounds on the
actual parallel execution time, partime, of the task
partition on the given multiprocessor:

actual®

(1 - e)partime < partime < 2(1 + €)partime,

actual

where ¢ is the relative error in the compile-time estimates
of frequencies, execution times, and overhead values. A
proof of a similar result was provided in [2]. This result
assumes that the tasks are scheduled with no unforced
idleness and that the overhead components of different
tasks can be executed in parallel. The factor of two is a
worst-case upper bound, based on a result due to Graham
[55]- This worst-case upper bound is achieved only when
the max terms are nearly equal in the calculations of
label_ partime and partime described above. If, as is
usually the case, one term is significantly larger than the
other in each max operation performed, the upper bound
will be =(1 + €)partime, without the factor of two [2].

The task-tree partime cost function defined in this paper
is an extension of the F(IT) macro-dataflow partition cost
function defined in (2, 56].

8. Partitioning algorithm

® Description of algorithm

The partitioning algorithm attempts to minimize the
partime value of a given procedure. It starts with the initial
task tree defined in Section 6 and iteratively merges tasks
on the basis of overhead and critical-path-length values.
Tasks are merged using two primitive merge
transformations on the task tree:

1. merge_siblings(T,, T,) merges tasks T, and T,, which
must have the same parent task and control condition in
the task tree. The effect of merge_ siblings is to
combine two separate sections (tasks) from a PARALLEL
SECTIONS construct into a single section (task).

2. merge_children|T , (u, I)] merges task T, with all its
child tasks that have control condition (i, ). The effect
of merge_ children is to replace a PARALLEL DO with a
sequential loop or to replace a PARALLEL SECTIONS
construct with a sequential execution of the sections.

The iterative merging is continued until the entire
procedure is in a single task. The partime values are
calculated for all intermediate partitions, and the partition
with the smallest value of partime is reconstructed and
passed on to the code generator as the optimized task
partition for the current procedure. (Since the task tree is
incrementally updated in each iteration, it is more efficient
to reconstruct the optimized task partition at the end than
to store a copy of the partition in each iteration.)

The general structure of the partitioning algorithm is as
follows:
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1. Start with the initial task tree defined in Section 6.

2. Repeat steps 3, 4, and 5 until no further merging is
possible (i.e., until all nodes have been placed in the
same task). Keep track of the best partime value
obtained among all partitions generated during the
following iterations.

3. Pick the task with the largest average decrease in
overhead. Call the selected task T,. The average
decrease in overhead for a task is calculated by
summing the decrease in fotal_ovhd obtained over all
possible merging choices for the task and then dividing
by the number of merging choices. The average
decrease in overhead can be computed efficiently
(usually in constant time per merging choice) by
examining only the parent, children, and siblings of the
task in the task tree [see the definitions of ovhd(T,) and
total_ovhd in Section 7}.

4. Evaluate the parent, sibling, and child tasks of T, as
candidates for merging with T,. Of these tasks, pick the
one that yields the smallest value of the critical path
length (critpath) of the entire task tree, when it is
merged with T,. For each merging choice, it takes at
most time linear in the size of the task tree to evaluate
the new critical path length. Call the selected task 7, .

5. Merge tasks T, and T, using merge_ siblings or
merge_ children. Update all the task-tree data structures
incrementally in at most time linear in the height of the
task tree and the number of sibling tasks of T, and 7.

6. When no further merging is possible, reconstruct the
partition with the best partime value by reinitializing the
task tree and repeating steps 3, 4, and 5, until the
partition with the best partime value is obtained.

The main issue in the partitioning algorithm is the choice
of tasks to be merged in each iteration. In step 3, task T,
with the largest average decrease in overhead is chosen as
the primary candidate for merging. The goal of this step is
to obtain the largest reduction in the overhead component
of partime. In previous work [2], the task with the largest
total overhead was selected. However, experience has
shown that selection of the task with the largest average
decrease in overhead usually leads to a larger overhead
reduction. In step 4, the task that yields the smallest
critical path length when merged with T, is chosen. This
rule attempts to find a task that can be merged with 7,
while giving up as little parallelism as possible. These
choices were also used in previous work on partitioning
S1sAL programs [2, 56, 57].

An alternative rule that was considered for the
partitioning algorithm was to choose the pair of tasks
(T,, T,) that yields the smallest value of partime in each
iteration (i.e., a greedy algorithm to minimize partime). In
practice, however, the greedy algorithm turned out to be a

poor choice, because it would often return the sequential 793
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Final task tree for program of Figure 1.

partition as the best partition (due to the large overhead of
fine-grain parallelism, the sequential partition usually has a
smaller partime value than that of the initial task tree).
Instead, by choosing task T, as the one that yields the
smallest critical path length in step 4, we force the
partitioning algorithm to explore intermediate partitions
with more parallelism and to avoid the sequential partition
as long as possible.

The wait_pred and wait_succ constraints have a subtle
influence on which pairs of tasks can be merged by
merge_siblings(T,, T,). In particular, the merge must not
introduce a cycle in the waiting constraints. This condition
will be satisfied if and only if there is no directed path of
length greater than one between T, and T, in wait_pred or
wait_succ. In previous work on partitioning S1sAL
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programs for macro-dataflow execution [2, 56], we avoided
introducing a cycle by imposing a convexity constraint and
merging all tasks in the convex hull of T, and T, in the
data dependence graph. In the present work, we merge
tasks T and T, only if their convex hull consists of just

T, and T,. It is easy to prove that any valid set of sibling
tasks can be merged by successive calls to merge_ siblings,
with this constraint.

Note that merge_ children(T,, (u, I)] merges task T,
with all of the T, child tasks that have control condition
(u, 1). This all-or-nothing approach was chosen for the
sake of simplicity. If we allow a single child task
(say, task T,) to be merged with its parent, we may have
to split the original PARALLEL SECTIONS construct into two
PARALLEL SECTIONS constructs, one for the T, predecessor
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Table 2 Performance measurements for final task tree of Figure 4.

Task freq parfreq cost ovhd total_time partime
CFGTOP. .. 30008 1260 2.14 x 10° 7.27 x 10’
8:DOI=... 1 1 2 1270 1.37 x 10° 3.42 x 107
PH1... 4 1 3.42 x 107 10 3.42 x 107 3.42 x 107
11: DO J=... 1 1 3.84 x 107 10 3.84 x 107 3.84 x 107
14:DOK=... 1 1 3.84 x 107 10 3.84 x 10 3.84 x 107
17: WRITE ... 1 1 30000 10 30010 30010

sibling tasks and one for the T, successor sibling tasks
(according to the waiting constraints). Also, for any sibling
of T, (say, T,) that could be executed concurrently with
task T,, we have to decide which of the two new PARALLEL
SECTIONS constructs should contain T_. Further merges of
individual child tasks could lead to further fragmentation of
the PARALLEL SECTIONS constructs. These complications are
avoided by requiring that all child tasks with the same
control condition be merged simultaneously with the
parent. It would be easy to extend this rule to allow
merging an individual child task with its parent in certain
benign cases (e.g., if the task has empty wait_pred and
wait_succ sets). However, an extension for the general
case would be more complicated.

A rudimentary worst-case execution-time analysis of the
partitioning algorithm now follows. Let N be the number
of tasks in the initial task tree. Steps 3, 4, and 5 are
performed at most N times, because each iteration reduces
the number of tasks by at least one”. Step 4 takes constant
time if we store the ““average decrease in overhead™
values for all tasks in a heap data structure. The
complexity of maintaining the heap data structure is as
follows. For any task, we define adjacency as the sum of
numbers of parent, sibling, and child tasks. We define 4 as
the maximum adjacency over all tasks in the task tree.
Initializing and maintaining the heap takes a total of
O[N(log N + A)] time during the whole algorithm, since it
takes O(A) time to compute a new ““average decrease in
overhead” value. Step 5 takes O(AH) time, where H is
the maximum height of the task tree, since A4 is the
number of candidate tasks considered for 7,, and O(H) is
the time required to compute a new critical path length
value.

Thus, the total execution time complexity is O[N(log N
+ AH)). In the best case (i.c., when each task has at most
a small, constant number of children and siblings), 4 is
constant and H = O(log N), yielding an O(N log N)
execution time. In the worst case, 4 = O(N) and
H = O(N), yielding an O(N’) execution time. Empirical
m which a merging iteration does not reduce the number of tasks is
when the partitioner considers different values for p, the number of processors to
be assigned to a parallel loop. Using the approach from (2], we successively try to
set p to the values P, P/2, P/4, ---, 1, where P is the number of physical
processors available to the user (Section 2). Therefore, the number of iterations

could be N log (P) in the worst case, which can still be assumed to be O(N) in
practice if log (P) is assumed to be a constant.
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evidence shows that, in practice, the actual execution time
is almost always O(N log N).

& Partitioning example and experimental results

Figure 4 shows the final task tree obtained by applying this
partitioning algorithm to the initial task tree in Figure 3.
The target multiprocessor parameters used (cf. Section 2)
were

s P = four processors.

8 Ty = 10 cycles.

& Do = 60 + 300k cycles, where k is the number of
child tasks created (i.e., T, = 60 and T, = 300).

¢ Ta = T, = 0. For the sake of simplicity, the cost of

a waiting synchronization was assumed to be zero.

Table 2 summarizes the freg, parfreq, cost, ovhd,
total_time, and partime values of all tasks in the final task
tree (the freq and parfreq entries give the corresponding
values for the task-tree edge connecting a task to its
parent). The task-tree edge with control condition (8, T) is
the only edge with parfreq < freq; it represents a
PARALLEL DO for which four instances of the child task are
created at run time. The partime value of the root task is
7.27 x 107 cycles; this is the estimated parallel execution
time of the entire program. Since the estimated sequential
execution time of the program was 2.14 x 10° cycles
(Figure 2), the estimated speedup of the partitioned
program is 2.14 x 10%7.27 x 10" = 2.9.

The Parallel FORTRAN code generated from the final
task tree is shown in Figure 5. It contains a PARALLEL
SECTIONS construct and a PARALLEL DO construct, as
dictated by the final task tree in Figure 4. The estimated
sequential execution times from Figure 2 are shown to the
right of the output code. (An option in PTRAN is used to
control the inclusion of these seqtime values in the output
code listing.)

To corroborate the estimated execution times with their
actual values, we executed the sequential and paraliel
versions of this example program on an IBM 3090 system®.

4 The measurements were made using the Parallel FORTRAN run-time system [19].
The paralle]l program used for the measurements was generated by PTRAN but
differed slightly from the code shown in Figure 5 because of syntactic differences
between the VS FORTRAN 2.5 parallel language {18] and the Parallel FORTRAN
language [19]. The measurement version of the program contained the PARALLEL
LOOP and PARALLEL CASES keywords instead of PARALLEL DO and PARALLEL SECTIONS,
and also contained a call to PXSPIN to set the busy-wait tuning parameter 8W to 1000.
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In both cases, we measured the elapsed wall-clock time.
For greater accuracy, we enclosed each program in a
sequential loop with 100 iterations. The resulting
measurements of elapsed time were 270 s and 94 s for the
sequential and parallel versions, respectively. Therefore,
the actual speedup obtained was 270/94, which also
equals 2.9!

The average sequential execution time measured for a
single instance of the example program is 270/100 = 2.7 s.
Since the cycle time of the 3090 system is 15 ns, this
amounts to an execution time of 2.7/15 x 10~° = 1.8 x 10°
cycles. However, the estimated segqtime value in Figure 2
is 2.14 x 10° cycles, which is an overestimate by about
20%. Similarly, the average parallel execution time of a
single instance of the example program is 0.94 s, or
0.94/15 x 10~° = 6.27 x 107 cycles, whereas the estimated
partime value in Figure 4 is 7.27 x 10’ cycles, an
overestimate of about 16%. Further experimentation is
necessary to evaluate the accuracy of execution-time
estimates for different programs.

Table 3 contains parallel-execution-time measurements
for a small collection of programs from the GENESIS [58],
PERFECT [59], and SPEC [60] benchmark sets. These
programs are much larger than the example program
discussed in Figures 1-5 and are more representative of
real applications. The first column of numbers contains the
sequential execution times for these programs (measured
on an IBM 3090J system using the Parallel FORTRAN
compiler [19]). The second column of numbers contains
the elapsed times obtained by using the automatic
parallelization facility of the Parallel FORTRAN compiler
and executing the program on four processors. The third
column of numbers contains the elapsed times (also on
four processors) obtained by using PTRAN as a source-to-
source translator followed by the Parallel FORTRAN
compiler (with automatic parallelization turned off).
Although the automatic parallelization performed by
PTRAN resulted in better performance compared to the
automatic parallelization performed by the Parallel
FORTRAN compiler, the actual performance improvement
compared to the sequential code was quite modest. The
performance was limited because of serial regions in these
programs that were not amenable to automatic
parallelization. Similar results have been reported by other
researchers [61]. For these programs, the partitioning
techniques described in this paper served the purpose of
eliminating useless parallelism and avoiding anomalous
situations in which the parallelized code runs slower than
the sequential code. The partitioning techniques will be
more useful for PDGs with larger amounts of parallelism;
such PDGs should result from programs in which the
serial regions are explicitly parallelized by the user—

e.g., by using PARALLEL DO statements or array-language
notation.
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9. Partitioning for loop-only parallelism

As described in the previous section, the partitioning
algorithm deals with loop parallelism and nonloop
parallelism in a common framework. The problem of
finding a partition with the smallest value of partime is
NP-complete [2]. The task-partitioning algorithm in
Section 8 is an approximation algorithm that works well in
practice. It is generally intractable to use an exponential-
time optimal algorithm for partitioning task trees from real
programs, considering that the initial task tree often
contains 500 to 1000 nodes.

However, it is generally tractable to use an exponential-
time algorithm for loop-only parallelism, since very few
programs have more than ten parailel loops in a loop nest.
Exponential-time loop-nest-traversal algorithms are
frequently used in commercial vectorizing and parallelizing
compilers (e.g., [62]). The PTRAN partitioner performs a
“‘loop-only pre-pass,”” which identifies the optimal set of
loops to be serialized if there is no nonloop parallelism in
the program (i.e., if wait_pred and wait_ succ impose a
total order rather than a partial order on each set of sibling
tasks with the same control condition). Loops that are
serialized in this loop-only pre-pass are then marked as
sequential before the general partitioning algorithm of
Section 8 is performed. The justification for this approach
is that if a loop is made sequential when only loop
parallelism is considered, it should also be made sequential
if nonloop parallelism is considered as well. If the target
multiprocessor system supports only loop parallelism, the
output of the loop-only pre-pass can be passed directly to
the code generator.

The loop-only pre-pass consists of the following steps:

1. Start with the initial task tree defined in Section 6.

2. For each task T, with control condition
(u, ) € labels(T,) such that (u, /) does not
correspond to a PARALLEL DO construct, perform
merge_children|[T,, (u, [}]. All of the control
conditions in the resulting task tree now correspond to
parallel loops. In the case of the program of Figure 1,
the initial task tree from Figure 3 is collapsed into
just two tasks—one containing nodes {PH1, 9, 10,
PE1}, and the other containing all the remaining
nodes.

3. For each PARALLEL DO in the task tree, perform a local
analysis of execution times and overheads to determine
whether it is never profitable to execute the loop
concurrently (e.g., when segtime < T . ). If so,
perform merge_ children[T,, (u, )], where (u, [) is the
control condition of the PARALLEL DO.

4. Remove the root task so as to decompose the task tree
into subtrees. Each subtree corresponds to a nest of
parallel loops with its root at the task containing the
preheader node of the outermost loop in the loop nest.
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PROGRAM MAIN seqtime
REAL X(800000), Y (800000}, Z(800000)
ONTINUE

C 2.14+08
Y(1) = 0 2.00000
Z() = 2.00000
Pl = 3.14150265 0.00000
READ(5,*)N 30000.0
IF (N .LE. 800000) THEN =~ ol 2.14+08
IF (N .GE. 1) THEN 2.14+08
PARALLEL SECTIONS
SECTION 1
C*PTRAN PREFER PROCS(4)
PARALLEL DO910021= I,N 1.37+08
X(1) = (SIN(PI * 1/ FLOAT(N)) * (P/ FLOAT(N))) 171.000
91002 CONTINUE 0.00000
SECTION 2, WAITING(1) 0.00000
DO 91005 ] =2, N 3.84+07
YO) = XD/ 2.04 Y3~ 1) 48.0000
91005 CONTINUE 0.00000
SECTION 3, WAITING(1) ;
DO 91008 K = 2,N 3.84+07
Z(K) = X(K)/3 V= 2K -1 48.0000
91008 CONTIN 0.00000
SECTION 4, WAI’I'[NG(Z 3y
WRITE(6, %) Y(N), ZON) 30000.0
END SECTIONS
ELSE b
91012 CONTINUE. : 0.00000
WRITE(6,*) 'Bad valug of N! 30000.0
ENDIF 0.00000
ELSE
GOTO 91012 0.00000
ENDIF
END

f Output Parallel FORTRAN code generated from final task tree for program of Figure 1.

Table 3 Comparison of sequential and parallel (on four processors) execution times.

o
Benchmark program Elapsed time on an IBM 3090J system
(s)
Sequential Automatic parallelization Automatic
by Parallel FORTRAN parallelization
compiler by PTRAN
CG2BIG (GENESIS) 244 244 90
QCD1V (GENESIS) 899 475 387
. XYVEC3 (GENESIS) 262 176 170
TFS (PERFECT) 288 185 162
NASA7 (SPEC) 259 261 178
TOMCATYV (SPEC) 218 (terminates prematurely) 130
The nest of parallel loops may have a general tree 10. Incorporating loop transformations into the
structure; we do not require the nest to be linear or to partitioner
consist only of adjacent loops. The partitioning algorithm described in the previous
5. For each subtree (loop nest), find the optimal subset of sections assumes a fixed loop configuration for the input
parallel loops that should be executed concurrently in program. However, loop transformations are the driving

order to obtain the smallest partime value for the entire  force behind many of today’s vectorizing and parallelizing

loop nest. In the worst case, the execution time of this compilers [25]. Various loop transformations have been

step will be O(L x 2"), where L is the number of defined over the years in order to deal with different

parallel loops in the loop nest. optimization goals. Loop transformations such as 797
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interchange, reversal, skewing, blocking, coalescing, and
parallelization can change only the execution order of
iterations in a perfect loop nest and are known as iteration-
reordering loop transformations [63]. Other loop
transformations, such as distribution, fusion, alignment,
unrolling, and peeling, can change the execution order of
iterations and statements in the loop body and are known
more generally as statement-reordering loop
transformations.

Loop transformations are usually applied to a single loop
nest at a time. The definition of a loop nest assumed in
loop transformations is usually more restrictive than the
definition in Section 9. (E.g., loop transformations usually
assume that all loops are D0 loops, that the loop nests are
linear, and that the loops are perfectly nested.) Even for
this restricted model, it is highly intractable to determine
the best choice of loop transformations for a given loop
nest. Many transformation systems (e.g., Parafrase [64])
perform loop transformations on all loop nests in some
predetermined sequence. Because of the inherent
complexity of the loop-transformation problem, some
transformation systems (e.g., ParaScope [65, 66]) allow the
programmer to interactively specify the desired sequence
of loop transformations.

In the previous sections, we described how the PTRAN
partitioner addresses the problem of selecting an optimized
task partition by using a global framework for average
execution times and frequencies. Incorporating loop
transformations within this global framework would surely
make the transformation problem harder than that for a
single loop nest. However, we perform two important
simplifications that make the combined problem of task
partitioning and loop transformations tractable, while still
yielding a good optimized solution to the general problem:

1. Divide and conquer =~ We decompose the entire
partitioning and loop-transformation process into three
stages—prepartitioning, partitioning, and
postpartitioning. We then examine each loop
transformation separately and carefully decide at which
stage it should be performed, trying to place as few
loop transformations in the partitioning stage as
possible. For instance, it is appropriate to perform loop
vectorization in the prepartitioning stage since it is a
transformation with a large number of constraints. Once
the decision to vectorize has been made in the
prepartitioning stage, it will not be revoked by the later
stages; thus the expense of backtracking is avoided.

2. Focus on hot spots ~ Our global execution-time
framework can be used to identify the hot spots in the
input program, i.c., the regions which dominate the
program execution time. We need not spend any effort
on partitioning or transforming regions with negligible
execution time, since doing so will have little or no
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impact on the performance of the optimized program.
We discuss one form of hot-spot analysis in Section 6,
where the granularity threshold value seqtime_, is used
to control the size of the initial task tree. Similarly, we
can perform parallelizing loop transformations only on
loops whose total execution time contribution is larger
than some factor (say, €) of the program sequential
execution time. It is important to make ¢ depend on the
number of processors, P, because the execution time of
a region may become more significant as the remainder
of the program is parallelized. In [2], we proposed a
value of e = 0.01/P when performing node expansion
for compile-time scheduling.

The remainder of this section is organized as follows.
The next subsection briefly discusses some of the loop
transformations that are suitable for the prepartitioning
stage. The following subsection discusses how the loop
fusion transformation can be incorporated into the
partitioning stage. The last subsection briefly discusses
some of the loop transformations that are suitable for the
postpartitioning stage.

® Prepartitioner loop transformations

Loop distribution

Most loop-transformation systems (e.g., Parafrase [64])
begin by distributing loops around strongly connected
components of the dependence graph [25, 67]. This
approach of full distribution (also known as mblock
partitioning) provides the greatest flexibility in choosing
individual loop configurations and task partitions and is a
natural candidate for the prepartitioning stage. However, if
the final code contains several distributed loops, it may
incur excessive overhead because of poor data locality and
extra increment-and-test code. After the flexibility of full
distribution has been exploited in the prepartitioning stage,
we suggest performing loop fusion in the partitioning stage
in order to remove (as far as possible) the overheads
introduced by loop distribution. Name-only distribution
[68] is a more coarse-grained form of loop distribution that
has also been proposed as a way of obtaining the benefits
of loop distribution without excessive overhead.

Locality-improving loop transformations

Recent work has shown how loop transformations, such as
interchange, reversal, skewing, and blocking (tiling), can
be used to restructure innermost loop nests for improved
data-access locality in the cache and other levels of the
memory hierarchy [5, 6, 69-71]. These transformations are
crucial for efficient use of modern high-performance
uniprocessor and multiprocessor systems. More
importantly, the performance degradation that results from
not performing these transformations becomes more severe
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as the number of processors increases in a multiprocessor
system [5]. Therefore, it is important to perform such
locality-improving loop transformations in the
prepartitioning stage.

Loop vectorization

Loop vectorization has been studied in great detail

[25, 67]. In fact, the whole area of automatic parallelization
was initially motivated by the need for compilers that do a
good job of loop vectorization. The decision to vectorize a
loop depends on control and data dependences, on
hardware constraints (not all operations can be executed in
vector mode), and on cost considerations (number of
iterations of the loop, memory access costs, etc.) [62].

As mentioned earlier in this section, we suggest that loop
vectorization should be performed in the prepartitioning
stage because it has a large number of constraints. Loop
vectorization is performed by strip-mining the loop on the
basis of the hardware vector length [25]; the outer
sectioning loop is still eligible for other loop
transformations, such as parallelization and interchange.

® Loop fusion

As mentioned earlier, we depend on loop fusion to remove
(as far as possible) any overheads that are introduced by
loop distribution. There is a strong interaction between the
considerations for loop fusion and task partitioning, so it is
natural to perform loop fusion in the partitioning stage. For
instance, loop fusion may tend to fuse two loops together
to reduce the number of cache misses, whereas the
partitioner may tend to place them in separate tasks for the
sake of parallelism (thus making them ineligible for fusion).
By incorporating the loop-fusion decisions in the
partitioner, we can trade loop-fusion benefits with
parallelism benefits in a common framework. Also, the
structure of our partitioning algorithm lends itself quite
nicely to loop fusion. We start with a fine-grained initial
task tree and with fully distributed loops. As we merge
tasks, we can also decide how the loops within a task
should be fused.

Most commercial vectorizing and parallelizing compilers
attempt to fuse only adjacent loops that originate from the
same source statement (e.g., by distribution of a DO loop or
by translation of a Fortran 90 WHERE construct into multiple
loop nests). Our proposed loop-fusion algorithm is more
general in that it may fuse any set of loops that are
potentially fusible; the loops may be nonadjacent and may
not even have been derived from the source statement.

To incorporate loop fusion within the partitioning
algorithm, we employ a procedure that selects an
optimized fusion configuration for all loops in a given task.
This procedure is described in [72] and uses an extended
version of the max-flow/min-cut algorithm [73]. As each
iteration of the partitioning algorithm considers different
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pairs of tasks to merge, the fusion procedure can be used
to estimate the fusion benefits that will result from each
possible merge. These fusion costs are then incorporated
into the global partime value used to identify the best
partition. This approach enforces the constraint that only
loops in the same parallel task are eligible for fusion.

® Postpartitioner loop transformations

After the partitioner has determined how the program
should be decomposed into parallel tasks, it is important to
perform intratask code optimizations so as to improve the
sequential execution times of the tasks as well. Our goal is
to obtain speedup via parallelism without slowing down the
individual tasks due to reduced optimization. Loop
transformations that are used to improve the sequential
exccution time of a program should be performed in the
postpartitioning stage. Loop unrolling is an important
technique for exposing more instruction-level parallelism.
Scalar replacement [74] is a technique for replacing array
accesses with a scalar temporary in order to obtain an
improved register allocation. Such transformations can be
applied profitably to intratask computations.

11. Related work

The general problem of determining the optimal granularity
of program decomposition has been addressed in other
work, as discussed below. However, these approaches
differ from the work presented in this paper by assuming a
more restrictive program model and/or a more restrictive
parallel execution model. There has also been much
previous work in the area of graph partitioning to minimize
intercluster communication. While it may be possible to
use some of those techniques for partitioning programs to
minimize communication overhead, the graph model
assumed is usually too abstract for those results to be
applicable to program graphs.

Some of the ideas in our work on partitioning PDGs for
fork-join execution evolved from our previous work on
partitioning S1SAL programs for macro-dataflow execution
[2, 56]. However, there are fundamental differences
between the two pieces of work because of differences in
the language model (FORTRAN is an imperative language,
whereas SIsAL is an applicative, single-assignment
language) and in the parallel execution mode! (fork-join vs.
macro-dataflow). In this paper, the FCDG is used to
uncover the structure of the FORTRAN program from the
control flow graph, to store average exccution frequencies
and average execution times, and to provide the basis for
determining the final task partition. In SisaL [41], the
graphical program representation (IF1) is derived from the
syntax of the program; IF1 cannot express imperative and
unstructured language features, such as those found in
FORTRAN. Also, the target model in the present work is
a structured fork-join parallel program, as opposed to the
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macro-dataflow execution model assumed in [2, 56].
Macro-dataflow is a more restrictive model because it does
not allow the possibility of a parent macro-actor creating
other macro-actors and then suspending itself until their
completion. Recently, we have extended the SisaL
partitioner to support a fork-join parallel execution model
[57], but the differences in the language models
(FORTRAN vs. S1saL) still remain.

Apart from the fundamental differences in parallel
language and execution models, the work described in this
paper contains several novel extensions and
improvements, compared with our earlier work in [2, 56].
Section 4 describes optimizations for efficient execution
profiling that are based on the FCDG; these optimizations
could also be used in a syntax-based representation such
as IF1. Section 5 mentions how the approach to computing
average execution times can be extended to compute
variance as well. Compile-time estimation of variance
helps quantify the ‘“‘execution-time predictability’” of a
region of code and provides confidence intervals on the
estimated execution times. As discussed in Section 7, the
partime cost function is a refinement of the cost function
defined in [2, 56] and has been found to yield better task
partitions. There are important differences between the
partitioning algorithm in Section 8 and the earlier algorithm
in [2]. In Section 8, the first task selected as a merging
candidate is the one with the largest average decrease in
overhead; in [2], it is the one with the largest total
overhead. In the merging of sibling tasks, Section 8
considers only task pairs (T, T,) such that
convexhull(T,, T,) = {T,, T, }; in [2], any two sibling tasks
could be merged by merging the entire set of tasks
convexhull(T,, T,) in a single step. Also, the algorithm in
Section 8 returns the partition found to have the smallest
partime value, whereas the algorithm in [2] returns the
partition found to have the smallest F(IT) value (a different
cost function). Finally, Sections 9 and 10 describe
important loop transformations and optimizations that were
not considered in [2] and describe how they are
incorporated into the general partitioning framework.

McCreary and Gill propose a graph-decomposition
technique for decomposing a dataflow graph into ““clans”
(tasks) [75]. The program representation is assumed to be a
weighted acyclic dataflow graph. The decomposition
technique is based on a result due to Ehrenfeucht and
Rosenberg [76] that is used to parse the dataflow graph
into a hierarchy of clans. There are three kinds of nodes in
the parse tree: linear, primitive, and independent.
Parallelism is exploited only within independent nodes.
The parse tree can be viewed as a task tree, with a fork
operation at each independent node. To determine how
much parallelism should be exploited at an independent
node, it is further assumed that its child nodes have
identical execution and communication times. Moreover,
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the acyclic dataflow-graph representation is restrictive
because it does not include loops and conditionals, and the
execution-time model is restrictive because all children of
an independent node are assumed to have the same
execution time.

Bokhari uses a polynomial-time sum-bottleneck-path
algorithm for the optimal assignment (partitioning) of
modules of a parallel program to processors in a host-
satellite multicomputer system [77, 78]. The algorithm finds
the optimal solution for two restricted parallel program
structures: a multiple-chain structure and a single-tree
structure. The objective function to be minimized has the
form

Max (total execution time of all modules
assigned to processor i,
communication time incurred by processor i
over the host-satellite link)

max

IsisP

This is a simple cost function that is really a lower bound
on the execution time of the bottleneck processor. Note
that this cost function ignores intermodule precedence
constraints. Also, the module assignments (partitions) have
a very restricted structure: A chain can be partitioned only
into contiguous subchains, and a tree can be mapped only
onto a single-level processor tree in which the root
processor must be the host system. With these
simplifications and restrictions, the partitioning problem is
no longer NP-complete and can be solved optimally in
polynomial time. Though the restricted problem structure
is useful for certain signal-processing and image-processing
applications, it is far removed from the general program
model assumed in our work, namely the PDG. The PDG
captures the control and data dependences that occur in a
program with arbitrary control flow and data flow. In
contrast, the program model assumed in [77, 78] is a static
collection of modules with a restricted interconnection
structure.

The chain-partitioning algorithm from [77, 78] was also
independently presented by Polychronopoulos in {79, 80].
Both versions of the chain-partitioning algorithm take
8(m’n) time and 6(m’n) space to find an optimal chain
partition for m modules on n processors. In other work,
we described a dynamic-programming algorithm (similar to
the one in [50]) for the same problem that finds an optimal
chain partition in O(m’n) time and 6(m?) space.
Experimental measurements show that the average
execution time of the algorithm is usually O(m?) in
practice, rather than O(m’n).

We have also done some work in the area of static
(compile-time) scheduling [2, 48]. This approach first
expands (unrolls) the program graph of the main procedure
and then maps computations onto processors in order to
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minimize the estimated parallel execution time (which
includes synchronization and communication overhead).
The output of the scheduler is a partition of the program
graph into threads (one per processor) that may have
arbitrary synchronizations and communications among
themselves. This execution model differs from the fork-join
execution model because threads cannot be created
dynamically during program execution. Also, this approach
was developed for SisaL programs and has all the
restrictions, discussed earlier, due to the language model.
It would be interesting to generalize the compile-time
scheduling work for a FORTRAN-language model, using
some of the extensions presented in this paper (the FCDG,
the initial task tree, etc.). In fact, there is now a growing
interest in using a static scheduling approach for executing
FORTRAN programs on distributed-memory
multiprocessor systems [81].

The area of optimizing loop-only parallelism has
received considerable attention in the literature [25]. The
framework presented in this paper includes both loop
parallelism and nonloop parallelism. Future advances in
the area of optimizing loop parallelism can be incorporated
into the partitioning framework using the techniques
discussed in Section 10.

The general problem of determining the optimal chunk
size of a parallel loop in the presence of overhead and
variance was studied by Kruskal and Weiss {47]. The
chunking approach from [47] has been extended by Flynn
and Hummel [22] to a sequence of multiple batches, each
batch using a progressively smaller chunk size than the
previous batch (this approach is called factoring). Rules
for approximating the optimal number of batches and the
optimal chunk size for each batch are also given in [22].
Experimental results for the factoring approach are given
in [82]. Both the chunking [47] and the factoring [22]
approaches are performed on the basis of estimated loop
iteration execution times, variances, and scheduling-
overhead values. Since these cost values are an inherent
part of the partitioning framework presented in this paper,
the chunking and factoring approaches to run-time
scheduling should benefit from the compile-time cost
estimates determined by the partitioner.

In the area of graph partitioning to minimize intercluster
communication, the partitioning algorithm due to
Kernighan and Lin [83] is well known. The problem
addressed there is that of finding an optimal partition of a
graph into k clusters of equal size, such that the sum of the
intercluster edge weights is minimized; [83] contains an
approximation algorithm for this problem. This algorithm
assumes that all node weights are equal. To handle
arbitrary node weights, [83] suggests replacing a node of
weight W with W nodes of weight 1, mutually connected
by edges of sufficiently high cost. Though this replacement
correctly models a node with a nonunit weight, it is
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achieved at the expense of increasing the time and space
requirements of the algorithm.

An optimal algorithm for partitioning trees was given by
Lukes in [84]. The problem addressed is that of
partitioning a tree into clusters so that the sum of the node
weights in each cluster is less than a given size and the
sum of the intercluster edge weights is minimized. This
objective function is more general than that of Kernighan
and Lin because nodes may have arbitrary weights and the
clusters need not be of equal size. However, the
partitioning algorithm is more restrictive because it can be
applied only to trees instead of to general graphs. Also, a
structural constraint is placed on the tree partition similar
to that of partitioning a chain into contiguous subchains:
An arbitrary order and direction is imposed on the nodes
and edges of the tree, and only adjacent nodes (according
to this order) may belong to the same cluster.

12. Conclusions

In this paper, we have presented a general interprocedural
framework for partitioning a program dependence graph
into parallel tasks. The framework is novel in that it
exploits both loop parallelism and nonloop parallelism,
supports both automatically detected and user-specified
parallelism, and uses parameterization to specify the
different multiprocessor systems, all within a common
framework and environment. This approach can be used to
run the same parallel program on a variety of shared-
memory multiprocessors. Such a system greatly simplifies
the problems of creating, debugging, and porting efficient
parallel programs on different multiprocessor systems.
Though the partitioning techniques have been implemented
in PTRAN, the basic approach is general and is applicable
to any environment for which a program dependence graph
representation can be obtained.
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