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We have  implemented  an  experimental  APUC 
compiler, which accepts  ordinary APL 
programs  and  produces  C  programs. We have 
also  implemented  a  run-time  environment  that 
supports  the  parallel  execution  of  these C 
programs on the RP3 computer,  a  shared- 
memory,  64-way MlMD machine built at  the 
IBM Thomas J. Watson  Research  Center.  The 
APUC  compiler  uses  the front end of the 
APU370  compiler  and  imposes  the  same 
restrictions, but requires  no  parallelization 
directives from the  user.  The run-time 
environment is based on simple 
synchronization primitives and is implemented 
using Mach  threads. We report the speedups 
of  several  compiled  programs running on RP3 
under the Mach  operating  system.  The  current 
implementation exploits only data  parallelism. 
We discuss the  relationship  between the style 
of an  APL  program  and its expected  benefit 
from the automatic  parallel  execution  provided 
by our  compiler. 

Introduction 
During the past decade, there has been a tremendous 
amount of research on parallel processing intended to 
speed up the execution of applications. Confronted with a 
new parallel machine, a programmer usually has to prepare 
the application program by hand for parallel execution, 
using either a new parallel-programming language or some 
conventional language with added parallel constructs. The 
reported successful utilization of the Connection Machine 
[l] and of the GF-11 [2] has been achieved in this way. It 
is interesting to note that these two parallel machines are 
both SIMD (single-instruction-stream, multiple-data- 
stream) type. 

The prospect of the extra work in partitioning an 
application for parallel execution and orchestrating the 
communication among the segments is daunting enough to 
dampen the ordinary user's enthusiasm for parallelism, no 
matter how easy such a process is considered by 
researchers in parallel programming. For the ordinary user, 
parallelism  is interesting only if it is transparent. 

A more ambitious approach is to develop a compiler for 
a high-level  programming  language,  with the ability to 
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decompose and schedule a user's program for parallel 
execution. The language  can  be either a new  programming 
language  designed explicitly for parallel programming, such 
as Crystal [3], Id [4],  and SISAL [5 ] ,  or a conventional 
uniprocessor programming  language. Notable research 
projects  taking the latter approach are those of PTRAN [6], 
developed at the Thomas J. Watson Research Center, and 
Parafrase, in the Cedar Project [7] at the University of 
Illinois. Both currently focus on FORTRAN and  on  MIMD 
(multiple-instruction-stream, multiple-data-stream) 
machines with shared-memory architectures. PTRAN 
analyzes programs interprocedurally [8] to find  all potential 
parallelism and later uses a process-former [9] to form 
parallel processes. There are also academic efforts that 
rely on new  parallel-programming  languages  with a 
functional language  flavor  [3].  We observe that one 
weakness of such an approach is that new  languages 
generally have few application programs available for 
testing. 

This paper presents the result of our work on an 
experimental APL compiler that transforms programs 
written in conventional APL to programs that may be 
executed in  parallel. No directives for parallel execution 
are required. Our  compiled code runs on the RP3 system, 
the Research Parallel Processing Prototype, a 
multipurpose, shared-memory, 64-way  MIMD machine 
built at the IBM Thomas J. Watson Research Center for 
doing research on  parallel processing [lo]. APL is widely 
used in many application areas, including  financial 
analysis, engineering,  and scientific computations. Because 
of the high level of the APL language  and its array 
orientation, it is quite easy to determine which parts may 
be executed in parallel [ll]. The succinctness of a well- 
written APL program  implies that there are no incidental 
or artificial constraints on the order of execution. These 
constraints may  well occur in FORTRAN programs. 

We have chosen to implement a parallelizing APL 
compiler, but we feel our research is applicable to any 
high-level  language that allows  manipulation of large data 
structures, including database languages.  While 
conceptually simple, our approach requires the 
implementation of many system-specific details. The 
effectiveness of this approach is actually due to the 
inducement the APL language provides to its users to 
write high-level programs focused on arrays and array 
manipulation. 

Traditionally, APL processors have been implemented 
as interpreters, which carry the overhead of source-code 
interpretation during execution. Hence, we believe that 
work to produce good compilers that eliminate the 
interpretative overhead (which is sequential in nature) 
should precede work on parallel APL execution. Our 
previous work on  an APL compiler [12] has prepared us 
well for this undertaking. While it is expensive to construct 
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an APL compiler because of the very high level of the 
language, for the same reason the additional cost of 
parallelization (not counting the detailed work required to 
interface to a parallel machine) is relatively cheap once a 
sequential compiler exists. 

In order to perform parallel-APL experiments on  RP3, 
we first  modified our APL/370 compiler [12], which 
generates System/370TM assembly code directly, to generate 
C source code. This C code is then compiled into ROMP 
machine code (the RP3 processor, which  is also used in 
the IBM  RT PC@ [13])  by the Metaware Corporation 
C compiler for the RT.@ Note that this is not a C compiler 
for the RP3 system, since it only generates code for the 
individual processors. Our compiler, called  APLIC, 
accepts VS APL programs without requiring declaration or 
parallelization directives. The run-time environment for 
executing compiled APL/C code in parallel on the RP3 
system is similar to but simpler than that used for the 
PTRAN system [14] on RP3. Mach-kernel threads [15] are 
used to implement parallel execution streams. Fetch- 
and-(op) instructions [13] are used to implement the simple 
synchronization primitives (fork and join) needed to handle 
the data parallelism  (i.e.,  parallelism  from operations on 
array elements) that exists in a typical APL program. We 
chose to use Mach-kernel threads instead of C-thread [15] 
to reduce the run-time overhead. We note that there has 
been work on translating APL to C [16-181 and APL to 
FORTRAN [19]. Our work here concentrates on issues 
unique to generating code for highly parallel machines and 
their run-time environments. 

Our APL/C compiler is currently incomplete: Not all 
primitive functions or all their functionalities are 
implemented; our work is  confined to exploiting data 
parallelism at  the primitive function level;  and  all 
implemented primitive functions are not parallelized. 
Nevertheless, an existing group of APL programs, 
including ones to find primes and solve a Poisson equation 
and a financial application, have been compiled  and 
executed on  RP3.  We present measurements of their 
parallel execution time and speedups. We note that this 
work of exploiting data parallelism in APL programs can 
also be carried out on SIMD machines such as the GF-11 
computer [2]. However, we expect the cost of 
implementing a parallelizing compiler for the GF-11 to be 
very expensive because of the wide instruction words and 
deep pipelines used in the machine. 

compiler and the minor  language restrictions it imposes. 
Next, we briefly describe the relevant features of the RP3 
machine and its Mach operating system. We then describe 
our implementation of a run-time environment for 
parallel execution. This  is  followed by a description 
of measurements of parallel execution of example 
programs on the RP3. Finally, we discuss how parallel 

In the following section, we describe the APLIC 
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speedup* depends on  program style, and we compare this 
with the way compiler improvement over interpreters 
depends on  program style. We also discuss how some 
machine features and our method of exploiting data 
parallelism  limit the speedups. 

The APUC compiler 
Our previous efforts [ l l ]  aimed at demonstrating parallel 
APL execution on a multiple-processor IBM 3090TM 
computer under the MVS operating system. To 
demonstrate the execution of automatically parallelized 
APL on the highly parallel experimental RP3 machine, we 
first had to adapt our compiler to generate code for the 
RP3 processors. We decided to use C because a C 
compiler was available for the RP3 processors as well as 
many other microprocessors. 

The APL/C compiler uses the same front end as the 
M u 3 7 0  compiler; hence, it imposes the language 
restrictions stated in  [12]. (The reasons why these 
restrictions are imposed are given in that paper.) The 
restrictions are  as follows: 

The execute function, m, is excluded. 
No system function is supported. 
Of the APL system variables, only OAV and a limited 
choice of OIU [I21 are supported. 
Branch expressions are limited to the most  common 
forms. 
A variable cannot change its storage type (which must be 
either numeric or character) or rank (which is limited 
to 57). 

In short, the compiler covers most VS APL language 
features without requiring declaration, and maintains strict 
semantics of APL with  regard to its order of execution. 
This is in sharp contrast to the compiler of Budd [16] and 
that of Berneclq et al.  [I71  (in the latter, no character data 
are allowed  and  all variables are treated as real numbers). 
Our compiler does not support any of the newer features 
incorporated in APL2m [20] that are not in VS APL. Some 
of these new features, such as complex numbers, the 
“each” operator, and grouped parameters, are very 
desirable for parallel applications and can easily be 
accommodated with  more work on the compiler. On the 
other hand, the nested-array feature of APL2 will require 
far more extensive work. 

The compiler front end performs syntax analysis, 
parsing, and an interval-based dataflow analysis [12]. The 
result of dataflow analysis, use-de$nition chaining, is 
utilized in a “type-shape’’ analysis of the program 
variables used. This analysis determines the types and 
dimensions, known or unknown at compile  time, of all 

program is run on multiple processors. 
*Speedup is execution time on one processor divided by execution time when the 
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variables used, except the parameter(s) to the main 
function in the compilation unit. Thus, no variable 
declaration is needed other than the specification of certain 
attributes of the outermost parameter(s) during the 
compiler invocation (see Section 2 of [12]). The compiler 
performs a live analysis of variables (indicating when a 
variable is redefined or no longer needed) and inserts 
temporary variables for storing intermediate values. We 
refer the reader to [12] for issues concerning the front end 
of the compiler that are not directly related to the parallel 
execution of APL. 

The compiler front end also does a data-dependency 
analysis within each basic block [ll]. This knowledge of 
data dependency is used by the front end to insert 
send/wait synchronization flags at parse-tree nodes to help 
the back end exploit functional parallelism (the certified 
potential to simultaneously execute independent subtrees 
in a basic block). Hence, the APL programs are 
automatically parallelized at the source-code basic-block 
level by the front end. However, the work reported here 
concentrates mainly on the data parallelism of array 
operations in APL primitives. This is because of our 
limited  human resources for implementation-not because 
functional parallelism is not worth exploiting.  In fact, it 
appears that the parallel speedup of some APL programs is 
limited  when this functional parallelism is not exploited. 
This point  is discussed below. 

generate C source code, while the basic structure of the 
back end remains the same. This includes the 
representation of source-program variables as well as the 
structure of several main functions of the back end. In 
particular, the function TREELIST, which evaluates a 
parse tree and calls various subfunctions to generate code 
for primitives encountered in traversing the parse tree, is 
almost unchanged. A program variable is determined by 
the front end of the compiler to be one of the following 
types: Boolean, integer, floating-point, or character. It is 
either a scalar, an array with dimensions known at compile 
time, a vector of unknown length, or an array with 
unknown dimensions. The subfunctions in the back end 
that implement primitive functions typically 

The back end of the APL/370 compiler was rewritten to 

Check compatibility of shapes (dimensions) of their 

If required, allocate space in the heap for the target 

Carry out element-wise operations to produce target 

operands. 

variables. 

values. 

The first two are clearly sequential operations, and the 
third is what usually constitutes data parallelism, or what 
corresponds to a DO-ALL loop in FORTRAN. We note 
that, in contrast to the situation with the interpreter, no 
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number of high-level primitives, but this is precisely the 
reason that a full compiler implementation of the language 
is very expensive. However, we do not require a full 
implementation to show interesting experimental results. 

code depends greatly on the quality of the C compiler we 
use. Fortunately, for our purpose of experimenting with 
parallelism, the absolute execution time is not our primary 
concern. We are most interested in the parallel speedup, 
which is basically not affected by the performance of the C 
compiler. We acknowledge that compilation time  is 
important, since it  is the cost of generating the code. 
From [21] we  know that the APW370 compilation time  is 
dominated by the back end. We observed that the AF'L/C 
back end, on average, requires only about a fifth of the 
time of the APL/370 back end. This, of course, does not 
include the compilation time of the C compiler. The 
APL/C compiler is written in VS APL and is driven by an 
APL interpreter (i.e.,  it has not yet compiled  itself),  while 
the run-time environment is written in C. We illustrate the 
inputloutput flow of the components of the compiler 
system in Figure 1. 

We also remark that the final  efficiency of our generated 

RP3, Mach,  and  the  run-time  environment of 
the APUC compiler 
Compiler research on automatic parallelism has generally 
been on MIMD, shared-memory machines rather than 
distributed-memory machines, because the former provide 
a single-address-space programming  paradigm.  The  RP3 
system, unlike many other MIMD machines, has shared 
memory  and a large number of processors. This makes it 
suitable for experiments concerning scalability of parallel 
schemes. Each RP3 processor-memory element (PME) 
contains a processor, eight megabytes of memory, and a 
32-kilobyte cache [21]. The PMEs are connected by an 
Omega network, and the memories are globally 
addressable and shared by all processors. Access by a 
processor in one PME to memories in other PMEs goes 
through the network and incurs a certain amount of 
performance penalty. (We refer the reader to [lo, 221 for a 
general discussion of  RP3 and its architecture.) In general, 
we find the RP3 network to be very  fast in comparison 
with its processor speed, and usually  not a bottleneck. The 
RP3 cache uses the write-through policy;  i.e.,  modified 
entries are written back to memory.  RP3 hardware does 
not maintain cache coherence. Hence, in order that 
programs be executed correctly, software on RP3, either 
produced by the programmer or the compiler, is 
responsible for ensuring that storage references are 
consistent. Software must explicitly designate storage as 
cacheable or noncacheable on a page-by-page basis and is 
responsible for flushing processor caches when necessary. 
The C compiler that we use makes everything cacheable 
by default. This works well, except for a peculiar problem 

The  parallelizing APL compiler for RP3. 

type-satisfiability check is ever done at run time, and the 
shape-compatibility check is performed at run  time  only if 
it cannot  be determined at compile time. 

implementation of our experimental M L / C  compiler was 
not complete. Several APL primitive functions, including 
4, v, e, 8 ,  T, and m, were not implemented, and a 
number of cases within some implemented primitives and 
derived functions, such as reductions on Boolean variables 
and catenation of arrays of more than two dimensions, 
were not supported. Also, not  all  primitive functions have 
been given a parallel implementation. In particular, 
indexed assignment and general indexing were not 
parallelized, even though we believe it  would be very 
desirable to  do so. The parallelized primitives include most 
scalar functions, membership, inner product, and outer 
product. This highlights the peculiar character of APL: 
The power of APL and the  ease of APL-program 
parallelization depend greatly on the availability of a large 

As stated above, at the time of this research on RP3, the 



for (uO=O; u O c i ;  uO++) /* i ,  n ,  and v3: matrix dimensions */ 
{qO=uO*n; /* u0, u l ,  and  u2: loop indices *I 

ql=uO*v3; /* q0 and ql: matrix index vars. */ 
for ( u l = O ;  u l a ;  u l + + )  /* p2, 102, and ro2: pointers t o  *I 
{d=O; /* target, left op, and right op */ 
for (u2=0;  u2ev3;  u2++) /* d: accumulator */ 
d +.= lo2[ql+u2]*ro2[ul+u2*n]; 
p2[qO+ul] = d;}} 

related to the RT  floating-point unit, which  we discuss 
below. The storage-mapping software also must specify, on 
a page-by-page basis, whether storage is to be accessed 
sequentially (which is useful for local data) or interleaved. 

The RP3 machine runs a modified version of the Mach 
operating system [23], which  is a UNIX@-based system 
originally developed at Carnegie  Mellon University [15]. 
Tasks in the original UNIX have separate address spaces. 
In contrast, a thread, a basic unit of concurrent execution 
in Mach, can share an address space with other threads in 
a task. Hence, multiple threads sharing a single address 
space can execute a particular computation in parallel. 
This matches the RP3 architecture and our parallel APL 
execution model. The Mach operating system provides a 
run-time library, called the C-thread package, which 
facilitates concurrent programming in  C. It is flexible and 
convenient to use. However, we chose to use Mach-kernel 
threads to implement parallel program execution for 
reasons of efficiency. These threads are managed by our 
run-time environment because of performance 
considerations, even though this approach requires more 
implementation effort. The Mach operating system has 
been modified for the RP3 system to enable lightweight 
(low-overhead) kernel threads to be bound to processors 
and to provide  memory  and  cache-management  mechanisms. 

This work describes the exploitation of data parallelism 
in basic blocks of APL source programs. Hence, the 
parallel execution model for our compiled APL code 
becomes a very simple fork-join model. We assume that all 
of our compiled APL code is sequentially executed except 
for pure array operations. As described in the previous 
section, the third part in the generated code for a primitive 

(or derived) function operating on array operands (vectors 
are one-dimensional arrays) is a pure array operation. All 
operations on scalars or one-element vectors,  as well as 
space allocation and dimension-length checking of arrays, 
are considered to be sequential code segments and are 
executed serially. Since there is overhead in starting 
parallel execution, even a pure array section may  not  be 
suitable for parallel execution because of the small amount 
of data. During  run  time, we insert a size check at the 
beginning of an array operation to eliminate this problem. 
Only those arrays determined to be large  enough  (i.e., 
their execution time is larger than the overhead that would 
be incurred in splitting them into parallel tasks) are 
executed in  parallel. If the size of  an array operation is 
determined at run  time to be over the threshold of parallel 
profitability, such a check can be eliminated. Since APL 
allows dynamic arrays, such checks at run  time are the 
norm rather than the exception. The cost of a run-time 
check is, in general, insignificant. 

We  define aparallel block to be a code segment (of a 
pure array operation) judged to be large enough for parallel 
execution. For simplicity, we assume that a parallel block 
can always be divided into data-independent pieces of 
equal size (except for the last piece). We call these pieces 
“slices.” Consequently, some derived functions such as 
reduction (the reduction +/V sums all elements in vector 
V) are not parallelized, while others, such as inner 
product, are parallelized. We note that an inner product 
consists of a sequence of reductions. What we do here is 
parallelize the outer loops while  giving each processor a 
number of iterations of the inner loop. The code for inner 
product is  given in Figure 2. The compiler parallelizes only 771 
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the outermost for-loop, while the innermost for-loop, 
which represents the reduction, is  not partitioned among 
different processors. This is a common practice in parallel 
programming for machines with numbers of processors less 
than one hundred. For massively parallel machines, it is 
very desirable to parallelize the reduction operation in a 
logarithmic number of steps [24]. The monadic function z is 
also excluded from parallelization. 

At the entry of a parallel block, the execution is forked 
into parallel threads, each executing one slice of the 
parallel block. Upon completion of the parallel block, all 
threads are joined, and sequential execution resumes. To 
implement this simple run-time model, a main thread and 
multiple helper threads are created during initialization, 
and each thread is bound to a processor. The run-time 
environment performs this initialization by using system 
calls. The main thread executes the sequential portion of 
the code on one processor while all helper threads remain 
spin-waiting. When execution of the main thread reaches a 
parallel block, it assigns slices of the parallel block code to 
the helper threads and puts them to work in parallel on the 
computational job of the parallel block. The main thread 
also executes a slice of the parallel block. When a helper 
thread reaches the end of a parallel block, it notifies the 
main thread and goes back to spin-waiting. When the main 
thread completes its parallel slice, it spin-waits until  it 
receives acknowledgment of completion from  all its helper 
threads and then resumes the execution of the sequential 
section of the code. 

We partition a parallel block in the compiled APL/C 
code into parallel slices with a scheduling policy usually 
called chunk-scheduling. The size of each slice, or chunk, 
is the total number of iterations divided by the number of 
available processors. (In the simple case of a scalar 
arithmetic function, the number of iterations is the number 
of elements in the array being manipulated, and in the case 
of an  inner product such as matrix multiplication, it is the 
row size of the left operand.) We form parallel processes, 
Le.,  assign threads dynamically to a parallel task in Mach 
on  RP3.  We do not depend on  profiling information 
(estimated characteristics of the program behavior) to 
estimate the possible size of a parallel block. (There is a 
serious difficulty  with  using  profiling data to decide the 
profitability of creating parallel processes for a portion of a 
program: Since profiling is usually done on sequential 
machines with  limited runs, a projection of time to large 
problems may  not be useful on programs with large data 
and of a more dynamic nature. This is  similar to the 
situation in which observation of the inputs and outputs of 
a complicated mathematical function for a few points may 
not be sufficient to determine whether the output grows 
with the square or cube of the input.) Experimental results 
for other scheduling policies for our run-time environment 

772 on the RP3 can be found  in [25]. 
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The main thread activates its helper threads serially and 
then assigns itself the last slice of the parallel block. 
Distributed locks (in  different  RP3 PMEs) are used for 
synchronization in order to avoid memory contention. 
Each idle helper thread periodically checks its own lock to 
see whether any work is  waiting. The join operation is 
implemented by a single shared variable. Each helper 
thread increments the shared variable to acknowledge 
completion of its work. The main thread checks this 
shared variable to ensure that all helper threads have 
finished. The assembly-language routine that implements 
synchronization uses the fetch-and-add instruction unique 
to the RP3. (For a comparison of distributed-lock and 
central-lock schemes and experimental data supporting the 
adoption of the distributed-lock scheme for our run-time 
environment, see [25]. We note that the distributed-lock 
scheme reduces memory contention and network traffic.) 
To activate the helper threads, the main thread calculates 
the lower  and upper bounds of iteration indices and passes 
this information, together with the starting address of a 
subroutine embodying the work of a parallel chunk, to 
helper threads, and unlocks their locks one at a time. The 
use of a subroutine call format is purely for convenience in 
passing the necessary information to threads, and  is 
relatively efficient in C. 

All  helper threads and the main thread operate on 
disjoint data (except for the locks and the shared variable 
for synchronization), so in  principle all data can be 
declared cacheable without danger of inconsistency. 
However, floating-point support of the C compiler we used 
is implemented in a peculiar way: When a floating-point 
instruction is encountered for the first  time, the compiler 
generates a branch to a location in the user program data 
area, where instructions to carry out the floating-point 
operation have been written. This requires that we declare 
all data areas (but not instruction areas) in our program to 
be noncacheable if a floating-point operation is present in 
the program.  This obviously degrades the parallel 
performance of the code. We refer to [25] for relevant 
performance data related to this issue. 

We do not support nested parallelism  (i.e., splitting one 
parallel process further into a group of  parallel subprocesses 
in our  run-time  environment, in contrast to PTRAN [14]. 
This  is  because  we concentrate on data parallelism  in APL, 
which does not  require  nested  parallelism. 

Speedups of automatically  parallelized APL 
programs on the RP3 
In this section we present the speedup and execution-time 
data for three APL programs. The three programs are not 
large, but neither are they trivial. They are interesting 
enough to illustrate why our current implementation of a 
simple run-time execution environment turns out to be 
reasonably effective  for APL-style programs (we discuss 

[BM J .  RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWNOVEMBER 1991 



1 1 5  
( 6 )  
v 7  

1 0  1 3  
/ v  \ 

0 9  
/ \  

/ \  

\ \ 
1 0  2 0  

' 1 1 1 1 1 1 1 1 1 1 1  
1  2 4 8 16 24 32 40 48 56 62 

Number of processors 

1 2 4 8 16 32 62 

Number of processors 

773 

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBERNOVEMBER 1991 W:M. CHING AND  D. JU 



POISSON program for a 62 X 62 grid: (a) execution time; (b) speedup. 

this point later in this section). In the results presented in 
Figures 3-5, elapsed time includes the time spent on 
initialization, whereas running time does not. The speedup 
is the ratio of running (elapsed) time on a single processor 
to running (elapsed) time on multiple processors for 
parallel execution. The RP3 machine was built for parallel 
software research on a real machine,  not as  a performance 
machine. By today’s standards, ROMP/RT is a fairly slow 
processor, and the floating-point chip is  not  ideally 
integrated into the processor. Each program is described 
below; then the results of the experiments are discussed. 

The first program, PRIME, with input N,  computes all 
prime numbers up to N by means of a sieve method. It 
sets up a multiplication table large enough to check the 
membership of  all odd numbers up to N .  The number 2 
and  all  odd numbers not in the table are primes. The 
source code is shown in Figure 3(a), and its parse tree in 
Figure 3(b). Experimental results are displayed in Figures 
3(c) and 3(d). [Note that the horizontal scales in Figures 
3(c) and  3(d), as well as in Figures 4 and 5 ,  are not 
uniform. They also vary from  figure to figure.] The data 
parallelism  is concentrated in node 20 (outer product) and 
node 12 (membership). Most other parts are primarily 
sequential. Although  PRIME does not use any floating- 
point instructions, for the sake of uniformity  among our 
examples, the data shown were obtained with the data 
area declared noncacheable. 

The second program, POISSON, solves a Poisson 
equation with boundary conditions on a rectangular grid, 
using the tensor product method. Results are shown in 

774 Figure 4. 

The third program, MORGAN,  is a time-consuming 
segment of code used in financial analysis. The main 
function has, among other operations, five calls to the 
subfunction 

VR+N MSUM A 
C11 A++\A 
C21 R~((O,N-l>LA)-O,(O,-N)LA 

where is an integer and A is a 30 X 700 matrix of real 
numbers. Figure 5 presents the results. 

Even though we present our data for a fixed  input size, 
both POISSON and MORGAN are compiled  with the 
specification that input size is unknown at compile  time in 
order to preserve the APL spirit of allowing dynamic 
arrays. Hence, any change of array size does not incur a 
recompilation. This has a slightly  higher, but insignificant, 
run-time cost. 

The data indicate that the best parallel speedup obtained 
for any of these examples is about 12.  At first  glance, this 
is a rather discouraging result for highly parallel machines. 
However, if we remember our simple run-time execution 
model  and relate it to Amdahl’s Law [26],  it is not 
surprising at all.  Amdahl’s Law says, for example, that if 
10%  of an application is serial, the best parallel speedup 
that can be hoped for is ten, under the assumption that the 
time for the parallel part is 0. Our execution model 
certainly cannot circumvent the effect of Amdahl’s Law, 
since we strictly split execution into serial and parallel 
parts. In fact, in  [25] we have measured the execution time 
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and speedup of parallel blocks only, and observed almost 
linear speedup, with up to 32 processors in some cases. 

We  give here several reasons why speedup peaks, even 
for parallel blocks. First, data access is  much faster if the 
needed data are available in the cache. Because of the 
peculiar problem of floating-point-code generation by the C 
compiler, mentioned previously, and our subsequent 
declaration of data being noncacheable, most array data 
access cannot take advantage of the cache. Second, the 
arrays  are laid out in the shared memory as they would be 
in a single address space for a uniprocessor. Hence, when 
executing a slice of a parallel block, a processor is  likely to 
access memory that is not local. This means that the 
access must  go  through the network and incur overhead 
and delays due to network congestion. Finally, we  did 
experiments for programs with a fixed input size. Thus, as 
more processors participate in executing a parallel block, 
each processor gets a small chunk of data to work on, 
while overhead to start  a parallel block is fixed  and 
network traffic increases because of increasing remote- 
access requests. These arguments explain  much of the 
reason why the speedup is sublinear. 

the limitation of our current implementation-a strictly 
fork/join run-time execution model that is capable of 
exploiting data parallelism only. As pointed out in [ll], our 
compiler front end can discover functional parallelism in 
all basic blocks of an APL program. It inserts 
synchronization flags to mark portions that can be 
executed in parallel with other portions up to a particular 
program node of the parse tree. For example, the two 

In any case, the bound on relative speedup also reveals 

subtrees delineated by arcs in Figure 3(b) can be executed 
in parallel.  More importantly, in many cases, the serial 
array-bound checking of one array operation can be 
carried out during the parallel computation of a preceding 
array operation. In short, a more sophisticated scheduling 
of fine-grain tasks and  an elaborate run-time environment 
could help to minimize the serial bottleneck and achieve 
better speedup. 

Nevertheless, we can improve our results without 
changing the run-time environment. The compiler front end 
groups sequences of consecutive scalar primitive functions 
into streams. However, the back end does not fuse the 
loops corresponding to these scalar functions 
automatically. Since fusing loops obviously reduces 
overhead, we  did  an experiment with the MORGAN 
example by hand-fusing loops after code was generated 
and  achieved better speedup  than  that  shown  in  Figure 5(b) 
(see [25]). 

of processors approached 63 (RP3 reserves one processor 
for system use), the elapsed time actually increased 
slightly. This indicates that initialization cost, no matter 
how  small,  is  not trivial for the case of a large  number of 
processors. Also, when more processors go to work, each 
gets a smaller chunk of work, and unless the work-pile is 
very large, overheads incurred for more processors 
overshadow the gain  from  having  more processors to  do 
the work. 

We also observed for all examples that when the number 

Now  let  us assume that we can exploit functional 
parallelism as well as data parallelism in each basic block 
of  an APL program. On what kind of programs will our 775 
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automatic parallelization scheme  be effective?  Certainly 
not  for  programs  that  are literal translations of FORTRAN 
programs.  A  program must  contain a  large amount of array 
data parallelism to  be  able  to benefit  from the  automatic 
parallelization that  our compiler provides.  In  other  words, 
a  major part of the program  must be  expressible in terms 
of high-level array  operations.  That  is  what  we  call  APL- 
style  programs in [27]. We  observed  that  APL-style 
programs  for  uniprocessors  do  not tend to  run significantly 
faster  when compiled and  executed  than  when  interpreted. 
We call this  improvement of compilation over 
interpretation  “sequential  speedup.” Sequential-style 
programs  for  uniprocessors,  on  the  other  hand, tend to 
display  considerable  sequential  speedup. An interesting 
fact  has emerged: The parallel speedup  an  APL program 
can  achieve  on a highly parallel  machine such  as  the RP3 
tends  to  be  quite  opposite  to  the  sequential  speedup of the 
same program [27]. That is,  a  good APL-style program that 
enjoys a moderate  sequential  speedup  on a uniprocessor 
exhibits  better parallel speedup  than a sequential-style 
program, whose compiled version  experiences  great 
sequential  speedup.  Therefore,  the programming style  APL 
programmers  developed  to avoid inefficiencies in the 
interpreter  is  precisely  what  makes their programs 
naturally suitable  for parallel execution.  These 
conclusions, of course, apply to  programs compiled with 
our compiler. 

We  note  here  that  because  our implementation uses 
primitive functions  as units of parallelism,  an interpreter 
could  also exploit  parallelism in a  similar way (given 
enough  resource  and effort). But  we remind the  reader  that 
even though our  serial  code is executed sequentially,  it 
does  not  contain  any  interpreter  overhead.  For  example, 
suppose  we  have a  parallel machine  that  can  execute  the 
parallel portion of a  program in no time. For a  program P 
that  spends  one unit of time in interpretation,  one unit in 
the  sequential  part,  and eight units in the parallel part,  the 
parallel speedup is five, since  interpretation is mostly 
sequential.  When P is compiled, the parallel speedup is 
nine, since  there  is  no  interpretative  part.  This is the effect 
of Amdahl’s Law intensified by  another  factor  (that of 
interpretation  cost).  Moreover,  an  interpreter  cannot 
analyze  data  dependency  to  discover  and exploit  functional 
parallelism,  which  is crucial  to  lessen  the effect of 
Amdahl’s Law,  as  we  have explained. 

Conclusion 
We  have  presented a description of an  APL/C compiler 
that automatically  parallelizes, at  the  APL primitive- 
function level, the C source  code  translated  from an APL 
program and  exploits  data parallelism. Our run-time 
environment, built for running under  Mach  on  the RP3 
machine, is similar to but  simpler than  the  PTRAN run- 

776 time environment.  We  use  chunk scheduling and 

distributed  locks  for  synchronization.  We  do  not  rely  on 
profiling data  to  decide  upon  the  number of processes  for 
parallel execution.  Speedup  and timing data  for  several 
APL programs  have  been  presented  to  show  the  relative 
effectiveness of our  automatic parallelization. The  reasons 
for  sublinear  speedup  are  as follows: Because  our  current 
implementation  ignores  functional  parallelism,  Amdahl’s 
Law limits us; and  data  declared  noncacheable  and 
network traffic increase  when  more  processors  are used. 
We point out  that  the kind of programs  that  can benefit 
from  the  automatic parallelism our compiler can provide 
are  the  ones  truly utilizing the  very high-level nature of the 
array-oriented APL language. We  also explain why 
interpreters  are ill-equipped to exploit  parallelism for 
overall speedup of applications. 
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