Execution Yo
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parallelized

APL programs

on RP3

compiler, which accepts ordinary APL
programs and produces C programs. We have
also implemented a run-time environment that
supports the parallel execution of these C
programs on the RP3 computer, a shared-
memory, 64-way MIMD machine built at the
IBM Thomas J. Watson Research Center. The
APL/C compiler uses the front end of the
APL/370 compiler and imposes the same
restrictions, but requires no paralielization
directives from the user. The run-time
environment is based on simple
synchronization primitives and is implemented
using Mach threads. We report the speedups
of several compiled programs running on RP3
under the Mach operating system. The current
implementation exploits only data paralielism.
We discuss the relationship between the style
of an APL program and its expected benefit
from the automatic parallel execution provided
by our compiler.

During the past decade, there has been a tremendous
amount of research on parallel processing intended to
speed up the execution of applications. Confronted with a
new parallel machine, a programmer usually has to prepare
the application program by hand for parallel execution,
using either a new parallel-programming language or some
conventional language with added parallel constructs. The
reported successful utilization of the Connection Machine
{1] and of the GF-11 [2] has been achieved in this way. It
is interesting to note that these two parallel machines are
both SIMD (single-instruction-stream, multiple-data-
stream) type.

The prospect of the extra work in partitioning an
application for parallel execution and orchestrating the
communication among the segments is daunting enough to
dampen the ordinary user’s enthusiasm for parallelism, no
matter how easy such a process is considered by
researchers in parallel programming. For the ordinary user,
parallelism is interesting only if it is transparent.

A more ambitious approach is to develop a compiler for
a high-level programming language, with the ability to
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decompose and schedule a user’s program for parallel
execution. The language can be either a new programming
language designed explicitly for parallel programming, such
as Crystal (3], Id (4], and SISAL [5], or a conventional
uniprocessor programming language. Notable research
projects taking the latter approach are those of PTRAN (6],
developed at the Thomas J. Watson Research Center, and
Parafrase, in the Cedar Project [7] at the University of
IHinois. Both currently focus on FORTRAN and on MIMD
(multiple-instruction-stream, multiple-data-stream)
machines with shared-memory architectures. PTRAN
analyzes programs interprocedurally [8] to find all potential
parallelism and later uses a process-former [9] to form
parallel processes. There are also academic efforts that
rely on new parallel-programming languages with a
functional language flavor [3]. We observe that one
weakness of such an approach is that new languages
generally have few application programs available for
testing.

This paper presents the result of our work on an
experimental APL compiler that transforms programs
written in conventional APL to programs that may be
executed in parallel. No directives for parallel execution
are required. Our compiled code runs on the RP3 system,
the Research Parallel Processing Prototype, a
multipurpose, shared-memory, 64-way MIMD machine
built at the IBM Thomas J. Watson Research Center for
doing research on parallel processing [10]. APL is widely
used in many application areas, including financial
analysis, engineering, and scientific computations. Because
of the high level of the APL language and its array
orientation, it is quite easy to determine which parts may
be executed in parallel [11]. The succinctness of a well-
written APL program implies that there are no incidental
or artificial constraints on the order of execution. These
constraints may well occur in FORTRAN programs.

We have chosen to implement a parallelizing APL
compiler, but we feel our research is applicable to any
high-level language that allows manipulation of large data
structures, including database languages. While
conceptually simple, our approach requires the
implementation of many system-specific details. The
effectiveness of this approach is actually due to the
inducement the APL language provides to its users to

write high-level programs focused on arrays and array
manipulation.

Traditionally, APL processors have been implemented
as interpreters, which carry the overhead of source-code
interpretation during execution. Hence, we believe that
work to produce good compilers that eliminate the
interpretative overhead (which is sequential in nature)
should precede work on parallel APL execution. Qur
previous work on an APL compiler [12] has prepared us

768 well for this undertaking. While it is expensive to construct
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an APL compiler because of the very high level of the

language, for the same reason the additional cost of

parallelization (not counting the detailed work required to

interface to a parallel machine) is relatively cheap once a

sequential compiler exists.

In order to perform parallel-APL experiments on RP3,
we first modified our APL/370 compiler [12], which
generates System/370™ assembly code directly, to generate
C source code. This C code is then compiled into ROMP
machine code (the RP3 processor, which is also used in
the IBM RT PC® [13]) by the Metaware Corporation
C compiler for the RT.® Note that this is not a C compiler
for the RP3 system, since it only generates code for the
individual processors. Our compiler, called APL/C,
accepts VS APL programs without requiring declaration or
parallelization directives. The run-time environment for
executing compiled APL/C code in parallel on the RP3
system is similar to but simpler than that used for the
PTRAN system [14] on RP3. Mach-kernel threads [15] are
used to implement parallel execution streams. Fetch-
and-(op) instructions [13] are used to implement the simple
synchronization primitives (fork and join) needed to handle
the data parallelism (i.e., parallelism from operations on
array elements) that exists in a typical APL program. We
chose to use Mach-kernel threads instead of C-thread [15]
to reduce the run-time overhead. We note that there has

been work on translating APL to C [16-18] and APL to
FORTRAN [19]. Our work here concentrates on issues
unique to generating code for highly parallel machines and
their run-time environments.

Our APL/C compiler is currently incomplete: Not all
primitive functions or all their functionalities are
implemented; our work is confined to exploiting data
parallelism at the primitive function level; and all
implemented primitive functions are not parallelized.
Nevertheless, an existing group of APL programs,
including ones to find primes and solve a Poisson equation
and a financial application, have been compiled and
executed on RP3. We present measurements of their
parallel execution time and speedups. We note that this
work of exploiting data parallelism in APL programs can
also be carried out on SIMD machines such as the GF-11
computer [2]. However, we expect the cost of
implementing a parallelizing compiler for the GF-11 to be
very expensive because of the wide instruction words and
deep pipelines used in the machine.

In the following section, we describe the APL/C
compiler and the minor language restrictions it imposes.
Next, we briefly describe the relevant features of the RP3
machine and its Mach operating system. We then describe
our implementation of a run-time environment for
parallel execution. This is followed by a description
of measurements of parallel execution of example
programs on the RP3. Finally, we discuss how parallel
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speedup* depends on program style, and we compare this
with the way compiler improvement over interpreters
depends on program style. We also discuss how some
machine features and our method of exploiting data
parallelism limit the speedups.

The APL/C compiler

Our previous efforts [11] aimed at demonstrating parallel
APL execution on a multiple-processor IBM 3090™
computer under the MVS operating system. To
demonstrate the execution of automatically parallelized
APL on the highly parallel experimental RP3 machine, we
first had to adapt our compiler to generate code for the
RP3 processors. We decided to use C because a C
compiler was available for the RP3 processors as well as
many other microprocessors.

The APL/C compiler uses the same front end as the
APIL/370 compiler; hence, it imposes the language
restrictions stated in [12]. (The reasons why these
restrictions are imposed are given in that paper.) The
restrictions are as follows:

¢ The execute function, ¢, is excluded.

¢ No system function is supported.

e Of the APL system variables, only AV and a limited
choice of [JTO [12] are supported.

¢ Branch expressions are limited to the most common
forms.

e A variable cannot change its storage type (which must be
cither numeric or character) or rank (which is limited
to <7).

In short, the compiler covers most VS APL language
features without requiring declaration, and maintains strict
semantics of APL with regard to its order of execution.
This is in sharp contrast to the compiler of Budd [16] and
that of Bernecky et al. [17] (in the latter, no character data
are allowed and all variables are treated as real numbers).
Our compiler does not support any of the newer features
incorporated in APL2™ [20] that are not in VS APL. Some
of these new features, such as complex numbers, the
““each” operator, and grouped parameters, are very
desirable for parallel applications and can easily be
accommodated with more work on the compiler. On the
other hand, the nested-array feature of APL2 will require
far more extensive work.

The compiler front end performs syntax analysis,
parsing, and an interval-based dataflow analysis [12]. The
result of dataflow analysis, use-definition chaining, is
utilized in a ““type-shape’ analysis of the program
variables used. This analysis determines the types and
dimensions, known or unknown at compile time, of all

*Speedup is execution time on one processor divided by execution time when the
program is run on multiple processors.
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variables used, except the parameter(s) to the main
function in the compilation unit. Thus, no variable
declaration is needed other than the specification of certain
attributes of the outermost parameter(s) during the
compiler invocation (see Section 2 of [12]). The compiler
performs a live analysis of variables (indicating when a
variable is redefined or no longer needed) and inserts
temporary variables for storing intermediate values. We
refer the reader to [12] for issues concerning the front end
of the compiler that are not directly related to the parallel
execution of APL.

The compiler front end also does a data-dependency
analysis within each basic block [11]. This knowledge of
data dependency is used by the front end to insert
send/wait synchronization flags at parse-tree nodes to help
the back end exploit functional parallelism (the certified
potential to simultaneously execute independent subtrees
in a basic block). Hence, the APL programs are
automatically parallelized at the source-code basic-block
level by the front end. However, the work reported here
concentrates mainly on the data parallelism of array
operations in APL primitives. This is because of our
limited human resources for implementation—not because
functional parallelism is not worth exploiting. In fact, it
appears that the parallel speedup of some APL programs is
limited when this functional parallelism is not exploited.
This point is discussed below.

The back end of the APL/370 compiler was rewritten to
generate C source code, while the basic structure of the
back end remains the same. This includes the
representation of source-program variables as well as the
structure of several main functions of the back end. In
particular, the function TREELIST, which evaluates a
parse tree and calls various subfunctions to generate code
for primitives encountered in traversing the parse tree, is
almost unchanged. A program variable is determined by
the front end of the compiler to be one of the following
types: Boolean, integer, floating-point, or character. It is
either a scalar, an array with dimensions known at compile
time, a vector of unknown length, or an array with
unknown dimensions. The subfunctions in the back end
that implement primitive functions typically

e Check compatibility of shapes (dimensions) of their
operands.

o If required, allocate space in the heap for the target
variables.

e Carry out element-wise operations to produce target
values.

The first two are clearly sequential operations, and the
third is what usually constitutes data parallelism, or what
corresponds to a DO-ALL loop in FORTRAN. We note

that, in contrast to the situation with the interpreter, no 769

W.-M. CHING AND D. JU




770

VS APL program

Parallel code to run
on RP3, with calls to
Mach kernel

The parallelizing APL compiler for RP3.

type-satisfiability check is ever done at run time, and the
shape-compatibility check is performed at run time only if
it cannot be determined at compile time.

As stated above, at the time of this research on RP3, the
implementation of our experimental APL/C compiler was
not complete. Several APL primitive functions, including
A, ¥, 6,8, T, and %, were not implemented, and a
number of cases within some implemented primitives and
derived functions, such as reductions on Boolean variables
and catenation of arrays of more than two dimensions,
were not supported. Also, not all primitive functions have
been given a parallel implementation. In particular,
indexed assignment and general indexing were not
parallelized, even though we believe it would be very
desirable to do so. The parallelized primitives include most
scalar functions, membership, inner product, and outer
product. This highlights the peculiar character of APL:
The power of APL and the ease of APL-program
parallelization depend greatly on the availability of a large
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number of high-level primitives, but this is precisely the
reason that a full compiler implementation of the language
is very expensive. However, we do not require a full
implementation to show interesting experimental results.

We also remark that the final efficiency of our generated
code depends greatly on the quality of the C compiler we
use. Fortunately, for our purpose of experimenting with
parallelism, the absolute execution time is not our primary
concern. We are most interested in the parallel speedup,
which is basically not affected by the performance of the C
compiler. We acknowledge that compilation time is
important, since it is the cost of generating the code.
From [21] we know that the APL/370 compilation time is
dominated by the back end. We observed that the APL/C
back end, on average, requires only about a fifth of the
time of the APL/370 back end. This, of course, does not
include the compilation time of the C compiler. The
APL/C compiler is written in VS APL and is driven by an
APL interpreter (i.c., it has not yet compiled itself), while
the run-time environment is written in C. We illustrate the
input/output flow of the components of the compiler
system in Figure 1.

RP3, Mach, and the run-time environment of
the APL/C compiler

Compiler research on automatic parallelism has generally
been on MIMD, shared-memory machines rather than
distributed-memory machines, because the former provide
a single-address-space programming paradigm. The RP3
system, unlike many other MIMD machines, has shared
memory and a large number of processors. This makes it
suitable for experiments concerning scalability of parallel
schemes. Each RP3 processor-memory element (PME)
contains a processor, eight megabytes of memory, and a
32-kilobyte cache [21]. The PMEs are connected by an
Omega network, and the memories are globally
addressable and shared by all processors. Access by a
processor in one PME to memories in other PMEs goes
through the network and incurs a certain amount of
performance penalty. (We refer the reader to {10, 22] for a
general discussion of RP3 and its architecture.) In general,
we find the RP3 network to be very fast in comparison
with its processor speed, and usually not a bottleneck. The
RP3 cache uses the write-through policy; i.e., modified
entries are written back to memory. RP3 hardware does
not maintain cache coherence. Hence, in order that
programs be executed correctly, software on RP3, either
produced by the programmer or the compiler, is
responsible for ensuring that storage references are
consistent. Software must explicitly designate storage as
cacheable or noncacheable on a page-by-page basis and is
responsible for flushing processor caches when necessary.
The C compiler that we use makes everything cacheable
by default. This works well, except for a peculiar problem
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for (u0=0; u0<i; ub++) /* i, n, and v3: matrix dimensions */

{q0=u0%n; /* u0, ul, and u2: loop indices *f
ql=u0*v3; /* q0._and ql: matrix index vars. */
for (ul=0; ul<n; ul++) /* p2, 102, and ro2: pointers to */
{d=0; /*  target, left op, and right op */

for (u2=0; u2<v3; u2++) /* d: accumulator */
d += 102[ql+u2}*ro2[ul+u2*n];
p2[q0+ul] = d;}}

Core of APL inner product translated into C code.

related to the RT floating-point unit, which we discuss
below. The storage-mapping software also must specify, on
a page-by-page basis, whether storage is to be accessed
sequentially (which is useful for local data) or interleaved.
The RP3 machine runs a modified version of the Mach
operating system [23], which is a UNIX®-based system
originally developed at Carnegie Mellon University [15].
Tasks in the original UNIX have separate address spaces.
In contrast, a thread, a basic unit of concurrent execution
in Mach, can share an address space with other threads in
a task. Hence, multiple threads sharing a single address
space can execute a particular computation in parallel.
This matches the RP3 architecture and our paralle]l APL
execution model. The Mach operating system provides a
run-time library, called the C-thread package, which
facilitates concurrent programming in C. It is flexible and
convenient to use. However, we chose to use Mach-kernel
threads to implement parallel program execution for
reasons of efficiency. These threads are managed by our
run-time environment because of performance
considerations, even though this approach requires more
implementation effort. The Mach operating system has
been modified for the RP3 system to enable lightweight
(low-overhead) kernel threads to be bound to processors
and to provide memory and cache-management mechanisms.
This work describes the exploitation of data parallelism
in basic blocks of APL source programs. Hence, the
parallel execution model for our compiled APL code
becomes a very simple fork-join model. We assume that all
of our compiled APL code is sequentially executed except
for pure array operations. As described in the previous
section, the third part in the generated code for a primitive
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(or derived) function operating on array operands (vectors
are one-dimensional arrays) is a pure array operation. All
operations on scalars or one-clement vectors, as well as
space allocation and dimension-length checking of arrays,
are considered to be sequential code segments and are
executed serially. Since there is overhead in starting
parallel execution, even a pure array section may not be
suitable for parallel execution because of the small amount
of data. During run time, we insert a size check at the
beginning of an array operation to eliminate this problem.
Only those arrays determined to be large enough (i.e.,
their execution time is larger than the overhead that would
be incurred in splitting them into parallel tasks) are
executed in parallel. If the size of an array operation is
determined at run time to be over the threshold of parallel
profitability, such a check can be eliminated. Since APL
allows dynamic arrays, such checks at run time are the
norm rather than the exception. The cost of a run-time
check is, in general, insignificant.

We define a parallel block to be a code segment (of a
pure array operation) judged to be large enough for parallel
execution. For simplicity, we assume that a parallel block
can always be divided into data-independent pieces of
equal size (except for the last piece). We call these pieces
“slices.”” Consequently, some derived functions such as
reduction (the reduction +/V sums all elements in vector
V) are not parallelized, while others, such as inner
product, are parallelized. We note that an inner product
consists of a sequence of reductions. What we do here is
parallelize the outer loops while giving each processor a
number of iterations of the inner loop. The code for inner
product is given in Figure 2. The compiler parallelizes only

W.-M. CHING AND D. JU

771




772

the outermost for-loop, while the innermost for-loop,
which represents the reduction, is not partitioned among
different processors. This is a common practice in parallel
programming for machines with numbers of processors less
than one hundred. For massively parallel machines, it is
very desirable to parallelize the reduction operation in a
logarithmic number of steps [24]. The monadic function 1 is
also excluded from parallelization.

At the entry of a parallel block, the execution is forked
into parallel threads, each executing one slice of the
parallel block. Upon completion of the parallel block, all
threads are joined, and sequential execution resumes. To
implement this simple run-time model, a main thread and
multiple helper threads are created during initialization,
and each thread is bound to a processor. The run-time
environment performs this initialization by using system
calls. The main thread executes the sequential portion of
the code on one processor while all helper threads remain
spin-waiting. When execution of the main thread reaches a
parallel block, it assigns slices of the parallel block code to
the helper threads and puts them to work in parallel on the
computational job of the parallel block. The main thread
also executes a slice of the parallel block. When a helper
thread reaches the end of a parallel block, it notifies the
main thread and goes back to spin-waiting. When the main
thread completes its parallel slice, it spin-waits until it
receives acknowledgment of completion from all its helper
threads and then resumes the execution of the sequential
section of the code.

We partition a parallel block in the compiled APL/C
code into parallel slices with a scheduling policy usuaily
called chunk-scheduling. The size of each slice, or chunk,
is the total number of iterations divided by the number of
available processors. (In the simple case of a scalar
arithmetic function, the number of iterations is the number
of elements in the array being manipulated, and in the case
of an inner product such as matrix multiplication, it is the
row size of the left operand.) We form parallel processes,
i.e., assign threads dynamically to a parallel task in Mach
on RP3. We do not depend on profiling information
(estimated characteristics of the program behavior) to
estimate the possible size of a parallel block. (There is a
serious difficulty with using profiling data to decide the
profitability of creating parallel processes for a portion of a
program: Since profiling is usually done on sequential
machines with limited runs, a projection of time to large
problems may not be useful on programs with large data
and of a more dynamic nature. This is similar to the
situation in which observation of the inputs and outputs of
a complicated mathematical function for a few points may
not be sufficient to determine whether the output grows
with the square or cube of the input.) Experimental results
for other scheduling policies for our run-time environment
on the RP3 can be found in [25].
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The main thread activates its helper threads serially and
then assigns itself the last slice of the parallel block.
Distributed locks (in different RP3 PMEs) are used for
synchronization in order to avoid memory contention.
Each idle helper thread periodically checks its own lock to
see whether any work is waiting. The join operation is
implemented by a single shared variable. Each helper
thread increments the shared variable to acknowledge
completion of its work. The main thread checks this
shared variable to ensure that all helper threads have
finished. The assembly-language routine that implements
synchronization uses the fetch-and-add instruction unique
to the RP3. (For a comparison of distributed-lock and
central-lock schemes and experimental data supporting the
adoption of the distributed-lock scheme for our run-time ®
environment, see [25]. We note that the distributed-lock
scheme reduces memory contention and network traffic.)
To activate the helper threads, the main thread calculates
the lower and upper bounds of iteration indices and passes
this information, together with the starting address of a
subroutine embodying the work of a parallel chunk, to
helper threads, and unlocks their locks one at a time. The
use of a subroutine call format is purely for convenience in
passing the necessary information to threads, and is
relatively efficient in C.

All helper threads and the main thread operate on
disjoint data (except for the locks and the shared variable
for synchronization), so in principle all data can be
declared cacheable without danger of inconsistency.
However, floating-point support of the C compiler we used
is implemented in a peculiar way: When a floating-point
instruction is encountered for the first time, the compiler o
generates a branch to a location in the user program data
area, where instructions to carry out the floating-point
operation have been written. This requires that we declare
all data areas (but not instruction areas) in our program to
be noncacheable if a floating-point operation is present in
the program. This obviously degrades the parallel
performance of the code. We refer to [25] for relevant
performance data related to this issue. o

We do not support nested parallelism (i.e., splitting one
parallel process further into a group of parallel subprocesses
in our run-time environment, in contrast to PTRAN [14].
This is because we concentrate on data parallelism in APL,
which does not require nested parallelism.

Speedups of automatically parallelized APL
programs on the RP3

In this section we present the speedup and execution-time
data for three APL programs. The three programs are not
large, but neither are they trivial. They are interesting
enough to illustrate why our current implementation of a
simple run-time execution environment turns out to be
reasonably effective for APL-style programs (we discuss
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this point later in this section). In the results presented in
Figures 3-5, elapsed time includes the time spent on
initialization, whereas running time does not. The speedup
is the ratio of running (elapsed) time on a single processor
to running (elapsed) time on multiple processors for
parallel execution. The RP3 machine was built for parallel
software research on a real machine, not as a performance
machine. By today’s standards, ROMP/RT is a fairly slow
processor, and the floating-point chip is not ideally
integrated into the processor. Each program is described
below; then the results of the experiments are discussed.

The first program, PRIME, with input N, computes all
prime numbers up to N by means of a sieve method. It
sets up a multiplication table large enough to check the
membership of all odd numbers up to N. The number 2
and all odd numbers not in the table are primes. The
source code is shown in Figure 3(a), and its parse tree in
Figure 3(b). Experimental results are displayed in Figures
3(c) and 3(d). [Note that the horizontal scales in Figures
3(c) and 3(d), as well as in Figures 4 and 5, are not
uniform. They also vary from figure to figure.] The data
parallelism is concentrated in node 20 (outer product) and
node 12 (membership). Most other parts are primarily
sequential. Although PRIME does not use any floating-
point instructions, for the sake of uniformity among our
examples, the data shown were obtained with the data
area declared noncacheable.

The second program, POISSON, solves a Poisson
equation with boundary conditions on a rectangular grid,
using the tensor product method. Results are shown in
Figure 4.
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The third program, MORGAN, is a time-consuming
segment of code used in financial analysis. The main
function has, among other operations, five calls to the
subfunction

VR<N MSUM A
[1] A<+\A
[2] R«((O,N-1)vA)-0,(0,-N)‘A

where N is an integer and 4 is a 30 x 700 matrix of real
numbers. Figure 5 presents the results.

Even though we present our data for a fixed input size,
both POISSON and MORGAN are compiled with the
specification that input size is unknown at compile time in
order to preserve the APL spirit of allowing dynamic
arrays. Hence, any change of array size does not incur a
recompilation. This has a slightly higher, but insignificant,
run-time cost.

The data indicate that the best parallel speedup obtained
for any of these examples is about 12. At first glance, this
is a rather discouraging result for highly parallel machines.
However, if we remember our simple run-time execution
model and relate it to Amdahl’s Law [26], it is not
surprising at all. Amdahl’s Law says, for example, that if
10% of an application is serial, the best parallel speedup
that can be hoped for is ten, under the assumption that the
time for the parallel part is 0. Our execution model
certainly cannot circumvent the effect of Amdahl’s Law,
since we strictly split execution into serial and parallel
parts. In fact, in [25] we have measured the execution time
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MORGAN program for a 30 X 700 matrix

and speedup of parallel blocks only, and observed almost
linear speedup, with up to 32 processors in some cases.

We give here several reasons why speedup peaks, even
for parallel blocks. First, data access is much faster if the
needed data are available in the cache. Because of the
peculiar problem of floating-point-code generation by the C
compiler, mentioned previously, and our subsequent
declaration of data being noncacheable, most array data
access cannot take advantage of the cache. Second, the
arrays are laid out in the shared memory as they would be
in a single address space for a uniprocessor. Hence, when
executing a slice of a parallel block, a processor is likely to
access memory that is not local. This means that the
access must go through the network and incur overhead
and delays due to network congestion. Finally, we did
experiments for programs with a fixed input size. Thus, as
more processors participate in executing a parallel block,
each processor gets a small chunk of data to work on,
while overhead to start a parallel block is fixed and
network traffic increases because of increasing remote-
access requests. These arguments explain much of the
reason why the speedup is sublinear.

In any case, the bound on relative speedup also reveals
the limitation of our current implementation—a strictly
fork/join run-time execution model that is capable of
exploiting data parallelism only. As pointed out in [11], our
compiler front end can discover functional parallelism in
all basic blocks of an APL program. It inserts
synchronization flags to mark portions that can be
executed in parallel with other portions up to a particular
program node of the parse tree. For example, the two
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subtrees delineated by arcs in Figure 3(b) can be executed
in parallel. More importantly, in many cases, the serial
array-bound checking of one array operation can be
carried out during the parallel computation of a preceding
array operation. In short, a more sophisticated scheduling
of fine-grain tasks and an elaborate run-time environment
could help to minimize the serial bottleneck and achieve
better speedup.

Nevertheless, we can improve our results without
changing the run-time environment. The compiler front end
groups sequences of consecutive scalar primitive functions
into streams. However, the back end does not fuse the
loops corresponding to these scalar functions
automatically. Since fusing loops obviously reduces
overhead, we did an experiment with the MORGAN
example by hand-fusing loops after code was generated
and achieved better speedup than that shown in Figure 5(b)
(see [25]).

We also observed for all examples that when the number
of processors approached 63 (RP3 reserves one processor
for system use), the elapsed time actually increased
slightly. This indicates that initialization cost, no matter
how small, is not trivial for the case of a large number of
processors. Also, when more processors go to work, each
gets a smaller chunk of work, and unless the work-pile is
very large, overheads incurred for more processors
overshadow the gain from having more processors to do
the work.

Now let us assume that we can exploit functional
parallelism as well as data parallelism in each basic block
of an APL program. On what kind of programs will our
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automatic parallelization scheme be effective? Certainly
not for programs that are literal translations of FORTRAN
programs. A program must contain a large amount of array
data parallelism to be able to benefit from the automatic
parallelization that our compiler provides. In other words,
a major part of the program must be expressible in terms
of high-level array operations. That is what we call APL-
style programs in [27]. We observed that APL-style
programs for uniprocessors do not tend to run significantly
faster when compiled and executed than when interpreted.
We call this improvement of compilation over
interpretation ““sequential speedup.’” Sequential-style
programs for uniprocessors, on the other hand, tend to
display considerable sequential speedup. An interesting
fact has emerged: The parallel speedup an APL program
can achieve on a highly parallel machine such as the RP3
tends to be quite opposite to the sequential speedup of the
same program [27]. That is, a good APL-style program that
enjoys a moderate sequential speedup on a uniprocessor
exhibits better parallel speedup than a sequential-style
program, whose compiled version experiences great
sequential speedup. Therefore, the programming style APL
programmers developed to avoid inefficiencies in the
interpreter is precisely what makes their programs
naturally suitable for parallel execution. These
conclusions, of course, apply to programs compiled with
our compiler.

We note here that because our implementation uses
primitive functions as units of parallelism, an interpreter
could also exploit parallelism in a similar way (given
enough resource and effort). But we remind the reader that
even though our serial code is executed sequentially, it
does not contain any interpreter overhead. For example,
suppose we have a parallel machine that can execute the
parallel portion of a program in no time. For a program P
that spends one unit of time in interpretation, one unit in
the sequential part, and eight units in the parallel part, the
parallel speedup is five, since interpretation is mostly
sequential. When P is compiled, the parallel speedup is
nine, since there is no interpretative part. This is the effect
of Amdahl’s Law intensified by another factor (that of
interpretation cost). Moreover, an interpreter cannot
analyze data dependency to discover and exploit functional
parallelism, which is crucial to lessen the effect of
Amdahl’s Law, as we have explained.

Conclusion

We have presented a description of an APL/C compiler
that automatically parallelizes, at the APL primitive-
function level, the C source code translated from an APL
program and exploits data parallelism. Our run-time
environment, built for running under Mach on the RP3
machine, is similar to but simpler than the PTRAN run-
time environment. We use chunk scheduling and
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distributed locks for synchronization. We do not rely on
profiling data to decide upon the number of processes for
parallel execution. Speedup and timing data for several
APL programs have been presented to show the relative
effectiveness of our automatic parallelization. The reasons
for sublinear speedup are as follows: Because our current
implementation ignores functional parallelism, Amdahl’s
Law limits us; and data declared noncacheable and
network traffic increase when more processors are used.
We point out that the kind of programs that can benefit
from the automatic parallelism our compiler can provide
are the ones truly utilizing the very high-level nature of the
array-oriented APL language. We also explain why
interpreters are ill-equipped to exploit parallelism for
overall speedup of applications. ®
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