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Nested parallelism  has  the  potential not only 
to permit  more  parallelism  than  non-nested 
parallelism, but to result in better  load 
balancing.  However,  nested parallelism will not 
be  profitable  unless  the  overhead  of 
scheduling  nested  parallel constructs can  be 
made nonprohibitive.  Previous 
implementations  of  nested  parallel constructs 
have  been fairly expensive  and  therefore  have 
not been  able to exploit  fine-grained  nested 
parallelism. In this paper,  we  describe a  run- 
time  system  that  schedules  a  large  subset  of 
nested  parallel  constructs-those  that run until 
completion without blocking-with  very little 
overhead.  Our  run-time  system is built around 
a  novel  scheduling policy and  work  queue.  The 
scheduling policy permits  efficient  stack-based 
local-memory  storage  allocation for task data, 
which is particularly efficient for 
multiprocessor  architectures  with both shared 
and local memory,  such  as  the RP3. The 
shared, nonlocking  work queue allows 
processors to obtain  tasks in just a few 
instructions,  without sacrificing load 
balancing. 

1. Introduction 
This paper describes a scheme for low-overhead, dynamic 
scheduling of nested parallelism in FORTRAN programs 
on multiprocessors with shared and  local memory. We 
consider closed parallel constructs, such as the PARALLEL 
DO loop [l], in which the iterations of the loop are 
independent and can be executed in parallel. For example, 

PARALLEL DO I = 1 ,N 
A ( I )  = F ( B ( I ) ,  C ( I ) ,  A ( I ) )  

END DO 

A tusk is a program-code sequence that is the unit of 
scheduling on a processor. A single iteration of the 
PARALLEL DO I loop above is a task in our study. 

constructs, as shown here: 

PARALLEL DO I = 1 ,N 

Nested parallelism arises from the nesting of parallel 

. . .  
PARALLEL DO J = l,M 

. . .  
END DO 
. . .  

END DO 

Each PARALLEL DO I task splits into M tasks when it 
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reaches the PARALLEL DO J loop. This permits the 
distribution of inner parallel work to available processors. 
In this example, nested parallelism  is potentially profitable 
when the number of processors P is greater than the 
number of outer iterations N (each processor might 
execute M X NIP tasks). 

Even when P is less than A’, nested parallelism  may 
improve speedup (execution time for a single processor 
divided by the execution time for P processors) by 
eliminating or reducing load  imbalance. (A load imbalance 
occurs whenever some processors are idle  while other 
processors are busy.) When there is no nested parallelism, 
if the iterations of the outer PARALLEL DO I loop have 
different execution times, some processors may  finish 
executing their assigned iterations earlier than other 
processors, resulting in a load imbalance. When nested 
parallelism  is exploited, processors that finish early can 
assist slower processors by executing inner iterations, 
thereby improving  load  balancing. On the other hand, if 
the overhead of run-time scheduling is too high,  fine- 
grained  parallelism  from many small tasks is not 
worthwhile. Therefore, an important design consideration 
is the trade-off between run-time overhead and  load 
balancing. 

loop collapsing  and coalescing [2], eliminate nested 
parallelism by merging a set of nested loops into a single 
parallel loop, thereby reducing run-time overhead. 
However, an outer loop cannot be coalesced with an inner 
loop if the outer loop contains statements that are not  in 
the inner loop. Vectorization is a compiler technique for 
mapping  program  parallelism onto processor vector units, 
but vectorization can be performed only on inner parallel 
loops; outer parallel loops must  still  be scheduled 
dynamically. 

Typically, schemes for managing nested parallelism 
dynamically allocate resources from shared pools [3-51. 
Task scheduling is performed by means of a shared queue. 
Whenever a processor becomes idle,  it obtains another 
task from the shared queue until  no tasks remain. This 
scheduling strategy, called self-scheduling, balances the 
workload because processors are idle only if there are no 
tasks on the queue. Similarly, task stack frames (the 
storage blocks for the private variables of tasks) are 
allocated from a shared-memory storage pool, so that 
inner-loop tasks can access the task stack frames of outer- 
loop tasks. 

Shared resource pools improve overall load balancing at 
a cost [6]: Accessing shared memory  is expensive, and the 
accompanying processor synchronization is a source of 
contention, particularly if locking  is required. The shared 
scheduling queue is an obvious source of contention, so it 
is desirable to use a queue that reduces lock overhead. 

Loop transformations performed by compilers, including 

744 Many  nonlocking queue algorithms for scheduling [7, 81 

synchronize by using atomic read-modify-write 
instructions, such as fetchhdd,  fetchhtore [9], and 
compare&swap [lo], although none is designed  specifically 
for nested parallelism. 

To reduce the cost of memory allocation, schemes for 
static stack-frame allocation have been proposed in [4] and 
elsewhere. These schemes decrease the overhead of 
storage management by reducing the number of stack- 
frame allocation operations. However, storage estimates 
used for the allocations must be conservative, thus large, 
and the schemes still require a shared-memory storage 
pool for the stack frames. Furthermore, it  is  difficult to 
implement recursion by static stack-frame allocation. Thus, 
static allocation is not practical for languages  with both 
parallelism  and recursion. 

We describe a scheme for scheduling nested parallelism 
suitable for architectures that have both local and shared 
memories, such as the RP3  parallel processor [ll] and the 
BBN Butterfly architecture [12]. These machines are 
sometimes called NUMA (Non-Uniform Memory Access) 
machines. Our scheme reduces run-time overhead by 
means of a centralized scheduling policy that permits local- 
memory stack-frame allocation, and a novel,  nonlocking 
“optimistic-queue’’ algorithm  for scheduling. Thus, this 
scheme preserves the load-balancing properties of dynamic 
scheduling while reducing contention, by localizing storage 
management  and  eliminating  locking.  In particular, stack- 
frame allocation is a simple stack operation, and accessing 
the scheduling queue is usually no more expensive than 
manipulating a singly  linked list. 

implemented to execute PTRAN programs [13] on the 
RP3. PTRAN  is a program analyzer, developed at the IBM 
Thomas J. Watson Research Center, that automatically 
parallelizes FORTRAN programs. The RP3  is a 64-way 
shared-memory multiprocessor, also designed and  built at 
IBM,  with a three-level memory hierarchy (cache, local, 
and global memory) and a network connecting all the 
processors [ll, 141. We present experimental results that 
verify the performance advantages of using local-memory 
stack-frame allocation and of using our nonlocking 
scheduling-queue algorithm on the RP3. 

background material. In the following section, we  give  an 
overview of dynamic run-time scheduling strategies in 
general, and in Section 3,  we discuss the scheduling of 
nested parallelism in particular. In Section 4, we present 
our scheduling policy-which permits both dynamic 
scheduling and local-memory stack-frame allocations. 
Sections 5 and 6 describe details of stack-frame 
management and our scheduling-queue algorithm, 
respectively. The RP3 experiment is described in Section 
7. Finally, after discussing potential enhancements to the 
run-time system in Section 8, we draw conclusions in 

This run-time management scheme has been 

Before describing our run-time system, we present some 
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Section 9. Code for the scheduling queue is in the 
Appendix. 

Table 1 Scheduling complexity required for language 
features. 

2. Overview of dynamic  run-time  scheduling 
Parallel-program scheduling is typically performed by the 
run-time library rather than by the operating system [l, 61. 
A run-time library can be precisely optimized for a specific 
programming  model  and semantics, while operating system 
kernel primitives must be general enough to accommodate 
a variety of programming models and  languages [6, 81. To 
perform scheduling by the run-time library, an application 
program, at the start of execution, invokes the operating 
system to create  a  set of operating system threads 
(lightweight processes), called virtual processors. The 
virtual processors schedule and execute the program tasks 
without further operating system assistance. Not all 
operating systems provide threads, in  which case full- 
blown processes must  be used for virtual processors. 
Operating system threads are preferable for virtual 
processors because threads share an address space, so that 
creating them is much cheaper than creating processes. 

Some operating systems, including the RP3 operating 
system [14], allow  parallel programs to bind virtual 
processors to physical processors, which prevents the 
operating system from suspending the execution of the 
virtual processors and  moving them to different physical 
processors. Moving a virtual processor to a different 
physical processor is expensive, and suspending the 
execution of a virtual processor reduces the number of 
physical processors assigned to a program, hence, the 
amount of actual parallelism of the program. For the rest 
of this paper, we assume that virtual processors are bound 
to physical processors and refer to virtual processors 
simply as processors. 

Table 1 shows the complexity of run-time scheduling 
necessary for different  parallel  language  paradigms. 

Scheduling can be performed for a simple loop  with just 
two shared counters [4]: one counter (named multiplicity) 
to regulate assignment of iterations to processors, and the 
other counter (number- left) to determine when  all 
iterations are complete. Variations of simple self- 
scheduling include schemes for distributing work in chunks 
of iterations, of either uniform [15] or decreasing size 
[16-181 in order to reduce overhead. The schemes 
described in [16-181 are designed to reduce the potential 
load imbalance of chunking. 

Scheduling nested parallel constructs requires a more 
general mechanism, such as  a queue, since the scheduling 
of separate inner parallel constructs is performed 
concurrently. The tasks of each individual parallel 
construct are scheduled with two counters, as described 
above. (Another approach, described in [3], uses a 
compiler-generated precedence table to control the self- 
scheduling order.) 
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Language feature Complexity required 

Simple loop Counters 
Nested parallelism Scheduling queue 
No explicit synchronization Run until completion 
Explicit synchronization BlocWunblock facility 
More operating system capability Preemption, priorities 

A large class of parallel constructs with  no  explicit 
synchronization operations can be scheduled using a “run- 
until-completion” paradigm wherein a task, once it begins 
to execute, may  not be blocked (descheduled) before it 
finishes. The advantage of run-until-completion scheduling 
is its low overhead. For example, iterations from the same 
parallel construct scheduled on the same processor can use 
the same storage block for their task stack frames. As a 
result, the total amount of storage that is necessary for 
task stack frames is a function of the product of the 
maximum nested depth and the number of processors [4]. 

However, run-until-completion scheduling for more 
general parallel programs can lead to deadlock. For 
programs with explicit synchronization operations, the 
scheduler must be able to block tasks before they finish, 
and subsequently unblock (reschedule) them. Examples of 
explicit synchronization operations are post event and 
await event. A task that executes an await event operation 
cannot proceed until another task executes a 
corresponding post event operation. If tasks cannot be 
blocked  and there are more parallel tasks than processors, 
a task executing an await event can  wait forever for the 
task that executes the correspondingpost event to be 
scheduled.’ Reuse of task stack frames is no longer always 
possible when the potential for blocking exists, and the 
issues of task migration and local versus global queues 
become relevant. 

More complex tasking models require further operating 
system functionality. For example, Ada scheduling 
requires priorities and preemption [8]. Even when 
additional operating system functionality is required, 
library scheduling is  not as expensive as operating system 
scheduling. 

The scheme described below implements run-until- 
completion scheduling for nested parallel constructs. 
Section 8 returns to the issue of explicit synchronization. 

3. Nested  parallelism 
Run-time scheduling assigns processors to tasks in a tusk- 
execution graph, in which the nodes represent tasks and 
the edges represent task creation/termination operations. A 

In [19], compiler-generated precedence information prevents deadlock, so that 
run-until-completion scheduling is still possible. 745 
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Example of parallel code with private variables: (a) code; 
(b) task-execution graph. 

task-execution graph for the program in Figure l(a) is 
shown in Figure l(b). The predecessor nodes (successor 
nodes) of a node are called the parent tasks (child tasks) of 
the node. In Figure l(b), the task Z = 1 is the parent task 
of its M child tasks J = 1, - , M .  [Note that the code in 
Figure l(a) beginning  with the statement A(1) = X is 
called a child task, with M parents corresponding to the M 
iterations of the PARALLEL DO J loop.] 

A PARALLEL DO loop iteration may have private variables, 
which are declared inside the loop. A private variable of 
an iteration is shared among  all iterations nested within the 

746 iteration. For example, a distinct copy of the private 

variables X and Y declared in Figure l(a) is allocated to 
the iteration I = 1 in Figure l(b), and this copy of X and 
Y is shared among the M children of I = 1. 

A task stack frame is a storage block containing the 
private variables of an iteration. In addition, each task 
stack frame contains a pointer to the stack frame of its 
parent task. During execution, the active stack frames 
form an inverted tree, called a cactus stack [20]. A  cactus 
stack for Figure l(b) is illustrated in Figure 2 (at some 
instant when M X N processors are executing all  of the 
PARALLEL DO J iterations concurrently). The root node is 
the task stack frame of the parent of the PARALLEL DO I 
loop, and the other nodes are task stack frames for the 
PARALLEL DO I and PARALLEL DO J iterations. The arrows 
point to parent stack frames. 

down into the following three actions: 
The execution of a PARALLEL DO statement can be broken 

Fork. The parent task allocates a parallel control block 
(PCB), initializes it,  and stores it on a shared queue. The 
PCB,  which  is  used to schedule all iterations of the loop, 
contains the address of the parent-task stack frame, the 
address of the loop body code, the two counters needed 
to schedule the iterations (see the preceding section), 
and other information. 
Context switch. An idle processor obtains a task (an 
iteration) to execute from a PCB on the queue by 
decrementing the multiplicity counter of the PCB. To 
begin executing the task, the processor branches to the 
loop-body code address. 
Initialization. At the beginning of task execution, storage 
for the private variables of the iteration (its stack frame) 
is allocated, and a link to the parent stack frame (the 
cactus-stack link) is saved. (On architectures in which 
the cache is  managed by software, such as the RP3, 
cache invalidations are also performed.) 

When  all iterations in a parallel construct have been 
started (multiplicity = 0), the corresponding PCB  may be 
removed from the queue. When  all iterations in the 
construct are complete (number-lejl = 0) ,  the child task 
corresponding to the code that follows the construct is 
executed. 

The cost of these three steps depends partly on the 
schedulingpolicy, which determines how processors are 
assigned to the tasks in the task-execution graph. Our 
scheduling policy  is  designed to reduce these costs,  as 
described in the next section. 

4. Scheduling policy 
Our scheduling policy consists of three rules that 
determine what a processor should do at each task 
creationhermination point. The first two rules are common 
to several run-time systems [4, 51, while the third rule is 
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not. The third rule permits local-memory allocation of 
stack frames. 

Let b designate the PCB of some parallel construct PC. 

Rule I A processor that executes a task from b continues 
executing tasks from b while  unassigned tasks remain. If 
none remain, it searches for work on the scheduling queue. 

The advantage of this rule is that both context switching 
and initialization can be performed at low cost when a 
processor is able to obtain a sequence of tasks from the 
same PCB. For each task in the sequence after the first, 
the processor does not have to search the scheduling 
queue nor allocate a new task stack frame. The same stack 
frame is reused for all  of the tasks the processor executes. 

Let b , ,  * , b4 be the PCBs on the queue at  a given 
time, and let Pi be the number of processors assigned tasks 
from bi (1 I i I q )  at that time. The performance 
advantages of Rule 1 are best realized for a given bi if Pi is 
much smaller than the original  number of tasks Ni in bi.  
There is  no reuse of the task stack frames if Pi = Ni, and 
there is no  parallelism  for bi if P, = 1. We say that the 
processors are evenly distributed at  a given  time if 
lPi - P, I I 1, for 1 I i ,  j I q ,  and if no processors 
remain  idle when the queue is  not empty. Generally, even 
distribution results in a high degree of stack-frame reuse 
without decreasing parallelism. 

FIFO (first in, first out) scheduling does not achieve 
even distribution. For example, in Figure l(b) strict FIFO 
ordering causes all N of the outer tasks to be scheduled 
before any of the N X M inner tasks, since the PCB for 
the outer parallel construct is first on the queue. Rule 2 
below,  which is not FIFO, achieves a more even 
processor distribution. 

1.. 

1 Cactus stack for the example of Figure 1 .  

some of these may become empty before becoming  first  on 
the queue. Queue algorithms that allow interior entries to 
become empty (perhaps removed from the queue) are more 
complex and typically more expensive than the more  usual 
FIFO queue algorithms.  Our queue algorithm, as described 
in Section 6, is designed to accommodate empty interior 
entries efficiently without removing  them. 

allocation. 
The third rule permits local-memory stack-frame 

Rule 3 After  all of the tasks in b are finished, the owner 
of b executes the child task of the iterations of the parallel 

Rule 2 After a processor completes the fork operation 
that allocates b ,  it obtains its next task from b .  

construct PC-the code immediately after PC. (This may 
require the owner to wait, which  is discussed below.) 

Thus, tasks from b are executed by the owner of b (the The advantages of this rule are the following: 

processor that allocates it) and perhaps by helpers 
(processors that find b on the queue). If no processors are 
available, the owner may complete all of the tasks in b 
without any helpers. With  Rule 2, processor distribution is 
“even” when there is at most one helper processor, 
because (a) with no helper processors, each PCB on the 
queue has one processor, the owner, executing its tasks, 
(b) helper processors are assigned to the first PCB on the 
queue, (c) two or more helper processors give the first 
PCB three or more processors, while the other PCBs have 
only one. Section 8 discusses improvements for better 
processor distribution. 

To implement  Rule 2, the queue algorithm  must  allow 
task assignment from interior PCBs (PCBs that are neither 
the first  nor the last one on the queue). Since each owner 

The cactus stack can be implemented by P processor 
stacks, allocated in the local  memories’ of the P 
processors. (This is verified in the following section.) 
Stack frames are allocated by simple stack operations, 
with  no synchronization or locking. 
PCB allocation can also be implemented by P individual 
processor stacks in global memory, again without 
synchronization or locking. (See the following section.) 

Without Rule 3, both task stack frames and PCBs must be 
allocated from a shared-memory storage pool,  which  is 
more expensive. However, the disadvantage of this rule is 
that it may cause processors to have a load imbalance. The 
best load  balancing is obtained when the processor that 

executes tasks from the PCB that it enqueues, all 
enqueued PCBs are being “consumed” concurrently, and accessed by all other processors, although with greater delay. 

In the RP3 system, the local memory associated with any processor could he 
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Three snapshots of four  processor  stacks, showing the  cactus  stack 
of the  example of Figure 1 at  different  times. 

executes the last task to finish  from b executes the code 
after PC (the child task). Under Rule 3, the owner of PC 
must  wait  until all tasks from b are finished. However, the 
cost of this idle  time  must be weighed against the savings 
from  local storage allocation. In Section 7, where we 
return to the issue of load balancing versus local-memory 
storage allocation, we  argue that the savings outweigh the 
costs, in particular when P is large. 

5. Cactus-stack  management 
While, in general, cactus-stack management requires a 
central storage pool  and  locking,  it is possible to 

748 implement the cactus stack by means of P individual 
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processor stacks because of Rule 3.  We justify this 
claim as follows. First, the same processor that 
allocates a task stack frame always deallocates it. 
Therefore, each processor can maintain its own  pool of 
task stack frames, and no locking  is necessary. 
Furthermore, the stack frames themselves can be allocated 
in strict LIFO (last in, first out) order, since the owner 
processor of PC always deallocates all stack frames 
generated during the execution of PC by the time that PC 
completes. Because of the LIFO order, the local  pool is, in 
fact, an ordinary stack, and allocation involves merely 
incrementing a stack pointer and setting a link to the 
parent stack frame. 

To illustrate how the cactus stack works, we consider 
the abstract cactus stack of Figure 2 and the individual 
stacks of four processorsp,, , p, that are executing 
the program of Figure l(a). Figure 3 shows three snapshots 
of the stacks at different times during the execution of the 
PARALLEL DO loops. Figure 3(a) showsp, executing the 
inner I = 1, J = 10 task; pz executing the I = 2, J = 7 
task; p3 executing the I = 3, J = 2 task; and p, executing 
the I = 4 task. Sincep, executed the parent of the 
PARALLEL DO I loop, its stack has a task stack frame for 
the root of the cactus stack, and all stack frames for 
PARALLEL DO I tasks have pointers to this root-task stack 
frame. In Figure 3(b), p1 and p3 have finished their 
PARALLEL DO I iterations and are helpingp,. Processor p1 
is executing the next-to-last iteration ( I  = 1, J = M - l), 
andp, is executing the last iteration ( I  = 1, J = M ) .  
Since pz and p3 are helpers, their task stack frames point 
to the I = 1 task stack frame. Processorp, is executing 
iteration I = 4, J = 24. Figure 3(c) showsp, executing 
the rest of the I = 1 iteration (the child) after the PARALLEL 
DO J loop has finished (and the other processors are idle 
because the queue is empty). Sincep, executes both the 
parent and  child task of the PARALLEL DO J loop, the task 
stack frame for Z = 1, which is needed for the child task, 
is available on thep, stack after the PARALLEL DO J loop 
has finished. 

Although there is one stack per processor, each stack 
must be accessible by all processors. For example, pz and 
p ,  must be able to access thep, stack while they are 
helpers [see Figure 3(b)]. On the RP3 system, the local 
memory of one processor can be addressed by other 
processors, so in fact the processor stacks can be allocated 
in local  memory of the individual processors. For 
architectures on  which the memory of a processor cannot 
be addressed by other processors, the processor stacks can 
still be allocated in local memory provided that each stack 
frame contains a copy of its parent stack frame instead of 
a pointer to the parent stack frame. This increases the cost 
of forking  and  initializing stack frames. 

PCB allocation is similar to task stack-frame allocation. 
Each processor has its own stack of free PCBs, although 
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in global rather than local memory, since the degree of 
concurrent access is expected to be  high.  When a 
processor executes  a fork operation, it increments its PCB 
stack pointer to allocate the next PCB on its stack. After 
all tasks in that PCB are finished, the processor 
decrements the stack pointer to deallocate it. Thus, each 
PCB is part of two data structures-a processor stack and 
the shared scheduling queue-and appropriate 
synchronization is required when accessing the PCB. Part 
of the effort  in the queue-algorithm design was to make 
this synchronization efficient. 

6. Scheduling queue 
The overhead of accessing a shared scheduling queue 
determines, to a large extent, the smallest task that is 
worth creating. Thus, it  is important that the queue be, as 
far as possible, nonlocking. The larger the number of 
processors, the greater is the degradation due to locking. 
Accordingly, many queue algorithms have been designed 
to permit concurrent updating. These algorithms typically 
use atomic read-modify-write instructions, such as 
fetch&$, which indivisibly carry out the following steps: 
read a variable, perform the (binary) operation 4 on it, and 
store back the result. Read-modify-write instructions 
greatly simplify the coordination of multiple processors 
accessing a shared data structure such as a queue; 
therefore, they are provided on several multiprocessor 
architectures, including [ll] and [12]. 

To schedule the nested parallel loops generated by 
PTRAN, we  designed a new shared-queue algorithm. The 
queue is implemented as  a singly  linked  list  and uses the 
three read-modify-write instructions fetch&increment 
(f&i) , fetch&decrement ( f & d ) ,  and fetch&store ( f & s ) ,  
which respectively increment, decrement, and swap 
variables. 

Our queue algorithm has many desirable properties: 
It has a  very low overhead, in terms of both time  and 
storage, it  is  nonlocking, and it permits empty interior 
entries in the following  efficient manner. When  all tasks in 
a PCB have been assigned to processors, we mark its 
storage block as empty, creating a hole in the queue, 
instead of removing the PCB; an empty PCB  may  be 
removed from the head of the queue only. Unfortunately, 
in the case of nested parallelism,  leaving holes can result 
in  long chains of empty PCBs. However, our algorithm 
reuses empty PCBs in place by reinitializing their storage 
blocks with  new PCB data, so that these long chains of 
empty PCBs are not generated. 

Our implementation achieves its efficiency by using  an 
optimistic strategy wherein abnormal events (such as 
appending new  PCBs to PCBs that are being removed) are 
allowed  and corrected at a later time, rather than 
prevented. The design philosophy is to streamline common 
cases, while  minimizing the adverse effect of unusual 

events. For example, because empty interior PCBs are not 
immediately removed and are sometimes reused, 
enqueuing, dequeuing, and updating PCBs are efficient 
operations. Rule 1 is another example of optimizing the 
common case. When a processor repeatedly obtains tasks 
from a particular PCB, the context-switch overhead is 
reduced. 

The queue data structure and  algorithm are described in 
detail later in this section. Below,  we discuss related queue 
algorithms. The code implementing the queue is in the 
Appendix. 

Related work 
Concurrent-access queue algorithms  differ in several 
aspects, including the types of operations permitted, the 
number of different operations that can be performed 
concurrently, and storage/time requirements. Most 
concurrent-access queues are FIFO and do not allow 
interior-entry removals. Increased parallelism  and reduced 
execution time can often be obtained by using  more 
storage. 

The  underlying data structures of concurrent-access 
queues can be arrays, linked lists, and trees. Although 
tree-based queues have storage requirements proportional 
to the number of queue entries and operation-time 
logarithmic in the number of entries, the overheads of the 
basic operations are several orders of magnitude  higher 
than for array-based or linked-list-based queues (thousands 
as opposed to tens of machine instructions [8]), so we do 
not pursue them further here. 

A simple queue can  be  built  using  an array of pointers to 
queue elements and two counters, first and last, which are 
updated with f&i instructions modulo the array size [9, 211. 
The number of insertion and deletion operations that can 
be performed concurrently on such queues is determined 
by the array size; unfortunately, so is the amount of 
storage that must be dedicated. Array-based queue 
algorithms that use compare- double&swap (conditional 
swap of two double-words) to update the counters and 
permit concurrent enqueues and dequeues are given in [22] 
and [23]. 

maintaining two pointers, head and tail, which are updated 
by an  indivisible swap instruction, such asf&s, 
compare&swap, or compare- double&swap. Singly-linked- 
list  algorithms for concurrent enqueuing and dequeuing are 
presented in [8, 24, 251. However, these algorithms permit 
only one dequeue operation at a time. The storage 
overhead of linked-list-based queues is  minimal (a few 
words). 

Hybrid queues have been developed to exploit the high 
degree of concurrent access of array-based queues and the 
low storage requirements of linked-list-based queues. 
These queues use arrays of linked lists, where each list 

Queues based on  linked lists are implemented by 
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PCB  data  structure. 

Snapshot of four  PCB  stacks  with  scheduling-queue  links,  at  the 
same execution time  as  Figure 3(a). (The  numbers  in  the  PCB 
boxes are  the  values of corresponding multiplicity counters.) 

must be locked  while an operation is  being  performed on 
it [7], but operations can be performed on different lists 
concurrently. When the linked lists are implemented with 
indivisible swap instructions, only dequeue operations 
must  lock a list [8]. 

In the case of our queue used for scheduling nested 
parallelism,  each enqueued PCB is used to schedule 
multiple tasks (see Section 3). Queues whose entries 
represent more than one element are called multi-item 
queues [7]. By using  af&d operation to decrement the 
multiplicity counter in the PCB, processors can obtain 
work concurrently. Even if actual dequeue operations 

750 removing PCBs from the queue must be serialized, 

concurrent queue accesses to the first PCB are possible 
while it is  not empty. 

More concurrency is achievable when processors are 
allowed to obtain tasks from interior PCBs as well as the 
first PCB. However, interior PCBs may become empty. An 
obvious data structure for accommodating empty interior 
entries is a doubly linked list, since removing interior 
entries is straightforward. However, while interior-entry 
removal is being performed (updating the pointers of 
predecessor and successor entries), other operations are 
usually “locked out,” in order that the list structure  does 
not become corrupted. The nonlocking doubly-linked-list 
algorithms of which we are aware3 have relatively high 
overheads and therefore have no advantage over a doubly 
linked  list  with  locking. 

For the implementation of Ada described in [8], the 
singly-linked-list queue algorithm permits multi-item and 
empty interior entries. Entries are not actually removed 
from the queue, but marked as empty and left as ‘‘holes.’’ 
The storage block for an empty entry can be reused only 
after it has reached the head of the queue and been 
removed. If the enqueuer needs to enqueue some work 
prior to the entry removal, a new entry must be allocated. 
Our  new queue algorithm avoids the need for this 
additional allocation by allowing entries left as holes to be 
“reused in place.” Surprisingly, this improvement has led 
to the development of a completely nonlocking queue. 

Queue data structure 
To implement our singly-linked-list multi-item queue, two 
pointers are maintained, q- head and q- tail, which point 
to the head  and  tail of this list. These pointers are changed 
us ingfh  operations. In addition to the fields described in 
Section 3, a PCB contains a field next, which is the queue- 
link  field,  and state, which is needed for coordination. 

Figure 4 shows the fields of the PCB data structure. 
Multiplicity, number- left, and state are updated using f&i 
andf&d operations. The field next is updated usingfh.  
Figure 5 shows a snapshot of four PCB stacks with 
scheduling-queue links corresponding to the execution 
state shown in Figure 3(a). The PCB stacks are associated 
with processors pl, * , p4. Since p, executes the parent 
of the PARALLEL DO I loop, the PCB for the PARALLEL DO I 
loop, which is the queue head, is on thep, PCB stack. The 
next three PCBs on the queue represent the PARALLEL DO J 
loops of iterations I = 2 ,  I = 1, and 1 = 3. For each 
PCB, the value of multiplicity is shown, which specifies 
the number of unassigned tasks. 

The  field state encodes stages in the processing of a 
PCB. State acts  as an event counter, initialized to 0 and 
decrementedhncremented after significant events. It is 
decremented whenever the PCB reaches the head of the 
queue, the PCB becomes empty, or the PCB is removed 

3 Symunix I1 Operating System, Ultracomputer  Project, New York University. 
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Table 2 PCB-state  transitions implemented by queue operations. 

b 

B 

0 

Queue  Event Operation Fetched 
performed value  of 

on state state 
operation 

Action 

Produce PCB is allocated f&i 2 
170 

Reuse in place 
Wait until state is 1, 

then set state to 3 
and perform enqueue 

Enqueue PCB is queue head f&d 3 Finished 
2 

Consume PCB  is  empty f&d 3 
2 

Dequeue Removal complete f&d 
Dequeue PCB is queue head f&d 3 

2 

Perform dequeue 
Look for  work 
Perform dequeue 
Continue  traversal 
Finished 
Remove  queue head 

- 

from the queue. It is incremented to 3 after it is allocated 
from a PCB stack during a fork operation. The next 
section describes how state is used by the algorithm. 

Queue implementation 
We identify four queue-related operations that processors 
perform: 

Consume tasks. A consumer looks for work, either on 
the queue or in a specific  PCB. 
Dequeue PCB. A dequeuer removes empty PCBs  from 
the head of the queue. 
Produce tusks. A producer updates a PCB (new or 
empty) with  new task information during a fork 
operation. 

of the queue. 
Enqueue PCB.  An enqueuer appends a PCB onto the tail 

A producer sometimes turns into an enqueuer, and a 
consumer sometimes turns into a dequeuer. Producers and 
consumers do not alter the connectivity of the list, while 
enqueuers and dequeuers do. 

Producing, consuming, and enqueuing can all be 
performed concurrently. Dequeuing can be performed 
concurrently with the other operations; however, there can 
be only one dequeue operation at a time. (This is verified 
in the subsection on correctness issues below.) Since a 
dequeue operation on an empty PCB  is  not  performed 
when the PCB is reused in place, the number of dequeue 
operations, hence, the performance penalty from serialized 
dequeues, is small. 

PCB-state transitions and processor actions based on 
PCB-related events are summarized in Table 2. A 
processor executing a queue operation detects a significant 
PCB event, performs af&i orf&d operation on the state 
field  of the PCB, and then performs the specified action 
based on the fetched value of state. The fetched value is 
the previous value of state before the f&i or f&d 
operation. This table is explained in more detail in the 

following subsections on queue operations; pseudocode for 
the operations is presented in the Appendix. 

As an  efficiency metric for each operation, we count the 
number of shared-data accesses required for the most 
common case of the operation. Shared-data-access time 
typically dominates the cost because of the distance from 
processors to global memory and because of contention 
among  different processors accessing the same memory 
bank. To show the correctness of concurrent queue 
operations, race conditions must be  ruled out. We 
systematically examine the interactions of all concurrent 
operations in the subsection on correctness issues to show 
that there are no harmful race conditions. This algorithm 
has been implemented and exhaustively tested, both by 
running the experiments presented in Section 7 and by 
inserting delays to force unusual events to occur. 

Consume tasks 
A consumer looks for work either on the queue or in a 
specific PCB (Section 4, Rule 1). First, we consider a 
consumer looking for work on the queue, using a private 
pointer my-pcb to traverse the queue. Pseudocode for this 
function is  given in the procedure consume-q in the 
Appendix. For each successive PCB b, the following code 
is executed to try to obtain an unassigned task my-task: 

i f  (my-pcb-muItiplicity 2 0) { 
my- task = f & d  (my-pcb-.multiplicity); 
i f  (my- task > 0 )  { 

1 
/*  Success,  execute my- task */ 

1 
(Note that more than one processor can execute the first 
statement before any executes the second, and that, as a 
result, multiplicity can be decremented to reach some 
negative value.) The initial test prevents multiplicity of b 
from  underflowing  when b is empty. Without the test, 
underflow can occur if idle processors repeatedly 
decrement multiplicity of b while  busy-waiting. If the 751 
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Three scheduling-queue configurations: (a) one-node queue; 
(b) q-head is null, and c and d are  misplaced; (c) +tail is  null. 

queue head is nonempty (the most  common case), only 
three shared-data accesses are made: one for setting 
my-pcb to q- head, and two for accessing its multiplicity. 

If my-task is  found to be 0, b is empty, so state of b is 
decremented with a f&d operation. If the fetched previous 
value of state is 2, b is the queue head, so the consumer 
becomes a dequeuer. 

Since each consumer uses its own private queue pointer, 
the queue can be traversed concurrently by more than one 
consumer, even while a dequeue operation is being 
performed. The following observation is important: While 

752 there may be many consumers concurrently decrementing 

multiplicity of b ,  only one consumer sets my-task to 0. 
Therefore, only one consumer decrements state of b and 
can become a dequeuer. We show that there can be only 
one dequeuer at a time and discuss other possible race 
conditions in the section on correctness issues. 

PCB b .  The procedure consume-pcb in the Appendix 
performs this operation. The consumer decrements 
multiplicity of b with a f&d operation, storing its previous 
value in my- task. If my- task is positive, the consumer 
has found a task to execute. Otherwise, if my- task is 0, 
the consumer decrements state of b and dequeues b if it  is 
the queue head, as described above. In all cases, the 
consumer decrements number-  left of b y  the number of 
tasks from b that are still executing. When number-left is 
0, the child of b can be executed. The most  common case 
for consume-pcb (consumer finds work) requires only two 
shared-data accesses to decrement multiplicity and 
number- left of b . 

Next consider a consumer looking for work in a specific 

Dequeue PCB 
It is  not obvious how to implement a singly-linked-list- 
based queue that permits concurrent dequeue and enqueue 
operations. When the list becomes empty, both the head 
and.tail must be updated, and the queue is in an 
inconsistent state during these updates. PCBs enqueued 
during this time can therefore be lost. Our fetchhtore- 
based solution to the empty-queue problem, in  which there 
is only one dequeuer allowed at a time,  is an extension of 
an  algorithm described in [8]. 

A processor becomes a dequeuer when it discovers that 
a PCB is an empty queue head. The procedure dequeue in 
the Appendix implements the dequeue function. The 
dequeuer traverses the queue, removing PCBs by 
advancing q- head, until a nonempty PCB is  found or the 
queue is empty. For each new queue head b ,  the dequeuer 
decrements state of b .  If the previous value of state of b 
(fetched by the f&d operation) is 3, b is nonempty, so the 
dequeuer becomes a consumer again. Otherwise (the 
previous value is 2 and b is empty), the dequeuer sets 
q- head to next of b .  Since b is  now removed, state of b is 
decremented once again.  At this point, b is  fully dequeued, 
and the dequeuer continues its traversal. 

In summary, a PCB b is completely dequeued after 

state of b has been decremented twice (once for being 
empty and once for being at the head of the queue). 
q-head has been set  to next of b .  
state of b has been decremented a third time (for being 
removed). 

Thus, the cost of actually dequeuing a PCB in the usual 
case is five shared-data accesses (including initially reading 
q- head). 
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If the dequeuer discovers that the queue is empty after 
updating q-head  (q-head is n u l l ) ,  special action must  be 
taken for coordinating with possible concurrent enqueuers 
(see the subsection on enqueuing a PCB below). 
Enqueuers always update q- tail and update q- head only 
if the list is empty (4-tail is nu l   1 ) .  The following abnormal 
condition can arise. 

Suppose b is the only PCB on the queue, so that both 
q- head and q- tail reference b ,  as shown in Figure 6(a). 
The dequeuer removes b by setting q- head to next of b ,  
which is n u l  1 in this example. However, concurrent 
enqueuers append new  PCBs to b,  since q- tail still points 
to b,  even though b is removed. These PCBs are 
“misplaced” and must  be recovered. 

To prepare for this possible abnormal event, the 
dequeuer saves  a pointer to b in a variable old- head 
before updating q- head. After q- head is set to n u l   1 ,  
old-head+next is the head of the list of misplaced PCBs. 
Figure 6(b) shows misplaced PCBs c and d appended to b .  
To complete the dequeue operation, the dequeuer sets 
q- tail to n u l   1 ,  saving its previous value in old- tail using a 
f&s operation [see Figure 6(c)]. Now old-tail is the tail  of 
the list of misplaced  PCBs and q-head and q- tail are in a 
consistent state. As a last step, the dequeuer appends the 
misplaced-PCB list to the queue. 

This is  an “optimistic solution” to the empty-queue 
problem. Rather than locking out enqueuers, to prevent 
misplacing  PCBs  while a dequeue operation is  being 
performed, an inexpensive corrective action (enqueue 
operation) is taken so that misplaced PCBs are not lost and 
the integrity of the queue is maintained. 

Produce tasks 
During a fork operation, a producer allocates the next PCB 
b from its PCB stack, as described in Section 5, and 
initializes number-  left and the context-switch-management 
fields.  Our implementation guarantees that b is empty and 
no processors are executing tasks from b at the time  it  is 
allocated (see the subsection on correctness issues below). 
The procedure produce in the Appendix updates state, 
multiplicity, and next of b.  

its status with respect to the queue, the producer 
increments state of b with a f&i operation, fetching its 
previous value (see Table 2): b is already enqueued if its 
previous value is 2; it  is dequeued if its previous value is 
0; and it is being dequeued if its previous value is 1. 

If b is already enqueued, the producer simply sets 
multiplicity of b to the number of  new tasks. Since 
multiplicity of b was previously nonpositive, this last step 
enables consumers traversing the queue to obtain tasks 
from b.  Reusing a PCB that is already on the queue takes 
five shared-data updates, one for every PCB  field except 
next. 

To indicate that b is no longer empty and to determine 

1991 

Otherwise, the producer busy-waits until state of b is 1, 
which indicates that the dequeue of b is complete (state of 
b is  not 0 because of the f&i operation performed by the 
producer described above). If b is already dequeued, the 
wait time is 0. Then it initializes state of b to 3, updates 
multiplicity of b ,  and enqueues b ,  as described in the next 
section. Once multiplicity is set, consumers may acquire 
tasks, even though the enqueue operation is  not complete. 
However, this concurrency is not harmful, as discussed in 
the subsection on correctness issues below. 

Enqueue  PCB 
An enqueuer appends a PCB b by  swapping a local pointer 
to b with q- tail using a f&F operation. If the fetched value 
of q- tail (previous) is nonempty, previous-+next is set to 
b .  Ifprevious is n u l   1 ,  the queue is empty, so q-head is 
set to b .  The field next of b has already been set to n u l  1 . 

The procedure enqueue in the Appendix appends a list 
of PCBs  with  head my- head and  tail my- tail to the queue 
(4- tail is set to my- tail instead of b ) .  This generality is 
necessary because enqueue calls dequeue to append a list 
of misplaced  PCBs (see the subsection on dequeuing the 
PCB above). The cost of appending a list, which is the 
same as the cost of appending a single  PCB,  is three 
shared-memory accesses when the queue is nonempty. 

If the queue is empty, the enqueuer decrements 
my-head+state with a f&d operation. Because there can 
be concurrent consumers removing tasks from b while  it  is 
being enqueued, b may already be empty. If state of b is 2 
( b  is empty queue head), the enqueuer becomes a 
dequeuer. 

Correctness ksues 
Since our queue is  nonlocking, a PCB can be involved in 
multiple operations concurrently. While concurrency can 
improve performance, it introduces the possibility of 
erroneous race conditions, in which one processor makes 
an update to a queue data structure that causes another 
operation to function incorrectly, perhaps destroying the 
integrity of the queue. In this subsection, we show that no 
harmful race conditions can arise from concurrent 
operations. 

coordinated using the state, multiplicity and number-left 
fields of PCBs.  Below, we give a detailed case-by-case 
analysis of concurrent queue operations, for all possible 
pairs of operation types. 

Concurrent access to queue data structures is 

Consume,  consume: Consumers of a PCB b execute 
distinct iterations in the range 1, * , N ,  only one 
consumer discovers that b is empty. 

A consumer successfully obtains an iteration by 
executing a f&d operation on multiplicity of b ,  which  is 
initially N ,  and fetching a positive value. The consumer 
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that fetches 0 as its result discovers that b is empty, 
decrements state of b,  and becomes its dequeuer (if the 
fetched value of state is 2). There can only be one such 
consumer. If the fetched value is negative, the PCB is 
empty, and the consumer is  finished  with b.  Consumers of 
distinct PCBs do not interfere with each other. 

Consume,  dequeue: Consumers cannot obtain tasks 
from a PCB b that is being dequeued, and a consumer 
cannot become a dequeuer while another processor is 
dequeuing b.  

A dequeuer never updates multiplicity of b ,  which is 
negative during a dequeue operation since b must be 
empty. Therefore, any consumer that attempts to obtain a 
task from b cannot succeed. If b is not being dequeued, it 
must be an interior PCB. If b becomes empty, no 
consumer can dequeue it, since a consumer can only 
decrement state of b once for being empty. The second 
decrement of state of b can be performed only when a 
dequeuer updates q- head to point to b .  Therefore, b can 
be removed by the dequeuer only after b becomes the 
queue head. 

Consume, produce: A producer cannot allocate a PCB b 
when it is nonempty, and a consumer cannot obtain a task 
from b while a producer is updating it with new task 
information. 

Before reusing b ,  a producer (the owner of b )  waits until 
number-left of b is 0, thereby ensuring that there are no 
consumers that can obtain a task from the previous use of 
b .  Since number-  left is decremented to 0 only after 
multiplicity has been decremented to 0, b must be empty. 
A producer updates all task-related fields of b before 
setting its multiplicity. (Setting multiplicity enables 
consumers to obtain tasks from b . )  At this time, b is in a 
consistent state for task assignment. Consumers and 
producers of different PCBs do not interfere with each 
other. 

Consume, enqueue: Tasks from a PCB b can be 
consumed safely while b is  being enqueued. 

It is possible for a consumer to obtain tasks from b 
while  it  is  being enqueued, since multiplicity of b is set 
before enqueue is called (see produce in the Appendix). 
This is safe, however, since consumers decrement 
multiplicity and number-  left of b and do not update next 
of b ,  and the enqueuer sets next of b and  not the other 
two fields. Nevertheless, a potential conflict can arise 
between a concurrent enqueuer and consumer of b if the 
queue is empty when b is appended and  all of the tasks in 
b have been consumed. As shown in produce,  state of b is 
set to 3 before a consumer can obtain tasks and before the 
enqueue operation begins. If b becomes an empty queue 
head while  it is being concurrently enqueued and 
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consumed, state of b will be decremented twice: once by 
the current dequeuer and once by the consumer that 
obtains the last task. Whichever processor fetches 2 as the 
previous value of state will dequeue b .  

Dequeue, dequeue: There can only be one dequeuer at 
a time. 

As argued above, if there are concurrent consumers 
accessing a PCB b when it becomes an empty queue head, 
only a single consumer can become its dequeuer (consume, 
consume). If a consumer and an enqueuer are concurrently 
accessing b when it becomes an empty queue head, only 
one of these processors becomes its dequeuer (consume, 
enqueue). There can be no other dequeue operation in 
progress, since q- tail is nul 1 at the time of the enqueue 
operation; therefore q-head must also be nul 1. Finally, a 
consumer cannot become a dequeuer while another 
dequeue operation is  being performed (consume, dequeue). 
Thus, there can only be one dequeue operation at a time. 

Dequeue, produce: A PCB b cannot be reused by a 
producer while  it  is  being dequeued, and a dequeue of b 
cannot be started while b is being reused in place by a 
producer. 

A producer coordinates with a dequeuer of b by 
executing an  initial f&i operation on state (see produce). If 
a dequeue operation has begun, the producer busy-waits 
until state is 1, indicating that the dequeuer has finished, 
before making b available again  for task assignment by 
setting its multiplicity. Conversely, if b is enqueued and a 
dequeue operation has not begun, the initial f&i operation, 
which  flags b as nonempty, reserves b for the producer. A 
dequeue operation cannot start before the producer sets 
multipliciw. 

Dequeue,  enqueue: Enqueuers and dequeuers 
coordinate so that an empty queue is  initialized correctly 
and  no  misplaced  PCBs are lost. 

the subsection on dequeuing (see also [25]). 
Our empty-queue solution is explained in detail above in 

Produce, produce: There is only one producer of a PCB 
b at a time. 

The only producer of b is its owner, which waits for 
number-left of b to be decremented to 0 before it is 
reused. There are no conflicts  among producers of different 
PCBs. 

Produce, enqueue: A PCB b cannot be produced and 
enqueued at the same time. 

The only producer and enqueuer of b is its owner, and 
an enqueue operation follows a produce operation. There 
are no conflicts among producers and enqueuers of 
different PCBs. 
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Enqueue, enqueue: Enqueue operations can safely be 
performed concurrently. 

The only enqueuer of a PCB b is its owner, which 
enqueues it by a f &  operation to swap b with q-tail. 
Because f &  is atomic, all concurrent enqueuers fetch 
different values of q-tail. Thus, they do not conflict  with 
each other. 

Nonblocking and no-wait queues 
Although our queue algorithm  is  nonlocking,  it  is possible 
for an extremely slow processor to delay other processors 
for a long  time. This arises from processors having to 
busy-wait. Algorithms, such as [21] and  [23], that do not 
require busy-waiting are called nonblocking [21]. The three 
instances of busy-waiting in our algorithm are 

1. When a producer waits for a PCB that is currently 
being dequeued to be  fully dequeued (state = l), so 
that it can be re-enqueued. 

2. When a dequeuer waits for old- head-next to be set 
(misplaced  PCBs are currently being enqueued), so that 
it can enqueue the list  of misplaced  PCBs (see the 
subsection on dequeuing the PCB). 

processors to decrement number- left before executing 
the child task of a parallel construct. 

3.  When  an owner processor waits for  all helper 

Eliminating the first source of busy-waiting is 
straightforward: Rather than the owner of a PCB b busy- 
waiting until b is dequeued and subsequently enqueuing b ,  
the dequeuer of b can detect that a reuse attempt has been 
made (by testing the value returned by the final f&i of 
state) and re-enqueue b .  The second source of busy- 
waiting  is  more problematic, and  we  know of no 
nonblocking solution. The  third source of busy-waiting  is 
an unavoidable consequence of our scheduling policy. As 
described in Section 7, its cost is bounded by the 
execution time of a task, which can be reduced through 
use of a chunking strategy such as factoring to balance 
workloads (see Section 8). 

Being wait-free is another desirable property of a 
scheduling queue [26]. An algorithm  is wait-free if the 
number of instructions per operation is bounded. Hence, a 
wait-free algorithm is nonblocking,  but not all nonblocking 
algorithms are wait-free. Wait-free algorithms are useful 
for real-time applications in which each task must start 
executing within a specified amount of time.  Our 
scheduling-queue operations are not wait-free, but the 
queue does have the weaker property that at least one 
iteration of a parallel construct is started within a fixed 
number of instructions after it  is enqueued: An enqueuer 
becomes a dequeuer only if the PCB that it enqueues is 
completely consumed by other processors. Thus, either the 
owner never calls the procedure enqueue, the owner 

returns from enqueue immediately after appending its 
PCB, or a helper processor starts executing the parallel 
construct before the second i f  statement in enqueue is 
reached. 

7. Experimental  results 
Our run-time scheme has been implemented on the RP3 
[ll]. We present experimental results justifying two 
significant  design choices: our scheduling policy, which 
makes it possible to use local  memory rather than a 
shared-memory storage pool for stack-frame allocation, 
and our singly-linked-list queue algorithm  which permits 
empty interior PCBs. For the sample programs used in the 
experiment, both of these design choices improved 
performance. Before describing the experiment, we  give a 
brief overview of the RP3 system. 

Architecture of the RP3 
The RP3 is  an experimental machine whose 64 processors 
are interconnected by an  omega network [ l l ,  141. Each 
processor has a cache and  local  memory. All nonlocal 
memory is accessible over the network. This hierarchy of 
cache, local, and remote memories has an access time 
ratio of  1:12:20. To reduce network contention, there is an 
(optional) address-translation scheme, called interleaving, 
wherein shared data with consecutive addresses are stored 
in consecutive memories rather than sequentially in the 
same memory (hence, accessing different pieces of data, 
such as individual elements of an array, does not cause 
contention at any one processor memory). Interleaved 
memory  can  be  viewed as global,  since  delay  in  accessing 
interleaved data is,  on  average,  the  same  for all processors. 

associative. There is  no interprocessor cache consistency 
enforced by hardware, so the software must ensure cache 
consistency. In our run-time implementation, program data 
are cacheable, and a cache-invalidate instruction is 
executed by each processor when it completes a parallel 
construct. This is safe if there are no data dependencies 
among parallel tasks [27] (which  PTRAN guarantees). 

The RP3 operating  system  is a version of Mach, modified 
to allow threads to be  bound to processors, and  applications 
to run in single-user  mode  [14]. These extensions  reduce 
timing differences  from  run to run of the  same  program. 

The caches are write-through and two-way set- 

Experiment 
Our experiment compared 

Placing processor stacks used  for task frames in local 
memory  with  placing the stacks in global (interleaved) 
memory. 
Using our nonlocking singly-linked-list algorithm  with 
using a locking doubly-linked-list algorithm that permits 
interior-PCB removals. 
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The doubly-linked-list implementation is highly optimized. 
Nonempty PCBs can be accessed concurrently, since 
consumers do not dequeue them. Locking is implemented 
usingfetchhdd operations as described in [9]. 

Two test programs were used in the experiment: a 
program that performs six-integer matrix multiplications 
and a loop nest taken from a Gauss-Jordan program for 
(back) solving a system of linear equations. A basic matrix 
multiplication nested-parallel loop has the form 

PARALLEL DO I = l , N  
PARALLEL DO J = l , N  

DO K = 1 ,N  
C ( 1 , J )  = C ( 1 , J )  + A ( 1 , K )  * B ( K , J )  

END DO 
END DO 

END DO 

Our test program consists of the six different versions of 
the above nested loop created by reordering the three 
loops in  all possible combinations. The sequential DO K 
loop is the outermost loop in two of the versions, it  is the 
middle loop in two versions, and it is the innermost loop in 
two versions. Therefore, this program provides a variety of 
nesting patterns and loop granularities for comparing run- 
time overheads. 

Our  Gauss-Jordan test program  is the loop nest 

DO I = 1 ,N  
PARALLEL DO J = l , N  

I F  I .NE. J THEN 
PARALLEL DO K = I + l , N + l  

END DO 
A ( J , K ) = A ( J , I O   - ( A ( J , I ) * A ( I , K ) ) / A ( I , I )  

END I F  
END DO 

END DO 

The granularity of parallelism in this loop nest is both very 
fine and independent of the problem size N ,  since a 
parallel task consists of a single iteration of the innermost 
loop calculating A ( J  , K) . 

Measurements for both test programs were made  for  all 
eight combinations of the following parameters: 

Matrices of dimension 150 X 150 or 300 x 300. 
Singly or doubly linked lists (i.e.,  nonlocking or locking). 
Task frames in local or global memory. 

For the results described, we ran each program on 4-62 
processors and repeated each run four times; we report the 
average running  time.  In  most of the cases, the variation in 
running time  (coefficient of variation) was less than 1%. 
We do not report running times for which the coefficient of 
variation was greater than 5%, which occurred in a few of 
the doubly-linked-list runs. 756 
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Results 
The minimum executicn time for the 150 X 150 matrix 
multiplication  program was obtained with 48 processors. 
This is illustrated in Figure 7. (Rather than studying 
execution time data, however, we have found the data 
presented in the format of Figures 8 to 11 to be  more 
useful.) As additional processors were added, the program 
ran more  slowly, for two reasons: The additional queue 
overhead exceeded the additional processing capability, 
and  idle processors spin-waiting for the queue head 
increased memory contention. With  300 X 300 matrices, 
the execution time  for the matrix multiplication  program 
decreased as the number of processors increased, up to 62 
processors. For the doubly-linked-list measurements, the 
coefficient of variation was greater than 10% for the 
150 X 150 Gauss-Jordan  program with more than 32 
processors (so the results are not reported). The large 
variance occurred because the computation was dominated 
by competition for the queue lock. With  300 X 300 
matrices, the coefficient of variance remained 5%, and the 
execution times continued decreasing up to 62 processors. 

Total execution-time costs (execution time  multiplied 
by the number of processors) are shown for the matrix 
multiplication  and the Gauss-Jordan programs in 
Figures 8 and 9, respectively. Note that the horizontal 
scales of Figures 7 to 11 are not  uniform.  In the ideal 
situation, the cost remains constant as the number of 
processors changes. In  all cases, the sl scheduler (singly 
linked, local) had the lowest cost. In addition, the cost of 
the sl scheduler rose relatively slowly as the number of 
processors increased, for most of the experiments. 

When the tasks were fine-grained or there was only a 
small amount of work for each processor, the sg scheduler 
(singly linked, global)  had the next lowest cost; for 
example, the Gauss-Jordan  program (Figure 9) and the 
150 X 150 matrix multiplication  program when the number 
of processors was greater than 32 [Figure 8(a)]. Using a 
better queue algorithm was more important than using 
local memory, since the ratio of task-stack-frame accesses 
to queue operations was relatively small.  When the tasks 
were more coarse-grained and there was more work 
available, the converse held.  In Figure 8(b), the dl 
scheduler (doubly linked, local) consistently had the next 
lowest cost. 

Both the sg scheduler and the sl scheduler showed 
decreasing execution times as the number of processors 
increased, up to 62 processors for the 150 X 150 
Gauss-Jordan program, while execution times of both 
doubly-linked-list schedulers were highly variable and in 
general did  not decrease after 32 processors. This indicates 
that the nonlocking,  singly  linked  list is a more scalable 
queue algorithm than a locking list. 

(doubly linked, global). The percentage performance 
The largest costs were obtained with the dg scheduler 
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improvement of the other schedulers over the dg scheduler 
is shown in Figures 10 and 11 for the matrix multiplication 
program  and  Gauss-Jordan program, respectively. The dl 
scheduler improved execution times over the dg scheduler 
by -2% for 150 X 150 matrix multiplication on 62 
processors [Figure lO(a)] to 27% for 300 X 300 matrix 
multiplication on 16 processors [Figure 10(b)]. There was 
only one case [Figure lO(a),  with 62 processors] in which 
the dl scheduler performed worse than the dg scheduler. 
This kind  of unexpected behavior is  usually accounted for 
by subtle interactions between the application and the 
operating system. The sg scheduler improved execution 
times by 2% for 300 X 300 matrix multiplication on 56 
processors [Figure 10(b)] to 31%  for the 150 X 150 
Gauss-Jordan problem on 32 processors [Figure ll(a)] 
over the dg scheduler. The sl scheduler, which  included 
both optimizations, improved execution times by  15% 
[Figure lO(a)] to 37% [Figure ll(a)] over the worst case. 

memory for task stack frames, especially when task 
This experiment shows that there is  benefit in  using  local 
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granularity is  large. Therefore, our scheduling policy, 
which permits local-memory stack-frame allocation, is 
well-suited  for  nonuniform memory access (NUMA) 
architectures. Furthermore, even though the scheduling 
policy requires a queue algorithm that accommodates 
empty interior PCBs, our queue algorithm  is  highly 
efficient, even when tasks are  very fine-grained. 

Other costs 
All  of the schedulers in the experiment were implemented 
with  individual processor stacks; the experiment measured 
the difference between placing the stacks in local memory 
and  placing  them in global  memory. However, without our 
scheduling policy,  individual processor stacks are not 
possible, and a more expensive shared-memory storage- 
allocation algorithm  must be used for the cactus stack. If 
our sg and dg schedulers paid the full cost of a general 
cactus-stack implementation, the performance 
improvements of the local-memory algorithm  would  be 
larger. We analyze the cost of general cactus-stack 757 
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allocation for a parallel construct PC executed by P 
processors as follows.  When PC is executed, P stack 
frames must be allocated. The best concurrent-access 
storage-allocation algorithm  we are aware of (a version of 
the buddy-system algorithm) has a worst-case running time 
per request proportional to 

log(arena- size) - log(request- size), 

where arena-size is the size of the shared-memory storage 
pool, and request-size is the size of the storage requested 
[28]. In our case, request-size is frame-size, the size of a 
stack frame, and arena-size must  be at least 
P X max-nesting-depth X frame-size. Thus, the 
cumulative worst-case cost of the central allocation of 
all P stack frames is at least proportional to 

P X [log (P X m a -  nesting- depth X frame- size) 

- log (frame-  size)] 

= P X log(P X m-nesting-depth). (1) 

Thus, the cost of central allocation increases with P. 
On the other hand, our scheduling policy has an 

additional cost: the idle  time consumed by the processor 
that owns PC as it busy-waits for helper processors to 
finish their tasks (see Section 4). Since the owner itself 
executes tasks until the PCB is empty, this cost is  bounded 
by the maximum  running  time of a task, which we denote 
as mar. If max is small, the busy-waiting  time  is  not 
significant. If max is  large,  it is possible to improve load 
balancing as follows. Instead of busy-waiting until PC is 
finished, the owner temporarily becomes a helper by 
obtaining a task from the queue. After the owner executes 
this task and PC is  finished, the owner executes the child 
of PC. 

8. Extensions 
In this section, we propose several strategies that address 
performance issues raised in previous sections, such as 
even processor distribution and  load  balancing.  We also 
discuss extensions that permit tasks that do not  run  until 
completion to accommodate explicit synchronization 
primitives (see Section 2) .  Since the overhead of complex 
schemes can  outweigh their benefit, especially for fine- 
granularity parallelism [6], the extensions described here 
are fairly  simple. 

Reducing scheduling overhead 
A common technique to reduce the overhead of scheduling 
parallel loops is to assign iterations to processors in chunkr 
rather than individually, so that each task consists of a set 
of consecutive iterations. With  fixed-sized chunks of 
K iterations, the maximum task-execution time m a  (the 
expected amount of time  an owner may have to busy-wait 
until all helpers are finished) is increased by a factor of K .  

However, a variable-sized chunking scheme called 
factoring has been proposed [17], in which the expected 
idle  time  is the maximum execution time of a single 
iteration, instead of a single task (chunk). By allocating 
tasks in decreasing-sized chunks, factoring reduces 
scheduling overhead without impairing  load  balancing. 
Factoring has been shown to outperform other chunking 
methods on loops with a wide range of iteration 
characteristics [18] by allocating tasks in decreasing-sized 
chunks. Because the scheduling overheads are lower when 
the tasks in each PCB are scheduled using factoring, more 
fine-grained nested parallelism can be exploited with 
factoring than with other chunking methods. 

Even processor distribution 
With our scheduling scheme, processors searching the 
queue obtain work from the first nonempty PCB. 
However, if different processors look for work in different 
PCBs on the queue, there will  in general be fewer 
processors assigned to each parallel construct, and the 
processor distribution will be more even (see Section 4). 
To address this problem, a scheme is proposed in [5]  in 
which processors are allowed to scan the entire queue 
before deciding which task to obtain. Alternatively, we 
could add a third counter to PCBs that limits the number 
of processors that execute a parallel construct. This 
counter would be used instead of multiplicity to determine 
when to update q-head. The maximum  number of 
processors desired for each construct could be specified by 
either the compiler or the run-time system. 

Adaptive  fork 
There is  no  benefit in performing a fork operation unless a 
processor is available or becomes available to help  with 
the work. To reduce unnecessary fork operations, we can 
keep a count of the number of available processors and 
perform a fork operation only when the count is positive. 
Experimentation with such adaptive forks has shown 
generally good performance improvements, as much as 
20% for the matrix multiplication  program in Section 7. 
However, the execution time for different runs of the same 
version of the program varied by 10-20% with adaptive 
forking. We therefore disabled it  in our experiment, in 
order to obtain repeatable measurements. 

Blocklunblock operations 
Explicit synchronization, such as posting and  awaiting 
events, can lead to deadlock unless it  is possible for the 
run-time system to block tasks (see Section 2). For 
example, if all scheduled tasks are waiting for unscheduled 
tasks, some scheduled task(s) must be suspended. When 
tasks may  be blocked, a more expensive cactus-stack 
implementation is required, because tasks are not 
necessarily resumed in LIFO order. Alternatively, the 



blocking  and  unblocking of tasks can be  implemented in 
the run-time system by using a shared work queue, P local 
work queues, and P storage pools. Initially, tasks are 
allocated from the central work queue. Once a processorp 
begins a task, the task may  not be blocked  and reassigned 
to another processor, but it may be blocked and resumed 
onp.  The stack frame for the task is allocated from the 
local-memory storage pool ofp. If the task is blocked, it  is 
placed on the local work queue ofp.  Since a task cannot 
be resumed on another processor, there is a trade-off of 
load balance and locality. 

9. Conclusion 
We have designed, implemented, and assessed a run-time 
supervisor that schedules nested parallel loops on 
multiprocessors that have both local  and shared memory. 
A multiprocessor scheduler must optimally trade off 
processor load imbalances with overhead. For example, 
exploiting nested parallel loops can  improve  load 
balancing, but the run-time realization is more complex 
than for simple loops. In general, achieving balanced work 
loads requires centralized resource allocation, and the 
increased overhead arises either from the loss of locality or 
from contention. By  pairing  local stacks with a global work 
queue, our system attempts to minimize the cumulative 
performance loss from  load imbalances and overhead. 

With our scheduling policy, the parent of a parallel loop 
enqueues it, executes iterations until it is empty, and then 
waits for any helper processors to finish  with their 
iterations. The policy permits private variables for the 
iterations to be allocated locally from  individual processor 
stacks. Locality is further exploited by reusing stack 
frames: Once a processor executes an iteration, rather than 
searching the global queue for new work, it continues 
executing iterations from the same loop. Iterations from 
the same loop can use the same stack frame. Thus, the 
overhead of executing subsequent iterations is reduced. 

list, with fetch&increment, fetch&decrement, and 
fetch&store operations used for synchronization. The 
queue mechanism uses an “optimistic algorithm” in that it 
is  highly  efficient for the usual case, and operations are not 
“locked out” when the queue is in an inconsistent state. 
Inconsistencies are detected and subsequently corrected 
rather than prevented. As an example of the efficiency of 
queue operations, we note that when the queue is 
nonempty, a processor can execute a fork operation and 
begin executing a task from a parallel construct after fewer 
than six shared-memory accesses. 

queue may have holes-that is, interior entries whose loop 
iterations have all  been executed. Our queue 
accommodates such empty interior entries by leaving  them 
as place holders and allowing them to be reused in place. 

The global work queue is implemented as a singly  linked 

A consequence of our scheduling policy  is that the 
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A state variable is  included  in an entry to coordinate its 
reuse, enqueue, and dequeue. By  using the state variable 
to delay the reuse of a PCB while  it  is  being dequeued, our 
algorithm permits a high degree of concurrent queue 
operations. 

To assess our run-time system, we compared, on the 
RP3, our scheme to a more traditional scheme that uses 
global-memory stack allocation and a doubly linked work 
queue (which allows PCBs to actually be removed). Two 
programs were tested, one with coarse-grained iterations 
and the other with  fine-grained iterations. The number of 
processors was varied from 4 to 62 to test the scalability of 
the schemes. The experiment revealed that the local-stack- 
allocation optimization was particularly effective (up to 
27% performance improvement) when the granularity was 
coarse, since there were more opportunities for reusing 
data, and that the singly-linked-list optimization was 
particularly effective (up to 31% performance 
improvement) when the granularity was fine, since there 
was greater contention for the scheduling queue. These 
effects became more pronounced as the number of 
processors was increased. Measured together, the two 
optimizations improved performance by as much as 37%. 

While our scheme works best on machines with local 
memory, it can be implemented  on machines without local 
memory  by  placing the individual processor stacks in 
global  memory.  The allocation of stack frames is  still 
contention-free and, hence, less expensive than using a 
centralized storage pool  for allocation. 

Appendix:  Code for scheduling  queue 
I* Look f o r  work on the queue */ 
consume-q() { 

pcb-pointer my-pcb; 
integer my-task; 

while  true { 
I* Traverse queue u n t i l  a nonempty PCB i s  found *I 
my-pcb = q-head; 
while (my-pcb z n u l l )  { 

i f  (my-pcb+multiplicity 2 0) { 
my-task = f & d ( m y - p c b ~ m u l t i p l i c i t y ) ;  
i f  (my-task > 0) /* Found a task */ 

i f  (my-task = 0) { 
re turn [my-pcb, my-task] ; 

I* my-pcb i s  empty, so decrement s ta te *I 
i f  (f&d(mygcb+state) = 2) { 

dequeue(my-pcb) ; 
my-pcb = q-head; 
continue; 

1 
} 

1 

1 
my-pcb = my-pcb-next; 

1 
1 
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/* Look f o r  work i n  PCB my-pcb */ 
consume-pcb(pcb-pointer my-pcb) { 

i n t e g e r  my-task,  previous-state; 

my-task = f&d(my-pcb-multiplicity); 
i f  (my-task z 0) { 

f&d(my-pcb+number-left) ; 

/* Test  whether a t a s k  was ob ta ined */ 
i f  (my-task > 0) r e t u r n  my-task; 
r e t u r n   f a i l u r e ;  

1 

/* my-pcb i s  empty, so decrement s t a t e  */ 
previous-state = f&d(my-pcb-state); 
f&d(my-pcb-number-left); 
i f  (previous-state = 2) 

dequeue(my-pcb) ; 

r e t u r n   f a i l u r e ;  

I 
/* Remove empty e n t r i e s   a t   t h e  head of   the queue */ 
dequeue(pcb-pointer  head) { 

/* head i s  a p r i v a t e  copy o f  q-head *I 

pcb-pointer   old-head,   old-tai l ,   f i rst -missed;  

/* Advance q-head u n t i l   t h e  queue i s  empty o r  

w h i l e   t r u e  { 
a nonempty PCB i s  found */ 

old-head = head; 
head = old-head-next; 
q-head = head; 

i f  (head = n u l l )  break; 

f&d(old-head+state);  /*  Removal complete */ 

/*  Update and t e s t  s t a t e  o f   t h e  new queue  head */ 
i f  ( f&d(head+state)  f 2) r e t u r n ;  

1 
/* The queue i s  empty.  Set q - t a i l  t o   n u l l  so t h a t  q - t a i l  

and q-head are   cons i s ten t  */ 

o l d - t a i l  = f & s ( q - t a i l ,  n u l l ) ;  

/ *  Take care o f  misplaced PCBs */ 
i f  ( o l d - t a i l  = old-head) { 

/* No misplaced PCBs */ 
f&d(old-head+state);  /* Removal complete */ 
r e t u r n ;  

1 

/* Otherwise,  must append misplaced PCBs t o   t h e  queue */ 

/* Busy-wait f o r   p o s s i b l e  enqueue i n  p rogress   to   comple te  */ 
w h i l e  (old-head+next = n u l l )  { }  

f i rst -missed = old-head+next; 
f&d(old-head+state);  /* Removal complete *I 

e n q u e u e ( f i r s t - m i s s e d ,   o l d - t a i l ) ;  
r e t u r n ;  

1 

/* I n i t i a l i z e  s t a t e ,   m u l t i p l i c i t y ,  and next o f  PCB * I  
produce(pcb-pointer my-pcb, i n t e g e r  m u l t i p l i c i t y )  { 

/* my-pcb i s  a1 located, so increment s t a t e  */ 
i f  ( f&i(my-pcb+state)  = 2) { 

/ *  my-pcb i s   a l r e a d y  enqueued * /  
my-pcb-mult ipl ic i ty  = m u l t i p l i c i t y ;  
r e t u r n ;  

1 

/*  Wait f o r  dequeue i n  p rogress   to   comple te  */ 
w h i l e  (my-pcb-state f 1) 0 

/* Enqueue PCB */ 
my-pcb-state = 3 ;  
my-pcbjnext  = n u l l ;  
m y - p c b j m u l t i p l i c i t y  = m u l t i p l i c i t y ;  
enqueue(my-pcb, my-pcb) ; 
re turn ;  

1 

/* Enqueue a 1 i s t   o f  PCBs */ 
enqueue(pcb-pointer my-head, pcb-pointer   my-tai l )  { 

pcb-pointer  previous; 

previous = f & s ( q - t a i l ,   m y - t a i l ) ;  
i f  (previous z n u l l )  { 

previous-next = my-head; 
re tu rn ;  

1 
/* Queue i s  empty */ 
q-head = my-head; 
i f  (f&d(my-head+state) = 2) 

/* Queue head i s  empty */ 
dequeue(my-head); 

} 
re tu rn ;  
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