
Low-overhead
scheduling

by S. F. Hummel
E. Schonberg

of nested
parallelism

Nested parallelism has the potential not only
to permit more parallelism than non-nested
parallelism, but to result in better load
balancing. However, nested parallelism will not
be profitable unless the overhead of
scheduling nested parallel constructs can be
made nonprohibitive. Previous
implementations of nested parallel constructs
have been fairly expensive and therefore have
not been able to exploit fine-grained nested
parallelism. In this paper, we describe a run-
time system that schedules a large subset of
nested parallel constructs-those that run until
completion without blocking-with very little
overhead. Our run-time system is built around
a novel scheduling policy and work queue. The
scheduling policy permits efficient stack-based
local-memory storage allocation for task data,
which is particularly efficient for
multiprocessor architectures with both shared
and local memory, such as the RP3. The
shared, nonlocking work queue allows
processors to obtain tasks in just a few
instructions, without sacrificing load
balancing.

1. Introduction
This paper describes a scheme for low-overhead, dynamic
scheduling of nested parallelism in FORTRAN programs
on multiprocessors with shared and local memory. We
consider closed parallel constructs, such as the PARALLEL
DO loop [l], in which the iterations of the loop are
independent and can be executed in parallel. For example,

PARALLEL DO I = 1 ,N
A (I) = F (B (I) , C (I) , A (I))

END DO

A tusk is a program-code sequence that is the unit of
scheduling on a processor. A single iteration of the
PARALLEL DO I loop above is a task in our study.

constructs, as shown here:

PARALLEL DO I = 1 ,N

Nested parallelism arises from the nesting of parallel

. . .
PARALLEL DO J = l,M

. . .
END DO
. . .

END DO

Each PARALLEL DO I task splits into M tasks when it

Wopyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to mpublish any other

portion of this paper must be obtained from the Editor. 743

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBER/NOVEMBER 1991 S . F. HUMMEL AND E. SCHONBERG

reaches the PARALLEL DO J loop. This permits the
distribution of inner parallel work to available processors.
In this example, nested parallelism is potentially profitable
when the number of processors P is greater than the
number of outer iterations N (each processor might
execute M X NIP tasks).

Even when P is less than A’, nested parallelism may
improve speedup (execution time for a single processor
divided by the execution time for P processors) by
eliminating or reducing load imbalance. (A load imbalance
occurs whenever some processors are idle while other
processors are busy.) When there is no nested parallelism,
if the iterations of the outer PARALLEL DO I loop have
different execution times, some processors may finish
executing their assigned iterations earlier than other
processors, resulting in a load imbalance. When nested
parallelism is exploited, processors that finish early can
assist slower processors by executing inner iterations,
thereby improving load balancing. On the other hand, if
the overhead of run-time scheduling is too high, fine-
grained parallelism from many small tasks is not
worthwhile. Therefore, an important design consideration
is the trade-off between run-time overhead and load
balancing.

loop collapsing and coalescing [2], eliminate nested
parallelism by merging a set of nested loops into a single
parallel loop, thereby reducing run-time overhead.
However, an outer loop cannot be coalesced with an inner
loop if the outer loop contains statements that are not in
the inner loop. Vectorization is a compiler technique for
mapping program parallelism onto processor vector units,
but vectorization can be performed only on inner parallel
loops; outer parallel loops must still be scheduled
dynamically.

Typically, schemes for managing nested parallelism
dynamically allocate resources from shared pools [3-51.
Task scheduling is performed by means of a shared queue.
Whenever a processor becomes idle, it obtains another
task from the shared queue until no tasks remain. This
scheduling strategy, called self-scheduling, balances the
workload because processors are idle only if there are no
tasks on the queue. Similarly, task stack frames (the
storage blocks for the private variables of tasks) are
allocated from a shared-memory storage pool, so that
inner-loop tasks can access the task stack frames of outer-
loop tasks.

Shared resource pools improve overall load balancing at
a cost [6]: Accessing shared memory is expensive, and the
accompanying processor synchronization is a source of
contention, particularly if locking is required. The shared
scheduling queue is an obvious source of contention, so it
is desirable to use a queue that reduces lock overhead.

Loop transformations performed by compilers, including

744 Many nonlocking queue algorithms for scheduling [7, 81

synchronize by using atomic read-modify-write
instructions, such as fetchhdd, fetchhtore [9], and
compare&swap [lo], although none is designed specifically
for nested parallelism.

To reduce the cost of memory allocation, schemes for
static stack-frame allocation have been proposed in [4] and
elsewhere. These schemes decrease the overhead of
storage management by reducing the number of stack-
frame allocation operations. However, storage estimates
used for the allocations must be conservative, thus large,
and the schemes still require a shared-memory storage
pool for the stack frames. Furthermore, it is difficult to
implement recursion by static stack-frame allocation. Thus,
static allocation is not practical for languages with both
parallelism and recursion.

We describe a scheme for scheduling nested parallelism
suitable for architectures that have both local and shared
memories, such as the RP3 parallel processor [ll] and the
BBN Butterfly architecture [12]. These machines are
sometimes called NUMA (Non-Uniform Memory Access)
machines. Our scheme reduces run-time overhead by
means of a centralized scheduling policy that permits local-
memory stack-frame allocation, and a novel, nonlocking
“optimistic-queue’’ algorithm for scheduling. Thus, this
scheme preserves the load-balancing properties of dynamic
scheduling while reducing contention, by localizing storage
management and eliminating locking. In particular, stack-
frame allocation is a simple stack operation, and accessing
the scheduling queue is usually no more expensive than
manipulating a singly linked list.

implemented to execute PTRAN programs [13] on the
RP3. PTRAN is a program analyzer, developed at the IBM
Thomas J. Watson Research Center, that automatically
parallelizes FORTRAN programs. The RP3 is a 64-way
shared-memory multiprocessor, also designed and built at
IBM, with a three-level memory hierarchy (cache, local,
and global memory) and a network connecting all the
processors [ll, 141. We present experimental results that
verify the performance advantages of using local-memory
stack-frame allocation and of using our nonlocking
scheduling-queue algorithm on the RP3.

background material. In the following section, we give an
overview of dynamic run-time scheduling strategies in
general, and in Section 3, we discuss the scheduling of
nested parallelism in particular. In Section 4, we present
our scheduling policy-which permits both dynamic
scheduling and local-memory stack-frame allocations.
Sections 5 and 6 describe details of stack-frame
management and our scheduling-queue algorithm,
respectively. The RP3 experiment is described in Section
7. Finally, after discussing potential enhancements to the
run-time system in Section 8, we draw conclusions in

This run-time management scheme has been

Before describing our run-time system, we present some

S. F. HUMMEL AND E. SCHONBERG IBM 1. RES. DEVELOP. VOL. 35 NO. 516 SEFTEMBEWNOVEMBER 1991

Section 9. Code for the scheduling queue is in the
Appendix.

Table 1 Scheduling complexity required for language
features.

2. Overview of dynamic run-time scheduling
Parallel-program scheduling is typically performed by the
run-time library rather than by the operating system [l, 61.
A run-time library can be precisely optimized for a specific
programming model and semantics, while operating system
kernel primitives must be general enough to accommodate
a variety of programming models and languages [6, 81. To
perform scheduling by the run-time library, an application
program, at the start of execution, invokes the operating
system to create a set of operating system threads
(lightweight processes), called virtual processors. The
virtual processors schedule and execute the program tasks
without further operating system assistance. Not all
operating systems provide threads, in which case full-
blown processes must be used for virtual processors.
Operating system threads are preferable for virtual
processors because threads share an address space, so that
creating them is much cheaper than creating processes.

Some operating systems, including the RP3 operating
system [14], allow parallel programs to bind virtual
processors to physical processors, which prevents the
operating system from suspending the execution of the
virtual processors and moving them to different physical
processors. Moving a virtual processor to a different
physical processor is expensive, and suspending the
execution of a virtual processor reduces the number of
physical processors assigned to a program, hence, the
amount of actual parallelism of the program. For the rest
of this paper, we assume that virtual processors are bound
to physical processors and refer to virtual processors
simply as processors.

Table 1 shows the complexity of run-time scheduling
necessary for different parallel language paradigms.

Scheduling can be performed for a simple loop with just
two shared counters [4]: one counter (named multiplicity)
to regulate assignment of iterations to processors, and the
other counter (number- left) to determine when all
iterations are complete. Variations of simple self-
scheduling include schemes for distributing work in chunks
of iterations, of either uniform [15] or decreasing size
[16-181 in order to reduce overhead. The schemes
described in [16-181 are designed to reduce the potential
load imbalance of chunking.

Scheduling nested parallel constructs requires a more
general mechanism, such as a queue, since the scheduling
of separate inner parallel constructs is performed
concurrently. The tasks of each individual parallel
construct are scheduled with two counters, as described
above. (Another approach, described in [3], uses a
compiler-generated precedence table to control the self-
scheduling order.)

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERNOVEMBER 1991

Language feature Complexity required

Simple loop Counters
Nested parallelism Scheduling queue
No explicit synchronization Run until completion
Explicit synchronization BlocWunblock facility
More operating system capability Preemption, priorities

A large class of parallel constructs with no explicit
synchronization operations can be scheduled using a “run-
until-completion” paradigm wherein a task, once it begins
to execute, may not be blocked (descheduled) before it
finishes. The advantage of run-until-completion scheduling
is its low overhead. For example, iterations from the same
parallel construct scheduled on the same processor can use
the same storage block for their task stack frames. As a
result, the total amount of storage that is necessary for
task stack frames is a function of the product of the
maximum nested depth and the number of processors [4].

However, run-until-completion scheduling for more
general parallel programs can lead to deadlock. For
programs with explicit synchronization operations, the
scheduler must be able to block tasks before they finish,
and subsequently unblock (reschedule) them. Examples of
explicit synchronization operations are post event and
await event. A task that executes an await event operation
cannot proceed until another task executes a
corresponding post event operation. If tasks cannot be
blocked and there are more parallel tasks than processors,
a task executing an await event can wait forever for the
task that executes the correspondingpost event to be
scheduled.’ Reuse of task stack frames is no longer always
possible when the potential for blocking exists, and the
issues of task migration and local versus global queues
become relevant.

More complex tasking models require further operating
system functionality. For example, Ada scheduling
requires priorities and preemption [8]. Even when
additional operating system functionality is required,
library scheduling is not as expensive as operating system
scheduling.

The scheme described below implements run-until-
completion scheduling for nested parallel constructs.
Section 8 returns to the issue of explicit synchronization.

3. Nested parallelism
Run-time scheduling assigns processors to tasks in a tusk-
execution graph, in which the nodes represent tasks and
the edges represent task creation/termination operations. A

In [19], compiler-generated precedence information prevents deadlock, so that
run-until-completion scheduling is still possible. 745

S. F. HUMMEL AND E. SCHONBERG

Example of parallel code with private variables: (a) code;
(b) task-execution graph.

task-execution graph for the program in Figure l(a) is
shown in Figure l(b). The predecessor nodes (successor
nodes) of a node are called the parent tasks (child tasks) of
the node. In Figure l(b), the task Z = 1 is the parent task
of its M child tasks J = 1, - , M . [Note that the code in
Figure l(a) beginning with the statement A(1) = X is
called a child task, with M parents corresponding to the M
iterations of the PARALLEL DO J loop.]

A PARALLEL DO loop iteration may have private variables,
which are declared inside the loop. A private variable of
an iteration is shared among all iterations nested within the

746 iteration. For example, a distinct copy of the private

variables X and Y declared in Figure l(a) is allocated to
the iteration I = 1 in Figure l(b), and this copy of X and
Y is shared among the M children of I = 1.

A task stack frame is a storage block containing the
private variables of an iteration. In addition, each task
stack frame contains a pointer to the stack frame of its
parent task. During execution, the active stack frames
form an inverted tree, called a cactus stack [20]. A cactus
stack for Figure l(b) is illustrated in Figure 2 (at some
instant when M X N processors are executing all of the
PARALLEL DO J iterations concurrently). The root node is
the task stack frame of the parent of the PARALLEL DO I
loop, and the other nodes are task stack frames for the
PARALLEL DO I and PARALLEL DO J iterations. The arrows
point to parent stack frames.

down into the following three actions:
The execution of a PARALLEL DO statement can be broken

Fork. The parent task allocates a parallel control block
(PCB), initializes it, and stores it on a shared queue. The
PCB, which is used to schedule all iterations of the loop,
contains the address of the parent-task stack frame, the
address of the loop body code, the two counters needed
to schedule the iterations (see the preceding section),
and other information.
Context switch. An idle processor obtains a task (an
iteration) to execute from a PCB on the queue by
decrementing the multiplicity counter of the PCB. To
begin executing the task, the processor branches to the
loop-body code address.
Initialization. At the beginning of task execution, storage
for the private variables of the iteration (its stack frame)
is allocated, and a link to the parent stack frame (the
cactus-stack link) is saved. (On architectures in which
the cache is managed by software, such as the RP3,
cache invalidations are also performed.)

When all iterations in a parallel construct have been
started (multiplicity = 0), the corresponding PCB may be
removed from the queue. When all iterations in the
construct are complete (number-lejl = 0) , the child task
corresponding to the code that follows the construct is
executed.

The cost of these three steps depends partly on the
schedulingpolicy, which determines how processors are
assigned to the tasks in the task-execution graph. Our
scheduling policy is designed to reduce these costs, as
described in the next section.

4. Scheduling policy
Our scheduling policy consists of three rules that
determine what a processor should do at each task
creationhermination point. The first two rules are common
to several run-time systems [4, 51, while the third rule is

S . F. HUMMEL AND E. SCHONBERG IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWOVEMBER 1991

not. The third rule permits local-memory allocation of
stack frames.

Let b designate the PCB of some parallel construct PC.

Rule I A processor that executes a task from b continues
executing tasks from b while unassigned tasks remain. If
none remain, it searches for work on the scheduling queue.

The advantage of this rule is that both context switching
and initialization can be performed at low cost when a
processor is able to obtain a sequence of tasks from the
same PCB. For each task in the sequence after the first,
the processor does not have to search the scheduling
queue nor allocate a new task stack frame. The same stack
frame is reused for all of the tasks the processor executes.

Let b , , * , b4 be the PCBs on the queue at a given
time, and let Pi be the number of processors assigned tasks
from bi (1 I i I q) at that time. The performance
advantages of Rule 1 are best realized for a given bi if Pi is
much smaller than the original number of tasks Ni in bi.
There is no reuse of the task stack frames if Pi = Ni, and
there is no parallelism for bi if P, = 1. We say that the
processors are evenly distributed at a given time if
lPi - P, I I 1, for 1 I i , j I q , and if no processors
remain idle when the queue is not empty. Generally, even
distribution results in a high degree of stack-frame reuse
without decreasing parallelism.

FIFO (first in, first out) scheduling does not achieve
even distribution. For example, in Figure l(b) strict FIFO
ordering causes all N of the outer tasks to be scheduled
before any of the N X M inner tasks, since the PCB for
the outer parallel construct is first on the queue. Rule 2
below, which is not FIFO, achieves a more even
processor distribution.

1..

1 Cactus stack for the example of Figure 1 .

some of these may become empty before becoming first on
the queue. Queue algorithms that allow interior entries to
become empty (perhaps removed from the queue) are more
complex and typically more expensive than the more usual
FIFO queue algorithms. Our queue algorithm, as described
in Section 6, is designed to accommodate empty interior
entries efficiently without removing them.

allocation.
The third rule permits local-memory stack-frame

Rule 3 After all of the tasks in b are finished, the owner
of b executes the child task of the iterations of the parallel

Rule 2 After a processor completes the fork operation
that allocates b , it obtains its next task from b .

construct PC-the code immediately after PC. (This may
require the owner to wait, which is discussed below.)

Thus, tasks from b are executed by the owner of b (the The advantages of this rule are the following:

processor that allocates it) and perhaps by helpers
(processors that find b on the queue). If no processors are
available, the owner may complete all of the tasks in b
without any helpers. With Rule 2, processor distribution is
“even” when there is at most one helper processor,
because (a) with no helper processors, each PCB on the
queue has one processor, the owner, executing its tasks,
(b) helper processors are assigned to the first PCB on the
queue, (c) two or more helper processors give the first
PCB three or more processors, while the other PCBs have
only one. Section 8 discusses improvements for better
processor distribution.

To implement Rule 2, the queue algorithm must allow
task assignment from interior PCBs (PCBs that are neither
the first nor the last one on the queue). Since each owner

The cactus stack can be implemented by P processor
stacks, allocated in the local memories’ of the P
processors. (This is verified in the following section.)
Stack frames are allocated by simple stack operations,
with no synchronization or locking.
PCB allocation can also be implemented by P individual
processor stacks in global memory, again without
synchronization or locking. (See the following section.)

Without Rule 3, both task stack frames and PCBs must be
allocated from a shared-memory storage pool, which is
more expensive. However, the disadvantage of this rule is
that it may cause processors to have a load imbalance. The
best load balancing is obtained when the processor that

executes tasks from the PCB that it enqueues, all
enqueued PCBs are being “consumed” concurrently, and accessed by all other processors, although with greater delay.

In the RP3 system, the local memory associated with any processor could he

IBM I. RES. DEVELOP. VOL. 35 NO. 516 SEFTEMBERINOVEMBER 1991

747

S. F. HUMMEL AND E. SCHONBERG

Three snapshots of four processor stacks, showing the cactus stack
of the example of Figure 1 at different times.

executes the last task to finish from b executes the code
after PC (the child task). Under Rule 3, the owner of PC
must wait until all tasks from b are finished. However, the
cost of this idle time must be weighed against the savings
from local storage allocation. In Section 7, where we
return to the issue of load balancing versus local-memory
storage allocation, we argue that the savings outweigh the
costs, in particular when P is large.

5. Cactus-stack management
While, in general, cactus-stack management requires a
central storage pool and locking, it is possible to

748 implement the cactus stack by means of P individual

S. F. HUMMEL AND E. SCHONBERG

processor stacks because of Rule 3. We justify this
claim as follows. First, the same processor that
allocates a task stack frame always deallocates it.
Therefore, each processor can maintain its own pool of
task stack frames, and no locking is necessary.
Furthermore, the stack frames themselves can be allocated
in strict LIFO (last in, first out) order, since the owner
processor of PC always deallocates all stack frames
generated during the execution of PC by the time that PC
completes. Because of the LIFO order, the local pool is, in
fact, an ordinary stack, and allocation involves merely
incrementing a stack pointer and setting a link to the
parent stack frame.

To illustrate how the cactus stack works, we consider
the abstract cactus stack of Figure 2 and the individual
stacks of four processorsp,, , p, that are executing
the program of Figure l(a). Figure 3 shows three snapshots
of the stacks at different times during the execution of the
PARALLEL DO loops. Figure 3(a) showsp, executing the
inner I = 1, J = 10 task; pz executing the I = 2, J = 7
task; p3 executing the I = 3, J = 2 task; and p, executing
the I = 4 task. Sincep, executed the parent of the
PARALLEL DO I loop, its stack has a task stack frame for
the root of the cactus stack, and all stack frames for
PARALLEL DO I tasks have pointers to this root-task stack
frame. In Figure 3(b), p1 and p3 have finished their
PARALLEL DO I iterations and are helpingp,. Processor p1
is executing the next-to-last iteration (I = 1, J = M - l),
andp, is executing the last iteration (I = 1, J = M) .
Since pz and p3 are helpers, their task stack frames point
to the I = 1 task stack frame. Processorp, is executing
iteration I = 4, J = 24. Figure 3(c) showsp, executing
the rest of the I = 1 iteration (the child) after the PARALLEL
DO J loop has finished (and the other processors are idle
because the queue is empty). Sincep, executes both the
parent and child task of the PARALLEL DO J loop, the task
stack frame for Z = 1, which is needed for the child task,
is available on thep, stack after the PARALLEL DO J loop
has finished.

Although there is one stack per processor, each stack
must be accessible by all processors. For example, pz and
p , must be able to access thep, stack while they are
helpers [see Figure 3(b)]. On the RP3 system, the local
memory of one processor can be addressed by other
processors, so in fact the processor stacks can be allocated
in local memory of the individual processors. For
architectures on which the memory of a processor cannot
be addressed by other processors, the processor stacks can
still be allocated in local memory provided that each stack
frame contains a copy of its parent stack frame instead of
a pointer to the parent stack frame. This increases the cost
of forking and initializing stack frames.

PCB allocation is similar to task stack-frame allocation.
Each processor has its own stack of free PCBs, although

IBM J . RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERNOVEMBER 1991

B

D

D

I)

in global rather than local memory, since the degree of
concurrent access is expected to be high. When a
processor executes a fork operation, it increments its PCB
stack pointer to allocate the next PCB on its stack. After
all tasks in that PCB are finished, the processor
decrements the stack pointer to deallocate it. Thus, each
PCB is part of two data structures-a processor stack and
the shared scheduling queue-and appropriate
synchronization is required when accessing the PCB. Part
of the effort in the queue-algorithm design was to make
this synchronization efficient.

6. Scheduling queue
The overhead of accessing a shared scheduling queue
determines, to a large extent, the smallest task that is
worth creating. Thus, it is important that the queue be, as
far as possible, nonlocking. The larger the number of
processors, the greater is the degradation due to locking.
Accordingly, many queue algorithms have been designed
to permit concurrent updating. These algorithms typically
use atomic read-modify-write instructions, such as
fetch&$, which indivisibly carry out the following steps:
read a variable, perform the (binary) operation 4 on it, and
store back the result. Read-modify-write instructions
greatly simplify the coordination of multiple processors
accessing a shared data structure such as a queue;
therefore, they are provided on several multiprocessor
architectures, including [ll] and [12].

To schedule the nested parallel loops generated by
PTRAN, we designed a new shared-queue algorithm. The
queue is implemented as a singly linked list and uses the
three read-modify-write instructions fetch&increment
(f&i) , fetch&decrement (f & d) , and fetch&store (f & s) ,
which respectively increment, decrement, and swap
variables.

Our queue algorithm has many desirable properties:
It has a very low overhead, in terms of both time and
storage, it is nonlocking, and it permits empty interior
entries in the following efficient manner. When all tasks in
a PCB have been assigned to processors, we mark its
storage block as empty, creating a hole in the queue,
instead of removing the PCB; an empty PCB may be
removed from the head of the queue only. Unfortunately,
in the case of nested parallelism, leaving holes can result
in long chains of empty PCBs. However, our algorithm
reuses empty PCBs in place by reinitializing their storage
blocks with new PCB data, so that these long chains of
empty PCBs are not generated.

Our implementation achieves its efficiency by using an
optimistic strategy wherein abnormal events (such as
appending new PCBs to PCBs that are being removed) are
allowed and corrected at a later time, rather than
prevented. The design philosophy is to streamline common
cases, while minimizing the adverse effect of unusual

events. For example, because empty interior PCBs are not
immediately removed and are sometimes reused,
enqueuing, dequeuing, and updating PCBs are efficient
operations. Rule 1 is another example of optimizing the
common case. When a processor repeatedly obtains tasks
from a particular PCB, the context-switch overhead is
reduced.

The queue data structure and algorithm are described in
detail later in this section. Below, we discuss related queue
algorithms. The code implementing the queue is in the
Appendix.

Related work
Concurrent-access queue algorithms differ in several
aspects, including the types of operations permitted, the
number of different operations that can be performed
concurrently, and storage/time requirements. Most
concurrent-access queues are FIFO and do not allow
interior-entry removals. Increased parallelism and reduced
execution time can often be obtained by using more
storage.

The underlying data structures of concurrent-access
queues can be arrays, linked lists, and trees. Although
tree-based queues have storage requirements proportional
to the number of queue entries and operation-time
logarithmic in the number of entries, the overheads of the
basic operations are several orders of magnitude higher
than for array-based or linked-list-based queues (thousands
as opposed to tens of machine instructions [8]), so we do
not pursue them further here.

A simple queue can be built using an array of pointers to
queue elements and two counters, first and last, which are
updated with f&i instructions modulo the array size [9, 211.
The number of insertion and deletion operations that can
be performed concurrently on such queues is determined
by the array size; unfortunately, so is the amount of
storage that must be dedicated. Array-based queue
algorithms that use compare- double&swap (conditional
swap of two double-words) to update the counters and
permit concurrent enqueues and dequeues are given in [22]
and [23].

maintaining two pointers, head and tail, which are updated
by an indivisible swap instruction, such asf&s,
compare&swap, or compare- double&swap. Singly-linked-
list algorithms for concurrent enqueuing and dequeuing are
presented in [8, 24, 251. However, these algorithms permit
only one dequeue operation at a time. The storage
overhead of linked-list-based queues is minimal (a few
words).

Hybrid queues have been developed to exploit the high
degree of concurrent access of array-based queues and the
low storage requirements of linked-list-based queues.
These queues use arrays of linked lists, where each list

Queues based on linked lists are implemented by

749

S . F. HUMMEL AND E. SCHONBERG IBM J. RES. DEVELOP. VOL. 35 NO. 5 '16 SEPTEMBEWOVEMBER 1991

PCB data structure.

Snapshot of four PCB stacks with scheduling-queue links, at the
same execution time as Figure 3(a). (The numbers in the PCB
boxes are the values of corresponding multiplicity counters.)

must be locked while an operation is being performed on
it [7], but operations can be performed on different lists
concurrently. When the linked lists are implemented with
indivisible swap instructions, only dequeue operations
must lock a list [8].

In the case of our queue used for scheduling nested
parallelism, each enqueued PCB is used to schedule
multiple tasks (see Section 3). Queues whose entries
represent more than one element are called multi-item
queues [7]. By using af&d operation to decrement the
multiplicity counter in the PCB, processors can obtain
work concurrently. Even if actual dequeue operations

750 removing PCBs from the queue must be serialized,

concurrent queue accesses to the first PCB are possible
while it is not empty.

More concurrency is achievable when processors are
allowed to obtain tasks from interior PCBs as well as the
first PCB. However, interior PCBs may become empty. An
obvious data structure for accommodating empty interior
entries is a doubly linked list, since removing interior
entries is straightforward. However, while interior-entry
removal is being performed (updating the pointers of
predecessor and successor entries), other operations are
usually “locked out,” in order that the list structure does
not become corrupted. The nonlocking doubly-linked-list
algorithms of which we are aware3 have relatively high
overheads and therefore have no advantage over a doubly
linked list with locking.

For the implementation of Ada described in [8], the
singly-linked-list queue algorithm permits multi-item and
empty interior entries. Entries are not actually removed
from the queue, but marked as empty and left as ‘‘holes.’’
The storage block for an empty entry can be reused only
after it has reached the head of the queue and been
removed. If the enqueuer needs to enqueue some work
prior to the entry removal, a new entry must be allocated.
Our new queue algorithm avoids the need for this
additional allocation by allowing entries left as holes to be
“reused in place.” Surprisingly, this improvement has led
to the development of a completely nonlocking queue.

Queue data structure
To implement our singly-linked-list multi-item queue, two
pointers are maintained, q- head and q- tail, which point
to the head and tail of this list. These pointers are changed
us ingfh operations. In addition to the fields described in
Section 3, a PCB contains a field next, which is the queue-
link field, and state, which is needed for coordination.

Figure 4 shows the fields of the PCB data structure.
Multiplicity, number- left, and state are updated using f&i
andf&d operations. The field next is updated usingfh.
Figure 5 shows a snapshot of four PCB stacks with
scheduling-queue links corresponding to the execution
state shown in Figure 3(a). The PCB stacks are associated
with processors pl, * , p4. Since p, executes the parent
of the PARALLEL DO I loop, the PCB for the PARALLEL DO I
loop, which is the queue head, is on thep, PCB stack. The
next three PCBs on the queue represent the PARALLEL DO J
loops of iterations I = 2 , I = 1, and 1 = 3. For each
PCB, the value of multiplicity is shown, which specifies
the number of unassigned tasks.

The field state encodes stages in the processing of a
PCB. State acts as an event counter, initialized to 0 and
decrementedhncremented after significant events. It is
decremented whenever the PCB reaches the head of the
queue, the PCB becomes empty, or the PCB is removed

3 Symunix I1 Operating System, Ultracomputer Project, New York University.

S. F. HUMMEL AND E. SCHONBERG IBM J. RES. DEVELOP. VOL. 35 NO. 5J6 SEPTEMBEWNOVEMBER 1991

Table 2 PCB-state transitions implemented by queue operations.

b

B

0

Queue Event Operation Fetched
performed value of

on state state
operation

Action

Produce PCB is allocated f&i 2
170

Reuse in place
Wait until state is 1,

then set state to 3
and perform enqueue

Enqueue PCB is queue head f&d 3 Finished
2

Consume PCB is empty f&d 3
2

Dequeue Removal complete f&d
Dequeue PCB is queue head f&d 3

2

Perform dequeue
Look for work
Perform dequeue
Continue traversal
Finished
Remove queue head

-

from the queue. It is incremented to 3 after it is allocated
from a PCB stack during a fork operation. The next
section describes how state is used by the algorithm.

Queue implementation
We identify four queue-related operations that processors
perform:

Consume tasks. A consumer looks for work, either on
the queue or in a specific PCB.
Dequeue PCB. A dequeuer removes empty PCBs from
the head of the queue.
Produce tusks. A producer updates a PCB (new or
empty) with new task information during a fork
operation.

of the queue.
Enqueue PCB. An enqueuer appends a PCB onto the tail

A producer sometimes turns into an enqueuer, and a
consumer sometimes turns into a dequeuer. Producers and
consumers do not alter the connectivity of the list, while
enqueuers and dequeuers do.

Producing, consuming, and enqueuing can all be
performed concurrently. Dequeuing can be performed
concurrently with the other operations; however, there can
be only one dequeue operation at a time. (This is verified
in the subsection on correctness issues below.) Since a
dequeue operation on an empty PCB is not performed
when the PCB is reused in place, the number of dequeue
operations, hence, the performance penalty from serialized
dequeues, is small.

PCB-state transitions and processor actions based on
PCB-related events are summarized in Table 2. A
processor executing a queue operation detects a significant
PCB event, performs af&i orf&d operation on the state
field of the PCB, and then performs the specified action
based on the fetched value of state. The fetched value is
the previous value of state before the f&i or f&d
operation. This table is explained in more detail in the

following subsections on queue operations; pseudocode for
the operations is presented in the Appendix.

As an efficiency metric for each operation, we count the
number of shared-data accesses required for the most
common case of the operation. Shared-data-access time
typically dominates the cost because of the distance from
processors to global memory and because of contention
among different processors accessing the same memory
bank. To show the correctness of concurrent queue
operations, race conditions must be ruled out. We
systematically examine the interactions of all concurrent
operations in the subsection on correctness issues to show
that there are no harmful race conditions. This algorithm
has been implemented and exhaustively tested, both by
running the experiments presented in Section 7 and by
inserting delays to force unusual events to occur.

Consume tasks
A consumer looks for work either on the queue or in a
specific PCB (Section 4, Rule 1). First, we consider a
consumer looking for work on the queue, using a private
pointer my-pcb to traverse the queue. Pseudocode for this
function is given in the procedure consume-q in the
Appendix. For each successive PCB b, the following code
is executed to try to obtain an unassigned task my-task:

i f (my-pcb-muItiplicity 2 0) {
my- task = f & d (my-pcb-.multiplicity);
i f (my- task > 0) {

1
/* Success, execute my- task */

1
(Note that more than one processor can execute the first
statement before any executes the second, and that, as a
result, multiplicity can be decremented to reach some
negative value.) The initial test prevents multiplicity of b
from underflowing when b is empty. Without the test,
underflow can occur if idle processors repeatedly
decrement multiplicity of b while busy-waiting. If the 751

S . F. HUMMEL AND E. SCHONBERG IBM J. RES. DEVELOP. VOL. 35 1 VO. 516 SEPTEMBEWOVEMBER 1 991

Three scheduling-queue configurations: (a) one-node queue;
(b) q-head is null, and c and d are misplaced; (c) +tail is null.

queue head is nonempty (the most common case), only
three shared-data accesses are made: one for setting
my-pcb to q- head, and two for accessing its multiplicity.

If my-task is found to be 0, b is empty, so state of b is
decremented with a f&d operation. If the fetched previous
value of state is 2, b is the queue head, so the consumer
becomes a dequeuer.

Since each consumer uses its own private queue pointer,
the queue can be traversed concurrently by more than one
consumer, even while a dequeue operation is being
performed. The following observation is important: While

752 there may be many consumers concurrently decrementing

multiplicity of b , only one consumer sets my-task to 0.
Therefore, only one consumer decrements state of b and
can become a dequeuer. We show that there can be only
one dequeuer at a time and discuss other possible race
conditions in the section on correctness issues.

PCB b . The procedure consume-pcb in the Appendix
performs this operation. The consumer decrements
multiplicity of b with a f&d operation, storing its previous
value in my- task. If my- task is positive, the consumer
has found a task to execute. Otherwise, if my- task is 0,
the consumer decrements state of b and dequeues b if it is
the queue head, as described above. In all cases, the
consumer decrements number- left of b y the number of
tasks from b that are still executing. When number-left is
0, the child of b can be executed. The most common case
for consume-pcb (consumer finds work) requires only two
shared-data accesses to decrement multiplicity and
number- left of b .

Next consider a consumer looking for work in a specific

Dequeue PCB
It is not obvious how to implement a singly-linked-list-
based queue that permits concurrent dequeue and enqueue
operations. When the list becomes empty, both the head
and.tail must be updated, and the queue is in an
inconsistent state during these updates. PCBs enqueued
during this time can therefore be lost. Our fetchhtore-
based solution to the empty-queue problem, in which there
is only one dequeuer allowed at a time, is an extension of
an algorithm described in [8].

A processor becomes a dequeuer when it discovers that
a PCB is an empty queue head. The procedure dequeue in
the Appendix implements the dequeue function. The
dequeuer traverses the queue, removing PCBs by
advancing q- head, until a nonempty PCB is found or the
queue is empty. For each new queue head b , the dequeuer
decrements state of b . If the previous value of state of b
(fetched by the f&d operation) is 3, b is nonempty, so the
dequeuer becomes a consumer again. Otherwise (the
previous value is 2 and b is empty), the dequeuer sets
q- head to next of b . Since b is now removed, state of b is
decremented once again. At this point, b is fully dequeued,
and the dequeuer continues its traversal.

In summary, a PCB b is completely dequeued after

state of b has been decremented twice (once for being
empty and once for being at the head of the queue).
q-head has been set to next of b .
state of b has been decremented a third time (for being
removed).

Thus, the cost of actually dequeuing a PCB in the usual
case is five shared-data accesses (including initially reading
q- head).

S. E. HUMMEL AND E. SCHONBERG IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEF'TEMBEWNOVEMBER 1991

If the dequeuer discovers that the queue is empty after
updating q-head (q-head is n u l l) , special action must be
taken for coordinating with possible concurrent enqueuers
(see the subsection on enqueuing a PCB below).
Enqueuers always update q- tail and update q- head only
if the list is empty (4-tail is nu l 1) . The following abnormal
condition can arise.

Suppose b is the only PCB on the queue, so that both
q- head and q- tail reference b , as shown in Figure 6(a).
The dequeuer removes b by setting q- head to next of b ,
which is n u l 1 in this example. However, concurrent
enqueuers append new PCBs to b, since q- tail still points
to b, even though b is removed. These PCBs are
“misplaced” and must be recovered.

To prepare for this possible abnormal event, the
dequeuer saves a pointer to b in a variable old- head
before updating q- head. After q- head is set to n u l 1 ,
old-head+next is the head of the list of misplaced PCBs.
Figure 6(b) shows misplaced PCBs c and d appended to b .
To complete the dequeue operation, the dequeuer sets
q- tail to n u l 1 , saving its previous value in old- tail using a
f&s operation [see Figure 6(c)]. Now old-tail is the tail of
the list of misplaced PCBs and q-head and q- tail are in a
consistent state. As a last step, the dequeuer appends the
misplaced-PCB list to the queue.

This is an “optimistic solution” to the empty-queue
problem. Rather than locking out enqueuers, to prevent
misplacing PCBs while a dequeue operation is being
performed, an inexpensive corrective action (enqueue
operation) is taken so that misplaced PCBs are not lost and
the integrity of the queue is maintained.

Produce tasks
During a fork operation, a producer allocates the next PCB
b from its PCB stack, as described in Section 5, and
initializes number- left and the context-switch-management
fields. Our implementation guarantees that b is empty and
no processors are executing tasks from b at the time it is
allocated (see the subsection on correctness issues below).
The procedure produce in the Appendix updates state,
multiplicity, and next of b.

its status with respect to the queue, the producer
increments state of b with a f&i operation, fetching its
previous value (see Table 2): b is already enqueued if its
previous value is 2; it is dequeued if its previous value is
0; and it is being dequeued if its previous value is 1.

If b is already enqueued, the producer simply sets
multiplicity of b to the number of new tasks. Since
multiplicity of b was previously nonpositive, this last step
enables consumers traversing the queue to obtain tasks
from b. Reusing a PCB that is already on the queue takes
five shared-data updates, one for every PCB field except
next.

To indicate that b is no longer empty and to determine

1991

Otherwise, the producer busy-waits until state of b is 1,
which indicates that the dequeue of b is complete (state of
b is not 0 because of the f&i operation performed by the
producer described above). If b is already dequeued, the
wait time is 0. Then it initializes state of b to 3, updates
multiplicity of b , and enqueues b , as described in the next
section. Once multiplicity is set, consumers may acquire
tasks, even though the enqueue operation is not complete.
However, this concurrency is not harmful, as discussed in
the subsection on correctness issues below.

Enqueue PCB
An enqueuer appends a PCB b by swapping a local pointer
to b with q- tail using a f&F operation. If the fetched value
of q- tail (previous) is nonempty, previous-+next is set to
b . Ifprevious is n u l 1 , the queue is empty, so q-head is
set to b . The field next of b has already been set to n u l 1 .

The procedure enqueue in the Appendix appends a list
of PCBs with head my- head and tail my- tail to the queue
(4- tail is set to my- tail instead of b) . This generality is
necessary because enqueue calls dequeue to append a list
of misplaced PCBs (see the subsection on dequeuing the
PCB above). The cost of appending a list, which is the
same as the cost of appending a single PCB, is three
shared-memory accesses when the queue is nonempty.

If the queue is empty, the enqueuer decrements
my-head+state with a f&d operation. Because there can
be concurrent consumers removing tasks from b while it is
being enqueued, b may already be empty. If state of b is 2
(b is empty queue head), the enqueuer becomes a
dequeuer.

Correctness ksues
Since our queue is nonlocking, a PCB can be involved in
multiple operations concurrently. While concurrency can
improve performance, it introduces the possibility of
erroneous race conditions, in which one processor makes
an update to a queue data structure that causes another
operation to function incorrectly, perhaps destroying the
integrity of the queue. In this subsection, we show that no
harmful race conditions can arise from concurrent
operations.

coordinated using the state, multiplicity and number-left
fields of PCBs. Below, we give a detailed case-by-case
analysis of concurrent queue operations, for all possible
pairs of operation types.

Concurrent access to queue data structures is

Consume, consume: Consumers of a PCB b execute
distinct iterations in the range 1, * , N , only one
consumer discovers that b is empty.

A consumer successfully obtains an iteration by
executing a f&d operation on multiplicity of b , which is
initially N , and fetching a positive value. The consumer

S . F. 1 WMMEL P

753

LND E. SCHONBERG

754

that fetches 0 as its result discovers that b is empty,
decrements state of b, and becomes its dequeuer (if the
fetched value of state is 2). There can only be one such
consumer. If the fetched value is negative, the PCB is
empty, and the consumer is finished with b. Consumers of
distinct PCBs do not interfere with each other.

Consume, dequeue: Consumers cannot obtain tasks
from a PCB b that is being dequeued, and a consumer
cannot become a dequeuer while another processor is
dequeuing b.

A dequeuer never updates multiplicity of b , which is
negative during a dequeue operation since b must be
empty. Therefore, any consumer that attempts to obtain a
task from b cannot succeed. If b is not being dequeued, it
must be an interior PCB. If b becomes empty, no
consumer can dequeue it, since a consumer can only
decrement state of b once for being empty. The second
decrement of state of b can be performed only when a
dequeuer updates q- head to point to b . Therefore, b can
be removed by the dequeuer only after b becomes the
queue head.

Consume, produce: A producer cannot allocate a PCB b
when it is nonempty, and a consumer cannot obtain a task
from b while a producer is updating it with new task
information.

Before reusing b , a producer (the owner of b) waits until
number-left of b is 0, thereby ensuring that there are no
consumers that can obtain a task from the previous use of
b . Since number- left is decremented to 0 only after
multiplicity has been decremented to 0, b must be empty.
A producer updates all task-related fields of b before
setting its multiplicity. (Setting multiplicity enables
consumers to obtain tasks from b .) At this time, b is in a
consistent state for task assignment. Consumers and
producers of different PCBs do not interfere with each
other.

Consume, enqueue: Tasks from a PCB b can be
consumed safely while b is being enqueued.

It is possible for a consumer to obtain tasks from b
while it is being enqueued, since multiplicity of b is set
before enqueue is called (see produce in the Appendix).
This is safe, however, since consumers decrement
multiplicity and number- left of b and do not update next
of b , and the enqueuer sets next of b and not the other
two fields. Nevertheless, a potential conflict can arise
between a concurrent enqueuer and consumer of b if the
queue is empty when b is appended and all of the tasks in
b have been consumed. As shown in produce, state of b is
set to 3 before a consumer can obtain tasks and before the
enqueue operation begins. If b becomes an empty queue
head while it is being concurrently enqueued and

S. F. HUMMEL AND E. SCHONBERG

consumed, state of b will be decremented twice: once by
the current dequeuer and once by the consumer that
obtains the last task. Whichever processor fetches 2 as the
previous value of state will dequeue b .

Dequeue, dequeue: There can only be one dequeuer at
a time.

As argued above, if there are concurrent consumers
accessing a PCB b when it becomes an empty queue head,
only a single consumer can become its dequeuer (consume,
consume). If a consumer and an enqueuer are concurrently
accessing b when it becomes an empty queue head, only
one of these processors becomes its dequeuer (consume,
enqueue). There can be no other dequeue operation in
progress, since q- tail is nul 1 at the time of the enqueue
operation; therefore q-head must also be nul 1. Finally, a
consumer cannot become a dequeuer while another
dequeue operation is being performed (consume, dequeue).
Thus, there can only be one dequeue operation at a time.

Dequeue, produce: A PCB b cannot be reused by a
producer while it is being dequeued, and a dequeue of b
cannot be started while b is being reused in place by a
producer.

A producer coordinates with a dequeuer of b by
executing an initial f&i operation on state (see produce). If
a dequeue operation has begun, the producer busy-waits
until state is 1, indicating that the dequeuer has finished,
before making b available again for task assignment by
setting its multiplicity. Conversely, if b is enqueued and a
dequeue operation has not begun, the initial f&i operation,
which flags b as nonempty, reserves b for the producer. A
dequeue operation cannot start before the producer sets
multipliciw.

Dequeue, enqueue: Enqueuers and dequeuers
coordinate so that an empty queue is initialized correctly
and no misplaced PCBs are lost.

the subsection on dequeuing (see also [25]).
Our empty-queue solution is explained in detail above in

Produce, produce: There is only one producer of a PCB
b at a time.

The only producer of b is its owner, which waits for
number-left of b to be decremented to 0 before it is
reused. There are no conflicts among producers of different
PCBs.

Produce, enqueue: A PCB b cannot be produced and
enqueued at the same time.

The only producer and enqueuer of b is its owner, and
an enqueue operation follows a produce operation. There
are no conflicts among producers and enqueuers of
different PCBs.

IBM J. RES. DEVEI .OP. VOL. 35 NO. 5/6

Enqueue, enqueue: Enqueue operations can safely be
performed concurrently.

The only enqueuer of a PCB b is its owner, which
enqueues it by a f & operation to swap b with q-tail.
Because f & is atomic, all concurrent enqueuers fetch
different values of q-tail. Thus, they do not conflict with
each other.

Nonblocking and no-wait queues
Although our queue algorithm is nonlocking, it is possible
for an extremely slow processor to delay other processors
for a long time. This arises from processors having to
busy-wait. Algorithms, such as [21] and [23], that do not
require busy-waiting are called nonblocking [21]. The three
instances of busy-waiting in our algorithm are

1. When a producer waits for a PCB that is currently
being dequeued to be fully dequeued (state = l), so
that it can be re-enqueued.

2. When a dequeuer waits for old- head-next to be set
(misplaced PCBs are currently being enqueued), so that
it can enqueue the list of misplaced PCBs (see the
subsection on dequeuing the PCB).

processors to decrement number- left before executing
the child task of a parallel construct.

3. When an owner processor waits for all helper

Eliminating the first source of busy-waiting is
straightforward: Rather than the owner of a PCB b busy-
waiting until b is dequeued and subsequently enqueuing b ,
the dequeuer of b can detect that a reuse attempt has been
made (by testing the value returned by the final f&i of
state) and re-enqueue b . The second source of busy-
waiting is more problematic, and we know of no
nonblocking solution. The third source of busy-waiting is
an unavoidable consequence of our scheduling policy. As
described in Section 7, its cost is bounded by the
execution time of a task, which can be reduced through
use of a chunking strategy such as factoring to balance
workloads (see Section 8).

Being wait-free is another desirable property of a
scheduling queue [26]. An algorithm is wait-free if the
number of instructions per operation is bounded. Hence, a
wait-free algorithm is nonblocking, but not all nonblocking
algorithms are wait-free. Wait-free algorithms are useful
for real-time applications in which each task must start
executing within a specified amount of time. Our
scheduling-queue operations are not wait-free, but the
queue does have the weaker property that at least one
iteration of a parallel construct is started within a fixed
number of instructions after it is enqueued: An enqueuer
becomes a dequeuer only if the PCB that it enqueues is
completely consumed by other processors. Thus, either the
owner never calls the procedure enqueue, the owner

returns from enqueue immediately after appending its
PCB, or a helper processor starts executing the parallel
construct before the second i f statement in enqueue is
reached.

7. Experimental results
Our run-time scheme has been implemented on the RP3
[ll]. We present experimental results justifying two
significant design choices: our scheduling policy, which
makes it possible to use local memory rather than a
shared-memory storage pool for stack-frame allocation,
and our singly-linked-list queue algorithm which permits
empty interior PCBs. For the sample programs used in the
experiment, both of these design choices improved
performance. Before describing the experiment, we give a
brief overview of the RP3 system.

Architecture of the RP3
The RP3 is an experimental machine whose 64 processors
are interconnected by an omega network [l l , 141. Each
processor has a cache and local memory. All nonlocal
memory is accessible over the network. This hierarchy of
cache, local, and remote memories has an access time
ratio of 1:12:20. To reduce network contention, there is an
(optional) address-translation scheme, called interleaving,
wherein shared data with consecutive addresses are stored
in consecutive memories rather than sequentially in the
same memory (hence, accessing different pieces of data,
such as individual elements of an array, does not cause
contention at any one processor memory). Interleaved
memory can be viewed as global, since delay in accessing
interleaved data is, on average, the same for all processors.

associative. There is no interprocessor cache consistency
enforced by hardware, so the software must ensure cache
consistency. In our run-time implementation, program data
are cacheable, and a cache-invalidate instruction is
executed by each processor when it completes a parallel
construct. This is safe if there are no data dependencies
among parallel tasks [27] (which PTRAN guarantees).

The RP3 operating system is a version of Mach, modified
to allow threads to be bound to processors, and applications
to run in single-user mode [14]. These extensions reduce
timing differences from run to run of the same program.

The caches are write-through and two-way set-

Experiment
Our experiment compared

Placing processor stacks used for task frames in local
memory with placing the stacks in global (interleaved)
memory.
Using our nonlocking singly-linked-list algorithm with
using a locking doubly-linked-list algorithm that permits
interior-PCB removals.

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWNOVEMBER 1991 S . F. HUMMEL AND E. SCHONBERG

The doubly-linked-list implementation is highly optimized.
Nonempty PCBs can be accessed concurrently, since
consumers do not dequeue them. Locking is implemented
usingfetchhdd operations as described in [9].

Two test programs were used in the experiment: a
program that performs six-integer matrix multiplications
and a loop nest taken from a Gauss-Jordan program for
(back) solving a system of linear equations. A basic matrix
multiplication nested-parallel loop has the form

PARALLEL DO I = l , N
PARALLEL DO J = l , N

DO K = 1 ,N
C (1 , J) = C (1 , J) + A (1 , K) * B (K , J)

END DO
END DO

END DO

Our test program consists of the six different versions of
the above nested loop created by reordering the three
loops in all possible combinations. The sequential DO K
loop is the outermost loop in two of the versions, it is the
middle loop in two versions, and it is the innermost loop in
two versions. Therefore, this program provides a variety of
nesting patterns and loop granularities for comparing run-
time overheads.

Our Gauss-Jordan test program is the loop nest

DO I = 1 ,N
PARALLEL DO J = l , N

I F I .NE. J THEN
PARALLEL DO K = I + l , N + l

END DO
A (J , K) = A (J , I O - (A (J , I) * A (I , K)) / A (I , I)

END I F
END DO

END DO

The granularity of parallelism in this loop nest is both very
fine and independent of the problem size N , since a
parallel task consists of a single iteration of the innermost
loop calculating A (J , K) .

Measurements for both test programs were made for all
eight combinations of the following parameters:

Matrices of dimension 150 X 150 or 300 x 300.
Singly or doubly linked lists (i.e., nonlocking or locking).
Task frames in local or global memory.

For the results described, we ran each program on 4-62
processors and repeated each run four times; we report the
average running time. In most of the cases, the variation in
running time (coefficient of variation) was less than 1%.
We do not report running times for which the coefficient of
variation was greater than 5%, which occurred in a few of
the doubly-linked-list runs. 756

S. F. HUMMEL AND E. SCHONBERG

Results
The minimum executicn time for the 150 X 150 matrix
multiplication program was obtained with 48 processors.
This is illustrated in Figure 7. (Rather than studying
execution time data, however, we have found the data
presented in the format of Figures 8 to 11 to be more
useful.) As additional processors were added, the program
ran more slowly, for two reasons: The additional queue
overhead exceeded the additional processing capability,
and idle processors spin-waiting for the queue head
increased memory contention. With 300 X 300 matrices,
the execution time for the matrix multiplication program
decreased as the number of processors increased, up to 62
processors. For the doubly-linked-list measurements, the
coefficient of variation was greater than 10% for the
150 X 150 Gauss-Jordan program with more than 32
processors (so the results are not reported). The large
variance occurred because the computation was dominated
by competition for the queue lock. With 300 X 300
matrices, the coefficient of variance remained 5%, and the
execution times continued decreasing up to 62 processors.

Total execution-time costs (execution time multiplied
by the number of processors) are shown for the matrix
multiplication and the Gauss-Jordan programs in
Figures 8 and 9, respectively. Note that the horizontal
scales of Figures 7 to 11 are not uniform. In the ideal
situation, the cost remains constant as the number of
processors changes. In all cases, the sl scheduler (singly
linked, local) had the lowest cost. In addition, the cost of
the sl scheduler rose relatively slowly as the number of
processors increased, for most of the experiments.

When the tasks were fine-grained or there was only a
small amount of work for each processor, the sg scheduler
(singly linked, global) had the next lowest cost; for
example, the Gauss-Jordan program (Figure 9) and the
150 X 150 matrix multiplication program when the number
of processors was greater than 32 [Figure 8(a)]. Using a
better queue algorithm was more important than using
local memory, since the ratio of task-stack-frame accesses
to queue operations was relatively small. When the tasks
were more coarse-grained and there was more work
available, the converse held. In Figure 8(b), the dl
scheduler (doubly linked, local) consistently had the next
lowest cost.

Both the sg scheduler and the sl scheduler showed
decreasing execution times as the number of processors
increased, up to 62 processors for the 150 X 150
Gauss-Jordan program, while execution times of both
doubly-linked-list schedulers were highly variable and in
general did not decrease after 32 processors. This indicates
that the nonlocking, singly linked list is a more scalable
queue algorithm than a locking list.

(doubly linked, global). The percentage performance
The largest costs were obtained with the dg scheduler

IBM 1. RES. DEVELOP. VOL. ? 15 NO. 5 /6 SEPTEMBEFUNOVEMBER 1991

a

e

e

0

0

0

e

0 IBM J. RES. DEVELOP. VOL. 35 NO. 5

doubly linked
local

8 16 24 32

Number of processors

Execution times for the matrix multiplication program with 150 X 150 matrices.

improvement of the other schedulers over the dg scheduler
is shown in Figures 10 and 11 for the matrix multiplication
program and Gauss-Jordan program, respectively. The dl
scheduler improved execution times over the dg scheduler
by -2% for 150 X 150 matrix multiplication on 62
processors [Figure lO(a)] to 27% for 300 X 300 matrix
multiplication on 16 processors [Figure 10(b)]. There was
only one case [Figure lO(a), with 62 processors] in which
the dl scheduler performed worse than the dg scheduler.
This kind of unexpected behavior is usually accounted for
by subtle interactions between the application and the
operating system. The sg scheduler improved execution
times by 2% for 300 X 300 matrix multiplication on 56
processors [Figure 10(b)] to 31% for the 150 X 150
Gauss-Jordan problem on 32 processors [Figure ll(a)]
over the dg scheduler. The sl scheduler, which included
both optimizations, improved execution times by 15%
[Figure lO(a)] to 37% [Figure ll(a)] over the worst case.

memory for task stack frames, especially when task
This experiment shows that there is benefit in using local

,I6 SEPTEMBEWNOVEMBER 1 991

granularity is large. Therefore, our scheduling policy,
which permits local-memory stack-frame allocation, is
well-suited for nonuniform memory access (NUMA)
architectures. Furthermore, even though the scheduling
policy requires a queue algorithm that accommodates
empty interior PCBs, our queue algorithm is highly
efficient, even when tasks are very fine-grained.

Other costs
All of the schedulers in the experiment were implemented
with individual processor stacks; the experiment measured
the difference between placing the stacks in local memory
and placing them in global memory. However, without our
scheduling policy, individual processor stacks are not
possible, and a more expensive shared-memory storage-
allocation algorithm must be used for the cactus stack. If
our sg and dg schedulers paid the full cost of a general
cactus-stack implementation, the performance
improvements of the local-memory algorithm would be
larger. We analyze the cost of general cactus-stack 757

S. F. HUMMEL AND E. SCHONBERG

758

S. F. HUMMEL AND E. SCHONBERG IBM J . RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERNOVEMBER 1991

tii
II

2200

1800

1600

1400

lux)

18 ooa

16 oo(1

14 OOC

12 ooc

10 ooc

4 8 16 24 32 40 48 56 62

Number of processors

759

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBERINOVEMBER 1991 S. F. HUMMEL AND E. SCHONBERG

S. F. HUMMEL AND E. SCHONBERG IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERNOVEMBER 1991

4 8 16 24 32

30 1

4 8 16 24 32 40 56 62
Number of processors

(b)

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERNOVEMBER 1991 S. F. HUMMEL AND E. SCHONBERG

allocation for a parallel construct PC executed by P
processors as follows. When PC is executed, P stack
frames must be allocated. The best concurrent-access
storage-allocation algorithm we are aware of (a version of
the buddy-system algorithm) has a worst-case running time
per request proportional to

log(arena- size) - log(request- size),

where arena-size is the size of the shared-memory storage
pool, and request-size is the size of the storage requested
[28]. In our case, request-size is frame-size, the size of a
stack frame, and arena-size must be at least
P X max-nesting-depth X frame-size. Thus, the
cumulative worst-case cost of the central allocation of
all P stack frames is at least proportional to

P X [log (P X m a - nesting- depth X frame- size)

- log (frame- size)]

= P X log(P X m-nesting-depth). (1)

Thus, the cost of central allocation increases with P.
On the other hand, our scheduling policy has an

additional cost: the idle time consumed by the processor
that owns PC as it busy-waits for helper processors to
finish their tasks (see Section 4). Since the owner itself
executes tasks until the PCB is empty, this cost is bounded
by the maximum running time of a task, which we denote
as mar. If max is small, the busy-waiting time is not
significant. If max is large, it is possible to improve load
balancing as follows. Instead of busy-waiting until PC is
finished, the owner temporarily becomes a helper by
obtaining a task from the queue. After the owner executes
this task and PC is finished, the owner executes the child
of PC.

8. Extensions
In this section, we propose several strategies that address
performance issues raised in previous sections, such as
even processor distribution and load balancing. We also
discuss extensions that permit tasks that do not run until
completion to accommodate explicit synchronization
primitives (see Section 2) . Since the overhead of complex
schemes can outweigh their benefit, especially for fine-
granularity parallelism [6], the extensions described here
are fairly simple.

Reducing scheduling overhead
A common technique to reduce the overhead of scheduling
parallel loops is to assign iterations to processors in chunkr
rather than individually, so that each task consists of a set
of consecutive iterations. With fixed-sized chunks of
K iterations, the maximum task-execution time m a (the
expected amount of time an owner may have to busy-wait
until all helpers are finished) is increased by a factor of K .

However, a variable-sized chunking scheme called
factoring has been proposed [17], in which the expected
idle time is the maximum execution time of a single
iteration, instead of a single task (chunk). By allocating
tasks in decreasing-sized chunks, factoring reduces
scheduling overhead without impairing load balancing.
Factoring has been shown to outperform other chunking
methods on loops with a wide range of iteration
characteristics [18] by allocating tasks in decreasing-sized
chunks. Because the scheduling overheads are lower when
the tasks in each PCB are scheduled using factoring, more
fine-grained nested parallelism can be exploited with
factoring than with other chunking methods.

Even processor distribution
With our scheduling scheme, processors searching the
queue obtain work from the first nonempty PCB.
However, if different processors look for work in different
PCBs on the queue, there will in general be fewer
processors assigned to each parallel construct, and the
processor distribution will be more even (see Section 4).
To address this problem, a scheme is proposed in [5] in
which processors are allowed to scan the entire queue
before deciding which task to obtain. Alternatively, we
could add a third counter to PCBs that limits the number
of processors that execute a parallel construct. This
counter would be used instead of multiplicity to determine
when to update q-head. The maximum number of
processors desired for each construct could be specified by
either the compiler or the run-time system.

Adaptive fork
There is no benefit in performing a fork operation unless a
processor is available or becomes available to help with
the work. To reduce unnecessary fork operations, we can
keep a count of the number of available processors and
perform a fork operation only when the count is positive.
Experimentation with such adaptive forks has shown
generally good performance improvements, as much as
20% for the matrix multiplication program in Section 7.
However, the execution time for different runs of the same
version of the program varied by 10-20% with adaptive
forking. We therefore disabled it in our experiment, in
order to obtain repeatable measurements.

Blocklunblock operations
Explicit synchronization, such as posting and awaiting
events, can lead to deadlock unless it is possible for the
run-time system to block tasks (see Section 2). For
example, if all scheduled tasks are waiting for unscheduled
tasks, some scheduled task(s) must be suspended. When
tasks may be blocked, a more expensive cactus-stack
implementation is required, because tasks are not
necessarily resumed in LIFO order. Alternatively, the

blocking and unblocking of tasks can be implemented in
the run-time system by using a shared work queue, P local
work queues, and P storage pools. Initially, tasks are
allocated from the central work queue. Once a processorp
begins a task, the task may not be blocked and reassigned
to another processor, but it may be blocked and resumed
onp. The stack frame for the task is allocated from the
local-memory storage pool ofp. If the task is blocked, it is
placed on the local work queue ofp. Since a task cannot
be resumed on another processor, there is a trade-off of
load balance and locality.

9. Conclusion
We have designed, implemented, and assessed a run-time
supervisor that schedules nested parallel loops on
multiprocessors that have both local and shared memory.
A multiprocessor scheduler must optimally trade off
processor load imbalances with overhead. For example,
exploiting nested parallel loops can improve load
balancing, but the run-time realization is more complex
than for simple loops. In general, achieving balanced work
loads requires centralized resource allocation, and the
increased overhead arises either from the loss of locality or
from contention. By pairing local stacks with a global work
queue, our system attempts to minimize the cumulative
performance loss from load imbalances and overhead.

With our scheduling policy, the parent of a parallel loop
enqueues it, executes iterations until it is empty, and then
waits for any helper processors to finish with their
iterations. The policy permits private variables for the
iterations to be allocated locally from individual processor
stacks. Locality is further exploited by reusing stack
frames: Once a processor executes an iteration, rather than
searching the global queue for new work, it continues
executing iterations from the same loop. Iterations from
the same loop can use the same stack frame. Thus, the
overhead of executing subsequent iterations is reduced.

list, with fetch&increment, fetch&decrement, and
fetch&store operations used for synchronization. The
queue mechanism uses an “optimistic algorithm” in that it
is highly efficient for the usual case, and operations are not
“locked out” when the queue is in an inconsistent state.
Inconsistencies are detected and subsequently corrected
rather than prevented. As an example of the efficiency of
queue operations, we note that when the queue is
nonempty, a processor can execute a fork operation and
begin executing a task from a parallel construct after fewer
than six shared-memory accesses.

queue may have holes-that is, interior entries whose loop
iterations have all been executed. Our queue
accommodates such empty interior entries by leaving them
as place holders and allowing them to be reused in place.

The global work queue is implemented as a singly linked

A consequence of our scheduling policy is that the

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBERINOVEMBER 1991

A state variable is included in an entry to coordinate its
reuse, enqueue, and dequeue. By using the state variable
to delay the reuse of a PCB while it is being dequeued, our
algorithm permits a high degree of concurrent queue
operations.

To assess our run-time system, we compared, on the
RP3, our scheme to a more traditional scheme that uses
global-memory stack allocation and a doubly linked work
queue (which allows PCBs to actually be removed). Two
programs were tested, one with coarse-grained iterations
and the other with fine-grained iterations. The number of
processors was varied from 4 to 62 to test the scalability of
the schemes. The experiment revealed that the local-stack-
allocation optimization was particularly effective (up to
27% performance improvement) when the granularity was
coarse, since there were more opportunities for reusing
data, and that the singly-linked-list optimization was
particularly effective (up to 31% performance
improvement) when the granularity was fine, since there
was greater contention for the scheduling queue. These
effects became more pronounced as the number of
processors was increased. Measured together, the two
optimizations improved performance by as much as 37%.

While our scheme works best on machines with local
memory, it can be implemented on machines without local
memory by placing the individual processor stacks in
global memory. The allocation of stack frames is still
contention-free and, hence, less expensive than using a
centralized storage pool for allocation.

Appendix: Code for scheduling queue
I* Look f o r work on the queue */
consume-q() {

pcb-pointer my-pcb;
integer my-task;

while true {
I* Traverse queue u n t i l a nonempty PCB i s found *I
my-pcb = q-head;
while (my-pcb z n u l l) {

i f (my-pcb+multiplicity 2 0) {
my-task = f & d (m y - p c b ~ m u l t i p l i c i t y) ;
i f (my-task > 0) /* Found a task */

i f (my-task = 0) {
re turn [my-pcb, my-task] ;

I* my-pcb i s empty, so decrement s ta te *I
i f (f&d(mygcb+state) = 2) {

dequeue(my-pcb) ;
my-pcb = q-head;
continue;

1
}

1

1
my-pcb = my-pcb-next;

1
1

S. F. HUMMEL AND E. SCHONBERG

/* Look f o r work i n PCB my-pcb */
consume-pcb(pcb-pointer my-pcb) {

i n t e g e r my-task, previous-state;

my-task = f&d(my-pcb-multiplicity);
i f (my-task z 0) {

f&d(my-pcb+number-left) ;

/* Test whether a t a s k was ob ta ined */
i f (my-task > 0) r e t u r n my-task;
r e t u r n f a i l u r e ;

1

/* my-pcb i s empty, so decrement s t a t e */
previous-state = f&d(my-pcb-state);
f&d(my-pcb-number-left);
i f (previous-state = 2)

dequeue(my-pcb) ;

r e t u r n f a i l u r e ;

I
/* Remove empty e n t r i e s a t t h e head of the queue */
dequeue(pcb-pointer head) {

/* head i s a p r i v a t e copy o f q-head *I

pcb-pointer old-head, old-tai l , f i rst -missed;

/* Advance q-head u n t i l t h e queue i s empty o r

w h i l e t r u e {
a nonempty PCB i s found */

old-head = head;
head = old-head-next;
q-head = head;

i f (head = n u l l) break;

f&d(old-head+state); /* Removal complete */

/* Update and t e s t s t a t e o f t h e new queue head */
i f (f&d(head+state) f 2) r e t u r n ;

1
/* The queue i s empty. Set q - t a i l t o n u l l so t h a t q - t a i l

and q-head are cons i s ten t */

o l d - t a i l = f & s (q - t a i l , n u l l) ;

/ * Take care o f misplaced PCBs */
i f (o l d - t a i l = old-head) {

/* No misplaced PCBs */
f&d(old-head+state); /* Removal complete */
r e t u r n ;

1

/* Otherwise, must append misplaced PCBs t o t h e queue */

/* Busy-wait f o r p o s s i b l e enqueue i n p rogress to comple te */
w h i l e (old-head+next = n u l l) { }

f i rst -missed = old-head+next;
f&d(old-head+state); /* Removal complete *I

e n q u e u e (f i r s t - m i s s e d , o l d - t a i l) ;
r e t u r n ;

1

/* I n i t i a l i z e s t a t e , m u l t i p l i c i t y , and next o f PCB * I
produce(pcb-pointer my-pcb, i n t e g e r m u l t i p l i c i t y) {

/* my-pcb i s a1 located, so increment s t a t e */
i f (f&i(my-pcb+state) = 2) {

/ * my-pcb i s a l r e a d y enqueued * /
my-pcb-mult ipl ic i ty = m u l t i p l i c i t y ;
r e t u r n ;

1

/* Wait f o r dequeue i n p rogress to comple te */
w h i l e (my-pcb-state f 1) 0

/* Enqueue PCB */
my-pcb-state = 3 ;
my-pcbjnext = n u l l ;
m y - p c b j m u l t i p l i c i t y = m u l t i p l i c i t y ;
enqueue(my-pcb, my-pcb) ;
re turn ;

1

/* Enqueue a 1 i s t o f PCBs */
enqueue(pcb-pointer my-head, pcb-pointer my-tai l) {

pcb-pointer previous;

previous = f & s (q - t a i l , m y - t a i l) ;
i f (previous z n u l l) {

previous-next = my-head;
re tu rn ;

1
/* Queue i s empty */
q-head = my-head;
i f (f&d(my-head+state) = 2)

/* Queue head i s empty */
dequeue(my-head);

}
re tu rn ;

Acknowledgments
We thank all the members of the PTRAN and RP3 groups
for making their systems available for experimentation,
and Michael Burke and Frances Allen for their support of
this work. We also thank Janice Stone, James Lipkis, and
Eric Freudenthal for many helpful discussions, the referees
for their useful comments, and Christina Meyerson for
producing our figures.

References
L. J. Toomey, E. C. Plachy, R. G . Scarborough, R. J.
Sahulka, J. F. Shaw, and A. W. Shannon, “IBM Parallel
FORTRAN,” IBM Syst. J. 27, No. 4, 416-435 (1988).
C. D. Polychronopoulos, “Loop Coalescing: A Compiler
Transformation for Parallel Machines,” Proceedings of the
IEEE International Conference on Parallel Processing,
August 1987, pp. 235-242.
Zhixi Fang, Peiyi Tang, Pen-Chung Yew, and Chuan-Qi-
Zhu, “Dynamic Processor Self-scheduling for General
Parallel Nested Loops,” IEEE Trans. Computers 39,
919-929 (July 1990).
Michael Weiss, C . R. Morgan, P. Belmont, and Zhixi
Fang, “Dynamic Scheduling and Memory Management for
Parallel Programs,” Proceedings ofthe ZEEE International

Conference on Parallel Processing, August 1988, pp.
161-165.

Parallelism in Fortran,” Research Report RC-14160, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 1988.

6. Thomas E. Anderson, Edward D. Lazowska, and Henry
M. Levy, “The Performance Implications of Thread
Management Alternatives for Shared-Memory
Multiprocessors,” Technical Report 88-09-04, University
of Washington, Seattle, September 1988.

7. James M. Wilson, “Operating System Data Structures for
Shared-Memory MIMD Machines with Fetch-and-Add,’’
Ph.D. Thesis, New York University, New York, 1988.

Multiprocessor Ada Run Time Supervisor,” Ph.D. Thesis,
New York University, New York, 1988.

9. A. Gottlieb, B. D. Lubachevsb, and L. Rudolph, “Basic
Techniques for the Efficient Coordination of Very Large
Numbers of Cooperating Sequential Processors,” ACM
Tram. Program. Lung. & Syst. 5, No. 2, 164-189 (1983).

GA22-7000; available through IBM branch offices.

Harvey, W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton,
V. A. Norton, and J. Weiss, “The IBM Research Parallel
Processor Prototype (RP3): Introduction and
Architecture,” Proceedings of the IEEE International
Conference on Parallel Processing, August 1985, pp.
764-771.

Technologies Corporation, 10 Moulton St., Cambridge,
MA 02238, June 1985.

Cytron, and Jeanne Ferrante, “An Overview of the
PTRAN Analysis System for Multiprocessing,” J. Parallel
& Distr. Computing 5, No. 5, 617-640 (1988).

14. R. M. Bryant, H.-Y. Chang, and B. S. Rosenburg,
“Operating System Support for Parallel Programming on
RP3,” IBM J. Res. Develop. 35, No. 516, 617-634 (1991,

15. Clyde Kruskal and Alan Weiss, “Allocating Independent
this issue).

Subtasks on Parallel Processors,” IEEE Trans. Software
Eng. SE-11, No. 10, 1001-1016 (October 1985).

Self-Scheduling: A Practical Scheduling Scheme for
Parallel Computers,” IEEE Trans. Computers C-36,
1425-1439 (December 1987).

17. L. E. Flynn and S . Flynn Hummel, “Scheduling Variable-
Length Parallel Subtasks,” Research Report RC-15492,
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1990.

“Factoring: A Practical and Robust Method for Scheduling
Parallel Loops,” Proceedings of Supercomputing 91,
ACMIIEEE, 1991, pp. 610-619. (Also to appear in
Commun. ACM, August 1992.)

19. Peiyi Tang, Pen-Chung Yew, Zhixi Fang, and Chuan-Qi-
Zhu, “Deadlock Prevention in Processor Self-Scheduling
for Parallel Nested Loops,” Proceedings of the IEEE
International Conference on Parallel Processing, August
1987, pp. 11-19.

Stack Mechanism,” AFIPS Proc. Spring Joint
Conference, 1968, pp. 245-251.

21. M. P. Herlihy and J. M. Wing, “Linearizability: A
Correctness Condition for Concurrent Objects,” ACM
Trans. Program. Lung. & Syst. 12, No. 3, 463-492 (July
1990).

Algorithm Using Compare-and-Swap,” Proceedings of
Supercomputing ’90, ACMIIEEE, 1990, pp. 495-504.

5. David Bernstein, “PREFACE-2, Supporting Nested

8. Susan Flynn Hummel, “SMARTS-Shared-Memory

10. IBM System1370 Principles of Operation, Order No.

11. G. F. Pfister, W. C. Brantley, D. A. George, S. L.

12. Inside the Buttefly GPIOOO, BBN Systems and

13. Frances Allen, Michael Burke, Philippe Charles, Ron

16. David Kuck and Constantine Polychronopoulos, “Guided

18. S. Flynn Hummel, E. Schonberg, and L. E. Flynn,

20. E. A. Hauk and B. A. Dent, “Burroughs B6500lB7500

22. J. M. Stone, “A Simple and Correct Shared-Queue

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWNOVEMBER 1991

23. J. M. Stone, “A Nonblocking Compare-and-Swap
Algorithm for a Shared Circular Queue,” Proceedings of
the IMACSIIFAC Symposium on Parallel and Distributed
Computing in Engineering Systems, Corfu, Greece, June
1991.

Fetch-and4 Algorithms,” Technical Report 229,
University of Rochester, Rochester, NY, 1987.

Without Contention,” Proceedings of Architectural
Support for Programming Languages and Operating
Systems, ACM, April 1991, pp. 269-278.

Concurrent Data Structures,” Proceedings of Principles
and Practice of Parallel Programming, ACM, June 1990,
pp. 197-205.

Coherence Solution for Multiprocessors,” Proceedings of
the IEEE International Conference on Parallel Processing,
August 1986, pp. 1029-1036.

28. E. Freudenthal, “A Short Note on Parallel Power-of-Two
Buddy Allocation for Shared Memory MIMD Machines,”
Ultracomputer System Software Note 66, New York
University, New York, February 1992.

24. J. M. Mellor-Crummey, “Concurrent Queues: Practical

25. J. M. Mellor-Crummey and M. L. Scott, “Synchronization

26. M. Herlihy, “A Methodology for Implementing Highly

27. Alexander Veidenbaum, “A Compiler-Assisted Cache

Received October 24, 1990; accepted for publication
January 29, 1991

Susan Flynn Hummel School of Computer Science and
Electrical Engineering, Polytechnic Universiy, 6 Metrotech
Center, Brooklyn, New York 11201. Dr. Flynn Hummel
received a B.A. in mathematics (minor in computer science)
from McGill University in 1980 and a Ph.D. in computer
science from New York University in 1988. She currently has
a visiting position at the Ecole Nationale Supkrieure des Mines
de Paris, while on leave from her position as Assistant
Professor of Computer Science at Polytechnic University in
New York. She has previously held visiting positions at the
IBM Thomas J. Watson Research Center in New York and the
Vrije Universiteit in Amsterdam. Her main research interest is
scalable software and hardware systems.

Edith G. Schonberg IBM Research Division, Thomas J.
Watson Research Center, P. 0. Box 218, Yorktown Heights,
New York 10598. Dr. Schonberg received her Ph.D. in
computer science in 1980 from New York University. From
1980 to 1983, she conducted research in database management
systems at Bell Laboratories, Murray Hill, New Jersey. From
1983 to 1989 she was a Research Scientist at New York
University in the Ultracomputer Project, working on parallel
operating systems and the debugging of parallel programs. Dr.
Schonberg joined IBM in 1989 as a Research Staff Member in
the Parallel Software Department at the IBM Thomas J.
Watson Research Center. Her current research interests
include compiler optimizations, run-time systems, and
environments for multiprocessor architectures.

S. F. HUMMEL AND E. SCHONBERG

765

