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Nested parallelism has the potential not only
to permit more parallelism than non-nested
parallelism, but to result in better load
balancing. However, nested parallelism will not
be profitable unless the overhead of
scheduling nested parallel constructs can be
made nonprohibitive. Previous
implementations of nested parallel constructs
have been fairly expensive and therefore have
not been able to exploit fine-grained nested
parallelism. In this paper, we describe a run-
time system that schedules a large subset of
nested parallel constructs—those that run until
completion without blocking—with very little
overhead. Our run-time system is buiit around
a novel scheduling policy and work queue. The
scheduling policy permits efficient stack-based
local-memory storage allocation for task data,
which is particularly efficient for
multiprocessor architectures with both shared
and local memory, such as the RP3. The
shared, nonlocking work queue allows
processors to obtain tasks in just a few
instructions, without sacrificing load
balancing.

1. Introduction

This paper describes a scheme for low-overhead, dynamic
scheduling of nested parallelism in FORTRAN programs
on multiprocessors with shared and local memory. We
consider closed parallel constructs, such as the PARALLEL
DO loop [1], in which the iterations of the loop are
independent and can be executed in parallel. For example,

PARALLEL DO I = 1,N
A(1) = F(B(I), C(I), A(T))
END DO

A task is a program-code sequence that is the unit of
scheduling on a processor. A single iteration of the
PARALLEL DO I loop above is a task in our study.

Nested parallelism arises from the nesting of parallel
constructs, as shown here:

PARALLEL DO I = 1,N
PARALLEL DO J = 1,M
END DO

END DO
Each PARALLEL DO I task splits into M tasks when it
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reaches the PARALLEL DO J loop. This permits the
distribution of inner parallel work to available processors.
In this example, nested parallelism is potentially profitable
when the number of processors P is greater than the
number of outer iterations N (each processor might
execute M X N/P tasks).

Even when P is less than N, nested parallelism may
improve speedup (execution time for a single processor
divided by the execution time for P processors) by
eliminating or reducing load imbalance. (A load imbalance
occurs whenever some processors are idle while other
processors are busy.) When there is no nested parallelism,
if the iterations of the outer PARALLEL DO I loop have
different execution times, some processors may finish
executing their assigned iterations earlier than other
processors, resulting in a load imbalance. When nested
parallelism is exploited, processors that finish early can
assist slower processors by executing inner iterations,
thereby improving load balancing. On the other hand, if
the overhead of run-time scheduling is too high, fine-
grained parallelism from many small tasks is not
worthwhile. Therefore, an important design consideration
is the trade-off between run-time overhead and load
balancing.

Loop transformations performed by compilers, including
loop collapsing and coalescing [2], eliminate nested
parallelism by merging a set of nested loops into a single
parallel loop, thereby reducing run-time overhead.
However, an outer loop cannot be coalesced with an inner
loop if the outer loop contains statements that are not in
the inner loop. Vectorization is a compiler technique for
mapping program parallelism onto processor vector units,
but vectorization can be performed only on inner parallel
loops; outer parallel loops must still be scheduled
dynamically.

Typically, schemes for managing nested parallelism
dynamically allocate resources from shared pools [3-5].
Task scheduling is performed by means of a shared queue.
Whenever a processor becomes idle, it obtains another
task from the shared queue until no tasks remain. This
scheduling strategy, called self-scheduling, balances the
workload because processors are idle only if there are no
tasks on the queue. Similarly, task stack frames (the
storage blocks for the private variables of tasks) are
allocated from a shared-memory storage pool, so that
inner-loop tasks can access the task stack frames of outer-
loop tasks.

Shared resource pools improve overall load balancing at
a cost [6]: Accessing shared memory is expensive, and the
accompanying processor synchronization is a source of
contention, particularly if locking is required. The shared
scheduling queue is an obvious source of contention, so it
is desirable to use a queue that reduces lock overhead.
Many nonlocking queue algorithms for scheduling [7, 8]
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synchronize by using atomic read-modify-write
instructions, such as fetch&add, fetch&store [9], and
compare&swap [10], although none is designed specifically
for nested parallelism.

To reduce the cost of memory allocation, schemes for
static stack-frame allocation have been proposed in [4] and
elsewhere. These schemes decrease the overhead of
storage management by reducing the number of stack-
frame allocation operations. However, storage estimates
used for the allocations must be conservative, thus large,
and the schemes still require a shared-memory storage
pool for the stack frames. Furthermore, it is difficult to
implement recursion by static stack-frame allocation. Thus,
static allocation is not practical for languages with both
parallelism and recursion. o

We describe a scheme for scheduling nested parallelism
suitable for architectures that have both local and shared
memories, such as the RP3 parallel processor [11] and the
BBN Butterfly architecture [12]. These machines are
sometimes called NUMA (Non-Uniform Memory Access)
machines. Our scheme reduces run-time overhead by
means of a centralized scheduling policy that permits local-
memory stack-frame allocation, and a novel, nonlocking
“‘optimistic-queue’” algorithm for scheduling. Thus, this
scheme preserves the load-balancing properties of dynamic
scheduling while reducing contention, by localizing storage
management and eliminating locking. In particular, stack-
frame allocation is a simple stack operation, and accessing
the scheduling queue is usually no more expensive than
manipulating a singly linked list.

This run-time management scheme has been
implemented to execute PTRAN programs [13] on the ®
RP3. PTRAN is a program analyzer, developed at the IBM
Thomas J. Watson Research Center, that automatically
paralielizes FORTRAN programs. The RP3 is a 64-way
shared-memory multiprocessor, also designed and built at
IBM, with a three-level memory hierarchy (cache, local,
and global memory) and a network connecting all the
processors [11, 14]. We present experimental results that
verify the performance advantages of using local-memory o
stack-frame allocation and of using our nonlocking
scheduling-queue algorithm on the RP3.

Before describing our run-time system, we present some
background material. In the following section, we give an
overview of dynamic run-time scheduling strategies in
general, and in Section 3, we discuss the scheduling of
nested parallelism in particular. In Section 4, we present
our scheduling policy—which permits both dynamic
scheduling and local-memory stack-frame allocations.
Sections 5 and 6 describe details of stack-frame
management and our scheduling-queue algorithm,
respectively. The RP3 experiment is described in Section
7. Finally, after discussing potential enhancements to the
run-time system in Section 8, we draw conclusions in
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Section 9. Code for the scheduling queue is in the
Appendix.

2. Overview of dynamic run-time scheduling
Parallel-program scheduling is typically performed by the
run-time library rather than by the operating system [1, 6].
A run-time library can be precisely optimized for a specific
programming model and semantics, while operating system
kernel primitives must be general enough to accommodate
a variety of programming models and languages [6, 8]. To
perform scheduling by the run-time library, an application
program, at the start of execution, invokes the operating
system to create a set of operating system threads
(lightweight processes), called virtual processors. The
virtual processors schedule and execute the program tasks
without further operating system assistance. Not all
operating systems provide threads, in which case full-
blown processes must be used for virtual processors.
Operating system threads are preferable for virtual
processors because threads share an address space, so that
creating them is much cheaper than creating processes.

Some operating systems, including the RP3 operating
system [14], allow parallel programs to bind virtual
processors to physical processors, which prevents the
operating system from suspending the execution of the
virtual processors and moving them to different physical
processors. Moving a virtual processor to a different
physical processor is expensive, and suspending the
execution of a virtual processor reduces the number of
physical processors assigned to a program, hence, the
amount of actual parallelism of the program. For the rest
of this paper, we assume that virtual processors are bound
to physical processors and refer to virtual processors
simply as processors.

Table 1 shows the complexity of run-time scheduling
necessary for different parallel language paradigms.

Scheduling can be performed for a simple loop with just
two shared counters [4]: one counter (named multiplicity)
to regulate assignment of iterations to processors, and the
other counter (number_left) to determine when all
iterations are complete. Variations of simple self-
scheduling include schemes for distributing work in chunks
of iterations, of either uniform [15] or decreasing size
[16-18] in order to reduce overhead. The schemes
described in [16-18] are designed to reduce the potential
load imbalance of chunking.

Scheduling nested parallel constructs requires a more
general mechanism, such as a queue, since the scheduling
of separate inner parallel constructs is performed
concurrently. The tasks of each individual paraliel
construct are scheduled with two counters, as described
above. (Another approach, described in [3], uses a
compiler-generated precedence table to control the self-
scheduling order.)
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Table 1 Scheduling complexity required for language
features.

Language feature Complexity required

Counters

Scheduling queue
Run until completion
Block/unblock facility
Preemption, priorities

Simple loop

Nested parallelism

No explicit synchronization
Explicit synchronization

More operating system capability

A large class of parallel constructs with no explicit
synchronization operations can be scheduled using a ““run-
until-completion’ paradigm wherein a task, once it begins
to execute, may not be blocked (descheduled) before it
finishes. The advantage of run-until-completion scheduling
is its low overhead. For example, iterations from the same
parallel construct scheduled on the same processor can use
the same storage block for their task stack frames. As a
result, the total amount of storage that is necessary for
task stack frames is a function of the product of the
maximum nested depth and the number of processors [4].

However, run-until-completion scheduling for more
general paralle] programs can lead to deadlock. For
programs with explicit synchronization operations, the
scheduler must be able to block tasks before they finish,
and subsequently unblock (reschedule) them. Examples of
explicit synchronization operations are post event and
await event. A task that executes an await event operation
cannot proceed until another task executes a
corresponding post event operation. If tasks cannot be
blocked and there are more parallel tasks than processors,
a task executing an await event can wait forever for the
task that executes the corresponding post event to be
scheduled.' Reuse of task stack frames is no longer always
possible when the potential for blocking exists, and the
issues of task migration and local versus global queues
become relevant.

More complex tasking models require further operating
system functionality. For example, Ada scheduling
requires priorities and preemption [8]. Even when
additional operating system functionality is required,
library scheduling is not as expensive as operating system
scheduling.

The scheme described below implements run-until-
completion scheduling for nested parallel constructs.
Section 8 returns to the issue of explicit synchronization.

3. Nested parallelism

Run-time scheduling assigns processors to tasks in a task-
execution graph, in which the nodes represent tasks and
the edges represent task creation/termination operations. A

1 In [19], compiler-generated precedence information prevents deadlock, so that
run-until-completion scheduling is still possible.
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C PARALLEL DO I = 1,N
PRIVATE X,Y

- PARALLEL DO J .= .1,M

PRIVATE Z
END DO
A(1) =X
END DO
@
Parent of PARALLEL DOT
Root)

Child of PARALLEL DO
®)

Example of parallel code with private variables: (a) code;
(b) task-execution graph.

task-execution graph for the program in Figure 1(a) is
shown in Figure 1(b). The predecessor nodes (successor
nodes) of a node are called the parent tasks (child tasks) of
the node. In Figure 1(b), the task I = 1 is the parent task
of its M child tasks J = 1, - - -, M. [Note that the code in
Figure 1(a) beginning with the statement A(I) = X is
called a child task, with M parents corresponding to the M
iterations of the PARALLEL DO J loop.]

A PARALLEL DO loop iteration may have private variables,
which are declared inside the loop. A private variable of
an iteration is shared among all iterations nested within the
iteration. For example, a distinct copy of the private
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variables X and Y declared in Figure 1(a) is allocated to
the iteration I = 1 in Figure 1(b), and this copy of X and
Y is shared among the M children of I = 1.

A task stack frame is a storage block containing the
private variables of an iteration. In addition, each task
stack frame contains a pointer to the stack frame of its
parent task. During execution, the active stack frames
form an inverted tree, called a cactus stack [20]. A cactus
stack for Figure 1(b) is illustrated in Figure 2 (at some
instant when M x N processors are executing all of the
PARALLEL DO J iterations concurrently). The root node is
the task stack frame of the parent of the PARALLEL DO I
loop, and the other nodes are task stack frames for the
PARALLEL DO I and PARALLEL DO J iterations. The arrows
point to parent stack frames.

The execution of a PARALLEL DO statement can be broken
down into the following three actions:

o Fork. The parent task allocates a parallel control block
(PCB), initializes it, and stores it on a shared queue. The
PCB, which is used to schedule all iterations of the loop,
contains the address of the parent-task stack frame, the
address of the loop body code, the two counters needed
to schedule the iterations (see the preceding section),
and other information.

s Context switch. An idle processor obtains a task (an
iteration) to execute from a PCB on the queue by
decrementing the multiplicity counter of the PCB. To
begin executing the task, the processor branches to the
loop-body code address.

o Initialization. At the beginning of task execution, storage
for the private variables of the iteration (its stack frame)
is allocated, and a link to the parent stack frame (the
cactus-stack link) is saved. (On architectures in which
the cache is managed by software, such as the RP3,
cache invalidations are also performed.)

When all iterations in a parallel construct have been
started (multiplicity = 0), the corresponding PCB may be
removed from the queue. When all iterations in the
construct are complete (number_left = 0), the child task
corresponding to the code that follows the construct is
executed.

The cost of these three steps depends partly on the
scheduling policy, which determines how processors are
assigned to the tasks in the task-execution graph. Our
scheduling policy is designed to reduce these costs, as
described in the next section.

4. Scheduling policy

Our scheduling policy consists of three rules that
determine what a processor should do at each task
creation/termination point. The first two rules are common
to several run-time systems [4, 5], while the third rule is
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not. The third rule permits local-memory allocation of
stack frames.
Let b designate the PCB of some parallel construct PC.

Rulel A processor that executes a task from b continues
executing tasks from b while unassigned tasks remain. If
none remain, it searches for work on the scheduling queue.

The advantage of this rule is that both context switching
and initialization can be performed at low cost when a
processor is able to obtain a sequence of tasks from the
same PCB. For each task in the sequence after the first,
the processor does not have to search the scheduling
queue nor allocate a new task stack frame. The same stack
frame is reused for all of the tasks the processor executes.

Letb, -+, bq be the PCBs on the queue at a given
time, and let P, be the number of processors assigned tasks
from b, (1 < i < g) at that time. The performance
advantages of Rule 1 are best realized for a given b, if P, is
much smaller than the original number of tasks N, in b,.
There is no reuse of the task stack frames if P, = N,, and
there is no parallelism for b, if P, = 1. We say that the
processors are evenly distributed at a given time if
|P, - P| <1, for1 <4, j < g, and if no processors
remain idle when the queue is not empty. Generally, even
distribution results in a high degree of stack-frame reuse
without decreasing parallelism.

FIFO (first in, first out) scheduling does not achieve
even distribution. For example, in Figure 1(b) strict FIFO
ordering causes all N of the outer tasks to be scheduled
before any of the N X M inner tasks, since the PCB for
the outer parallel construct is first on the queue. Rule 2
below, which is not FIFO, achieves a more even
processor distribution.

Rule 2 After a processor completes the fork operation
that allocates b, it obtains its next task from b.

Thus, tasks from b are executed by the owner of b (the
processor that allocates it) and perhaps by helpers
(processors that find b on the queue). If no processors are
available, the owner may complete all of the tasks in b
without any helpers. With Rule 2, processor distribution is
““even’” when there is at most one helper processor,
because (a) with no helper processors, each PCB on the
queue has one processor, the owner, executing its tasks,
(b) helper processors are assigned to the first PCB on the
queue, (c) two or more helper processors give the first
PCB three or more processors, while the other PCBs have
only one. Section 8 discusses improvements for better
processor distribution.

To implement Rule 2, the queue algorithm must allow
task assignment from interior PCBs (PCBs that are neither
the first nor the last one on the queue). Since each owner
executes tasks from the PCB that it enqueues, all
enqueued PCBs are being ““consumed’” concurrently, and
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Cactus stack for the example of Figure 1.

some of these may become empty before becoming first on
the queue. Queue algorithms that allow interior entries to
become empty (perhaps removed from the queue) are more
complex and typically more expensive than the more usual
FIFO queue algorithms. Our queue algorithm, as described
in Section 6, is designed to accommodate empty interior
entries efficiently without removing them.

The third rule permits local-memory stack-frame
allocation.

Rule 3 After all of the tasks in b are finished, the owner
of b executes the child task of the iterations of the parallel
construct PC—the code immediately after PC. (This may
require the owner to wait, which is discussed below.)

The advantages of this rule are the following:

¢ The cactus stack can be implemented by P processor
stacks, allocated in the local memories® of the P
processors. (This is verified in the following section.)
Stack frames are allocated by simple stack operations,
with no synchronization or locking.

¢ PCB allocation can also be implemented by P individual
processor stacks in global memory, again without
synchronization or locking. (See the following section.)

Without Rule 3, both task stack frames and PCBs must be
allocated from a shared-memory storage pool, which is
more expensive. However, the disadvantage of this rule is
that it may cause processors to have a load imbalance. The
best load balancing is obtained when the processor that

2 In the RP3 system, the local memory associated with any processor could be
accessed by all other processors, although with greater delay.
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Three snapshots of four processor stacks, showing the cactus stack
of the example of Figure 1 at different times.

executes the last task to finish from b executes the code
after PC (the child task). Under Rule 3, the owner of PC
must wait until all tasks from b are finished. However, the
cost of this idle time must be weighed against the savings
from local storage allocation. In Section 7, where we
return to the issue of load balancing versus local-memory
storage allocation, we argue that the savings outweigh the
costs, in particular when P is large.

5. Cactus-stack management

While, in general, cactus-stack management requires a
central storage pool and locking, it is possible to
implement the cactus stack by means of P individual
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processor stacks because of Rule 3. We justify this

claim as follows. First, the same processor that

allocates a task stack frame always deallocates it.
Therefore, each processor can maintain its own pool of
task stack frames, and no locking is necessary.
Furthermore, the stack frames themselves can be allocated
in strict LIFO (last in, first out) order, since the owner
processor of PC always deallocates all stack frames
generated during the execution of PC by the time that PC
completes. Because of the LIFO order, the local pool is, in
fact, an ordinary stack, and allocation involves merely
incrementing a stack pointer and setting a link to the
parent stack frame.

To illustrate how the cactus stack works, we consider
the abstract cactus stack of Figure 2 and the individual
stacks of four processors p,, * -+ , p, that are executing
the program of Figure 1(a). Figure 3 shows three snapshots
of the stacks at different times during the execution of the
PARALLEL DO loops. Figure 3(a) shows p, executing the
inner I = 1, J = 10 task; p, executing the I = 2, J =7
task; p, executing the I = 3, J = 2 task; and p, executing
the I = 4 task. Since p, executed the parent of the
PARALLEL DO I loop, its stack has a task stack frame for
the root of the cactus stack, and all stack frames for
PARALLEL DO I tasks have pointers to this root-task stack
frame. In Figure 3(b), p, and p, have finished their
PARALLEL DO I iterations and are helping p,. Processor p,
is executing the next-to-last iteration (I = 1,/ = M — 1),
and p, is executing the last iteration (I = 1, J = M).
Since p, and p, are helpers, their task stack frames point
to the I = 1 task stack frame. Processor p, is executing
iteration ] = 4, J = 24. Figure 3(c) shows p, executing
the rest of the 7 = 1 iteration (the child) after the PARALLEL
DO J loop has finished (and the other processors are idle
because the queue is empty). Since p, executes both the
parent and child task of the PARALLEL DO J loop, the task
stack frame for I = 1, which is needed for the child task,
is available on the p, stack after the PARALLEL DO J loop
has finished.

Although there is one stack per processor, each stack
must be accessible by all processors. For example, p, and
P, must be able to access the p, stack while they are
helpers [see Figure 3(b)]. On the RP3 system, the local
memory of one processor can be addressed by other
processors, so in fact the processor stacks can be allocated
in local memory of the individual processors. For
architectures on which the memory of a processor cannot
be addressed by other processors, the processor stacks can
still be allocated in local memory provided that each stack
frame contains a copy of its parent stack frame instead of
a pointer to the parent stack frame. This increases the cost
of forking and initializing stack frames.

PCB allocation is similar to task stack-frame allocation.
Each processor has its own stack of free PCBs, although
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in global rather than local memory, since the degree of
concurrent access is expected to be high. When a
processor executes a fork operation, it increments its PCB
stack pointer to allocate the next PCB on its stack. After
all tasks in that PCB are finished, the processor
decrements the stack pointer to deallocate it. Thus, each
PCB is part of two data structures—a processor stack and
the shared scheduling queue—and appropriate
synchronization is required when accessing the PCB. Part
of the effort in the queuc-algorithm design was to make
this synchronization efficient.

6. Scheduling queue

The overhead of accessing a shared scheduling queue
determines, to a large extent, the smallest task that is
worth creating. Thus, it is important that the queue be, as
far as possible, nonlocking. The larger the number of
processors, the greater is the degradation due to locking.
Accordingly, many queue algorithms have been designed
to permit concurrent updating. These algorithms typically
use atomic read-modify-write instructions, such as
fetch& ¢, which indivisibly carry out the following steps:
read a variable, perform the (binary) operation ¢ on it, and
store back the result. Read-modify-write instructions
greatly simplify the coordination of multiple processors
accessing a shared data structure such as a queue;
therefore, they are provided on several multiprocessor
architectures, including [11] and [12].

To schedule the nested parallel loops generated by
PTRAN, we designed a new shared-queue algorithm. The
queue is implemented as a singly linked list and uses the
three read-modify-write instructions ferch&increment
(f&i), fetch&decrement ( f&d), and fetch&store (f&s),
which respectively increment, decrement, and swap
variables.

Our queue algorithm has many desirable properties:

It has a very low overhead, in terms of both time and
storage, it is nonlocking, and it permits empty interior
entries in the following efficient manner. When all tasks in
a PCB have been assigned to processors, we mark its
storage block as empty, creating a hole in the queue,
instead of removing the PCB; an empty PCB may be
removed from the head of the queue only. Unfortunately,
in the case of nested parallelism, leaving holes can result
in long chains of empty PCBs. However, our algorithm
reuses empty PCBs in place by reinitializing their storage
blocks with new PCB data, so that these long chains of
empty PCBs are not generated.

Our implementation achieves its efficiency by using an
optimistic strategy wherein abnormal events (such as
appending new PCBs to PCBs that are being removed) are
allowed and corrected at a later time, rather than
prevented. The design philosophy is to streamline common
cases, while minimizing the adverse effect of unusual
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events. For example, because empty interior PCBs are not
immediately removed and are sometimes reused,
enqueuing, dequeuing, and updating PCBs are efficient
operations. Rule 1 is another example of optimizing the
common case. When a processor repeatedly obtains tasks
from a particular PCB, the context-switch overhead is
reduced.

The queue data structure and algorithm are described in
detail later in this section. Below, we discuss related queue
algorithms. The code implementing the queue is in the
Appendix.

® Related work

Concurrent-access queue algorithms differ in several
aspects, including the types of operations permitted, the
number of different operations that can be performed
concurrently, and storage/time requirements. Most
concurrent-access queues are FIFO and do not allow
interior-entry removals. Increased parallelism and reduced
execution time can often be obtained by using more
storage.

The underlying data structures of concurrent-access
queues can be arrays, linked lists, and trees. Although
tree-based queues have storage requirements proportional
to the number of queue entries and operation-time
logarithmic in the number of entries, the overheads of the
basic operations are several orders of magnitude higher
than for array-based or linked-list-based queues (thousands
as opposed to tens of machine instructions [8]), so we do
not pursue them further here.

A simple queue can be built using an array of pointers to
queue elements and two counters, first and last, which are
updated with f&i instructions modulo the array size [9, 21].
The number of insertion and deletion operations that can
be performed concurrently on such queues is determined
by the array size; unfortunately, so is the amount of
storage that must be dedicated. Array-based queue
algorithms that use compare_ double&swap (conditional
swap of two double-words) to update the counters and
permit concurrent enqueues and dequeues are given in [22]
and [23].

Queues based on linked lists are implemented by
maintaining two pointers, head and tail, which are updated
by an indivisible swap instruction, such as f&s,
compare&swap, or compare_double&swap. Singly-linked-
list algorithms for concurrent enqueuing and dequeuing are
presented in [8, 24, 25]. However, these algorithms permit
only one dequeue operation at a time. The storage
overhead of linked-list-based queues is minimal (a few
words).

Hybrid queues have been developed to exploit the high
degree of concurrent access of array-based queues and the
low storage requirements of linked-list-based queues.

These queues use arrays of linked lists, where each list 749
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concurrent queue accesses to the first PCB are possible
: while it is not empty.
number__left ' More concurrency is achievable when processors are

— m‘ﬂfm allowed to obtain tasks from interior PCBs as well as the
muliplicity first PCB. However, interior PCBs may become empty. An
parent stack i , obvious data structure for accommodating empty interior
Context-switch entries is a doubly linked list, since removing interior
task code address entries is straightforward. However, while interior-entry
: removal is being performed (updating the pointers of
state predecessor and successor entries), other operations are
Queve usually “locked out,” in order that the list structure does
management . . .
fext : not become corrupted. The nonlocking doubly-linked-list

algorithms of which we are aware® have relatively high
overheads and therefore have no advantage over a doubly
linked list with locking. o
For the implementation of Ada described in [8], the
singly-linked-list queue algorithm permits multi-item and
empty interior entries. Entries are not actually removed
from the queue, but marked as empty and left as ““holes.”
The storage block for an empty entry can be reused only
after it has reached the head of the queue and been
removed. If the enqueuer needs to enqueue some work
prior to the entry removal, a new entry must be allocated.
: Our new queue algorithm avoids the need for this
Py additional allocation by allowing entries left as holes to be
k “reused in place.”” Surprisingly, this improvement has led
to the development of a completely nonlocking queue.

ig

PCB data structure.

g tail

® Queue data structure

To implement our singly-linked-list multi-item queue, two

pointers are maintained, g_head and g_ tail, which point

to the head and tail of this {ist. These pointers are changed o
using f&s operations. In addition to the fields described in

Section 3, a PCB contains a field next, which is the queue-

_ Figure link field, and state, which is needed for coordination.

Snapshot of four PCB stacks with scheduling-queue links, at the Figure 4 shows the fields of the PCB data structure.

same execution time as Figure 3(a). (The numbers in the PCB  Multiplicity, number_left, and state are updated using f&i

boxes are the values of corresponding multiplicity counters.) and f&d operations. The field next is updated using f&s.

Figure 5 shows a snapshot of four PCB stacks with

scheduling-queue links corresponding to the execution o
state shown in Figure 3(a). The PCB stacks are associated
must be locked while an operation is being performed on with processors p;, ++ + , p,. Since p, executes the parent
it [7], but operations can be performed on different lists of the PARALLEL DO I loop, the PCB for the PARALLEL DO I
concurrently. When the linked lists are implemented with ~ 100p, Which is the queue head, is on the p, PCB stack. The
indivisible swap instructions, only dequeue operations next three PCBs on the queue represent the PARALLEL DO J
must lock a list [8]. loops of iterations I = 2, [ = 1, and I = 3. For each
In the case of our queue used for scheduling nested PCB, the value of multiplicity is shown, which specifies
parallelism, each enqueued PCB is used to schedule the number of unassigned tasks.
multiple tasks (see Section 3). Queues whose entries The field state encodes stages in the processing of a
represent more than one element are called multi-item PCB. State acts as an event counter, initialized to 0 and
queues [7]. By using a f&d operation to decrement the decremented/incremented after significant events. It is
multiplicity counter in the PCB, processors can obtain decremented whenever the PCB reaches the head of the
work concurrently. Even if actual dequeue operations queue, the PCB becomes empty, or the PCB is removed
750 removing PCBs from the queue must be serialized, 3 Symunix 1T Operating System, Ultracomputer Project, New York University.
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Table 2 PCB-state transitions implemented by queue operations.

Queue Event Operation Fetched Action
operation performed value of
on state state
Produce PCB is allocated J&i 2 Reuse in place
1,0 Wait until state is 1,
then set state to 3
and perform enqueue
Enqueue PCB is queue head f&d 3 Finished
2 Perform dequeue
Consume PCB is empty f&d 3 Look for work
2 Perform dequeue
Dequeue Removal complete f&d — Continue traversal
Dequeue PCB is queue head f&d 3 Finished
2 Remove queue head

from the queue. It is incremented to 3 after it is allocated
from a PCB stack during a fork operation. The next
section describes how state is used by the algorithm.

& Queue implementation
We identify four queue-related operations that processors
perform:

~ Consume tasks. A consumer looks for work, either on
the queue or in a specific PCB.

& Dequeue PCB. A dequeuer removes empty PCBs from
the head of the queue.

& Produce tasks. A producer updates a PCB (new or
empty) with new task information during a fork
operation.

& Enqueue PCB. An enqueuer appends a PCB onto the tail
of the queue.

A producer sometimes turns into an enqueuer, and a
consumer sometimes turns into a dequeuer. Producers and
consumers do not alter the connectivity of the list, while
enqueuers and dequeuers do.

Producing, consuming, and enqueuing can all be
performed concurrently. Dequeuing can be performed
concurrently with the other operations; however, there can
be only one dequeue operation at a time. (This is verified
in the subsection on correctness issues below.) Since a
dequeue operation on an empty PCB is not performed
when the PCB is reused in place, the number of dequeue
operations, hence, the performance penalty from serialized
dequeues, is small.

PCB-state transitions and processor actions based on
PCB-related events are summarized in Table 2. A
processor executing a queue operation detects a significant
PCB event, performs a f&i or f&d operation on the state
field of the PCB, and then performs the specified action
based on the fetched value of szate. The fetched value is
the previous value of state before the f&i or f&d
operation. This table is explained in more detail in the
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following subsections on queue operations; pseudocode for
the operations is presented in the Appendix.

As an efficiency metric for each operation, we count the
number of shared-data accesses required for the most
common case of the operation. Shared-data-access time
typically dominates the cost because of the distance from
processors to global memory and because of contention
among different processors accessing the same memory
bank. To show the correctness of concurrent queue
operations, race conditions must be ruled out. We
systematically examine the interactions of all concurrent
operations in the subsection on correctness issues to show
that there are no harmful race conditions. This algorithm
has been implemented and exhaustively tested, both by
running the experiments presented in Section 7 and by
inserting delays to force unusual events to occur.

Consume tasks

A consumer looks for work either on the queue or in a
specific PCB (Section 4, Rule 1). First, we consider a
consumer looking for work on the queue, using a private
pointer my_pcb to traverse the queue. Pseudocode for this
function is given in the procedure consume_gq in the
Appendix. For each successive PCB b, the following code
is executed to try to obtain an unassigned task my_ task:

if (my_pcb—multiplicity = 0) {
my_task = f&d (my_pcb—multiplicity);
if (my_task > 0) {
/* Success, execute my_task */

}

(Note that more than one processor can execute the first
statement before any executes the second, and that, as a
result, multiplicity can be decremented to reach some
negative value.) The initial test prevents multiplicity of b
from underflowing when b is empty. Without the test,
underflow can occur if idle processors repeatedly

decrement multiplicity of b while busy-waiting. If the 751
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Three scheduling-queue configurations: (a) one-node queue;
(b) g_head is null, and ¢ and d are misplaced; (c) g_tail is null.

queue head is nonempty (the most common case), only
three shared-data accesses are made: one for setting
my_pch to q_head, and two for accessing its multiplicity.

If my_ task is found to be 0, b is empty, so state of b is
decremented with a f&d operation. If the fetched previous
value of state is 2, b is the queue head, so the consumer
becomes a dequeuer.

Since each consumer uses its own private queue pointer,
the queue can be traversed concurrently by more than one
consumer, even while a dequeue operation is being
performed. The following observation is important: While
there may be many consumers concurrently decrementing
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multiplicity of b, only one consumer sets my_ task to 0.
Therefore, only one consumer decrements state of b and
can become a dequeuer. We show that there can be only
one dequeuer at a time and discuss other possible race
conditions in the section on correctness issues.

Next consider a consumer looking for work in a specific
PCB b. The procedure consume_pcbh in the Appendix
performs this operation. The consumer decrements
multiplicity of b with a f&d operation, storing its previous
value in my_task. If my_task is positive, the consumer
has found a task to execute. Otherwise, if my_task is 0,
the consumer decrements state of b and dequeues b if it is
the queue head, as described above. In all cases, the
consumer decrements number_left of b, the number of
tasks from b that are still executing. When number_left is
0, the child of » can be executed. The most common case
for consume_pch (consumer finds work) requires only two
shared-data accesses to decrement multiplicity and
number_left of b.

Dequeue PCB
It is not obvious how to implement a singly-linked-list-
based queue that permits concurrent dequeue and enqueue
operations. When the list becomes empty, both the head
and tail must be updated, and the queue is in an
inconsistent state during these updates. PCBs enqueued
during this time can therefore be lost. Our fetch&store-
based solution to the empty-queue problem, in which there
is only one dequeuer allowed at a time, is an extension of
an algorithm described in [8].

A processor becomes a dequeuer when it discovers that
a PCB is an empty queue head. The procedure dequeue in
the Appendix implements the dequeue function. The
dequeuer traverses the queue, removing PCBs by
advancing g_ head, until a nonempty PCB is found or the
queue is empty. For each new queue head b, the dequeuer
decrements state of b. If the previous value of state of b
(fetched by the f&d operation) is 3, b is nonempty, so the
dequeuer becomes a consumer again. Otherwise (the
previous value is 2 and b is empty), the dequeuer sets
q_head to next of b. Since b is now removed, state of b is
decremented once again. At this point, b is fully dequeued,
and the dequeuer continues its traversal.

In summary, a PCB b is completely dequeued after

o state of b has been decremented twice (once for being
empty and once for being at the head of the queue).

& g_head has been set to next of b.

o state of b has been decremented a third fime (for being
removed).

Thus, the cost of actually dequeuing a PCB in the usual

case is five shared-data accesses (including initially reading
q_head).
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If the dequeuer discovers that the queue is empty after
updating g_ head (q_head is null), special action must be
taken for coordinating with possible concurrent enqueuers
(see the subsection on enqueuing a PCB below).
Enqueuers always update g_ fail and update g_head only
if the list is empty (g_tail is nu11). The following abnormal
condition can arise.

Suppose b is the only PCB on the queue, so that both
q_head and q_ tail reference b, as shown in Figure 6(a).
The dequeuer removes b by setting g_head to next of b,
which is nul1 in this example. However, concurrent
enqueuers append new PCBs to b, since g_ tail still points
to b, even though b is removed. These PCBs are
“misplaced”” and must be recovered.

To prepare for this possible abnormal event, the
dequeuer saves a pointer to b in a variable old_ head
before updating g_head. After q_head is set to null,
old_head—next is the head of the list of misplaced PCBs.
Figure 6(b) shows misplaced PCBs ¢ and d appended to b.
To complete the dequeue operation, the dequeuer sets
q_ tail to null, saving its previous value in old_ tail using a
f&s operation [see Figure 6(c)]. Now old_tail is the tail of
the list of misplaced PCBs and g_head and g_tail are in a
consistent state. As a last step, the dequeuer appends the
misplaced-PCB list to the queue.

This is an ““optimistic solution’” to the empty-queue
problem. Rather than locking out enqueuers, to prevent
misplacing PCBs while a dequeue operation is being
performed, an inexpensive corrective action (enqueue
operation) is taken so that misplaced PCBs are not lost and
the integrity of the queue is maintained.

Produce tasks

During a fork operation, a producer allocates the next PCB
b from its PCB stack, as described in Section 5, and
initializes number_left and the context-switch-management
fields. Our implementation guarantees that b is empty and
no processors are executing tasks from b at the time it is
allocated (see the subsection on correctness issues below).
The procedure produce in the Appendix updates state,
multiplicity, and next of b.

To indicate that b is no longer empty and to determine
its status with respect to the queue, the producer
increments state of b with a f&i operation, fetching its
previous value (see Table 2): b is already enqueued if its
previous value is 2; it is dequeued if its previous value is
0; and it is being dequeued if its previous value is 1.

If b is already enqueued, the producer simply sets
multiplicity of b to the number of new tasks. Since
mudtiplicity of b was previously nonpositive, this last step
enables consumers traversing the queue to obtain tasks
from b. Reusing a PCB that is already on the queue takes
five shared-data updates, one for every PCB field except
next.
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Otherwise, the producer busy-waits until state of b is 1,
which indicates that the dequeue of b is complete (state of
b is not 0 because of the f&i operation performed by the
producer described above). If b is already dequeued, the
wait time is 0. Then it initializes state of b to 3, updates
multiplicity of b, and enqueues b, as described in the next
section. Once multiplicity is set, consumers may acquire
tasks, even though the enqueue operation is not complete.
However, this concurrency is not harmful, as discussed in
the subsection on correctness issues below.

Enqueue PCB
An enqueuer appends a PCB b by swapping a local pointer
to b with q_ tail using a f&s operation. If the fetched value
of q_tail (previous) is nonempty, previous—next is set to
b. If previous is null, the queue is empty, so g_head is
set to b. The field next of b has already been set to null.

The procedure enqueue in the Appendix appends a list
of PCBs with head my_head and tail my_tail to the queue
(q_tail is set to my_tail instead of b). This generality is
necessary because enqueue calls dequeue to append a list
of misplaced PCBs (see the subsection on dequeuing the
PCB above). The cost of appending a list, which is the
same as the cost of appending a single PCB, is three
shared-memory accesses when the queue is nonempty.

If the queue is empty, the enqueuer decrements
my_ head—state with a f&d operation. Because there can
be concurrent consumers removing tasks from b while it is
being enqueued, b may already be empty. If state of b is 2
(b is empty queue head), the enqueuer becomes a
dequeuer.

® Correctness issues

Since our queue is nonlocking, a PCB can be involved in
multiple operations concurrently. While concurrency can
improve performance, it introduces the possibility of
erroneous race conditions, in which one processor makes
an update to a queue data structure that causes another
operation to function incorrectly, perhaps destroying the
integrity of the queue. In this subsection, we show that no
harmful race conditions can arise from concurrent
operations.

Concurrent access to queue data structures is
coordinated using the state, multiplicity and number_left
fields of PCBs. Below, we give a detailed case-by-case
analysis of concurrent queue operations, for all possible
pairs of operation types.

Consume, consume: Consumers of a PCB b execute
distinct iterations in the range 1, -+ -, N; only one
consumer discovers that b is empty.

A consumer successfully obtains an iteration by
executing a f&d operation on multiplicity of b, which is

initially N, and fetching a positive value. The consumer 753
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that fetches 0 as its result discovers that b is empty,
decrements state of b, and becomes its dequeuer (if the
fetched value of state is 2). There can only be one such
consumer. If the fetched value is negative, the PCB is
empty, and the consumer is finished with 5. Consumers of
distinct PCBs do not interfere with each other.

Consume, dequeue: Consumers cannot obtain tasks
from a PCB b that is being dequeued, and a consumer
cannot become a dequeuer while another processor is
dequeuing b.

A dequeuer never updates multiplicity of b, which is
negative during a dequeue operation since b must be
empty. Therefore, any consumer that attempts to obtain a
task from b cannot succeed. If b is not being dequeued, it
must be an interior PCB. If b becomes empty, no
consumer can dequeue it, since a consumer can only
decrement state of b once for being empty. The second
decrement of state of b can be performed only when a
dequeuer updates g_ head to point to b. Therefore, b can
be removed by the dequeuer only after b becomes the
queue head.

Consume, produce: A producer cannot allocate a PCB b
when it is nonempty, and a consumer cannot obtain a task
from b while a producer is updating it with new task
information.

Before reusing b, a producer (the owner of b) waits until
number_left of b is 0, thereby ensuring that there are no
consumers that can obtain a task from the previous use of
b. Since number_left is decremented to 0 only after
multiplicity has been decremented to 0, b must be empty.
A producer updates all task-related fields of b before
setting its multiplicity. (Setting multiplicity enables
consumers to obtain tasks from b.) At this time, b isin a
consistent state for task assignment. Consumers and
producers of different PCBs do not interfere with each
other.

Consume, enqueue: Tasks from a PCB b can be
consumed safely while b is being enqueued.

It is possible for a consumer to obtain tasks from b
while it is being enqueued, since multiplicity of b is set
before enqueue is called (see produce in the Appendix).
This is safe, however, since consumers decrement
multiplicity and number_ left of b and do not update next
of b, and the enqueuer sets next of b and not the other
two fields. Nevertheless, a potential conflict can arise
between a concurrent enqueuer and consumer of b if the
queue is empty when b is appended and all of the tasks in
b have been consumed. As shown in produce, state of b is
set to 3 before a consumer can obtain tasks and before the
enqueue operation begins. If b becomes an empty queue
head while it is being concurrently enqueued and
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consumed, state of b will be decremented twice: once by
the current dequeuer and once by the consumer that
obtains the last task. Whichever processor fetches 2 as the
previous value of state will dequeue b.

Dequeue, dequeue: There can only be one dequeuer at
a time.

As argued above, if there are concurrent consumers
accessing a PCB b when it becomes an empty queue head,
only a single consumer can become its dequeuer (consume,
consume). If a consumer and an enqueuer are concurrently
accessing b when it becomes an empty queue head, only
one of these processors becomes its dequeuer (consume,
enqueue). There can be no other dequeue operation in P
progress, since g_tail is null at the time of the enqueue
operation; therefore g_ head must also be null. Finally, a
consumer cannot become a dequeuer while another
dequeue operation is being performed (consume, dequeue).
Thus, there can only be one dequeue operation at a time.

Dequeue, produce: A PCB b cannot be reused by a
producer while it is being dequeued, and a dequeue of b
cannot be started while b is being reused in place by a i
producer.
A producer coordinates with a dequeuer of b by
executing an initial f&i operation on state (see produce). If
a dequeue operation has begun, the producer busy-waits
until state is 1, indicating that the dequeuer has finished,
before making b available again for task assignment by
setting its multiplicity. Conversely, if b is enqueued and a
dequeue operation has not begun, the initial f&i operation,
which flags b as nonempty, reserves b for the producer. A L
dequeue operation cannot start before the producer sets
multiplicity.

Dequeue, enqueue: Enqueuers and dequeuers
coordinate so that an empty queue is initialized correctly
and no misplaced PCBs are lost.
Our empty-queue solution is explained in detail above in
the subsection on dequeuing (see also [25]). o

Produce, produce: There is only one producer of a PCB
b at a time.

The only producer of b is its owner, which waits for
number_left of b to be decremented to 0 before it is
reused. There are no conflicts among producers of different
PCB:s.

Produce, enqueue: A PCB b cannot be produced and
enqueued at the same time.

The only producer and enqueuer of b is its owner, and
an enqueue operation follows a produce operation. There
are no conflicts among producers and enqueuers of
different PCBs.
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Enqueue, enqueue: Enqueue operations can safely be
performed concurrently. '

The only enqueuer of a PCB b is its owner, which
enqueues it by a f&s operation to swap b with g_tail.
Because f&s is atomic, all concurrent enqueuers fetch
different values of g_tail. Thus, they do not conflict with
each other.

® Nonblocking and no-wait queues

Although our queue algorithm is nonlocking, it is possible
for an extremely slow processor to delay other processors
for a long time. This arises from processors having to
busy-wait. Algorithms, such as [21] and [23], that do not
require busy-waiting are called nonblocking [21]. The three
instances of busy-waiting in our algorithm are

1. When a producer waits for a PCB that is currently
being dequeued to be fully dequeued (state = 1), so
that it can be re-enqueued.

2. When a dequeuer waits for old_ head—next to be set
(misplaced PCBs are currently being enqueued), so that
it can enqueue the list of misplaced PCBs (see the
subsection on dequeuing the PCB).

3. When an owner processor waits for all helper
processors to decrement number_ left before executing
the child task of a parallel construct.

Eliminating the first source of busy-waiting is
straightforward: Rather than the owner of a PCB b busy-
waiting until b is dequeued and subsequently enqueuing b,
the dequeuer of b can detect that a reuse attempt has been
made (by testing the value returned by the final f&i of
state) and re-enqueue b. The second source of busy-
waiting is more problematic, and we know of no
nonblocking solution. The third source of busy-waiting is
an unavoidable consequence of our scheduling policy. As
described in Section 7, its cost is bounded by the
execution time of a task, which can be reduced through
use of a chunking strategy such as factoring to balance
workloads (see Section 8).

Being wait-free is another desirable property of a
scheduling queue [26]. An algorithm is wait-free if the
number of instructions per operation is bounded. Hence, a
wait-free algorithm is nonblocking, but not all nonblocking
algorithms are wait-free. Wait-free algorithms are useful
for real-time applications in which each task must start
executing within a specified amount of time. Our
scheduling-queue operations are not wait-free, but the
queue does have the weaker property that at least one
iteration of a parallel construct is started within a fixed
number of instructions after it is enqueued: An enqueuer
becomes a dequeuer only if the PCB that it enqueues is

completely consumed by other processors. Thus, either the

owner never calls the procedure enqueue, the owner
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returns from enqueue immediately after appending its
PCB, or a helper processor starts executing the parallel
construct before the second if statement in enqueue is
reached.

7. Experimental results

Our run-time scheme has been implemented on the RP3
[11]. We present experimental results justifying two
significant design choices: our scheduling policy, which
makes it possible to use local memory rather than a
shared-memory storage pool for stack-frame allocation,
and our singly-linked-list queue algorithm which permits
empty interior PCBs. For the sample programs used in the
experiment, both of these design choices improved
performance. Before describing the experiment, we give a
brief overview of the RP3 system.

® Architecture of the RP3

The RP3 is an experimental machine whose 64 processors
are interconnected by an omega network [11, 14]. Each
processor has a cache and local memory. All nonlocal
memory is accessible over the network. This hierarchy of
cache, local, and remote memories has an access time
ratio of 1:12:20. To reduce network contention, there is an
(optional) address-translation scheme, called interleaving,
wherein shared data with consecutive addresses are stored
in consecutive memories rather than sequentially in the
same memory (hence, accessing different pieces of data,
such as individual elements of an array, does not cause
contention at any one processor memory). Interleaved
memory can be viewed as global, since delay in accessing
interleaved data is, on average, the same for all processors.

The caches are write-through and two-way set-
associative. There is no interprocessor cache consistency
enforced by hardware, so the software must ensure cache
consistency. In our run-time implementation, program data
are cacheable, and a cache-invalidate instruction is
executed by each processor when it completes a parallel
construct. This is safe if there are no data dependencies
among parallel tasks [27] (which PTRAN guarantees).

The RP3 operating system is a version of Mach, modified
to allow threads to be bound to processors, and applications
to run in single-user mode [14]. These extensions reduce
timing differences from run to run of the same program.

® Experiment
Our experiment compared

¢ Placing processor stacks used for task frames in local
memory with placing the stacks in global (interleaved)
memory.

¢ Using our nonlocking singly-linked-list algorithm with
using a locking doubly-linked-list algorithm that permits

interior-PCB removals. 755
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The doubly-linked-list implementation is highly optimized.
Nonempty PCBs can be accessed concurrently, since
consumers do not dequeue them. Locking is implemented
using fetch&add operations as described in [9].

Two test programs were used in the experiment: a
program that performs six-integer matrix multiplications
and a loop nest taken from a Gauss—Jordan program for
(back) solving a system of linear equations. A basic matrix
multiplication nested-parallel loop has the form

PARALLEL DO T = 1,N
PARALLEL DO J = 1,N

DO K = 1,N
C(1,d) = C(I,J) + A(I,K) * B(K,J)
END DO
END DO
END DO

Our test program consists of the six different versions of
the above nested loop created by reordering the three
loops in all possible combinations. The sequential DO K
loop is the outermost loop in two of the versions, it is the
middle loop in two versions, and it is the innermost loop in
two versions. Therefore, this program provides a variety of
nesting patterns and loop granularities for comparing run-
time overheads.

Our Gauss—Jordan test program is the loop nest

D01 = 1,N
PARALLEL DO J = 1,N
IF I .NE. J THEN
PARALLEL DO K = I+1,N+1
A(J,K) =A(J,K) — (A(J,I) *A(I,K)) /A(I,I)
END DO
END IF
END DO
END DO

The granularity of parallelism in this loop nest is both very
fine and independent of the problem size N, since a
parallel task consists of a single iteration of the innermost
loop calculating A(J,K).

Measurements for both test programs were made for all
eight combinations of the following parameters:

& Matrices of dimension 150 x 150 or 300 x 300.
& Singly or doubly linked lists (i.e., nonlocking or locking).
& Task frames in local or global memory.

For the results described, we ran each program on 4-62
processors and repeated each run four times; we report the
average running time. In most of the cases, the variation in
running time (coefficient of variation) was less than 1%.
We do not report running times for which the coefficient of
variation was greater than 5%, which occurred in a few of
the doubly-linked-list runs.
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& Results

The minimum execution time for the 150 X 150 matrix
multiplication program was obtained with 48 processors.
This is illustrated in Figure 7. (Rather than studying
execution time data, however, we have found the data
presented in the format of Figures 8 to 11 to be more
useful.) As additional processors were added, the program
ran more slowly, for two reasons: The additional queue
overhead exceeded the additional processing capability,
and idle processors spin-waiting for the queue head
increased memory contention. With 300 x 300 matrices,
the execution time for the matrix multiplication program
decreased as the number of processors increased, up to 62
processors. For the doubly-linked-list measurements, the Py
coefficient of variation was greater than 10% for the

150 x 150 Gauss-Jordan program with more than 32
processors (so the results are not reported). The large
variance occurred because the computation was dominated
by competition for the queue lock. With 300 x 300
matrices, the coefficient of variance remained 5%, and the
execution times continued decreasing up to 62 processors.

Total execution-time costs (execution time multiplied
by the number of processors) are shown for the matrix
multiplication and the Gauss—Jordan programs in
Figures 8 and 9, respectively. Note that the horizontal
scales of Figures 7 to 11 are not uniform. In the ideal
situation, the cost remains constant as the number of
processors changes. In all cases, the s/ scheduler (singly
linked, local) had the lowest cost. In addition, the cost of
the s/ scheduler rose relatively slowly as the number of
processors increased, for most of the experiments.

When the tasks were fine-grained or there was only a ®
small amount of work for each processor, the sg scheduler
(singly linked, global) had the next lowest cost; for
example, the Gauss-Jordan program (Figure 9) and the
150 x 150 matrix multiplication program when the number
of processors was greater than 32 [Figure 8(a)]. Using a
better queue algorithm was more important than using
local memory, since the ratio of task-stack-frame accesses
to queue operations was relatively small. When the tasks @
were more coarse-grained and there was more work
available, the converse held. In Figure 8(b), the dl
scheduler (doubly linked, local) consistently had the next
lowest cost.

Both the sg scheduler and the s/ scheduler showed
decreasing execution times as the number of processors
increased, up to 62 processors for the 150 x 150
Gauss-Jordan program, while execution times of both
doubly-linked-list schedulers were highly variable and in
general did not decrease after 32 processors. This indicates
that the nonlocking, singly linked list is a more scalable
queue algorithm than a locking list.

The largest costs were obtained with the dg scheduler
(doubly linked, global). The percentage performance
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improvement of the other schedulers over the dg scheduler
is shown in Figures 10 and 11 for the matrix multiplication
program and Gauss-Jordan program, respectively. The dl
scheduler improved execution times over the dg scheduler
by —2% for 150 x 150 matrix multiplication on 62
processors [Figure 10(a)] to 27% for 300 x 300 matrix
multiplication on 16 processors [Figure 10(b)]. There was
only one case [Figure 10(a), with 62 processors] in which
the dl scheduler performed worse than the dg scheduler.
This kind of unexpected behavior is usually accounted for
by subtle interactions between the application and the
operating system. The sg scheduler improved execution
times by 2% for 300 x 300 matrix multiplication on 56
processors [Figure 10(b)] to 31% for the 150 x 150
Gauss—Jordan problem on 32 processors [Figure 11(a)]
over the dg scheduler. The s/ scheduler, which included
both optimizations, improved execution times by 15%
[Figure 10(a)] to 37% [Figure 11(a)] over the worst case.
This experiment shows that there is benefit in using local
memory for task stack frames, especially when task
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granularity is large. Therefore, our scheduling policy,
which permits local-memory stack-frame allocation, is
well-suited for nonuniform memory access (NUMA)
architectures. Furthermore, even though the scheduling
policy requires a queue algorithm that accommodates
empty interior PCBs, our queue algorithm is highly
efficient, even when tasks are very fine-grained.

® Other costs

All of the schedulers in the experiment were implemented
with individual processor stacks; the experiment measured
the difference between placing the stacks in local memory
and placing them in global memory. However, without our
scheduling policy, individual processor stacks are not
possible, and a more expensive shared-memory storage-
allocation algorithm must be used for the cactus stack. If
our sg and dg schedulers paid the full cost of a general
cactus-stack implementation, the performance
improvements of the local-memory algorithm would be
larger. We analyze the cost of general cactus-stack
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allocation for a parallel construct PC executed by P
processors as follows. When PC is executed, P stack
frames must be allocated. The best concurrent-access
storage-allocation algorithm we are aware of (a version of
the buddy-system algorithm) has a worst-case running time
per request proportional to

log{arena_size) — log(request_ size),

where arena_size is the size of the shared-memory storage
pool, and request_size is the size of the storage requested
[28]. In our case, request_size is frame_ size, the size of a
stack frame, and arena_ size must be at least

P X max_nesting_depth X frame_size. Thus, the
cumulative worst-case cost of the central allocation of

all P stack frames is at least proportional to

P x [log(P x max_nesting_depth X frame_ size)
— log(frame_size)]
= P x log(P x max_nesting_depth). 1)

Thus, the cost of central allocation increases with P,

On the other hand, our scheduling policy has an
additional cost: the idle time consumed by the processor
that owns PC as it busy-waits for helper processors to
finish their tasks (see Section 4). Since the owner itself
executes tasks until the PCB is empty, this cost is bounded
by the maximum running time of a task, which we denote
as max. If max is small, the busy-waiting time is not
significant. If max is large, it is possible to improve load
balancing as follows. Instead of busy-waiting until PC is
finished, the owner temporarily becomes a helper by
obtaining a task from the queue. After the owner executes
this task and PC is finished, the owner executes the child
of PC.

8. Extensions

In this section, we propose several strategies that address
performance issues raised in previous sections, such as
even processor distribution and load balancing. We also
discuss extensions that permit tasks that do not run until
completion to accommodate explicit synchronization
primitives (see Section 2). Since the overhead of complex
schemes can outweigh their benefit, especially for fine-
granularity parallelism [6], the extensions described here
are fairly simple.

® Reducing scheduling overhead

A common technique to reduce the overhead of scheduling
parallel loops is to assign iterations to processors in chunks
rather than individually, so that each task consists of a set
of consecutive iterations. With fixed-sized chunks of

K iterations, the maximum task-execution time max (the
expected amount of time an owner may have to busy-wait
until all helpers are finished) is increased by a factor of K.
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However, a variable-sized chunking scheme called
factoring has been proposed [17], in which the expected
idle time is the maximum execution time of a single
iteration, instead of a single task (chunk). By allocating
tasks in decreasing-sized chunks, factoring reduces
scheduling overhead without impairing load balancing.
Factoring has been shown to outperform other chunking
methods on loops with a wide range of iteration
characteristics [18] by allocating tasks in decreasing-sized
chunks. Because the scheduling overheads are lower when
the tasks in each PCB are scheduled using factoring, more
fine-grained nested parallelism can be exploited with
factoring than with other chunking methods.

® Even processor distribution ®
With our scheduling scheme, processors searching the
queue obtain work from the first nonempty PCB.
However, if different processors look for work in different
PCBs on the queue, there will in general be fewer
processors assigned to each parallel construct, and the
processor distribution will be more even (see Section 4).
To address this problem, a scheme is proposed in [5] in
which processors are allowed to scan the entire queue
before deciding which task to obtain. Alternatively, we
could add a third counter to PCBs that limits the number
of processors that execute a parallel construct. This
counter would be used instead of multiplicity to determine
when to update g_head. The maximum number of
processors desired for each construct could be specified by
either the compiler or the run-time system.

® Adaptive fork o
There is no benefit in performing a fork operation unless a

processor is available or becomes available to help with

the work. To reduce unnecessary fork operations, we can

keep a count of the number of available processors and

perform a fork operation only when the count is positive.

Experimentation with such adaptive forks has shown

generally good performance improvements, as much as

20% for the matrix multiplication program in Section 7. o
However, the execution time for different runs of the same

version of the program varied by 10-20% with adaptive

forking. We therefore disabled it in our experiment, in

order to obtain repeatable measurements.

® Blockfunblock operations

Explicit synchronization, such as posting and awaiting
events, can lead to deadlock unless it is possible for the
run-time system to block tasks (see Section 2). For
example, if all scheduled tasks are waiting for unscheduled
tasks, some scheduled task(s) must be suspended. When
tasks may be blocked, a more expensive cactus-stack
implementation is required, because tasks are not
necessarily resumed in LIFO order. Alternatively, the
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blocking and unblocking of tasks can be implemented in
the run-time system by using a shared work queue, P local
work queues, and P storage pools. Initially, tasks are
allocated from the central work queue. Once a processor p
begins a task, the task may not be blocked and reassigned
to another processor, but it may be blocked and resumed
on p. The stack frame for the task is allocated from the
local-memory storage pool of p. If the task is blocked, it is
placed on the local work queue of p. Since a task cannot
be resumed on another processor, there is a trade-off of
load balance and locality.

9. Conclusion

We have designed, implemented, and assessed a run-time
supervisor that schedules nested parallel loops on
multiprocessors that have both local and shared memory.
A multiprocessor scheduler must optimally trade off
processor load imbalances with overhead. For example,
exploiting nested parallel loops can improve load
balancing, but the run-time realization is more complex
than for simple loops. In general, achieving balanced work
loads requires centralized resource allocation, and the
increased overhead arises either from the loss of locality or
from contention. By pairing local stacks with a global work
queue, our system attempts to minimize the cumulative
performance loss from load imbalances and overhead.

With our scheduling policy, the parent of a parallel loop
enqueues it, executes iterations until it is empty, and then
waits for any helper processors to finish with their
iterations. The policy permits private variables for the
iterations to be allocated locally from individual processor
stacks. Locality is further exploited by reusing stack
frames: Once a processor executes an iteration, rather than
searching the global queue for new work, it continues
executing iterations from the same loop. Iterations from
the same loop can use the same stack frame. Thus, the
overhead of executing subsequent iterations is reduced.

The global work queue is implemented as a singly linked
list, with fetch&increment, fetch&decrement, and
fetch&store operations used for synchronization. The
queue mechanism uses an ““optimistic algorithm” in that it
is highly efficient for the usual case, and operations are not
““locked out’ when the queue is in an inconsistent state.
Inconsistencies are detected and subsequently corrected
rather than prevented. As an example of the efficiency of
queue operations, we note that when the queue is
nonempty, a processor can execute a fork operation and
begin executing a task from a parallel construct after fewer
than six shared-memory accesses.

A consequence of our scheduling policy is that the
queue may have holes—that is, interior entries whose loop
iterations have all been executed. Our queue
accommodates such empty interior entries by leaving them
as place holders and allowing them to be reused in place.
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A state variable is included in an entry to coordinate its
reuse, enqueue, and dequeue. By using the state variable
to delay the reuse of a PCB while it is being dequeued, our
algorithm permits a high degree of concurrent queue
operations.

To assess our run-time system, we compared, on the
RP3, our scheme to a more traditional scheme that uses
global-memory stack allocation and a doubly linked work
queue (which allows PCBs to actually be removed). Two
programs were tested, one with coarse-grained iterations
and the other with fine-grained iterations. The number of
processors was varied from 4 to 62 to test the scalability of
the schemes. The experiment revealed that the local-stack-
allocation optimization was particularly effective (up to
27% performance improvement) when the granularity was
coarse, since there were more opportunities for reusing
data, and that the singly-linked-list optimization was
particularly effective (up to 31% performance
improvement) when the granularity was fine, since there
was greater contention for the scheduling queue. These
effects became more pronounced as the number of
processors was increased. Measured together, the two
optimizations improved performance by as much as 37%.

While our scheme works best on machines with local
memory, it can be implemented on machines without local
memory by placing the individual processor stacks in
global memory. The allocation of stack frames is still
contention-free and, hence, less expensive than using a
centralized storage pool for allocation.

Appendix: Code for scheduling queue

/* Look for work on the queue */
consume_q() {

pch_pointer my_pcb;
integer my_task;

while true {
/* Traverse queue until a nonempty PCB is found */
my_pch = q_head;
while (my_pcb = null) {
if (my_pcb—multiplicity = 0) {
my_task = f&d{my_pcb—multiplicity);
if {(my_task > 0) /* Found a task */
return [my_pcb, my_task];
if (my_task = 0) {
/* my_pcb is empty, so decrement state */
if (f&d(my_pcb—state}) = 2} {
dequeue(my_pcb) ;
my_pcb = g_head;
continue;

}
}
my_pcb = my_pcb—next;
}
}
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/* Look for work in PCB my_pch */
consume_pcb(pcb_pointer my_pcb) {

}

integer my_task, previous_state;

my_task = f&d(my_pcb—multiplicity);
if (my_task = 0) {
f&d(my_pcb—number_left);

/* Test whether a task was obtained */
if (my_task > 0) return my_task;
veturn failure;

}

/* my_pcb is empty, so decrement state */
previous_state = f&d(my_pcb—state);
f&d(my_pcb—number_left);
if (previous_state = 2)

dequeue(my_pcb) ;

return failure;

/* Remove empty entries at the head of the queue */
dequeue({pcb_pointer head) {

/* head is a private copy of q_head */
pcb_pointer old_head, old_tail, first_missed;

/* Advance g_head until the queue is empty or
a nonempty PCB is found */
while true {
old_head = head;
head = old_head—next;
g_head = head;

if (head = null) break;
f&d(old_head—state); /* Removal complete */

/* Update and test state of the new queue head */
if (f&d(head—state) = 2) return;

/* The queue is empty. Set g_tail to null so that g_tail
and g_head are consistent */

old_tail = f&s(g_tail, null);

/* Take care of misplaced PCBs */

if (old_tail = old_head) {
/* No misplaced PCBs  */
féd(old_head—state); /* Removal complete */
return;

}

/* Otherwise, must append misplaced PCBs to the queue */

/* Busy_wait for possible enqueue in progress to complete */

while (old_head—next = null) {}

first_missed = old_head—next;
f&d{old_head—state); /* Remova) complete */

enqueue(first_missed, old_tail);
return;
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/* Initialize state, multiplicity, and next of PCB */
produce(pcb_pointer my_pchb, integer multiplicity) {

/* my_pcb is allocated, so increment state */
if (f&i{my_pcb—state) = 2) {
/* my_pcb is already enqueued */
my_pch—multiplicity = multiplicity;
return;

}

/* Wait for dequeue in progress to complete */
while {my_pcb—state = 1} {}

/* Enqueue PCB */

my_pcb—state = 3;

my_pcb—>next = null;

my_pcb—multiplicity = multiplicity;

enqueue(my_pcb, my_pchb); .
return;

}

/* Enqueue a list of PCBs */
enqueue(pcb_pointer my_head, pcb_pointer my_tail) {

pch_pointer previous;

previous = f&s(q_tail, my_tail);

if (previous = null) {
previous—next = my_head;
return;

}

/* Queue is empty */

q_head = my_head;

if (f&d(my_head—state) = 2)
/* Queue head is empty */
dequeue(my_head);

return;
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