
The parallel C
(PC) -

programming
language

by R. Canetti
L. P. Fertig
S. A. Kravitz
D. Malki
R. Y. Pinter
S. Porat
A. Teperman

We describe PC (parallel C), an extension of
the ANSI C programming language to support
medium- to large-grain parallel programming in
both shared- and distributed-memory
environments. PC aims to make programming
for parallel processors accessible to the C
community by enriching the C programming
model with a small set of constructs
supporting parallelism. PC supports shared-
and distributed-memory environments via a
hierarchical computational model. A PC
application comprises a static collection of
tasks with disjoint memory spaces. A dynamic
collection of threads runs within each task,
sharing the data and code of the task.
Language constructs specify concurrent
execution of threads within a single task.
Additional language constructs specify the
interactions between threads through the
following mechanisms: initiation of threads in
remote tasks by remote function call, mailbox-
based message passing, and synchronization
primitives. The paper introduces the
computational model and language constructs
of PC and describes a prototype PC compiler
and run-time system for the Mach operating
system. Several program examples illustrate
the utility of PC constructs.

1. Introduction
Currently, the development of applications for
multiprocessor computers is a difficult and error-prone task
requiring highly specialized professionals. If parallel-
computing resources are to be properly exploited, it is
critical that parallel-program development become
accessible to the typical programmer, with minimal
retraining.

We describe PC (parallel C), an extension of the ANSI
C programming language [l] to support medium- to large-
grain parallel programming in both shared- and distributed-
memory environments. PC is designed to make parallel
programming accessible to the C community by enriching
the C programming model with a small set of constructs
supporting parallelism.

In developing PC, we had the following goals:

Compatibility with C: . Maintain compatibility with ANSI C source (Le.,
PC should be a strict superset of ANSI C) and strict
compatibility with C object code. . Keep all language extensions in the spirit of C, so that
C programmers do not suffer "culture shock" when
writing and reading PC programs.

Wide range of supporfed architectures: Provide language
support for a broad range of parallel-computing
environments, including shared- and distributed-memory
systems.

QCopyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Joumd reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of
this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to wpublkh any other

portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWOVEMBER 1991 R. CANE'ITI ET AL.

727

728

Dynamic resource allocation: Provide flexibility by
allocating resources and binding communication at run
time.
Flexible parallel constructs: Support both synchronous
forwjoin and asynchronous parallel activities.
Multiple levels of user control: Facilitate parallel
programming by users with a broad range of
sophistication. We want to make it possible for expert
users to tune their code by controlling resource
allocation, without requiring novice users to do the
same.

PC supports shared- and distributed-memory
architectures via a hierarchical computational model.
A PC application comprises a static collection of parallel
tasks with disjoint memory spaces. A dynamic, parallel
collection of threads runs within each task, sharing the
data and code. Language constructs specify interactions
between threads through the following mechanisms:
initiation of threads in remote tasks by remote function
call, mailbox-based message-passing, and synchronization
primitives.

To our knowledge, no other parallel-language effort has
attempted to support shared and distributed memory and
provide object-code compatibility with existing C code.

In the remainder of this section, we examine other
published efforts in light of the above-mentioned design
goals. In Section 2 we describe the PC computational
model and the layout of PC source code. In Section 3 we
introduce the PC language constructs in their basic form,
and in Section 4 we describe some advanced language
features. Section 5 illustrates the use of PC constructs by
presenting two PC program fragments. Section 6 describes
our implementation of a PC compiler and run-time system
for the Mach operating system [2]. We conclude, in
Section 7, with a discussion of the language.

‘Rationale
Several approaches have been taken to bridge the gap
between the programmer and the efficient use of parallel
computers. Parallelizing compilers [3-61 try to extract
parallelism from programs written in sequential
programming languages. The major advantages of this
approach are the ability of programmers to continue
programming in a known language, with a well-understood
computational model, as well as the possibility of
improving the performance of “dusty decks” without
reprogramming. The major drawback of this approach is
that it is restricted to loop-level parallelism that the
compiler can detect or the user identifies with compiler
directives. Parallelizing-compiler technology is progressing
but is not yet mature.

Libraries [7, 81 and macro [9] packages have been used
to extend serial-programming languages to support parallel-

program development. This approach has the major
advantages of not requiring a compiler, and operating
within familiar language frameworks and computational
paradigms. However, the limitations of the underlying
programming languages often impose an awkward syntax
and unnatural restrictions on the programmer. We feel that
a language-level interface to the features supported by
these libraries offers major improvements in programmer
productivity: The resulting programs are more concise and
readable, and easier to develop and maintain.

abstractions required to construct parallel programs, within
a programming-language framework. The goal is to provide
concise language constructs that facilitate program
development and can be compiled into efficient programs.
Parallel-programming languages can be categorized as
either new languages or extensions to existing languages.

programming languages in favor of new programming
languages with new computational models. [A survey of
previous work in the area of new languages is beyond the
scope of this paper (see [lo]).] However, the major pitfall
of designing new languages and computational models is
that they force the programmer to learn a completely new
way of thinking before the programmer can write a parallel
program. An additional and more serious problem, which
any new programming language must address, is how to
interface with the mountain of existing software written in
popular programming languages. We believe that any
parallel-programming language that is to be widely
accepted must avoid these obstacles by defining a strict
superset of a widely used serial-programming language.

to introduce auxiliary parallel-computational models. A
good example is C-Linda [ll], which introduces the
powerful tuple-space model of computation. However, to
exploit parallelism within an existing serial application may
require a complete rethinking of the algorithm in terms of
the tuple-space model. The tuple-space is also opaque and
offers the programmer little control of its internal structure
or opportunity for tuning. As an example, there is no
explicit way to exploit locality.

Other attempts to extend C for parallelism introduce
constructs to support coarse-grain distributed-memory
parallelism [12] or fine-grain parallel computation within a
single address space [13, 141, but not both. Concurrent-C
[12] not only lacks support for parallel computation within
shared memory but also restricts parallel interaction to an
Ada-like [15] rendezvous model. EPEX-C [13] supports
fine-grain parallelism in the form of self-scheduled parallel
loops. Only parallel loops with integer indices and simple
loop increments are supported.

PC supports both shared- and distributed-memory
parallelism. The expressive power of PC exceeds the

Parallel-programming languages integrate the

The temptation is great to abandon existing

Even within the context of C, attempts have been made

R. CANEnI ET AL. IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEF‘TEMBERINOVEMBER 1991

*

P

0

. . . .
NcdeC i i NodeD i * *..: I.. ... : . .

PC computational model.

aforementioned efforts, and PC introduces no artificial
restrictions on language syntax. Furthermore, we think
fine-grain parallelism is better dealt with by vector
operators as proposed by [16], data-oriented approaches as
exemplified by [17], or modern compiler optimization
techniques, than by language constructs at the statement
level.

2. Computational model and application layout
A PC application can be viewed as a program for an
aggregate of logical processor nodes. Each node may be
thought of as a shared-memory multiprocessor, i.e., a set
of processing elements with a single memory space. An
auxiliary configuration file defines the (static) mapping of
nodes onto actual computational resources. More than one
node may be mapped to the same physical host, but if so,
their address spaces remain disjoint.

PC supports applications that consist of multiple tusks,
each of which is loaded on a distinct logical node, as
shown in Figure 1. This enables the loading of different
portions of an application on unlike hosts. Each task

0 IBM J. RES. DEVELOP. \ (OL. 35 NO. 516 SEPTEMBEWNOVEMBER 1 .991

supports multiple threads of execution, which share the
code and data of the task. These threads can execute
concurrently when parallel-execution resources are
available. Multithreaded tasks are useful, even for
programs written for networks of uniprocessors, since they
facilitate the masking or hiding of message or input-output
delays by a single program, just as multitasking improves
throughput at the operating system level. Furthermore,
threads may provide a useful way of structuring a
program, even for a uniprocessor.

structure of PC programs and of the PC computational
model.

Source layout The user specifies the source code of each
task. The same task code can be loaded on more than one
logical node, producing distinct tasks. One task is
designated as the main tusk, containing the body of the C
mai n1 function. All activity in a PC application is started by

We now describe the important characteristics of the

1 Throughout the paper, we use a sans-serif font for C or PC language keywords. 729

R. CANE'ITI ET AL.

a single thread, which executes the main function of the
main task. The application terminates when all activity in
the application terminates. Any existing C program can run
unchanged as a single-task, single-thread PC application.

Each task is an executable instance of some compiled
and linked task source program. The source code for a
task contains a collection of functions and data, as does a
regular C program. In addition, each task contains a set of
entry-point functions called remote functions. The remote
functions are visible outside the task as well as within it,
and can be invoked through a remote function call
mechanism. Tasks are referred to by global task-ids.

Generating parallel activiv The basic dynamic
schedulable unit of execution in PC is a thread. Multiple
threads of control within a single task provide PC support
for shared-memory parallel computation and are initiated
by PC parallel constructs. The par and parfor constructs
generate groups of threads that execute concurrently
within a single task. Each thread in a parallel construct
executes a C compound statement, which may in turn
include remote function calls or parallel constructs.

Multiple tasks distributed across multiple hosts provide
PC support for distributed-memory computing. Parallel
activity is initiated across task boundaries (or locally) with
the remote function call mechanism, as a result of which a
new thread within the designated task is activated to
perform the called function.

A parallel application is started as a single thread in a
main task. This thread can initiate threads within its own
task using parallel constructs, or threads in other tasks
using remote function call.

Memory model All threads within a task share its global
data and function space (subject to standard C scoping
rules). Each thread has its own stack. Optionally, a thread
that is initiated by a parallel construct is provided with
private, initialized copies of variables. These variables are
termed frozen variables, since their initial values are frozen
at the time of thread activation. The handling of these
frozen copies has no effect on the original variables.

Communication and synchronization PC defines
application-wide communication and synchronization
primitives-mailbox and muter (mutual exclusion) objects.
Mailbox and mutex objects are accessed with uniform
syntax and semantics throughout a PC application. That is,
the syntax and semantics of an operation on a mailbox
(mutex) do not depend on the relative locations of the
threads invoking the operation and the mailbox (mutex)
itself. These objects are intended to be implemented via a
run-time library and make use of synchronization
primitives of the local environment. Any atomic
synchronization operation in the underlying system is
sufficient to support local thread interaction.

All dynamic PC computational resources, such as
threads and mutexs, are referred to by handles. These
handles, and task-ids, are first-class values, which may be
communicated between threads and tasks by the usual PC
communication mechanisms.

3. Basic language features
This section presents the central aspects of the PC
language constructs. Additional features are discussed in
the following section. A complete description of the PC
language can be found in 1181.

The essential aspects of PC are threads and their
activation. Therefore, this section and the next one focus
on the PC remote function call mechanism and parallel
constructs. Each subsection includes PC code fragments in
which new PC keywords appear in bold typeface and
pseudocode appears in italic typeface.

Remote function call
Multiple threads distributed across several tasks provide
PC support for distributed computing. Threads can be
activated across task boundaries with the remote function
call (rfc) mechanism.

The rfc activates a remote function, as shown here:

result = rfc(task-id, f(param1, ... 1);
The call of remote function f in a task with id task-id
automatically allocates a thread in the target task to
perform the function. The calling thread waits until the
invoked function completes and the value computed by the
function is returned. Multiple remote function calls to the
same task, even to the same remote function, can be
executed concurrently, since each call is executed by a
separate thread. Parameters are passed to the remote
function using standard C calling conventions. Care must
be exercised if pointers are passed to a remote function,
because pointer values may not be valid in the remote
task. Implementations of PC in heterogeneous distributed
environments must support data-format conversion of the
return value of remote functions and their arguments.

Parallel constructs
The remote function call mechanism does not by itself
create parallelism: A thread performs a single remote
function call and is forced to wait for its completion. It is
essential to provide a way of generating multiple
concurrent jobs. For this purpose, the PC language
contains parallel constructs that spawn sets of threads.
Each parallel construct defines a group of threads that can
synchronize with the initiating thread. Variables can be
passed to the member threads by the initiator. The PC
parallel constructs can be nested to arbitrary depth.

PC provides the par construct to define parallel
execution of a given set of statements. Each statement

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWOVEMBER 1 991

e

d,

I,

within a par construct is executed by a distinct thread, and
all threads begin execution concurrently. The par construct
illustrated here executes two local function calls and a
remote function call concurrently:

p a r e
f 0
g(param1, . . .);
r f c (t a s k - i d , h(param1, ...));

>

When all of the threads in the par construct set terminate,
the par construct completes. The invoking thread may wait
for the par construct to complete, or continue
asynchronously, as determined by a keyword.

The syntax of p a r f o r is similar to the C f o r loop. The
body of the loop contains a single statement to be
executed by a distinct thread for each loop iteration.
However, the evaluation of the loop iteration control is
sequential. The threads created by the p a r f o r loop are
activated concurrently. Thus, the execution of the par fo r
loop occurs in two stages:

PC also provides parfor-an iterative parallel construct.

First, the loop iterates sequentially. Each iteration
allocates a thread and, optionally, passes to the thread
copies of frozen variables (discussed below). The
threads, however, do not start executing yet.
Then, all threads are signaled to start execution together.

The user may provide the threads with private copies of
global variables, e.g., the loop variable. The par-wi t h
directive provides each thread with afrozen copy of the
specified variable(s). These values are passed at the first
stage of the p a r f o r execution (see above), and correspond
to a snapshot of the program state at the appropriate
sequential stage in the loop iteration. Here is a naive
matrix multiplication algorithm that uses p a r f o r and
par-wi th:

fO{
i n t i;
p a r f o r (i = 0; i < N; i++)

par-wi th (i)/* ' f r o z e n ' i */
{

/* N separa te th reads execute th is b lock ,
* one f o r each value o f i
*/
i n t j;
i n t k;

f o r (j = 0; j < N; j++)
f o r (k = 8; k < N; k++)

c [i l [J l += a [i l [k l * b [k l [jl;
}

1

The need for the freezing mechanism might not be obvious
at first.

Unlike some parallel languages, PC does not limit par fo r
loop control to a FORTRAN-style index, and the construct
can accept any loop control permitted by C. In the
following example, the compiler cannot derive the private
context of each iteration without the programmer
directives, since the number of iterations and the
values of the loop variable p are not known at compile
time:

p a r f o r (p = head; p != NULL; p = p->next)
par-wi t h (p)

f (p) ;

The synchronous nature of the parallel constructs (the fact
that all threads within the construct commence execution
concurrently) is required to support the group abstraction
(see Section 4) and the full semantics of the C f o r
statement. Some advanced features of the threads and the
parallel constructs are discussed at the beginning of
Section 4.

Both the par and par fo r loops generate a separate
thread for each component statement. They therefore
provide a mechanism for medium- to large-grain
parallelism. They should not be confused with the small-
grain parallelism provided by some parallel languages in a
similar syntax. Therefore, we do not expect the preceding
matrix multiplication example to be efficient, and use it for
illustration only.

9 Mailboxes
An obvious need in every parallel program is for
communication among parallel threads. PC provides
communication of unstructured messages via designated
mailboxes. Mailboxes are communication endpoints, which
are explicitly allocated and deallocated. Mailboxes are
referenced through mai 1 box-hand1 e values, which are
created at allocation time and are unique across an entire
application. A mailbox may be accessed by any thread that
possesses a copy of the associated mai 1 box-hand1 e value.
Mailboxes can thus be used to mediate communication
between threads within the same task or threads in
different tasks, with location-independent syntax and
semantics. In addition, a mailbox enforces a queuing
protocol for messages and threads. The mailbox queuing
protocols, established by create-mai 1 box, are described in
more detail in Section 4.

Operations on a particular mailbox involve
synchronization to maintain a consistent mailbox state.
Shown here are the creation of a mailbox with the default
protocol, and the basic send-mai 1 box and recei ve-mai 1 box

IBM J. RES. 1 IEVEWP. VOL. 35 NO. 516 SEFTEMBER'NOVEMBER 1991

operations: 731

R. CANETIT ET AL.

mai 1 box-hand1 e mh;
int status, length;
char *message, *buffer;

mh = create-mai 1 box() ;

status = send-mailbox(mh, message, length);
Check s ta tus

status = receive-mailbox(mh, buffer, length);
Check s ta tus

These operations pass unstructured message buffers
between sender and receiver. A send-mai 1 box operation
specifies a mai 1 box-hand1 e, a pointer to the message data,
and the length of the data. The sent message is transferred
before the send-mai 1 box operation terminates. The
operation returns either the number of bytes actually
transferred or an error code. Similarly, recei ve-mai 1 box
specifies a mailbox, a pointer to a data area for the
incoming message, and the maximum length permitted for
the message. recei ve-mai 1 box is blocked until a message is
received. The operation returns either the number of bytes
actually received or an error code.

...

Mutex objects
In a hybrid environment of shared- and distributed-
memory parallelism, it is beneficial to provide a fast
synchronization mechanism in addition to the mailbox
system. PC provides semaphore-like mutex objects and
supports synchronization and queuing operations on them.
The mutex-hand1 e is a new type that identifies mutex
objects throughout the PC application. The create-mutex
operation returns a mutex-handle:

mutex-handle mux-h;

mux-h = create-mutex() ;

The two basic operations on mutex objects are set-mutex
and cl ear-mutex. set-mutex attempts to set the mutex. If
the mutex is already set, the calling thread blocks and is
added to the FIFO queue of waiting threads. If threads are
waiting on a mutex, the cl ear-mutex operation releases the
first waiting thread, leaving the mutex set. Otherwise, it
clears the mutex. The example given here shows a typical
usage of mutex objects for critical section protection.

set-mutex(mux-h) ;

{

I
c r i t i c a l s e c t i o n

clear-mutex(mux-h) ;

4. Advanced language features
The PC language is designed to provide simple ways to

732 express simple programs while offering a higher degree of

control as an option for a sophisticated user. In the
previous section, we presented the most common PC
constructs in their simple forms. This section elaborates
on these constructs and presents some additional
constructs.

More on threads
PC enables the user to explicitly control thread allocation
and to manipulate thread resources. The code fragment
shown here allocates a new thread and associates with it
an identifier th of type thread-handle for further
reference:

thread-hand1 e t h ;

th = create-thread(task-id) ;

The lifetime of a thread extends from the moment it is
created with create-thread until it is freed via
free-thread(th). This is the pattern of usage of all
dynamically allocated control and communication handles
in PC. For each kind of handle there exist explicit create
and free operations.

The thread-handle returned by create-thread may be
used to control a thread, query its status, or wait for its
termination. Every thread has automatic access to its own
thread-handle through the variable my-thread. A thread
can communicate the value of this handle to other threads.
A variant of the remote function call mechanism,
rfc-thread, accepts a thread specifier. In the example
shown here, the rfc-thread operation is used to cause a
preallocated thread with handle th to execute a remote
function f, with parameters:

result = rfc-thread(th, f(param1, ...));

When the thread with handle th completes the execution
of the remote function, the handle th remains valid, and
the thread becomes inactive. Similarly, a thread that has
been explicitly allocated by the user can be activated using
the par and parfor constructs, as described in the next
subsection. During its lifetime, the thread can be activated
more than once.

More on parallel constructs
The C statements within a parallel construct may be either
simple or compound. As presented in Section 3, the
threads in a parallel construct have no visible handles. A
single, nameless thread executes each statement. As an
option, a particular preallocated thread can be specified to
execute a given statement. This feature can be used to
check the status of or wait for the completion of
asynchronously executing threads. In the example shown
here, two concurrent threads are activated in the par
construct:

R. CANETTI ET AL. IBM J . RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERNOVEMBER 1991

thread-hand1 e t h ;
th = create-thread0 ;
par c

/* Thread th executes this statement (1) */
par-t hread (t h) {

f 0 ;
9 0 ;
h 0 ;

I
{ /* Statement 2 */

rfc(task-idl, fl(param1, ... 1);
rfc(task-id2, gl(param1, ... 1);
rfc(task-id3, hl(param1, ...)) ;

}
>

Two things are worth noting in this example. First,
statement 1 is executed by the thread th, as specified by
the par-thread directive, while statement 2 is executed by
an unspecified thread. Second, statement 2 causes the
sequential activation of three additional threads through
the remote function call mechanism.

Both par and parfor can be invoked asynchronously by
specifying the keyword asynch before the construct. In this
case, the invoking thread continues execution in parallel
with the created group of threads.

Thread groups
The par and parfor constructs implicitly create groups of
threads. Every thread in a group has access to the group
handle through the variable my-group. PC enables explicit
association of a particular group with a parallel construct
for synchronization purposes using the par-group
directive, as shown here:

group-handle gh;
gh = creategroup() ; /* A1 1 ocate a group */

asynch par pargroup(gh) c
/* Activate threads in group */

...

f 0 ;
h 0 ;

>
...
wait-all-in-group(gh); /*Waitforgroupcompletion*/

The par-group directive associates the handle gh with the
group of two threads-one thread executing function f and
the other thread executing function h-invoked by the par
construct. The two threads are invoked asynchronously.
The group handle gh enables termination to be awaited
subsequently using wai t-a1 1-i n-group(gh). Additional
operations on a group provide for termination of all or any
of the threads in the group and for querying the status of
the group.

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEFTEMBERINOVEMBER 1991

Mailbox protocols
Asynchronous message-passing with unlimited buffering is
clearly powerful enough to support all communication
requirements. For example, synchronous communication
can be achieved by enforcing an acknowledgment protocol.
This might, however, incur a high performance penalty
because of additional message traffic and unnecessary
buffering of the message at both source and destination.
For instance, when the program follows a synchronous
communication protocol, it should be able to direct the
system to avoid the buffering required by an asynchronous
protocol and transfer the message directly without
intermediate buffering. For this purpose, the PC mailbox
mechanism supports various synchronization and
communication protocols.

buffering space are set at mailbox-creation time:

mai 1 box-hand1 e mh;

mh = create-mai 1 box(CONS, N) ;

mh = create-mailbox(UNBUF);

mh = create-mail box(NONC0NS) ;

The communication protocol and an optional limit on

/* Buffered consuming with capacity N */

/* Unbuffered-di rect transfer */

/* Buffered nonconsuming-capaci ty 1 */

The following protocols are supported by PC:

Consuming
Asynchronous (buffered) communication. A receive
operation deletes a message from the head of the
mailbox queue. A limit N may be set on the mailbox
capacity, possibly causing subsequent send-mai 1 box
operations to result in error values.

Synchronous communication (rendezvous) with direct
transfer. Both sender and receiver must await
completion of communication. This protocol is intended
to support the transfer of large buffers with minimal
copying overhead.

A special mailbox with one-message capacity. The
message is retained in the mailbox, for further receivers,
after every recei ve-mai 1 box request. This protocol is
intended to support a limited broadcast facility. Many
threads can await a single event by performing a receive
operation on a nonconsuming mailbox. When a message
is sent to the mailbox, all waiting threads receive the
message and proceed. The message remains in the
mailbox until it is removed with a cl ear-mai 1 box
operation.

Unbuffered

Nonconsuming

Each task has an implicit consuming mailbox whose handle
is accessible to threads within the task through the global

R. CANETTI ET AL.

734

Program with opportunity to reduce delay due to YO latency.

Multiheaded decomposition of serial program of Figure 2.

variable my-task-mai 1 box, and to threads in other tasks
through the get-task-mai 1 box (task-id) expression. This
built-in mailbox is intended to simplify the establishment of
communication between threads in different tasks and to
supply an initial set of communication endpoints.

5. Program examples
In this section, we present two program examples that
illustrate the use of the PC constructs presented in the
previous sections and demonstrate the usability and
expressive power of PC. We emphasize code clarity over
performance. In the examples, we sometimes replace serial
code sequences with a description in italics. New PC types
and constructs appear in bold typeface in the code
fragments.

The first example demonstrates the benefit of using
multiple threads to reduce delays due to IlO latency, by
overlapping computation with 1/0 in a serial program, and
the ease of expressing such a program in PC. The
multithread code may run faster even on a uniprocessor.

The second example is a simple branch-and-bound
solver for the well-known traveling-salesman program. PC
code implementing the solver for both shared-memory and
distributed-memory environments is presented.

&ploiting I10 latency within a single program
The ability to specify the behavior of a program in terms
of multiple threads allows a single program to exploit
input-output latencies and communication latencies in a
single program, as do multitasking operating systems. A
serial program that benefits from a multithreaded
description is sketched in Figure 2, and its parallel
decomposition is shown in Figure 3. The program reads a
stream of data from one file in chunks, performs intensive
computation on each chunk, and writes the result to a
second file. This is a generic serial program structure that
arises in numerical applications such as digital filtering.
The serial code would look like this:

main (){
...
while(!done){

read-chunk(); /* Reads a chunk */
compute-chunk() ; /* Computes */
write-chunk(); /* Writes a chunk */

I

I
...

By splitting the program into three separate threads
communicating through a circular buffer (as shown in
Figure 3), we can overlap computation with the input-
output operations, even within a single program. Here is
the parallel code:

main (){
...
Ini t ial ize c ircular buffer with
mutex synchronization;

par < /* Start three para1 le1 threads */
pread-chunk() ; /* Reads a chunk */
pcompute-chunk() ; /* Computes */
pwrite-chunk(); /* Writes a chunk */

...

>
I
/* pcompute-chunk and pwrite-chunk are similar */
pread-chunk(){

while(!done){
Get next available read buffer rb;
read-chunkfrb);
Make rb available for pcompote-chunk;

I
1
Although some additional code is required to implement
the circular queue, the read, write, and compute
components of the original serial program are unchanged.
An implementation of a stylized filter of this type using our
prototype implementation of PC on an IBM RT Personal

R. CANElTI ET AL. IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBEWOVEMBER 1991

B

* i n j o b l i s t .
*I

void
ExtendPaths(nai1box-handle j ob l i s t .

nailbox-handle minpath.
rmtex-handle minpath-mutex.
s t r u c t p a r t i a l s a t h *base)

struct part ial-path *local-minpath;
f n t i;

{

/* Used by GenerateJob */
/* Used t o Get and Broadcast Bound */
/* mutex on minpeth */
/* Part ia l path to be extended */

/* Placeholder f o r GetBound */

i f (base-bpathlen == NCITIES) { /* This i s already a f u l l path */
D

Compute f u l l cost of path;

Extend path i n 'base' with city ' i ' and compute new cost;

i f (base->cost < GetBound(minpath, local-minpath)) /* This 1s the pruning condition */
GenerateJob(joblist, base); /* Deposi t current part ia l path in jobl ist */

Roll back last extension. (i .e . . remove c i t y ' i ' from path);
1

Extendpaths routine for the parallel traveling-salesman problem solver.

B Computer@ running Mach yielded a 25-30% speedup over minimum-length path that visits each city exactly once. In
the original serial program. this section we present a branch-and-bound [19] traveling-

salesman solver and describe its parallel implementation in
Parallel traveling-salesman problem solver PC-

Given a set of cities and the distance between each pair of A complete path is an ordered list of all the cities, with
cities, a solution to the traveling-salesman problem is the a common start and end city. Apartialpath consists of an

D IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEFTEMBERMOVEMBER 1991 R. CANETTI ET AL.

735

736

ordered list of a subset of the cities. The path length of a
path is the total distance traveled from start city to end city.

The ExtendPaths routine shown in Figure 4 extends a
partial path with each possible (i.e., as yet unvisited) city.
The loop in ExtendPaths considers in turn each possible
single-city extension to the base path. If the path length of
such an extended partial path exceeds the length of the
best complete path yet known, as returned by GetBound,
this partial path clearly does not lead to an improved
solution and is pruned (Le., discarded). Otherwise, the
extended path remains a possible basis for a solution and
is added to the job list, using GenerateJob. The original
base path is then restored by deleting the city just added
before the next path extension is considered. If a path is
completed whose length is shorter than the best solution
known, BroadcastBound is used to establish it as the best
solution known.

We start with a partial path that contains a single city
and an arbitrary complete path as the best solution yet
known. At each step, a partial path is selected and is
extended with ExtendPaths. This continues until no partial
paths remain to be explored. Since the extensions to each
partial path are disjoint, multiple path extensions can be
performed independently, in parallel. This leads to a work
arrangement that employs a central job list and multiple
(identical) threads fetching partial paths from the job list
and adding extended partial paths to the list. Threads can
also retrieve and update the best solution known.

Management of the job list and global bound is shown
below. The job list is implemented using a buffered PC
mailbox. GenerateJob simply sends a partial-path data
structure to the joblist mailbox. Similarly, GrabJob
receives a partial path from the mailbox. The best solution
known is stored in a nonconsuming mailbox, minpath.

void GenerateJob(mai1box-handle joblist,
struct partial-path *pt)

{

1
send-mailbox(joblist, (char *)pt, sizeof(*pt));

void GrabJob(mai1box-handle joblist,
struct partial-path *pt)

{

}
receive-mailbox(joblist, (char*)pt, sizeof(*pt));

Threads access the current best bound with GetBound,
which receives the message stored in minpath. Updating
the bound must be done atomically, so the
BroadcastBound function enforces atomicity by using a
mutex object, minpath-mutex, as shown in Figure 5.

that retrieves jobs from the job list and tries to extend
them, as shown here:

The function executed by the threads is an infinite loop

R. CANElTI ET AL.

void
pmain(mai1box-handle joblist,

mailbox-handle minpath,
mutex-handle minpath-lock)

{
struct partial-path base;

/* Main body of worker thread */
for (; ; I {

/* Get a job from the list */
GrabJob(job1 i st, &base) ;
/* Try to extend the path */
ExtendPaths(joblist, minpath, minpath-lock,

&base) ;
I

1
The main body of the application creates and initializes the
job list and global bound, and sets up parallel activity via
parfor, as shown in Figure 6. The global minimum is
found when all worker threads are waiting and there are no
more job descriptors in the job list. The main thread
detects this situation, prints the solution, and terminates
the worker threads. Termination is facilitated by
associating all worker threads with the group g.

is easily adapted for a multitask implementation. The
central job list and global bound are implemented via
mailboxes and will therefore work unchanged in a
multitask environment. Only the initialization of parallel
activity requires modification. In the single-task version,
the parfor statement establishes worker threads within the
current task by invoking the pmain function directly. In
the multitask version, a parfor invokes remote function
calls that invoke the pmain function in other tasks, as
shown below. The rfc also transfers the values for the
joblist, minpath, and minpath-mutex handles, facilitating
use of these resources by all of the invoked threads. Each
task has an integer index but is manipulated using a task-id,
with get-task providing the mapping:

asynch parfor (i = 8; i < nworkers; i ++)

The single-task traveling-salesman solver just described

rfc(get-task(i),
pmain(joblist, minpath, minpath-lock));

Performance of both the shared- and distributed-memory
versions of the solver could be improved by reducing the
frequency of reads and writes to the job list. This is easily
achieved by modifying ExtendPaths to perform path
extensions of more than one city before reinserting partial
paths in the job list.

6. Implementation
In this section, we describe our prototype implementation
of a PC compiler and run-time system for the Mach

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEIUliOVEMBER 1991

/* GetBound returns the cost of the best bound */
i n t GetBound(mai1box-handle minpath, struct partial-path *pt)
{

receive-mailbox(minpath, (char *)pt, sizeof(*pt));
return pt->cost;

I
I* BroadcastBound:
* A part ia l solut ion is submitted as best solut ion to 'minpath' .
* The query and update are made atomic, to ensure storing of best bound.
*/

void BroadcastBound(mai1box-handle minpath,
nutex-handle m i npath-mutex,
struct partial-path *pt)

{
struct partial-path best;

set-nutex(minpath-mutex) ; I* S t a r t atomic */
GetBound(minpath, &best);
i f (best.cost > pt->cost) { /* New bound i s b e t t e r */

clearJrailbox(minpath);
send-mailbox(minpath, (char *)pt , s izeof (*pt)) ;

1
clear-wutex(minpath-mutex);

}

GetBound and BroadcastBound routines for the parallel traveling salesman problem solver.

operating system [2]. Since we intended that PC eventually
run on many systems, emphasis was placed on an efficient,
yet easily portable, system. Parallel machines are quite
diverse in both instruction-set architectures and software
services. Therefore, if portability is an issue, it is unwise
to have the compiler target a particular assembly language
or a particular set of system services. Thus, in our
implementation of a PC compiler we translate PC code into
standard C code with calls to a run-time library. The run-
time library supports an abstract machine model between
the language and the underlying system. This facilitates
portability, since a port to a new hardware or software
architecture requires modifications to only small, system-
specific portions of the run-time library, while the compiler
remains unchanged.

The PC compiler
The PC grammar [18] is a strict superset of that of C.
There are two forms of language extensions: control
constructs (e.g., par) and built-in functions (e.g.,

create-thread). The work of the compiler is mainly to
produce correct C translations of the new control
constructs. The new built-in functions are dealt with
simply by introducing library functions with the same
name and declaring function prototypes. The new PC types
are dealt with through typedefs. The compilation of a PC
program is illustrated in Figure 7. Before the user's source
file is preprocessed, it is appended to an include file that
contains the function prototypes for built-in functions and
the typedefs for the PC data types. A task executable is
produced by linking object files produced from C and PC
source files with the PC run-time library, as shown in
Figure 8.

The essential task of the PC compiler is to perform the
resource management (i.e., allocation of threads and
groups) implicit in the parallel constructs and to generate C
code for statements appearing within the PC parallel
constructs. This generated C code must correctly conform
to the PC memory model. The code to be executed by
each thread within a parallel construct is encapsulated in a 737

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEFTEMBEWOVEMBER 1991 R. CANElTI ET AL.

Main function of the parallel traveling salesman problem solver.

738

R. CANETI7 ET AL. IBM I. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBEWOVEMBER 1991

distinct compiler-generated function. Automatic variables
visible in the context of the parallel construct are shared
by all threads invoked within the construct. The PC
compiler must ensure that the functions executed by the
invoked threads can access all automatic variables
referenced within the parallel construct. The original code
is modified to refer to the automatic variables through
dereferenced pointers, and these pointers are passed as
parameters. We illustrate here the required code
transformation. In the following example, the automatic
variable i is referenced inside the par construct:

main (){
i n t i;

par c
i ++; /* References automatic variable i */

>
I
The statement inside the par is converted to a function,
PC-88837, and i is referenced through a pointer passed as a
parameter of the function. Frozen variables and nesting of
par constructs introduce additional complexity that is
handled by the compiler. Here is the C code generated by
the PC compiler:

/* Function generated by PC compi ler */
PC_80837(int *i){

Glue code;
(*i)++; /* References or ig ina l au tomat ic i

* through po inter
*I

Glue code;

I
main(){

i n t i;

Par g lue code;

Invoke thread t o execute PC-88837 (&i) ,
pass address o f i ;

Par g lue code;

I
In designing the PC compiler, we adopted a minimalist

approach to error checking. That is, we perform only the
correctness checks required to support correct parsing of
PC source or to report errors that the C compiler would
detect, but would provide the user with an unintelligible
diagnostic. It is critical to report all errors in a way that
permits the user to relate them to the original PC source
code, without having to delve into the C code generated by
the PC compiler. Full parsing of the PC source is required
to detect and report PC (rather than C) syntax errors, and

Creating a task executable from C and PC source files.

to fully analyze data declarations and remote function
definitions. A shift-reduce parser with error recovery for
the PC LALR(1) grammar is automatically generated by
the LPG’ tool3. A symbol table of data declarations is
maintained. No type-checking of expressions is performed,
however, since the type-correctness of all PC language
constructs is verified by the C compiler. The PC compiler
outputs compiler directives that permit the C compiler to
associate errors in the C file output by the PC compiler
with the location of the errors in the original PC source
file.

PC run-time support
The PC run-time package constitutes the logical-machine
support for the PC program. Every PC object-type has a
type-manager, i.e., a thread manager, a group manager, a
mutex manager, and a mailbox manager. These are logical
entities consisting of the type definition, its allocation
management, and the operations provided for manipulating
it. Each object-type has a set of associated interface
routines. The PC compiler produces calls to these interface
routines and gains access to the PC services by linking the
program object modules with the PC run-time library.

The invocation of the service operations by the interface
routines is mediated by a logical local-request server
(LRS). This sewer is designed to permit extension to a
multitask implementation. The LRS in a multitask
implementation should transfer all requests referring to
nonlocal objects to the sewers in remote tasks. This is
done transparently, while preserving the uniform interface.

The single-task implementation of PC for the Mach
operating system [2] is an extension of the C Threads
library [7] developed at Carnegie Mellon University. The
underlying support layer for multiprocessing is the C
Threads cprocs layer. The cprocs mechanism is a software

2 Philippe Charles, Gerry Fisher, and Yvonne Lesesne, LALR Parser Genemror
Version 2.0 User’s Guide, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY.
3 We are currently reimplementing the PC parser using YACC [ZO] and LEX [21],
to enable dissemination of the prototype compiler. 739

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERNOVEMBER 1991 R. CANElTI ET AL.

layer supporting concurrent execution threads and
providing operations on them such as allocation, control,
and synchronization. The PC run-time package can be
ported to a system if the system provides the cprocs
functionality. Thus, the cprocs interface serves as the
definition of the PC package environment requirements.

7. Discussion
In this paper we have presented the design of PC, a new
language for parallel processing. The examples presented,
as well as our experience developing programs with PC,
demonstrate that PC has met our initial design goals. In
particular, PC is easy to integrate with existing code and
easy to learn.

We chose the C language as the base for extension for
practical reasons only. We believe that C + + @ [22] is a
more suitable language for extension, since it better
accommodates new object definition and handling. For
example, we chose to omit typed mailboxes with
structured messages, which are cumbersome in C;
however, in C+ +, structured mailboxes could easily be
defined as a derived class of unstructured mailboxes.
Similarly, rfc syntax could be streamlined.

support multitask applications, adapting our run-time
library to use the POSIX pthreads library [23] instead of
Mach cthreads, and gaining experience developing
programs in PC. As a result, we are contemplating several
language extensions to support additional mailbox
protocols and additional operations on groups of threads.

We are currently extending our implementation of PC to

Acknowledgments
We have benefitted from helpful discussions with Anthony
Bolmarcich, Howard Operowsky, Michael Rodeh, Leslie
Scarborough, and Marc Snir. We thank the Toronto
Programming Laboratory for supplying us with a C
grammar, and Jerry Fisher at the IBM Thomas J. Watson
Research Center for supplying us with LPG. Finally, we
thank the anonymous reviewers for their comments.

RT Personal Computer is a registered trademark of
International Business Machines Corporation.

C+ + is a registered trademark of AT&T.

References
1. Brian Kernighan and Dennis Ritchie, The C Programming

Language, Second Edition, Addison-Wesley Publishing
Co., Inc., Reading, MA, 1989.

2. Mike Accetta, Robert Baron, William Bolosky, David
Golub, Richard Rashid, Avadis Tevanian, and Michael
Young, “Mach: A New Kernel Foundation for Unix
Development,” Proceedings of Summer Usenix, Atlanta,

3. C. D. Polychronopoulous, D. J. Kuck, and D. A. Padua,
July 1986, pp. 93-113.

740 “Optimal Processor Allocation to Nested Parallel Loops,”

R. CANElTI ET AL.

Proceedings of the International Conference on Parallel
Processing, Institute of Electrical and Electronics
Engineers, New York, 1986, pp. 519-527.

J. Ferrante, “An Overview of the PTRAN Analysis
System for Multiprocessing,” J. Parallel & Distributed
Computing 5, No. 5, 617-640 (October 1988).

L. Torczon, and S. K. Warren, “A Practical Environment
for Scientific Programming,” ZEEE Computer 20, No. 11,
75-89 (November 1987).

Distributed-Memory Multiprocessors,” J. Supercomputing
2, No. 2, 151-169 (October 1988).

7. E. C. Cooper and R. P. Draves, “C Threads,” Report No.
CMU-CS-88-154, Computer Science Department, Carnegie
Mellon University, Pittsburgh, PA, June 1988.

8. B. N. Bershad, E. D. Lazowska, and H. M. Levy,
“Presto: A System for Object Oriented Parallel
Programming,” Software-Pract. & m e r . 18, No. 8,

4. F. E. Allen, M. Burke, P. Charles, R. Qtron, and

5. A. Carle, K. D. Cooper, R. T. Hood, K. Kennedy,

6. D. Callahan and K. Kennedy, “Compiling Programs for

713-732 (August 1988).
9. J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R.

Overbeek, and J. Patterson, Portable Parallel Programs
for Parallel Processors, Holt, Rinehart, & Winston, New
York, 1987.

S. Tannenbaum, “Programming Languages for Distributed
Computer Systems,” ACM Computing Surv. 21, No. 3,
261-322 (September 1989).

11. N. Carrier0 and D. Gelernter, “Linda in Context,”
Commun. ACM 32, No. 4, 414-458 (April 1989).

12. N. H. Gehani and W. D. Roome, “Concurrent C,”
Sofhvare-Pract. & Exper. 16, No. 9, 821-844 (September
1986).

13. W. Chang and A. Norton, “EPEWC,” Research Report
RC-12572, IBM Thomas J. Watson Research Center,
Yorktown Heights, N Y , February 1987.

14. L. Rudolph and Y. Ben-Asher, “The PARC System,”
Research Report No. CS-88-8, Hebrew University,
Jerusalem, Israel, August 1988.

15. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-l815A, U.S. Department of Defense,
Washington, DC, 1983.

Numerical C Extensions Group, ANSI Working Group
X3Jll.1, R. Jaeschke, convener, 2051 Swans Neck Way,
Reston, VA 22091.

17. D. Klappholz, A. Kallis, and X. Kong, “Refined C: An
Update,” Second Workshop on Languages and Compilers
for Parallel Processing, Urbana, IL, August 1989; MIT
Press, Cambridge, MA.

18. Ran Canetti, L. Paul Fertig, Saul A. Kravitz, Dalia Malki,
Ron Y. Pinter, Sara Porat, and Avi Teperman, “The
Parallel C (PC) Programming Language,” Technical Report
88.307, IBM Israel Science and Technology, Haifa, June
1991.

Data Structures and Algorithms, Addison-Wesley
Publishing Co., Reading, MA, 1983.

20. S. C. Johnson, “YACC-Yet Another Compiler
Compiler,” Computing Science Technical Report 32,
AT&T Bell Laboratories, Murray Hill, NJ, 1975.

21. M. E. Lesk, “LEX-A Lexical Analyzer Generator,”
Computing Science Technical Report 39, AT&T Bell
Laboratories, Murray Hill, NJ, 1975.

22. B. Stroustrup, The C+ + Programming Language,
Addison-Wesley Publishing Co., Reading, MA, 1986.

23. Computer Society Technical Committee on Operating
Systems, Threads Extensions for Portable Operating
Systems, Order No. P1003.4aD4, Institute of Electrical
and Electronics Engineers, New York, August 1989.

10. Henri E. Bal, Jennifer G. Steiner, and Andrew

16. NCEG Document Register, NCEG 90-000, 1991,

19. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman,

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBERNOVEMBER 1991

Received October 16, 1990; accepted for publication
Janualy 25, 1991

Ran Canetti Department of Computer Science, Technion,
Haifa 32000, Israel. Mr. Canetti received the B.A. degree in
computer science in 1988 and the B.A. degree in physics in
1989, both from the Technion-Israel Institute of Technology,
Haifa. He is currently completing his M.Sc. degree in
computer science at the Technion. Mr. Canetti spent the
summer of 1990 at the IBM Israel Scientific Center working on
parallel C. His interests include computational complexity and
parallel and distributed computation.

L. Paul Fertig IBM Israel Science and Technology,
Technion City, Haifa 32000, Israel. Dr. Fertig received a B.Sc.
degree in mathematics from the University of Manchester,
England, in 1978, and a D.Phil. degree in computing science
from the University of Oxford, England, in 1982. From 1983 to
1984 he was a postdoctoral research officer at the University
of Oxford; from 1985 to 1986 he was a software engineer for
ICL, West Gorton, Manchester, England. In February 1988
Dr. Fertig joined the IBM Israel Scientific Center, where he is
currently involved in the development of microcoding
environments. His research interests include techniques for
formal specification, parallel languages, and persistent
languages. Dr. Fertig is a member of the Association for
Computing Machinety and ACM SIGPLAN.

Saul A. Kravitz* IBM Israel Science and Technology,
Technion City, Haifa 32000, Israel. Dr. Kravitz received the
B.A. degree in physics from The Johns Hopkins University,
Baltimore, in 1982 and the M.S. and Ph.D. degrees in
electrical and computer engineering from Carnegie Mellon
University, Pittsburgh, in 1986 and 1989, respectively. Since
1989, he has been a Research Staff Member at the IBM Israel
Scientific Center, where he is currently involved in developing
programming language support for parallel computers, and
optimizing compilers. He is the leader of the PC project. His
interests are in the areas of parallel and distributed
computation and computer architecture. Dr. Kravitz is a
member of the Institute of Electrical and Electronics
Engineers, Phi Beta Kappa, and Sigma Xi.

Dalia Malki Department of Computer Science, Hebrew
University, Jerusalem 91904, Israel. Ms. Malki received the
B.Sc. and M.Sc. degrees in computer science from the
Hebrew University in Jerusalem in 1985 and 1988,
respectively. She is currently pursuing a Ph.D. degree in the
area of high availability for distributed systems in the
Computer Science Department of the Hebrew University in
Jerusalem. During the years 1988-1990 she worked at the IBM
Thomas J. Watson Research Center, Yorktown Heights, NY.
In 1990 she was a Research Fellow at the IBM Israel Scientific
Center, Haifa. Ms. Malki's interests include parallel
programming and distributed operating systems.

*Correspondence concerning this paper should be addressed to Dr. Kravitz.

Ron Y. Pinter IBM Israel Science and Technology,
Technion City, Haifa 32000, Israel. Dr. Pinter received the
B.Sc. degree in computer science from the Technion-Israel
Institute of Technology, Haifa, in 1975, and the S.M. and
Ph.D. degrees in electrical engineering and computer science
from the Massachusetts Institute of Technology, Cambridge, in
1980 and 1982, respectively. From 1982 to 1983 he was a
Member of the Technical Staff in the Computing Sciences
Research Center, AT&T Bell Laboratories, Murray Hill, NJ.
In December 1983 he joined the IBM Israel Scientific Center,
where he is currently the manager of the Programming
Languages and Environments Department. He is also an
Adjunct Senior Teaching Associate with the Electrical
Engineering Department at the Technion. Dr. Pinter has taught
at the Hebrew University, Jerusalem, and spent the academic
year 1988-1989 as a Visiting Scientist in the Department of
Computer Science, Yale University, New Haven, Connecticut.
His research interests include parallel-programming
techniques, code-generation algorithms, and layout for
integrated circuits. Dr. Pinter is a member of the Association
for Computing Machinery, ACM SIGPLAN, and the IEEE
Computer Society.

Sara POrat IBM Israel Science and Technology, Technion
City, Haifa 32000, Israel. Dr. Porat received the B.Sc.,
M.Sc., and Ph.D. degrees in computer science from the
Technion-Israel Institute of Technology, Haifa, in 1977, 1981,
and 1986, respectively. From 1978 to 1981, 1982 to 1986, and '

1986 to 1990 she was a Teaching Assistant, an Instructor, and
a Lecturer, respectively, in the Computer Science Department
at the Technion. From 1986 to 1987 and 1987 to 1988 she was
a Research Associate and an Assistant Professor, respectively,
in the Computer Science Department of the University of
Rochester, New York. In February 1990, she joined the IBM
Israel Scientific Center, where she is currently a Research
Fellow in the Programming Languages and Environments
Department. Dr. Porat's research interests include formal
specification of systems and programs, semantics of
programming languages, and machine learning.

Avi Teperman IBM Israel Science and Technology,
Technion City, Haifa 32000, Israel. Dr. Teperman received the
B.Sc., M.Sc., and Ph.D. degrees in electrical engineering from
the Technion-Israel Institute of Technology, Haifa, in 1968,
1971, and 1979, respectively. From 1979 to 1982 he was a
Lecturer in the Department of Electrical Engineering at the
Technion. In December 1982 he joined the IBM Israel
Scientific Center, where he is currently working on operating
systems, distributed environments, and parallel languages. Dr.
Teperman is also an Adjunct Teaching Associate with the
Computer Science Department at the Technion; he spent a
year (1987-1988) as a Visiting Scientist at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York. His
research interests include, in addition to the above, code-
optimization algorithms and object-oriented systems.

I

I

IBM J . RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWNOVEMBER 1991 R. CANE'ITI ET P

741

LL.

