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We describe PC (parallel C),  an extension of 
the ANSI C  programming  language to support 
medium- to large-grain  parallel  programming in 
both shared-  and  distributed-memory 
environments. PC aims to make  programming 
for parallel  processors  accessible to the C 
community by enriching  the C programming 
model  with  a  small  set  of constructs 
supporting parallelism. PC supports  shared- 
and  distributed-memory  environments  via  a 
hierarchical  computational model. A PC 
application  comprises  a  static collection of 
tasks with disjoint memory  spaces. A  dynamic 
collection of  threads runs within each  task, 
sharing the data  and  code of the  task. 
Language constructs specify  concurrent 
execution  of  threads within a  single  task. 
Additional language constructs specify  the 
interactions  between  threads through the 
following mechanisms: initiation of  threads in 
remote  tasks  by  remote function call, mailbox- 
based  message  passing,  and synchronization 
primitives. The  paper introduces  the 
computational  model  and  language  constructs 
of PC and  describes  a  prototype PC compiler 
and  run-time  system for the Mach  operating 
system.  Several  program  examples illustrate 
the utility of PC constructs. 

1. Introduction 
Currently, the development of applications for 
multiprocessor computers is a difficult and error-prone task 
requiring highly specialized professionals. If parallel- 
computing resources are to be properly exploited, it  is 
critical that parallel-program development become 
accessible to the typical programmer,  with  minimal 
retraining. 

We describe PC (parallel C),  an extension of the ANSI 
C programming  language [l] to support medium- to large- 
grain parallel programming  in both shared- and distributed- 
memory environments. PC is designed to make parallel 
programming accessible to the C community by enriching 
the C programming  model  with a small set of constructs 
supporting parallelism. 

In developing PC, we  had the following  goals: 

Compatibility with C: . Maintain compatibility with ANSI C source (Le., 
PC should be a strict superset of ANSI C)  and strict 
compatibility with C object code. . Keep all  language extensions in the spirit of C, so that 
C programmers do not  suffer "culture shock" when 
writing and reading PC programs. 

Wide range of supporfed architectures: Provide language 
support for a broad range of parallel-computing 
environments, including shared- and distributed-memory 
systems. 
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Dynamic  resource  allocation: Provide flexibility  by 
allocating resources and  binding communication at run 
time. 
Flexible parallel  constructs: Support both synchronous 
forwjoin and asynchronous parallel activities. 
Multiple levels of user  control: Facilitate parallel 
programming by users with a broad range of 
sophistication. We want to make it possible for expert 
users to tune their code by controlling resource 
allocation, without requiring novice users to  do the 
same. 

PC supports shared- and distributed-memory 
architectures via a hierarchical computational model. 
A PC application comprises a static collection of parallel 
tasks with disjoint memory spaces. A dynamic, parallel 
collection of threads runs within each task, sharing the 
data and code. Language constructs specify interactions 
between threads through the following mechanisms: 
initiation of threads in remote tasks by remote  function 
call, mailbox-based message-passing, and synchronization 
primitives. 

To  our knowledge, no other parallel-language  effort has 
attempted to support shared and distributed memory and 
provide object-code compatibility with existing C code. 

In the remainder of this section, we examine other 
published efforts in  light of the above-mentioned design 
goals.  In Section 2 we describe the PC computational 
model and the layout of PC source code. In Section 3 we 
introduce the PC language constructs in their basic form, 
and in Section 4 we describe some advanced language 
features. Section 5 illustrates the use of PC  constructs by 
presenting two PC program fragments. Section 6 describes 
our implementation of a PC compiler and run-time system 
for the Mach operating system [2]. We conclude, in 
Section 7, with a discussion of the language. 

‘Rationale 
Several approaches have been taken to bridge the gap 
between the programmer and the efficient use of parallel 
computers. Parallelizing compilers [3-61 try to extract 
parallelism  from programs written in sequential 
programming  languages. The major advantages of this 
approach are the ability of programmers to continue 
programming  in a known language,  with a well-understood 
computational model, as well as the possibility of 
improving the performance of “dusty decks” without 
reprogramming. The major drawback of this approach is 
that it is restricted to loop-level  parallelism that the 
compiler can detect or the user identifies  with  compiler 
directives. Parallelizing-compiler technology is progressing 
but is  not yet mature. 

Libraries [7, 81 and macro [9] packages have been used 
to extend serial-programming languages to support parallel- 

program development. This approach has the major 
advantages of not  requiring a compiler, and operating 
within  familiar  language frameworks and computational 
paradigms. However, the limitations of the underlying 
programming  languages often impose  an awkward syntax 
and unnatural restrictions on the programmer. We feel that 
a language-level interface to the features supported by 
these libraries offers major improvements in  programmer 
productivity: The resulting programs are more concise and 
readable, and easier to develop and  maintain. 

abstractions required to construct parallel programs,  within 
a programming-language  framework. The goal  is to provide 
concise language constructs that facilitate program 
development and can be compiled into efficient programs. 
Parallel-programming  languages can be categorized as 
either new  languages or extensions to existing languages. 

programming  languages  in favor of new  programming 
languages  with  new computational models.  [A survey of 
previous work in the area of  new languages  is beyond the 
scope of this paper (see [lo]).] However, the major  pitfall 
of designing  new  languages  and computational models is 
that they force the programmer to learn a completely new 
way of thinking before the programmer can write a parallel 
program. An additional and more serious problem,  which 
any new  programming  language  must address, is how to 
interface with the mountain of existing software written in 
popular programming  languages. We believe that any 
parallel-programming  language that is to be widely 
accepted must  avoid these obstacles by  defining a strict 
superset of a widely used serial-programming  language. 

to introduce auxiliary parallel-computational models. A 
good example is C-Linda [ll],  which introduces the 
powerful tuple-space model of computation. However, to 
exploit  parallelism  within  an  existing serial application may 
require a complete rethinking of the algorithm  in terms of 
the tuple-space model. The tuple-space is also opaque and 
offers the programmer little control of its internal structure 
or opportunity for tuning. As an  example, there is  no 
explicit way to exploit locality. 

Other attempts to extend C for parallelism introduce 
constructs to support coarse-grain distributed-memory 
parallelism [12] or fine-grain  parallel computation within a 
single address space [13, 141, but not both. Concurrent-C 
[12] not  only lacks support for parallel computation within 
shared memory but also restricts parallel interaction to an 
Ada-like [15] rendezvous model. EPEX-C [13] supports 
fine-grain  parallelism  in the form of self-scheduled parallel 
loops. Only parallel loops with integer indices and  simple 
loop increments are supported. 

PC supports both shared- and distributed-memory 
parallelism. The expressive power of PC exceeds the 

Parallel-programming  languages integrate the 

The temptation is great to abandon existing 

Even within the context of C, attempts have been made 
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PC computational model. 

aforementioned efforts, and PC introduces no  artificial 
restrictions on language syntax. Furthermore, we think 
fine-grain  parallelism  is better dealt with by vector 
operators  as proposed by [16], data-oriented approaches as 
exemplified by [17], or modern compiler optimization 
techniques, than by language constructs  at the statement 
level. 

2. Computational  model  and  application  layout 
A PC application can be viewed as a program for an 
aggregate of logical processor nodes. Each node may be 
thought of as a shared-memory multiprocessor, i.e., a set 
of processing elements with a single memory space. An 
auxiliary configuration file defines the (static) mapping of 
nodes onto actual computational resources. More than one 
node may be mapped to the same physical host, but if so, 
their address spaces remain disjoint. 

PC supports applications that consist of multiple tusks, 
each of which is loaded on a distinct logical node, as 
shown in Figure 1. This enables the loading of different 
portions of an application on unlike hosts. Each task 
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supports multiple threads of execution, which share the 
code and data of the task. These threads can execute 
concurrently when parallel-execution resources are 
available. Multithreaded tasks are useful, even for 
programs written for networks of uniprocessors, since they 
facilitate the masking or hiding  of message or input-output 
delays by a single program, just as multitasking improves 
throughput at the operating system level. Furthermore, 
threads may provide a useful way of structuring a 
program, even for a uniprocessor. 

structure of PC programs and of the PC computational 
model. 

Source layout The user specifies the source code of each 
task. The same task code can be loaded on more than one 
logical node, producing distinct tasks. One task is 
designated as the main tusk, containing the body of the C 
mai n1 function. All activity in a PC application is started by 

We  now describe the important characteristics of the 

1 Throughout the paper, we use a sans-serif font for C or PC language keywords. 729 

R.  CANE'ITI  ET AL. 



a single thread, which executes  the main function of the 
main task. The application terminates when all activity in 
the application terminates. Any existing C program can run 
unchanged as a single-task, single-thread PC application. 

Each task is an executable instance of some compiled 
and linked task source program. The  source code for a 
task contains a collection of functions and data, as does a 
regular C program. In addition, each task contains a set of 
entry-point functions called remote functions. The remote 
functions are visible outside the task as well as within it, 
and can be invoked through a remote function call 
mechanism. Tasks  are referred to by global task-ids. 

Generating parallel activiv The basic dynamic 
schedulable unit of execution in PC is a thread. Multiple 
threads of control within a single task provide PC support 
for shared-memory parallel computation and are initiated 
by PC parallel constructs. The par and parfor constructs 
generate groups of threads that execute concurrently 
within a single task. Each thread in a parallel construct 
executes a C compound statement, which may in turn 
include remote function calls or parallel constructs. 

Multiple tasks distributed across multiple hosts provide 
PC support for distributed-memory computing. Parallel 
activity is initiated across task boundaries (or locally) with 
the remote function call mechanism, as a result of which a 
new thread within the designated task is activated to 
perform the called function. 

A parallel application is started  as a single thread in a 
main task. This thread can initiate threads within its own 
task using parallel constructs, or threads in other tasks 
using remote function call. 

Memory model All threads within a task share  its global 
data and function space (subject to standard C scoping 
rules). Each thread has its own stack. Optionally, a thread 
that is initiated by a parallel construct is provided with 
private, initialized copies of variables. These variables are 
termed frozen variables, since their initial values are frozen 
at the time of thread activation. The handling of these 
frozen copies has no effect on the original variables. 

Communication  and  synchronization PC defines 
application-wide communication and synchronization 
primitives-mailbox and muter (mutual exclusion) objects. 
Mailbox and mutex objects  are accessed with uniform 
syntax and semantics throughout a PC application. That is, 
the syntax and semantics of an operation on a mailbox 
(mutex) do not depend on the relative locations of the 
threads invoking the operation and the mailbox (mutex) 
itself. These objects are intended to be implemented via a 
run-time library and make use of synchronization 
primitives of the local environment. Any atomic 
synchronization operation in the underlying system is 
sufficient to support local thread interaction. 

All dynamic PC computational resources, such as 
threads and mutexs, are referred to by handles. These 
handles, and task-ids, are first-class values, which  may be 
communicated between threads and tasks by the usual PC 
communication mechanisms. 

3. Basic  language  features 
This section presents the central aspects of the PC 
language constructs. Additional features are discussed in 
the following section. A complete description of the PC 
language can be found in 1181. 

The essential aspects of PC are threads and their 
activation. Therefore, this section and the next one focus 
on the PC remote function call  mechanism  and  parallel 
constructs. Each subsection includes PC code fragments in 
which new PC keywords appear in bold typeface and 
pseudocode appears in italic typeface. 

Remote function call 
Multiple threads distributed across several tasks provide 
PC support for distributed computing. Threads can be 
activated across task boundaries with the remote function 
call (rfc) mechanism. 

The rfc activates a remote function, as shown here: 

result = rfc(task-id,  f(param1, ... 1); 
The call of remote function f in a task with id task-id 
automatically allocates a thread in the target task to 
perform the function. The calling thread waits until the 
invoked function completes and the value computed by the 
function is returned. Multiple remote function calls to the 
same task, even to the same remote function, can be 
executed concurrently, since each call is executed by a 
separate thread. Parameters are passed to the remote 
function using standard C calling conventions. Care must 
be exercised if pointers are passed to a remote function, 
because pointer values may  not be valid in the remote 
task. Implementations of PC in heterogeneous distributed 
environments must support data-format conversion of the 
return value of remote functions and their arguments. 

Parallel constructs 
The remote function call  mechanism does not by itself 
create parallelism: A thread performs a single remote 
function call  and is forced to wait for its completion. It is 
essential to provide a way of generating multiple 
concurrent jobs. For this purpose, the PC language 
contains parallel constructs that spawn sets of threads. 
Each parallel construct defines a group of threads that can 
synchronize with the initiating thread. Variables can be 
passed to the member threads by the initiator. The PC 
parallel constructs can be nested to arbitrary depth. 

PC provides the par construct to define parallel 
execution of a given set of statements. Each statement 

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWOVEMBER 1 991 



e 

d, 

I, 

within a par construct is executed by a distinct thread, and 
all threads begin execution concurrently. The par construct 
illustrated here executes two local function calls and a 
remote function call concurrently: 

p a r  e 
f 0  
g(param1, . . .); 
r f c ( t a s k - i d ,  h(param1, ...) ); 

> 

When  all of the threads in the par construct set terminate, 
the par construct completes. The invoking thread may  wait 
for the par construct to complete, or continue 
asynchronously, as determined by a keyword. 

The  syntax of p a r f o r  is similar to the C f o r  loop. The 
body of the loop contains a single statement to be 
executed by a distinct thread for each loop iteration. 
However, the evaluation of the loop iteration control is 
sequential. The threads created by the p a r f o r  loop are 
activated concurrently. Thus, the execution of the par fo r  
loop occurs in two stages: 

PC also provides parfor-an iterative parallel construct. 

First, the loop iterates sequentially. Each iteration 
allocates a thread and, optionally, passes to the thread 
copies of frozen variables (discussed below). The 
threads, however, do not start executing yet. 
Then, all threads are signaled to start execution together. 

The user may provide the threads with private copies of 
global variables, e.g., the loop variable. The par-wi t h  
directive provides each thread with afrozen copy of the 
specified variable(s). These values are passed at the first 
stage of the p a r f o r  execution (see above), and correspond 
to a snapshot of the program state at the appropriate 
sequential stage in the loop iteration. Here is a naive 
matrix multiplication  algorithm that uses p a r f o r  and 
par-wi th: 

fO{ 
i n t  i; 
p a r f o r  (i = 0; i < N; i++) 

par-wi th  (i)/* ' f r o z e n '  i */ 
{ 

/* N separa te   th reads   execute   th is   b lock ,  
* one f o r  each  value o f  i 
*/ 
i n t  j; 
i n t  k; 

f o r  ( j  = 0; j < N; j++) 
f o r ( k  = 8; k < N; k++) 

c [ i l   [ J l  += a [ i l [ k l  * b [k l  [jl; 
} 

1 

The need for the freezing mechanism  might not be obvious 
at first. 

Unlike some parallel languages, PC does not  limit par fo r  
loop control to a FORTRAN-style index, and the construct 
can accept any loop control permitted by C. In the 
following example, the compiler cannot derive the private 
context of each iteration without the programmer 
directives, since the number of iterations and the 
values of the loop variable p are not  known at compile 
time: 

p a r f o r   ( p  = head; p != NULL; p = p->next)  
par-wi t h ( p) 

f (p) ;  

The synchronous nature of the parallel constructs (the fact 
that all threads within the construct commence execution 
concurrently) is required to support the group abstraction 
(see Section 4) and the full semantics of the C f o r  
statement. Some advanced features of the threads and the 
parallel constructs  are discussed at the beginning of 
Section 4. 

Both the par and par fo r  loops generate a separate 
thread for each component statement. They therefore 
provide a mechanism for medium- to large-grain 
parallelism. They should not be confused with the small- 
grain  parallelism provided by some parallel languages in a 
similar syntax. Therefore, we do not expect the preceding 
matrix multiplication example to be  efficient,  and use it for 
illustration only. 

9 Mailboxes 
An obvious need in every parallel program is for 
communication among parallel threads. PC provides 
communication of unstructured messages via designated 
mailboxes. Mailboxes are communication endpoints, which 
are explicitly allocated and deallocated. Mailboxes are 
referenced through mai 1 box-hand1 e values, which are 
created at allocation time and are unique across an entire 
application. A mailbox  may be accessed by any thread that 
possesses a copy of the associated mai 1 box-hand1 e value. 
Mailboxes can thus be used to mediate communication 
between threads within the same task or threads in 
different tasks, with location-independent syntax and 
semantics. In addition, a mailbox enforces a queuing 
protocol for messages and threads. The mailbox  queuing 
protocols, established by create-mai 1 box, are described in 
more detail in Section 4. 

Operations on a particular mailbox involve 
synchronization to maintain a consistent mailbox state. 
Shown here are the creation of a mailbox  with the default 
protocol, and the basic send-mai 1 box and recei  ve-mai 1 box 

IBM J. RES. 1 IEVEWP. VOL. 35 NO. 516 SEFTEMBER'NOVEMBER 1991 

operations: 731 

R. CANETIT ET AL. 



mai 1 box-hand1 e mh; 
int  status,  length; 
char  *message,  *buffer; 

mh = create-mai 1 box() ; 

status = send-mailbox(mh, message, length); 
Check s ta tus  

status = receive-mailbox(mh,  buffer,  length); 
Check s ta tus  

These operations pass unstructured message  buffers 
between sender and receiver. A send-mai 1 box operation 
specifies a mai 1 box-hand1 e, a pointer to the message data, 
and the length of the data. The  sent message is transferred 
before the send-mai 1 box operation terminates. The 
operation returns either the number of bytes actually 
transferred or an error code. Similarly, recei ve-mai 1 box 
specifies a mailbox, a pointer to a data area for the 
incoming message, and the maximum  length permitted for 
the message. recei ve-mai 1 box is blocked until a message is 
received. The operation returns either the number of bytes 
actually received or an error code. 

... 

Mutex objects 
In a hybrid environment of shared- and distributed- 
memory parallelism, it is beneficial to provide a fast 
synchronization mechanism  in addition to the mailbox 
system. PC provides semaphore-like mutex objects and 
supports synchronization and queuing operations on them. 
The mutex-hand1 e is a new type that identifies mutex 
objects throughout the PC application. The create-mutex 
operation returns a mutex-handle: 

mutex-handle mux-h; 

mux-h = create-mutex() ; 

The two basic operations on mutex objects are set-mutex 
and cl ear-mutex. set-mutex attempts to set the mutex. If 
the mutex is already set, the calling thread blocks and  is 
added to the FIFO queue of waiting threads. If threads are 
waiting  on a mutex, the cl ear-mutex operation releases the 
first waiting thread, leaving the mutex set. Otherwise, it 
clears the mutex. The example given here shows a typical 
usage of mutex objects for critical section protection. 

set-mutex(mux-h) ; 

{ 

I 
c r i t i c a l   s e c t i o n  

clear-mutex(mux-h) ; 

4. Advanced  language  features 
The PC language is designed to provide simple ways to 

732 express simple programs while  offering a higher degree of 

control as an option for a sophisticated user.  In the 
previous section, we presented the most  common PC 
constructs in their simple  forms. This section elaborates 
on these constructs and presents some additional 
constructs. 

More on threads 
PC enables the user to explicitly control thread allocation 
and to manipulate thread resources. The code fragment 
shown here allocates a new thread and associates with  it 
an  identifier th of type thread-handle for further 
reference: 

thread-hand1 e t  h ; 

th = create-thread(task-id) ; 

The lifetime of a thread extends from the moment  it is 
created with create-thread until  it is freed via 
free-thread(th). This is the pattern of usage of all 
dynamically allocated control and communication handles 
in  PC. For each kind of handle there exist explicit create 
and free operations. 

The thread-handle returned by create-thread may be 
used to control a thread, query its  status, or wait for its 
termination. Every thread has automatic access to its own 
thread-handle through the variable my-thread. A thread 
can communicate the value of this handle to other threads. 
A variant of the remote function call  mechanism, 
rfc-thread, accepts a thread specifier. In the example 
shown here, the rfc-thread operation is used to cause a 
preallocated thread with handle th to execute a remote 
function f, with parameters: 

result = rfc-thread(th,  f(param1, ... ));  

When the thread with handle th completes the execution 
of the remote function, the handle th remains valid, and 
the thread becomes inactive. Similarly, a thread that has 
been explicitly allocated by the user can be activated using 
the par and parfor constructs, as described in the next 
subsection. During its lifetime, the thread can be activated 
more than once. 

More on parallel constructs 
The C statements within a parallel construct may  be either 
simple or compound. As presented in Section 3, the 
threads in a parallel construct have no visible handles. A 
single, nameless thread executes each statement. As an 
option, a particular preallocated thread can be specified to 
execute a given statement. This feature can be used to 
check the status of or wait for the completion of 
asynchronously executing threads. In the example shown 
here, two concurrent threads are activated in the par 
construct: 
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thread-hand1 e t h ; 
th = create-thread0 ; 
par c 

/* Thread th executes  this  statement (1) */ 
par-t hread (t h ) { 

f 0 ;  
9 0 ;  
h 0 ;  

I 
{ /* Statement 2 */ 

rfc(task-idl, fl(param1, ... 1); 
rfc(task-id2, gl(param1, ... 1); 
rfc(task-id3, hl(param1, ... ) ) ;  

} 
> 

Two things are worth noting  in this example. First, 
statement 1 is executed by the thread th, as specified by 
the par-thread directive, while statement 2 is executed by 
an  unspecified thread. Second, statement 2 causes the 
sequential activation of three additional threads through 
the remote function call mechanism. 

Both par and parfor can be invoked asynchronously by 
specifying the keyword asynch before the construct. In this 
case, the invoking thread continues execution in parallel 
with the created group of threads. 

Thread groups 
The par and parfor constructs implicitly create groups of 
threads. Every thread in a group has access to the group 
handle through the variable my-group. PC enables explicit 
association of a particular group with a parallel construct 
for synchronization purposes using the par-group 
directive, as shown here: 

group-handle gh; 
gh = creategroup() ; /* A1 1 ocate a group */ 

asynch  par  pargroup(gh) c 
/* Activate  threads in group */ 

... 

f 0 ;  
h 0 ;  

> 
... 
wait-all-in-group(gh); /*Waitforgroupcompletion*/ 

The par-group directive associates the handle gh with the 
group of two threads-one thread executing function f and 
the other thread executing function h-invoked by the par 
construct. The two threads are invoked asynchronously. 
The group handle gh enables termination to be awaited 
subsequently using wai  t-a1 1-i n-group(gh). Additional 
operations on a group provide for termination of  all or any 
of the threads in the group and for querying the status of 
the group. 
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Mailbox protocols 
Asynchronous message-passing with  unlimited  buffering  is 
clearly powerful  enough to support all communication 
requirements. For example, synchronous communication 
can be achieved by enforcing an  acknowledgment protocol. 
This might, however, incur a high performance penalty 
because of additional message  traffic  and unnecessary 
buffering of the message at both source and destination. 
For instance, when the program  follows a synchronous 
communication protocol, it should be able to direct the 
system to avoid the buffering required by an asynchronous 
protocol and transfer the message directly without 
intermediate buffering. For this purpose, the PC mailbox 
mechanism supports various synchronization and 
communication protocols. 

buffering space are  set at mailbox-creation time: 

mai 1 box-hand1 e mh; 

mh = create-mai 1 box(CONS, N) ; 

mh = create-mailbox(UNBUF); 

mh = create-mail box(NONC0NS) ; 

The communication protocol and  an optional limit on 

/* Buffered consuming  with  capacity N */ 

/* Unbuffered-di rect transfer */ 

/* Buffered nonconsuming-capaci ty 1 */ 

The following protocols are supported by PC: 

Consuming 
Asynchronous (buffered) communication. A receive 
operation deletes a message  from the head of the 
mailbox queue. A limit N may  be set on the mailbox 
capacity, possibly causing subsequent send-mai 1 box 
operations to result in error values. 

Synchronous communication (rendezvous) with direct 
transfer. Both sender and receiver must  await 
completion of communication. This protocol is intended 
to support the transfer of large  buffers  with  minimal 
copying overhead. 

A special mailbox  with one-message capacity. The 
message  is retained in the mailbox, for further receivers, 
after every recei  ve-mai 1 box request. This protocol is 
intended to support a limited broadcast facility. Many 
threads can await a single event by performing a receive 
operation on a nonconsuming  mailbox.  When a message 
is sent to the mailbox, all waiting threads receive the 
message and proceed. The message remains in the 
mailbox  until  it is removed with a cl  ear-mai 1 box 
operation. 

Unbuffered 

Nonconsuming 

Each task has an  implicit  consuming  mailbox whose handle 
is accessible to threads within the task through the global 
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Program with  opportunity  to  reduce  delay  due  to YO latency. 

Multiheaded decomposition of serial  program of Figure 2. 

variable my-task-mai 1 box, and to threads in other tasks 
through the get-task-mai 1 box (task-id) expression. This 
built-in  mailbox is intended to simplify the establishment of 
communication between threads in different tasks and to 
supply an  initial set of communication endpoints. 

5. Program  examples 
In this section, we present two program examples that 
illustrate the use of the  PC  constructs presented in the 
previous sections and demonstrate the usability and 
expressive power of  PC.  We emphasize code clarity over 
performance. In the examples, we sometimes replace serial 
code sequences with a description in italics. New PC types 
and constructs appear in bold typeface in the code 
fragments. 

The first example demonstrates the benefit of using 
multiple threads to reduce delays due to IlO latency, by 
overlapping computation with 1/0 in a serial program, and 
the ease of expressing such a program  in  PC. The 
multithread code may  run faster even on a uniprocessor. 

The second example is a simple branch-and-bound 
solver for the well-known traveling-salesman program. PC 
code implementing the solver for both shared-memory and 
distributed-memory environments is presented. 

&ploiting I10 latency  within  a  single program 
The ability to specify the behavior of a program in terms 
of multiple threads allows a single  program to exploit 
input-output latencies and communication latencies in a 
single program, as do  multitasking operating systems. A 
serial program that benefits  from a multithreaded 
description is sketched in Figure 2, and its parallel 
decomposition is shown in Figure 3. The program reads a 
stream of data from one file  in chunks, performs intensive 
computation on each chunk, and writes the result to a 
second file. This is a generic serial program structure that 
arises in numerical applications such as digital  filtering. 
The serial code would  look  like  this: 

main (){ 
... 
while(!done){ 

read-chunk(); /* Reads a chunk */ 
compute-chunk() ; /*  Computes */ 
write-chunk(); /*  Writes a chunk */ 

I 

I 
... 

By splitting the program into three separate threads 
communicating  through a circular buffer (as shown in 
Figure 3), we can overlap computation with the input- 
output operations, even within a single  program. Here is 
the parallel code: 

main (){ 
... 
Ini t ial ize   c ircular   buffer  with 
mutex synchronization; 

par < /* Start  three  para1 le1 threads */ 
pread-chunk() ; /* Reads a chunk */ 
pcompute-chunk() ; /* Computes */ 
pwrite-chunk(); /* Writes a chunk */ 

... 

> 
I 
/* pcompute-chunk  and  pwrite-chunk  are  similar */ 
pread-chunk(){ 

while(!done){ 
Get next available read buffer  rb; 
read-chunkfrb); 
Make rb available  for pcompote-chunk; 

I 
1 
Although some additional code is required to implement 
the circular queue, the read, write, and compute 
components of the original serial program are unchanged. 
An implementation of a stylized filter of this type using our 
prototype implementation of PC on an  IBM  RT Personal 
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B 

* i n   j o b l i s t .  
*I 

void 
ExtendPaths(nai1box-handle j ob l i s t .  

nailbox-handle minpath. 
rmtex-handle minpath-mutex. 
s t r u c t   p a r t i a l s a t h  *base) 

struct  part ial-path *local-minpath; 
f n t  i; 

{ 

/* Used by GenerateJob */ 
/* Used t o  Get  and Broadcast Bound */ 
/* mutex  on minpeth */ 
/* Part ia l   path  to be extended */ 

/* Placeholder f o r  GetBound */ 

i f  (base-bpathlen == NCITIES) { /* This i s  already  a f u l l  path */ 
D 

Compute f u l l  cost of path; 

Extend path i n  'base'  with  city ' i '  and  compute  new cost; 

i f  (base->cost < GetBound(minpath, local-minpath)) /* This 1s the  pruning  condition */ 
GenerateJob(joblist, base); /* Deposi t   current  part ia l   path  in  jobl ist  */ 

Roll back last   extension. ( i .e . .  remove c i t y  ' i '  from path); 
1 

Extendpaths  routine for the  parallel  traveling-salesman  problem  solver. 

B Computer@ running Mach yielded a 25-30% speedup over minimum-length path that visits each city exactly once. In 
the original serial program. this section we present a branch-and-bound [19] traveling- 

salesman solver and describe its parallel implementation in 
Parallel traveling-salesman problem solver PC- 

Given a set of cities and the distance between each pair of A complete path is  an ordered list of all the cities, with 
cities, a solution to the traveling-salesman problem is the a common start and end city. Apartialpath consists of an 
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ordered list of a subset of the cities. The path length of a 
path  is  the total distance  traveled  from start city to end  city. 

The ExtendPaths routine shown in Figure 4 extends a 
partial path with each possible (i.e., as yet unvisited) city. 
The loop in ExtendPaths considers in turn each possible 
single-city extension to the base path. If the path length of 
such an extended partial path exceeds the length of the 
best complete path yet known, as returned by GetBound, 
this partial path clearly does not lead to an improved 
solution and is pruned (Le., discarded). Otherwise, the 
extended path remains a possible basis for a solution and 
is added to the  job list, using GenerateJob. The original 
base path is then restored by deleting the city just added 
before the next path extension is considered. If a path is 
completed whose length is shorter than the best solution 
known, BroadcastBound is used to establish it as the best 
solution known. 

We start with a partial path that contains a single city 
and an arbitrary complete path as the best solution yet 
known.  At each step, a partial path is selected and is 
extended with ExtendPaths. This continues until no partial 
paths remain to be explored. Since the extensions to each 
partial path are disjoint, multiple path extensions can be 
performed independently, in parallel. This leads to a work 
arrangement that employs a central job list and multiple 
(identical) threads fetching partial paths from the  job list 
and adding extended partial paths to the list. Threads can 
also retrieve and update the best solution known. 

Management of the job list and global bound is shown 
below. The job list is implemented using a buffered PC 
mailbox. GenerateJob simply sends a partial-path data 
structure to the joblist mailbox.  Similarly, GrabJob 
receives a partial path from the mailbox. The  best solution 
known is stored in a nonconsuming mailbox,  minpath. 

void GenerateJob(mai1box-handle joblist, 
struct partial-path *pt) 

{ 

1 
send-mailbox(joblist, (char *)pt, sizeof(*pt)); 

void GrabJob(mai1box-handle  joblist, 
struct partial-path *pt) 

{ 

} 
receive-mailbox(joblist, (char*)pt, sizeof(*pt)); 

Threads access the current best bound with GetBound, 
which receives the message stored in minpath. Updating 
the bound must be done atomically, so the 
BroadcastBound function enforces atomicity by using a 
mutex object, minpath-mutex, as shown in Figure 5. 

that retrieves jobs from the job list and tries to extend 
them, as shown here: 

The function executed by the threads is  an infinite loop 

R. CANElTI ET AL. 

void 
pmain(mai1box-handle joblist, 

mailbox-handle  minpath, 
mutex-handle minpath-lock) 

{ 
struct partial-path base; 

/* Main body of  worker  thread */ 
for ( ; ; I  { 

/* Get  a  job  from  the  list */ 
GrabJob( job1 i st, &base) ; 
/* Try  to  extend  the  path */ 
ExtendPaths(joblist,  minpath, minpath-lock, 

&base) ; 
I 

1 
The main body of the application creates and initializes the 
job list  and  global bound, and sets up parallel activity via 
parfor, as shown in Figure 6. The global  minimum  is 
found when all worker threads are waiting and there are no 
more job descriptors in the job list. The main thread 
detects this situation, prints the solution, and terminates 
the worker threads. Termination is facilitated by 
associating all worker threads with the group g. 

is easily adapted for a multitask implementation. The 
central job list and global bound are implemented via 
mailboxes and will therefore work unchanged in a 
multitask environment. Only the initialization of parallel 
activity requires modification. In the single-task version, 
the parfor statement establishes worker threads within the 
current task by invoking the pmain function directly. In 
the multitask version, a parfor invokes remote function 
calls that invoke the pmain function in other tasks, as 
shown below. The rfc also transfers the values for the 
joblist, minpath, and minpath-mutex handles, facilitating 
use of these resources by all of the invoked threads. Each 
task has an integer index but is manipulated using a task-id, 
with get-task providing the mapping: 

asynch  parfor (i = 8; i < nworkers; i ++) 

The single-task traveling-salesman solver just described 

rfc(get-task(i), 
pmain(joblist, minpath, minpath-lock)); 

Performance of both the shared- and distributed-memory 
versions of the solver could be improved by reducing the 
frequency of reads and writes to the job list. This is easily 
achieved by modifying ExtendPaths to perform path 
extensions of more than one city before reinserting partial 
paths in the job list. 

6. Implementation 
In this section, we describe our prototype implementation 
of a PC compiler and run-time system for the Mach 
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/* GetBound returns  the  cost  of  the  best bound */ 
i n t  GetBound(mai1box-handle minpath,  struct  partial-path  *pt)  
{ 

receive-mailbox(minpath, (char  *)pt,   sizeof(*pt));  
return  pt->cost; 

I 
I* BroadcastBound: 
* A part ia l   solut ion  is   submitted  as  best   solut ion  to  'minpath' .  
* The query and update  are made atomic,  to  ensure  storing  of  best bound. 
*/ 

void BroadcastBound(mai1box-handle minpath, 
nutex-handle m i  npath-mutex, 
struct  partial-path  *pt)  

{ 
struct  partial-path  best;  

set-nutex(minpath-mutex) ; I* S t a r t  atomic */ 
GetBound(minpath, &best); 
i f  (best.cost > pt->cost) { /* New bound i s   b e t t e r  */ 

clearJrailbox(minpath); 
send-mailbox(minpath,  (char * )pt ,   s izeof ( *pt ) ) ;  

1 
clear-wutex(minpath-mutex); 

} 

GetBound and BroadcastBound routines for the parallel traveling salesman problem solver. 

operating system [2]. Since we intended that PC eventually 
run on many systems, emphasis was placed on an  efficient, 
yet easily portable, system. Parallel machines are quite 
diverse in both instruction-set architectures and software 
services. Therefore, if portability is an issue, it is unwise 
to have the compiler target a particular assembly language 
or a particular set of system services. Thus, in our 
implementation of a PC compiler we translate PC code into 
standard C code with calls to a run-time library. The run- 
time library supports an abstract machine  model between 
the language and the underlying system. This facilitates 
portability, since a port to a new hardware or software 
architecture requires modifications to only small, system- 
specific portions of the run-time library, while the compiler 
remains unchanged. 

The PC compiler 
The PC grammar [18] is a strict superset of that of  C. 
There are two forms of language extensions: control 
constructs (e.g., par) and  built-in functions (e.g., 

create-thread). The work of the compiler is  mainly to 
produce correct C translations of the new control 
constructs. The new  built-in functions are dealt with 
simply by introducing library functions with the same 
name and declaring function prototypes. The new PC types 
are dealt with  through typedefs. The compilation of a PC 
program  is illustrated in Figure 7. Before the user's source 
file is preprocessed, it  is appended to an include file that 
contains the function prototypes for built-in functions and 
the typedefs for the PC data types. A task executable is 
produced by linking object files produced from C and PC 
source files  with the PC run-time library, as shown in 
Figure 8. 

The essential task of the PC compiler is to perform the 
resource management  (i.e., allocation of threads and 
groups) implicit  in the parallel constructs and to generate C 
code for statements appearing within the PC parallel 
constructs. This generated C code must correctly conform 
to the PC memory  model. The code to be executed by 
each thread within a parallel construct is encapsulated in a 737 
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distinct compiler-generated function. Automatic variables 
visible in the context of the parallel construct are shared 
by all threads invoked within the construct. The PC 
compiler must ensure that the functions executed by the 
invoked threads can access all automatic variables 
referenced within the parallel construct. The original code 
is modified to refer to the automatic variables through 
dereferenced pointers, and these pointers are passed as 
parameters. We illustrate here the required code 
transformation. In the following example, the automatic 
variable i is referenced inside the par construct: 

main (){ 
i n t  i; 

par c 
i ++; /* References  automatic  variable i */ 

> 
I 
The statement inside the par is converted to a function, 
PC-88837, and i is referenced through a pointer passed as a 
parameter of the function. Frozen variables and nesting of 
par constructs introduce additional complexity that is 
handled by the compiler. Here is the C code generated by 
the PC compiler: 

/* Function  generated  by PC compi ler  */ 
PC_80837(int *i){ 

Glue  code; 
(*i)++; /* References or ig ina l   au tomat ic  i 

* through  po inter  
*I 

Glue  code; 

I 
main(){ 

i n t  i; 

Par g lue code; 

Invoke  thread t o  execute PC-88837 (&i) , 
pass  address o f  i ;  

Par g lue code; 

I 
In  designing the  PC compiler, we adopted a minimalist 

approach to error checking. That is,  we perform only the 
correctness  checks required to support correct parsing of 
PC source or  to report errors that the C compiler would 
detect, but would provide the user with an unintelligible 
diagnostic. It is critical to report all errors in a way that 
permits the user to relate them to the original PC source 
code, without having to delve into the C code generated by 
the PC compiler. Full parsing of the PC source is required 
to detect and report PC (rather than C) syntax errors, and 

Creating  a  task executable from  C  and PC source files. 

to fully analyze data declarations and remote function 
definitions. A shift-reduce parser with error recovery for 
the PC LALR(1) grammar is automatically generated by 
the LPG’ tool3. A symbol table of data declarations is 
maintained. No type-checking of expressions is performed, 
however, since the type-correctness of  all PC language 
constructs is  verified by the C compiler. The PC compiler 
outputs compiler directives that permit the C compiler to 
associate errors in the C file output by the PC compiler 
with the location of the errors in the original PC source 
file. 

PC run-time support 
The PC run-time package constitutes the logical-machine 
support for the PC program. Every PC object-type has a 
type-manager, i.e., a thread manager, a group manager, a 
mutex manager, and a mailbox manager. These are logical 
entities consisting of the type definition, its allocation 
management, and the operations provided for manipulating 
it. Each object-type has a set of associated interface 
routines. The PC compiler produces calls to these interface 
routines and gains access to the PC services by linking the 
program object modules  with the PC run-time library. 

The invocation of the service operations by the interface 
routines is mediated by a logical local-request server 
(LRS). This sewer is  designed to permit extension to a 
multitask implementation. The LRS in a multitask 
implementation should transfer all requests referring to 
nonlocal objects to the sewers in remote tasks. This is 
done transparently, while preserving the uniform interface. 

The single-task implementation of PC for the Mach 
operating system [2] is an extension of the C Threads 
library [7] developed at Carnegie Mellon University. The 
underlying support layer for multiprocessing is the C 
Threads cprocs layer. The cprocs mechanism is a software 

2 Philippe Charles, Gerry Fisher, and Yvonne Lesesne, LALR Parser Genemror 
Version 2.0 User’s Guide, IBM Thomas J. Watson Research Center, Yorktown 
Heights, NY. 
3 We  are  currently  reimplementing  the PC parser using YACC [ZO] and LEX [21], 
to enable dissemination of the prototype compiler. 739 
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layer  supporting  concurrent  execution  threads  and 
providing operations  on  them  such  as allocation, control, 
and  synchronization.  The  PC run-time package  can  be 
ported  to a system if the  system  provides  the  cprocs 
functionality. Thus,  the  cprocs  interface serves as  the 
definition of the PC package  environment requirements. 

7. Discussion 
In  this  paper  we  have  presented  the design of PC, a new 
language for parallel  processing. The  examples  presented, 
as well as  our  experience developing programs  with PC, 
demonstrate  that  PC  has  met  our initial design  goals. In 
particular, PC is easy  to  integrate  with existing code  and 
easy  to  learn. 

We  chose  the C language as  the  base  for  extension  for 
practical  reasons only. We believe that C + + @  [22] is a 
more  suitable language for  extension,  since it better 
accommodates  new  object definition and handling. For 
example,  we  chose  to omit typed mailboxes with 
structured messages, which  are  cumbersome in  C; 
however, in C+ +, structured mailboxes  could  easily be 
defined as a derived  class of unstructured mailboxes. 
Similarly, rfc syntax could be streamlined. 

support  multitask applications, adapting  our run-time 
library  to  use  the  POSIX  pthreads  library [23] instead of 
Mach  cthreads,  and gaining experience developing 
programs in PC. As a result, we  are contemplating several 
language extensions  to  support additional  mailbox 
protocols  and additional operations  on  groups of threads. 

We  are  currently  extending  our implementation of PC to 
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