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A performance  model  that  takes  into 
consideration  the  overhead  incurred in the  use 
of a  parallel  system is used to show that  the 
maximum  value of the  speedup  achieved  by 
the  parallel system  for a  fixed  problem  may  be 
much  smaller  than  the  number  of  processors 
required  to  achieve  that  value. It is also  shown 
that  under  certain  conditions,  the  problem  size 
may be varied so as to achieve  a  speedup 
closely  approximating  the  number of 
processors  used. 

Introduction 
The availability of relatively inexpensive microprocessors 
with significant computing power has stimulated many 
people to search for the best way to utilize  multiple 
processors to obtain the solution of a given problem. The 
hope, of course, is that the use of n processors to solve a 
problem  will require only l/n times the amount of  time 
required on a single processor. It was recognized early that 
this expectation could not be realized, for there were parts 
of most computing problems that could be processed by 
only a single processor, thereby forcing many processors 

to remain  idle during processing of these parts. This led to 
the development of a simple performance model  (Amdahl’s 
model or “law” [l]) that indicated that the amount of time 
required for solution of a problem by a computer system 
utilizing  multiple processors was limited not only by the 
number of processors utilized, but also by the total amount 
of time required by the sequential portion of the problem- 
that is, that part of the problem for which only one 
processor could be used. 

Furthermore, computations (e.g., [2-41) showed that 
while the use of an increasingly larger number of 
processors could  initially decrease the time required for 
solution of a problem, the use of “too many” processors 
would result in a larger execution time than that required 
by a smaller number of processors (see Figure 1). This  led 
to investigations concerning the number of processors that 
would  lead to the minimum execution time. The problem is 
very complex, involving, as it does, the characteristics of 
particular computer algorithms used to solve the problem, 
the programming techniques used, and the method of 
physically interconnecting the processors. As noted in [5 ] ,  
a kind of “folklore” developed concerning the proper 
solution of this problem. In two important special cases, 
an analytical solution was developed [6], while a more 
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Three performance models of parallel  processing systems. 
. ~ ~ 

general solution was given in [SI. It was shown in the latter 
reference that there was also an “optimal” number of 
processors that could be  utilized on a problem-optimal  in 
the sense that a point  is reached beyond which a further 
decrease in execution time requires a disproportionately 
large number of processors, a concept made precise in that 
reference. 

However, in  an important paper [7], numerical results 
were reported that appeared to contradict Amdahl’s  law. It 
appeared that the problem solution time  would be almost 
inversely proportional to the number of processors if the 
size of the parallel component of the problem were 
increased as the number of processors increased. A new 
concept of “scaling” was introduced to explain this 
apparent contradiction. 

established. The first result relates to an estimate of the 
minimum execution time. Ideally, one would hope that the 
minimum execution time  would be nearly proportional to 
the reciprocal of the number of processors required to 
achieve that minimum. However, it is shown that for many 
cases of practical interest, this minimum execution time is 
closer to being proportional to the reciprocal of the 
‘‘optimal” number of processors (discussed in [SI)- 
possibly a much larger value than that suggested by the 
ideal case. The second result is that the extension of 
Amdahl’s  model considered in [ 5 ] ,  the “overhead” model, 
is sufficient to explain the numerical results obtained in [7]. 
A generalization of the analytical results in that paper is 
also established. 

In the present paper, two primary results are 

Background 
In this section, we summarize the notation and definitions 
used in [SI. That reference may  be consulted for more 
details and additional references to the literature. 

Notation and  definitions 
If we solve a problem requiring Tseq units of time  on a 
single processor of a parallel system consisting of n 
identical processors, then 

Ts, = Ts + T, ,  

where Ts is that part of Tses which must be executed on a 
single processor and Tp that part which could be executed 
in parallel on two or more processors. Let T~ = Ts/Tseq and I 

T, = TP/Tseq ( T ~  + T~ = 1). Term T~ is the fraction of 
execution time spent in a serial mode,  while T~ is the 
fraction that can  be spent in a parallel mode. Denote by 
T(n) the time required to solve the problem on the parallel 
system and by ~ ( n )  the normalized time [<n)  = T(n)/Tseq].  

We define the speedup by the relation 

In [5 ] ,  additional definitions of the parallel cost function 
Q ( n )  and the performance-to-cost ratio F(n)  are given: 

n 
Q(n) = m ( n )  = - 

S(n) 

and 

The value of n for which F(n)  has a maximum  is  defined 
as nF. We further denote by E ( n )  the “efficiency” of the 
parallel system and define the efficiency as 

1 

Models 
What we use to approximate T(n)  distinguishes various 
models for parallel processing. The simplest approximation 
to T(n) ,  ignoring the time required to execute the parallel 
part, is 

T(n) = T s .  

Thus, 

S(n) = - = -. Tseq 1 

Ts 7 s  

This relationship shows that for any problem, 1 / ~ ,  is the 
maximum speedup for a parallel system. However, we 
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note that S is actually a function of the two independent 
variables Ts and TSq. The value of Tseq usually depends 
upon one or more parameters such as the mesh size, and 
will,  in general, vary  as these parameters are changed. It is 
clear that the ratio of Tscq to Ts could increase as Tsq 
increases (or decreases), thereby increasing the value of 
S(n) for that particular problem. Nonetheless, the value of 
S(n )  (again, for that particular problem)  is bounded by 1hS 
in the general case. 

assumes that 
The “overhead model”  is a more general model. It 

T(n) = Ts + To@) + -, TP 
n 

where To(n) is the overhead due to synchronization cost, 
communication costs, etc. [5]. [A special case is Amdahl’s 
law, for which To(n) = 0.1  We may also write 

T(n) = Ts  + To(n) + -, T P  

n 

where = To(n)/Tseq. 
It is shown in  [5] that for suitable restrictions on ~ ~ ( n )  

[especially the restriction that <(n) > 0 for n > 11, S ( n )  
takes on its maximum value for n = no, where 

= 7p 
gn,) ’ 

and ~ : ( n )  is the derivative of a ( n )  with respect to n. 

Bounds on the maximum speedup 
In  [8], a function similar to the following is considered: 

S(n) 
S(no) 

Z(n) = E(n) + - . (1) 

Z(n) is the sum of two positive, differentiable functions: 
the efficiency E ( n ) ,  which  is a monotonically decreasing 
function of n, and the fraction of the maximum speedup 
that is obtained. That fraction is monotonically increasing 
for 1 I n I no. We note that Z(1) and Z(no) are both 
greater than unity, and that Z’(n,)  < 0. Thus, Z ( n )  > 1 
for 1 I n 5 no, for otherwise Z ( n )  would have at least 
one relative minimum and at least one relative maximum  in 
this range-an impossibility. Hence the efficiency  and the 
fraction of  maximum speedup cannot be small 
simultaneously for 1 I n I no. However, Z ( n )  
approaches zero for n > no for the overhead model,  in 
contrast to the behavior of the Amdahl  model, as noted in 

Through the use of the function Z(n), we  may motivate 
P I .  

a closer examination of the actual magnitude of S(no). If 
we substitute the value S(no)  for n in Equation (l), we 
have 

Q 

Tangents  to  the  parallel cost function Q(n) 

Because E ( n )  = S(n)/n,  this reduces to 

Z[S(no)1 = 2JWno)l. 

Since S(no) < no, ZIS(nO)] > 1. Therefore, EIS(nO)] > 1/2. 
This result is of interest because of the observations in  [5] 
on the value of E(no).  In particular, for a logarithmic 
overhead, E(no) may be much less than 1/2. Since E(n)  is 
monotonically decreasing, there is a suggestion that at 
least in these cases, S(no)  may possibly be much smaller 
than the ideal, no. 

on S(no)  may be obtained. For any overhead function 
satisfymg the assumptions given  in  [5], we first show that 

As is known, S(no) < no; however, much tighter bounds 

< n, 7 

where n, is the intersection of the tangent u(n) to Q(n)  at 
n = nF [F(n,) is the maximum value of F(n)] and the 
tangent v(n) to Q(n) at n = no (see Figure 2). As shown in 
[5], nF < no and v(n) = n/S(no) .  Then, nF < n, < no, and 

thereby establishing the desired result. In  [5],  it  is also 
shown that 

From this, it follows  immediately that 723 
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Table 1 Two  overhead  functions  [linear (top line) and 
logarithmic  (bottom  line)]  and  associated  parameters. 

a ( n  - 1) a(3nF - 1) a(2no - 1) 
alog, n a (log, nF + 2 log 2) a(log, no + log 2 )  

< 2S(nF)' 

Thus, the maximum speedup is less than twice the speedup 
achieved for n = nF. 

However, geometrical considerations suggest the 
possibility that an even tighter bound might  exist-at least 
in special circumstances. We show below that, in fact, 

nF ( 2 )  

in many cases of interest for parallel computing.  We have 
noted that nF < no, but nF is of importance because, as 
argued in [SI, it represents the optimum number of 
processors to utilize in the solution of the problem- 
optimum in the sense that if n < nF, an increase in n 
produces a larger fractional change in the speedup than 
fractional change in cost [as measured by Q(n)], while if 
n > nF, an increase in n produces a smaller fractional 
change in the speedup than fractional change in the cost. 

To establish Equation (2), we consider the defining 
equation for nF: 

nF 1's + ' o ( ~ F )  + 2nFTA(nF)l = Tp 9 (3) 

which may be found by solving the equation F'(n)  = 0. 
Let 

and 

b = To(no) + nOT&,). 

Then, noting that T~ = n ~ T ~ ( n o ) ,  we see that 

nF(T, + a )  = nF[TS + b + (a - b)] 

= nF[& + a  - b] .  

Therefore, 

.rpS(no) 
nF = 

1 + (a - b)S(no) ' 

and S(no)  5 nF if and only if 

T p  2 U + T s ,  
2 

(4) 

since S(no) = l / ( ~ ~  + b) .  

Then, for the linear overhead function we have, from (4), 
Consider the overhead functions shown in Table 1. 

7p(2n0 - 1) 2 3nF - 1 + T~ - , (6) 
and, from Equation (3), 

nF(: + 3nF - 1) = 2. 
7 

a 

For the logarithmic overhead, we have that 

and 

We may quickly verify that both inequalities (5) and (7) are 
satisfied if 

- 5 10; T ,  I 0.02; and nF 2 4. TS 

a (9) 

These inequalities may appear to be overly restrictive; 
indeed, they are known to be unnecessarily tight. 
Nonetheless, if we are to productively use parallel systems 
containing a large number of processors, we must have a 
high percentage of parallelism (note that if T, = 0.02, we 
can productively use no more than 50 processors). For 
such large systems, only the restriction T S / ~  I 10 is of any 
possible consequence. 

It also follows immediately from Equation (3) and the 
definition of Q (noting that TA(n) > 0 by one of the basic 
assumptions in Reference [SI), that Q(nF) < 2.  Since 
S(nF)Q(nF) = nF9 

Therefore, if the restrictions of (9) are met, 

nF - < S(no) I n F .  
2 

We note that nF may be much less than no, for if the 
overhead is linear (as defined above), we see from 
Equation (3) that 

no > JhF * 

If the overhead is logarithmic (as defined above), 

no > 2 n F .  

Numerical computations show that for a logarithmic 
overhead, no may  in practice be much, much greater than 
twice nF . 

It is clear that it is not productive to use more than no 
processors for the solution of a problem. However, the 
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above bounds on S(no) and nF suggest that unless 
processor cost is of no consequence, it is probably not 
worth the investment required to attain the maximum 
speedup possible. Rather, it  may be more cost-effective to 
use a smaller number of processors, for which the 
efficiency remains much  higher. 

Largest  possible  problem 
In the preceding section, we have considered the 
maximum speedup attainable for a fixed problem. We have 
shown that this maximum  may be much smaller than might 
be expected, and we suggest that it  may be more  useful to 
utilize a smaller number of processors for  which the 
efficiency remains acceptably high.  But if parallel systems 
containing a large number of processors are to be cost- 
effective, the challenge is to characterize problems for 
which the efficiency remains large for a large  number of 
processors. 

Problems of varying size 
One of the more striking results of Gustafson et al. [7] is 
the demonstration that very large speedups may be 
obtained in certain cases by increasing the problem  size- 
i.e.,  changing the parameters of the problem so that Tseq 
increases. This result is in accord with the earlier results of 
Rosenfeld [3] and the observation of Cytron [6]. and  may 
be  readily explained using either Amdahl's  model or the 
overhead model, despite the arguments in [7]. 

In [7], it is assumed that the problem size is increased in 
such a manner that the serial part remains fixed,  while the 
parallel part is increased in proportion to the number of 
processors used.  In terms of our earlier definitions  and 
notation, it is assumed that 

T ~ P )  = TJn) + TJn) = f, + n i p ,  (10) 

where T, t T, = Tseq, the time required for the reference 
computation on a serial processor. For Amdahl's  model, 

L A . .  

" n  

Thus, if the problem size is increased in accord with 
Equation (lo), the speedup (as  a function of the fractional 
serial part of the base computation), i.e.,  with n fixed,  is a 
straight line of slope 1 - n ,  as noted in [7]. For S ( n )  to be 
approximately equal to n ,  T/T,,, must  be  small. 

However, it is not necessary to assume that the serial 
part of the problem remains fixed or that the overhead is 
ignored. Let 

1 A  

n - S(n) 
n 

E(n) = - - - 1 - E(n). 
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This quantity e(n)  is a measure of the relative deviation of 
S ( n )  from its ideal value, n. For the overhead model, 

Q(n) = T ,  + 127, + nTO(n) = 1 + (n - 1 ) ~ ,  + nTo(n). 

Thus, 

n - S(n) 
(n - l ) ~ ,  t nT,(n) = Q(n) - 1 = - 

S(n) 

or 

It E 

From (ll), we see that for any value of E (0 < E < l), the 
inequalities 

must  be satisfied. If we  wish S(n )  to remain close in value 
to n ,  i.e., for the efficiency to remain high as n increases, 
then as long as the inequalities (12)  and  (13) are satisfied 
for a fixed E, this will be the case. Since T, = TJT,,,, we 
see that for a fixed value of E, T, may increase as the 
problem size increases (i.e., as Tseq increases), but only as 
long as (12)  is satisfied. It is  not necessary that the serial 
part of the problem  remain  fixed  in size, although clearly T, 

must decrease as n increases. A more restrictive condition 
may  be  imposed by the second inequality, for, as noted 
previously, TA(n) > 0; however, as T,, To@) is normalized, 
and as long as Tseq grows sufficiently rapidly, the second 
inequality may  be  satisfied. 

A numerical illustration 
In [7], for a particular problem in wave mechanics, it is 
shown that a speedup of 1019 was obtained on a 1024- 
processor system. For this problem, E = 0.0049. Relations 
(12)  and  (13) require that ~~(1024) and T, must each be less 
than (approximately) 5 X This compares with the 
estimate of 3 x for T, given in [7]. This, in turn, 
requires that the running  time of the reference problem 
itself  must be increased in size by about 1000 times. 

with  simply increasing the problem size. The problem size . 
was increased by decreasing the spatial mesh size; 
however, the algorithms  used for the solution of the 
problem require that for computational stability, the time 
step size must decrease proportionately. Thus, while the 
mesh size was decreased by a factor of  1024, so was the 
time step. The time required for the original sequential 

This particular example illustrates one possible difficulty 
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calculation was estimated to be about five months. 
Although a very high speedup (over 1000) was obtained, 
the amount of work to be done was increased by  at least 
an equal amount. Thus, if the original problem was 
impractical because of the running time on the sequential 
processor, it  remained impractical on the parallel 
processor. This highlights the necessity of using numerical 
methods for which TS does not grow too rapidly as Tseg 
increases, and for which T(n) remains at an acceptable 
level. 

In view of the above restriction on the possible growth 
of time  on the parallel system, it is instructive to consider 
the following  model comparison. Suppose we have a 
problem for which = and To@) = CY log, n, 
where CY = We can show that no - 693 000 and 
nF - 33 000, while S(n,,) - 32 000 and S(n,) - 18 000. 
In today’s technology, it  would be impossible to 
employ so many processors; nevertheless, suppose we do 
have a system with 1024 processors. For this problem, 
S(1024) = 965 and E(1024) = 0.94. If we force the 
efficiency  higher, by increasing the problem size, we could 
obtain an equivalent speedup using only 970 processors. 
This would require T~ to decrease by a factor of 1.9, but 
would free a number of processors for other work. 
Alternatively, for the same value of E, all  1024 processors 
could be employed to yield a speedup of about 1019. This 
would require r, to decrease by about a factor of 10. For 
suitable problems and numerical methods, it is clear that 
varying the problem size may  lead to more efficient system 
utilization. 

Conclusions 
The overhead model  is shown to be useful in helping us 
understand the performance restrictions that exist for the 
usage of parallel systems. It is shown that for some 
problems of interest for parallel computations, the 
maximum speedup that can be obtained may be much 
smaller than the number of processors required to obtain 
that maximum value. It is also shown that varying the 
problem size in some cases may lead to very large 
speedups, but that one must still be concerned with total 
execution time. 

algorithm development required for the most effective use 
of parallel systems. 
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