Further results
using the
overhead model
for parallel
systems

by H. P. Flatt

A performance model that takes into
consideration the overhead incurred in the use
of a parallel system is used to show that the
maximum value of the speedup achieved by
the parallel system for a fixed problem may be
much smaller than the number of processors
required to achieve that value. It is also shown
that under certain conditions, the problem size
may be varied so as to achieve a speedup
closely approximating the number of
processors used.

Introduction

The availability of relatively inexpensive microprocessors
with significant computing power has stimulated many
people to search for the best way to utilize multiple
processors to obtain the solution of a given problem. The
hope, of course, is that the use of n processors to solve a
problem will require only 1/n times the amount of time
required on a single processor. It was recognized early that
this expectation could not be realized, for there were parts
of most computing problems that could be processed by
only a single processor, thereby forcing many processors

to remain idle during processing of these parts. This led to
the development of a simple performance model (Amdahl’s
mode] or “law” {1]) that indicated that the amount of time
required for solution of a problem by a computer system
utilizing multiple processors was limited not only by the
number of processors utilized, but also by the total amount
of time required by the sequential portion of the problem—
that is, that part of the problem for which only one
processor could be used.

Furthermore, computations (e.g., [2-4]) showed that
while the use of an increasingly larger number of
processors could initially decrease the time required for
solution of a problem, the use of “too many’’ processors
would result in a larger execution time than that required
by a smaller number of processors (see Figure 1). This led
to investigations concerning the number of processors that
would lead to the minimum execution time. The problem is
very complex, involving, as it does, the characteristics of
particular computer algorithms used to solve the problem,
the programming techniques used, and the method of
physically interconnecting the processors. As noted in [5],
a kind of ““folklore”” developed concerning the proper
solution of this problem. In two important special cases,
an analytical solution was developed [6], while a more
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Figure1

Three performance models of parallel processing systems.

general solution was given in [5]. It was shown in the latter
reference that there was also an ““optimal”” number of
processors that could be utilized on a problem—optimal in
the sense that a point is reached beyond which a further
decrease in execution time requires a disproportionately
large number of processors, a concept made precise in that
reference.

However, in an important paper [7], numerical results
were reported that appeared to contradict Amdah)’s law. It
appeared that the problem solution time would be almost
inversely proportional to the number of processors if the
size of the parallel component of the problem were
increased as the number of processors increased. A new
concept of “scaling’ was introduced to explain this
apparent contradiction.

In the present paper, two primary results are
established. The first result relates to an estimate of the
minimum execution time. Ideally, one would hope that the
minimum execution time would be nearly proportional to
the reciprocal of the number of processors required to
achieve that minimum. However, it is shown that for many
cases of practical interest, this minimum execution time is
closer to being proportional to the reciprocal of the
“‘optimal” number of processors (discussed in [S])—
possibly a much larger value than that suggested by the
ideal case. The second result is that the extension of
Amdahl’s model considered in [5], the “overhead”” model,
is sufficient to explain the numerical results obtained in [7].
A generalization of the analytical results in that paper is
also established.

H. P. FLATT

Background

In this section, we summarize the notation and definitions
used in [5]. That reference may be consulted for more
details and additional references to the literature.

& Notation and definitions

If we solve a problem requiring T, units of time on a
single processor of a parallel system consisting of n
identical processors, then

T, =T+T,

where T, is that part of T, which must be executed on a
single processor and T, that part which could be executed
in parallel on two or more processors. Let 7, = T,/T,, and
7, =TT, (1, + 7, = 1). Term 7, is the fraction of
execution time spent in a serial mode, while A is the
fraction that can be spent in a parallel mode. Denote by
T(n) the time required to solve the problem on the parallel
system and by 7(r) the normalized time [#(n) = T(n)/T_].
We define the speedup by the relation

1

W=t =—

STy )’

In [5], additional definitions of the parallel cost function
Q(n) and the performance-to-cost ratio F(n) are given:

n
Qn) = nt(n) = )
and

S(n)
Fin) = 500

The value of n for which F(n) has a maximum is defined
as n,. We further denote by E(n) the “efficiency’” of the
parallel system and define the efficiency as

1
& Models

What we use to approximate T(n) distinguishes various
models for parallel processing. The simplest approximation
to T(n), ignoring the time required to execute the parallel
part, is

Tn) =T,.
Thus,

Tseq 1
S(n) = T - :s

S

This relationship shows that for any problem, 1/7, is the
maximum speedup for a parallel system. However, we
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note that S is actually a function of the two independent
variables T and T, . The value of T usually depends
upon one or more parameters such as the mesh size, and
will, in general, vary as these parameters are changed. It is
clear that the ratio of T, to T, could increase as T,
increases (or decreases), thereby increasing the value of
S(n) for that particular problem. Nonetheless, the value of
S(n) (again, for that particular problem) is bounded by 1/7,
in the general case.

The ““overhead model” is a more general model. It
assumes that

TP
Ttn) = T, + Tm) + 2,

where T (n) is the overhead due to synchronization cost,
communication costs, etc. [5]. [A special case is Amdahl’s
law, for which T (n) = 0.] We may also write

T
mn) =71, + 7(n) + =,
n

where 7.(n) = T (n)/T,,.

It is shown in [5] that for suitable restrictions on 7,(rn)
[especially the restriction that 7/(n) > 0 for n > 1], S(n)
takes on its maximum value for » = n_, where

2 TP

n. = ,
7n,)

o

and 7.(n) is the derivative of 7 (n) with respect to n.

Bounds on the maximum speedup
In [8], a function similar to the following is considered:

S(n)
Sn)"

Z(n) = E(n) + 1)
Z(n) is the sum of two positive, differentiable functions:
the efficiency E(n), which is a monotonically decreasing
function of n, and the fraction of the maximum speedup
that is obtained. That fraction is monotonically increasing
for1 = n < n_. We note that Z(1) and Z(n_) are both
greater than unity, and that Z'(n ) < 0. Thus, Z(n) > 1
for 1 < n < n, for otherwise Z(n) would have at least
one relative minimum and at least one relative maximum in
this range—an impossibility. Hence the efficiency and the
fraction of maximum speedup cannot be small
simultaneously for 1 < n < n_. However, Z(n)
approaches zero for n > n_ for the overhead model, in
contrast to the behavior of the Amdahl model, as noted in
{8].

Through the use of the function Z(r), we may motivate
a closer examination of the actual magnitude of S(n ). If
we substitute the value S(n ) for n in Equation (1), we
have
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Tangents to the parallel cost function Q(n).

S[S8(n,)]

Z1S(01)) = ELSn)) + ~5

Because E(n) = S(n)/n, this reduces to
Z[S(n)] = 2E[S(n)]-

Since S(n,) < n_, Z[S(n,)] > 1. Therefore, E[S(n,)] > 1/2.
This result is of interest because of the observations in [5]
on the value of E(rn ). In particular, for a logarithmic
overhead, E(n_) may be much less than 1/2. Since E(n) is
monotonically decreasing, there is a suggestion that at
least in these cases, S(n_) may possibly be much smaller
than the ideal, 7.

As is known, S(n_) < n_; however, much tighter bounds
on S(n_) may be obtained. For any overhead function
satisfying the assumptions given in [5], we first show that

Sn) <n,

where n_is the intersection of the tangent u(n) to Q(n) at
n = n, [F(n,) is the maximum value of F(n)] and the
tangent v(n) to Q(n) at n = n_ (sce Figure 2). As shown in
[5], n; < n, and v(n) = n/S(n ). Then, n, < n, <n_, and

n

S(n,)

=vn) = u(n) > Qny) > 1,
thereby establishing the desired result. In [5], it is also
shown that
Sn) n,+n,
>
S(n,) 2n,

From this, it follows immediately that
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Table 1 Two overhead functions [linear (top line) and
logarithmic (bottom line)] and associated parameters.

7.(n) a b
a@m - 1) a(3n, - 1) a(2n, - 1)
alog,n a(log,n, + 2log, 2) aflog, n, + log, 2)

S(n) < 25(n,).

Thus, the maximum speedup is less than twice the speedup
achieved for n = n,.

However, geometrical considerations suggest the
possibility that an even tighter bound might exist—at least
in special circumstances. We show below that, in fact,

S(n,) < ny; 2)

in many cases of interest for parallel computing. We have
noted that n,. < n_, but n, is of importance because, as
argued in [5], it represents the optimum number of
processors to utilize in the solution of the problem—
optimum in the sense that if n < n,, an increase in n
produces a larger fractional change in the speedup than
fractional change in cost [as measured by Q(n)], while if

'n > n,, an increase in n produces a smaller fractional

change in the speedup than fractional change in the cost.
To establish Equation (2), we consider the defining
equation for n,:

nF [Ts + To(nF) + 2n1=‘7(;(np)] = Tp > (3)

which may be found by solving the equation F'(n) = 0.
Let

a=r71(n)+ 2n.7(n,)

and

b=r(n)+nrn).

Then, noting that 7, = nfj 7(n,), we see that

n{r, +a) =n.[r,+ b+ (a — b)]

1
=np[-§(n—o)+a—b].

Therefore,
r.8(n.)
o= v
F 1+ (- b)S(no)’
and S(n) < n, if and only if
thza+ 7, @)

since S(n,) = 1/(7, + b).
Consider the overhead functions shown in Table 1.
Then, for the linear overhead function we have, from (4),

H. P. FLATT

T(2n,— 1) =3n, -1+ rs(;;:), )
and, from Equation (3),

T, T,
np(z +3n, — 1) = (6) ®
For the logarithmic overhead, we have that

T,

T, log,n, =z log,n, + (1 + 7)log,e + 1-5(-;5) 7
and
n, §+logznp+ 2logez) =-T;". ®) ®

We may quickly verify that both inequalities (5) and (7) are
satisfied if

r
;S < 10; r, < 0.02; and ,, = 4. ©)
These inequalities may appear to be overly restrictive;
indeed, they are known to be unnecessarily tight.
Nonetheless, if we are to productively use parallel systems
containing a large number of processors, we must have a
high percentage of parallelism (note that if 7. = 0.02, we
can productively use no more than 50 processors). For
such large systems, only the restriction 7/a < 10 is of any
possible consequence.

It also follows immediately from Equation (3) and the
definition of Q (noting that 7/(n) > 0 by one of the basic
assumptions in Reference [5]), that Q(n,) < 2. Since
S(nF)Q(nF) = ng,

nF
Sng) > >
Therefore, if the restrictions of (9) are met,
nF
7 < S(n) <n,. ®

We note that #, may be much less than n_, for if the
overhead is linear (as defined above), we see from
Equation (3) that

n, > \/_Z”F'
If the overhead is logarithmic (as defined above),
n, > 2n..

Numerical computations show that for a logarithmic
overhead, n, may in practice be much, much greater than
twice n.

It is clear that it is not productive to use more than n_
processors for the solution of a problem. However, the
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above bounds on S(n,) and n, suggest that unless
processor cost is of no consequence, it is probably not
worth the investment required to attain the maximum
speedup possible. Rather, it may be more cost-effective to
use a smaller number of processors, for which the
efficiency remains much higher.

Largest possible problem

In the preceding section, we have considered the
maximum speedup attainable for a fixed problem. We have
shown that this maximum may be much smaller than might
be expected, and we suggest that it may be more useful to
utilize a smaller number of processors for which the
efficiency remains acceptably high. But if paralle]l systems
containing a large number of processors are to be cost-
effective, the challenge is to characterize problems for
which the efficiency remains large for a large number of
processors.

& Problems of varying size

One of the more striking results of Gustafson et al. [7] is
the demonstration that very large speedups may be
obtained in certain cases by increasing the problem size—
i.e., changing the parameters of the problem so that 7
increases. This result is in accord with the earlier results of
Rosenfeld [3] and the observation of Cytron [6], and may
be readily explained using either Amdahl’s model or the
overhead model, despite the arguments in [7].

In [7], it is assumed that the problem size is increased in
such a manner that the serial part remains fixed, while the
parallel part is increased in proportion to the number of
processors used. In terms of our earlier definitions and
notation, it is assumed that

T () = Tn) + T(n) =T, +nT,, (10)

where fs + fp = teq’ the time required for the reference
computation on a serial processor. For Amdah!’s model,

. T T e T,
ny=-——=————=n - n)=—
T(n) . I, T,
s + -
n

Thus, if the problem size is increased in accord with
Equation (10), the speedup (as a function of the fractional
serial part of the base computation), i.e., with n fixed, is a
straight line of slope 1 — n, as noted in [7]. For S(n) to be
approximately equal to n, t/teq must be small.

However, it is not necessary to assume that the serial
part of the problem remains fixed or that the overhead is
ignored. Let

n— S(n)
en) = =1 - E(n).
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This quantity e(r) is a measure of the relative deviation of
S(n) from its ideal value, n. For the overhead model,

Qn) = T, T+ nt(n) =1+ (n - V7, + nr (n).

Thus,
(n=Dr +nrn)=0n) -1 =’1ﬂ
P S(n)
or
n £
Ts+n—17°(n)=(l—s)(n—1)' (11)

From (11), we see that for any value of £ (0 < £ < 1), the
inequalities

£

ETppT— 12
and

E
To(n) < (I_:E_)n (13)

must be satisfied. If we wish S(n) to remain close in value
to n, i.e., for the efficiency to remain high as n increases,
then as long as the inequalities (12) and (13) are satisfied
for a fixed &, this will be the case. Since 7, = Ts/Tseq, we
see that for a fixed value of ¢, T, may increase as the
problem size increases (i.c., as T, increases), but only as
long as (12) is satisfied. It is not necessary that the serial
part of the problem remain fixed in size, although clearly 7,
must decrease as n increases. A more restrictive condition
may be imposed by the second inequality, for, as noted
previously, 7/(n) > 0; however, as 7, 7,(n) is normalized,
and as long as T, grows sufficiently rapidly, the second
inequality may be satisfied.

8 A numerical illustration

In [7], for a particular problem in wave mechanics, it is
shown that a speedup of 1019 was obtained on a 1024-
processor system. For this problem, £ = 0.0049. Relations
(12) and (13) require that 7,(1024) and 7, must each be less
than (approximately) 5 x 107°. This compares with the
estimate of 3 x 107° for 7, given in [7]. This, in turn,
requires that the running time of the reference problem
itself must be increased in size by about 1000 times.

This particular example illustrates one possible difficulty
with simply increasing the problem size. The problem size
was increased by decreasing the spatial mesh size;
however, the algorithms used for the solution of the
problem require that for computational stability, the time
step size must decrease proportionately. Thus, while the
mesh size was decreased by a factor of 1024, so was the
time step. The time required for the original sequential
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calculation was estimated to be about five months.
Although a very high speedup (over 1000) was obtained,
the amount of work to be done was increased by at least
an equal amount. Thus, if the original problem was
impractical because of the running time on the sequential
processor, it remained impractical on the parallel
processor. This highlights the necessity of using numerical
methods for which T, does not grow too rapidly as T,
increases, and for which 7'(n) remains at an acceptable
level.

In view of the above restriction on the possible growth
of time on the parallel system, it is instructive to consider
the following model comparison. Suppose we have a
problem for which 7. = 10~ and 7,(n) = alog, n,
where @ = 107°. We can show that n, ~ 693 000 and
n, ~ 33000, while S(r,) ~ 32000 and S(n;) ~ 18 000.
In today’s technology, it would be impossible to
employ so many processors; nevertheless, suppose we do
have a system with 1024 processors. For this problem,
$(1024) = 965 and E(1024) = 0.94. If we force the
efficiency higher, by increasing the problem size, we could
obtain an equivalent speedup using only 970 processors.
This would require 7, to decrease by a factor of 1.9, but
would free a number of processors for other work.
Alternatively, for the same value of &, all 1024 processors
could be employed to yield a speedup of about 1019. This
would require 7, to decrease by about a factor of 10. For
suitable problems and numerical methods, it is clear that
varying the problem size may lead to more efficient system
utilization.

Conclusions
The overhead model is shown to be useful in helping us
understand the performance restrictions that exist for the
usage of parallel systems. It is shown that for some
problems of interest for parallel computations, the
maximum speedup that can be obtained may be much
smaller than the number of processors required to obtain
that maximum value. It is also shown that varying the
problem size in some cases may lead to very large
speedups, but that one must still be concerned with total
execution time.

Both results point to the importance of the mathematical
algorithm development required for the most effective use
of parallel systems.
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