
Waveform- by T. A. Johnson 
D. J. Zukowski 

relaxation-based 
circuit  simulation 
on the Victor 
V256 parallel 
processor 

Present-day  circuit-analysis tools permit 
designers to verify performance for circuits 
consisting of up to 10000 transistors. 
However, current  designs  often  exceed  several 
tens  of  thousands  and even  hundreds  of 
thousands  of  transistors.  The  gap  between  the 
number  of transistors that  can  be  simulated 
and  the  number  per  design inhibits proper 
analysis prior to manufacturing,  yet  incomplete 
analysis  often  overlooks  design  flaws  and 
forces  redesign, resulting in increased costs 
and  longer  development  times.  This  gap is 
expected to widen in the  foreseeable  future. 
To help  close  the  ever-increasing  simulation/ 
design gap,  we  have  developed  an 
experimental  parallel circuit simulator, 
WR-V256, for the  Victor V256 distributed- 
memory  parallel  processor. WR-V256 has  been 
used to analyze circuits from fewer than 300 to 
more  than 180 000 MOSFETs. WR-V256  was 
originally based  on  a  Gauss-Seidel relaxation 

algorithm,  which  was  later  replaced  with  a 
bounded-chaotic  one in order to achieve  good 
parallel  speedups for a  wider  variety  of 
circuits.  At this time,  speedups  of up to 190 
have  been  observed  for  large  circuits. 

1. Introduction 
The 1980s have witnessed an explosion in the field  of 
circuit design.  During that decade, the size and complexity 
of integrated circuits have increased so rapidly that many 
of the supporting tools that triggered this explosion have 
fallen far behind. Such is the case with circuit simulation. 
Most present-day circuit-analysis tools such as SPICE [l] 
and ASTAP [2] are limited  in their ability to achieve 
reasonable turnaround times for large jobs and to cope 
with the storage requirements for those jobs. Typically, 
such conventional circuit-analysis tools are effective for 
analyses of not  more than a few thousand transistors. 
Waveform relaxation, as implemented in the RELAX [3] 
and TOGGLE [4] programs, has increased the size of 
digital  MOS circuits that can be analyzed efficiently to a 
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few tens of thousands of FETs. However, even these tools 
are not  sufficient to keep pace with the rapidly expanding 
needs of circuit designers. To adequately and accurately 
analyze the complex VLSI chips being developed today, 
circuit simulation must be capable of handling many tens 
of thousands of FETs in one analysis and  must analyze 
such circuits rapidly. 

Several approaches have been taken to analyze large 
circuits on serial computers. One approach is to manually 
partition large circuits into many smaller ones and analyze 
each independently of the rest. Manual partitioning 
techniques are time-consuming and often introduce errors 
by imposing  artificial interfaces that cause interactions 
among partitions to be lost.  Mixed-mode simulation, 
another approach, yields faster analyses by simulating 
some parts of a circuit less accurately than others. The 
effectiveness of this technique is  limited for high- 
performance designs because of a potential loss of overall 
accuracy. Additionally, user intervention is often required, 
to specify critical paths of a circuit. This limits feasibility 
for very large circuits. The use of vector processors to 
speed up circuit simulation is another alternative. 
However, efficient vectorization of circuit simulation is 
constrained by inadequate vector lengths and by data 
dependencies. Typical results [SI show limited speed 
improvement. 

Another alternative for analyzing large circuits is to take 
advantage of parallel machines. One approach is to 
parallelize a conventional circuit simulator such as  SPICE 
or ASTAP [6-131. For small- to medium-sized problems of 
about 1000 transistors, coefficient evaluation ("filling the 
matrix") often consumes up to 80% of the total run  time, 
with most of the remaining  time spent in matrix solution 
[14]. Parallelizing  coefficient evaluation has been 
investigated by several authors, who report varying 
degrees of success [6-lo]. (Clearly, there is a limit to the 
effectiveness of such an approach: If coefficient evaluation 
does indeed consume 80% of an analysis, and if it is 
possible to sufficiently parallelize this work-i.e., the time 
needed approaches zero-the overall speedup is limited to 
a factor of 5.) As circuit size increases, the size of the 
solution matrix also increases and, in contrast to the case 
with coefficient evaluation, the time required for matrix 
solution grows nonlinearly with matrix size. Therefore, for 
large circuits, matrix solution dominates run  time [15]. 
Possibilities for exploiting more parallelism include 
parallelizing matrix solution, local truncation-error 
estimation, and convergence testing, in addition to 
coefficient evaluation. Typical speedups (serial run 
time/parallel run time) from  parallelizing  all of these steps 
for small to medium problems are in the range of 2 to 4 
[9-131. In addition, published results, such as those of  [7], 
show that very little improvement is gained with more than 
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Since results from parallelizing standard SPICE/ASTAP 
algorithms have been so disappointing, a totally different 
simulation algorithm has been investigated in order to 
increase the amount of parallelism.  Waveform relaxation 
[16,  171, a newer analysis technique with more inherent 
parallelism, has received considerable attention over the 
last decade. While the application of waveform relaxation 
is currently limited to digital  MOS circuits, many large 
designs fall into this category. Waveform relaxation is 
capable of automatically partitioning large circuits into 
many smaller, nearly independent subcircuits. With this 
approach, many subcircuits may  be simulated in  parallel, 
with voltage waveforms exchanged at their 
interconnections, until  global convergence is reached. The 
waveform-relaxation-based algorithm has been at the 
center of much research on parallel circuit simulators 
[14,  18-25]. A more detailed description of waveform- 
relaxation algorithms can be found in Section 2. 

Though many efforts have been made to parallelize 
circuit simulation, most  published work has been limited to 
machines with a low degree of parallelism (e.g.,  8-32 
processing elements) and relatively small circuits (about 
1000 MOSFETs). It is not clear how  well results of such 
studies can be generalized to larger circuits analyzed on 
more  highly parallel machines. The WR-V256 project 
extends previous research to provide a better 
understanding of the impact of larger circuits and more 
highly parallel machines on achievable parallel 
performance. 

WR-V256, a waveform-relaxation-based parallel circuit 
simulator, was developed for the Victor V256 machine, a 
distributed-memory parallel processor, discussed briefly  in 
Section 3 and described in more detail elsewhere in this 
journal [26]. The Victor V256 machine was used because it 
offered stable hardware with a high degree of parallelism. 
TOGGLE, an existing serial waveform-relaxation program 
described in Section 4, was adopted for this machine. A 
goal of the WR-V256 project was to achieve good  parallel 
efficiency on existing Victor V256 hardware while  changing 
as little as possible in the TOGGLE program. However, 
some new features were added to improve the behavior of 
circuits exhibiting poor parallel efficiencies.  In particular, a 
bounded-chaotic relaxation, as described at the end of 
Section 4, was implemented to achieve better parallel 
execution for smaller or more irregular jobs. 

can be used to port a serial waveform-relaxation-based 
circuit simulator to a distributed-memory parallel 
processor, and that they are capable of achieving high 
parallel efficiency for many circuits. These simple 
techniques are also discussed in Section 4. In addition, this 
work shows that the size of circuits does affect parallel 
efficiency results. For large circuits, a speedup of nearly 
190 has been demonstrated for the Victor V256 machine. 

This work has demonstrated that very simple techniques 
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These conclusions are described more  fully  in Section 5, 
which also introduces the concept of the parallel signature 
of a circuit and how  it can be used to explain some 
observed performance results. Some closing remarks and 
suggestions for future research are included  in the final 
section of the paper. 

2. Waveform  relaxation 

Methods 
Conventional circuit simulation tools such as SPICE and 
ASTAP  apply Kirchoffs current and voltage laws to the 
topology and “branch relations” of a circuit to derive a set 
of nonlinear differential equations describing the circuit 
behavior. These equations are then transformed into a set 
of nonlinear algebraic equations through the use of  an 
integration method. In general, such integration methods 
are of the implicit multistep type. Among the most 
commonly used techniques are the backward-Euler, 
trapezoidal-rule, and Gear’s methods. The resulting 
algebraic equations are then linearized and solved over a 
user-specified analysis interval (from the “start time” to 
the “stop time”). Linearization is performed by 
application of the iterative Newton-Raphson method. Once 
linearized, the set of algebraic equations is usually solved 
by LU decomposition with sparse-matrix techniques. At 
the start of the circuit analysis, all  of the network 
equations are solved iteratively at the first  time  point  until 
the difference between two successive iterations is 
sufficiently small-i.e., the solution converges. Once 
convergence is achieved at the first  time point, a time step 
is calculated to determine the next time point. The size of 
the time step is determined by the difficulty encountered in 
solving the circuit at the current (i.e., the first) time point. 
The iterative solution process is repeated at the next time 
point and at all successive time points, until the stop time 
is reached. With such a scheme, once the stop time is 
reached, the circuit waveforms (the calculated voltages at 
all  time points for all voltage nodes) are known for the 
entire analysis interval, and the simulation is complete. 

Although this technique produces an accurate prediction 
of circuit behavior, it  suffers several performance problems 
as the size of the analyzed circuits increases. First, since 
all circuit equations are solved at the same time points, 
and each time point is determined on the basis of the 
difficulty in converging at the previous time point, the 
entire system of equations is solved using  time steps 
determined by the most  difficult set of equations. This 
causes the entire system of equations to be solved 
repeatedly even when only a small part of the circuit is 
converging slowly. Second, as the size of circuits grows, 
the time required to solve the set of equations grows 
nonlinearly. The growth factor is generally acknowledged 
to be proportional to N “ ,  where N is the order of the 
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matrix of linear equations (N  is generally proportional to 
the number of voltage nodes contained in the circuit), and 
a is between 1.4 and 1.6 [15]. So, not only are 
conventional methods constrained to solve the circuit 
equations repeatedly on the basis of the most  slowly 
converging part of the circuit, but also the time required to 
solve those equations grows dramatically with circuit size. 

methods do not attempt to solve the complete set of 
equations for a circuit simultaneously. Instead, large  digital 
MOS circuits are algorithmically partitioned into 
interconnected subcircuits. These subcircuits are solved 
iteratively. For  ease of exposition, the Gauss-Jacobi (GJ) 
relaxation algorithm  is described here; the Gauss-Seidel 
(GS) and bounded-chaotic (BC) algorithms used in this 
project are described in later subsections. In the GJ 
algorithm, the subcircuits are solved independently, with 
the methods described above, first for a dc solution (to use 
as the initial set of voltage-node waveforms) and then for 
the transient solutions. The following discussion is  limited 
to the transient solution, since it dominates the analysis. 
The first  time the subcircuits are solved for the entire 
analysis interval is called the first waveform-relaxation 
(WR) iteration. The voltage-node waveforms calculated 
during the first WR iteration are used as the inputs for the 
next WR iteration, during  which a new set of waveform 
solutions is calculated. Additional WR iterations are 
performed if the difference in voltage-node waveforms 
between successive iterations is outside some specified 
error bound. Otherwise convergence has been achieved. 

Although there are several methods of  defining subcircuit 
partitions, two of the more  popular ones are pointwise 
partitioning and block partitioning. Pointwise partitioning 
simply breaks the circuit at each node, generating 
subcircuits with only one node.  Block partitioning groups 
one or more circuit nodes into a single subcircuit, on the 
basis of the strength of coupling provided by the circuit 
elements that connect them. Generally, block partitioning 
leads to faster convergence, while pointwise partitioning 
offers potential for greater parallelism. An investigation of 
the effects of these partitioning approaches for parallel 
machines is discussed in [22].  

Waveform relaxation has several advantages over 
conventional methods. First, when a large network is 
partitioned into a set of subcircuits, the size of each 
subcircuit that must  be solved does not grow appreciably 
with the size of the problem analyzed. Since the size of 
each subcircuit remains approximately the same, the time 
to solve each subcircuit matrix also remains the same. 
Instead, the number of subcircuits grows roughly linearly 
with the size of the circuit. This results in a nearly linear 
growth in solution time  with circuit size rather than the 
nonlinear growth seen with conventional methods [16, 181. 
Second, each of the subcircuits can be solved using a 709 
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Example of subcircuit leveling 

sequence of time steps appropriate for its own 
convergence behavior. Those subcircuits that converge 
rapidly are not constrained to use time steps determined 
by  others that converge more slowly. Third, and most 
important for a parallel implementation, since each 
subcircuit is solved relatively independently, the 
subcircuits can be analyzed in  parallel. 

Algorithms 
Within the general class of solution methods referred to as 
waveform relaxation, there exist several distinct relaxation 
algorithms, two of which are described here. (The 
description of the BC algorithm  is reserved until the end of 
Section 4.) The GJ algorithm, described earlier, can be 
characterized by the following equation for X(t), the 
vector of node voltages: 

xk+’(t) = f[Xk(t), Xk(t), u(t), t ] ,  (1) 

where k is the waveform iteration number, u(t) is  a vector 
of external inputs, and t is  time. To compute new values 
for the solution vector, X(t), the GJ  algorithm uses the 
results of the previous iteration. 

from the current and  previous  iterations.  The  GS  algorithm 
forces an  ordering of the analysis;  hence  some  serialization 
among  subcircuits  occurs. Each subcircuit  is  assigned  a 
“level” determined by its inputs.  Subcircuits that depend 
only  on  external inputs are defined to be level  1.  Those that 
depend  only  on outputs from  level-1  subcircuits  and  external 
inputs are defined as level 2, etc. The order of analysis  is 

In contrast, the GS algorithm  uses  a  combination of results 
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based on the circuit  levels; i.e., all level-i  subcircuits  must  be 
analyzed  before  any level-i+l subcircuit.  Refer to Figure 1 
for an example of subcircuit  leveling. 

When cycles caused by global feedback loops occur, 
they are generally handled as follows. An estimate is  made 
of the delay through each loop, and subcircuits that form  a 
cycle having  a delay shorter than some predefined 
threshold are merged into a  single subcircuit. Longer 
feedback loops are broken at some point  in the cycle. 
Input waveforms to subcircuits driven by these broken 
feedback paths are taken from the previous iteration. In 
general, broken feedback loops result in more waveform 
iterations to reach convergence. 

The GS  algorithm is shown in Equation (2): 

After leveling  and ordering, the set of subcircuits is solved 
iteratively until  a predetermined convergence criterion is 
met by every node.  GS relaxation has been shown to give 
significant improvement in the rate of waveform 
convergence [16], but it restricts the degree of parallelism. 
At any level, only those subcircuits having  all inputs from 
earlier levels computed for the current iteration can be 
analyzed in parallel. Analysis of other subcircuits awaiting 
computation of their inputs must be delayed. 

3. Victor  V256  parallel  processor 

Hardware description 
The Victor V256 machine  is  a distributed-memory parallel 
processor that consists of  256 processing elements (PES). 
Each of the PES contains four megabytes (MB) of storage 
[one gigabyte (GB) in  all]. The PES are configured  in  a 
two-dimensional  mesh  (16 X 16)  and can be grouped into 
four arbitrary partitions of contiguous PES. Victor also 
includes 10 GB of mass storage, distributed among 16 disk 
processors. Access to Victor V256 is provided by four 
hosts (chosen from  among  DOS-based  PC/AT@ or PS/2@, 
or AIX@-based RISC  System/6000m) available to users, 
with one typically allocated to each partition. There is also 
one “super” host that can be used to reset and  initialize 
the entire system. The parallel circuit simulator application 
has been run  with partition sizes of  64,  128, and 256 PES. 
Details of the Victor hardware are described in  [26]. 

WR-V.256 software environment 
While Victor now provides several languages and 
environments, the WR-V256 project was initiated with one 
of the earlier ones, namely  Version 2.0  of the Parallel  C 
compiler from 3L Ltd. (3LC) [27]. The 3LC tool set 
consists of a  C compiler with library functions to handle 
explicit parallel constructs, a linker, a  configurer,  and  a 
host server. The compiler provides support for multiple 
threads, message-passing communication primitives,  and 
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semaphores. The host server, a program that runs on a 
Victor host, loads each PE with  an appropriate task and 
handles all host 110 requests. 

implemented, in software, for the parallel circuit simulation 
work provides all host-to-PE, PE-to-host, and PE-to-PE 
communication. In addition, a restricted broadcast 
mechanism has been added that allows the host to 
efficiently broadcast a message to all Victor PES. 
PE-initiated broadcasts were not implemented. 

To guarantee that all jobs that fit  in storage finish, the 
communication mechanism was designed to be deadlock- 
free. Briefly, deadlock-free routing (how messages are  sent 
from source PE  to destination PE) can be accomplished in 
a store-and-forward network, such as that supported by 
Victor, as long as no loops are possible in message transit 
and all messages are eventually consumed at their 
destinations [28], thus freeing any routing resources (e.g., 
buffers) that they hold. A noncyclic router was developed 
that incorporates the idea of planes of travel (virtual 
communication planes) and allocates buffers uniquely 
among the planes. Only two planes are needed for a 2D 
mesh, and each plane has two degrees of freedom for 
travel; e.g., plane A allows travel north and east, and 
plane B allows travel south and west. By connecting the 
planes with a unidirectional bridge  (Le.,  buffer)  from 
plane A to plane B,  all possible combinations of travel are 
provided in a noncyclic fashion (Figure 2). The number of 
router buffers required depends on the number of planes 
and travel directions, hence remaining constant as the 
mesh  grows. A more extended description of this type of 
router, and further generalizations, are covered in [29]. 

The message-based communication mechanism 

4. Implementation  issues  for  a  parallel  circuit 
simulator 
The TOGGLE program is one example of a waveform- 
relaxation-based circuit simulator. It uses a GS  algorithm 
to minimize analysis time for execution on serial machines. 
Although one goal was to change as little as possible of the 
serial TOGGLE program, some structural changes were 
needed to port TOGGLE to a distributed-memory 
machine. These changes include data initialization and 
result gathering, waveform storage and  updating, allocation 
of work, and synchronization needed to maintain 
consistency among the data structures of the PES. This 
section first considers general aspects of the serial 
implementation of the TOGGLE program. It then 
describes each of the changes, and concludes with a 
discussion of one of the parallel-execution improvements 
added to the basic TOGGLE structure. 

Serial TOGGLE 
The serial TOGGLE program consists of two phases. The 
first phase reads a circuit description, partitions the circuit 

Planes of travel  that  provide  deadlock-free  message  routing. 

into subcircuits using the block-partitioning approach, and 
then orders these subcircuits as described in the subsection 
on  algorithms. The order of subcircuits within any level  is 
arbitrary, but all subcircuits assigned to one level  must be 
analyzed before any subcircuit of a subsequent level. A 
subcircuit dispatch queue is built that observes the order 
of the subcircuits. 

The second phase of TOGGLE actually performs the 
analysis. Subcircuits are analyzed in the order in which 
they appear in the dispatch queue. An analysis is  divided 
into two parts. First, dc values are calculated for all 
subcircuits. Then, the transient behavior of  all subcircuits 
is calculated using the dc solutions as the initial conditions. 
Both the dc and the transient solutions may require 
multiple WR iterations for the node voltages to converge. 
After the first WR iteration, not all subcircuits need be 
analyzed. If  all  of the internal nodes of a subcircuit have 
converged and the inputs have not changed, the subcircuit 
is considered “latent” and is not solved again unless its 
inputs change. An analysis ends when the computed 
results for all subcircuits change less than a predefined 
amount from one WR iteration to the next. 

Subcircuits influence one another’s analyses through 
shared node voltages. Each subcircuit is responsible for 
the solution of its internal nodes, but more than one 
subcircuit may use any node waveform as input. For GS 
relaxation, there are two types of input, which can be 
characterized as follows. Inputs that are the outputs of 71 1 
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subcircuits of previous levels must be calculated before 
they can be used by another subcircuit. Inputs that model 
back-coupling or feedback from nodes solved at later 
levels are used before they are updated for the current WR 
iteration. All node voltage variables are accessed by means 
of pointers, i.e., explicit memory addresses, forcing every 
node voltage waveform to have a unique address. These 
unique addresses are available to every subcircuit. No 
explicit update mechanism is needed, since all updates and 
references are issued to the same variable via its pointer, 
and the order of references is restricted by the dispatch 
queue. 

TOGGLE was heavily optimized to run on a serial 
machine, and several of these optimizations caused 
complications for a parallel implementation. A GS 
relaxation method was used by TOGGLE, which is 
inherently much  more serial than a GJ method [19]. 
However, the GS approach was maintained for three 
reasons. First, the same method had to be used in order to 
verify the correctness of computed results and to make 
performance comparisons with serial execution. Second, 
the GJ method uses much more memory, because 
waveforms for both the current and previous iteration must 
be stored for each circuit node. This effectively doubles 
the amount of memory required to store computed 
waveforms, thus reducing the  size of circuits that can be 
analyzed. Third, GJ usually requires more WR iterations. 
Therefore, while a GJ method may have a higher parallel 
efficiency, the overall turnaround time for a job may be 
greater because of the additional work needed to complete 
an analysis. 

Parallel TOGGLE 

Data initialization  and  result gathering 
The TOGGLE program was explicitly divided into two 
phases, with the circuit-analysis phase being separated 
from the partitioner/scheduler. For typical waveform- 
relaxation programs, the analysis phase dominates total 
run time, and this dominance becomes even more 
significant as circuit size increases [18]. Therefore, only 
the actual analysis phase was parallelized. (The 
partitioner/scheduler can be parallelized separately.) All 
circuit partitioning and ordering are performed on an  IBM 
3O9OTu processor, on which TOGGLE was originally 
installed. 

Since the first part of the TOGGLE program is executed 
on a 3090 system, the input  files needed to describe 
circuits are the same as for the serial implementation. 
However, once partitioning and ordering are complete and 
the allocation of subcircuits to PES has been decided (see 
below), a file is built describing the static mapping onto 
V256. Circuit and device data from this file are then 
divided  among the Victor disk processors. Initialization of 

subcircuits on Victor PES can then proceed in parallel, 
using  all 16  of the Victor disks. After  an analysis is 
complete, each of the PES sends its solved waveforms to 
the Victor  disk connected to it. The files are then 
concatenated and uploaded to the 3090 system, where the 
solutions may be inspected using a special viewing 
program. 

Wavefonn storage and update 
Although V256 has 1 GB  of primary storage available to an 
application, that storage is evenly distributed among and 
private to the 256 individual  PES. Waveforms are statically 
assigned to PES, so that each PE contains a copy of  all 
waveforms needed for analysis of the subcircuits allocated 
to that PE. Hence, copies of the same waveform may be 
found  on several PES. To ensure that all copies are 
identical, each waveform is assigned a unique name, and a 
new software mechanism called the Waveform Repository 
is used.  While  all waveforms resident on a PE are still 
accessed by means of memory addresses, the Waveform 
Repository (distributed on all PES) collects all waveform 
addresses on a PE into a table. This table provides a way 
to translate global waveform names to local PE addresses. 
Each PE maintains entries for only those waveforms it 
references. 

As a waveform is  changed on one PE, this change must 
be reflected  in all external copies. Note that each 
waveform is solved on only one PE; therefore, one PE 
holds the master copy and  all other copies must  be 
explicitly updated. There are two common methods used 
to update copies of a variable in a distributed-memory 
system. The spread method is controlled by the PE 
generating a waveform. As a waveform is  modified, 
messages with the new values of the waveform are  sent by 
the originating PE to all PES that hold copies. The gather 
method, on the other hand, is driven by the receiving  PES. 
When a waveform is to be referenced (read), a message 
requesting an updated version is sent to the PE holding the 
master copy. That PE then either sends its current version, 
which may be refused at the receiver if the waveform is 
the same version as the current copy, or it waits until its 
version is updated. The spread method is more  efficient  in 
communication, because it does not require the request 
messages that the gather method does. However, it is 
more memory-intensive, since there must be enough 
storage for all externally generated inputs on every PE. 
The gather method need store inputs for only the 
subcircuit currently being analyzed, though  it  likely  would 
fetch inputs for the next few subcircuits in order to 
minimize waits. The waveform-relaxation algorithm 
guarantees that all computed waveforms from one WR 
iteration will be used during either the current WR 
iteration or the next. Therefore, since all data transmitted 
by the spread method are used and no unnecessary request 



messages are transmitted, the spread method was used for 
this application. 

Allocation of work 
To achieve high parallel efficiency, special attention must 
be paid to the distribution of work across PES in the 
network. Inefficient communication patterns can badly 
degrade parallel performance. Communication of data itself 
may take a significant amount of time.  During this time, 
depending on the relaxation algorithm, the receiving PE 
may have to wait for updated inputs. In addition, 
communication among PES is performed by several 
processes on each PE. These communication processes 
compete with the analysis process for a share of available 
PE cycles. 

performance. Good load balancing is especially difficult to 
achieve for circuit simulation. In circuit-analysis problems, 
the amount of time taken per subcircuit per WR iteration 
depends on several factors. First, the size of a subcircuit 
influences its analysis time. Second, the dynamic switching 
activity of a subcircuit directly affects the amount of time 
required to solve it. The subcircuits that are electrically 
active are determined by the circuit topology and the 
external input waveforms; those subcircuits that are active 
require more matrix solutions per WR iteration than those 
that are relatively inactive. Third, latent subcircuits may 
not be analyzed at all for a particular WR iteration, though 
they may be analyzed again  in subsequent iterations. 

At this stage of the project, subcircuits are statically 
assigned to the PES. While dynamic load balancing works 
well for many applications, circuit simulation poses several 
problems for load-balancing algorithms.  In general, each 
subcircuit may require many tens of thousands of bytes to 
contain its data, which makes moving a subcircuit from PE 
to PE very expensive once analysis has begun. In addition, 
the behavior of a subcircuit may change from one WR 
iteration to the next, so while one PE may be a bottleneck 
for one iteration, it  may not be for the next. There is no 
way to determine ahead of time which PE will be heavily 
loaded, and to redistribute subcircuits in advance. Finally, 
a dynamic load balancer would incur substantial overhead, 
both for bookkeeping and for increased communication. 

Instead, a two-step process (described in the following 
subsections) was implemented to statically assign 
subcircuits to the PES. Communication  among PES is 
reduced by generating “chains” of subcircuits. (This 
approach is similar to the algorithm for partitioning by 
element strings [30].) The workload is better balanced by 
assigning  multiple chains to each PE. 

Nonuniform load balance also degrades parallel 

Chaining of subcircuits How waveform data are shared 
among PES is dictated by subcircuit interconnections and 
by the assignment of subcircuits to PES. It is desirable to 

Levels 

1 . 2 . 3 : 4 , 5 . 6  

Chaining of subcircuits. 

assign subcircuits that share data to the same PE. The first 
step of the assignment  is the creation of sequential 
“chains” of subcircuits of the partitioned network, each 
chain containing at most one subcircuit from each level. 
Figure 3 illustrates the creation of a chain from the 
example of Figure 1. A chain is built starting with a 
subcircuit that generates one or more of the circuit outputs 
(A in Figure 3). The next subcircuit assigned to the chain 
is selected from the subcircuits that drive the first 
subcircuit in the chain. If more than one such subcircuit is 
found (B  and C in Figure 3), the subcircuit at the level 
closest to the last subcircuit assigned to the chain is 
selected (B) .  If two or more subcircuits at the same level 
provide input to the most recent subcircuit assigned to the 
chain, the subcircuit with the greatest number of 
connections to the chain is selected (subcircuit F is chosen 
rather than G). At each level, the goal is to maximize 
connectivity of the elements within a chain. The process is 
repeated until either all subcircuits in the current path are 
exhausted or a primary input is reached. Then a new 
output node is selected and a new chain is started. When 
all output nodes are exhausted, the process is begun  again 
by dropping back one level and starting new chains with 
all unassigned subcircuits in that level. This is repeated 
until all subcircuits are assigned to some chain. This 
approach increases the likelihood that some signals solved 
by one subcircuit will be used as input to another 
subcircuit on the same PE, thereby helping to reduce 
communication among PES. 
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Sometimes it is necessary to truncate a chain before 
reaching a primary input. Since each Victor PE contains 
only 4 MB  of user-addressable storage, if the subcircuits in 
a chain are large or the number of levels is large, it  is 
possible to create a chain whose storage requirements 
cannot be satisfied by using just one Victor PE. In such 
cases, chains are broken into two or more sequential 
pieces and are assigned to separate PES. 

Grouping of subcircuit  chains Next, an attempt is made 
to estimate the computational workload of each chain and 
to place several chains of subcircuits on every PE in an 
effort to better balance the load across PES. As stated 
previously, workload estimates are often inaccurate 
because of the dynamic nature of circuit-analysis 
problems. Although the switching activity and convergence 
behavior of a subcircuit are unknowrl, its size (i.e., the 
order of the solution matrix) and the number of FETs 
contained are known in advance. Generally, subcircuits are 
small (approximately 10-20 nodes). Therefore, matrix 
coefficient evaluation (the time of which grows linearly 
with the number of elements) dominates run time,  and the 
number of FETs may be used to estimate the 
computational requirement of a subcircuit. 

FETs allocated to each is as uniform as possible. By 
assigning more than one chain to a PE, not only can the 
workload be better balanced, but there is also a greater 
likelihood that a subcircuit of at least one chain will be 
ready for analysis at all  times. Le., should the next 
subcircuit of one chain need to wait for its inputs, the next 
subcircuit of another chain on the same PE may already 
have its inputs available and be ready for analysis. In 
addition, some of the communication time  may be 
overlapped with another subcircuit analysis, because each 
PE in  effect multitasks chains in its group. 

Chains are assigned to PES so that the total number of 

Distributing the dispatch queue 
Since the use of a centralized dispatch queue would have 
been likely to degrade performance, especially when the 
data must be stored statically, the dispatch queue was 
divided into independent queues on each PE. Thus, the 
mechanism that enforced GS ordering among subcircuits 
was eliminated. Since each Victor PE may  hold subcircuits 
from every level, and the data dependencies that were 
enforced by the serial queue are lost, a data-driven 
approach that ensures that a subcircuit is not analyzed 
until  all of its inputs have been updated was added. The 
scheduler was modified to maintain two queues: one for 
subcircuits whose inputs have been updated, and another 
for those subcircuits awaiting updated inputs. 

Control-pow synchronization 
Some synchronization is needed to ensure that data from 
one of the phases of execution do not overwrite those from 71 4 

T. A. JOHNSON AND D. J. ZUKOWSKI 

another, since several copies of the node-voltage 
waveforms are present in the Victor system. The three 
phases of execution are the data structure initialization, the 
dc solution, and the transient solution. Should one PE 
finish its initialization, begin its dc solution, and send a 
solved waveform to a slower PE, and should that slower 
PE initialize the waveform copy after the update has been 
received, the solved waveform would be lost. A very 
simple synchronization mechanism that restricts a PE from 
entering a new phase before all PES are finished with the 
current phase was introduced. As a PE finishes its work in 
a phase, it sends a “done” message to the host. When  all 
done messages have been received, a “go” message is 
broadcast. This synchronization causes some load 
imbalance, but since it occurs at such a coarse grain (it 
occurs only twice per problem solution), it introduces very 
little performance degradation. 

In addition, synchronization points were added within 
the dc and transient solutions to prevent any PE from 
getting more than one WR iteration ahead of the rest. 
While these synchronizations are not functionally 
necessary, they simplify the bookkeeping needed for 
waveform references and reduce waveform-storage 
requirements. This synchronization occurs  at a finer grain 
than that mentioned above and does account for some loss 
of parallel efficiency (see the beginning of Section 5). 

Parallel execution improvements 
In an attempt to increase parallelism and improve 
performance for circuits with  significant sequential 
behavior, a bounded-chaotic (BC) algorithm that favors GS 
relaxation was implemented. The relaxation is bounded, in 
that no subcircuit is permitted to be analyzed using input 
waveforms that are more than one iteration behind the 
current iteration. 

Of the subcircuits assigned to a PE, those that meet the 
GS ordering requirements are solved first. Whenever no 
subcircuits on a PE meet the requirements, one of the 
remaining unsolved subcircuits is selected for analysis 
using the following criteria: 

Select the subcircuit that would have been solved next if 
all  of the input data were available for this iteration. 
If two or more subcircuits have the same GS level, 
select from these the subcircuit with the highest 
percentage of input waveforms available for this 
iteration. 

After one subcircuit is solved out of order, all  waiting 
subcircuits on the PE are again checked to see if any can 
be solved in order, since new waveforms may have arrived 
from other nodes in the meantime. This process continues 
until  all subcircuits have been analyzed for the current WR 
iteration. This approach essentially maintains the GS 
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ordering, even though the strict data dependencies are 
compromised, since input waveforms may be from a 
combination of the current iteration and the previous one. 
Using the criteria listed above, the BC analysis is likely to 
be close to GS, and the analysis should still converge 
reasonably rapidly. 

subcircuit must have been updated by at least one WR 
iteration before the subcircuit is analyzed again. The 
implication of this restriction is that an analysis will  likely 
become more “GS-like” as iterations continue. However, 
because of the small number of WR iterations needed to 
converge, typically 4 to 15, much performance 
improvement of BC over GS can be realized. Other 
alternatives to avoid false convergence include adding one 
final iteration of true GS relaxation, but this was found to 
degrade performance significantly.  An additional GJ 
iteration would also work but was not implemented 
because of the need for a different waveform-storage 
structure. (Although  it has not yet been proved that any of 
the three methods do as good a job of avoiding false 
convergence as the conventional algorithm, we have full 
confidence that a proof  is possible.) 

With the BC approach, the workload is better balanced 
for small and irregular circuits, since no PE is  idle because 
of GS serialization, while  good use is made of available 
storage. (As stated earlier, a GJ implementation requires 
two copies of every waveform and cannot handle  large 
circuits within the memory constraints of  V256.) In 
addition, broken-chain segments can now be analyzed in 
parallel.  GS relaxation guarantees a certain amount of 
serialization among the PES when a chain is distributed. 
Now, those chain segments can be used to better balance 
the workload across PES. 

To help guard against false convergence, the inputs of a 

The issue of differences in accuracy among the 
algorithms has been left as an open research topic because 
of the numerical complexity of the problem. It is simply 
noted here that the solutions generated by the BC 
algorithm may  not be as accurate as those given by a full 
GS method. The differences in accuracy are caused by the 
use of the same convergence criterion by both algorithms. 
In general, the convergence criterion might not have to be 
as tight for GS relaxation as for GJ to achieve the same 
accuracy, since GS relaxation typically approaches the 
solution more quickly than GJ. Because of the randomness 
of the BC relaxation, the necessary convergence criterion 
is not known ahead of time, but it should fall somewhere 
between that needed for GS and that needed for GJ. 

5. Results 
This section presents the results of the WR-V256 project. 
The effect of circuit size on parallel performance using the 
original GS implementation is summarized in the first 
subsection. The next subsection expands the set of test 

cases from the previous subsection to include several 
circuits from  an IBM 16-megabit (Mb) dynamic random 
access memory (DRAM) design. These circuits represent 
“real-life’’ examples, characteristic of current circuit 
designs. (These experiments also used GS.) The final 
subsection presents additional results obtained with the BC 
relaxation improvement described at the end of Section 4. 

Parallel  efficiency 
A suite of ALU circuits, ranging in size from nearly 300 to 
more than 70 000 FETs, was used to investigate the impact 
of circuit size on parallel performance. The smallest of 
these circuits, a four-bit ALU, called ALU-4, served as 
the fundamental building block for all larger ALU circuits. 
Of these circuits, only ALU-4 was able to run on a single 
Victor PE because of memory limitations. 

Parallel performance is expressed in terms of PARallel 
Efficiency,  PAR-E,  which indicates how closely an 
application approaches ideal performance. As an 
application is distributed over many PES, some of the 
cycles of every PE are lost because of communication and 
load  imbalance.  Parallel  efficiency, the ideal run time 
divided by the actual run  time, measures this loss. The 
ideal parallel  run  time for each job is  defined as the run 
time of the job on one PE divided  by the number of PES 
actually used.  Parallel  efficiency is then 

IDEAL RUN TIME T, 1 
PAR E = ”_ - 

- TP n T,’ (3) 

where T, is the time to execute on the parallel machine, 
Ts is the time to execute on a uniprocessor, and n is the 
number of processors. 

Note that ideal run times for the larger simulations 
cannot be calculated in the straightforward way given 
above, since the simulations cannot be executed on a 
single PE. Ideal run times for large circuits were calculated 
by solving them on a more powerful “PE”  (a 3090s 
processor) and  using the 3090s processor run  time to 
estimate the run  time on a single  Victor PE. By  running 
ALU-4 on both a single Victor PE and a 3090s processor, 
we determined that a 3090s processor is approximately 
17 times faster than a single Victor PE for WR-V256 
analyzing the ALU-4 circuit. Ideal run times for Victor 
were calculated for the other ALU circuits by multiplying 
the 3090s  run times by 17 and then dividing by the number 
of PES. Note that this approach assumes that every circuit 
runs the same mix of instructions, with similar memory 
reference behavior. This assumption is reasonable for the 
ALU suite of circuits, since they are all  built  from the 
ALU-4 circuit. With this approach, values for PAR-E can 
be determined and compared. 

Figure 4 shows PAR-E, using 64 and 256 Victor PES, 
for different circuit sizes. Note that the circuit sizes are 71 5 
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Parallel efficiency (PAR-E) using 64 and 256 Victor PES for ALU 
circuits. 

Table 1 Test  case  circuit  characteristics and speedup  for 
Gauss-Seidel relaxation  on V256. 

Circuit Number Number Relative 
name of FETs of nodes speedup 

ALU-4* 282  157 4.76 
ALU-8 * 564  312 9.18 
ALU-16* 1128 622 17.34 
ALU-32* 2256  1242 26.35 
ALU-64* 4512  2482 48.96 

ALU-128* 9024 4738  79.05 
ECC 16080 5610  38.25 
ALU-256* 18048 9250  137.19 
QUAD2t 22304 7992 13.43 

DSRM~ 6085  2803 10.71 

LBLOCK~ 22534 5601 70.38 
 SPINE^ 30639 13526 14.11 

BLOK~' 46591 11749 188.7 

CENTXI 186364 46595 126.48 

ALU-512* 36096 18274 147.73 

ALU-1024* 72192 39682 181.9 
BLOK4t 93182 23352 175.1 

* ALU circuits 
+ DRAM circuits 

displayed in terms of average number of FETs per PE. 
These figures clearly illustrate that as more and more work 
is allocated to each PE, the overall parallel efficiency 
improves. Also, the PAR-E for a lightly loaded system is 
noticeably lower for 256 PES than for 64. This implies that 
the size of the system affects performance for lightly 
loaded PES; i.e., performance is lost because of the 

71 6 increased communication in the larger system. For the 

more heavily loaded cases, there is  no discerr lible 
difference in  PAR-E. For a fully loaded system, the loss of 
performance is most likely caused by load imbalance and 
communication overhead, e.g., the cycles needed to pack 
and unpack messages. Some work remains, in order to 
quantify the contributions of communication and  load 
imbalance to the loss of parallel efficiency. 

Performance  results 
After the completion of the first set of tests described 
above, the test suite of circuits was broadened to include 
several from  an IBM 16"b DRAM  design. These circuits, 
chosen at random from a 500 000-transistor design, are 
representative of present-day circuit designs.  Data for each 
circuit are given  in Table 1, along with speedup for GS 
relaxation on V256. 

It is important to understand how the speedup values 
were derived. Since none of the DRAM circuits could be 
run on a single Victor PE, it was not possible to calculate 
speedup for execution on n processors by the normal  rule 
(run time on one processor divided by run  time on n 
processors). However, all circuits could be run on a 3090s 
system. Therefore, the execution times of the circuits on 
the 3090s system were measured and  multiplied  by a 
factor of 17 (see the previous subsection) in order to 
approximate the times that the jobs would have taken on a 
single Victor PE. This factor is not precise and may vary 
because the instruction mix and memory reference 
behavior required for the circuit solutions may vary. Since 
the behaviors of the 3090s system and the Victor PE are 
functions of instruction mix and memory access pattern, 
the relative system performance may  differ  from circuit to 
circuit. The speedup presented in Table 1 and Figure 8, 
discussed later-(run  time  on 3090s system X 17) + run 
time  on  Victor-should be understood in  light  of the 
preceding discussion. 

The concept of parallel signatures was introduced to 
help us better understand these results and identify 
inherent topological  limits to parallelism  in a circuit. Like 
the concept of parallel profiles presented in  [31], parallel 
signatures attempt to graphically show how  much 
parallelism  is available in  an application. Since the 
definition of parallel signatures has been tailored to address 
the type of parallelism supported by WRY256 (i.e., that 
determined by its data), parallel signatures, as defined 
below, indicate the sustainable amount of parallelism 
determined by the interconnections among subcircuits, 
independent of code execution. Parallel profiles are more 
general in that they show all possible parallelism in a 
program  while  it is executing given data, on the basis of 
data-flow analysis. Figures 5 and 6 show parallel signatures 
for the ECC and ALU-1024 circuits, respectively, running 
on 256 processors. The x axes represent the indices 
associated with the GS circuit levels. For each level, the 
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y-axis shows the average number of subcircuits per PE 
assigned to that level. (The y-axis is dependent on number 
of PES because our hope is to eventually extend parallel 
signatures so that they may predict which type of 
relaxation to use. Normalizing to PE count gives a more 
uniform interpretation of the graph, as discussed in the 
following paragraph.) In deriving parallel signatures, rather 
than assigning a subcircuit to only one level, e.g., the 
earliest level in which it could run for GS relaxation, we 
divide each subcircuit among  all of the levels in which  it 
could be run without causing other subcircuits to wait. For 
example, subcircuit X in Figure 1 is assigned, one-half 
each, to levels 2 and 3,  and subcircuit Y is  similarly 
assigned to levels 1 and 2. That is, a fractional entry is 
made to every level in which a subcircuit could be run 
before its  outputs are needed. To determine the average 
number of subcircuits per level per PE, the sum for each 
level is  simply  divided  by the number of PES used to 
analyze the circuit. (For example, from Figure 5 one can 
see that, on average, approximately 0.1 subcircuit from 
each of levels 13 to 17 of the ECC circuit was assigned to 
each PE. Therefore, there are approximately 26 total 
subcircuits at each of levels 13 to 17  in the ECC circuit.) 
One drawback of the signature, in this form, is that it 
contains no information about the relative computational 
requirements of each subcircuit. 

efficiently when they have parallel signatures that display a 
number of subcircuits per Victor PE at each level 
somewhat greater than one. In such cases, it is  likely that 
there will be at least one subcircuit available in each PE to 
satisfy GS ordering constraints throughout the analysis. 
(Note that the cutoff value depends on the distribution of 
subcircuit analysis times. For the ideal case when all times 
are equal, the number of subcircuits per PE equals one.) 
Four of the circuits that show relatively poor parallel 
performance (ECC, QUAD2, SPINE, and DSRM) have 
parallel signatures that display significant sequential 
behavior. Of these, only the signature for the ECC circuit 
is shown. For example, in Figure 5, which shows the 
parallel signature for the ECC circuit using 256 PES, the 
number of subcircuits per PE available for analysis is less 
than one at all levels. GS serialization forces many of the 
processors to be idle,  which  could be a large percentage of 
the total analysis time. Therefore, it is not surprising that 
these circuits exhibit poor parallel performance when 
solved using a GS algorithm.  In contrast, Figure 6 shows 
the parallel signature for the ALU-1024 circuit. The 
parallel signature for ALU-1024 shows a high degree of 
parallelism for all of the GS levels. 

Parallel execution improvements 
Figure 7 compares the performance of WRY256 using a 
BC relaxation algorithm  with the performance using GS, 

In general, one would expect circuits to run more 
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circuit level index 

ECC-circuit  parallel  signature  on  256  Victor PES. 

C i t  level index 

1024-bit ALU parallel  signature  on  256  Victor PES. 

for five circuits. Application of the BC algorithm improves 
the parallel performance of WRY256 on  all of these 
circuits except ALU-1024, which exhibits good parallel 
execution with a pure GS algorithm and for which the BC 
algorithm performs essentially the same. The BC algorithm 
departs from GS only when a processor runs out of work, 
which rarely happens for the ALU-1024 circuit. The 
program does incur some minimal additional overhead 
when running the BC algorithm, but it  is  insignificant,  and 71 7 
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Bounded-chaotic  relaxation  performance  relative  to  Gauss-Seidel 
relaxation. 

C i i t  size (number of FETs) 

Speedup  for  all  circuits  investigated,  as  a  function of circuit size. 

independent of circuit size for those circuits maintaining 
GS relaxation. Circuit QUAD2 yields the most 
improvement, with  a  gain of nearly 3 X. 

Figure 8 shows the speedup of  WR-V256 for all circuits 
investigated. The four circuits with parallel signatures that 
suggest significant serial behavior have been solved using 
BC relaxation. The figure shows, in general, that as 

71 8 problem size increases, more parallelism can be exploited, 

and speedups of  120 to 190 have been achieved for large 
problems (over 35 000 FETs). 

with the BC  algorithm mirror those presented elsewhere 
for investigations with the GJ algorithm.  In particular, [19] 
has shown run-time improvements of a “full-window” GJ 
approach over a  similar GS approach in the range of 1 X to 
3~ when there are sufficient PES to solve one subcircuit 
per PE. (These improvements are calculated from results 
given  in Table VI of that reference.) Limiting each PE to 
one subcircuit provides a reasonable upper bound for GJ 
speed improvements. The maximum speedup is determined 
in part by the total number of PES that can be used, the 
distribution of computational requirements among the 
subcircuits, the number of GS levels, and the presence of 
feedback. The same range of improvement is seen for the 
BC  algorithm presented here, even though each PE 
processes multiple subcircuits. 

Our work therefore supports the conclusion that a  full 
implementation of GJ relaxation is not needed to achieve 
substantial parallel speedup over GS. The BC compromise 
incurs little additional overhead and offers similar 
performance results for many circuits. In addition, those 
circuits with  sufficient  parallelism can still be executed 
with the more efficient (numerically) GS relaxation. 

An interesting observation is that the improvements seen 

6. Concluding remarks 
The WR-V256 project has demonstrated that highly 
parallel machines can be used for circuit simulation, 
especially for large circuits. For the Victor V256 
processor, significant speedup for circuits containing 35 000 
to 190 000 transistors was observed. The speedup was 
possible, even when a more serial relaxation algorithm 
(GS) was used, because each processing element was given 
enough work to achieve high parallel efficiency. This work 
has extended previous research by investigating the effects 
of a  BC relaxation algorithm. The BC  algorithm reduces 
the cost of GS serialization, while retaining much of the 
GS convergence advantage, and has achieved parallel 
speedups over GS  similar to those obtained elsewhere with 
a  full  GJ implementation. The BC implementation requires 
less memory for waveform storage than GJ, thereby 
permitting larger circuits to be analyzed. The BC 
implementation departs from GS relaxation only when a 
processor would otherwise be idle. Therefore, when the 
BC  algorithm  is applied to large circuits with sufficient 
parallelism, the process may be equivalent to the more 
rapidly converging GS  algorithm. 

We hope to broaden this work to better account for the 
communication and load-balance components of the 
parallel-efficiency loss, to investigate ways to achieve even 
higher parallel efficiencies  through improved partitioning 
schemes for circuits with feedback, and to develop better 
static load-balancing strategies that consider both 
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interprocessor communication and  dynamic switching 
activity of each subcircuit. 
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