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Present-day circuit-analysis tools permit
designers to verify performance for circuits
consisting of up to 10 000 transistors.
However, current designs often exceed several
tens of thousands and even hundreds of
thousands of transistors. The gap between the
number of transistors that can be simulated
and the number per design inhibits proper
analysis prior to manufacturing, yet incomplete
analysis often overlooks design flaws and
forces redesign, resulting in increased costs
and longer development times. This gap is
expected to widen in the foreseeable future.
To help close the ever-increasing simulation/
design gap, we have developed an
experimental parallel circuit simulator,
WR_V256, for the Victor V256 distributed-
memory parallel processor. WR_V256 has been
used to analyze circuits from fewer than 300 to
more than 180 000 MOSFETs. WR_V256 was
originally based on a Gauss—Seidel relaxation

algorithm, which was later replaced with a
bounded-chaotic one in order to achieve good
parallel speedups for a wider variety of
circuits. At this time, speedups of up to 190
have been observed for large circuits.

1. Introduction

The 1980s have witnessed an explosion in the field of
circuit design. During that decade, the size and complexity
of integrated circuits have increased so rapidly that many
of the supporting tools that triggered this explosion have
fallen far behind. Such is the case with circuit simulation.
Most present-day circuit-analysis tools such as SPICE [1]
and ASTAP [2] are limited in their ability to achieve
reasonable turnaround times for large jobs and to cope
with the storage requirements for those jobs. Typically,
such conventional circuit-analysis tools are effective for
analyses of not more than a few thousand transistors.
Waveform relaxation, as implemented in the RELAX [3]
and TOGGLE (4] programs, has increased the size of
digital MOS circuits that can be analyzed efficiently to a
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few tens of thousands of FETs. However, even these tools
are not sufficient to keep pace with the rapidly expanding
needs of circuit designers. To adequately and accurately
analyze the complex VLSI chips being developed today,
circuit simulation must be capable of handling many tens
of thousands of FETs in one analysis and must analyze
such circuits rapidly.

Several approaches have been taken to analyze large
circuits on serial computers. One approach is to manually
partition large circuits into many smaller ones and analyze
each independently of the rest. Manual partitioning
techniques are time-consuming and often introduce errors
by imposing artificial interfaces that cause interactions
among partitions to be lost. Mixed-mode simulation,
another approach, yields faster analyses by simulating
some parts of a circuit less accurately than others. The
effectiveness of this technique is limited for high-
performance designs because of a potential loss of overall
accuracy. Additionally, user intervention is often required,
to specify critical paths of a circuit. This limits feasibility
for very large circuits. The use of vector processors to
speed up circuit simulation is another alternative.
However, efficient vectorization of circuit simulation is
constrained by inadequate vector lengths and by data
dependencies. Typical results [5] show limited speed
improvement.

Another alternative for analyzing large circuits is to take
advantage of parallel machines. One approach is to
parallelize a conventional circuit simulator such as SPICE
or ASTAP [6-13]. For small- to medium-sized problems of
about 1000 transistors, coefficient evaluation (‘“filling the
matrix’’) often consumes up to 80% of the total run time,
with most of the remaining time spent in matrix solution
[14]. Parallelizing coefficient evaluation has been
investigated by several authors, who report varying
degrees of success [6-10]. (Clearly, there is a limit to the
effectiveness of such an approach: If cocfficient evaluation
does indeed consume 80% of an analysis, and if it is
possible to sufficiently parallelize this work—i.e., the time
needed approaches zero—the overall speedup is limited to
a factor of 5.) As circuit size increases, the size of the
solution matrix also increases and, in contrast to the case
with coefficient evaluation, the time required for matrix
solution grows nonlinearly with matrix size. Therefore, for
large circuits, matrix solution dominates run time [15].
Possibilities for exploiting more parallelism include
parallelizing matrix solution, local truncation-error
estimation, and convergence testing, in addition to
coefficient evaluation. Typical speedups (serial run
time/parallel run time) from parallelizing all of these steps
for small to medium problems are in the range of 2 to 4
[9-13]. In addition, published results, such as those of [7],
show that very little improvement is gained with more than
about eight processors.

T. A. JOHNSON AND D. J. ZUKOWSKI

Since results from parallelizing standard SPICE/ASTAP
algorithms have been so disappointing, a totally different
simulation algorithm has been investigated in order to
increase the amount of parallelism. Waveform relaxation
[16, 17], a newer analysis technique with more inherent
parallelism, has received considerable attention over the o
last decade. While the application of waveform relaxation
is currently limited to digital MOS circuits, many large
designs fall into this category. Waveform relaxation is
capable of automatically partitioning large circuits into
many smaller, nearly independent subcircuits. With this
approach, many subcircuits may be simulated in parallel,
with voltage waveforms exchanged at their
interconnections, until global convergence is reached. The
waveform-relaxation-based algorithm has been at the o
center of much research on parallel circuit simulators
|14, 18-25]. A more detailed description of waveform-
relaxation algorithms can be found in Section 2.

Though many efforts have been made to parallelize
circuit simulation, most published work has been limited to
machines with a low degree of parallelism (e.g., 8-32
processing elements) and relatively small circuits (about
1000 MOSFETs). It is not clear how well results of such
studies can be generalized to larger circuits analyzed on
more highly parallel machines. The WR_V256 project
extends previous research to provide a better
understanding of the impact of larger circuits and more
highly parallel machines on achievable parallel
performance.

WR_V256, a waveform-relaxation-based parallel circuit
simulator, was developed for the Victor V256 machine, a
distributed-memory parallel processor, discussed briefly in o
Section 3 and described in more detail elsewhere in this
journal [26]. The Victor V256 machine was used because it
offered stable hardware with a high degree of parallelism.
TOGGLE, an existing serial waveform-relaxation program
described in Section 4, was adopted for this machine. A
goal of the WR_V256 project was to achieve good parallel
efficiency on existing Victor V256 hardware while changing
as little as possible in the TOGGLE program. However,
some new features were added to improve the behavior of
circuits exhibiting poor parallel efficiencies. In particular, a
bounded-chaotic relaxation, as described at the end of
Section 4, was implemented to achieve better parallel
execution for smaller or more irregular jobs.

This work has demonstrated that very simple techniques
can be used to port a serial waveform-relaxation-based
circuit simulator to a distributed-memory parallel
processor, and that they are capable of achieving high
parallel efficiency for many circuits. These simple
techniques are also discussed in Section 4. In addition, this
work shows that the size of circuits does affect parallel
efficiency results. For large circuits, a speedup of nearly
190 has been demonstrated for the Victor V256 machine.
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These conclusions are described more fully in Section 5,
which also introduces the concept of the parallel signature
of a circuit and how it can be used to explain some
observed performance results. Some closing remarks and
suggestions for future research are included in the final
section of the paper.

2. Waveform relaxation

® Methods
Conventional circuit simulation tools such as SPICE and
ASTAP apply Kirchoff’s current and voltage laws to the
topology and ‘“branch relations” of a circuit to derive a set
of nonlinear differential equations describing the circuit
behavior. These equations are then transformed into a set
of nonlinear algebraic equations through the use of an
integration method. In general, such integration methods
are of the implicit multistep type. Among the most
commonly used techniques are the backward-Euler,
trapezoidal-rule, and Gear’s methods. The resulting
algebraic equations are then linearized and solved over a
user-specified analysis interval (from the ““start time’” to
the ““stop time”’). Linearization is performed by
application of the iterative Newton-Raphson method. Once
linearized, the set of algebraic equations is usually solved
by LU decomposition with sparse-matrix techniques. At
the start of the circuit analysis, all of the network
equations are solved iteratively at the first time point until
the difference between two successive iterations is
sufficiently small—i.e., the solution converges. Once
convergence is achieved at the first time point, a time step
is calculated to determine the next time point. The size of
the time step is determined by the difficulty encountered in
solving the circuit at the current (i.e., the first) time point.
The iterative solution process is repeated at the next time
point and at all successive time points, until the stop time
is reached. With such a scheme, once the stop time is
reached, the circuit waveforms (the calculated voltages at
all time points for all voltage nodes) are known for the
entire analysis interval, and the simulation is complete.
Although this technique produces an accurate prediction
of circuit behavior, it suffers several performance problems
as the size of the analyzed circuits increases. First, since
all circuit equations are solved at the same time points,
and each time point is determined on the basis of the
difficulty in converging at the previous time point, the
entire system of equations is solved using time steps
determined by the most difficult set of equations. This
causes the entire system of equations to be solved
repeatedly even when only a small part of the circuit is
converging slowly. Second, as the size of circuits grows,
the time required to solve the set of equations grows
nonlinearly. The growth factor is generally acknowledged
to be proportional to N, where N is the order of the
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matrix of linear equations (N is generally proportional to
the number of voltage nodes contained in the circuit), and
a is between 1.4 and 1.6 [15]. So, not only are
conventional methods constrained to solve the circuit
equations repeatedly on the basis of the most slowly
converging part of the circuit, but also the time required to
solve those equations grows dramatically with circuit size.

Unlike conventional methods, waveform-relaxation
methods do not attempt to solve the complete set of
equations for a circuit simultaneously. Instead, large digital
MOS circuits are algorithmically partitioned into
interconnected subcircuits. These subcircuits are solved
iteratively. For ease of exposition, the Gauss-Jacobi (GJ)
relaxation algorithm is described here; the Gauss—Seidel
(GS) and bounded-chaotic (BC) algorithms used in this
project are described in later subsections. In the GJ
algorithm, the subcircuits are solved independently, with
the methods described above, first for a dc solution (to use
as the initial set of voltage-node waveforms) and then for
the transient solutions. The following discussion is limited
to the transient solution, since it dominates the analysis.
The first time the subcircuits are solved for the entire
analysis interval is called the first waveform-relaxation
(WR) iteration. The voltage-node waveforms calculated
during the first WR iteration are used as the inputs for the
next WR iteration, during which a new set of waveform
solutions is calculated. Additional WR iterations are
performed if the difference in voltage-node waveforms
between successive iterations is outside some specified
error bound. Otherwise convergence has been achieved.

Although there are several methods of defining subcircuit
partitions, two of the more popular ones are pointwise
partitioning and block partitioning. Pointwise partitioning
simply breaks the circuit at each node, generating
subcircuits with only one node. Block partitioning groups
one or more circuit nodes into a single subcircuit, on the
basis of the strength of coupling provided by the circuit
elements that connect them. Generally, block partitioning
leads to faster convergence, while pointwise partitioning
offers potential for greater parallelism. An investigation of
the effects of these partitioning approaches for parallel
machines is discussed in [22].

Waveform relaxation has several advantages over
conventional methods. First, when a large network is
partitioned into a set of subcircuits, the size of each
subcircuit that must be solved does not grow appreciably
with the size of the problem analyzed. Since the size of
each subcircuit remains approximately the same, the time
to solve each subcircuit matrix also remains the same.
Instead, the number of subcircuits grows roughly linearly
with the size of the circuit. This results in a nearly linear
growth in solution time with circuit size rather than the
nonlinear growth seen with conventional methods {16, 18].

Second, each of the subcircuits can be solved using a 709
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Levels

_ Figuret

Example of subcircuit leveling.

sequence of time steps appropriate for its own
convergence behavior. Those subcircuits that converge
rapidly are not constrained to use time steps determined
by others that converge more slowly. Third, and most
important for a parallel implementation, since each
subcircuit is solved relatively independently, the
subcircuits can be analyzed in parallel.

® Algorithms

Within the general class of solution methods referred to as
waveform relaxation, there exist several distinct relaxation
algorithms, two of which are described here. (The
description of the BC algorithm is reserved until the end of
Section 4.) The GJ algorithm, described earlier, can be
characterized by the following equation for X(z), the
vector of node voltages:

X*e) = X4, X@), u@), 1], 1)

where k is the waveform iteration number, u(¢) is a vector
of external inputs, and ¢ is time. To compute new values
for the solution vector, X(¢), the GJ algorithm uses the
results of the previous iteration.

In contrast, the GS algorithm uses a combination of results
from the current and previous iterations. The GS algorithm
forces an ordering of the analysis; hence some serialization
among subcircuits occurs. Each subcircuit is assigned a
“level” determined by its inputs. Subcircuits that depend
only on external inputs are defined to be level 1. Those that
depend only on outputs from level-1 subcircuits and external
inputs are defined as level 2, etc. The order of analysis is
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based on the circuit levels; i.e., all level-i subcircuits must be
analyzed before any level-i+1 subcircuit. Refer to Figure 1
for an example of subcircuit leveling.

When cycles caused by global feedback loops occur,
they are generally handled as follows. An estimate is made
of the delay through each loop, and subcircuits that form a
cycle having a delay shorter than some predefined
threshold are merged into a single subcircuit. Longer
feedback loops are broken at some point in the cycle.
Input waveforms to subcircuits driven by these broken
feedback paths are taken from the previous iteration. In
general, broken feedback loops result in more waveform
iterations to reach convergence.

The GS algorithm is shown in Equation (2):

X0 = fIX5 0, X0, X0, X,0), u@), 1. ¥

j<i j=zi j<i Jzi
After leveling and ordering, the set of subcircuits is solved
iteratively until a predetermined convergence criterion is
met by every node. GS relaxation has been shown to give
significant improvement in the rate of waveform
convergence [16], but it restricts the degree of parallelism.
At any level, only those subcircuits having all inputs from
earlier levels computed for the current iteration can be
analyzed in parallel. Analysis of other subcircuits awaiting
computation of their inputs must be delayed.

3. Victor V256 parallel processor

® Hardware description

The Victor V256 machine is a distributed-memory parallel
processor that consists of 256 processing elements (PEs).
Each of the PEs contains four megabytes (MB) of storage
[one gigabyte (GB) in all]. The PEs are configured in a
two-dimensional mesh (16 x 16) and can be grouped into
four arbitrary partitions of contiguous PEs. Victor also
includes 10 GB of mass storage, distributed among 16 disk
processors. Access to Victor V256 is provided by four
hosts (chosen from among DOS-based PC/AT® or PS/2°%,
or AIX®-based RISC System/6000™) available to users,
with one typically allocated to each partition. There is also
one “‘super’’ host that can be used to reset and initialize
the entire system. The parallel circuit simulator application
has been run with partition sizes of 64, 128, and 256 PEs.
Details of the Victor hardware are described in [26].

® WR_V256 software environment

While Victor now provides several languages and
environments, the WR_V256 project was initiated with one
of the earlier ones, namely Version 2.0 of the Parallel C
compiler from 3L Ltd. (3LC) [27]. The 3LC tool set
consists of a C compiler with library functions to handle
explicit parallel constructs, a linker, a configurer, and a
host server. The compiler provides support for multiple
threads, message-passing communication primitives, and
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semaphores. The host server, a program that runs on a
Victor host, loads each PE with an appropriate task and
handles all host I/O requests.

The message-based communication mechanism
implemented, in software, for the parallel circuit simulation
work provides all host-to-PE, PE-to-host, and PE-to-PE
communication. In addition, a restricted broadcast
mechanism has been added that allows the host to
efficiently broadcast a message to all Victor PEs.
PE-initiated broadcasts were not implemented.

To guarantee that all jobs that fit in storage finish, the
communication mechanism was designed to be deadlock-
free. Briefly, deadlock-free routing (how messages are sent
from source PE to destination PE) can be accomplished in
a store-and-forward network, such as that supported by
Victor, as long as no loops are possible in message transit
and all messages are eventually consumed at their
destinations [28], thus freeing any routing resources (e.g.,
buffers) that they hold. A noncyclic router was developed
that incorporates the idea of planes of travel (virtual
communication planes) and allocates buffers uniquely
among the planes. Only two planes are needed for a 2D
mesh, and each plane has two degrees of freedom for
travel; e.g., plane A allows travel north and east, and
plane B allows travel south and west. By connecting the
planes with a unidirectional bridge (i.e., buffer) from
plane A to plane B, all possible combinations of travel are
provided in a noncyclic fashion (Figure 2). The number of
router buffers required depends on the number of planes
and travel directions, hence remaining constant as the
mesh grows. A more extended description of this type of
router, and further generalizations, are covered in [29].

4. Implementation issues for a parallel circuit
simulator

The TOGGLE program is one example of a waveform-
relaxation-based circuit simulator. It uses a GS algorithm
to minimize analysis time for execution on serial machines.
Although one goal was to change as little as possible of the
serial TOGGLE program, some structural changes were
needed to port TOGGLE to a distributed-memory
machine. These changes include data initialization and
result gathering, waveform storage and updating, allocation
of work, and synchronization needed to maintain
consistency among the data structures of the PEs. This
section first considers general aspects of the serial
implementation of the TOGGLE program. It then
describes each of the changes, and concludes with a
discussion of one of the parallel-execution improvements
added to the basic TOGGLE structure.

® Serial TOGGLE
The serial TOGGLE program consists of two phases. The
first phase reads a circuit description, partitions the circuit
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Planes of travel that provide deadlock-free message routing.

into subcircuits using the block-partitioning approach, and
then orders these subcircuits as described in the subsection
on algorithms. The order of subcircuits within any level is
arbitrary, but all subcircuits assigned to one level must be
analyzed before any subcircuit of a subsequent level. A
subcircuit dispatch queue is built that observes the order
of the subcircuits.

The second phase of TOGGLE actually performs the
analysis. Subcircuits are analyzed in the order in which
they appear in the dispatch queue. An analysis is divided
into two parts. First, dc values are calculated for all
subcircuits. Then, the transient behavior of all subcircuits
is calculated using the dc solutions as the initial conditions.
Both the dc and the transient solutions may require
multiple WR iterations for the node voltages to converge.
After the first WR iteration, not all subcircuits need be
analyzed. If all of the internal nodes of a subcircuit have
converged and the inputs have not changed, the subcircuit
is considered ““latent’ and is not solved again unless its
inputs change. An analysis ends when the computed
results for all subcircuits change less than a predefined
amount from one WR iteration to the next.

Subcircuits influence one another’s analyses through
shared node voltages. Each subcircuit is responsible for
the solution of its internal nodes, but more than one
subcircuit may use any node waveform as input. For GS
relaxation, there are two types of input, which can be
characterized as follows. Inputs that are the outputs of 711
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subcircuits of previous levels must be calculated before
they can be used by another subcircuit. Inputs that model
back-coupling or feedback from nodes solved at later
levels are used before they are updated for the current WR
iteration. All node voltage variables are accessed by means
of pointers, i.e., explicit memory addresses, forcing every
node voltage waveform to have a unique address. These
unique addresses are available to every subcircuit. No
explicit update mechanism is needed, since all updates and
references are issued to the same variable via its pointer,
and the order of references is restricted by the dispatch
queue.

TOGGLE was heavily optimized to run on a serial
machine, and several of these optimizations caused
complications for a parallel implementation. A GS
relaxation method was used by TOGGLE, which is
inherently much more serial than a GJ method [19].
However, the GS approach was maintained for three
reasons. First, the same method had to be used in order to
verify the correctness of computed results and to make
performance comparisons with serial execution. Second,
the GJ method uses much more memory, because
waveforms for both the current and previous iteration must
be stored for each circuit node. This effectively doubles
the amount of memory required to store computed
waveforms, thus reducing the size of circuits that can be
analyzed. Third, GJ usually requires more WR iterations.
Therefore, while a GJ method may have a higher parallel
efficiency, the overall turnaround time for a job may be
greater because of the additional work needed to complete
an analysis.

® Parallel TOGGLE

Data initialization and result gathering

The TOGGLE program was explicitly divided into two
phases, with the circuit-analysis phase being separated
from the partitioner/scheduler. For typical waveform-
relaxation programs, the analysis phase dominates total
run time, and this dominance becomes even more
significant as circuit size increases [18]. Therefore, only
the actual analysis phase was parallelized. (The
partitioner/scheduler can be parallelized separately.) All
circuit partitioning and ordering are performed on an IBM
3090™ processor, on which TOGGLE was originally
installed.

Since the first part of the TOGGLE program is executed
on a 3090 system, the input files needed to describe
circuits are the same as for the serial implementation.
However, once partitioning and ordering are complete and
the allocation of subcircuits to PEs has been decided (see
below), a file is built describing the static mapping onto
V256. Circuit and device data from this file are then
divided among the Victor disk processors. Initialization of
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subcircuits on Victor PEs can then proceed in parallel,

using all 16 of the Victor disks. After an analysis is

complete, each of the PEs sends its solved waveforms to

the Victor disk connected to it. The files are then

concatenated and uploaded to the 3090 system, where the

solutions may be inspected using a special viewing o
program.

Waveform storage and update

Although V256 has 1 GB of primary storage available to an
application, that storage is evenly distributed among and
private to the 256 individual PEs. Waveforms are statically
assigned to PEs, so that each PE contains a copy of all
waveforms needed for analysis of the subcircuits allocated
to that PE. Hence, copies of the same waveform may be o
found on several PEs. To ensure that all copies are
identical, each waveform is assigned a unique name, and a
new software mechanism called the Waveform Repository
is used. While all waveforms resident on a PE are still
accessed by means of memory addresses, the Waveform
Repository (distributed on all PEs) collects all waveform
addresses on a PE into a table. This table provides a way
to translate global waveform names to local PE addresses.
Each PE maintains entries for only those waveforms it
references. ’

As a waveform is changed on one PE, this change must
be reflected in all external copies. Note that each
waveform is solved on only one PE; therefore, one PE
holds the master copy and all other copies must be
explicitly updated. There are two common methods used
to update copies of a variable in a distributed-memory
system. The spread method is controlled by the PE o
generating a waveform. As a waveform is modified,
messages with the new values of the waveform are sent by
the originating PE to all PEs that hold copies. The gather
method, on the other hand, is driven by the receiving PEs.
When a waveform is to be referenced (read), a message
requesting an updated version is sent to the PE holding the
master copy. That PE then either sends its current version,
which may be refused at the receiver if the waveform is
the same version as the current copy, or it waits until its
version is updated. The spread method is more efficient in
communication, because it does not require the request
messages that the gather method does. However, it is
more memory-intensive, since there must be enough
storage for all externally generated inputs on every PE.
The gather method need store inputs for only the
subcircuit currently being analyzed, though it likely would
fetch inputs for the next few subcircuits in order to
minimize waits. The waveform-relaxation algorithm
guarantees that all computed waveforms from one WR
iteration will be used during either the current WR
iteration or the next. Therefore, since all data transmitted
by the spread method are used and no unnecessary request
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messages are transmitted, the spread method was used for
this application.

Allocation of work

To achieve high parallel efficiency, special attention must
be paid to the distribution of work across PEs in the
network. Inefficient communication patterns can badly
degrade parallel performance. Communication of data itself
may take a significant amount of time. During this time,
depending on the relaxation algorithm, the receiving PE
may have to wait for updated inputs. In addition,
communication among PEs is performed by several
processes on each PE. These communication processes
compete with the analysis process for a share of available
PE cycles.

Nonuniform load balance also degrades parallel
performance. Good load balancing is especially difficult to
achieve for circuit simulation. In circuit-analysis problems,
the amount of time taken per subcircuit per WR iteration
depends on several factors. First, the size of a subcircuit
influences its analysis time. Second, the dynamic switching
activity of a subcircuit directly affects the amount of time
required to solve it. The subcircuits that are electrically
active are determined by the circuit topology and the
external input waveforms; those subcircuits that are active
require more matrix solutions per WR iteration than those
that are relatively inactive. Third, latent subcircuits may
not be analyzed at all for a particular WR iteration, though
they may be analyzed again in subsequent iterations.

At this stage of the project, subcircuits are statically
assigned to the PEs. While dynamic load balancing works
well for many applications, circuit simulation poses several
problems for load-balancing algorithms. In general, each
subcircuit may require many tens of thousands of bytes to
contain its data, which makes moving a subcircuit from PE
to PE very expensive once analysis has begun. In addition,
the behavior of a subcircuit may change from one WR
iteration to the next, so while one PE may be a bottleneck
for one iteration, it may not be for the next. There is no
way to determine ahead of time which PE will be heavily
loaded, and to redistribute subcircuits in advance. Finally,
a dynamic load balancer would incur substantial overhead,
both for bookkeeping and for increased communication.

Instead, a two-step process (described in the following
subsections) was implemented to statically assign
subcircuits to the PEs. Communication among PEs is
reduced by generating ““chains’’ of subcircuits. (This
approach is similar to the algorithm for partitioning by
element strings [30].) The workload is better balanced by
assigning multiple chains to each PE.

Chaining of subcircuits How waveform data are shared
among PEs is dictated by subcircuit interconnections and
by the assignment of subcircuits to PEs. It is desirable to

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

Levels

External

S\POOR
&
Q

Chaining of subcircuits.

assign subcircuits that share data to the same PE. The first
step of the assignment is the creation of sequential
““chains™ of subcircuits of the partitioned network, each
chain containing at most one subcircuit from each level.
Figure 3 illustrates the creation of a chain from the
example of Figure 1. A chain is built starting with a
subcircuit that generates one or more of the circuit outputs
(A in Figure 3). The next subcircuit assigned to the chain
is selected from the subcircuits that drive the first
subcircuit in the chain. If more than one such subcircuit is
found (B and C in Figure 3), the subcircuit at the level
closest to the last subcircuit assigned to the chain is
selected (B). If two or more subcircuits at the same level
provide input to the most recent subcircuit assigned to the
chain, the subcircuit with the greatest number of
connections to the chain is selected (subcircuit F is chosen
rather than G). At each level, the goal is to maximize
connectivity of the elements within a chain. The process is
repeated until either all subcircuits in the current path are
exhausted or a primary input is reached. Then a new
output node is selected and a new chain is started. When
all output nodes are exhausted, the process is begun again
by dropping back one level and starting new chains with
all unassigned subcircuits in that level. This is repeated
until all subcircuits are assigned to some chain. This
approach increases the likelihood that some signals solved
by one subcircuit will be used as input to another
subcircuit on the same PE, thereby helping to reduce
communication among PEs.
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Sometimes it is necessary to truncate a chain before
reaching a primary input. Since each Victor PE contains
only 4 MB of user-addressable storage, if the subcircuits in
a chain are large or the number of levels is large, it is
possible to create a chain whose storage requirements
cannot be satisfied by using just one Victor PE. In such
cases, chains are broken into two or more sequential
pieces and are assigned to separate PEs.

Grouping of subcircuit chains  Next, an attempt is made
to estimate the computational workload of each chain and
to place several chains of subcircuits on every PE in an
effort to better balance the load across PEs. As stated
previously, workload estimates are often inaccurate
because of the dynamic nature of circuit-analysis
problems. Although the switching activity and convergence
behavior of a subcircuit are unknown, its size (i.e., the
order of the solution matrix) and the number of FETSs
contained are known in advance. Generally, subcircuits are
small (approximately 10-20 nodes). Therefore, matrix
coefficient evaluation (the time of which grows linearly
with the number of elements) dominates run time, and the
number of FETs may be used to estimate the
computational requirement of a subcircuit.

Chains are assigned to PEs so that the total number of
FETs allocated to each is as uniform as possible. By
assigning more than one chain to a PE, not only can the
workload be better balanced, but there is also a greater
likelihood that a subcircuit of at least one chain will be
ready for analysis at all times. I.e., should the next
subcircuit of one chain need to wait for its inputs, the next
subcircuit of another chain on the same PE may already
have its inputs available and be ready for analysis. In
addition, some of the communication time may be
overlapped with another subcircuit analysis, because each
PE in effect multitasks chains in its group.

Distributing the dispatch queue

Since the use of a centralized dispatch queue would have
been likely to degrade performance, especially when the
data must be stored statically, the dispatch queue was
divided into independent queues on each PE. Thus, the
mechanism that enforced GS ordering among subcircuits
was eliminated. Since each Victor PE may hold subcircuits
from every level, and the data dependencies that were
enforced by the serial queue are lost, a data-driven
approach that ensures that a subcircuit is not analyzed
until all of its inputs have been updated was added. The
scheduler was modified to maintain two queues: one for
subcircuits whose inputs have been updated, and another
for those subcircuits awaiting updated inputs.

Control-flow synchronization
Some synchronization is needed to ensure that data from
one of the phases of execution do not overwrite those from
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another, since several copies of the node-voltage
waveforms are present in the Victor system. The three
phases of execution are the data structure initialization, the
dc solution, and the transient solution. Should one PE
finish its initialization, begin its dc solution, and send a
solved waveform to a slower PE, and should that slower ‘
PE initialize the waveform copy after the update has been
received, the solved waveform would be lost. A very
simple synchronization mechanism that restricts a PE from
entering a new phase before all PEs are finished with the
current phase was introduced. As a PE finishes its work in
a phase, it sends a ““done’” message to the host. When all
done messages have been received, a ““go” message is
broadcast. This synchronization causes some load
imbalance, but since it occurs at such a coarse grain (it L
occurs only twice per problem solution), it introduces very
little performance degradation.
In addition, synchronization points were added within
the dc and transient solutions to prevent any PE from
getting more than one WR iteration ahead of the rest.
While these synchronizations are not functionally
necessary, they simplify the bookkeeping needed for
waveform references and reduce waveform-storage o
requirements. This synchronization occurs at a finer grain
than that mentioned above and does account for some loss
of parallel efficiency (see the beginning of Section 5).

® Parallel execution improvements

In an attempt to increase parallelism and improve

performance for circuits with significant sequential

behavior, a bounded-chaotic (BC) algorithm that favors GS

relaxation was implemented. The relaxation is bounded, in o
that no subcircuit is permitted to be analyzed using input

waveforms that are more than one iteration behind the

current iteration.

Of the subcircuits assigned to a PE, those that meet the
GS ordering requirements are solved first. Whenever no
subcircuits on a PE meet the requirements, one of the
remaining unsolved subcircuits is selected for analysis
using the following criteria:

& Select the subcircuit that would have been solved next if
all of the input data were available for this iteration.

« If two or more subcircuits have the same GS level,
select from these the subcircuit with the highest
percentage of input waveforms available for this
iteration.

After one subcircuit is solved out of order, all waiting
subcircuits on the PE are again checked to see if any can
be solved in order, since new waveforms may have arrived
from other nodes in the meantime. This process continues
until all subcircuits have been analyzed for the current WR
iteration. This approach essentially maintains the GS
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ordering, even though the strict data dependencies are
compromised, since input waveforms may be from a
combination of the current iteration and the previous one.
Using the criteria listed above, the BC analysis is likely to
be close to GS, and the analysis should still converge
reasonably rapidly.

To help guard against false convergence, the inputs of a
subcircuit must have been updated by at least one WR
iteration before the subcircuit is analyzed again. The
implication of this restriction is that an analysis will likely
become more “GS-like’’ as iterations continue. However,
because of the small number of WR iterations needed to
converge, typically 4 to 15, much performance
improvement of BC over GS can be realized. Other
alternatives to avoid false convergence include adding one
final iteration of true GS relaxation, but this was found to
degrade performance significantly. An additional GJ
iteration would also work but was not implemented
because of the need for a different waveform-storage
structure. (Although it has not yet been proved that any of
the three methods do as good a job of avoiding false
convergence as the conventional algorithm, we have full
confidence that a proof is possible.)

With the BC approach, the workload is better balanced
for small and irregular circuits, since no PE is idle because
of GS serialization, while good use is made of available
storage. (As stated earlier, a GJ implementation requires
two copies of every waveform and cannot handle large
circuits within the memory constraints of V256.) In
addition, broken-chain segments can now be analyzed in
parallel. GS relaxation guarantees a certain amount of
serialization among the PEs when a chain is distributed.
Now, those chain segments can be used to better balance
the workload across PEs.

The issue of differences in accuracy among the
algorithms has been left as an open research topic because
of the numerical complexity of the problem. It is simply
noted here that the solutions generated by the BC
algorithm may not be as accurate as those given by a full
GS method. The differences in accuracy are caused by the
use of the same convergence criterion by both algorithms.
In general, the convergence criterion might not have to be
as tight for GS relaxation as for GJ to achieve the same
accuracy, since GS relaxation typically approaches the
solution more quickly than GJ. Because of the randomness
of the BC relaxation, the necessary convergence criterion
is not known ahead of time, but it should fall somewhere
between that needed for GS and that needed for GJ.

5. Results

This section presents the results of the WR_V256 project.
The effect of circuit size on parallel performance using the
original GS implementation is summarized in the first
subsection. The next subsection expands the set of test
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cases from the previous subsection to include several
circuits from an IBM 16-megabit (Mb) dynamic random
access memory (DRAM) design. These circuits represent
“real-life”” examples, characteristic of current circuit
designs. (These experiments also used GS.) The final
subsection presents additional results obtained with the BC
relaxation improvement described at the end of Section 4.

® Parallel efficiency

A suite of ALU circuits, ranging in size from nearly 300 to
more than 70 000 FETs, was used to investigate the impact
of circuit size on parallel performance. The smallest of
these circuits, a four-bit ALU, called ALU_4, served as
the fundamental building block for all larger ALU circuits.
Of these circuits, only ALU_4 was able to run on a single
Victor PE because of memory limitations.

Parallel performance is expressed in terms of PARallel
Efficiency, PAR_E, which indicates how closely an
application approaches ideal performance. As an
application is distributed over many PEs, some of the
cycles of every PE are lost because of communication and
load imbalance. Parallel efficiency, the ideal run time
divided by the actual run time, measures this loss. The
ideal parallel run time for each job is defined as the run
time of the job on one PE divided by the number of PEs
actually used. Parallel efficiency is then

IDEAL RUNTIME T, 1 X
T T’ @)

PARE =

where Tp is the time to execute on the parallel machine,
T, is the time to execute on a uniprocessor, and n is the
number of processors.

Note that ideal run times for the larger simulations
cannot be calculated in the straightforward way given
above, since the simulations cannot be executed on a
single PE. Ideal run times for large circuits were calculated
by solving them on a more powerful “PE”’ (a 3090S
processor) and using the 3090S processor run time to
estimate the run time on a single Victor PE. By running
ALU_4 on both a single Victor PE and a 3090S processor,
we determined that a 30908 processor is approximately
17 times faster than a single Victor PE for WR_V256
analyzing the ALU_4 circuit. Ideal run times for Victor
were calculated for the other ALU circuits by multiplying
the 3090S run times by 17 and then dividing by the number
of PEs. Note that this approach assumes that every circuit
runs the same mix of instructions, with similar memory
reference behavior. This assumption is reasonable for the
ALU suite of circuits, since they are all built from the
ALU_4 circuit. With this approach, values for PAR_E can
be determined and compared.

Figure 4 shows PAR_E, using 64 and 256 Victor PEs,

for different circuit sizes. Note that the circuit sizes are 715
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Table 1 Test case circuit characteristics and speedup for
Gauss-Seidel relaxation on V256.

Circuit Number Number Relative

name of FETs of nodes speedup
ALU_4* 282 157 4.76
ALU_8* 564 312 9.18
ALU_16* 1128 622 17.34
ALU_32* 2256 1242 26.35
ALU_64* 4512 2482 48.96
DSRM' 6085 2803 10.71
ALU_128* 9024 4738 79.05
Ecct 16080 5610 38.25
ALU_256* 18048 9250 137.19
QUAD2! 22304 7992 13.43
LBLOCK' 22534 5601 70.38
SPINE' 30639 13526 14.11
ALU_512* 36096 18274 147.73
BLOK2' 46591 11749 188.7
ALU_1024* 72192 39682 181.9
BLOK4' 93182 23352 175.1
CENTX' 186364 46595 126.48

* ALU circuits
 DRAM circuits

displayed in terms of average number of FETs per PE.
These figures clearly illustrate that as more and more work
is allocated to each PE, the overall parallel efficiency
improves. Also, the PAR_E for a lightly loaded system is

" noticeably lower for 256 PEs than for 64. This implies that

the size of the system affects performance for lightly
loaded PEs; i.e., performance is lost because of the

. increased communication in the larger system. For the
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more heavily loaded cases, there is no discernible
difference in PAR_E. For a fully loaded system, the loss of
performance is most likely caused by load imbalance and
communication overhead, e.g., the cycles needed to pack
and unpack messages. Some work remains, in order to
quantify the contributions of communication and load
imbalance to the loss of parallel efficiency.

® Performance results

After the completion of the first set of tests described
above, the test suite of circuits was broadened to include
several from an IBM 16-Mb DRAM design. These circuits,
chosen at random from a 500 000-transistor design, are
representative of present-day circuit designs. Data for each
circuit are given in Table 1, along with speedup for GS
relaxation on V256.

It is important to understand how the speedup values
were derived. Since none of the DRAM circuits could be
run on a single Victor PE, it was not possible to calculate
speedup for execution on n processors by the normal rule
(run time on one processor divided by run time on n
processors). However, all circuits could be run on a 30908
system. Therefore, the execution times of the circuits on
the 3090S system were measured and multiplied by a
factor of 17 (see the previous subsection) in order to
approximate the times that the jobs would have taken on a
single Victor PE. This factor is not precise and may vary
because the instruction mix and memory reference
behavior required for the circuit solutions may vary. Since
the behaviors of the 3090S system and the Victor PE are
functions of instruction mix and memory access pattern,
the relative system performance may differ from circuit to
circuit. The speedup presented in Table 1 and Figure 8,
discussed later—(run time on 3090S system X 17) + run
time on Victor—should be understood in light of the
preceding discussion.

The concept of parallel signatures was introduced to
help us better understand these results and identify
inherent topological limits to parallelism in a circuit. Like
the concept of parallel profiles presented in [31], parallel
signatures attempt to graphically show how much
parallelism is available in an application. Since the
definition of parallel signatures has been tailored to address
the type of parallelism supported by WR_V256 (i.e., that
determined by its data), parallel signatures, as defined
below, indicate the sustainable amount of parallelism
determined by the interconnections among subcircuits,
independent of code execution. Parallel profiles are more
general in that they show all possible parallelism in a
program while it is executing given data, on the basis of
data-flow analysis. Figures 5 and 6 show parallel signatures
for the ECC and ALU_1024 circuits, respectively, running
on 256 processors. The x axes represent the indices
associated with the GS circuit levels. For each level, the
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y-axis shows the average number of subcircuits per PE
assigned to that level. (The y-axis is dependent on number
of PEs because our hope is to eventually extend parallel
signatures so that they may predict which type of
retaxation to use. Normalizing to PE count gives a more
uniform interpretation of the graph, as discussed in the
following paragraph.) In deriving parallel signatures, rather
than assigning a subcircuit to only one level, e.g., the
earliest level in which it could run for GS relaxation, we
divide each subcircuit among all of the levels in which it
could be run without causing other subcircuits to wait. For
example, subcircuit X in Figure 1 is assigned, one-half
each, to levels 2 and 3, and subcircuit Y is similarly
assigned to levels 1 and 2. That is, a fractional entry is
made to every level in which a subcircuit could be run
before its outputs are needed. To determine the average
number of subcircuits per level per PE, the sum for each
level is simply divided by the number of PEs used to
analyze the circuit. (For example, from Figure 5 one can
see that, on average, approximately 0.1 subcircuit from
each of levels 13 to 17 of the ECC circuit was assigned to
each PE. Therefore, there are approximately 26 total
subcircuits at each of levels 13 to 17 in the ECC circuit.)
One drawback of the signature, in this form, is that it
contains no information about the relative computational
requirements of each subcircuit.

In general, one would expect circuits to run more
efficiently when they have parallel signatures that display a
number of subcircuits per Victor PE at each level
somewhat greater than one. In such cases, it is likely that
there will be at least one subcircuit available in each PE to
satisfy GS ordering constraints throughout the analysis.
(Note that the cutoff value depends on the distribution of
subcircuit analysis times. For the ideal case when all times
are equal, the number of subcircuits per PE equals one.)
Four of the circuits that show relatively poor parallel
performance (ECC, QUAD?2, SPINE, and DSRM) have
parallel signatures that display significant sequential
behavior. Of these, only the signature for the ECC circuit
is shown. For example, in Figure 5, which shows the
parallel signature for the ECC circuit using 256 PEs, the
number of subcircuits per PE available for analysis is less
than one at all levels. GS serialization forces many of the
processors to be idle, which could be a large percentage of
the total analysis time. Therefore, it is not surprising that
these circuits exhibit poor parallel performance when
solved using a GS algorithm. In contrast, Figure 6 shows
the parallel signature for the ALU_1024 circuit. The
parallel signature for ALU_1024 shows a high degree of
parallelism for all of the GS levels.

® Parallel execution improvements
Figure 7 compares the performance of WR_V256 using a
BC relaxation algorithm with the performance using GS,

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

0.60

0.50

0.40°

0.20

Number of subcircuits per PE
=)
W
=]

0.10

VEINERRERRRSRRTRNRSRLLNSENNN
BRI NIRRASNEARSAENONNIILES

FIFETINITIIssiis]
FALSETTNRURIELS

VALIRSENINEEI NS

]
»
]
]
>

LLLLLL
TIriiss
LiLL

=
N
N
N
N
N
L

0.00

1T

5 20 25 30 35 40

(=4
W
—
=t

Circuit level index

ECC-circuit parallel signature on 256 Victor PEs.

S
S
R

s,

Circuit level index

1024-bit ALU parallel signature on 256 Victor PEs.

for five circuits. Application of the BC algorithm improves
the parallel performance of WR_V256 on all of these
circuits except ALU_1024, which exhibits good parallel
execution with a pure GS algorithm and for which the BC
algorithm performs essentially the same. The BC algorithm
departs from GS only when a processor runs out of work,
which rarely happens for the ALU_1024 circuit. The
program does incur some minimal additional overhead
when running the BC algorithm, but it is insignificant, and
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Bounded-chaotic relaxation performance relative to Gauss—Seidel
relaxation.
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Speedup for all circuits investigated, as a function of circuit size.

independent of circuit size for those circuits maintaining
GS relaxation. Circuit QUAD? yields the most
improvement, with a gain of nearly 3X.

Figure 8 shows the speedup of WR_V256 for all circuits
investigated. The four circuits with parallel signatures that
suggest significant serial behavior have been solved using
BC relaxation. The figure shows, in general, that as
problem size increases, more parallelism can be exploited,
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and speedups of 120 to 190 have been achieved for large
problems (over 35 000 FETs).

An interesting observation is that the improvements seen
with the BC algorithm mirror those presented elsewhere
for investigations with the GJ algorithm. In particular, [19]
has shown run-time improvements of a ‘“full-window”” GJ
approach over a similar GS approach in the range of 1x to
3x when there are sufficient PEs to solve one subcircuit
per PE. (These improvements are calculated from results
given in Table VI of that reference.) Limiting each PE to
one subcircuit provides a reasonable upper bound for GJ
speed improvements. The maximum speedup is determined
in part by the total number of PEs that can be used, the
distribution of computational requirements among the
subcircuits, the number of GS levels, and the presence of
feedback. The same range of improvement is seen for the
BC algorithm presented here, even though each PE
processes multiple subcircuits.

Our work therefore supports the conclusion that a full
implementation of GJ relaxation is not needed to achieve
substantial parallel speedup over GS. The BC compromise
incurs little additional overhead and offers similar
performance results for many circuits. In addition, those
circuits with sufficient parallelism can still be executed
with the more efficient (numerically) GS relaxation.

6. Concluding remarks

The WR_V256 project has demonstrated that highly
parallel machines can be used for circuit simulation,
especially for large circuits. For the Victor V256
processor, significant speedup for circuits containing 35 000
to 190 000 transistors was observed. The speedup was
possible, even when a more serial relaxation algorithm
(GS) was used, because each processing element was given
enough work to achieve high parallel efficiency. This work
has extended previous research by investigating the effects
of a BC relaxation algorithm. The BC algorithm reduces
the cost of GS serialization, while retaining much of the
GS convergence advantage, and has achieved parallel
speedups over GS similar to those obtained elsewhere with
a full GJ implementation. The BC implementation requires
less memory for waveform storage than GJ, thereby
permitting larger circuits to be analyzed. The BC
implementation departs from GS relaxation only when a
processor would otherwise be idle. Therefore, when the
BC algorithm is applied to large circuits with sufficient
parallelism, the process may be equivalent to the more
rapidly converging GS algorithm.

We hope to broaden this work to better account for the
communication and load-balance components of the
parallel-efficiency loss, to investigate ways to achieve even
higher parallel efficiencies through improved partitioning
schemes for circuits with feedback, and to develop better
static load-balancing strategies that consider both
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interprocessor communication and dynamic switching
activity of each subcircuit.
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