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This paper describes how to vectorize and
parallelize the multiplication of a symmetric
banded matrix by a vector, on a vector
multiprocessor. The ideas presented involve
two packed-band-storage schemes, and
implementations for both schemes are studied.
The best among the uniprocessor solutions
proposed achieves a maximum of 37.1 Mflops
on an IBM Enterprise System/3090™ 400E with
Vector Facility (VF). For one of the schemes, a
parallel implementation on an IBM 3090™ VF
multiprocessor is presented, and time
measurements are discussed.

Introduction

Large-scale simulations in science and engineering often
require the solution of extremely large systems of linear
equations, usually with several tens of thousands of
unknowns. Fortunately, the vast majority of these systems
arise from the solution of differential equations using finite

difference or finite element methods [1], the matrices
representing these linear systems being extremely sparse,
with sometimes less than 1% of the entries nonzero. If the
matrices were fully occupied, none of the computers
currently available could satisfy the storage requirements
of realistic problems.

On the other hand, it is a nontrivial task to treat systems
of linear equations in true sparse format (storing nonzero
entries only). When direct solvers, such as Gaussian
elimination, are applied, the matrices usually suffer from
fill-in during the elimination process, and only a skilled
programmer can keep this fill-in small and provide an
efficient implementation of direct sparse solvers.

Vectorizing direct solvers is an even more difficult task.
Since there are only a few nonzero entries per row (and
column), vector lengths are intrinsically small. In addition,
these vectors have to be gathered and scattered using
indirect addressing. References [2] and [3] give an
overview of the difficulties met and of modern approaches
to solving them.
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For iterative solvers (such as the method of conjugate
gradients) the situation is somewhat better. Here, the most
time-consuming part is the multiplication of a sparse
matrix by a vector, for which some fairly efficient (with
respect to vectorization) schemes have been devised [4].
Nevertheless, these schemes require the matrices to be
stored in specific formats, a requirement not met by
most of the older finite difference and finite element
packages.

When a storage scheme should not waste space yet be
flexible enough to permit efficient implementations of both
direct and iterative solvers, band-storage schemes
(described in the following section) offer a good
compromise. They do not suffer from the above-mentioned
drawbacks, because

% Direct solvers for banded systems are easily
programmed, since there is no fill-in outside the band
[which means that Gaussian elimination can be
performed in place (without the need for additional
storage)]. Moreover, data can be accessed consecutively
and indirect addressing avoided.

% The storage requirements for banded matrices are
usually an order of magnitude smaller than those for a
full-storage mode (a fully occupied matrix of the same
dimensions). In addition, there are efficient algorithms
that reorder the equations and unknowns of linear
systems so as to minimize the band envelope of a sparse
matrix [5, 6]. Thus the storage overhead of band-storage
schemes, compared to true sparse-storage schemes, can
be kept relatively moderate.

Moreover, many commercial software packages (such as
the IBM Engineering and Scientific Subroutine Library
(ESSL) [7]) and public-domain software packages (such as
LINPACK [8]) offer good direct solvers for banded
systems.

For the reasons given above, many programs from finite
element applications employ band-storage schemes for
stiffness matrices and use solvers suitable for these.

The following investigation addresses the question of
how to multiply a symmetric banded matrix by a vector.
The motivation for doing so comes from the method of
conjugate gradients (CG), a widely used iterative solver for
symmetric positive definite linear systems. Matrix-vector
products are by far the most time-consuming kernel
of CG and may easily take 95% of the total CPU time
used.

The answer to this seemingly trivial problem is far from
obvious, as we see below. This paper is a case study of
how to efficiently implement a simple mathematical
algorithm on a shared-memory vector multiprocessor
computer such as the IBM ES/3090™ Vector Facility (VF).
Here, ““efficient” means that an implementation must
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% Take into account the symmetry of the problem.

» Effectively utilize the storage hierarchy of the computer,
especially to achieve a good reuse of data already
residing in the cache or in vector registers.

% Make efficient use of the vector instructions offered by
the hardware.

& Perform a coarse-grained decomposition into parallel
tasks with well-balanced task sizes.

Although timing results and speedups are reported, they
are not considered the main achievement of our work. The
reader should consider it to be a case study in which
difficulties were met at different stages of the
implementation and ideas developed to overcome them.

Data structures for symmetric banded matrices
A symmetric n X n matrix A = (a,) is called banded if its
nonzero entries are concentrated along some consecutive
diagonals (including the main diagonal):

——m—
a4y, - 4y,
alm
A=
an—m+1,n
an—m+1,n ' : ann

n

With the above notation, a4, = 0 whenever li =i =z m.
The number m is called the half-bandwidth of the banded
matrix A. In total, 2m — 1 diagonals of the matrix are
occupied, but some (or even many) of the entries inside
the band may be zero.

As mentioned before, there are algorithms that reorder
the rows and columns of a matrix so as to reduce the
bandwidth. Typically, in real-life applications, the half-
bandwidth m is small compared to the size n of the matrix.
Commonly, n is ten times m or even larger, so that storing
A in a full-storage mode would result in a tremendous
storage overhead.

In the case of banded matrices, there are two obvious
storage schemes for exploiting the specific structure, which
are discussed in the following sections.

& Puacked-band-storage scheme (PBS)

In this scheme, an array A4 of dimension (m, n), as
shown below, is defined to consist of diagonals of A. The
first row of AA is the main diagonal of A, and the jth off-
diagonal of A comprises the (j + 1)th row of A4. Because
of the symmetry of A, only the off-diagonals above (or
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below) the main diagonal are needed. Note that the lengths
of the off-diagonals decrease, so that trailing zeros must be
inserted to fill the rows of 4A4.

(6, " G pitnmet mitnmiz T Guing O
a, - ' an—m+1,u—m+2 an—m+2.ﬂ—m+3 an—l.u 0
. . . . 0 .
AA = .
alm : ) an'm+];| 0 0 0
Wy —

This scheme (and a slight variation thereof, storing the
main diagonal in the last row and the last off-diagonal in
the first row) is part of the LINPACK standard and is also
required by the routines DPBF and DPBS in the IBM
Engineering and Scientific Subroutine Library. It is
especially suited when direct solvers are used to solve the
linear system Ax = b with A banded; for this reason PBS
has become quite popular in application programs.

® Transposed packed-band-storage scheme (TPBS)

In this scheme, diagonals are stored column-wise from left
to right. As is indicated below, all columns but the first
must be filled with trailing zeros (note that the array AAT
in this scheme is just the transpose of the one from PBS,
hence the name):

[a, a, - - a,, |
Gy 4y ’ ’
Gy Gy
AAT = . . SRR S
. 0

n—1,n

ﬁnn 0 “ e 0 _J
IBM ES/3090 Vector Facility hardware and
software for high-performance computing

The IBM ES/3090 VF offers a set of registers and machine
instructions, beyond those provided by the scalar IBM
System/370™ architecture, which allows the user to

perform several types of operations in a vector mode. The
vector operations include

e L.OAD from storage to a vector register, and STORE
back to memory.

¢ ADD, SUBTRACT, MULTIPLY, DIVIDE, and
ACCUMULATE (b < a, + :** + a,).

o The compound instructions
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« MULTIPLY AND ACCUMULATE.

« MULTIPLY AND ADD.

« MULTIPLY AND SUBTRACT.

After a start-up time, these perform two floating-point

operations per machine cycle. Application code should
contain as many compound instructions as possible to

achieve optimal performance.

All vector instructions operate on sets of up to 128 or 256
(depending on the model) elements. The maximum
dimension of the set is known as its vector section.

An important feature of the arithmetic instructions is
that one of the operands need not be loaded into a vector
register prior to operation, but can be extracted from
storage immediately. For example, in the FORTRAN loop

DO!=1N
A(l) = A(l) + B(l) = C(l)
END DO

the vector C need not reside in a vector register prior to
the multiply-and-add operation. The target vector A,
however, must be loaded into a vector register before the
vector operation is executed. For a more comprehensive
overview of the vector architecture of the IBM 3090™,
consult Reference [9].

The VS FORTRAN Version 2 compiler for the IBM
3090 VF [10] exploits many of the features provided by the
hardware, thus permitting efficient coding of many
problems from science and engineering. Two key
techniques VS FORTRAN uses to accomplish this aim are

® Quter-loop vectorization. By vectorizing loops other than
the innermost one, the compiler can keep values that
remain unchanged over the entire inner loop in registers,
thus saving load and store operations.

e Scalar temporary. In a vectorizable loop, under certain
circumstances, the compiler is able to treat a FORTRAN
scalar variable as if it were a vector (scalar temporary).
In this case, no storage is allocated for the temporary,
and different values (corresponding to different loop
indices) assigned to the temporary are placed in a vector
register for later use. The reader will find examples of
scalar temporaries in the remainder of the text.

These possibilities help the programmer to control reuse of
vector registers explicitly, thus avoiding superfluous load
and store operations. A comprehensive overview of how
these features are effectively used is in Reference [11].

Another important aspect that must be considered in
high-performance computing is the cache mechanism of the
IBM 3090 [12]. The cache is a small but very fast buffer
located intermediately between central storage and CPU.
Its mechanism, explained in detail in [12], cannot be
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controlled directly by the programmer. As a general rule,
application code should be written in such a way that data
are loaded into the cache only once and then reused as
often as possible (data-locality). Reference [11)] discusses
how this can be accomplished.

The IBM 3090 is also available as a multiprocessor with
up to six independent CPUs. Each CPU contains its own
cache, and all or some of the CPUs may be equipped with
vector facilities.

The Parallel FORTRAN compiler [13] offers the user the
possibility of employing several processors concurrently.
However, it is the user’s responsibility to exploit this
potential. In this respect, four aspects deserve
consideration:

® Setting up parallel tasks is relatively costly.
Consequently, the tasks that are assigned to each
processor should consume considerably more time than
the cost of the administrative overhead (coarse-grain
parallelism).

o The tasks running concurrently should perform
approximately the same amount of work (load
balancing). Speedups obtained by running components
of a program concurrently on a number of processors
depend critically on the amount of parallelism inherent in
the program (Amdahl’s law). If significant portions of the
program must run serially, all but one processor will be
idle, thus causing a considerable degradation of the
overall performance.

® All processors share the central memory of the system,
and all private data are organized by the compiler. For a
user, this means that special care must be taken for the
integrity of data. Concurrent writes to a storage location
will result in unpredictable (and, almost surely, wrong)
results. Even if Parallel FORTRAN provides efficient
data-locking and task-synchronizing mechanisms [13],
write-access conflicts may nevertheless offset any
performance gain due to parallelism. If possible, different
tasks should not write to the same storage locations.

& Each CPU is equipped with its own cache. When tasks
operate on identical data, the data must be loaded into
the caches of all processors that perform these tasks. If
one of these processors updates a datum in its cache, the
corresponding data in the caches of the other processors
are flagged as invalid. This procedure is necessary to
ensure data integrity but prevents cache reuse by the
processors with the invalid entries. As a rule, for
parallelization, as much as possible different processors
should operate on disjoint data.

Vectorized implementations of matrix-vector
multiplication

It is clear that different storage schemes call for different
implementations. However, one key observation is
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essential to understanding the following discussion: During
the multiplication of a matrix by a vector, each entry of
the matrix is referenced exactly once. For a symmetric
banded matrix, this means that in storage schemes PBS
and TPBS, all entries, except those in the first row or the
first column, respectively, of the arrays A4 and AAT are
addressed exactly twice. If it is possible to load these data
only once into a vector register and use them twice for
arithmetic operations, a large amount of memory traffic
can be avoided.

® The WING scheme
In the PBS storage scheme, the columns of the array A4
contain half-rows (and half-columns) of the matrix A:

m —

L i
Among the entries marked by an asterisk, the half-row to
the right of g, contains (because of symmetry) the same
data as the half-column below 4. In the PBS scheme,
these data constitute a column of the array 4AA4. Thus, if
they are stored according to FORTRAN convention, they
reside consecutively in memory.

The idea of multiplying a matrix by a vector along half-
rows and half-columns is not completely new. Before the
use of vector computers became widespread, it was
extensively used for multiplying sparse matrices stored in
true sparse (symmetric) storage mode by vectors. For
example, an early version of ITPACK [14] employed this
scheme. In that kind of application, however, the WING
scheme demonstrates poor performance [4].

The following piece of code performs the multiplication
of a symmetric banded matrix A, stored according to the
PBS scheme, by a vector x to produce a vector y:

VECT +-—- DO 18 K=1N
| Y(K) = AA(LK) * X(K)

RECR +-—-- DO 20 I=1N

| T=0.D0
VECT |+-- DO 30 J=2M
[ T =T 4+ AAWLD * X(+d-1)
| Y(i+d-1) = Y(I+J-1) + AAWLD = X()
| T Yy =Y+ T
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Here, N denotes n, the size of the matrix (and x and y),
and M denotes m, its half-bandwidth. Inserted in the code
is the vector report listing provided by the VS FORTRAN
compiler, which marks the loops that have been chosen for
vectorization (VECT) as well as the one that carries data
dependencies preventing vectorization (RECR). In these
listings, CONTINUE statements closing a loop are
suppressed. Note that the code is simplified and does not
take into account the fact that the lengths of the last m — 1
half-rows (and half-columns) are less than . In loop 10, Y
is initialized as the product of the main diagonal of matrix
A and vector x. The first statement of loop 30 accumulates
in T the product of the Ith half-row of A and the
corresponding part of x. The second statement multiplies
the Ith half-column of A by the scalar X(J) and
accumulates the result into the corresponding part of the
result vector y. The temporary T is added to Y(I) only
when the J-loop has terminated.

The code shown above exhibits several important
features:

1. The J-loop consists of vector compound instructions:
one vector multiply-and-accumulate and one vector
multiply-and-add.

2. Data in this loop are accessed consecutively.

3. Columns of A4 must be loaded into the cache exactly
once. Once an iteration of the /-loop is finished, the Ith
column is never touched again.

For banded matrices with sufficiently large bandwidth
m, the work done in this routine is dominated by the off-
diagonals (i.e., the work done in the J-loop), while the
multiplication of the main diagonal by x and the load and
store operations at the beginning and at the end of the
I-loop are negligible. Furthermore, there is little scalar
work (address arithmetic) compared to the vector
operations contained in the J-loop. For these two reasons,
we consider the number of vector operations (including
loads and stores) per pair of off-diagonals as a sensitive
gauge of the efficiency of a piece of code.

In the proposed code for the PBS storage scheme, the
following five vector operations are necessary for each
vector section of the J-loop:

1. Load one section of A4(J,I) into a vector register.

2. Perform a multiply-and-accumulate with the
corresponding section of X(I+J—1) taken from storage
immediately. Place the result into the scalar variable T.

3. Load the corresponding section of Y(/+J~1) into a
vector register.

4. Perform a multiply-and-add with (the scalar) X(I) taken
from storage and AA(J,]) already residing in a vector
register.
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5. Store the updated section of Y(I+J—1) back to
memory.

Note that apart from the multiply-and-accumulate, another
operation not mentioned above (sum-partial-sums) is
needed to complete the first statement of the J-loop.
However, this operation is extremely cheap compared to
the multiply-and-accumulate, and in light of the above
discussion it is reasonable to ignore it.

® The DIAG scheme
In the TPBS storage scheme, the columns of 44T contain
diagonals of the banded matrix A, which leads to
vectorizing along diagonals of A. For each diagonal, a
section of length equal to the vector section size is
multiplied by the corresponding section of the vector x,
and the result is added to the corresponding section of the
vector y. Due to the symmetry of A, the entries of a
diagonal can be kept in a vector register and used twice.
However, the two results corresponding to a diagonal and
its symmetric counterpart in A do not contribute to the
same entries of the vector y.

The following code performs the same matrix-vector
product y = Ax:

VECT +--- DO 10 K=1,N
| Y(K) = AATK1) * X(K)

RECR +--— DO 20 J=2M
VECT |+-- DO 30 I=1,N
|| Y
N Y(1+J-1)

H—

Y({l) + AAT(LJ) * X{I+J-1)
Y(+J—-1) + AAT(LJ) * X(I)

As in the WING scheme, N denotes the size of the matrix
and M its half-bandwidth. This code, too, is simplified and
ignores the fact that the lengths of the diagonals in the
TPBS scheme decrease (thus, the I-loop becomes shorter
with increasing J).

Multiplying a matrix by a vector along diagonals is also
a well-known idea. An early reference is [15], and a similar
idea has been implemented in some routines of the ESSL
[7, 16].

In this scheme the following five vector operations are
required to process a pair of off-diagonals:

1. Load one section of A4T(I,J) into a vector register.

2. Perform a multiply-and-add with X(J+J—1) loaded
from storage. Place the result in the vector register that
already contains Y{J).

3. Load a section of Y(I+J—1) into a vector register.

4. Perform a multiply-and-add with X () taken from
storage and AAT(I,J) already residing in a vector
register.

5. Store Y(I+J-1) back to memory. 701
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NP. = NPROCS()
NWORK = N/NP
PARALLEL LOOP 48 K=1,NPROCS
DO 20 I=(K—1)*NWORK+1, K*NWORK

T = 0.D8
DO 30 J=2.M
T =~
T +-AA(I, 1) > X(1+d=1)

YY(I+d~1,K) =
YY(1+J-1,K) + AA(J,I) * X(I)
38 CONTINUE
(LK) = YY(I,K) + T
20 CONTINUE
48 CONTINUE
D0 58 I=1,N
Y(I) = AA(1,1) * X(I)
DO 68 K=1,NP
Y(I) = ¥(I) + YY(1,K)
66  CONTINUE
56 CONTINUE

| Figure1

Synchronized parallel implementation for the WING scheme.

The code presented above is very similar to that
implementing the WING scheme, if the roles of the I- and
J-loops are interchanged. However, there is the important
difference that the I-loop contains two vector multiply-and-
adds, while in the WING scheme the J-loop contains a
vector multiply-and-accumulate operation.

® Parallelization of WING and DIAG

Since WING and DIAG vectorize the inner loop, the
canonical way to parallelize is to assign a number of
iterations of the outer loop to each processor. If we denote
by NPROCS the number of processors that are to be
employed and by NWORK the number of iterations per
task (NWORK = N/NPROCS), a Parallel FORTRAN
implementation would look as follows [13]:

PARALLEL LOOP 40 K=1,NPROCS
DO 20 I=(K-1)*NWORK+1, KsNWORK

Inner loop
20  CONTINUE
40 CONTINUE

Parallel FORTRAN permits one to specify the number of
paralle] tasks at run-time, and the routine NPROCS from
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the FORTRAN library passes this information to the
FORTRAN program. For this reason, the above code
provides a general-purpose parallel implementation for
both schemes, WING and DIAG.

However, both schemes suffer from one important
drawback. As mentioned before, a serious performance
degradation may occur if write accesses by different tasks
to the same storage location have to be synchronized in
order to ensure data integrity. An analysis of the code for
the WING and DIAG schemes reveals that in the above
parallel implementation, different tasks will write to
overlapping parts of the vector y.

Since the parts of code that must be synchronized are
the time-intensive parts of the whole application, it can be
expected that synchronization will almost surely result in
significant idle time. One solution is to provide copies of y
for each task and sum up their contributions in a serial
mode. The code in Figure 1 shows a rough implementation
of this idea for the WING scheme.

We did not carry out a parallel implementation of the
WING and DIAG schemes because time measurement for
parallel jobs is a very complex task on multi-user shared-
memory machines, and the STRIP scheme, which is
described in the following section, proved superior in
uniprocessor implementations.

® An improvement: The STRIP scheme

The DIAG and WING schemes exploit the symmetry of
the matrix A by loading matrix data into the vector
registers only once and using them twice. However, a
price must be paid for this. In both schemes, in the inner
loop, one load and one store operation must be performed
on each section of the result vector y.

For the TPBS storage scheme, there is one
computational scheme that overcomes this drawback, at
the cost of neglecting the symmetry of the problem. Matrix
A is divided into several horizontal strips of height equal to
the vector section size. Figure 2 shows such a strip for a
half-bandwidth of 3 and a vector section size of 4 (for this
example). The asterisks indicate the five diagonal bands
inside the strip.

In the STRIP scheme, the sections of the diagonals are
multiplied by corresponding sections of the vector x, and
the results are accumulated in a section of the vector y.
The particular sectioning of the STRIP scheme permits the
accumulation to be performed in a vector register as
shown in the following code:

VECT +-—— DO 10 I=1,N
| T = AAT(,1) * X()

RECR |+-— DO 20 J=2M
| | T =T + AAT(,J) * X(1+J-1)
| | T=T+AAT(+J-1,J) * X(I-J+1)
| Y =T
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Note that now the I-loop (outer loop) is vectorized. The
multiplication of the diagonals by their corresponding
sections of the vector x is performed in the J-loop, the
results being accumulated in the scalar temporary T. In the
machine code generated by the compiler, T is replaced by
a vector register. Its contents are stored in y only after the
J-loop has terminated. Also, note that the inner loop now
carries a recurrence (RECR) detected by the compiler and
cannot be vectorized.

This piece of code requires the following vector
operations per pair of off-diagonals (not the main diagonal):

1. Load the right off-diagonal AAT(I,J) into a vector
register.

2. Perform a multiply-and-add with X(7/+J—1) taken
immediately from storage.

3. Load the left off-diagonal AAT(I+J~-1,J) into a vector
register.

4. Perform a multiply-and-add with X(/-J+1) taken
immediately from storage.

The price that must be paid for the savings in vector
operations is the violation of the principle of data locality.
In the STRIP scheme, the symmetry of the matrix is not
exploited, as can be seen from the code segment. Different
sections of the array AAT are processed in the two
statements of the J-loop, and all data of the array must be
loaded into a vector register twice. The code presented
above has some degree of data locality, insofar as left and
right diagonals are processed alternately. For most
iterations of the J-loop, the two sections have some data in
common, and these must be loaded into the cache only
once.

Since loss of data locality may completely destroy any
performance gain due to improved vectorization, only
comparative time measurements can determine which
scheme is preferable.

Note that the code presented above does not work
correctly for the prolog (the first m — 1 rows of A) and
the epilog (the last m — 1 rows of A). There, the lengths
of the off-diagonals on the left or the right, respectively,
depend upon the row, a fact that prevents the FORTRAN
compiler from vectorizing the outer loop. Thus, we wrote
the program in IBM System/370 assembly language, so as
to be able to keep the accumulated results for each vector
section in the vector register denoted by T and
simultaneously change the lengths of the vector operations,
according to the diagonal being processed. This fact,
however, is not the main reason for the performance
differences found during the timing measurements.

Parallelization of STRIP
Splitting the STRIP scheme among several processors is
very easy. Each task operates on its own strip of A and
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computes a group of consecutive entries of the result y.
This ensures that no write-access conflicts occur, and the
user need not be concerned about data integrity.

The price paid for easy parallelization is the violation of
the ““different data to different caches” principle. Different
strips of A share a considerable overlap of data in the
array AAT. As a consequence, these data must be loaded
into the caches of at least two processors, thus increasing
the total number of machine operations executed. Only
time measurements can show whether the performance
degradation due to this effect is pronounced or (we hope)
not.

Load balancing

The m rows of the prolog (and the epilog) require fewer
floating-point operations than m rows of the body of A,
and the corresponding pieces of code are thus faster.
However, since prolog and epilog perform more
complicated operations, this effect is much less
pronounced than expected. For this reason, we decided to
employ the simplest task-distribution algorithm, namely to
distribute an equal number of rows to each processor. If
the matrix size n is not exactly divisible by the number of
processors, half of the remaining rows are given to the
processor working on the prolog and the other half to that
working on the epilog.

Comparative measurements

Figures 3 and 4, shown later, compare the performance of
the three schemes WING, DIAG, and STRIP, run on a
uniprocessor. Note that we did not measure the symbolic
codes given in the text above; rather, the true codes for
the multiplication of a symmetric banded matrix by a
vector were compared. Recall that WING and DIAG were
programmed in FORTRAN, while STRIP was coded in
assembly language.
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Tiine (ms)

Multiplication times for constant matrix size (n = 2500) as a func-
tion of half-bandwidth.

In multi-user environments, CPU-time measurements are
not completely reliable but provide results that are slightly
greater than the true values. This effect, while negligible
for long runs, may cause a relatively considerable loss of
accuracy for jobs that run only for a few milliseconds. For
this reason, all measurements were repeated five times,
and the minimum of the five results was used. This
procedure gives more reliable results than just averaging
over the number of runs.

The measurements covered a parameter range of matrix
size n from 600 to 2500 in steps of 100 and half-bandwidth
m from 10 to 100 in steps of 10 and from 100 to 300 in
steps of 25. Results were obtained on an ES/3090 400E
running under the MVS/ESA™ operating system. The
machine has a vector section size of 128 and a cache size
of 64 kilobytes. Each program was compiled and run using
the VS FORTRAN Version 2 Release 4 compiler [10].

Figures 3 and 4 show multiplication times for the three
schemes. Figure 3 gives results for constant matrix size
n = 2500 with variable half-bandwidth m, while Figure 4
shows results for constant half-bandwidth m = 300 and
variable matrix size n.

The measurements show that STRIP performs better
than the two other schemes over the whole parameter
range. The speedup of STRIP compared to DIAG ranges
from 1.06 (for n = 900 and m = 275) to 1.38 (for n =
2500 and m = 10). The speedup of STRIP compared to
WING ranges from 1.03 (for n = 600 and m = 300) to
5.50 (for n = 2200 and m = 10). STRIP performed at a
maximum speed of 37.1 Mflops (for n = 2000 and m =
20), while WING achieved 28.4 Mflops (for n = 2200 and
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m = 300) and DIAG achieved 29.0 Mflops (for n = 2300
and m = 60).

For small half-bandwidths, the performance of WING is
extremely poor. This is because the vector lengths are
very short, and in essence the vector overhead is what is
being measured in this case. This does not hold for the
DIAG scheme, which vectorizes along diagonals
independently of the band size. WING is slightly better
than DIAG only for large half-bandwidths and small matrix
sizes (Figure 4).

In Figure 3, the measurements for the WING scheme
clearly show performance degradation when the half-
bandwidth m passes multiples of the vector section size
(loop sectioning). The same effect, although not as
pronounced, can be seen in Figure 4 in the measurements
for the DIAG scheme.

The figures demonstrate that multiplying a symmetric
banded matrix by a vector is better accomplished using the
TPBS storage scheme and the STRIP method, over a wide
range of matrix sizes and bandwidths. In some cases,
however, a user may be forced to employ PBS, either
because other CPU-intensive parts rely heavily on this
scheme, or the application consists of old “‘dusty-deck”
code that cannot be changed in a reasonable amount of
time. Also, in this case the code for the WING scheme
exhibits reasonable performance, which is not much worse
than for the other schemes.

Time measurements for the parallel runs

The following timing results were measured on an IBM
ES/3090 600J running under VM/XA™. Note that they are
not comparable to the ones in Figures 3 and 4 (running on
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an IBM ES/3090 400E), because the J models have shorter
cycle times and advanced design features. The
measurements were not performed on a completely
dedicated machine. (VM/XA offers the possibility of
dedicating specific processors to a single user. This

does not mean, however, that the operating system allows
the user to exploit all dedicated processors all of the
time. )

Figure 5 shows the wall-clock times necessary to
execute the parallelized code for STRIP on one, two,
three, and four processors, for a typical set of parameters
(n = 3920 and m = 290). The results clearly indicate that
the efficiency of the code stays far below ideal
expectations. With four processors, the execution time is
not much smaller than with one processor alone, and the
best speedup, obtained with two processors, is less than
1.25.

Familiarity with the task concept of Parallel FORTRAN
[13] helps one understand this behavior. In Parallel
FORTRAN, a task has to be set up using the ORIGINATE
statement before it can be assigned work using either the
DISPATCH or the SCHEDULE statement. This provides
the user with high flexibility for data sharing between
different tasks or data copying from one task to another.
However, the time to execute the necessary ORIGINATE
statements is usually relatively long, growing with the size
of the load module and the number of processors
employed. This time, while negligible for long-running
production code, causes considerable overhead for small
parallel jobs that run for only a few tenths of a second.
Separate measurements of the times necessary to execute
the ORIGINATE statements indicate that it is mainly this
overhead that causes the deviation from the ideal of the
results shown in Figure 5.

There are many application programs that do not require
the full flexibility of the SCHEDULE statement. For this
reason the VS FORTRAN Version 2 Release 5 compiler
[17] contains a language construct (PARALLEL CALL)
that distributes the execution without requiring an
ORIGINATE. With this compiler, a user can expect to
obtain much better speedups for our application. A rough
estimate, based on the results from Figure 5 and the
timings of the ORIGINATE statements, gave about 160
Mflops on a four-processor IBM 3090 VF model J.

Conclusions

Any implementation of a matrix-vector product for a
symmetric banded matrix must take into account the
specific data structure used. Since the matrices arising
from real-life applications are usually extremely large, they
must be stored in some packed format in order to fit into
memory. Two of these are described above: the packed-
band-storage scheme (PBS) and the transposed packed-
band-storage scheme (TPBS). These schemes are not
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restricted to symmetric matrices, but have obvious
extensions for nonsymmetric ones. They exploit the band
structure of banded matrices almost optimally, insofar as
only a small number of zeros must be filled in.

Both storage schemes are suitable for developing
efficient implementations of the matrix-vector product on a
vector computer, but TPBS appears to be better for the
following reasons:

¢ Both multiplication implementations presented for TPBS
produce better timing results than the one presented for
PBS, over most of the parameter range considered.

¢ Since the multiplication schemes for TPBS use diagonals
of the matrix as vectors, their performance is not
sensitive to the number of off-diagonals, as is the case
for the WING scheme presented for the PBS storage
mode.

When parallelization is considered, TPBS is even more
favorable. There is one implementation (STRIP) that
provides a simple, efficient implementation on a shared-
memory multiprocessor. It requires no synchronization,
and if the load balancing is well-chosen, considerable
concurrency may be achieved.

One obvious disadvantage of the STRIP scheme is that
it does not exploit the symmetry of the matrix.
Nevertheless, in the uniprocessor version, it performs
better than the other two schemes presented. This
advantage will be even more pronounced if the schemes

are extended to treat nonsymmetric matrices. 705
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In the Introduction, we mentioned that the PBS storage
scheme is especially suited for direct solvers. This paper
indicates that for iterative solvers, TPBS is to be
preferred. Unfortunately, there is at present no universal
storage scheme for banded matrices that supports both
types of solvers. For finite-element packages, for example,
this means that the solver for the linear system must be
chosen at the time the assembly of the stiffness matrix is
designed.

Enterprise System/3090, ES/3090, System/370, 3090,
MVS/ESA, and VM/XA are trademarks of International
Business Machines Corporation.
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