
Multiplication 
of a symmetric 
banded  matrix 
by a vector 
on a vector 
multiprocessor 
computer 

by R. Reuter 
U. Scharffenberger 
J. Schule 

This paper  describes  how  to  vectorize  and 
parallelize  the  multiplication of a symmetric 
banded  matrix  by  a  vector,  on  a  vector 
multiprocessor.  The  ideas  presented  involve 
two packed-band-storage  schemes,  and 
implementations  for  both  schemes  are  studied. 
The  best  among  the  uniprocessor  solutions 
proposed  achieves a maximum  of  37.1  Mflops 
on  an  IBM  Enterprise  System/3090" 400E with 
Vector  Facility  (VF).  For  one  of  the  schemes,  a 
parallel  implementation  on  an  IBM  3090""  VF 
multiprocessor  is  presented,  and  time 
measurements  are  discussed. 

Introduction 
Large-scale simulations in science and  engineering often 
require the solution of extremely large systems of linear 
equations, usually with several tens of thousands of 
unknowns. Fortunately, the vast majority of these systems 
arise from the solution of differential equations using  finite 

difference or finite element methods [l], the matrices 
representing these linear systems being extremely sparse, 
with sometimes less than 1% of the entries nonzero. If the 
matrices were fully occupied, none of the computers 
currently available could satisfy the storage requirements 
of realistic problems. 

of linear equations in true sparse format (storing nonzero 
entries only). When direct solvers, such as Gaussian 
elimination, are applied, the matrices usually  suffer  from 
fill-in  during the elimination process, and only a skilled 
programmer can keep this fill-in  small  and provide an 
efficient implementation of direct sparse solvers. 

Vectorizing direct solvers is an even more difficult task. 
Since there are only a few nonzero entries per row (and 
column), vector lengths are intrinsically small.  In addition, 
these vectors have to be gathered and scattered using 
indirect addressing. References [2] and [3] give an 
overview of the difficulties  met  and of modern approaches 
to solving them. 

On the other hand, it is a nontrivial task to treat systems 
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For iterative solvers (such as the method of conjugate 
gradients) the situation is somewhat better. Here, the most 
time-consuming part is the multiplication of a sparse 
matrix by a vector, for which some fairly  efficient  (with 
respect to vectorization) schemes have been devised [4]. 
Nevertheless, these schemes require the matrices to be 
stored in specific formats, a requirement not  met by 
most of the older finite difference and  finite element 
packages. 

When a storage scheme should not waste space yet be 
flexible  enough to permit  efficient implementations of both 
direct and iterative solvers, band-storage schemes 
(described in the following section) offer a good 
compromise. They do not  suffer from the above-mentioned 
drawbacks, because 

Direct solvers for banded systems are easily 
programmed, since there is  no  fill-in outside the band 
[which means that Gaussian elimination can be 
performed in place (without the need for additional 
storage)]. Moreover, data can be accessed consecutively 
and indirect addressing avoided. 

usually an order of magnitude smaller than those for a 
full-storage mode (a fully occupied matrix of the same 
dimensions). In addition, there are efficient algorithms 
that reorder the equations and unknowns of linear 
systems so as  to minimize the band envelope of a sparse 
matrix [5, 61. Thus the storage overhead of band-storage 
schemes, compared to true sparse-storage schemes, can 
be kept relatively moderate. 

The storage requirements for banded matrices are 

Moreover, many commercial software packages (such as 
the IBM Engineering and Scientific Subroutine Library 
(ESSL) [7]) and public-domain software packages (such as 
LINPACK [8] )  offer  good direct solvers for banded 
systems. 

element applications employ band-storage schemes for 
stiffness matrices and use solvers suitable for these. 

The following investigation addresses the question of 
how to multiply a symmetric banded matrix by a vector. 
The motivation for doing so comes from the method of 
conjugate gradients (CG), a widely used iterative solver for 
symmetric positive definite linear systems. Matrix-vector 
products are by far the most  time-consuming kernel 
of  CG and  may easily take 95% of the total CPU time 
used. 

For the reasons given above, many programs from  finite 

The answer to this seemingly trivial problem  is far from 
obvious, as we see below. This paper is a case study of 
how to efficiently  implement a simple mathematical 
algorithm on a shared-memory vector multiprocessor 
computer such as the IBM  ES/3090TM Vector Facility (VF). 
Here, “efficient” means that an implementation must 

Take into account the symmetry of the problem. 
Effectively utilize the storage hierarchy of the computer, 
especially to achieve a good reuse of data already 
residing  in the cache or in vector registers. 

the hardware. 
Make  efficient use of the vector instructions offered by 

Perform a coarse-grained decomposition into parallel 
tasks with well-balanced task sizes. 

Although  timing results and speedups are reported, they 
are not considered the main achievement of our work. The 
reader should consider it to be a case study in  which 
difficulties were met at different stages of the 
implementation and ideas developed to overcome them. 

Data  structures  for  symmetric  banded  matrices 
A symmetric n X n matrix A = (a , )  is called banded if its 
nonzero entries are concentrated along some consecutive 
diagonals (including the main  diagonal): 

< 
r 

A =  

-m- - 

‘11  ‘lm 

0 

‘1m 

‘n-mt1,n 

With the above notation, aij = 0 whenever Ij - il 2 m .  
The number m is  called the half-bandwidth of the banded 
matrix A. In total, 2m - 1 diagonals of the matrix are 
occupied, but some (or even many) of the entries inside 
the band  may  be zero. 

the rows and columns of a matrix so as to reduce the 
bandwidth.  Typically, in real-life applications, the half- 
bandwidth m is small compared to the size n of the matrix. 
Commonly, n is ten times m or even larger, so that storing 
A in a full-storage mode would result in a tremendous 
storage overhead. 

In the case of banded matrices, there are two obvious 
storage schemes for exploiting the specific structure, which 
are discussed in the following sections. 

As mentioned before, there are algorithms that reorder 

Packed-band-storage scheme (PBS) 
In this scheme, an array AA of dimension (m,  n), as 
shown below, is defined to consist of diagonals of A. The 
first  row of AA is the main  diagonal of A, and the jth off- 
diagonal of A comprises the ( j  + 1)th row of AA . Because 
of the symmetry of A, only the off-diagonals above (or 
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below) the main  diagonal are needed. Note that the lengths 
of the off-diagonals decrease, so that trailing zeros must be 
inserted to fill the rows of AA. 

A A =  

- 
011 . 'n-n+tn-m+t 4-m+z/r-m+2 a"-l.n-l an! 
1112 . * 'n-n+14-n+2 'n-m+z/r-m+3 an-ln 0 

0 .  

- . . . .  
. . . .  

. . .  . . . .  

. . .  . . . .  . . 

. . .  . . . .  . . 

. . .  . . . .  . 
llm * . '"ln 0 . . . .  0 0  - - 

This scheme (and a slight variation thereof, storing the 
main  diagonal  in the last  row and the last off-diagonal in 
the first  row) is part of the LINPACK standard and is also 
required by the routines DPBF and DPBS  in the IBM 
Engineering and Scientific Subroutine Library. It is 
especially suited when direct solvers are used to solve the 
linear system Ax = b with A banded; for this reason PBS 
has become quite popular in application programs. 

Transposed packed-band-storage scheme (TPBS) 
In this scheme, diagonals are stored column-wise from  left 
to right. As is indicated below,  all columns but the first 
must be filled with trailing zeros (note that the array A A T  
in this scheme is just the transpose of the one from  PBS, 
hence the name): 

AAT = 

- 
all a12 * * a h  
a22  a23 * - - 
a33 a34 * ' 

. . . .  

. . . .  
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IBM ES/3090 Vector  Facility  hardware  and 
software  for  high-performance  computing 
The IBM'ES/3090 VF offers a set of registers and machine 
instructions, beyond those provided by the scalar IBM 
System/370m architecture, which allows the user to 
perform several types of operations in a vector mode. The 
vector operations include 

LOAD from storage to a vector register, and STORE 

ADD, SUBTRACT, MULTIPLY, DIVIDE, and 

The compound  instructions 

back to memory. 

ACCUMULATE (b + a,  + + a,,). 

MULTIPLY AND ACCUMULATE. 
MULTIPLY AND ADD. 
MULTIPLY AND SUBTRACT. 

After a start-up time, these perform two floating-point 
operations per machine cycle. Application code should 
contain as many compound instructions as possible to 
achieve optimal performance. 

All vector instructions operate on sets of up to 128 or 256 
(depending on the model) elements. The  maximum 
dimension of the set is  known as its vector  section. 

An important feature of the arithmetic instructions is 
that one of the operands need not be loaded into a vector 
register prior to operation, but can be extracted from 
storage immediately. For example, in the FORTRAN  loop 

DO I = 1 ,N  

END DO 
A(I) = A(I) + B(I) * C(I) 

the vector C need not reside in a vector register prior to 
the multiply-and-add operation. The target vector A, 
however, must be loaded into a vector register before th e 
vector operation is executed. For a more comprehensive 
overview of the vector architecture of the IBM 3O9Om, 
consult Reference [9]. 

The VS FORTRAN Version 2 compiler for the IBM 
3090 VF [lo] exploits many of the features provided by the 
hardware, thus permitting efficient coding of many 
problems from science and engineering. Two key 
techniques VS FORTRAN uses to accomplish this aim are 

Outer-loop vectorization. By vectorizing loops other than 
the innermost one, the compiler can keep values that 
remain  unchanged over the entire inner loop in registers, 
thus saving load  and store operations. 
Scalar temporary. In a vectorizable loop, under certain 
circumstances, the compiler is  able to treat a FORTRAN 
scalar variable as if it were a vector (scalar temporary). 
In this case, no storage is allocated for the temporary, 
and  different values (corresponding to different loop 
indices) assigned to the temporary are placed in a vector 
register for later use. The reader will  find examples of 
scalar temporaries in the remainder of the text. 

These possibilities help the programmer to control reuse of 
vector registers explicitly, thus avoiding superfluous load 
and store operations. A comprehensive overview of  how 
these features are effectively used is in Reference [ll]. 

Another important aspect that must  be considered in 
high-performance computing is the cache mechanism of the 
IBM 3090 [E]. The cache is a small but very fast buffer 
located intermediately between central storage and  CPU. 
Its mechanism,  explained in detail in [12], cannot be 699 
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controlled directly by the programmer. As a general rule, 
application code should be written in such a way that data 
are loaded into the cache only once and then reused as 
often as possible (data-locality). Reference [ll] discusses 
how this can be accomplished. 

The IBM 3090 is also available as a multiprocessor with 
up to six independent CPUs. Each CPU contains its own 
cache, and  all or some of the CPUs may be equipped with 
vector facilities. 

The Parallel FORTRAN compiler [13] offers the user the 
possibility of employing several processors concurrently. 
However, it is the user's responsibility to exploit this 
potential. In this respect, four aspects deserve 
consideration: 

Setting up parallel tasks is relatively costly. 
Consequently, the  tasks that are assigned to each 
processor should consume considerably more time than 
the cost of the administrative overhead (coarse-grain 
parallelism). 
The tasks running concurrently should perform 
approximately the same amount of work (load 
balancing). Speedups obtained by running components 
of a program concurrently on a number of processors 
depend critically on the amount of parallelism inherent in 
the program  (Amdahl's  law). If significant portions of the 
program  must  run serially, all but one processor will be 
idle, thus causing a considerable degradation of the 
overall performance. 
All processors share  the central memory of the system, 
and all private data are organized by the compiler. For a 
user, this means that special care must be taken for the 
integrity of data. Concurrent writes to a storage location 
will result in unpredictable (and, almost surely, wrong) 
results. Even if Parallel FORTRAN provides efficient 
data-locking and task-synchronizing mechanisms [13], 
write-access conflicts may nevertheless offset  any 
performance gain due to parallelism. If possible, different 
tasks should not write to the same storage locations. 
Each CPU is equipped with its own cache. When tasks 
operate on identical data, the data must be loaded into 
the caches of all processors that perform these tasks. If 
one of these processors updates a datum in its cache, the 
corresponding data in the caches of the other processors 
are flagged as invalid. This procedure is necessary to 
ensure data integrity but prevents cache reuse by the 
processors with the invalid entries. As a rule, for 
parallelization, as much as possible different processors 
should operate on disjoint data. 

Vectorized  implementations of matrix-vector 
multiplication 
It is clear that different storage schemes call for different 
implementations. However, one key observation is 
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essential to understanding the following discussion: During 
the multiplication of a matrix by a vector, each entry of 
the matrix is referenced exactly once. For a symmetric 
banded matrix, this means that in storage schemes PBS 
and TPBS, all entries, except those in the first  row or the 
first column, respectively, of the arrajrs AA and AA T are 
addressed exactly twice. If it is possible to load these data 
only once into a vector register and use them twice for 
arithmetic operations, a large amount of memory  traffic 
can be avoided. 

The WING scheme 
In the PBS storage scheme, the columns of the array AA 
contain half-rows (and half-columns) of the matrix A: 

A =  

+"-m"- - -+  - 

a , *  * * * * 
* .  
* 
* 
* 
* 

- 

T 
m. 

I 
Among the entries marked by an asterisk, the half-row to 
the right  of aii contains (because of symmetry) the same 
data as the half-column  below aii. In the PBS scheme, 
these data constitute a column of the array AA . Thus, if 
they are stored according to FORTRAN convention, they 
reside consecutively in  memory. 

The idea of multiplying a matrix by a vector along  half- 
rows and  half-columns is not completely new.  Before the 
use of vector computers became widespread, it was 
extensively used for multiplying sparse matrices stored in 
true sparse (symmetric) storage mode by vectors. For 
example,  an early version of ITPACK [14] employed this 
scheme. In that kind of application, however, the WING 
scheme demonstrates poor performance [4]. 

of a symmetric banded matrix A, stored according to the 
PBS scheme, by a vector x to produce a vector y: 

The following piece of code perfoms the multiplication 

VECT +--- DO 1Q K=l ,N 
1- Y(K) = AA(1,K) * X(K) 

RECR +--- DO 28  Iz1.N 
I T=Q.DB 

I 1  T = T  + AA(J,I) * X(I+J-1) 
VECT 1 +-- DO 30 J=2,M 

I I _  Y(I+J-1) = Y(I+J-1) + AA(J,I) * X(I) 
1". Y(I) = Y(I) + T 
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Here, N denotes n, the size of the matrix (and x and y), 
and M denotes m ,  its half-bandwidth. Inserted in the code 
is the vector report listing provided by the VS FORTRAN 
compiler, which marks the loops that have been chosen for 
vectorization (VECT) as well as the one that carries data 
dependencies preventing vectorization (RECR). In these 
listings, CONTINUE statements closing a loop are 
suppressed. Note that the code is  simplified  and does not 
take into account the fact that the lengths of the last m - 1 
half-rows (and half-columns) are less than m .  In  loop 10, Y 
is  initialized as the product of the main  diagonal of matrix 
A and vector x. The first statement of loop 30 accumulates 
in T the product of the Zth half-row of A and the 
corresponding part of x. The second statement multiplies 
the Zth half-column of A by the scalar X(Z) and 
accumulates the result into the corresponding part of the 
result vector y. The temporary T is added to Y(Z) only 
when the J-loop has terminated. 

The code shown above exhibits several important 
features: 

1. The J-loop consists of vector compound instructions: 
one  vector multiply-and-accumulate and one vector 
multiply-and-add. 

2. Data in this loop are accessed consecutively. 
3. Columns of AA must be loaded into the cache exactly 

once. Once an iteration of the I-loop is  finished, the Zth 
column  is never touched again. 

For banded matrices with sufficiently  large bandwidth 
m,  the work done in this routine is dominated by the off- 
diagonals  (i.e., the work done in the J-loop), while the 
multiplication of the main  diagonal  by x and the load and 
store operations at the beginning  and at the end of the 
I-loop are negligible. Furthermore, there is little scalar 
work (address arithmetic) compared to the vector 
operations contained in the J-loop. For these two reasons, 
we consider the number of vector operations (including 
loads and stores) per pair of off-diagonals as a sensitive 
gauge of the efficiency of a piece of code. 

In the proposed code for the PBS storage scheme, the 
following  five vector operations are necessary for each 
vector section of the J-loop: 

Load one section of AA(J,Z) into a vector register. 
Perform a multiply-and-accumulate with the 
corresponding section of X(Z+J- 1) taken from storage 
immediately. Place the result into the scalar variable T .  
Load the corresponding section of Y(Z+J- 1) into a 
vector register. 
Perform a multiply-and-add with (the scalar) X(Z) taken 
from storage and AA ( J J )  already residing  in a vector 
register. 
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5. Store the updated section of Y(Z+J- 1) back to 
memory. 

Note that apart from the multiply-and-accumulate, another 
operation not mentioned above (sum-partial-sums) is 
needed to complete the first statement of the J-loop. 
However, this operation is extremely cheap compared to 
the multiply-and-accumulate, and in  light  of the above 
discussion it is reasonable to ignore  it. 

The DUG scheme 
In the TPBS storage scheme, the columns of AAT contain 
diagonals of the banded matrix A, which leads to 
vectorizing along  diagonals of A. For each diagonal, a 
section of length equal to the vector section size is 
multiplied by the corresponding section of the vector x, 
and the result is added to the corresponding section of the 
vector y. Due to the symmetry of A, the entries of a 
diagonal can be kept in a vector register and  used  twice. 
However, the two results corresponding to a diagonal and 
its symmetric counterpart in A do not contribute to the 
same entries of the vector y. 

The following code performs the same matrix-vector 
product y = A x :  

VECT +--- DO 10 K=l,N 

1- Y(K) = AAT(K,l) * X(K) 
RECR +--- DO 20 J=2,M 
VECT I +-- DO 30 I=l,N 

I I  Y(I) = Y(I) + AAT(I,J) * X(I+J-1) 

1- 
1 I _  Y(I+J-I) = Y(I+J-1) + AAT(I,J) * X(I) 

As in the WING scheme, N denotes the size of the matrix 
and M its half-bandwidth. This code, too, is simplified  and 
ignores the fact that the lengths of the diagonals in the 
TPBS scheme decrease (thus, the I-loop becomes shorter 
with increasing J ) .  

Multiplying a matrix by a vector along  diagonals is also 
a well-known  idea. An early reference is [15], and a similar 
idea has been implemented in some routines of the ESSL 

In this scheme the following  five vector operations are 
[7, 161. 

required to process a pair of off-diagonals: 

1. Load one section of AAT(Z,J) into a vector register. 
2. Perform a multiply-and-add  with X(Z+J- 1) loaded 

from storage. Place the result in the vector register that 
already contains Y(Z). 

3. Load a section of Y(Z+J- 1) into a vector register. 
4. Perform a multiply-and-add  with X(Z) taken from 

storage and AA T(ZJ)  already residing  in a vector 
register. 

5. Store Y(Z+J- 1) back to memory. 701 
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Synchronized  parallel  implementation for the WING scheme. 

The code presented above is very similar to that 
implementing the WING scheme, if the roles of the I -  and 
J-loops are interchanged. However, there is the important 
difference that the I-loop contains two vector multiply-and- 
adds, while  in the WING scheme the J-loop contains a 
vector multiply-and-accumulate operation. 

Parallelization of WING  and DUG 
Since WING and DIAG vectorize the inner loop, the 
canonical way to parallelize is to assign a number of 
iterations of the outer loop to each processor. If we denote 
by NPROCS the number of processors that are to be 
employed and by W O R K  the number of iterations per 
task ( W O R K  = NINPROCS), a Parallel FORTRAN 
implementation would look as follows [13]: 

PARALLEL LOOP 40 K=I,NPROCS 
DO 20 I=(K-I)*NWORK+l, K*NWORK ... 

Inner loop 
... 

28 CONTINUE 
40 CONTINUE 

Parallel FORTRAN permits one to specify the number of 
parallel tasks at run-time, and the routine NPROCS from 
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the FORTRAN library passes this information to the 
FORTRAN  program. For this reason, the above code 
provides a general-purpose parallel implementation for 
both schemes, WING and DIAG. 

However, both schemes suffer  from one important 
drawback. As mentioned before, a serious performance 
degradation may occur if write accesses by different tasks 
to the same storage location have to be synchronized in 
order to ensure data integrity. An analysis of the code for 
the WING and DIAG schemes reveals that in the above 
parallel implementation, different tasks will write to 
overlapping parts of the vector y. 

Since the parts of code that must be synchronized are 
the time-intensive parts of the whole application, it can be 
expected that synchronization will  almost surely result in 
significant  idle  time.  One solution is to provide copies of y 
for each task and sum up their contributions in a serial 
mode. The code in Figure 1 shows a rough implementation 
of this idea for the WING scheme. 

We  did  not carry out a parallel implementation of the 
WING and DIAG schemes because time measurement for 
parallel jobs is a very complex task on multi-user shared- 
memory machines, and the STRIP scheme, which is 
described in the following section, proved superior in 
uniprocessor implementations. 

An improvement: The  STRIP scheme 
The DIAG  and  WING schemes exploit the symmetry of 
the matrix A by loading matrix data into the  vector 
registers only once and using them twice. However, a 
price must be paid for this.  In both schemes, in the inner 
loop, one load and one store operation must be performed 
on each section of the result vector y. 

computational scheme that overcomes this drawback, at 
the cost of neglecting the symmetry of the problem. Matrix 
A is divided into several horizontal strips of height equal to 
the vector section size. Figure 2 shows such a strip for a 
half-bandwidth of 3 and a vector section size of 4 (for this 
example). The asterisks indicate the five  diagonal bands 
inside the strip. 

In the STRIP scheme, the sections of the diagonals are 
multiplied by corresponding sections of the vector x, and 
the results are accumulated in a section of the vector y. 
The particular sectioning of the STRIP scheme permits the 
accumulation to be performed in a vector register as 
shown in the following code: 

For the TPBS storage scheme, there is one 

VECT +--- DO 10 I=l ,N 

RECR 
I T = AAT(I,l) * X(I) 

I I  
1 1 -  

I +-- DO 20 J=2,M 
T = T + AAT(I,J) * X(I+J-1) 
T = T + AAT(I+J-1,J) * X(I-J+I) 

1- Y(I) = T 
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Note that now the Z-loop (outer loop) is vectorized. The 
multiplication of the diagonals by their corresponding 
sections of the vector x is performed in the J-loop, the 
results being accumulated in the scalar temporary T .  In the 
machine code generated by the compiler, T is replaced by 
a vector register. Its contents are stored in y only after the 
J-loop has terminated. Also, note that the inner loop  now 
carries a recurrence (RECR) detected by the compiler and 
cannot be vectorized. 

operations per pair of off-diagonals (not the main  diagonal): 
This piece of code requires the following vector 

Load the right  off-diagonal A A   T ( I , J )  into a vector 
register. 
Perform a multiply-and-add with X(Z+J- 1) taken 
immediately from storage. 
Load the left off-diagonal AA T(Z+J- 1, J) into a vector 
register. 
Perform a multiply-and-add with X(Z-J+ 1) taken 
immediately from storage. 

The price that must be paid for the savings in vector 
operations is the violation of the principle of data locality. 
In the STRIP scheme, the symmetry of the matrix is  not 
exploited, as can be seen from the code segment.  Different 
sections of the array AAT are processed in the two 
statements of the J-loop, and all data of the array must be 
loaded into a vector register twice. The code presented 
above has some degree of data locality, insofar as left  and 
right diagonals are processed alternately. For most 
iterations of the J-loop, the two sections have some data in 
common, and these must be loaded into the cache only 
once. 

performance gain due to improved vectorization, only 
comparative time measurements can determine which 
scheme is preferable. 

Note that the code presented above does not work 
correctly for the prolog (the first rn - 1 rows of A) and 
the epilog (the last rn - 1 rows of A). There, the lengths 
of the off-diagonals on the left or the right, respectively, 
depend upon the row, a fact that prevents the FORTRAN 
compiler from vectorizing the outer loop. Thus, we wrote 
the program in  IBM System/370 assembly language, so as 
to be able to keep the accumulated results for each vector 
section in the vector register denoted by T and 
simultaneously change the lengths of the vector operations, 
according to the diagonal  being processed. This fact, 
however, is  not the main reason for the performance 
differences found during the timing measurements. 

Since loss of data locality may completely destroy any 

Parallelization of STRIP 
Splitting the STRIP scheme among several processors is 
very easy. Each task operates on its own strip of A and 
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STRIP scheme. 

computes a group of consecutive entries of the result y. 
This ensures that no write-access conflicts occur, and the 
user need not be concerned about data integrity. 

The price paid for easy parallelization is the violation of 
the “different data to different caches” principle.  Different 
strips of A share a considerable overlap of data in the 
array AAT.  As a consequence, these data must be loaded 
into the caches of at least two processors, thus increasing 
the total number of machine operations executed. Only 
time measurements can show whether the performance 
degradation due to this effect  is pronounced or (we hope) 
not. 

Load balancing 
The m rows of the prolog (and the epilog) require fewer 
floating-point operations than rn rows of the body of A, 
and the corresponding pieces of code are thus faster. 
However, since prolog  and  epilog perform more 
complicated operations, this effect is much less 
pronounced than expected. For this reason, we decided to 
employ the simplest task-distribution algorithm,  namely to 
distribute an equal number of rows to each processor. If 
the matrix size n is  not exactly divisible by the number of 
processors, half of the remaining rows are given to the 
processor working  on the prolog  and the other half to that 
working  on the epilog. 

Comparative  measurements 
Figures 3 and 4, shown later, compare the performance of 
the three schemes WING, DIAG,  and STRIP, run on a 
uniprocessor. Note that we  did not measure the symbolic 
codes given  in the text above; rather, the true codes for 
the multiplication of a symmetric banded matrix by a 
vector were compared. Recall that WING and DIAG were 
programmed  in FORTRAN, while STRIP was coded in 
assembly language. 703 
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Multiplication times for constant matrix size (n  = 2500) as a func- 
tion of half-bandwidth. 

In multi-user environments, CPU-time measurements are 
not completely reliable but provide results that are slightly 
greater than the true values. This effect, while  negligible 
for long runs, may cause a relatively considerable loss of 
accuracy for jobs that run only for a few  milliseconds. For 
this reason, all measurements were repeated five times, 
and the minimum  of the five results was used. This 
procedure gives more reliable results than just averaging 
over the number of runs. 

The measurements covered a parameter range of matrix 
size n from 600 to 2500  in steps of 100 and half-bandwidth 
rn from  10 to 100 in steps of 10 and from 100 to 300  in 
steps of 25. Results were obtained on  an ES/3090 400E 
running under the MVS/ESATM operating system. The 
machine has a vector section size of  128 and a cache size 
of  64 kilobytes. Each program was compiled and run using 
the VS FORTRAN Version 2 Release 4 compiler [lo]. 

Figures 3 and 4 show multiplication times for the three 
schemes. Figure 3 gives results for constant matrix size 
n = 2500  with variable half-bandwidth rn, while Figure 4 
shows results for constant half-bandwidth rn = 300  and 
variable matrix size n. 

The measurements show that STRIP performs better 
than the two other schemes over the whole parameter 
range. The speedup of STRIP compared to DIAG ranges 
from 1.06 (for n = 900 and rn = 275) to 1.38 (for n = 
2500 and rn = 10). The speedup of STRIP compared to 
WING ranges from 1.03 (for n = 600 and m = 300) to 
5.50 (for n = 2200  and rn = 10). STRIP performed at a 
maximum speed of  37.1  Mflops (for n = 2000 and rn = 

704 20), while WING achieved 28.4  Mflops (for n = 2200 and 
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Multiplication times for constant half-bandwidth (rn = 300) as a 
function of matrix size. 
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rn = 300) and DIAG achieved 29.0  Mflops (for n = 2300 
and m = 60). 

For small half-bandwidths, the performance of WING is 
extremely poor. This is because the vector lengths are 
very short, and  in essence the vector overhead is what is 
being measured in this case. This does not  hold for the 
DIAG scheme, which vectorizes along  diagonals 
independently of the band size. WING is  slightly better 
than DIAG only for large half-bandwidths and  small matrix 
sizes (Figure 4). 

In Figure 3, the measurements for the WING scheme 
clearly show performance degradation when the half- 
bandwidth rn passes multiples of the vector section size 
(loop sectioning). The same effect, although not as 
pronounced, can be seen in Figure 4 in the measurements 
for the DIAG scheme. 

The figures demonstrate that multiplying a symmetric 
banded matrix by a vector is better accomplished using the 
TPBS storage scheme and the STRIP method, over a wide 
range of matrix sizes and bandwidths. In some cases, 
however, a user may be forced to employ PBS, either 
because other CPU-intensive parts rely heavily on this 
scheme, or the application consists of old “dusty-deck” 
code that cannot be changed in a reasonable amount of 
time. Also, in this case the code for the WING scheme 
exhibits reasonable performance, which is not  much worse 
than for the other schemes. 

Time  measurements  for  the  parallel  runs 
The following  timing results were measured on an  IBM 
ES/3090  6005 running under VM/xATM. Note that they are 
not comparable to the ones in Figures 3 and 4 (running on 
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an IBM ES/3090 400E), because the J models have shorter 
cycle times and advanced design features. The 
measurements were not performed on a completely 
dedicated machine. (VM/XA offers the possibility of 
dedicating specific processors to a single  user. This 
does not mean, however, that the operating system allows 
the user to exploit all dedicated processors all  of the 
time.) 

Figure 5 shows the wall-clock times necessary to 
execute the parallelized code for STRIP on one, two, 
three, and four processors, for a typical set of parameters 
(n = 3920 and m = 290). The results clearly indicate that 
the efficiency of the code stays far below  ideal 
expectations. With four processors, the execution time  is 
not  much smaller than with one processor alone, and the 
best speedup, obtained with two processors, is less than 
1.25. 

Familiarity with the tusk concept of Parallel FORTRAN 
[13] helps one understand this behavior. In Parallel 
FORTRAN, a task has to be set up  using the ORIGINATE 
statement before it can be assigned work using either the 
DISPATCH or the SCHEDULE statement. This provides 
the user with high flexibility for data sharing between 
different tasks or data copying from one task to another. 
However, the time to execute the necessary ORIGINATE 
statements is usually relatively long,  growing  with the size 
of the load  module and the number of processors 
employed. This time,  while  negligible for long-running 
production code, causes considerable overhead for small 
parallel jobs that run for only a few tenths of a second. 
Separate measurements of the times necessary to execute 
the ORIGINATE statements indicate that it is mainly this 
overhead that causes the deviation from the ideal of the 
results shown in Figure 5. 

the full  flexibility of the SCHEDULE statement. For this 
reason the VS  FORTRAN Version 2 Release 5 compiler 
[17] contains a language construct (PARALLEL CALL) 
that distributes the execution without requiring an 
ORIGINATE. With this compiler, a user can expect to 
obtain much better speedups for our application. A rough 
estimate, based on the results from Figure 5 and the 
timings of the ORIGINATE statements, gave about 160 
Mflops  on a four-processor IBM 3090 VF model J. 

There are many application programs that do not require 

Conclusions 
Any implementation of a matrix-vector product for a 
symmetric banded matrix must take into account the 
specific data structure used. Since the matrices arising 
from  real-life applications are usually extremely large, they 
must be stored in some packed format in order to fit into 
memory. Two of these are described above: the packed- 
band-storage scheme (PBS) and the transposed packed- 
band-storage scheme (TPBS). These schemes are not 
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Execution  times  with  one to four  processors (n = 3920, m = 290). 

restricted to symmetric matrices, but have obvious 
extensions for nonsymmetric ones. They exploit the band 
structure of banded matrices almost optimally, insofar as 
only a small  number of zeros must be filled  in. 

efficient implementations of the matrix-vector product on a 
vector computer, but TPBS appears to be better for the 
following reasons: 

Both storage schemes are suitable for developing 

Both multiplication implementations presented for TPBS 
produce better timing results than the one presented for 
PBS, over most of the parameter range considered. 
Since the multiplication schemes for TPBS use diagonals 
of the matrix as  vectors, their performance is  not 
sensitive to the number of off-diagonals, as is the case 
for the WING scheme presented for the PBS storage 
mode. 

When  parallelization is considered, TPBS is even more 
favorable. There is one implementation (STRIP) that 
provides a simple, efficient implementation on a shared- 
memory multiprocessor. It requires no synchronization, 
and if the load  balancing is well-chosen, considerable 
concurrency may be achieved. 

it does not  exploit the symmetry of the matrix. 
Nevertheless, in the uniprocessor version, it performs 
better than the other two schemes presented. This 
advantage will be even more pronounced if the schemes 
are extended to treat nonsymmetric matrices. 

One obvious disadvantage of the STRIP scheme is that 
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In the  Introduction,  we  mentioned  that  the  PBS  storage 
scheme  is especially suited  for  direct solvers. This  paper 
indicates  that  for  iterative  solvers,  TPBS is to  be 
preferred.  Unfortunately,  there is at  present no universal 
storage scheme for  banded  matrices  that  supports  both 
types of solvers. For finite-element packages, for example, 
this means that  the solver for the linear system must be 
chosen at  the time the  assembly of the stiffness matrix is 
designed. 

Enterprise Systed3090, ES/3090, Systed370, 3090, 
MVSESA, and VM/XA are trademarks of International 
Business Machines Corporation. 
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