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Parallel processing may well be the only
means of satisfying the long-term performance
requirements for database systems: an
increase in throughput for transactions and a
drastic decrease in response time for complex
queries. In this paper, we review various
alternatives, and then focus entirely on
exploiting parallel-processing configurations in
which general-purpose processors
communicate only via message passing. In our
configuration, the database is partitioned
among the processors. This approach looks
promising but offers challenging problems.
The paper reports on our solutions to some of
them: how to express strategies for efficiently
executing complex queries, how to minimize
overhead in operations such as parallel joins
and sorts, and how to deal with transaction
management in a highly distributed system.
The paper ends with a discussion of the
lessons we learned from exercising a
prototype developed in IBM Research.

Introduction
Parallel processing may be harnessed to increase
throughput (using » times as many computers to do n
times as much work in the same amount of time) or to
reduce response time (using # times as many computers to
solve a problem in 1/nth the time). Parallel processing is
applicable to database systems, but several factors make
the problem challenging. First, the nature of the workload
is unknown when the database system is deployed, since
interactive users can construct arbitrary queries and
execute them at any time. Second, the characteristics of
the subset of data manipulated by a query are in general
not known until run time, because it depends on both the
predicates in the query and the state of the database.
Third, shared-database systems permit concurrent access,
which means that a parallel database system must support
parallelism and multiprogramming simultaneously. These
three challenges emphasize the need for run-time
flexibility, load balancing, and effective scheduling.
Introducing parallelism and distribution (spreading data
among several locations) in any system introduces new
possibilities for overhead, and database systems are no
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exception. Supporting a parallel, distributed database
requires communication and additional synchronization
over what is needed in a single-processor configuration.
Moreover, using multiple threads for each transaction
increases the overhead per transaction. In addition, the
penalty for distributing locks (for concurrency control) is
that global deadlock may occur, while the penalty for
distributing logs (for recovery) is that a commit protocol
must be employed [1]. This collective overhead can
decrease transaction throughput and increase transaction
response time, partially negating the reasons for
introducing parallelism.

The ARBRE project (for Almaden Research Backend
Relational Engine) was established in IBM Research to
study database parallelism. The technology we adopted
and the algorithms we invented attack some, but not all,
of the above challenges and sources of overhead.

This paper reports on what we learned in the ARBRE
project. First it discusses the requirements of large
database applications and briefly reviews architectures that
have been proposed to meet these requirements. The
architecture in ARBRE uses a collection of independent
processors that communicate by means of messages. After
illustrating how the parallel database system works, the
paper describes those parts of the system that are most
interesting and new.

The need for parallelism in database
applications

We illustrate the need for powerful database systems by
using a simple banking application as a running example.
In a relational model, the banking application uses two
tables. The table ACCOUNT has one row for each
account, while the table ACTIVITY contains a row for
each modification of an account:

ACCOUNT (ACCOUNT_NUMBER, CUSTOMER_NAME, BALANCE)
ACTIVITY (ACCOUNT_NUMBER, DATE, AMOUNT,
OTHER_ACCOUNT_NUMBER)

® Simple transaction

A typical transaction T transfers a certain amount of
money from one account to another. For example, a
transfer of $100 from account x to account y updates the
balances in both ACCOUNT rows and inserts the
following two rows into ACTIVITY:

ACTIVITY (x, 9/9/91, —100, y)
ACTIVITY (y, 9/9/91, 100, x)

Transaction T has a path length of the order of 200 000
instructions. With reasonable CPU utilization, we can run
four transactions per second on a one-MIPS (million
instructions per second) processor. Thus, the CPU time is
a fraction of a second on a multiple-MIPS processor. The
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I/O time is also a fraction of a second, since the
transaction requires only six I/O operations. If the
transaction were running alone, the total response time
would be less than a second, which is quite reasonable.
The real problem is how to run hundreds or thousands of
such transactions per second and maintain a low response
time. For 1000 transactions per second, one needs 250
MIPS of power and a capability for 6000 disk accesses
each second. If one disk can support a maximum of 30
accesses per second, one needs about 200 disks.

® Complex queries

The banking data may be queried for the purpose of
decision-making. A query Q may, for example, be used to
find the accounts for which the average amount of
individual deposits for the last month is larger than $1000.
We assume that the database contains ten million
accounts, with an average of 20 activity records per
account. A scan of table ACTIVITY is necessary.
Scanning 200 million tuples at a cost of 1000 instructions
per tuple takes 200 billion instructions. On a 10-MIPS
machine, the response time is almost six hours, even if we
ignore the time for I/O. This example shows that the
sequential execution of a complex query can take a long
time and may prevent a query from being run in an
enterprise, even if its answer could be very valuable for
decision making.

To improve the response time for complex queries, one
needs more computing capability. One also needs a system
organization that can use all of the computing power on
one query and can overlap the query I/O with its
processing. The question is, Can we provide such a system @
at a reasonable cost? Although uniprocessor systems
continue to improve with respect to price and
performance, the need to execute thousands of
transactions per second and to rapidly answer complex
queries on large databases strongly suggests that
alternatives be investigated.

Alternatives

From a hardware viewpoint, the alternatives fall into two
categories: those that use special-purpose hardware
customized for database operations (see [2], for example)
and those that construct a parallel database system in
software running on general-purpose processors [3-6]. We
chose general-purpose processors for four reasons. First,
relatively inexpensive, high-performance microprocessors
are available. Second, we expect this hardware base to
give us substantial improvements in price and
performance. Third, special-purpose hardware for
relational databases typically supports read-only databases
and frequently does not directly support the relational join
operator. We want to provide efficient support for all the
relational operators, including updates. Fourth, using
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general-purpose processors does not prevent us from
incorporating special-purpose hardware should it become
generally available and desirable.

Our first decision was whether the multiple processors
should share memory, disks, both, or neither (message-
passing). Because approaches that share global memory do
not scale (i.e., the improvement in performance per
additional processor decreases as the number of processors
increases) for large numbers of processors, we considered
only shared-disk and message-passing architectures. A
shared-disk architecture has two advantages. First, it
permits any transaction to be executed on only one
processor, since every processor can access all disks in the
system. This avoids the overhead of distributed
transactions. Second, a shared-disk approach simplifies
CPU load balancing, because any transaction can execute
on any processor. A message-passing architecture has
different advantages. Instead of sending entire disk pages
on the communication network, it sends only selected
records. This reduces bandwidth consumption and may
require a less expensive network. In addition, algorithms
and techniques developed for distributed databases are
applicable to message-passing architectures and may be
adopted without change. Finally, there is no cache-
consistency problem with disk pages as there is in a
shared-disk architecture. For simplicity, we did not
consider a hybrid architecture that uses a shared-disk
configuration as a node in a message-passing architecture.
Ultimately, we decided upon a message-passing
architecture.

We chose a message-passing architecture in which nodes
are interconnected by a network that lets each pair of
nodes communicate. Each node has its own processor(s),
memory, channels, disks, operating system, and database
software. Each table in the relational model is partitioned
into subsets of rows, and each subset is stored and
managed at one node, although data may be replicated at
one node or at several nodes. This horizontal partitioning
of data can be controlled by various mechanisms, such as
hashing or key ranges.

The ARBRE prototype

We were interested in exploring the use of parallelism
within complex relational queries and among large
numbers of independent transactions. The ARBRE project
involved the design, construction, and evaluation of a
prototype of a multiprocessor database machine that
exploits parallelism in three different ways [7]. First, the
prototype simultaneously executes independent
transactions and thus supports inter-transaction
parallelism. Second, the prototype simultaneously executes
different operations from the same transaction and thus
supports inter-operation parallelism. Third, the prototype
uses several nodes to execute a single operation in parallel
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and thus supports intra-operation parallelism. Note that
the latter two forms of parallelism are intra-transaction
parallelism.

The ARBRE prototype runs on equipment that was
available for use in our database laboratory: three dyadic
IBM 4381 systems, which provide a total of six processors.
Communication is supported by an IBM 3088 channel-to-
channel interconnection unit and a prototype high-
performance interprocessor communication subsystem
implemented by our colleague Kent Treiber. The operating
system is MVS. We measured the performance of our
prototype and compared it with the results of a simulation
model. Having validated the model, we were able to use it
to study larger and more powerful hardware
configurations.

The database system is organized as follows: On each of
the three 4381 computers, four virtual nodes are emulated
by running four database systems in four address spaces,
providing 12 virtual nodes in total. We chose this number
of virtual nodes because 12 concurrent scans provide
enough parallelism to keep all CPUs busy. Even nodes on
the same 4381 computer communicate with messages,
since we did not exploit shared memory. Each data table is
split horizontally into partitions; each partition is stored in
a different virtual node. The access method is borrowed
from SQL/DS (DBSS) [8]. Since we were interested
primarily in studying the performance of such a system as
it executes database operations, we did not implement a
query optimizer; instead we hand-coded specific strategies
that would normally be chosen by a query optimizer.

A strategy indicates how a transaction or query is
executed and is expressed as a series of code fragments.
The code fragments rely on three interfaces that handle
lower-level functions: the database functions themselves,
the communication primitives, and the operating-system
primitives that are used to create and manage threads of
execution. A code fragment may be duplicated at several
nodes to provide intra-operation parallelism. We compiled
code fragments into object code; an alternative is to
represent the code fragments with data structures and
interpret them at run time. An executor controls the
execution of the fragments.

The executor

Every virtual node executes the same software, including
the database system, which manages the data kept at that
node. Since data are not shared, a node executing a
request that involves data stored only at another node
must send a message to the other node instructing it to
manipulate the data. As a result of this function shipping,
the logic must be decomposed into fragments, with each
fragment being executed by a thread at a node. A fragment
may be as simple as a single procedure call, or it may be
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conditional execution, and expression evaluation. A node
may also use multiple threads for one transaction, to
overlap I/O and processing or to exploit any
multiprocessing capability available at the node.

The function-shipping mechanism used in the ARBRE
prototype is called REV (Remote Evaluation) [9], which is
an improvement over the classical RPC (Remote Procedure
Call). The improvement permits the incorporation of
several RPCs along with other program logic into a single
message and thus does not require a separate request
message for each RPC.

The node that receives a database request from an
application coordinates the execution of that request: It
ensures that each fragment of the request is loaded at the
correct node(s), each fragment is executed at the right
time(s), and each thread used by the request is released at
the appropriate time. Several techniques have been
developed to coordinate fragments [10]; the particular
techniques we used are not significant for the following
discussion.

Let us show how fragments interact, with transaction T
defined above as an example. Suppose the application is
executing at node 1. When the application wants to
execute T, the application invokes the first fragment for 7,
called F,, which reads the balance in account x. If account
x is local, F, will invoke the database interface; if not, F,
will use REV to invoke F, (to read the balance) at another
node, say node 2. This implies that the identifier of the
receiving node must be known to F, or must be
determined dynamically by F,. Suppose account x is not
local. When received by node 2, the REV message from F,
initiates execution of F,, which accesses account x and
sends the data to F,. The data are read by F,, which
checks the balance and sends messages for updating
account x (at node 2) and account y (probably at another
node, 3), in parallel. F, inserts two rows into the local
ACTIVITY table and then waits until completion messages
from nodes 2 and 3 are received. As we can see from the
example, the data returned by each fragment are small,
and the data are always returned to the fragment caller.
Performing the updates of the balances of x and y in
parallel corresponds to inter-operation parallelism.

Now, we use a portion of query Q to illustrate how the
executor deals with data-intensive operations. Consider the
case in which the ACTIVITY rows for a single account are
scattered among all processors. Let us assume that the
strategy for evaluating the aggregate function (average
amount of deposits) is to send all ACTIVITY rows to the
nodes that own the corresponding ACCOUNT rows. This
can be done in parallel by having two fragments at each
node. One fragment (F ) sends each local ACTIVITY row
to the node that owns the account in the row. The other
fragment (F,) receives ACTIVITY rows, merges them, and
computes the average of the deposits for each local account.
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In the case of query O, several instances of F_ run in
parallel and exploit intra-operation parallelism. ACTIVITY
rows flow from one node to another once a channel has
been opened between the two nodes (actually, between the
two threads).
Although we have mentioned the execution of fragments o
at one or more nodes, we have not discussed how they
arrived there in the first place. The simplest way is for all
fragments for a particular program (a set of database calls)
to be stored initially at one node. Then, each fragment can
be sent to another node, together with the request for its
execution. This and other alternatives are discussed in [11].
Now that we have described the functions of the
executor, we discuss how the details of strategies can be
specified. ®

Distributed Access Specification Language
(DASL)

The strategy determined by the query optimizer is encoded
as a graph in which vertices represent operations, and arcs
represent communication. Since a vertex often represents
several operations ““blocked” together, we often refer to a
vertex as a block. Each arc connects the output of one
operation block to the input of another one. The way
vertices and arcs are combined can be viewed as a
language. The Access Specification Language (ASL) in [12]
supported only single-node strategies. Here, we extend it
to describe strategies that exploit parallelism in one or
more nodes. The extended language is called DASL
(Distributed ASL). In this section, we briefly describe the
functionality of the language, first for single-node
operations and then for distributed operations that execute
in parallel.

& Single-node operations

Tables, tuples, indexes, and temporary relations are some
of the objects in DASL; they have their normal meaning
for relational systems. There are two additional objects:

& The stream: It is a named sequence of tuples. Although
a stream may be specified as a constant, it is generally
the result of an operation.

& The G-stream: It implements the GROUP BY operation
of SQL [8] and is a stream of groups. Each group is a
stream of tuples that are related in some way; a group
may be empty (but its existence as an empty group is not
lost). For example, in one implementation of a G-stream,
flags may be used to identify the boundaries of the
groups.

The DASL language supports the following operations:

& A scan operation is applied to a table (or to an input
stream) and produces a stream. The scan evaluates the
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scan predicates for each row in the table; for each row
that qualifies, a tuple is computed and fed out. The scan
may have an auxiliary input stream. If it consists of a
single tuple, the values in that tuple can be used in the
predicate evaluation and output computation, but the
output is still a stream. If the auxiliary input stream
comprises more than one tuple, the operation is repeated
for each tuple in it, and the output is a G-stream (with
one group for each tuple in the auxiliary input).

o The sort operation accepts a stream as input and
reorders it according to a given sort key; the output is
also a stream.

¢ The group operation receives a sorted stream and a
grouping condition and produces a G-stream.

» The aggregate operation computes any aggregate (such
as sum Or maximum) on a stream or on each group of a
G-stream.

¢ The join operation accepts two streams or G-streams and
combines their tuples in a one-to-one, group-to-group, or
one-to-group way, to produce a stream or a G-stream.

To illustrate how operations are combined to build
complex strategies, we consider the query Q. First,
assume that all data are stored at one node. Figure 1 is a
sketch of the strategy discussed in the previous section.
Block 1 represents a scan of the ACTIVITY table. Since Q
concerns deposits only, a predicate selects the tuples with
amount >0. Tuples produced by block 1 enter block 2,
which sorts them by ACCOUNT_NUMBER. This sorted
stream goes to block 3, which produces a G-stream, in
which each group corresponds to a different account.
Block 4 computes the aggregate (the average amount of
individual deposits); its output is a stream in which each
tuple corresponds to a different account and contains the
corresponding aggregate value. Scan block 5 evaluates the
predicate ‘“value > 1000’ and produces a stream g; each
tuple of g corresponds to an account with average deposits
>1000. A relational join is needed to combine that
information with the information in table ACCOUNT. One
of the most efficient methods is to use a merge-join
algorithm. We have a first thread execute the operations
described above, producing stream g, sorted by
ACCOUNT_NUMBERSs, and a second thread produce a
stream temp, composed of ACCOUNT tuples, also sorted
by ACCOUNT_NUMBERs. Then the join simply consists
of merging the two streams and finding the matching
tuples.

The technique described relies on multiprogramming
only; it is a form of software parallelism. We now look at
parallelism in its general form.

® Expressing parallelism

We turn our attention to a strategy for a multiprocessor
configuration. We still assume that all of the ACTIVITY
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DASL representation of a strategy for query Q with multiprogram-
ming.

rows are stored at one node, as in the above example, but
this time we assume that the entire ACCOUNT table is
stored at another node and the application runs at a third.
We exploit inter-operation parallelism by scanning the
ACTIVITY table and the ACCOUNT table in parallel.
Figure 2 shows five threads of execution distributed among
the three nodes involved. The threads are linked in a
dataflow fashion. The first thread (at block 0) runs at the
node that executes the application (the A-node). Block 0
generates a stream p with a single dummy row (a token).
Two other threads, at the nodes that own data, wait for
the stream p. As soon as they receive the token, they
execute the indicated operations until they are blocked.
Blocks 1 to 5 describe an activity identical to the one
described above for the single-node case. The same is true
for blocks 6 and 7. The difference is that these fragments
of the query evaluation are started in parallel. They
produce two streams, g and temp. These streams are input
to another thread, which executes block 8. (This thread
may be at any node; however, the A-node seems to be the
best choice.) The output s is sent to the A-node, where a
new thread receives it (block 9). Note that we used the
maximum number of threads; in practice, the number can
be reduced. For example, blocks 0 and 9 can share the
same thread at the A-node.

The only functions we added to the language to support
inter-operation parallelism are the send and receive
operations:
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Representation of a strategy for query Q exploiting inter-operation
parallelism.

» A send operation specifies a destination (a (node, stream)
pair).
® The receive operation specifies only an input stream.

Note that the fragments executed in parallel scan and
sort large amounts of data. This improves response time
(actually, the time to execute blocks 1 to 5 is overlapped
with the execution of blocks 6 and 7). Nevertheless, the
degree of parallelism is very low, leaving most of the
nodes uninvolved.

To remedy the situation, we exploit intra-operation
parallelism by executing a single operation in parallel. In
other words, several nodes execute the same fragment on
different portions of the data. Consider the query Q,
assuming this time that the ACCOUNT rows are stored at
n nodes and that all ACTIVITY rows for an account are
stored at the node where the ACCOUNT row is stored.
The execution strategy is depicted in Figure 3. At the A-
node, a thread (block 0) receives the request and initiates
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- ACTIVITY/ACCOUNT nodes

Amnode _'

‘Nondeterministic |
_merge

- result

9

Representation of a strategy exploiting intra-operation parallelism.

the parallel execution by sending a token to all nodes that
have ACTIVITY (and therefore, ACCOUNT) rows. Each
of these nodes executes blocks 1 to 8 on local data. Each
of the n instances of block 8 sends a stream s to the A-
node, which is received by block 9. Since block 9 receives
its input from various nodes, a merge must be performed.
In this case, the order is irrelevant, so the merge may be
nondeterministic. If the # streams coming from the
ACTIVITY/ACCOUNT nodes are ordered, the substreams
may be merged by value in order to produce a fully
ordered stream.

In summary, to support intra-operation parallelism we
introduced

» The notion of multicasting a stream to several nodes
(send to ALL or a selected set), which activates multiple
instances of execution fragments that execute in parallel.

& The notion of merge, which applies to a node block
receiving from various nodes substreams that must be
merged into a single stream.

® Scheduling

Note that the structures shown in the examples represent
the maximum parallelism consistent with dataflow
execution. In practice, scheduling can be used to reduce
the degree of parallelism, when appropriate. For example,
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in Figure 3, you may be quite satisfied with the amount of
parallelism provided by the simultaneous execution of
many instances of blocks 1-2, and decide to execute
blocks 6 and 7 at a node only when block 2 at that node
has completed. Such a limitation on parallelism may
require storing intermediate results, but may be preferable
when too much parallelism causes unacceptable contention
for critical resources. In DASL, tokens can be used to
control parallelism, since they trigger execution.

o Extensibility

The DASL constructs are sufficient for expressing useful
strategies. DASL can be extended easily by defining other
operators that accept and produce streams. Routines to
perform these operations must then be incorporated in the
system and made accessible to the executor.

® [ntra-transaction deadlock detection

In DASL, a database query is represented by an acyclic
dataflow graph that consists of operator vertices and
directed communication arcs. A transaction running in
isolation can become deadlocked by itself if its DASL
graph, when viewed as an undirected graph, contains a
cycle. These deadlocks, a surprise to us, happened
frequently for certain distributed algorithms we developed.
The intra-transaction deadlocks we encountered were
caused because buffers between operators in the dataflow
graph are finite.

An example of this buffering-dependent deadlock is
illustrated in Figure 4, where F1, F2, J1, and J2 are
operator vertices. The dataflow graph in Figure 4(a) could
represent the redistribution phase of a distributed join in
which F1 and F2 receive sorted substreams and send the
““odd”” values to J1 and the ““even’ values to J2. F1 and
F2 are fork-type operators (each has multiple outputs),
whereas J1 and J2 are join-type operators (each has
multiple inputs and a single output stream) that
deterministically merge the sorted tuples they receive from
F1 and F2 to produce sorted output streams. A deadlock,
illustrated in Figure 4(b), can occur as follows. Assume
that J1 already has a tuple from F1 and is waiting for a
tuple from F2. F2 might be waiting to send a tuple to J2
but cannot, because of communication pacing (i.c., the
buffer between F2 and J2 is full). J2 could be waiting for a
tuple from F1 because it already has a tuple from F2. If F1
is waiting to send a tuple to J1 but cannot because of
pacing, a deadlock exists, since J1 is indirectly waiting for
itself.

A buffering-dependent deadlock like this can occur only
if a blocking fork-type operator is an ancestor of a
blocking join-type operator. A dataflow operator is said to
be blocking if either of the following conditions causes the
dataflow operator to stop processing inputs: Some but not
all of its input arcs are empty; some but not all of its
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Scenario of a self-deadlock: (a) dataflow graph; (b) dependency
graph.

output arcs are full. One way to avoid buffering-dependent
deadlock is to let buffers overflow onto disk, essentially
providing ““infinite”” buffers. An alternative approach is to
replace some blocking join and fork operators in a DASL
graph with nonblocking operators when deadlocks may
occur. We chose the latter approach and implemented a
nonblocking version for each blocking operator in DASL.
This was done by providing one or more internal buffers or
by exploiting the cursor facilities provided by the
underlying access method. The nonblocking operators let
us avoid intra-transaction deadlock when we experimented
with different algorithms. If the query optimizer checks
whether a blocking fork-type operator is an ancestor of a
blocking join-type operator, it can substitute nonblocking
operators for blocking operators to avoid the possibility of
deadlock.

Algorithms

We developed several parallel algorithms for sorts and
joins in a distributed system that require less
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communication than existing ones. The next three
subsections describe our algorithms.

® Fully parallel sort algorithm

In this section, we consider the problem of sorting a file in
a distributed system, such as ARBRE. We assume that the
result of the sort is needed at a single node called the A-
node, while the file is originally distributed over several
nodes. The algorithm exploits parallelism during the sort,
merge, and return-to-A-node phases. In addition, this
algorithm requires less inter-node communication than
existing parallel sort algorithms. Our algorithm labels
nodes as being data nodes, merge nodes, the coordinator
node, or the A-node. A single node may have more than
one role in the algorithm.

We exploit the size difference between the sort key and
the entire record by manipulating only sort keys instead of
records whenever possible. The data nodes eventuaily
send sorted records directly to the A-node, which
efficiently performs the final merge step without doing sort-
key comparisons. As explained below, the A-node merge
algorithm uses information computed during the processing
of the sort keys by the merge nodes. The merge nodes
send only this information to the A-node; the sort keys are
discarded as the records are merged.

We present a high-level description of the algorithm and
then give an example. Each data node sorts locally the
portion of the file that it owns; in doing so, it computes the
distribution of the sort keys that it encounters and sends
the distribution to the coordinator. On the basis of such
information from all data nodes, the coordinator assigns
each merge node a range of sort keys for which it is
responsible and multicasts this partition function to all the
data nodes and the A-node. (Multicasting is more efficient
than sending individual messages.) Each data node sends
each of its sort keys (in sorted order) to the appropriate
(assigned) merge node. Each merge node receives these
sort keys from all data nodes and merges them. At the
same time, it builds a list of node numbers. This list
remembers, for each record in the result of the merge, the
node from which it came. During the return-to-A-node
phase, each merge node sends this stream of node
identifiers to the A-node. The A-node reads the node-
identifier streams from the merge nodes in the order
specified by the global coordinator. (That is, the node-
identifier stream from the merge node responsible for the
smallest sort-key range is read first, and so on.) Then each
data node sends its stream of sorted records to the A-
node. The A-node uses the node identifier as an index to
select the next data node and then reads the next record in
the stream from that node.

We illustrate this sort algorithm by an example that
involves two data nodes and two merge nodes. (The sort
key is the first character, and the data fields are
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represented as -dddddd.) After the local sort phase, the
contents of the sorted file are as follows:

Data node 0 Data node 1
A-dddddd B-dddddd
D-dddddd C-dddddd ®

The global coordinator determines that sort keys of value
B or less should be sent to merge node 2 for merging, and
all other keys should be sent to node 3.

The merge process at node 2 receives the following
streams:

A (from node 0) B (from node 1)

(Note that data fields are not sent.) It generates 0 and 7 in
its output stream to the A-node, meaning that the smallest
record is from node 0 and the next smallest record is from
node 1. Similarly, the merge process at node 3 receives C
(from node 1) and D (from node 0) and produces I and 0 in
its output stream to the A-node. In the meantime, the sort
process at node 0 sends the A-node a stream consisting of
A-dddddd followed by D-dddddd, and the sort process at
node 1 sends the A-node B-dddddd followed by C-dddddd.
Thus, the A-node receives two node identifier streams
(from the merge processes) and two sorted record streams
(from the sort processes). The contents of these streams
are as follows:

Node identifier streams Sorted record streams

From node 2 From node 3 From node 0 From node 1

0 1
1 0

A-dddddd
D-dddddd

B-dddddd
C-dddddd

The A-node first reads the node identifier stream from
node 2. The first element in that node identifier stream has
a 0, indicating that the smallest record is from node 0
(A-dddddd). The next element in the node identifier
stream from node 2 has a I, indicating that the next
smallest record is from node 1 (B-dddddd). Similarly,
the node identifier stream from node 3 has 7 and 0,
indicating that the next two records should be read from
node 1 (C-dddddd) and node 0 (D-dddddd),
respectively.

An alternative method to the fully parallel algorithm is
to send both the sort key and the data (i.e., the entire
record) to the merge nodes, which then send the merged
records to the A-node. For the same example shown
above, the contents of the merge nodes after the merge

are
Node 2 Node 3
A-dddddd C-dddddd
B-dddddd D-dddddd
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Node 2 sends all of its merged records to the A-node first;
then node 3 sends all of its merged records. Only one
merge process sends merged records to the A-node at any
given time. This sequential portion can limit the degree of
parallelism of the algorithm, especially when the merged
records do not fit in the main memory of a merge node. On
the contrary, in our fully parallel sort algorithm, the A-
node reads records from all data nodes in an interleaved
fashion. Even though the interleaved reading is slightly
more expensive than a sequential reading, an A-node
employing current microprocessor technology can accept
records from disk drives on five to ten data nodes without
becoming the bottleneck.

Let us look at the amount of inter-node communication
of our fully parallel algorithm and the alternative method
just mentioned. We use K, D, and I to represent the
lengths of the sort key, data, and node identifier. (A record
consists of the sort key and the data; thus, the record size
is K + D.) For our fully parallel method, the
communication per tuple is K + I + (K + D). For the
alternative method, the communication per tuple is
2(K + D). The difference is D — I per tuple.

The semi-sort idea (i.e., sorting keys) is unrelated to the
parallel return-to-A-node phase idea. However, it is
advantageous to use a semi-sort in our algorithm, because
the data are not needed by the nodes that merge.

The efficiency of the algorithm is affected by the amount
of skew in the data (the uneven distribution of data among
the nodes). Since skew affects only the early phases of the
sort (before tuples are redistributed), the adverse effect
may be diluted.

We implemented this sorting algorithm, developed an
analytical model, and validated the model. The details are
in [13].

Survey articles on parallel sorting show that the problem
has been studied extensively [14, 15]. Here we compare
our fully parallel sort algorithm with recently developed
sort algorithms that are appropriate for message-passing
database systems. One important difference is that all the
other algorithms send entire records between nodes two or
more times, whereas our algorithm sends records only
once. In the FastSort algorithm [16], all sorted streams are
merged at the A-node. This sequential merge takes longer
than the interleaved reading used in our fully parallel sort
algorithm, because merging requires sort-key comparisons.
The sort algorithms presented in [17, 18] use a multiphase
merge to reduce the number of sorted streams an A-node
merges, but the A-node still does merging. In [19], records
are partitioned by range according to sort keys, and the
A-node simply reads the sorted streams sequentially from
one node at a time. Whether this algorithm or our
algorithm minimizes execution time at the A-node depends
on main-memory sizes and disk configurations. If each
sorted stream fits into the main memory of the
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corresponding sort node, or if each sorted stream is stored
in an interleaved fashion across sufficiently many disk
drives, sequential reading is preferable, because the A-
node is the bottleneck. Otherwise, our form of interleaved
reading is preferable.

In summary, our sorting algorithm has the following
advantages: 1) Each phase (except for very short intervals)
is performed in parallel, yielding high utilization of
resources and a low sorting time. 2) The algorithm reduces
the amount of inter-node communication by using a semi-
sort algorithm that sends only sort keys on the inter-node
communication network.

® Parallel join algorithm using semi-join

In this section, we describe a parallel join algorithm that is
useful when the join results are needed at a single node,
called the A-node.

Consider tables R and S. Each row has an identifier, a
join column (a single letter in this example), and data. The
result of the join is obtained by combining all rows of R
with all rows of S for which the join columns match. For
example, R, S, and the result of the join might be the

following:
R S join(R, S)

1 a rl1111 1 b s11111 b r22222 s11111
2 b 122222 2 ¢ 822222 b r33333 sl11111
3 b r33333 3 d s33333 ¢ 144444 §22222
4 ¢ r44444 4 e s44444 ¢ 155555 $22222
5 ¢ 155555 d r66666 s33333
6 d r66666

In a distributed database system organization, the rows of
R and § are generally scattered over many nodes. For
example, R and S may be stored on two nodes, as

follows:
R S
Node 1 Node 2 Node 1 Node 2
1 a ri1111 3 b r33333 1 b sll1111 2 ¢ s22222
2 b r22222 4 ¢ r44444 3 d s33333 4 e sd4444
5 ¢ 155555 6 d 166666

Computing the join in distributed databases in an efficient
way is challenging. The following method is based on the
idea of semi-join [20]:

* A first phase computes a semi-join by manipulating (and
sending on the network) only the join column values and
not the (much longer) data. (In general, the semi-join
algorithm will use several nodes and leave the result
spread over these nodes.) For example, we may
obtain 689
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Node 1 Node 2
M2bMH1 MS5c22
2)3b(1 2)4c(22

2y6d1)3

Each number in parentheses represents the home node
of the row.

» The second phase, called join materialization, replaces
the row identifiers with the actual data. This operation
is itself a join and requires, if we are not careful, the
exchange of a potentially large amount of data. In
ARBRE, we developed two techniques that decrease
the communication. Depending upon the
circumstances, one or the other may be chosen.

Technique 1

The novelty of Technique 1 is that the A-node participates
in the join materialization. The data are sent to the A-node
directly without redistribution. Assume that we arbitrarily
establish the order 1, 2, with the intention of first sending
the data from node 1, then from node 2. Thus, if the
following sequential streams (R stream and § stream) were
available to the A-node, together with the result of the
semi-join, the A-node could read them in parallel and
perform a one-to-one join (a straightforward merge)
between the semi-join and these streams:

R stream S stream

(1) 2 122222
(2) 3 33333
(1) 5 155555
(2) 4 44444
(2) 6 166666

(1) 1 s11111
(1) 1 s11111
(2) 2 522222
() 2 s22222
(1) 3 33333

These streams can be constructed by extracting from the
semi-join the row identifiers and ordinal positions in which
the data are needed and sending this information to the
nodes storing the particular rows. (The node identifier
comes in handy here.) E.g., consider R. The corresponding
sequential stream can be obtained by sending
Row-id

Ordinal number To node

W N =
N A W
[ SR S R

The nodes receive the following information;

Node 1 Node 2
2 3
5 4
6

The individual nodes replace these row identifiers with the
data, obtaining
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Node 1 Node 2
122222 133333
r55555 r44444

r66666

Similar streams are prepared for the data in S.

The join materialization and the sending of the data to
the A-node are done simultaneously. The A-node reads the
node identifiers in the semi-join result; e.g., the first tuple
is (1, 1). Thus, the A-node picks up the data for R and for
S from node 1. In general, the source nodes are different.

Technique 2

A larger reduction in communication is possible when the
rows needed from R (without duplication) fit in the
memory of the A-node. The result of the semi-join
indicates which rows of R are used in the result. The A-
node stores these rows in a structure in memory with a
direct-access capability based on the row identifier
(clearly, without duplication). This makes the building of
the R stream unnecessary. The same technique can be
used for S and generalizes to n-way joins as well.

The proposed algorithm reduces the amount of
communication because it eliminates duplication. The ideal
case occurs when all the rows needed by the join fit in the
A-node memory. Then, the amount of communication for
the materialization is proportional to the sum of the
amounts of data from the various tables to be joined,
rather than a product. The rows are sent to the A-node
directly from where they reside in the database, without
duplication. If the rows do not fit in memory, Technique 1
ensures that data are also sent directly from the nodes
where they reside, although this time, duplication cannot
be avoided.

® SFR: A new distributed join algorithm

Multiprocessor hash-based join algorithms [21, 22] are
desirable for the equijoin of two tables with little or no
data skew. However, if the join is not an equijoin, if there
are more than two tables to be joined, or if there is
significant data skew, a multiprocessor hash-based join
may not be desirable or even applicable. The fragment-
and-replicate (FR) join algorithm [23] is a useful alternative
in these cases, since it handles any kind of join and can
perform load balancing. One drawback of the FR algorithm
is its high communication cost. We have generalized the
FR algorithm and, in so doing, reduced its communication
requirements.

The FR algorithm fragments one table by row across
several processing nodes and completely replicates the
second table at each of these processing nodes. Each node
performs a local join and sends its results to the A-node or
redistributes the results for any additional processing. The
FR algorithm is asymmetric because it treats the two
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tables differently: It fragments one table and completely
replicates the second one across all nodes. 1t is possible to
reduce communication by using a symmetric fragment-and-
replicate (SFR) join algorithm.

The SFR algorithm fragments both tables and replicates
each fragment across some, but usually not all, nodes. The
replication pattern minimizes the amount of data
communicated, yet it does not affect the result of the join
operation. Under certain circumstances, the SFR algorithm
degenerates into the FR algorithm. Under all other
circumstances, the SFR algorithm requires less
communication than the FR algorithm.

The differences between the FR and SFR algorithms are
best illustrated by example. Assume that 100 nodes are
available to join two 5-megabyte (MB) tables. The FR
algorithm broadcasts one table to all 100 join nodes and
breaks the other table into 100 disjoint fragments, sending
each fragment to a different join node. The SFR algorithm,
in contrast, breaks each table into ten disjoint fragments
and, at least conceptually, arranges the 100 nodes into a
10 x 10 square. The ith fragment of one table is multicast
to all nodes in the ith row of the square, while the jth
fragment of the other table is multicast to the jth column of
the square. The (i, j)th node then joins these two
fragments and sends its results to the destination node(s).
Each join node in the FR algorithm receives 5 MB +
0.05 MB = 5.05 MB of data, whereas each join node in the
SFR algorithm receives 0.5 MB + 0.5 MB = 1 MB of
data. In this example, using the SFR algorithm instead of
the FR algorithm reduces communication by more than a
factor of 5.

In general, the SFR algorithm uses a rectangular
arrangement of join nodes rather than a square
arrangement. The rectangular dimensions that minimize
communication depend on the number of nodes performing
the join and on the size of each table. In addition, we have
devised a round-robin method that automatically balances
the load at the join nodes. The SFR algorithm, its analysis,
and the load-balancing enhancement have all been
extended to accommodate N-way joins. The details of the
method may be found in {24].

We implemented the SFR algorithm for a two-way join
and measured its performance on ARBRE. In one set of
experiments on the join of two tables of equal size, using
the SFR algorithm instead of the FR algorithm reduced
communication by 40% and improved the response time by
10%. These gains were realized even though only nine join
nodes were used; our mathematical analysis predicts even
larger reductions in communication as the number of join
nodes is increased.

Transaction management
Using large numbers of nodes in a software database
machine can substantially increase the overhead associated
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with executing a distributed transaction. In this section we
present algorithms for reducing the communication and 1/O
activity associated with atomic ‘“‘commitment” and the
communication associated with global deadlock detection
in a database machine. The algorithms exploit the selective
centralization of information: Certain information about a
transaction is stored at a single node, regardless of what
nodes generated the information. Storing information about
different transactions at different nodes avoids bottlenecks
and helps balance the load.

® Atomic commitment protocol

“Committing” a transaction makes permanent the updates
called for by the transaction, while aborting a transaction
removes its updates from the system. All nodes at which a
transaction updates data need to agree on whether to
commit or abort the transaction, in order to maintain the
consistency of the data in the system. The sequence of
steps the nodes execute in order to decide whether to
commiit or abort a distributed transaction is called an
atomic commitment protocol [1]. An atomic commitment
protocol requires 1/0 activity when a log is forced, since
forcing the log moves the log tail from volatile storage to
nonvolatile, stable storage. The log tail consists of
information, recently appended to the log, that has not yet
been forced to nonvolatile, stable storage.

An atomic commitment protocol can require many
messages and log forces. For example, the classic two-
phase commit protocol [25, 26] requires four rounds of
messages. For a distributed transaction involving N nodes,
each round in this protocol requires N — 1 messages;
therefore, committing this transaction with the two-phase
commit protocol requires 4(N — 1) messages. Executing
the transaction may require as few as 2(V — 1) messages,
which means that the communication overhead for atomic
commitment may be as large as 200%. The node that
ultimately decides whether to commit or abort, called the
coordinator, must force its log once, and each of the other
N — 1 nodes must force its log twice, when a transaction
is committed using the two-phase commit protocol. Hence,
2N — 1 log forces are needed to commit a transaction.
Optimized atomic commit protocols exist [27], but their
communication and 1/O costs are still high.

We developed the coordinator log protocol to reduce the
communication and I/O activity associated with atomic
commitment. Because of space limitations, we present
only an overview of the protocol here. A complete
description of the coordinator log protocol and its effect on
database crash recovery is in [28].

When several nodes participating in a transaction share
a common log, some of the log forces of existing protocols
may be converted into append operations without affecting
the correctness of the protocol [27]. The coordinator log
protocol extends this optimization to its ultimate limit by
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forcing each transaction to use only one log, the log of the
node coordinating the transaction. All log records that
each noncoordinator node generates while executing a
transaction accompany its response to the coordinator.
The coordinator appends to its log the log records it
receives from other nodes as well as the log records it
generates while executing its own portion of the
transaction. Once the work associated with the transaction
has been completed, the coordinator unilaterally commits
the transaction by appending a commit record to its log
and by forcing its log to nonvolatile, stable storage. Then
the coordinator notifies the other nodes that the
transaction has committed. Committing a transaction that
involves N nodes requires only one log force and N — 1
messages. Compared to the two-phase commit protocol,
the coordinator log protocol saves 3(N — 1) messages and
2(N - 1) log forces when a transaction commits.

® Deadlock-detection algorithm

Whenever deadlocks are unavoidable, they must be
detected and broken. A global deadlock is a deadlock that
spans several nodes, and many distributed algorithms exist
to detect and break global deadlocks [29]. Unfortunately,
the communication required by existing distributed
deadlock-detection algorithms is frequently proportional to
the number of nodes at which a transaction may be
requesting locks. For example, if one transaction is waiting
for a second transaction that happens to be setting locks at
100 nodes, the system may need to check whether the
second transaction is (indirectly) waiting for the first
transaction at each of the 100 nodes. We circumvent this
problem by redistributing deadlock information and
running a distributed deadlock-detection algorithm on the
redistributed information. A detailed description of our
approach to deadlock detection is contained in [30]. Below
we give a simple introduction.

A deadlock corresponds to a cycle in the transaction
wait-for graph (TWFG), in which each vertex represents a
transaction and each directed edge represents a transaction
waiting for another transaction. The TWFG changes as
transactions request and release locks. Before we look for
cycles in the TWFG, we centralize the wait-for information
about each transaction in the following manner. All edges
emanating from a given vertex are sent to a deadlock-
detection node that depends only on the transaction
associated with the vertex. For example, if there are two
deadlock-detection nodes, we could send all edges
emanating from ““‘odd” vertices to one deadlock-detection
node (call that node ODD) and all edges emanating from
“even’” vertices to the other deadlock-detection node (call
that node EVEN). A distributed deadlock-detection
algorithm would use the TWFG edges maintained by the
nodes ODD and EVEN and ignore the TWFG edges at the
data nodes. The set of nodes at which a transaction may
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be requesting locks is thus irrelevant to the deadlock-
detection algorithm. Edges that disappear from the TWFG
when a transaction terminates or releases a lock are also
removed from the TWFG maintained by the deadlock-
detection nodes.

Any hashing function that maps transaction identifiers to ®
nodes may be used to redistribute the TWFG. The range
of the hashing function determines which nodes serve as
deadlock-detection nodes. Note that if there is only one
deadlock-detection node, our approach degenerates to a
centralized approach for global deadlock detection.

Although our approach to deadlock detection can reduce
communication, redistributing the TWFG has some cost.
Transactions with a small degree of average parallelism
suffer from this approach, while transactions with a larger ®
degree of average parallelism benefit. Using a simple
mathematical analysis, we examined several distributed
deadlock-detection algorithms and learned that benefit was
frequently gained when average parallelism is greater than
six nodes. Since a hybrid approach is viable, we
recommend redistributing wait-for information only for
transactions that may have a moderate to large degree of
parallelism. The deadlock-detection algorithm must then
distinguish between the two classes of transactions.

Discussion and future work

A message-passing multiprocessor is an appealing

configuration for a parallel relational-database system.

ARBRE is a prototype that exploits such a configuration.

Building and evaluating the prototype taught us several

important lessons about parallel processing for distributed

databases. In this section we discuss these lessons, review o
our accomplishments, and describe important areas that

need additional exploration.

The most important lesson is that certain database
interfaces designed and tuned for serial execution need
adjustment for parallel and distributed execution.
Adjustment is needed because the introduction of
parallelism and distribution affects the frequency with
which database facilities are used and the circumstances
under which they are used. Consider, for example, the
overhead for starting and committing a transaction. In a
single-node database, all database operations for each
transaction are executed at one node, and the transaction
overhead is typically small in comparison to the database
work. In a parallel distributed database, each operation in
the transaction may execute at a different node, and the
transaction overhead at each node may be comparable to
the actual database work at that node. This increase in
overhead reduces transaction throughput and makes
evident the need for a transaction facility with much less
overhead.

Another illustration of this lesson involves temporary
tables. In a single-node database, temporary tables are

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991




used to hold intermediate results. In a parallel distributed
database, temporary tables are also used to hold data
either before or after they are redistributed, and a good
strategy for evaluating the answer to a complex query may
frequently redistribute data in order to exploit parallelism
fully. For example, redistribution of data pages can
minimize the effect of a poor horizontal partitioning of
data, whereas redistribution of records can eliminate the
skew introduced by scan predicates or join predicates.
Redistribution may also be used to introduce skew to
counter an unbalanced load on the system. The resulting
increased dependence on temporary tables makes the
performance for manipulating such tables an important
factor in overall system performance.

In some cases, the adjustment for parallel or distributed
operation requires adding functionality rather than
improving performance. For example, the access method
we used for ARBRE had no intra-transaction parallelism:
The access method could not exploit multiple processors in
a shared-memory multiprocessor, and it could not overlap
processing and I/O for a single transaction. Running
several database systems at each node is a quick and easy
way to circumvent these two limitations. The only
requirement is that the database systems cooperate as
independent databases in a distributed database system.
The recommended way to enhance a database system is to
make it support multiple threads for a single transaction
and make it exploit multiple processors in a shared-
memory multiprocessor. We chose the former, easier
alternative because it required much less work. In
hindsight, we believe we made the right choice for a
research project.

The second lesson that we learned from the ARBRE
prototype is that there is typically no single horizontal
partitioning of data that provides good performance for all
transactions and queries. The performance of a given
transaction or query depends on the way in which data are
partitioned. Centralizing small transactions improves their
throughput, because each transaction executes on fewer
nodes, while decentralizing complex queries improves their
response times, because each complex query is executed
on more nodes. One way to address this conflict between
throughput and response time is to have the horizontal
partitioning depend on how many records are related to
one another. Consider the ACTIVITY table in our banking
application. A personal savings account may have a small
number of records in the ACTIVITY table, and these
records could be assigned to the node that contains the
corresponding ACCOUNT record. Joining the two tables
would not require any communication for that account,
and sequentially scanning or aggregating the activity
records for the account would not take long. The activity
for a large corporate account may be thousands of times
greater than that for a personal account, so it makes sense
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to spread the ACTIVITY records for a large corporate
account over several nodes. Although this placement of
data requires communication when a join occurs, it lets the
system scan or aggregate the ACTIVITY records for the
corporate account in parallel. The differences between the
personal account and the corporate account illustrate how
different groups of records must be treated differently.
Given the number of related records in a group, a
threshold function can determine the number of nodes that
should manage the group. Other database researchers have
advocated similar approaches [31, 32].

One important goal in designing a parallel distributed
database is load balancing. For simplicity, we considered
individual queries rather than the entire system load.
Because query predicates make the number and
distribution of intermediate results unpredictable, our
parallel algorithms gather statistics and use this
information to redistribute data appropriately.

Another important goal is overhead minimization.
Unfortunately, no single technique works for all sources of
overhead introduced by parallelism and distribution. We
reduce communication whenever possible by exchanging
record components rather than entire records, by
introducing symmetry into an algorithm, by introducing
hashing into an algorithm, and by exploiting existing
communication messages. In addition, we reduce logging
by centralizing logging on a per-transaction basis.

Query optimization, load balancing, and scheduling are
important topics that need further study. One approach to
query optimization is to parallelize the best sequential
implementation of a query [31, 33], while another approach
is to consider parallel strategies during the optimization
process. Scheduling must be considered at run time, at
compile time, or at both times. In the absence of
scheduling, unrestricted dataflow execution can unleash
too much parallelism and consume too many resources at
one time. Without a priority mechanism, work on the
critical path cannot receive favorable treatment.

We believe that these problems are not insurmountable
and that using general-purpose processors to implement a
parallel database system is a promising approach. There is
still much to be learned about parallelism, databases, and
their interrelationships.
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