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Parallel  processing may well be  the  only 
means  of satisfying the  long-term  performance 
requirements for database  systems:  an 
increase in throughput for transactions and a 
drastic decrease in response  time for complex 
queries. In this paper,  we  review various 
alternatives,  and  then  focus  entirely on 
exploiting parallel-processing  configurations in 
which  general-purpose  processors 
communicate  only  via  message  passing.  In  our 
configuration,  the database is partitioned 
among  the  processors.  This  approach looks 
promising but offers  challenging  problems. 
The  paper reports  on  our  solutions to some  of 
them:  how to express  strategies for efficiently 
executing  complex  queries,  how to minimize 
overhead in operations  such as parallel joins 
and  sorts,  and  how to deal  with  transaction 
management in a highly distributed system. 
The  paper  ends with  a  discussion  of  the 
lessons we  learned from  exercising  a 
prototype  developed in IBM Research. 

Introduction 
Parallel processing may be harnessed to increase 
throughput (using n times as many computers to do n 
times as much work in the same amount of time) or to 
reduce response time (using n times as many computers 1 
solve a problem  in llnth the time).  Parallel processing is 
applicable to database systems, but several factors make 
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the problem  challenging. First, the nature of the workload 
is unknown when the database system is deployed, since 
interactive users can construct arbitrary queries and 
execute them at any time. Second, the characteristics of 
the subset of data manipulated by a query are in general 
not  known  until  run  time, because it depends on both the 
predicates in the query and the state of the database. 
Third, shared-database systems permit concurrent access, 
which means that a parallel database system must support 
parallelism and multiprogramming simultaneously. These 
three challenges emphasize the need for run-time 
flexibility,  load  balancing, and effective  scheduling. 

among several locations) in any system introduces new 
possibilities for overhead, and database systems are no 

Introducing parallelism  and distribution (spreading data 
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exception. Supporting a parallel, distributed database 
requires communication and additional synchronization 
over what is needed in a single-processor configuration. 
Moreover, using  multiple threads for each transaction 
increases the overhead per transaction. In addition, the 
penalty for distributing locks (for concurrency control) is 
that global deadlock may occur, while the penalty for 
distributing logs (for recovery) is that a commit protocol 
must be employed [l]. This collective overhead can 
decrease transaction throughput and increase transaction 
response time, partially negating the reasons for 
introducing parallelism. 

The ARBRE project (for Almaden Research Backend 
Relational Engine) was established in  IBM Research to 
study database parallelism. The technology we adopted 
and the algorithms we invented attack some, but not  all, 
of the above challenges and sources of overhead. 

This paper reports on what we learned in the ARBRE 
project. First it discusses the requirements of large 
database applications and  briefly reviews architectures that 
have been proposed to meet these requirements. The 
architecture in ARBRE uses a collection of independent 
processors that communicate by means of messages. After 
illustrating how the parallel database system works, the 
paper describes those parts of the system that are most 
interesting and new. 

The  need  for  parallelism  in  database 
applications 
We illustrate the need for powerful database systems by 
using a simple banking application as a running example. 
In a relational model, the banking application uses two 
tables. The table ACCOUNT has one row for each 
account, while the table ACTIVITY contains a row for 
each modification of an account: 

ACCOUNT (ACCOUNT-NUMBER, CUSTOMER-NAME, BALANCE) 
A C T I V I T Y  (ACCOUNT-NUMBER, DATE, AMOUNT, 

OTHER-ACCOUNT-NUMBER) 

Simple transaction 
A typical transaction T transfers a certain amount of 
money from one account to another. For example, a 
transfer of  $100 from account x to account y updates the 
balances in both ACCOUNT rows and inserts the 
following two rows into ACTIVITY: 

A C T I V I T Y  (X ,  9/9/91, -100, y) 
A C T I V I T Y  (y, 9/9/91, 100, x)  

Transaction T has a path length of the order of  200  000 
instructions. With reasonable CPU utilization, we can run 
four transactions per second on a one-MIPS (million 
instructions per second) processor. Thus, the CPU time is 

682 a fraction of a second on a multiple-MIPS processor. The 
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1/0 time  is also a fraction of a second, since the 
transaction requires only six I/O operations. If the 
transaction were running alone, the total response time 
would be less than a second, which is quite reasonable. 
The real problem is how to run hundreds or thousands of 
such transactions per second and  maintain a low response 
time. For 1000 transactions per second, one needs 250 
MIPS of power and a capability for 6000 disk accesses 
each second. If one disk can support a maximum  of  30 
accesses per second, one needs about 200 disks. 

Complex queries 
The banking data may be queried for the purpose of 
decision-making. A query Q may, for example, be  used to 
find the accounts for which the average amount of 
individual deposits for the last month is larger than $1000. 
We assume that the database contains ten million 
accounts, with  an average of  20 activity records per 
account. A scan of table ACTIVITY is necessary. 
Scanning 200  million tuples at a cost of 1000 instructions 
per tuple takes 200 billion instructions. On a 10-MIPS 
machine, the response time  is  almost six hours, even if we 
ignore the time for I/O. This example shows that the 
sequential execution of a complex query can take a long 
time  and  may prevent a query from  being  run  in  an 
enterprise, even if its answer could be very valuable for 
decision making. 

To improve the response time for complex queries, one 
needs more computing capability. One also needs a system 
organization that can use all  of the computing power on 
one query and can overlap the query 1/0 with its 
processing. The question is, Can we provide such a system 
at a reasonable cost? Although uniprocessor systems 
continue to improve with respect to price and 
performance, the need to execute thousands of 
transactions per second and to rapidly answer complex 
queries on  large databases strongly suggests that 
alternatives be investigated. 

Alternatives 
From a hardware viewpoint, the alternatives fall into two 
categories: those that use special-purpose hardware 
customized for database operations (see [2], for example) 
and those that construct a parallel database system in 
software running on general-purpose processors [3-61.  We 
chose general-purpose processors for four reasons. First, 
relatively inexpensive, high-performance microprocessors 
are available. Second, we expect this hardware base to 
give us substantial improvements in price and 
performance. Third, special-purpose hardware for 
relational databases typically supports read-only databases 
and frequently does not directly support the relational join 
operator. We want to provide efficient support for all the 
relational operators, including updates. Fourth, using 
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general-purpose processors does not prevent us from 
incorporating special-purpose hardware should it become 
generally available and desirable. 

Our first decision was whether the multiple processors 
should share memory, disks, both, or neither (message- 
passing). Because approaches that share global memory do 
not scale (i.e., the improvement in performance per 
additional processor decreases as the number of processors 
increases) for large numbers of processors, we considered 
only shared-disk and message-passing architectures. A 
shared-disk architecture has two advantages. First, it 
permits any transaction to be executed on only one 
processor, since every processor can access all disks in the 
system. This avoids the overhead of distributed 
transactions. Second, a shared-disk approach simplifies 
CPU load balancing, because any transaction can execute 
on any processor. A message-passing architecture has 
different advantages. Instead of sending entire disk  pages 
on the communication network, it sends only selected 
records. This reduces bandwidth consumption and may 
require a less expensive network. In addition, algorithms 
and techniques developed for distributed databases are 
applicable to message-passing architectures and may  be 
adopted without change. Finally, there is  no cache- 
consistency problem with disk pages as  there is in a 
shared-disk architecture. For simplicity, we did  not 
consider a hybrid architecture that uses a shared-disk 
configuration as a node in a message-passing architecture. 
Ultimately, we decided upon a message-passing 
architecture. 

We chose a message-passing architecture in which nodes 
are interconnected by a network that lets each pair of 
nodes communicate. Each node has its own processor(s), 
memory, channels, disks, operating system, and database 
software. Each table in the relational model  is partitioned 
into subsets of rows,  and each subset is stored and 
managed  at one node, although data may be replicated at 
one node or at several nodes. This horizontal partitioning 
of data can be controlled by various mechanisms, such as 
hashing or key ranges. 

The ARBRE prototype 
We were interested in exploring the use of parallelism 
within complex relational queries and  among  large 
numbers of independent transactions. The  ARBRE project 
involved the design, construction, and evaluation of a 
prototype of a multiprocessor database machine that 
exploits parallelism in three different ways [7]. First, the 
prototype simultaneously executes independent 
transactions and thus supports inter-transaction 
parallelism. Second, the prototype simultaneously executes 
different operations from the same transaction and thus 
supports inter-operation parallelism. Third, the prototype 
uses several nodes to execute a single operation in parallel 
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and thus supports intwoperation parallelism. Note that 
the latter two forms of parallelism are intra-transaction 
parallelism. 

The ARBRE prototype runs on equipment that was 
available for use in our database laboratory: three dyadic 
IBM 4381 systems, which provide a total of six processors. 
Communication is supported by an IBM  3088 channel-to- 
channel interconnection unit and a prototype high- 
performance interprocessor communication subsystem 
implemented by our colleague Kent Treiber. The operating 
system is MVS. We measured the performance of our 
prototype and compared it  with the results of a simulation 
model. Having validated the model,  we were able to use it 
to study larger and  more  powerful hardware 
configurations. 

the three 4381 computers, four virtual nodes are emulated 
by running four database systems in four address spaces, 
providing  12 virtual nodes in total. We chose this number 
of virtual nodes because 12 concurrent scans provide 
enough  parallelism to keep all CPUs busy. Even nodes on 
the same 4381 computer communicate with  messages, 
since we  did  not  exploit shared memory. Each data table is 
split horizontally into partitions; each partition is stored in 
a different virtual node. The access method is borrowed 
from SQL/DS (DBSS) [8]. Since we were interested 
primarily  in studying the performance of such a system as 
it executes database operations, we  did  not  implement a 
query optimizer; instead we hand-coded specific strategies 
that would  normally be chosen by a query optimizer. 

A strategy indicates how a transaction or query is 
executed and  is expressed as a series of code fragments. 
The code fragments rely on three interfaces that handle 
lower-level functions: the database functions themselves, 
the communication primitives, and the operating-system 
primitives that are used to create and  manage threads of 
execution. A code fragment  may be duplicated at several 
nodes to provide intra-operation parallelism. We compiled 
code fragments into object code; an alternative is to 
represent the code fragments with data structures and 
interpret them at run  time. An executor controls the 
execution of the fragments. 

The database system is  organized as follows: On each of 

The  executor 
Every virtual node executes the same software, including 
the database system, which  manages the data kept at that 
node. Since data are not shared, a node executing a 
request that involves data stored only at another node 
must send a message to the other node instructing it to 
manipulate the data. As a result of this function shipping, 
the logic  must  be decomposed into fragments, with each 
fragment  being executed by a thread at a node. A fragment 
may  be as simple as a single procedure call, or it  may be 
an arbitrary procedure that uses sequencing, loops, 683 
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conditional execution, and expression evaluation. A node 
may also use multiple threads for one transaction, to 
overlap 1/0 and processing or to exploit any 
multiprocessing capability available at the node. 

The function-shipping mechanism used in the ARBRE 
prototype is called REV (Remote Evaluation) [9], which  is 
an improvement over the classical RPC (Remote Procedure 
Call). The improvement permits the incorporation of 
several RPCs  along  with other program  logic into a single 
message and thus does not require a separate request 
message for each RPC. 

The node that receives a database request from  an 
application coordinates the execution of that request: It 
ensures that each fragment of the request is loaded at the 
correct node(s), each fragment is executed at the right 
time(s), and each thread used by the request is released at 
the appropriate time. Several techniques have been 
developed to coordinate fragments [lo]; the particular 
techniques we used are not significant for the following 
discussion. 

Let us show how fragments interact, with transaction T 
defined above as an example. Suppose the application is 
executing at node 1. When the application wants to 
execute T ,  the application invokes the first fragment for T ,  
called Fa, which reads the balance in account x. If account 
x is local, Fa will invoke the database interface; if not, Fa 
will use REV to invoke Fb (to read the balance) at another 
node, say node 2. This implies that the identifier of the 
receiving node must be known to Fa or must be 
determined dynamically by Fa. Suppose account x is not 
local. When received by node 2, the REV message from Fa 
initiates execution of Fb, which accesses account x and 
sends the data to Fa. The data are read by Fa, which 
checks the balance and sends messages for updating 
account x (at node 2) and account y (probably at another 
node, 3), in  parallel. Fa inserts two rows into the local 
ACTIVITY table and then waits until completion messages 
from nodes 2 and 3 are received. As we can see from the 
example, the data returned by each fragment are small, 
and the data are always returned to the fragment caller. 
Performing the updates of the balances of x and y in 
parallel corresponds to inter-operation parallelism. 

Now, we use a portion of query Q to illustrate how the 
executor deals with data-intensive operations. Consider the 
case in which the ACTIVITY rows for a single account are 
scattered among  all processors. Let us assume that the 
strategy for evaluating the aggregate function (average 
amount of deposits) is to send all ACTIVITY rows to the 
nodes that own the corresponding ACCOUNT rows. This 
can be done in parallel by having two fragments at each 
node. One fragment (F,)  sends each local ACTIVITY  row 
to the node that owns the account in the row. The other 
fragment (F,) receives ACTIVITY rows, merges them, and 
computes the average of the deposits for  each  local  account. 684 
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In the case of query Q, several instances of F, run in 
parallel and  exploit intra-operation parallelism.  ACTIVITY 
rows flow from one node to another once a channel has 
been opened between the two nodes (actually, between the 
two threads). 

Although  we have mentioned the execution of fragments 
at one or more nodes, we have not discussed how they 
arrived there in the first  place.  The simplest way  is for all 
fragments for a particular program (a set of database calls) 
to be stored initially at one node. Then, each fragment can 
be sent to another node, together with the request for its 
execution.  This  and other alternatives are discussed in [ll]. 

executor, we discuss how the details of strategies can be 
specified. 

Now that we  have described the functions of the 

Distributed  Access  Specification  Language 
(D  AS L) 
The strategy determined by the query optimizer is encoded 
as a graph in  which vertices represent operations, and arcs 
represent communication. Since a vertex often represents 
several operations “blocked” together, we often refer to a 
vertex  as a block. Each arc connects the output of one 
operation block to the input of another one. The way 
vertices and arcs are combined can be viewed as a 
language. The Access Specification  Language (ASL) in [12] 
supported only single-node strategies. Here, we extend it 
to describe strategies that exploit parallelism in one or 
more nodes. The extended language  is  called  DASL 
(Distributed ASL). In this section, we  briefly describe the 
functionality of the language,  first for single-node 
operations and then for distributed operations that execute 
in  parallel. 

Single-node Operations 
Tables, tuples, indexes, and temporary relations are some 
of the objects in DASL; they have their normal  meaning 
for relational systems. There are two  additional objects: 

The stream: It is a named sequence of tuples. Although 
a stream may be specified as a constant, it is generally 
the result of an operation. 
The G-stream: It implements the GROUP BY operation 
of SQL [8] and is a stream of groups. Each group is a 
stream of tuples that are related in some way; a group 
may be empty (but its existence as an empty group is  not 
lost). For example,  in one implementation of a G-stream, 
flags  may be used to identify the boundaries of the 
groups. 

The DASL language supports the following operations: 

A scan operation is  applied to a table (or to an input 
stream) and produces a stream. The scan evaluates the 
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scan predicates for each row in the table; for each row 
that qualifies, a tuple is computed and fed out. The scan 
may have an auxiliary input stream. If it consists of a 
single tuple, the values in that tuple can be used in the 
predicate evaluation and output computation, but the 
output is still a stream. If the auxiliary input stream 
comprises more than one tuple, the operation is repeated 
for each tuple in it, and the output is a G-stream (with 
one group for each tuple  in the auxiliary input). 
The sort operation accepts a stream as input and 
reorders it according to a given sort key; the output is I I 
also a stream. 
The group operation receives a sorted stream and a 
grouping condition and produces a G-stream. 
The aggregate operation computes any aggregate (such 
as sum or maximum)  on a stream or on each group of a 
G-stream. 

1 
5 SCan 

Join 
I 

The join operation accepts two streams or G-streams and + 
combines their tuples in a one-to-one, group-to-group, or result 

one-to-group way, to produce a stream or a G-stream. 

To illustrate how operations are combined to build 
complex strategies, we consider the query Q. First, 
assume that all data are  stored at one node. Figure 1 is a 
sketch of the strategy discussed in the previous section. 
Block 1 represents a scan of the ACTIVITY table. Since Q 
concerns deposits only, a predicate selects the tuples with 
amount >O. Tuples produced by block 1 enter block 2, 
which sorts them by ACCOUNT-NUMBER. This sorted 
stream goes to block 3, which produces a G-stream, in 
which each group corresponds to a different account. 
Block 4 computes the aggregate (the average amount of 
individual deposits); its output is a stream in  which each 
tuple corresponds to a different account and contains the 
corresponding aggregate value. Scan block 5 evaluates the 
predicate “value > 1000” and produces a stream q;  each 
tuple of q corresponds to an account with average deposits 
>1000. A relational join is needed to combine that 
information with the information in table ACCOUNT.  One 
of the most  efficient methods is to use a merge-join 
algorithm.  We have a first thread execute the operations 
described above, producing stream q,  sorted by 
ACCOUNT-NUMBERS,  and a second thread produce a 
stream temp, composed of ACCOUNT tuples, also sorted 
by ACCOUNT-NUMBERS. Then the join simply consists 
of merging the two streams and finding the matching 
tuples. 

The technique described relies on  multiprogramming 
only; it is a form of software parallelism. We  now look at 
parallelism in its general form. 

Expressing parallelism 
We turn our attention to a strategy for a multiprocessor 
configuration. We still assume that all  of the ACTIVITY 

L representation of a strategy for query Q with multiprogram- 

rows are stored at one node, as in the above example, but 
this time we assume that the entire ACCOUNT table is 
stored at another node and the application runs at a third. 
We exploit inter-operation parallelism by scanning the 
ACTIVITY table and the ACCOUNT table in parallel. 
Figure 2 shows five threads of execution distributed among 
the three nodes involved. The threads are linked in a 
dataflow fashion. The first thread (at block 0) runs at the 
node that executes the application (the A-node). Block 0 
generates a streamp with a single  dummy row (a token). 
Two other threads, at the nodes that own data, wait for 
the streamp. As soon as they receive the token, they 
execute the indicated operations until they are blocked. 
Blocks 1 to 5 describe an activity identical to the one 
described above for the single-node case. The same is true 
for blocks 6 and 7. The difference is that these fragments 
of the query evaluation are started in parallel. They 
produce two streams, q and temp. These streams are input 
to another thread, which executes block 8. (This thread 
may  be at any node; however, the A-node seems to be the 
best choice.) The outputs is sent to the A-node, where a 
new thread receives it (block 9). Note that we  used the 
maximum  number of threads; in practice, the number can 
be reduced. For example, blocks 0 and 9 can share the 
same thread at the A-node. 

The only functions we added to the language to support 
inter-operation parallelism are the send and receive 
operations: 



Representation of a  strategy for query Q exploiting inter-operation 

A send operation specifies a destination (a (node, stream) 

The receive operation specifies only an input stream. 
pair). 

Note that the fragments executed in parallel scan and 
sort large amounts of data. This improves response time 
(actually, the time to execute blocks 1 to 5 is overlapped 
with the execution of blocks 6 and 7). Nevertheless, the 
degree of parallelism is very low,  leaving most of the 
nodes uninvolved. 

To remedy the situation, we exploit intra-operation 
parallelism by executing a single operation in  parallel. In 
other words, several nodes execute the same fragment on 
different portions of the data. Consider the query Q ,  
assuming this time that the ACCOUNT rows are stored at 
n nodes and that all ACTIVITY rows for an account are 
stored at the node where the ACCOUNT row is stored. 
The execution strategy is depicted in Figure 3. At the A- 

686 node, a thread (block 0) receives the request and initiates 
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Representation of a  strategy exploiting intra-operation  parallelism. 

the parallel execution by sending a token to all nodes that 
have ACTIVITY (and therefore, ACCOUNT) rows. Each 
of these nodes executes blocks 1 to 8 on local data. Each 
of the n instances of block 8 sends a stream s to the A- 
node, which  is received by block 9. Since block 9 receives 
its input  from various nodes, a merge  must be performed. 
In this case, the order is irrelevant, so the merge  may  be 
nondeterministic. If the n streams coming from the 
ACTIVITY/ACCOUNT nodes are ordered, the substreams 
may be merged by value in order to produce a fully 
ordered stream. 

In summary, to support intra-operation parallelism  we 
introduced 

The notion of multicasting a stream to several nodes 
(send to ALL or a selected set), which activates multiple 
instances of execution fragments that execute in  parallel. 

receiving from various nodes substreams that must be 
merged into a single stream. 

The notion of merge, which applies to a node block 

Scheduling 
Note that the structures shown in the examples represent 
the maximum  parallelism consistent with  dataflow 
execution. In practice, scheduling can be used to reduce 
the degree of parallelism, when appropriate. For example, 
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in Figure 3, you may be quite satisfied  with the amount of 
parallelism provided by the simultaneous execution of 
many instances of blocks 1-2, and decide to execute 
blocks 6 and 7 at a node only when block 2 at that node 
has completed. Such a limitation on parallelism  may 
require storing intermediate results, but  may  be preferable 
when too much  parallelism causes unacceptable contention 
for critical resources. In DASL, tokens can be used to 
control parallelism, since they trigger execution. 

Extensibility 
The DASL constructs are sufficient for expressing useful 
strategies. DASL can be extended easily by defining other 
operators that accept and produce streams. Routines to 
perform these operations must then be incorporated in the 
system and made accessible to the executor. 

Intra-transaction deadlock detection 
In DASL, a database query is represented by an acyclic 
dataflow  graph that consists of operator vertices and 
directed communication arcs. A transaction running in 
isolation can become deadlocked by itself  if its DASL 
graph, when viewed as an undirected graph, contains a 
cycle. These deadlocks, a surprise to us, happened 
frequently for certain distributed algorithms we developed. 
The intra-transaction deadlocks we encountered were 
caused because buffers between operators in the dataflow 
graph are finite. 

An example of this buffering-dependent deadlock is 
illustrated in Figure 4, where F1,  F2, J1, and J2 are 
operator vertices. The dataflow graph in Figure 4(a) could 
represent the redistribution phase of a distributed join in 
which F1 and F2 receive sorted substreams and send the 
“odd” values to J1 and the “even” values to 52.  F1 and 
F2 are fork-type operators (each has multiple outputs), 
whereas J1 and J2 are join-type operators (each has 
multiple inputs and a single output stream) that 
deterministically merge the sorted tuples they receive from 
F1 and F2 to produce sorted output streams. A deadlock, 
illustrated in Figure 4(b), can occur as follows. Assume 
that J1 already has a tuple from F1 and is waiting for a 
tuple from  F2.  F2  might be waiting to send a tuple to J2 
but cannot, because of communication pacing  (i.e., the 
buffer between F2  and 52 is full). J2 could be waiting for a 
tuple from F1 because it already has a tuple from  F2. If  F1 
is waiting to send a tuple to J1 but cannot because of 
pacing, a deadlock exists, since J1 is indirectly waiting for 
itself. 

A buffering-dependent deadlock like this can occur only 
if a blocking fork-type operator is an ancestor of a 
blocking join-type operator. A dataflow operator is said to 
be blocking if either of the following conditions causes the 
dataflow operator to stop processing inputs: Some but not 
all of its input arcs  are empty; some but not all  of its 
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- Dataflow arc 
- - - + Wait-for arc 
F1, I 2  fork vertices 
J 1 . 5 2  join vertices 

Scenario of a self-deadlock: (a) dataflow graph; (b) dependency 
graph. 

output arcs are full. One way to avoid  buffering-dependent 
deadlock is to let  buffers  overflow onto disk, essentially 
providing “infinite” buffers. An alternative approach is to 
replace some blocking join and fork operators in a DASL 
graph with  nonblocking operators when deadlocks may 
occur. We chose the latter approach and  implemented a 
nonblocking version for each blocking operator in DASL. 
This was done by  providing one or more internal buffers or 
by exploiting the cursor facilities provided by the 
underlying access method. The nonblocking operators let 
us avoid intra-transaction deadlock when we experimented 
with  different  algorithms. If the query optimizer checks 
whether a blocking fork-type operator is  an ancestor of a 
blocking join-type operator, it can substitute nonblocking 
operators for blocking operators to avoid the possibility of 
deadlock. 

Algorithms 
We developed several parallel algorithms for sorts and 
joins in a distributed system that require less 
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communication than existing ones. The next three 
subsections describe our algorithms. 

Fully parallel sort algorithm 
In this section, we consider the problem of sorting a file  in 
a distributed system, such as ARBRE. We assume that the 
result of the sort is needed at a single node called the A- 
node, while the file is originally distributed over several 
nodes. The algorithm exploits parallelism during the sort, 
merge, and return-to-A-node phases. In addition, this 
algorithm requires less inter-node communication than 
existing parallel sort algorithms. Our algorithm labels 
nodes as being data nodes, merge nodes, the coordinator 
node, or the A-node. A single node may have more than 
one role in the algorithm. 

We exploit the size difference between the sort key and 
the entire record by manipulating only sort keys instead of 
records whenever possible. The data nodes eventually 
send sorted records directly to the A-node, which 
efficiently performs the final  merge step without doing sort- 
key comparisons. As explained below, the A-node  merge 
algorithm uses information computed during the processing 
of the sort keys by the merge nodes. The merge nodes 
send only this information to the A-node; the  sort keys are 
discarded as  the records are merged. 

We present a high-level description of the algorithm  and 
then give  an  example. Each data node sorts locally the 
portion of the file that it owns; in doing so, it computes the 
distribution of the sort keys that it encounters and sends 
the distribution to the coordinator. On the basis of such 
information from  all data nodes, the coordinator assigns 
each merge node a range of sort keys for which it is 
responsible and multicasts this partition function to all the 
data nodes and the A-node. (Multicasting is more  efficient 
than sending individual messages.) Each data node sends 
each of its sort  keys (in sorted order) to the appropriate 
(assigned) merge  node. Each merge node receives these 
sort keys from  all data nodes and merges them. At the 
same time,  it builds a list of node numbers. This list 
remembers, for each record in the result of the merge, the 
node from which it came. During the return-to-A-node 
phase, each merge node sends this stream of node 
identifiers to the A-node. The A-node reads the node- 
identifier streams from the merge nodes in the order 
specified by the global coordinator. (That is, the node- 
identifier stream from the merge node responsible for the 
smallest sort-key range is read first, and so on.) Then each 
data node sends its stream of sorted records to the A- 
node. The A-node uses the node identifier as an index to 
select the next data node and then reads the next record in 
the stream from that node. 

We illustrate this sort algorithm by an example that 
involves two data nodes and two merge nodes. (The sort 

688 key is the first character, and the data fields are 
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represented as -dddddd.) After the local sort phase, the 
contents of the sorted file are as follows: 

Data node 0 Data node 1 

A-dddddd B-dddddd 
D-dddddd C-dddddd 

The global coordinator determines that sort keys of value 
B or less should be sent to merge node 2 for merging,  and 
all other keys should be sent to node 3. 

streams: 
The  merge process at node 2 receives the following 

A (from node 0) B (from node I) 

(Note that data fields are not sent.) It generates 0 and I in 
its output stream to the A-node,  meaning that the smallest 
record is from node 0 and the next smallest record is from 
node 1. Similarly, the merge process at node 3 receives C 
(from node 1) and D (from node 0) and produces I and 0 in 
its output stream to the A-node. In the meantime, the sort 
process at node 0 sends the A-node a stream consisting of 
A-dddddd followed  by D-dddddd, and the sort process at 
node 1 sends the A-nodeB-dddddd followed by C-dddddd. 
Thus, the A-node receives two node identifier streams 
(from the merge processes) and two sorted record streams 
(from the sort processes). The contents of these streams 
are as follows: 

Node ident$er streams Sorted  record streams 

From node 2 From node 3 From node 0 From node I 

0 1 A-dddddd B-dddddd 
1 0 D-dddddd C-dddddd 

The A-node first reads the node identifier stream from 
node 2. The first element in that node identifier stream has 
a 0, indicating that the smallest record is from node 0 
(A-dddddd). The next element in the node identifier 
stream from node 2 has a I ,  indicating that the next 
smallest record is  from node 1 (B-dddddd). Similarly, 
the node identifier stream from node 3 has I and 0, 
indicating that the next two records should be read  from 
node 1 (C-dddddd) and node 0 (D-dddddd), 
respectively. 

An alternative method to the fully parallel algorithm  is 
to send both the sort key and the data (i.e., the entire 
record) to the merge nodes, which then send the merged 
records to the A-node. For the same example shown 
above, the contents of the merge nodes after the merge 
are 

Node 2 Node 3 

A-dddddd C-dddddd 
B-dddddd D-dddddd 
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Node 2 sends all  of its merged records to the A-node first; 
then node 3 sends all  of its merged records. Only one 
merge process sends merged records to the A-node at any 
given  time. This sequential portion can limit the degree of 
parallelism of the algorithm, especially when the merged 
records do  not fit  in the main  memory of a merge  node. On 
the contrary, in our fully parallel sort algorithm, the A- 
node reads records from  all data nodes in  an interleaved 
fashion. Even though the interleaved reading is slightly 
more expensive than a sequential reading,  an A-node 
employing current microprocessor technology can accept 
records from  disk drives on  five to ten data nodes without 
becoming the bottleneck. 

of our fully parallel algorithm and the alternative method 
just mentioned. We use K ,  D ,  and Z to represent the 
lengths of the sort key, data, and node identifier. (A record 
consists of the sort key and the data; thus, the record size 
is K + D.) For our fully parallel method, the 
communication per tuple is K + Z + (K + D). For the 
alternative method, the communication per tuple is 
2(K + D) .  The difference is D - Z per tuple. 

The semi-sort idea  (i.e., sorting keys) is unrelated to the 
parallel return-to-A-node phase idea. However, it  is 
advantageous to use a semi-sort in our algorithm, because 
the data are not needed by the nodes that merge. 

The efficiency of the algorithm is affected by the amount 
of skew in the data (the uneven distribution of data among 
the nodes). Since skew affects only the early phases of the 
sort (before tuples are redistributed), the adverse effect 
may be diluted. 

We implemented this sorting algorithm, developed an 
analytical model, and validated the model. The details are 
in  [13]. 

has been studied extensively [14, 1.51. Here we compare 
our fully parallel sort algorithm  with recently developed 
sort algorithms that are appropriate for message-passing 
database systems. One important difference is that all the 
other algorithms send entire records between nodes two or 
more times, whereas our algorithm sends records only 
once. In the FastSort algorithm  [16],  all sorted streams are 
merged  at the A-node. This sequential merge takes longer 
than the interleaved reading used in our fully parallel sort 
algorithm, because merging requires sort-key comparisons. 
The sort algorithms presented in  [17,  181 use a multiphase 
merge to reduce the number of sorted streams an  A-node 
merges, but the A-node still does merging. In [19], records 
are partitioned by range according to sort keys, and the 
A-node simply reads the sorted streams sequentially from 
one node at a time. Whether this algorithm or our 
algorithm  minimizes execution time at the A-node depends 
on main-memory sizes and disk configurations. If each 
sorted stream fits into the main  memory of the 

Let us look at the amount of inter-node communication 

Survey articles on parallel sorting show that the problem 

corresponding sort node, or if each sorted stream is stored 
in  an interleaved fashion across sufficiently many disk 
drives, sequential reading is preferable, because the A- 
node is the bottleneck. Otherwise, our form of interleaved 
reading is preferable. 

In summary, our sorting algorithm has the following 
advantages: 1) Each phase (except for very short intervals) 
is  performed  in parallel, yielding high utilization of 
resources and a low sorting time. 2 )  The algorithm reduces 
the amount of inter-node communication by using a semi- 
sort algorithm that sends only sort keys on the inter-node 
communication network. 

Parallel join algorithm using semi-join 
In this section, we describe a parallel join algorithm that is 
useful  when the join results are needed at a single node, 
called the A-node. 

Consider tables R and S. Each row has an identifier, a 
join column (a single letter in this example), and data. The 
result of the join is obtained by combining  all rows of R 
with all rows of S for which the join columns match. For 
example, R,  S, and the result of the join might  be the 
following: 

R S join(R, S) 

1 a r l l l l l  1 b s l l l l l  b r22222 s l l l l l  
2 b r22222  2 c s22222 b r33333 s l l l l l  
3 b r33333  3 d s33333 c r44444 s22222 
4 c r44444 4 e s44444 c r55555 ~22222 
5 c r55555 d r66666 s33333 
6 d r66666 

In a distributed database system organization, the rows of 
R and S are generally scattered over many nodes. For 
example, R and S may be stored on two nodes, as 
follows: 

R S 

Node I Node 2 Node 1 Node 2 

1 a r l l l l l  3 b r33333 1 b s l l l l l  2 c s22222 
2 b r22222 4 c r44444 3 d ~33333 4 e s44444 
5 c r55555 6 d r66666 

Computing the join in distributed databases in an  efficient 
way is  challenging. The following  method  is based on the 
idea of semi-join [20]: 

A first phase computes a semi-join by manipulating  (and 
sending on the network) only the join column values and 
not the (much longer) data. (In general, the semi-join 
algorithm  will use several nodes and leave the result 
spread over these nodes.) For example, we may 
obtain 689 
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Node 1 Node 2 

(1) 2 b (1) 1 (1) 5 c (2) 2 
(2) 3 b (1) 1 (2) 4 c (2)  2 

(2) 6 d (1) 3 

Each number in parentheses represents the home node 
of the row. 
The second phase, called join materialization, replaces 
the row identifiers with the actual data. This operation 
is itself a join and requires, if we are not careful, the 
exchange of a potentially large amount of data. In 
ARBRE, we developed two techniques that decrease 
the communication. Depending  upon the 
circumstances, one or the other may be chosen. 

Technique 1 
The novelty of Technique 1 is that the A-node participates 
in the join materialization. The data are  sent to the A-node 
directly without redistribution. Assume that we arbitrarily 
establish the order 1, 2, with the intention of first sending 
the data from node 1, then from node 2. Thus, if the 
following sequential streams (R stream and S stream) were 
available to the A-node, together with the result of the 
semi-join, the A-node could  read them in parallel and 
perform a one-to-one join (a straightforward merge) 
between the semi-join and these streams: 

R stream S stream 

(1) 2 r22222 (1) 1 slllll  
(2)  3  r33333 (1) 1 slllll  
(1) 5  r55555 (2) 2 s22222 
(2) 4 44444 (2) 2 s22222 
(2)  6  r66666 (1) 3 s33333 

These  streams can be constructed by extracting from the 
semi-join the row identifiers and ordinal positions in which 
the data are needed and sending this information to the 
nodes storing the particular rows.  (The node identifier 
comes in handy  here.)  E.g.,  consider R.  The  corresponding 
sequential stream can be obtained by sending 

Ordinal  number Row-id To node 

2 1 
3  2 
5 1 
4 2 
6  2 

The nodes receive the following information: 

Node 1 Node 2 

2 
5 

3 
4 
6 

The individual nodes replace these row identifiers with the 
data, obtaining 690 
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Node 1 Node 2 

r22222 
r55555 

r33333 
r44444 
r66666 

Similar streams are prepared for the data in S. 
The join materialization and the sending of the  data to 

the A-node are done simultaneously. The A-node reads the 
node identifiers in the semi-join result; e.g., the first tuple 
is (1,  1). Thus, the A-node picks up the data for R and for 
S from node 1. In general, the source nodes are different. 

Technique 2 
A larger reduction in communication is possible when the 
rows needed from R (without duplication) fit  in the 
memory of the A-node. The result of the semi-join 
indicates which rows of R are used  in the result. The A- 
node stores these rows in a structure in  memory  with a 
direct-access capability based on the row identifier 
(clearly, without duplication). This makes the building of 
the R stream unnecessary. The same technique can be 
used for S and generalizes to n-way joins as well. 

The proposed algorithm reduces the amount of 
communication because it eliminates duplication. The ideal 
case occurs when all the rows needed by the join fit  in the 
A-node memory. Then, the amount of communication for 
the materialization is proportional to the sum of the 
amounts of data from the various tables to be joined, 
rather than a product. The rows are sent to the A-node 
directly from where they reside in the database, without 
duplication. If the rows do not fit  in memory, Technique 1 
ensures that data are also sent directly from the nodes 
where they reside, although this time, duplication cannot 
be avoided. 

SFR: A new distributed join algorithm 
Multiprocessor hash-based join algorithms [21, 221 are 
desirable for the equijoin of two tables with little or no 
data skew. However, if the join is not  an  equijoin, if there 
are more than two tables to be  joined, or if there is 
significant data skew, a multiprocessor hash-based join 
may not be desirable or even applicable. The fragment- 
and-replicate (FR) join algorithm [23] is a useful alternative 
in these cases, since it handles any kind of join and can 
perform load  balancing. One drawback of the FR algorithm 
is its high communication cost. We have generalized the 
FR algorithm and, in so doing, reduced its communication 
requirements. 

The FR algorithm fragments one table by row across 
several processing nodes and completely replicates the 
second table at each of these processing nodes. Each node 
performs a local join and sends its results to the A-node or 
redistributes the results for any additional processing. The 
FR algorithm is asymmetric because it treats the two 

a 
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tables differently: It fragments one table and completely 
replicates the second one across all nodes. It is possible to 
reduce communication by  using a symmetric fragment-and- 
replicate (SFR) join algorithm. 

The SFR algorithm fragments both tables and replicates 
each fragment across some, but usually not all,  nodes. The 
replication pattern minimizes the amount of data 
communicated, yet it does not  affect the result of the join 
operation. Under certain circumstances, the SFR algorithm 
degenerates into the FR algorithm. Under all other 
circumstances, the SFR algorithm requires less 
communication than the FR algorithm. 

best illustrated by example. Assume that 100 nodes are 
available to join two 5-megabyte  (MB) tables. The FR 
algorithm broadcasts one table to all 100 join nodes and 
breaks the other table into 100 disjoint fragments, sending 
each fragment to a different join node. The SFR algorithm, 
in contrast, breaks each table into ten disjoint fragments 
and, at least conceptually, arranges the 100 nodes into a 
10 X 10 square. The ith fragment of one table is multicast 
to all nodes in the ith row of the square, while the jth 
fragment of the other table is multicast to the jth column of 
the square. The (i,  j)th node then joins these two 
fragments and sends its results to the destination node(s). 
Each join node in the FR  algorithm receives 5 MB + 
0.05 MB = 5.05 MB  of data, whereas each join node in the 
SFR algorithm receives 0.5 MB + 0.5 MB = 1 MB  of 
data. In this example, using the  SFR algorithm instead of 
the FR algorithm reduces communication by more than a 
factor of 5 .  

The differences between the FR and SFR algorithms are 

In general, the SFR algorithm uses a rectangular 
arrangement of join nodes rather than a square 
arrangement. The rectangular dimensions that minimize 
communication depend on the number of nodes performing 
the join and on the size of each table.  In addition, we have 
devised a round-robin method that automatically balances 
the load at the join nodes. The  SFR algorithm, its analysis, 
and the load-balancing enhancement have all been 
extended to accommodate N-way joins. The details of the 
method may be found in [24]. 

We implemented the SFR algorithm for a two-way join 
and measured its performance on ARBRE.  In one set of 
experiments on the join of two tables of equal size, using 
the SFR algorithm instead of the FR algorithm reduced 
communication by 40% and improved the response time by 
10%. These gains were realized even though only nine join 
nodes were used; our mathematical analysis predicts even 
larger reductions in communication as the number of join 
nodes is increased. 

Transaction  management 
Using  large numbers of nodes in a software database 
machine can substantially increase the overhead associated 

with executing a distributed transaction. In this section we 
present algorithms for reducing the communication and 1/0 
activity associated with atomic “commitment” and the 
communication associated with global deadlock detection 
in a database machine. The algorithms exploit the selective 
centralization of information: Certain information about a 
transaction is stored at a single node, regardless of what 
nodes generated the information. Storing information about 
different transactions at different nodes avoids bottlenecks 
and helps balance the load. 

Atomic commitment protocol 
“Committing” a transaction makes permanent the updates 
called for by the transaction, while aborting a transaction 
removes its updates from the system. All nodes at  which a 
transaction updates data need to agree on whether to 
commit or abort the transaction, in order to maintain the 
consistency of the data in the system. The sequence of 
steps the nodes execute in order to decide whether to 
commit or abort a distributed transaction is called an 
atomic commitment protocol [l]. An atomic commitment 
protocol requires 1/0 activity when a log  is forced, since 
forcing the log moves the log tail from volatile storage to 
nonvolatile, stable storage. The log tail consists of 
information, recently appended to the log, that has not yet 
been forced to nonvolatile, stable storage. 

An atomic commitment protocol can require many 
messages and  log forces. For example, the classic two- 
phase commit protocol [25, 261 requires four rounds of 
messages. For a distributed transaction involving N nodes, 
each round in this protocol requires N - 1 messages; 
therefore, committing this transaction with the two-phase 
commit protocol requires 4(N - 1) messages. Executing 
the transaction may require as few as 2(N - 1) messages, 
which means that the communication overhead for atomic 
commitment may be as large as 200%. The node that 
ultimately decides whether to commit or abort, called the 
coordinator, must force its log once, and each of the other 
N - 1 nodes must force its log twice, when a transaction 
is committed using the two-phase commit protocol. Hence, 
2 N  - 1 log forces are needed to commit a transaction. 
Optimized atomic commit protocols exist [27], but their 
communication and  I/O costs  are still  high. 

communication and  I/O activity associated with atomic 
commitment. Because of space limitations, we present 
only an overview of the protocol here. A complete 
description of the coordinator log protocol and its effect  on 
database crash recovery is in [28]. 

When several nodes participating in a transaction share 
a common  log, some of the log forces of existing protocols 
may  be converted into append operations without affecting 
the correctness of the protocol [27]. The coordinator log 
protocol extends this optimization to its ultimate limit by 

We developed the coordinator log protocol to reduce the 

691 
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forcing each transaction to use only one log, the log  of the 
node coordinating the transaction. All log records that 
each noncoordinator node generates while executing a 
transaction accompany its response to the coordinator. 
The coordinator appends to its log the log records it 
receives from other nodes as well as the log records it 
generates while executing its own portion of the 
transaction. Once the work associated with the transaction 
has been completed, the coordinator unilaterally commits 
the transaction by appending a commit record to its log 
and by forcing its log to nonvolatile, stable storage. Then 
the coordinator notifies the other nodes that the 
transaction has committed. Committing a transaction that 
involves N nodes requires only one log force and N - 1 
messages. Compared to the two-phase commit protocol, 
the coordinator log protocol saves 3(N - 1) messages and 
2 ( N  - 1) log forces when a transaction commits. 

Deadlock-detection algorithm 
Whenever deadlocks are unavoidable, they must be 
detected and broken. A global deadlock is a deadlock that 
spans several nodes, and many distributed algorithms exist 
to detect and break global deadlocks [29].  Unfortunately, 
the communication required by existing distributed 
deadlock-detection algorithms is frequently proportional to 
the number of nodes at which a transaction may be 
requesting locks. For example, if one transaction is waiting 
for a second transaction that happens to be setting locks at 
100 nodes, the system may need to check whether the 
second transaction is (indirectly) waiting for the first 
transaction at each of the 100 nodes. We circumvent this 
problem by redistributing deadlock information and 
running a distributed deadlock-detection algorithm  on the 
redistributed information. A detailed description of our 
approach to deadlock detection is contained in [30].  Below 
we give a simple introduction. 

A deadlock corresponds to a cycle in the transaction 
wait-for graph (TWFG), in which each vertex represents a 
transaction and each directed edge represents a transaction 
waiting for another transaction. The TWFG changes as 
transactions request and release locks. Before we look for 
cycles in the TWFG, we centralize the wait-for information 
about each transaction in the following manner. All edges 
emanating from a given vertex  are  sent to a deadlock- 
detection node that depends only on the transaction 
associated with the vertex. For example, if there are two 
deadlock-detection nodes, we could send all edges 
emanating from “odd” vertices to one deadlock-detection 
node (call that node ODD) and all edges emanating from 
“even”  vertices to the other deadlock-detection node (call 
that node EVEN). A distributed deadlock-detection 
algorithm would use the TWFG edges maintained by the 
nodes ODD and EVEN and  ignore the TWFG edges at the 
data nodes. The set of nodes at which a transaction may 

be requesting locks is thus irrelevant to the deadlock- 
detection algorithm. Edges that disappear from the TWFG 
when a transaction terminates or releases a lock are also 
removed from the TWFG  maintained by the deadlock- 
detection nodes. 

Any hashing function that maps transaction identifiers to 
nodes may be used to redistribute the TWFG. The range 
of the hashing function determines which nodes serve as 
deadlock-detection nodes. Note that if there is only one 
deadlock-detection node, our approach degenerates to a 
centralized approach for global deadlock detection. 

communication, redistributing the TWFG has some cost. 
Transactions with a small degree of average parallelism 
suffer  from this approach, while transactions with a larger 
degree of average parallelism  benefit.  Using a simple 
mathematical analysis, we examined several distributed 
deadlock-detection algorithms and learned that benefit was 
frequently gained when average parallelism  is greater than 
six nodes. Since a hybrid approach is viable, we 
recommend redistributing wait-for information only for 
transactions that may have a moderate to large degree of 
parallelism. The deadlock-detection algorithm  must then 
distinguish between the two classes of transactions. 

Although our approach to deadlock detection can reduce 

Discussion  and  future  work 
A message-passing multiprocessor is an  appealing 
configuration for a parallel relational-database system. 
ARBRE is a prototype that exploits such a configuration. 
Building  and evaluating the prototype taught us several 
important lessons about parallel processing for distributed 
databases. In this section we discuss these lessons, review 
our accomplishments, and describe important areas that 
need additional exploration. 

The most important lesson is that certain database 
interfaces designed and tuned for serial execution need 
adjustment for parallel and distributed execution. 
Adjustment is needed because the introduction of 
parallelism and distribution affects the frequency with 
which database facilities are used and the circumstances 
under which they are used. Consider, for example, the 
overhead for starting and committing a transaction. In a 
single-node database, all database operations for each 
transaction are executed at one node, and the transaction 
overhead is typically small  in comparison to the database 
work. In a parallel distributed database, each operation in 
the transaction may execute at a different node, and the 
transaction overhead at each node may be comparable to 
the actual database work at that node. This increase in 
overhead reduces transaction throughput and makes 
evident the need for a transaction facility with  much less 
overhead. 

Another illustration of this lesson involves temporary 
tables. In a single-node database, temporary tables are 
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used to hold intermediate results. In a parallel distributed 
database, temporary tables are also used to hold data 
either before or after they are redistributed, and a good 
strategy for evaluating the answer to a complex query may 
frequently redistribute data in order to exploit parallelism 
fully. For example, redistribution of data pages can 
minimize the effect of a poor horizontal partitioning of 
data, whereas redistribution of records can eliminate the 
skew introduced by scan predicates or join predicates. 
Redistribution may also be used to introduce skew to 
counter an unbalanced load  on the system. The resulting 
increased dependence on temporary tables makes the 
performance for manipulating such tables an important 
factor in overall system performance. 

operation requires adding functionality rather than 
improving performance. For example, the access method 
we used for ARBRE had no intra-transaction parallelism: 
The access method could  not exploit multiple processors in 
a shared-memory multiprocessor, and it could not overlap 
processing and I/O for a single transaction. Running 
several database systems at each node is a quick and easy 
way to circumvent these two limitations. The only 
requirement is that the database systems cooperate as 
independent databases in a distributed database system. 
The recommended way to enhance a database system is to 
make it support multiple threads for a single transaction 
and make  it exploit multiple processors in a shared- 
memory multiprocessor. We chose the former, easier 
alternative because it required much less work. In 
hindsight,  we believe we made the right choice for a 
research project. 

The second lesson that we learned from the ARBRE 
prototype is that there is typically no single horizontal 
partitioning of data that provides good performance for all 
transactions and queries. The performance of a given 
transaction or query depends on the way in which data are 
partitioned. Centralizing small transactions improves their 
throughput, because each transaction executes on fewer 
nodes, while decentralizing complex queries improves their 
response times, because each complex query is executed 
on more nodes. One way to address this conflict between 
throughput and response time is to have the horizontal 
partitioning depend on how  many records are related to 
one another. Consider the ACTIVITY table in our banking 
application. A personal savings account may have a small 
number of records in the ACTIVITY table, and these 
records could be assigned to the node that contains the 
corresponding ACCOUNT record. Joining the two tables 
would  not require any communication for that account, 
and sequentially scanning or aggregating the activity 
records for the account would  not take long. The activity 
for a large corporate account may be thousands of times 
greater than that for a personal account, so it makes sense 

In some cases, the adjustment for parallel or distributed 

to spread the ACTIVITY records for a large corporate 
account over several nodes.  Although this placement of 
data requires communication when a join occurs, it lets the 
system scan or aggregate the ACTIVITY records for the 
corporate account in parallel. The differences between the 
personal account and the corporate account illustrate how 
different groups of records must be treated differently. 
Given the number of related records in a group, a 
threshold function can determine the number of nodes that 
should manage the group. Other database researchers have 
advocated similar approaches [31, 321. 

One important goal  in  designing a parallel distributed 
database is  load  balancing. For simplicity,  we considered 
individual queries rather than the entire system load. 
Because query predicates make the number and 
distribution of intermediate results unpredictable, our 
parallel algorithms gather statistics and use this 
information to redistribute data appropriately. 

Unfortunately, no  single technique works for all sources of 
overhead introduced by parallelism  and distribution. We 
reduce communication whenever possible by exchanging 
record components rather than entire records, by 
introducing symmetry into an  algorithm, by introducing 
hashing into an  algorithm, and by exploiting  existing 
communication messages. In addition, we reduce logging 
by centralizing logging  on a per-transaction basis. 

Query optimization, load  balancing,  and scheduling are 
important topics that need further study. One approach to 
query optimization is to parallelize the best sequential 
implementation of a query [31, 331, while another approach 
is to consider parallel strategies during the optimization 
process. Scheduling must be considered at run  time, at 
compile  time, or at both times.  In the absence of 
scheduling, unrestricted dataflow execution can unleash 
too much  parallelism  and consume too many resources at 
one time. Without a priority mechanism, work on the 
critical path cannot receive favorable treatment. 

We believe that these problems are not insurmountable 
and that using general-purpose processors to implement a 
parallel database system is a promising approach. There is 
still much to be learned about parallelism, databases, and 
their interrelationships. 

Another important goal  is overhead minimization. 
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