Clustering IBM
Enterprise
System/3090
computers

for parallel
execution

of FORTRAN
programs

by L. J. Scarborough
R. G. Scarborough
S. W. White

Two IBM Enterprise System/3090™ Model 600J
computer systems, each with six processors
capable of executing vector and scalar
instructions, have been connected into a
cluster for parallel execution of single
FORTRAN programs. The clustering is
achieved through a combination of software
and hardware. When enabled for parallel
execution and allowed to use ali twelve
processors in the cluster, FORTRAN programs
have run as much as 11.7 times faster than
when run on a single processor. The combined
hardware and software technology is called
1BM Clustered FORTRAN. It was achieved by
modifying existing technology quickly to
provide new capabilities. This paper discusses
the modifications and the motivations behind
them. It summarizes the performance of

several applications executed with Clustered
FORTRAN. Finally, it describes how clustering
has been used to improve performance in
novel ways.

Introduction

The use of computer systems for numerically intensive
applications is increasing. New applications are being
developed, and new and existing applications are
employing ever-expanding quantities of computer
resources in their execution. Users continue to want the
results of their applications quickly.

In an effort to meet this challenge, many vendors of
computer systems offer parallel-processing systems in
which multiple processars or computers work together on
behalf of one application. The systems differ in their
methods, but it is common to divide the systems into two
classes: shared-memory systems and distributed-memory

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

667

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE

668

systems. In a shared-memory system, the multiple
processors share a common memory and communicate
through it. In a distributed-memory system, the multiple
processors communicate via an interconnection network.
Hybrid systems, which use a combination of these
mechanisms, also exist. In a hybrid system, a small
number of processors (four to sixteen) might access a
shared memory, and several such groups of processors
might be linked together by other means.

Proponents of shared-memory parallel machines point to
the high-bandwidth, low-delay communication possible on
these systems and also note that a commonly addressable
memory often removes the need for copying data between
processors. Supporters of distributed-memory parallel
machines claim that a lack of scalability is inherent in
shared-memory designs, since memory bandwidth cannot
increase without limit and since it is difficult to keep the
contents of all of the memories in agreement. Builders
have used various mechanisms to connect the separate
processors (or separate groups of processors) that form
their distributed-memory machines. In some designs, such
as that of the Cedar project [1-3], communication among
groups of processors occurs through a separate ““global”
memory with longer access times than the ““local’” memory
used within a group of processors. In others, such as the
work reported here, communication between groups of
processors occurs through a memory-to-memory message-
passing connection.

This paper discusses a method for linking high-end
multiprocessor computer systems into a single complex,
which we call a cluster, so that all of the processors in the
cluster can compute in parallel on a single FORTRAN
program. Our work was done for a cluster composed of
two IBM Enterprise System/3090™ (ES/3090™) Model 600]
computer systems [4]. These are shared-memory
multiprocessing computers. Each computer has six
processors, and each processor in our cluster had an
optional vector-execution element that enabled it to
execute vector instructions. Our cluster therefore
contained twelve vector processors executing in parallel.
More recently, Extended Clustered FORTRAN, an
extension of this work, was announced to support larger

clusters [S). These clusters may contain up to four
Enterprise System/9000™ (ES/9000™) systems, each having
up to six processors with integrated vector elements. This
permits twenty-four vector processors to execute in
parallel on a single FORTRAN program.

Our goals in this work were pragmatic. We wanted to
provide clustering for our high-end systems because these
systems are widely available, to us and our customers, and
clustering would increase their capabilities. We wanted to
use existing hardware and software to the maximum extent
possible because we wanted to develop something quickly
and inexpensively. We wanted to do this without

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

disrupting the product-development activities underway in
our company. So, in contrast to other approaches to
clustering, we ruled out extensive modifications to the
hardware or software. We ruled out plans that would
require years of research work or years of product-
development activity. We did not use the clever
mechanisms that do result from extensive research and
development. We did not, for example, consider adopting
the global-memory approach used in the Cedar project,
since this would have required a substantial redesign of the
memory subsystem, or synchronization registers such as
those present on some Cray systems [6). Instead, we
constrained ourselves to use simpler mechanisms. The
cluster of two ES/3090 computers we used was created by
providing a high-speed hardware link between the memory
subsystems of the two computers and driving it with
message-passing software. In the recently announced
cluster that connects four ES/9000 computers, the high-
speed hardware links from the computers are connected
through a switch.

Although the physical cluster available to us contained
only the two real ES/3090 computers, the software does
not explicitly limit the number of real computers that may
be linked into a cluster. Further, regardless of the real
computers in a cluster, the software allows users to create
arbitrary virtual clusters for running their programs. Just
as a real cluster is composed of one or more real
computers, each having one or more real processors, a
virtual cluster is composed of virtual computers having
virtual processors. Users can experiment with algorithms
designed for two six-processor computers, twenty
uniprocessor computers, ten 16-processor computers, or
any other virtual configuration, and map this experimental
configuration onto whatever real configuration is available
at run time. (The software imposes an arbitrary limit of 64
virtual computers per virtual cluster.)

The investigation of clustering was done as a joint study
with the Cornell National Supercomputer Facility (CNSF).
CNSF was founded with a special charter to explore
parallel computation and to provide parallel computing in a
production environment. The Parallel FORTRAN language
[7), designed for shared-memory multiprocessing, was
defined during an earlier joint study with CNSF. It was
implemented by IBM, placed into production at CNSF,
and used successfully for parallel programming of the six-
processor ES/3090 computer at CNSF. In 1989, CNSF
added a second six-processor ES/3090 computer to its
configuration and sought mechanisms that would allow all
twelve processors of the two ES/3090 computers to be
brought to bear concurrently on single application
programs.

FORTRAN was selected as the language for the
clustered system. FORTRAN is the language typically
used by programmers of numerically intensive applications

on parallel systems, and it has changed rapidly in the past
half decade to support a wide variety of parallel-computer
systems. Indeed, a survey article published four years ago
found twelve dialects of parallel FORTRAN for
commercially available machines and noted that other
machines had come into existence after the article was
submitted for publication [8].

IBM and CNSF jointly defined a set of extensions to
FORTRAN for parallel and clustered computing. The goal
was to leave the meaning and flavor of FORTRAN
unchanged, so that the established audience of scientists
and engineers already experienced in FORTRAN could
easily benefit from parallel computation. Completely
automatic compilation for parallel processors is in theory
the best way to achieve this goal, but compilers are not yet
able in practice to do a complete enough job for
production computing. They are able to analyze nests of
loops, and this was done in Parallel and Clustered
FORTRAN, but more is required. Programmers still must
modify their FORTRAN code for parallel execution, and
additions to FORTRAN are needed.

In Parallel FORTRAN, the programmer writes code as if
it were running on a single processor. Language extensions
are used to indicate where separate code sequences might
be assigned to separate processors. The sequences,
though, are still written like normal FORTRAN for
uniprocessors. The language extensions were designed to
permit large segments of code and data to be isolated for
execution by independent processors, as well as to allow
processors to work cooperatively on code or data that
could not be isolated. Both kinds of parallel possibilities
arise naturally in programs.

The question then arose: What could be done to allow
Parallel FORTRAN programs to be executed on a cluster
of two ES/3090 computers? Clustered FORTRAN was
developed as an answer to this question [9, 10]. Clustered
FORTRAN allows a set of applications to achieve
speedups when they are executed on a cluster. How many
applications ultimately will benefit depends on how well
their data can be distributed across the cluster, how often
they need to communicate between the ES/3090
computers, and how much overhead is associated with that
communication.

Clustered FORTRAN overview

IBM Clustered FORTRAN consists of three components.
The first of these is the Clustered FORTRAN compiler and
library software, which includes all of Parallel FORTRAN,
implements the new language extensions designed for
clustering, and extends the synchronizing routines of
Parallel FORTRAN to operate across the entire cluster. A
programmer uses the language extensions to identify the
parts of a program that are eligible for parallel execution.
The compiler then converts the program into pieces that

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

the run-time library can manipulate to cause the
application to execute in parallel on the available hardware
configuration.

The second component of Clustered FORTRAN is the
Node Manager, which is responsible for managing the real
computers in the real cluster and for creating the virtual
clusters of virtual computers requested by application
programs at run time. A copy of the Node Manager runs
on each of the real computers contained in the cluster; it
acts essentially as an extension of the VM/XA™ operating
system [11] of the real computer. The Node Managers in a
cluster coordinate among themselves, allocating resources
for the Clustered FORTRAN application programs
executing on the cluster. They also permit the installation
to tune, monitor, and control the execution of clustered
applications.

The third component of Clustered FORTRAN is the
high-speed connection facility, a hardware and software
combination that facilitates the transmission of large
amounts of data between the computers in a cluster. The
hardware is attached to the memory subsystems of the real
computers. It is managed by supervisor-state code in the
operating system and is shared by the application programs
executing in the cluster. The interface for communicating
between virtual computers resembles that of the existing
VM/XA Inter-User Communication Vehicle (IUCV) [12, 13].
IUCV provides communication between virtual computers
on the same real computer. Our adaptation allows the
virtual computers to lie on different real computers, and it
calls on the high-speed hardware connection to transport
data between real computers.

Figures 1 and 2 illustrate the relationships between these
components of Clustered FORTRAN and the real
computer systems on which they execute. Figure 1 is an
overview, showing a cluster of two real computers
connected by the high-speed connection facility. Each real
computer has a copy of the Node Manager. Running on
the real cluster is a single application program. The
application programmer has specified a virtual cluster
containing four virtual computers, two virtual computers
on each of the two real computers. Figure 2 shows the
structure of one of the virtual computers.

FORTRAN compiler and library

As indicated above, we wanted extensions to Parallel
FORTRAN that would allow it to operate across a cluster
of computers. The extensions were intended to conform in
style and spirit to the language of Parallel FORTRAN and
to enable the programmer to experiment with various
methods of partitioning a program across the cluster.

The major difference between Parallel and Clustered
FORTRAN follows from the nature of the memory on the
machines for which they were written. Parallel FORTRAN
was directed at programs operating on one computer; 669

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE

670

Clustered FORTRAN system components. An application program using four virtual computers is running on a cluster of two real

computers.

Clustered FORTRAN was developed for programs
operating across multiple computers that do not share
memory. We were not able to devise techniques for
automatically partitioning a program for computers that do
not share memory; this is very much a current topic of
computer science research [14, 15]. We implemented,
instead, a small extension to the Parallel FORTRAN
language that would allow a user to distribute the work of
an application across more than one computer system.
Compatibility with the existing language was important.
But, since we could not ignore the difference between
nonshared and shared memory, we felt that programmers
had to be aware of the difference, and we sought simple
extensions that acknowledged the difference.

The Parallel FORTRAN language is summarized in
Figure 3. It supports two primary styles of programming to
exploit parallelism. The first allows multiprocessing of the
statements within a given subroutine. The prime example
of this style of programming is the parallel loop, in which
different processors execute independent iterations of the
loop. All of the local and common data known in the
subroutine are available for access by all of the processors
(although selected scalar temporary variables may be
declared to be private). In a similar manner, the construct
for parallel cases allows different processors to execute
different blocks of statements concurrently.

In the second style of programming for parallelism, the
user originates and schedules subprograms that execute

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE

independently of the program calling them and of each
other. These independently executing subprograms are
called tasks. When originated, each task has its own local
data area, its own set of common blocks, and its own set
of paths (called unit numbers in FORTRAN) for
communicating with files. Work is assigned to a task by a
SCHEDULE statement, which names the subroutine at
which the task is to begin its execution. The SCHEDULE
statement also specifies what data (if any) belonging to the
routine executing the SCHEDULE statement are to be
shared with the task being scheduled. Only the specified
data are shared, and the sharing lasts only for the single
call to the task.

The strong separation of tasks and the strong control
over data sharing were intended to isolate the operation of
tasks, so that programming errors could be more easily
located. Parallel programming errors are often intermittent
and are notoriously difficult to find. Sharing only the data
explicitly listed on a SCHEDULE statement accomplishes
two things. It reduces enormously the amount of data
subject to inadvertent update, and it also delimits exactly
the data that are exposed to asynchronous manipulation.
(If a user fails to share data that must be shared for the
program to operate correctly, the error will be repeatable
and therefore more easily found.) This strong separation of
tasks also makes it easy to incorporate existing routines,
either serial or parallel, into larger parallel programs.
Provided they are given the data they expect, tasks can

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

Real computer.

VM/XA operating system

- Virtuial computer

FORTRAN library and CMS/XA supervisor

FORTRAN application
Main program
FORTRAN FORTRAN FORTRAN
task task . o 0 task
1 2 n
- .
Virtual Virtual Virtual
pmo;:ssor proc;ssor proc;ssor
Real Real Real
proc;:ssor proc;ssor o o » procgssor
— -

Structure of a virtual computer. A virtual computer with three virtual processors is running on a real computer with six real processors. The
application program has originated a number of tasks and bound them to the virtual computer.

run securely in isolation, unaffected by other parts of the way to distribute across computers the execution of
larger program. statements within a subroutine, such as the statements
It is obvious that isolated tasks can map naturally onto a within a parallel loop. The data referenced by the
clustered system. In contrast, we did not see an efficient statements within a subroutine must be partitioned if the 671

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991 L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE

672

Statements for Parallel Loops

PARALLEL LOOP stmtno ;] :indvar=expl,exp2[,exp3]
PRIVATE (var [,var ...])

DOFIRST {LOCK]

DOEVERY .

DOFINAL: [LOCK]

STOP-LOOP stmino

Statements for Parallel Cases

PARALLEL CASES

PRIVATE (var [,var ...]) :
CASE {m [,WAITING FOR {CASE n | CASES {n1-[,n2 ...1)}]
END ' CASES

Statements for Parallel Tasks

ORIGINATE ‘ANY TASK taskid

TﬁRMIHATE TASK taskid

SCHEDULE [ANY]. TASK taskid,
[TAGBING (tagvall [,tagval? i..1).]
[SHARING {shrcoml [,shrcom2 - ..]),]
[COPYING (cpycoml [,cpycomZ ...]):]
[COPYINGI(cpicoml [,epicom2 - ::]);)
[COPYINGO{cpocoml [,cpocom2 ..]),]
CALLING subnam [([argl [;argZ-...]1])]

WALT .FOR [ANY] TASK taskid [, TAGGING (tagl [,tag2 ...1}]

WAIT' FOR ALL TASKS:

Parallel FORTRAN statements for parallel processing.

data are to be distributed, but in general we do not know
how to partition such data. An alternative would have
been to simulate a shared-memory system on the
distributed-memory cluster, sending pages back and forth
as they were accessed by the different computers in the
cluster. The cost of this simulation was expected to be
very high. It would have required extensive programming
in privileged operating-system code and would have led to
more frequent communication of smaller units of data.
Instead, in order to optimize the performance of the link
between the computers, we wanted an interface that
allowed large amounts of data to be communicated at each
transmission. For these reasons we focused on extending
the Parallel FORTRAN tasking statements to work across
the cluster, something that could be done primarily in the
FORTRAN compiler and library with minimal changes to
the privileged operating system code, and we provided
programming constructs that send large amounts of data
between virtual computers in one transmission.

The SCHEDULE statement in Parallel FORTRAN
allows a programmer to provide data to a called task in
several ways. Named common blocks may be copied into
the task before it executes, out of the task after it
executes, or both, with different choices possible for each

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE

common block. Named common blocks may also be
shared between the tasks, which means that the called task
accesses directly the caller’s copy of the common block.
Finally, the caller may specify arguments for the
subroutine at which the called task begins its execution.
These are shared with the subroutine in the normal manner
of FORTRAN (accessed by address and not by value). For
example, the statement

SCHEDULE TASK N,
SHARING (COMON1, COMON2),
COPYING (COMON3, COMON4),
CALLING SUBX (ARGA, ARGB, ARGC)

directs the sharing of common blocks COMON1 and
COMON?2, the copying of common blocks COMONS3 and
COMON4 (into the task before execution of the subroutine
and out of the task afterward), and the sharing of
arguments ARGA, ARGB, and ARGC. COPYINGI or
COPYINGO clauses can be used to specify copying in or
copying out only.

In a clustered environment, common blocks and
arguments must be copied, rather than shared, when they
are used to communicate between tasks on different
computers in the cluster. Language was already available
in Parallel FORTRAN for copying common blocks, but not
arguments, so a language extension was defined to provide
for the copying of arguments. A user may specify the
phrase “ARG(*)”’ in the COPYING, COPYINGI, or
COPYINGO clauses of a SCHEDULE statement to
specify how arguments should be copied. Individual
arguments may also be tagged to indicate different forms of
copying: “=A" (modeled on the assembly-language literal)
means to copy the value of the variable A into the
subroutine as its argument (i.c., copy on input); “A="
(modeled on the FORTRAN assignment statement) means
to copy the value returned for the argument by the
subroutine into the variable A (i.e., copy on output); and
“=A="’ causes copying in both directions. (The Clustered
FORTRAN language is summarized in Figure 4.)

One additional extension for arguments was thought
important. If an argument is an array, the syntax above
permits copying the entire array. But sometimes a loop
may be used to partition an array computation across
tasks, so language was needed for passing array partitions
to the tasks. The Fortran 90 colon notation for array
sections [16] was selected as the method for specifying
array partitions.

With these language extensions, programmers can copy
common blocks and arguments between tasks running on
different computers. The data to be copied are specified at
the point where the subroutine in the task is scheduled for
execution, and transmission of the data takes place
synchronously, from the perspective of the caller, when
the caller schedules a task or waits for its completion. This

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

is sufficient for many applications. However, message-
passing constructs that allow tasks to communicate at any
point during execution are known to be an additional
requirement.

Since tasks are expected to be long-lived and relatively
large, it seems reasonable to place them on specific
computers in the cluster when they are originated and to
keep them there. But what computers are available, and
which computer shall be used for a given task? We left this
open to the programmer.

As mentioned earlier, the programmer may specify an
arbitrary virtual configuration for executing an
application—an arbitrary virtual cluster of virtual
computers, each virtual computer having its own storage,
disks, and processors. The programmer may also specify a
mapping between the virtual computers in the virtual
cluster and the real computers in the real cluster. The
virtual configuration is specified at run time and may be
changed, along with the mapping from virtual to real
configuration, from run to run. It is the job of the system
software running on the real computers to construct and
operate the virtual cluster specified by the programmer.

The user specifies the virtual configuration in a file that
is read when the program begins execution. The
configuration file contains one record for each virtual
computer in the virtual cluster. As an example, the file

COMPUTER PROCS(6), STORAGE(128M), BINDING(MASTER)
COMPUTER PROCS(3), STORAGE(128M), BINDING(HELPER1)
COMPUTER PROCS(3), STORAGE(128M), BINDING(HELPER2)
COMPUTER PROCS(3), STORAGE(128M), BINDING(HELPER3)

requests a virtual cluster containing four computers, each
with 128 megabytes of storage. One computer has six
processors; the other three have three processors apiece.
The programmer may refer to specific virtual computers by
number (1 through 4) or by arbitrary symbolic names
(MASTER, HELPER1, HELPER?, and HELPER3 in the
example). Additional options (see {9]) may be used to
place the virtual computers onto specific real computers.

The virtual configuration file is consulted when a task is
originated. An ORIGINATE statement creates a task and
returns an identifier to the user. When used in its basic
form,

ORIGINATE ANY TASK ijtask,

the ORIGINATE places the new task on the same virtual
computer as the originating task. The two tasks can
therefore share arguments and common blocks. But the
user may also specify the virtual computer on which the
task should be placed by using an extended form,

ORIGINATE ANY TASK itask, BINDING(ibind) ,

and giving, in the variable or constant ibind, the number
or symbolic name of the virtual computer for the new task.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

Statements for Parallel Tasks

ORIGINATE ANY TASK taskid, BINDING (ibind I chind)

SCHEDULE [ANY] TASK taskid, :
[COPYING {[ARG(*) I, cpycoml [,cpycomZ ...J11),]1
fcoPYINGI([ARG(*) [, cpicoml [,cpicom2 ...]1}}.]
{CoPYINGO([ARG(*) [, cpocoml [,cpocomz:...}]1).]
CALLING subnam{([{=}argi[=]) [,{=)arg2[=] ...1})]

Extensions to Parallel FORTRAN for clustered computing. The
new constructs are the BINDING clause, the ARG(*) operand, the
**="" notation, and the Fortran 90 syntax for partitioning
array arguments (not shown).

A task created with the BINDING keyword can
communicate with the originating task only through copied
data.

The BINDING clause of the ORIGINATE statement
and the syntax for copying arguments and array partitions
in the SCHEDULE statement are the only new language
constructs needed in Parallel FORTRAN to enable it to
operate in a cluster. The programmer must still analyze the
application to ascertain how data can be partitioned and
work can be distributed. For some applications, the
partitioning may correspond naturally to the existing
algorithm and its serial implementation. For others, the
partitioning may require a new algorithmic approach.

Programs that are partitioned to run on multiple
computers can still be run with a single computer
(assuming they still fit within storage). Regardless of the
configuration, Clustered FORTRAN maintains the
semantics for copied data specified by the user. Thus, a
program written for clustering can execute correctly with
or without a clustered system. Executing on a single-
computer system, especially on a uniprocessor, can
simplify debugging. On a uniprocessor, the program
executes in a repeatable manner (the statements execute in
the same order for the same data}. Deterministic bugs can
be found and removed. Thereafter, the program may be
run on a cluster, where parallel components of the
program can execute concurrently and the order of
statement execution may or may not be repeated.

The FORTRAN library was extended in several ways
for clustered computing. Inquiry functions were added to
allow the user to ask about the number of virtual
computers or, indeed, to retrieve the entire virtual
configuration along with its mapping to the real
configuration. The synchronizing functions that Parallel
FORTRAN provides to users—its lock routines and event
routines—were extended to operate across the entire
cluster. New synchronization functions were added, most
notably some that perform interlocked arithmetic and

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND §. W. WHITE

673

674

logical operations on variables. These functions, which
follow suggestions from the Los Alamos National
Laboratory [17], are more natural for some applications
than are events and locks. They provide the ability for
tasks to modify a shared counter or to wait until it reaches
a specified value. Tasks running across the cluster may use
such counters in many ways, such as dynamically
partitioning the pieces of a computation among themselves.

Clustered FORTRAN also incorporates some changes
that are independent of clustering. Subroutines, for
example, may be called from within parallel loops.
Routines to do fast atomic updates of variables in memory
are provided to coordinate tasks running in the same
virtual computer. These improvements were suggested by
user experience with Parallel FORTRAN.

In summary, with a very few syntax additions, Parallel
FORTRAN has been extended for clustered computing.
Now, with Clustered FORTRAN, an application
programmer can use a single tool to exploit parallel
computing over a wide range of machine capabilities. The
user can partition a program at the highest level to take
advantage of clustered (distributed) parallel execution.
Within each partition, the user can identify places for
shared-memory multiprocessor execution. And within each
of these pieces, the user can take advantage of the vector
execution capabilities of the compiler and hardware. When
the program is executed, the Clustered FORTRAN library
continues the approach of the Parallel FORTRAN library
[18], mapping the user-specified parallelism onto the
resources available. The user prepares one source
program, augmented to reveal parallelism but independent
of a run-time configuration, and it remains the job of
FORTRAN to execute that program on the hardware
available at run time.

Node Manager
Our software was intended to operate initially on two
ES/3090 Model 600J computers. Rather than design it for
“two six-ways”’ or “twelve one-ways”* (either of which
would have imposed a particular view of how to program a
cluster of shared-memory multiprocessor computers), we
wanted the software to be open-ended and flexible. We
therefore allow users to write programs for arbitrary
clusters of computers. The chosen configuration—a virtual
cluster of virtual computers—is mapped at run time to the
real cluster of real computers. This flexibility supports a
variety of programming styles and run-time configurations.
Indeed, it has always been a goal of Parallel and Clustered
FORTRAN to make FORTRAN programs independent of
the real hardware system, so that they can run on
whatever hardware is available.

It is the job of the Node Manager software to construct
and operate the virtual cluster specified by the
programmer. A copy of the Node Manager runs on each of

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S§. W. WHITE

the real computers in the cluster, each controlling the
allocation of resources on its own computer. But the Node
Managers in the cluster also communicate as peers, jointly
coordinating the allocation of resources across the
complex.

When a Clustered FORTRAN application begins
execution, the Node Manager running on the local real
computer is asked to allocate the virtual configuration
specified by the programmer. It communicates with the
other Node Managers; together they allocate the specified
virtual computers and connect them into a virtual cluster.
Direct virtual communication links are initialized between
each pair of virtual computers. {The direct links are used
during execution of the application; the Node Managers
are not involved in communications between the virtual
computers.) Once the virtual cluster has been created and
initialized, the application program is free to execute on
the cluster. When it completes, it notifies the Node
Manager on its local computer. The Node Manager
communicates with its peers, and collectively they delete
the virtual cluster from the system.

The Node Managers customize themselves when they
first begin execution, as directed by a control file. The
control file can be modified to suit local conditions. The
file specifies such parameters as the real computers in the
Clustered FORTRAN complex, the limits on resources
that any application is permitted, and the names of the
authorized system operators. The authorized operators
may issue commands to control the operation of the
complex. Most elements of the control file can be changed
by operator commands while the system is running.
Commands are also provided for such operations as
querying status, canceling jobs, and coupling and
uncoupling real computers from the real cluster.

The Node Managers also have the ability, at specific
points in their processing, to call subroutines provided by
the local installation. These subroutines can be used to
modify or refine the operation of the system for the local
environment. For example, the CNSF at Cornell defines
for itself how accounting information is accumulated and
processed for a clustered application. It screens jobs and
prioritizes them. It controls dynamically the total number
of jobs and the total number of virtual computers that can
be active at once. It also defines and implements its own
policies for balancing resources among users. CNSF
strives to provide parallel-computing resources to a set of
high-priority users while still supporting other users on a
fully loaded system. The high-priority users expect quick
turnaround time because they have adapted their programs
for parallel execution. Priority for parallel users, though,
means that other users may be delayed. CNSF is
continually refining its methods and policies to balance the
needs of both kinds of users, and it has developed facilities
beyond those provided by the Node Manager to balance

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

the system dynamically between short-running and long-
running jobs, between serial jobs and parallel jobs, and
between high-priority users and other users [19].

Connection facility

As mentioned above in the Clustered FORTRAN
overview, the real computers in a Clustered FORTRAN
complex are joined by means of the Clustered FORTRAN
connection facility, a combination of hardware and
software that facilitates transmission of large amounts of
data between the computers. The software interface

to the connection facility is based on the Inter-User
Communication Vehicle (IUCV) interface provided by
VM/XA. TUCV permits communication between virtual
computers on a single real computer; minor extensions
were made to permit communication between virtual
computers on different real computers.

Elements of the communication protocols should be
mentioned. First, the nature of the communication affects
the amount of data to be sent. Much of the communication
in Clustered FORTRAN can be supported with short
transmissions that convey synchronization information or
identify specific functions to be performed. However, the
application program may also ask for transmission of
hundreds of megabytes of data when common blocks and
arguments are to be copied. Second, user data move out of
or into user storage synchronously with the user’s request
to send or receive. If the amount of data is small, the data
may be packaged into a buffer that can be sent later, and
the sender is permitted to proceed. If the amount is large,
though, the sender may be delayed until all of the data
have been sent. The choice is made by the FORTRAN
library. A third element of the protocol is that, from the
perspective of the library, the transmissions usually are
asynchronous. The library is designed so that commands
generally do not require acknowledgment. For example,
when a program requests that a task be originated on a
different virtual computer, the local library creates an
identifier for the remote task and returns it to the calling
program immediately. The calling task is then allowed to
proceed with its execution; the protocol requires only that
the caller be given a unique identifier for the new task in
order to continue beyond the ORIGINATE statement.
Subsequently, and asynchronously, the local library sends
a command to the other virtual computer, directing it to do
the processing required to create the actual task. This
processing may proceed asynchronously and need not be
acknowledged.

The communication paths required to support a
Clustered FORTRAN application run from the FORTRAN
library to a Node Manager (to obtain resources), from
Node Manager to Node Manager (to allocate and initialize
resources), and from FORTRAN library to FORTRAN
library (to distribute and synchronize FORTRAN work and

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

data). The same software interface is used for all of these
interactions. System-level software actually moves the data
between virtual computers. When the virtual computers
are on the same real computer, the data can be copied
easily. When the virtual computers are on different real
computers, the data are sent over the high-speed hardware
connection.

Clustered FORTRAN performance

Although Clustered FORTRAN is still relatively new at
Cornell, applications have been executed, and performance
measurements have been made. Some of these are the
traditional observations of speedups as a function of the
number of processors. Others, though, reveal that new
possibilities for improving performance exist with
clustering. The examples presented in this section show

¢ Speedups due to additional real processors.

¢ Speedups due to additional real memory. (A cluster of
two ES/3090 computers has twice the real memory of a
single ES/3090.)

o Simplification of programs due to additional virtual
memory. (Each virtual computer used in a computation
gives the programmer over 900 megabytes of virtual
memory in which to place data.)

The initial users of Clustered FORTRAN were
interested in performance, and they chose applications that
were expected to adapt naturally to the underlying physical
architecture. These users partitioned their data to use
nonshared memory; sometimes large data arrays were
communicated in the process. We have these programs
available for measurement. We wanted to ensure that the
implementation of Clustered FORTRAN enabled such
applications to perform well. Applications will be found,
however, for which the costs of communication between
the ES/3090 computers will be too high to allow reasonable
speedups. Research in algorithms for distributed-memory
systems may identify alternative ways for implementing
applications to minimize the communication costs [20-23].
Since Clustered FORTRAN allows the virtual
configuration for executing a program to be varied from
run to run, programmers of such algorithms will be able to
experiment easily with a variety of configurations, ranging
from a single scalar uniprocessor computer to a cluster of
vector multiprocessor computers, using a single source
program.

Matrix multiplication, a well-known algorithm that often
benefits from additional processors, is the first algorithm
for which we have measurements. The nature of the
computation allows uniform partitioning of the work
among computers, simply by giving each an equal amount
of the result matrix to calculate. The Clustered FORTRAN
language was used to split the calculation into two equal

675

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE

Table 1 Speedups due to clustering of additional processors for a human genome application.

Problem size

One computer (6 processors)

Two computers (12 processors)

(number of
clones) Speedup of Speedup of Speedup of Speedup of
total job FORTRAN program total job FORTRAN program
(start to end { first to final (start to end (first to final
of whole job) user statement) of whole job) user statement)
2000 5.03 5.7 6.08 10.93
4000 5.60 5.77 9.45 11.44
8000 571 5.81 11.13 11.78

pieces and to assign them to two virtual computers. The
virtual computers were defined to be six-processor
multiprocessors; one virtual computer was placed on each
of the two real ES/3090 Model 600J computers in the real
cluster. Parallelism within the virtual computers was easily
achieved by exploiting the parallel matrix multiplication
routine (DGEMLP) available in Release 4 of the
Engineering and Scientific Subroutine Library (ESSL) [24].
With the use of DGEMLP on the pair of ES/3090-600]
computers, execution rates above 1200 million floating-
point operations per second have been achieved. This is
10.8 times faster (using twelve processors) than the serial
version of the DGEMLP routine (DGEMUL) on the same
machine.

Table 1 shows the speedups experienced for a program
involving human genome research from the Los Alamos
National Laboratory [25, 26]. (Speedup is the time for
execution on one processor divided by the time for
execution on multiple processors.) Results are shown for
execution of the same Clustered FORTRAN program on a
one-computer cluster (six processors) and a two-computer
cluster (twelve processors). The table reports the speedup
achieved in the application program itself, as determined
from the time interval between the first and the last user
statement (in FORTRAN). It also reports the speedup
achieved over the whole job, including the system
overhead of initializing and terminating the virtual cluster,
as determined from the interval between the time the job
began and the time it ended. As the problem size
increased, the roughly constant system overhead was
amortized over longer job times, so the two measures of
speedup converge. The problems of interest at Los Alamos
are even larger than the ones we measured. Furthermore,
the processing time for this program increases as the
square of the problem size. We therefore anticipate that
these large problems will display speedup factors in excess
of 11.8 with twelve processors.

The above examples emphasize the one major factor
that is most readily associated with parallel processing—
the benefit from additional processors. Clustered
FORTRAN offers additional possibilities because of the
flexibility of its virtual-cluster configurations. Experiments

676

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

with a variety of virtual configurations have demonstrated
performance and programming benefits that stem from
clustering but are not directly related to additional
processors. Some applications have so much data that
memory itself, not CPU power, is the ptime bottleneck to
performance. In these cases, clustering offers new ways to
improve performance.

Since each virtual computer is a complete virtual
machine with its own virtual memory, a user can obtain
additional virtual memory simply by defining additional
virtual computers. Some of the Cornell users have
applications that require several gigabytes. Previously
they have had to write code that would read and write
their data a piece at a time, in order to stay within the
999-megabyte limit of a VM/XA virtual machine.
Furthermore, some of these programs iterate over the
data, which means that the data must be read and written
repeatedly. For problems in which the data can be
partitioned, placed in distinct virtual computers, and
operated on by local tasks, additional virtual computers
may allow the programs to contain all of the data they
need and to reference the data directly instead of by
reading and writing external storage.

This can be a programming convenience, but it is also a
way to improve performance. External storage is relatively
slow compared to the electronic storage used by the
processors of a computer. Clustering, even on a single real
computer, can give a user access to additional real
electronic storage, since the virtual memory of multiple
virtual computers, each at the 999-megabyte limit, can be
contained concurrently within the real electronic storage of
a single real ES/3090 computer. This may eliminate the
need not only for reading and writing from external storage
but also for paging from external storage.

When a program is run on a pair of real ES/3090
computers, additional performance may be gained. These
systems have two classes of electronic storage: a fast
electronic storage (central storage) which is accessed
directly by the processors as they execute instructions in
the application program, and a larger, but slower,
electronic storage (expanded storage), which cannot be
used directly by the application program [27]. Both

categories of storage are realized with semiconductor
memory devices. The operating systems of the real
computers page data between these two categories of
storage.

A Clustered FORTRAN program running on a pair of
ES/3090 computers can have twice as much fast, directly
accessible, central storage available for its execution as it
can when running on a single computer. If a program
pages on a single system but does not page when spread
across the cluster, there may be a reduction in the total
work performed for the program, and the program may
execute faster with respect to both CPU time and elapsed
time. In this case, system throughput may actually be
improved by clustered execution.

Seismic modeling code [28] from the IBM Rome
Scientific Center illustrates this effect. Using all six
processors of an ES/3090-600J computer, the program runs
only 1.95 times faster than it does with a single processor.
A speedup factor closer to six could not be achieved
because of paging overhead. However, a cluster of two
ES/3090-600] computers has enough central storage to hold
the entire problem and execute it without paging. When
the problem was partitioned between the two real
computers, the speedups achieved actually exceeded the
number of processors allocated when two, four, or six
processors were used. (The processors were divided
equally between the two real computers.) A speedup of
10.96 was achieved when using all twelve processors in the
cluster. The paging on the single-computer system was
done between central storage and expanded storage. Had
the program been run on a system that backs central
storage with disk files instead of with expanded storage,
one would expect even worse speedups on the single-
computer system. Table 2 summarizes the results of these
experiments.

Most scientific problems are not inflexible with regard to
storage requirements. Scientists can vary grid dimensions,
storage structures, the number of variables retained rather
than recalculated, and the degree of computational
accuracy required. These parameters are often constrained
artificially in order to make a problem fit into the limited
amount of storage available on a particular computer.
Because it makes additional storage accessible, clustering
can ease these constraints.

One may ask, Why not simply expand the storage of one
computer, instead of clustering several computers
together? One reason is that the hardware designers may
not be able to add more memory to a given computer.
Memory systems are typically implemented with
hierarchies of fast to slow storage. Factors such as cable
lengths, power supplies, and cabinet dimensions may
preclude adding more fast storage. Another reason is that
the computer may be well balanced, with respect to
memory and processors, for its normal run of jobs.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

Table 2 Speedups due to clustering of additional real
memory as well as processors for a seismic modeling
application (adapted from [28]; reproduced with permission).

Number of Small problem Large problem
vector
processors Speedup Speedup Speedup Speedup
using one using two using one using two

computer computers computer computers

1 1.00 — 1.00 —
2 1.98 1.95 1.57 2.21
4 3.85 3.78 2.02 4.33
6 5.68 5.51 1.95 6.24
12 — 9.71 — 10.96

Additional, expensive memory may help only a few
applications. Clustering, in contrast, lets an application use
more memory without affecting the overall balance of the
system. Given a group of existing computers and given a
job that needs more memory than is available on any one
of the computers, a system manager now has a choice.
Buying a bigger machine is one way to run the job.
Linking the computers into a cluster is another.

Concluding remarks

Clustered FORTRAN extends the supercomputing
capabilities of the IBM ES/3090 and ES/9000 computer
systems by allowing customers with appropriate
applications to employ the resources of multiple high-end
systems for the execution of single FORTRAN programs.
Clustering can substantially reduce the time required to
run such applications, since additional processors can be
brought to bear on computations and since additional
storage is available for data. Through clustering, a scientist
can run problems today which otherwise would have to
wait for future machines.

Clustered FORTRAN enables programmers to take
advantage simultaneously of multiple computers with
distributed memory, of multiple processors sharing
memory, and of multiple vector-processing elements.
Clustered applications can be, but need not be, executed
with dedicated system resources. They can therefore be
developed and executed in normal system environments.
When, however, a customer such as the CNSF at Cornell
desires it, all of the dedicated resources of two
ES/3090-600J computers can be used for a single
FORTRAN application.

The design of Clustered FORTRAN permits
experimentation and leaves open paths for possible future
exploration in parallel programming. For example, at all of
the language interfaces where Clustered FORTRAN
communicates data between virtual computers, the mode
and type of the data involved are known. If it becomes
necessary to translate number formats, perhaps to support

clustering for machines of different architectures, the 677

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE

678

library can be given the information needed for data
conversion. This information can be accumulated by the
compiler without requiring the user to specify modes and
types explicitly. Similarly, virtual configurations need not
map directly to the real configurations available, so virtual
configurations can be used to simulate other clusters of
computers. For example, a configuration of 32 virtual
computers has been used to simulate the IBM Parallel
Processing Compute Server installed at CERN in
Geneva [29, 30}. Such experimentation may provide
valuable information for the design of larger clustered
systems.

Acknowledgment

In conclusion, we thank the Cornell National
Supercomputer Facility. High-end customers such as
CNSF are continually stretching the limits of their
computing resources and continually demanding new
capabilities of their computing systems. In the case of
Clustered and Parallel FORTRAN, CNSF challenged us to
provide advances in computing for FORTRAN
programmers. CNSF then participated with us in devising
solutions to the challenges and in testing the resulting
offerings in a production environment. We thank CNSF for
its challenge to us, for its involvement in our work, and for
its provision of a facility where programmers may
experiment with clustered scientific applications.

Enterprise System/3090, ES/3090, Enterprise System/9000,
ES/9000, and VM/XA are trademarks of International Business
Machines Corporation.

References

1. D. Gajski, D. Kuck, D. Lawrie, and A. Sameh, ““Cedar—
A Large Scale Multiprocessor,”” Proceedings of the 1983
International Conference on Parallel Processing,
Columbus, OH, August 1983, IEEE Computer Society
Press, pp. 524-529.

2. D. Kuck, E. Davidson, D. Lawrie, and A. Sameh,
““Parallel Supercomputing Today and the Cedar
Approach,” Science 231, 967-974 (1986).

3. P. Emrath, D. Padua, and P. Yew, ‘“Cedar Architecture
and Its Software,”” Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, Vol.
1, Kailua, Kona, Hawaii, January 1989, IEEE Computer
Society Press, pp. 306-315.

4. S. G. Tucker, “The IBM 3090 System: An Overview,”
IBM Syst. J. 25, 4-19 (1986).

5. Supercomputing Systems Extensions, Order No. G320-
9944, March 1991; available through IBM branch offices.

6. CRAY X-MP Computer Systems Functional Description
Manual, Order No. HR-3005, Cray Research Inc.,
Mendota Heights, MN, 1987.

7. IBM Parallel FORTRAN Language and Library
Reference, Order No. SC23-0431, March 1988; available
through IBM branch offices.

8. A. Karp and R. Babb, ““A Comparison of 12 Parallel
FORTRAN Dialects,” IEEE Software 5, 52-67 (1988).

9. IBM Clustered FORTRAN Language and Library
Reference, Order No. SC23-0523, May 1990; available
through IBM branch offices.

L. 1. SCARBOROUGH, R. G. SCARBORQUGH, AND S. W. WHITE

10. IBM Clustered FORTRAN Installation and Operation for
VM, Order No. SC23-0524, May 1990; available through
IBM branch offices.

11. Virtual Machine/Extended Architecture System Product
General Information (VM/XA SP Release 2), Order No.
GC23-0362, July 1988; available through IBM branch
offices.

12. Virtual Machine/Extended Architecture System Product ‘
CP Programming Services (VM/XA SP Release 2), Order
No. SC23-0370, November 1988; available through IBM
branch offices.

13. CMS Application Program Development Reference
(VM|/XA SP Release 1 and Release 2), Order No. SC23-
0402, March 1988; available through IBM branch offices.

14. D. Callahan and K. Kennedy, ‘“Compiling Programs for
Distributed-Memory Multiprocessors,”” J. Supercomputing
2, 151-169 (1988).

15. C. Koelbel, P. Mehrotra, and J. van Rosendale,
““Supporting Shared Data Structures on Distributed .
Memory Architectures,” Proceedings of the Second ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Seattle, WA, March 14-16, 1990
[SIGPLAN Notices (USA) 25, No. 3 (March 1990)], pp.
177-186.

16. M. Metcalf and J. Reid, Fortran 90 Explained, Oxford
University Press, Oxford, England, 1990, p. 117.

17. F. W. Bobrowicz, S. H. Dean, D. A. Mandell, and W. H.
Spangenberg, LANL Muiltitasking Overview, Order No.
LA-UR 87-759, Los Alamos National Laboratory, 1987.

18. L. J. Toomey, E. C. Plachy, R. G. Scarborough, R. J.
Sahulka, J. F. Shaw, and A. W. Shannon, ‘““IBM Parallel
FORTRAN,” IBM Syst. J. 27, 416-435 (1988).

19. P. Bogdonoff, ““Accommodating Parallel Processing in a
Mixed Serial-Parallel Computing Environment,”’
presentation to the SUPER Conference, Lexington, KY,
April 1989.

20. S. Johnsson, ‘““Communication Efficient Basic Linear
Algebra Computations on Hypercube Architectures,” J.
Parallel & Distributed Computing 4, 133-172 (1987).

21. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and
D. Walker, Solving Problems on Concurrent Processors, .
Vol. 1, Prentice-Hall Publishing Co., Englewood Cliffs,
NJ, 1988.

22. Y. Azmy, ““On the Adequacy of Message-Passing Parallel
Supercomputers for Solving Neutron Transport
Problems,” Proceedings of Supercomputing *90, New
York, November 12-16, 1990, IEEE Computer Society
Press, pp. 693-699.

23. G. Cybenko, ‘“Dynamic Load Balancing for Distributed
Memory Multiprocessors,” J. Parallel & Distributed
Computing 7, 279-301 (1989).

24. Engineering and Scientific Subroutine Library Guide and
Reference (Release 4), Order No. SC23-0184, December
1990; available through IBM branch offices.

25. D. Torney, C. Whittaker, S. White, and K. Schenk,
““Computational Methods for Physical Mapping of
Chromosomes,”” Proceedings of the First International
Conference on Electrophoresis, Supercomputing, and the
Human Genome, Tallahassee, FL, April 10-13, 1990,
World Scientific Publishing Company, pp. 268-278.

26. S. White, D. Torney, and C. Whittaker, ‘A Parallel
Computational Approach Using a Cluster of IBM ES/3090
600Js for Physical Mapping of Chromosomes,”
Proceedings of Supercomputing *90, New York,
November 12-16, 1990, IEEE Computer Society Press,
pp- 112-121.

27. E. I. Cohen, G. M. King, and J. T. Brady, ‘‘Storage
Hierarchies,” IBM Syst. J. 28, 62-76 (1989).

28. A. Kamel, P. Squazzero, and V. Zecca, “Large Scale
Computing on Clustered Vector Multiprocessors,”
Proceedings of Supercomputing 90, New York,

IBM 1. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

November 12-16, 1990, IEEE Computer Society Press,
pp- 418-427.

29. ““Cross-Point Switch Based IBM/370 Parallel Processing
Compute Server,”” IBM/CERN Joint Study Report, IBM
Germany Research and Development Laboratory,
Boeblingen, Germany, September 1990.

30. E. M. Ammann, R. R. Berbec, G. Bozman, M. Faix,

G. A. Goldrian, J. A. Pershing, Jr., J. Ruvolo-Chong, and
F. Scholz, ““The Parallel Processing Compute Server,”
IBM J. Res. Develop. 35, 653-666 (1991, this issue).

31. R. J. Sahulka, E. C. Plachy, L. J. Scarborough, R. G.
Scarborough, and S. W. White, “FORTRAN for Clusters
of IBM ES/3090 Multiprocessors,”” IBM Syst. J. 30,
296-311 (1991).

Received October 1, 1990; accepted for publication
April 1, 1991

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

Leslie J. Scarborough IBM Scientific Center, 1530 Page
Mill Road, Palo Alto, California 94304. Ms. Scarborough
joined IBM in 1978 as an application programmer in East
Fishkill, New York. Her initial assignments involved numeric
computing with FORTRAN for graphics postprocessing. She
began working on engineering and scientific compiler
development in 1983, and contributed to Parallel and
Clustered FORTRAN while a member of the IBM
High-Performance/Supercomputing Systems Development
Laboratory in Kingston, New York. She received an IBM
Outstanding Innovation Award for her contributions to the
Parallel FORTRAN project. In 1990 Ms. Scarborough joined
the Palo Alto Scientific Center. She is the IBM representative
to the ANSI X3H5 committee, a group that is defining a model
for parallelism in high-level languages. Ms. Scarborough
received a B.S. degree in mathematics from the State
University of New York at Albany in 1977 and an M.S. degree
in computer science from Syracuse University in 1984.

Randolph G. Scarborough IBM Scientific Center, 1530
Page Mill Road, Palo Alto, California 94304. Mr. Scarborough
is an IBM Fellow at the Palo Alto Scientific Center. His
primary interests are FORTRAN and new machine
architectures, especially parallel and distributed systems. He
joined IBM in 1969 as a systems engineer in Trenton, New
Jersey, and worked on large scientific and state-government
accounts. In 1973 he joined the Palo Alto Scientific Center to
develop the APL microcode for the System/370™ Model 135
computer. In 1978, he produced the FORTRAN H Extended
Optimization Enhancement. In 1983 this work was augmented
to include the new expanded-exponent extended-precision
(XEXP) number format. Between 1982 and 1985, he produced
the vectorizer incorporated into VS FORTRAN Version 2.
Since then he has been working on Parallel and Clustered
FORTRAN. Mr. Scarborough received a B.A. from Princeton
University in 1968. He has received many IBM awards,
including four Outstanding Innovation Awards and two
Corporate Awards.

Steven W. White IBM Advanced Workstations Division,
11400 Burnet Road, Austin, Texas 78758. Dr. White received
his Ph.D. from Texas A&M University, where he also taught
in the Electrical Engineering Department for three years. In
1982, he joined IBM to work on scientific and engineering
processor development, architecture, and system design. From
1986 to 1988, he worked with the Computational Physics
Group at Lawrence Livermore National Laboratory. In 1989,
he joined the Clustered FORTRAN/HIPPI development group
in the High-Performance/Supercomputing Systems
Development Laboratory in Kingston, New York. He is
currently in the Advanced Workstations Division Processor
Architecture and Performance group in Austin, Texas. His
primary interests are parallel and distributed architectures and
memory hierarchies.

System/370 is a trademark of International Business Machines Corporation.

679

L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND §. W. WHITE

