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Two IBM Enterprise System13090" Model 6005 
computer systems,  each with  six processors 
capable of executing vector and scalar 
instructions, have  been connected into a 
cluster for parallel execution of  single 
FORTRAN programs.  The clustering is 
achieved through a combination of software 
and hardware.  When enabled for parallel 
execution and allowed to use all twelve 
processors in the cluster, FORTRAN programs 
have run as much as 11.7 times faster than 
when run on a single processor. The combined 
hardware and software technology is called 
IBM Clustered FORTRAN. It was  achieved by 
modifying existing technology quickly to 
provide new capabilities. This paper discusses 
the  modifications and the motivations behind 
them. It summarizes the performance of 

several applications executed with Clustered 
FORTRAN. Finally, it describes how clustering 
has been used to improve performance in 
novel ways. 

Introduction 
The use of computer systems for numerically intensive 
applications is increasing. New applications are being 
developed, and new and existing applications are 
employing ever-expanding quantities of computer 
resources in their execution. Users continue to want the 
results of their applications quickly. 

In  an  effort to meet this challenge, many vendors of 
computer systems offer parallel-processing systems in 
which multiple processors or computers work together on 
behalf of one application. The systems differ  in their 
methods, but it is common to divide the systems into two 
classes: shared-memory systems and distributed-memory 
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systems. In a shared-memory system, the multiple 
processors share a common memory and communicate 
through it. In a distributed-memory system, the multiple 
processors communicate via an interconnection network. 
Hybrid systems, which use a combination of these 
mechanisms, also exist. In a hybrid system, a small 
number of processors (four to sixteen) might access a 
shared memory, and several such groups of processors 
might  be  linked together by other means. 

Proponents of shared-memory parallel machines point to 
the high-bandwidth, low-delay communication possible on 
these systems and also note that a commonly addressable 
memory often removes the need for copying data between 
processors. Supporters of distributed-memory parallel 
machines claim that a lack of scalability is inherent in 
shared-memory designs, since memory bandwidth cannot 
increase without limit and since it is difficult to keep the 
contents of all of the memories in agreement. Builders 
have used various mechanisms to connect the separate 
processors (or separate groups of processors) that form 
their distributed-memory machines. In some designs, such 
as that of the Cedar project [l-31, communication among 
groups of processors occurs through a separate “global” 
memory with longer access times than the “local” memory 
used within a group of processors. In others, such as  the 
work reported here, communication between groups of 
processors occurs through a memory-to-memory message- 
passing connection. 

This paper discusses a method for linking  high-end 
multiprocessor computer systems into a single complex, 
which we call a cluster, so that all of the processors in the 
cluster can compute in parallel on a single  FORTRAN 
program. Our work was done for a cluster composed of 
two IBM Enterprise System/3090m  (ES/3090m)  Model 600J 
computer systems 141. These are shared-memory 
multiprocessing computers. Each computer has six 
processors, and each processor in our cluster had an 
optional vector-execution element that enabled it to 
execute  vector instructions. Our cluster therefore 
contained twelve vector processors executing in  parallel. 
More recently, Extended Clustered FORTRAN, an 
extension of this work, was announced to support larger 
clusters [5].  These clusters may contain up to four 
Enterprise System/9000m  (ES/9000m) systems, each having 
up to six processors with integrated vector elements. This 
permits twenty-four vector processors to execute in 
parallel on a single FORTRAN program. 

Our goals in this work were pragmatic. We wanted to 
provide clustering for our high-end systems because these 
systems are widely available, to us and our customers, and 
clustering would increase their capabilities. We wanted to 
use existing hardware and software to the maximum extent 
possible because we wanted to develop something quickly 
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disrupting the product-development activities underway in 
our company. So, in contrast to other approaches to 
clustering, we ruled out extensive modifications to the 
hardware or software. We ruled out plans that would 
require years of research work or years of product- 
development activity. We  did not use the clever 
mechanisms that do result from extensive research and 
development. We  did not, for example, consider adopting 
the global-memory approach used in the Cedar project, 
since this would have required a substantial redesign of the 
memory subsystem, or synchronization registers such as 
those present on some Cray systems [6]. Instead, we 
constrained ourselves to use simpler  mechanisms.  The 
cluster of two ES/3090 computers we used was created by 
providing a high-speed hardware link between the memory 
subsystems of the two computers and  driving  it  with 
message-passing software. In the recently announced 
cluster that connects four ES/9000 computers, the high- 
speed hardware links from the computers are connected 
through a switch. 

Although the physical cluster available to us contained 
only the two  real  ES/3090 computers, the software does 
not explicitly limit the number of real computers that may 
be linked into a cluster. Further, regardless of the real 
computers in a cluster, the software allows users to create 
arbitrary virtual clusters for running their programs. Just 
as a real cluster is composed of one or more real 
computers, each having one or more  real processors, a 
virtual cluster is composed of virtual computers having 
virtual processors. Users can experiment with algorithms 
designed for two six-processor computers, twenty 
uniprocessor computers, ten 16-processor computers, or 
any other virtual configuration,  and  map this experimental 
configuration onto whatever real  configuration  is available 
at run  time. (The software imposes an arbitrary limit  of  64 
virtual computers per virtual cluster.) 

The investigation of clustering was done as a joint study 
with the Cornell National Supercomputer Facility (CNSF). 
CNSF was founded with a special charter to explore 
parallel computation and to provide parallel computing in a 
production environment. The Parallel  FORTRAN  language 
[7], designed for shared-memory multiprocessing, was 
defined during an earlier joint study with CNSF. It  was 
implemented by IBM,  placed into production at CNSF, 
and used successfully for parallel programming of the six- 
processor ES/3090 computer at CNSF. In 1989, CNSF 
added a second six-processor ES/3090 computer to its 
configuration  and sought mechanisms that would  allow all 
twelve processors of the two ES/3090 computers to be 
brought to bear concurrently on  single application 
programs. 

FORTRAN was selected as the language for the 
clustered system. FORTRAN  is the language  typically 
used by programmers of numerically intensive applications 
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on parallel systems, and it has changed  rapidly  in the past 
half decade to support a wide variety of parallel-computer 
systems. Indeed, a survey article published four years ago 
found twelve dialects of parallel FORTRAN for 
commercially available machines and noted that other 
machines had come into existence after the article was 
submitted for publication [8]. 

IBM  and CNSF jointly defined a set of extensions to 
FORTRAN for parallel and clustered computing. The goal 
was to leave the meaning and flavor of FORTRAN 
unchanged, so that the established audience of scientists 
and engineers already experienced in  FORTRAN  could 
easily benefit from parallel computation. Completely 
automatic compilation for parallel processors is in theory 
the best way to achieve this goal, but compilers are not yet 
able in practice to do a complete enough job for 
production computing. They are able to analyze nests of 
loops, and this was done in Parallel and Clustered 
FORTRAN, but more is required. Programmers still  must 
modify their FORTRAN code for parallel execution, and 
additions to FORTRAN are needed. 

In  Parallel FORTRAN, the programmer writes code as if 
it were running on a single processor. Language extensions 
are used  to indicate where separate code sequences might 
be assigned to separate processors. The sequences, 
though, are still written like  normal  FORTRAN for 
uniprocessors. The  language extensions were designed  to 
permit large segments of code and data to be isolated for 
execution by independent processors, as well as to allow 
processors to work cooperatively on code or data that 
could not be isolated. Both kinds of parallel possibilities 
arise naturally in programs. 

The question then arose: What  could be done to allow 
Parallel FORTRAN programs to be executed on a cluster 
of two ES/3090 computers? Clustered FORTRAN was 
developed as an answer to this question [9, 101. Clustered 
FORTRAN allows a set of applications to achieve 
speedups when they are executed on a cluster. How many 
applications ultimately will  benefit depends on how  well 
their data can be distributed across the cluster, how often 
they need to communicate between the ESl3090 
computers, and  how  much overhead is associated with that 
communication. 

Clustered  FORTRAN  overview 
IBM Clustered FORTRAN consists of three components. 
The first of these is the Clustered FORTRAN compiler and 
library software, which includes all  of Parallel FORTRAN, 
implements the new  language extensions designed for 
clustering, and extends the synchronizing routines of 
Parallel FORTRAN to operate across the entire cluster. A 
programmer uses the language extensions to identify the 
parts of a program that are eligible for parallel execution. 
The compiler then converts the program into pieces that 
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the run-time library can manipulate to cause the 
application to execute in  parallel on the available hardware 
configuration. 

The second component of Clustered FORTRAN is the 
Node Manager, which is responsible for managing the real 
computers in the real cluster and for creating the virtual 
clusters of virtual computers requested by application 
programs at run  time. A copy of the Node Manager runs 
on each of the real computers contained in the cluster; it 
acts essentially as an extension of the VM/XA" operating 
system [ l l ]  of the real computer. The Node Managers in a 
cluster coordinate among themselves, allocating resources 
for the Clustered FORTRAN application programs 
executing on the cluster. They also permit the installation 
to tune, monitor, and control the execution of clustered 
applications. 

The third component of Clustered FORTRAN is the 
high-speed connection facility, a hardware and software 
combination that facilitates the transmission of large 
amounts of data between the computers in a cluster. The 
hardware is attached to the memory subsystems of the real 
computers. It is  managed by supervisor-state code in the 
operating system and is shared by the application programs 
executing in the cluster. The interface for communicating 
between virtual computers resembles that of the existing 
VM/XA Inter-User Communication  Vehicle  (IUCV) [12, 131. 
IUCV provides communication between virtual computers 
on the same real computer. Our adaptation allows the 
virtual computers to lie on different real computers, and  it 
calls on the high-speed hardware connection to transport 
data between real computers. 

components of Clustered FORTRAN  and the real 
computer systems on which they execute. Figure 1 is an 
overview, showing a cluster of two real computers 
connected by the high-speed connection facility. Each real 
computer has a copy of the Node Manager.  Running  on 
the real cluster is a single application program. The 
application programmer has specified a virtual cluster 
containing four virtual computers, two virtual computers 
on each of the two real computers. Figure 2 shows the 
structure of one of the virtual computers. 

FORTRAN  compiler  and  library 
As indicated above, we wanted extensions to Parallel 
FORTRAN that would  allow  it to operate across a cluster 
of computers. The extensions were intended to conform  in 
style and spirit to the language of Parallel  FORTRAN and 
to enable the programmer to experiment with various 
methods of partitioning a program across the cluster. 

The major difference between Parallel  and Clustered 
FORTRAN  follows  from the nature of the memory on the 
machines for which they were written. Parallel  FORTRAN 
was directed at programs operating on one computer; 

Figures 1 and 2 illustrate the relationships between these 
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Clustered FORTRAN system components. An application program using four virtual computers is running on a cluster of two real 
computers. 

Clustered FORTRAN was developed for programs 
operating across multiple computers that do not share 
memory. We were not able to devise techniques for 
automatically partitioning a program for computers that do 
not share memory; this is very much a current topic of 
computer science research [14, 151. We implemented, 
instead, a small extension to the Parallel FORTRAN 
language that would  allow a user to distribute the work of 
an application across more than one computer system. 
Compatibility with the existing language was important. 
But, since we could  not  ignore the difference between 
nonshared and shared memory, we felt that programmers 
had to be aware of the difference, and we sought simple 
extensions that acknowledged the difference. 

The Parallel  FORTRAN  language  is summarized in 
Figure 3. It supports two primary styles of programming to 
exploit parallelism. The first allows multiprocessing of the 
statements within a given subroutine. The prime example 
of this style of programming is the parallel loop, in  which 
different processors execute independent iterations of the 
loop. All of the local and common data known in the 
subroutine are available for access by all of the processors 
(although selected scalar temporary variables may be 
declared to be private). In a similar manner, the construct 
for parallel cases allows different processors to execute 
different blocks of statements concurrently. 

user originates and schedules subprograms that execute 
In the second style of programming for parallelism, the 

independently of the program  calling  them  and of each 
other. These independently executing subprograms are 
called tasks. When originated, each task has its own local 
data area, its own set of common blocks, and its own set 
of paths (called unit numbers in  FORTRAN) for 
communicating  with  files.  Work is assigned to a task by a 
SCHEDULE statement, which names the subroutine at 
which the task is to begin its execution. The SCHEDULE 
statement also specifies what data (if any) belonging to the 
routine executing the SCHEDULE statement are to be 
shared with the task being scheduled. Only the specified 
data are shared, and the sharing lasts only for the single 
call to the task. 

The strong separation of tasks and the strong control 
over data sharing were intended to isolate the operation of 
tasks, so that programming errors could  be  more easily 
located. Parallel programming errors are often intermittent 
and are notoriously difficult to find. Sharing only the data 
explicitly listed on a SCHEDULE statement accomplishes 
two things. It reduces enormously the amount of data 
subject to inadvertent update, and  it also delimits exactly 
the data that are exposed to asynchronous manipulation. 
(If a user fails to share data that must be shared for the 
program to operate correctly, the error will be repeatable 
and therefore more easily found.) This strong separation of 
tasks also makes it easy to incorporate existing routines, 
either serial or parallel, into larger parallel programs. 
Provided they are given the data they expect, tasks can 
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Structure of a  virtual  computer. A virtual  computer  with  three viaual processors is running on a  real  computer  with six real processors. The 
application  program  has  originated  a  number of tasks  and  bound  them to the  virtual  computer. 

" " - ~  "1-""" .. . .. ,"" . ." . .. . . . . . . ~ 

run securely in isolation, unaffected by other  parts of the way to distribute across computers the execution of 
larger program. statements within a subroutine, such as the statements 

It is obvious that isolated tasks can map naturally onto a within a parallel loop. The data referenced by the 
clustered system. In contrast, we  did  not see an  efficient statements within a subroutine must be partitioned if the 

D IBM J. RES. 1 3EVELOP. \. 

671 

'OL. 35 NO. 516 SEPTEMBEWOVEMBER 1991 L. J. SCARBOROUGH, R. G. SCARBOROUGH, AND S. W. WHITE 



672 

Parallel FORTRAN statements for parallel processing. 

data are to be distributed, but in general we do not  know 
how to partition such data. An alternative would have 
been to simulate a shared-memory system on the 
distributed-memory cluster, sending pages back and forth 
as they were accessed by the different computers in the 
cluster. The cost of this simulation was expected to be 
very high. It would have required extensive programming 
in privileged operating-system code and  would have led to 
more frequent communication of smaller units of data. 
Instead, in order to optimize the performance of the link 
between the computers, we wanted an interface that 
allowed  large amounts of data to be communicated at each 
transmission. For these reasons we focused on extending 
the Parallel FORTRAN tasking statements to work across 
the cluster, something that could be done primarily in the 
FORTRAN compiler and library with minimal changes to 
the privileged operating system code, and we provided 
programming constructs that send large amounts of data 
between virtual computers in one transmission. 

The SCHEDULE statement in Parallel  FORTRAN 
allows a programmer to provide data to a called task in 
several ways. Named  common blocks may be copied into 
the task before it executes, out of the task after it 
executes, or both, with different choices possible for each 
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common  block.  Named  common blocks may also be 
shared between the tasks, which means that the called task 
accesses directly the caller’s copy of the common block. 
Finally, the caller may specify arguments for the 
subroutine at which the called task begins its execution. 
These are shared with the subroutine in the normal manner 
of FORTRAN (accessed by address and not by value). For 
example, the statement 

SCHEDULE  TASK  N, 
SHARING  (COMONl, COMONZ) , 
COPYING (COMON3,  COMON4) , 
CALLING SUBX  (ARGA,  ARGB,  ARGC) 

directs the sharing of common blocks COMONl and 
COMON2, the copying of common blocks COMON3  and 
COMON4 (into the task before execution of the subroutine 
and out of the task afterward), and the sharing of 
arguments ARGA,  ARGB, and ARGC.  COPYINGI or 
COPYING0 clauses can be used to specify copying  in or 
copying out only. 

In a clustered environment, common blocks and 
arguments must  be copied, rather than shared, when they 
are used to communicate between tasks on different 
computers in the cluster. Language was already available 
in Parallel  FORTRAN for copying  common blocks, but not 
arguments, so a language extension was defined to provide 
for the copying of arguments. A user may specify the 
phrase “ARG(*)” in the COPYING, COPYINGI, or 
COPYING0 clauses of a SCHEDULE statement to 
specify how arguments should be copied. Individual 
arguments may also be tagged to indicate different forms of 
copying: “=A” (modeled  on the assembly-language literal) 
means to copy the value of the variable A into the 
subroutine as its argument  (i.e., copy on input); “A=” 
(modeled on the FORTRAN  assignment statement) means 
to copy the value returned for the argument by the 
subroutine into the variable A (i.e., copy on output); and 
“=A=” causes copying  in both directions. (The Clustered 
FORTRAN  language  is summarized in Figure 4.) 

One additional extension for arguments was thought 
important. If  an argument is an array, the syntax above 
permits copying the entire array. But sometimes a loop 
may be used to partition an array computation across 
tasks, so language was needed for passing array partitions 
to the tasks. The Fortran 90 colon notation for array 
sections [16] was selected as the method for specifying 
array partitions. 

With these language extensions, programmers can copy 
common blocks and arguments between tasks running on 
different computers. The data to be copied are specified at 
the point where the subroutine in the task is scheduled for 
execution, and transmission of the data takes place 
synchronously, from the perspective of the caller, when 
the caller schedules a task or waits for its completion. This 
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is sufficient for many applications. However, message- 
passing constructs that allow tasks to communicate at any 
point during execution are known to be an additional 
requirement. 

large, it seems reasonable to place them on specific 
computers in the cluster when they are originated and to 
keep them there. But  what computers are available, and 
which computer shall be used for a given task? We left this 
open to the programmer. 

As mentioned earlier, the programmer may specify an 
arbitrary virtual configuration for executing an 
application-an arbitrary virtual cluster of virtual 
computers, each virtual computer having its own storage, 
disks, and processors. The programmer may also specify a 
mapping between the virtual computers in the virtual 
cluster and the real computers in the real cluster. The 
virtual configuration is specified at run time  and  may  be 
changed, along with the mapping  from virtual to real 
configuration, from run to run. It is the job of the system 
software running on the real computers to construct and 
operate the virtual cluster specified  by the programmer. 

is read when the program  begins execution. The 
configuration file contains one record for each virtual 
computer in the virtual cluster. As an example, the file 

COMPUTER PROCS(6),  STORAGE(128M),  BINDING(MASTER1 
COMPUTER PROCS(3),  STORAGE(128M),  BINDING(HELPER1) 
COMPUTER PROCS(S),  STORAGE(128M),  BINDING(HELPER2) 
COMPUTER PROCS(3),  STORAGE(128M),  BINDING(HELPER3) 

requests a virtual cluster containing four computers, each 
with 128 megabytes of storage. One computer has six 
processors; the  other three have three processors apiece. 
The programmer may refer to specific virtual computers by 
number (1 through 4) or by arbitrary symbolic names 
(MASTER, HELPER1, HELPER2, and HELPER3 in the 
example). Additional options (see [9]) may be used to 
place the virtual computers onto specific real computers. 

The virtual configuration file is consulted when a task is 
originated. An ORIGINATE statement creates a task and 
returns an  identifier to the user. When used in its basic 
form, 

ORIGINATE ANY TASK i t a s k ,  

the ORIGINATE places the new task on the same virtual 
computer as  the originating task. The two tasks can 
therefore share arguments and common blocks. But the 
user may also specify the virtual computer on which the 
task should be placed by using  an extended form, 

ORIGINATE ANY TASK i t a s k ,   B I N D I N G ( i b i n d 1  , 

and  giving,  in the variable or constant i bind ,  the number 
or symbolic name of the virtual computer for the new task. 

Since tasks are expected to be  long-lived and relatively 

The user specifies the virtual configuration in a file that 
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j Statnaents for  Parallel  Tasks 

ORIGINATE ANY  TASK taskid. BINDING ( ibind I cbind) 
SCHEOULE  [ANY]  TASK taskid,  

[COPYING ([ARG(*) [. cpycoml [,cpycornZ ... ] I ] ) , ]  
[COPYINGI([ARG(*) [, cpicoml  [.cpicmZ ... ]]]),I 
[COPYINGO([ARG(*) [, cpocoml [.cpocmZ ... I]]).] 
CALLING subnam[([[=]argl[=] [,[=]argZ[=] ... ]])I 

N for clustered computing. The 
clause. the ARG(*) operand, the 
an 90 syntax for partitioning 

A task created with the BINDING keyword can 
communicate with the originating task only  through copied 
data. 

The BINDING clause of the ORIGINATE statement 
and the syntax for copying arguments and array partitions 
in the SCHEDULE statement are the only  new  language 
constructs needed in  Parallel  FORTRAN to enable it to 
operate in a cluster. The programmer must still analyze the 
application to ascertain how data can be partitioned and 
work can be distributed. For some applications, the 
partitioning may correspond naturally to the existing 
algorithm and its serial implementation. For others, the 
partitioning may require a new  algorithmic approach. 

Programs that are partitioned to run on multiple 
computers can still be run  with a single computer 
(assuming they still fit within storage). Regardless of the 
configuration, Clustered FORTRAN maintains the 
semantics for copied data specified by the user. Thus, a 
program written for clustering can execute correctly with 
or without a clustered system. Executing on a single- 
computer system, especially on a uniprocessor, can 
simplify  debugging. On a uniprocessor, the program 
executes in a repeatable manner (the statements execute in 
the same order for the same data). Deterministic bugs can 
be  found and removed. Thereafter, the program  may be 
run on a cluster, where parallel components of the 
program can execute concurrently and the order of 
statement execution may or may not be repeated. 

The FORTRAN library was extended in several ways 
for clustered computing. Inquiry functions were added to 
allow the user to ask about the number of virtual 
computers or, indeed, to retrieve the entire virtual 
configuration  along with its mapping to the real 
configuration.  The synchronizing functions that Parallel 
FORTRAN provides to users-its lock routines and event 
routines-were extended to operate across the entire 
cluster. New synchronization functions were added, most 
notably some that perform interlocked arithmetic and 
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logical operations on variables. These functions, which 
follow suggestions from the Los Alamos National 
Laboratory [17], are more natural for some applications 
than are events and locks. They provide the ability for 
tasks to modify a shared counter or to wait until  it reaches 
a specified value. Tasks running across the cluster may use 
such counters in  many ways, such as dynamically 
partitioning the pieces of a computation among themselves. 

Clustered FORTRAN also incorporates some changes 
that are independent of clustering. Subroutines, for 
example, may be called from within parallel loops. 
Routines to do fast atomic updates of variables in  memory 
are provided to coordinate tasks running in the same 
virtual computer. These improvements were suggested by 
user experience with Parallel FORTRAN. 

In summary, with a very few syntax additions, Parallel 
FORTRAN has been extended for clustered computing. 
Now, with Clustered FORTRAN, an application 
programmer can use a single  tool to exploit parallel 
computing over a wide range of machine capabilities. The 
user can partition a program at the highest level to take 
advantage of clustered (distributed) parallel execution. 
Within each partition, the user can identify places for 
shared-memory multiprocessor execution. And  within each 
of these pieces, the user can take advantage of the  vector 
execution capabilities of the compiler and hardware. When 
the program is executed, the Clustered FORTRAN library 
continues the approach of the Parallel FORTRAN library 
[18], mapping the user-specified  parallelism onto  the 
resources available. The user prepares one source 
program, augmented to reveal parallelism but independent 
of a run-time configuration, and it remains the job of 
FORTRAN to execute that program on the hardware 
available at run  time. 

Node Manager 
Our software was intended to operate initially on two 
ES/3090 Model 6005 computers. Rather than design  it for 
“two six-ways” or “twelve one-ways’’ (either of which 
would have imposed a particular view of how to program a 
cluster of shared-memory multiprocessor computers), we 
wanted the software to be open-ended and  flexible.  We 
therefore allow users to write programs for arbitrary 
clusters of computers. The chosen configuration-a virtual 
cluster of virtual computers-is  mapped at run time to the 
real cluster of real computers. This flexibility supports a 
variety of programming styles and run-time configurations. 
Indeed, it has always been a goal of Parallel and Clustered 
FORTRAN to make FORTRAN programs independent of 
the real hardware system, so that they can run  on 
whatever hardware is available. 

It is the  job of the Node Manager software to construct 
and operate the virtual cluster specified by the 
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the real computers in the cluster, each controlling the 
allocation of resources on its own computer. But the Node 
Managers in the cluster also communicate as peers, jointly 
coordinating the allocation of resources across the 
complex. 

When a Clustered FORTRAN application begins 
execution, the Node Manager running on the local real 
computer is asked to allocate the virtual configuration 
specified by the programmer. It communicates with the 
other Node Managers; together they allocate the specified 
virtual computers and connect them into a virtual cluster. 
Direct virtual communication links are initialized between 
each pair of virtual computers. (The direct links are used 
during execution of the application; the Node Managers 
are not involved in communications between the virtual 
computers.) Once the virtual cluster has been created and 
initialized, the application program is free to execute on 
the cluster. When  it completes, it  notifies the Node 
Manager  on its local computer. The Node Manager 
communicates with its peers, and collectively they delete 
the virtual cluster from the system. 

The Node Managers customize themselves when they 
first  begin execution, as directed by a control file. The 
control file can be modified to suit local conditions. The 
file specifies such parameters as the real computers in the 
Clustered FORTRAN complex, the limits on resources 
that any application is permitted, and the names of the 
authorized system operators. The authorized operators 
may issue commands to control the operation of the 
complex. Most elements of the control file  can  be  changed 
by operator commands while the system is running. 
Commands are also provided for such operations as 
querying status, canceling jobs, and coupling and 
uncoupling real computers from the real cluster. 

The Node Managers also have the ability, at specific 
points in their processing, to call subroutines provided by 
the local installation. These subroutines can be used to 
modify or refine the operation of the system for the local 
environment. For example, the CNSF at Cornel1  defines 
for itself  how accounting information is accumulated and 
processed for a clustered application. It screens jobs and 
prioritizes them. It controls dynamically the total number 
of jobs and the total number of virtual computers that can 
be active at once. It also defines and implements its own 
policies for balancing resources among users. CNSF 
strives to provide parallel-computing resources to a set of 
high-priority users while  still supporting other users on a 
fully loaded system. The high-priority users expect quick 
turnaround time because they have adapted their programs 
for parallel execution. Priority for parallel users, though, 
means that other users may be  delayed. CNSF is 
continually refining its methods and policies to balance the 
needs of both kinds of users, and it has developed facilities 
beyond those provided by the Node Manager to balance 
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the system dynamically between short-running and long- 
running jobs, between serial jobs and parallel jobs, and 
between high-priority users and other users [19]. 

Connection  facility 
As mentioned above in the Clustered FORTRAN 
overview, the real computers in a Clustered FORTRAN 
complex are joined by means of the Clustered FORTRAN 
connection facility, a combination of hardware and 
software that facilitates transmission of large amounts of 
data between the computers. The software interface 
to the connection facility is based on the Inter-User 
Communication Vehicle (IUCV) interface provided by 
V M M .  IUCV permits communication between virtual 
computers on a single real computer; minor extensions 
were made to permit communication between virtual 
computers on different real computers. 

Elements of the communication protocols should be 
mentioned. First, the nature of the communication affects 
the amount of data to be sent. Much  of the communication 
in Clustered FORTRAN can be supported with short 
transmissions that convey synchronization information or 
identify specific functions to be performed. However, the 
application program may also ask for transmission of 
hundreds of megabytes of data when common blocks and 
arguments are to be copied. Second, user data move out of 
or into user storage synchronously with the user’s request 
to send or receive. If the amount of data is  small, the data 
may be packaged into a buffer that can be sent later, and 
the sender is permitted to proceed. If the amount is large, 
though, the sender may be delayed until  all of the data 
have been sent. The choice is made  by the FORTRAN 
library. A third element of the protocol is that, from the 
perspective of the library, the transmissions usually are 
asynchronous. The library is designed so that commands 
generally do not require acknowledgment. For example, 
when a program requests that a task be originated on a 
different virtual computer, the local library creates an 
identifier for the remote task and returns it to the calling 
program  immediately. The calling task is then allowed to 
proceed with its execution; the protocol requires only that 
the caller be  given a unique  identifier for the new task in 
order to continue beyond the ORIGINATE statement. 
Subsequently, and asynchronously, the local library sends 
a command to the other virtual computer, directing it to do 
the processing required to create the actual task. This 
processing may proceed asynchronously and need not be 
acknowledged. 

Clustered FORTRAN application run from the FORTRAN 
library to a Node Manager (to obtain resources), from 
Node Manager to Node Manager (to allocate and initialize 
resources), and from FORTRAN library to FORTRAN 
library (to distribute and synchronize FORTRAN work and 

The communication paths required to support a 

data). The same software interface is  used for all of these 
interactions. System-level software actually moves the data 
between virtual computers. When the virtual computers 
are on the same real computer, the data can be copied 
easily. When the virtual computers are on different  real 
computers, the data are sent over the high-speed hardware 
connection. 

Clustered FORTRAN performance 
Although Clustered FORTRAN is still relatively new at 
Cornell, applications have been executed, and performance 
measurements have been made. Some of these are the 
traditional observations of speedups as a function of the 
number of processors. Others, though, reveal that new 
possibilities for improving performance exist with 
clustering. The examples presented in this section show 

Speedups due to additional real processors. 
Speedups due to additional real memory. (A cluster of 
two ES/3090 computers has twice the real memory of a 
single  ES/3090.) 

memory. (Each virtual computer used in a computation 
gives the programmer over 900 megabytes of virtual 
memory in which to place data.) 

Simplification of programs due to additional virtual 

The initial users of Clustered FORTRAN were 
interested in performance, and they chose applications that 
were expected to adapt naturally to the underlying physical 
architecture. These users partitioned their data to use 
nonshared memory; sometimes large data arrays were 
communicated in the process. We have these programs 
available for measurement. We wanted to ensure that the 
implementation of Clustered FORTRAN enabled such 
applications to perform well. Applications will  be found, 
however, for which the  costs of communication between 
the ES/3090 computers will be too high to allow reasonable 
speedups. Research in algorithms for distributed-memory 
systems may identify alternative ways for implementing 
applications to minimize the communication costs [20-231. 
Since Clustered FORTRAN  allows the virtual 
configuration for executing a program to be varied from 
run to run, programmers of such algorithms will be able to 
experiment easily with a variety of configurations, ranging 
from a single scalar uniprocessor computer to a cluster of 
vector multiprocessor computers, using a single source 
program. 

benefits  from additional processors, is the first  algorithm 
for which we have measurements. The nature of the 
computation allows uniform partitioning of the work 
among computers, simply by giving each an  equal amount 
of the result matrix to calculate. The Clustered FORTRAN 
language was used to split the calculation into two equal 

Matrix multiplication, a well-known  algorithm that often 
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Table 1 Speedups due to clustering of additional processors for a human genome application. 

Problem size One computer (6 processors) 
(number of 

Two computers (12 processors) 

clones) Speedup of Speedup of Speedup of 
total job FORTRANprogram total job 

(start to end (first  to final (start to end 
of whole job) user statement) of whole job) 

2000 5.03  5.71  6.08 
4000 
8000 

5.77 9.45 
5.81  11.13 

5.60 
5 .77 

Speedup of 
FORTRANprogram 

(first  to final 
user statement) 

10.93 
11.44 
11.78 

pieces and to assign them to two virtual computers. The 
virtual computers were defined to be six-processor 
multiprocessors; one virtual computer was placed on each 
of the two real ES/3090  Model  6005 computers in the real 
cluster. Parallelism  within the virtual computers was easily 
achieved by exploiting the parallel matrix multiplication 
routine (DGEMLP) available in Release 4 of the 
Engineering and Scientific Subroutine Library (ESSL) [24]. 
With the use of DGEMLP on the pair of  ES/3090-600J 
computers, execution rates above 1200  million floating- 
point operations per second have been achieved. This  is 
10.8 times faster (using twelve processors) than the serial 
version of the DGEMLP routine (DGEMUL) on the same 
machine. 

Table 1 shows the speedups experienced for a program 
involving human genome research from the Los Alamos 
National Laboratory [25, 261. (Speedup is the time for 
execution on one processor divided by the time for 
execution on multiple processors.) Results are shown for 
execution of the same Clustered FORTRAN program on a 
one-computer cluster (six processors) and a two-computer 
cluster (twelve processors). The table reports  the speedup 
achieved in the application program  itself, as determined 
from the time interval between the first and the last user 
statement (in FORTRAN). It also reports the speedup 
achieved over the whole job, including the system 
overhead of initializing and terminating the virtual cluster, 
as determined from the interval between the time the job 
began  and the time  it ended. As the problem size 
increased, the roughly constant system overhead was 
amortized over longer job times, so the two measures of 
speedup converge. The problems of interest at Los Alamos 
are even larger than the ones we measured. Furthermore, 
the processing time for this program increases as the 
square of the problem size. We therefore anticipate that 
these large problems will display speedup factors in excess 
of 11.8  with twelve processors. 

The above examples emphasize the one major factor 
that is  most readily associated with parallel processing- 
the benefit from additional processors. Clustered 
FORTRAN offers additional possibilities because of the 
flexibility of its virtual-cluster configurations. Experiments 

8 

a 

a 

4 

a 

4 

4 

676 

L. J .  SCARBOROUGH, R. G. SCARBOROUGH, AND S .  W. WHITE  IBM J .  RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBEFWOVEMBER 1991 4 

with a variety of virtual configurations have demonstrated 
performance and  programming  benefits that stem from 
clustering but are not directly related to additional 
processors. Some applications have so much data that 
memory  itself,  not CPU power, is the prime bottleneck to 
performance. In these cases, clustering offers  new ways to 
improve performance. 

Since each virtual computer is a complete virtual 
machine with its own virtual memory, a user can obtain 
additional virtual memory  simply by defining  additional 
virtual computers. Some of the Cornell users have 
applications that require several gigabytes. Previously 
they have had to write code that would  read  and write 
their data a piece at a time, in order to stay within the 
999-megabyte  limit of a VM/XA virtual machine. 
Furthermore, some of these programs iterate over the 
data, which means that the data must be read  and written 
repeatedly. For problems in  which the data can be 
partitioned, placed in distinct virtual computers, and 
operated on by local tasks, additional virtual computers 
may  allow the programs to contain all  of the data they 
need and to reference the data directly instead of by 
reading  and writing external storage. 

This can be a programming convenience, but it is also a 
way to improve performance. External storage is relatively 
slow compared to the electronic storage used by the 
processors of a computer. Clustering, even on a single real 
computer, can give a user access to additional real 
electronic storage, since the virtual memory of multiple 
virtual computers, each at the 999-megabyte  limit,  can be 
contained concurrently within the real electronic storage of 
a single  real  ES/3090 computer. This may  eliminate the 
need not only for reading and writing from external storage 
but also for paging  from external storage. 

When a program  is  run  on a pair of real ES/3090 
computers, additional performance may be gained. These 
systems have two classes of electronic storage: a fast 
electronic storage (central storage) which is accessed 
directly by the processors as they execute instructions in 
the application program, and a larger, but slower, 
electronic storage (expanded storage), which cannot be 
used directly by the application program [27]. Both 



categories of storage are realized with semiconductor 
memory devices. The operating systems of the real 
computers page data between these two categories of 
storage. 

A Clustered FORTRAN  program  running on a pair of 
ES/3090 computers can have twice as much fast, directly 
accessible, central storage available for its execution as it 
can when running  on a single computer. If a program 
pages  on a single system but does not  page  when spread 
across the cluster, there may be a reduction in the total 
work performed for the program, and the program  may 
execute faster with respect to both CPU time  and elapsed 
time.  In this case, system throughput may actually be 
improved by clustered execution. 

Seismic modeling code [28] from the IBM  Rome 
Scientific Center illustrates this effect.  Using  all six 
processors of an  ES/3090-600J computer, the program runs 
only 1.95 times faster than it does with a single processor. 
A speedup factor closer to six could  not be achieved 
because of  paging overhead. However, a cluster of two 
ES/3090-600J computers has enough central storage to hold 
the entire problem and execute it without paging.  When 
the problem was partitioned between the two real 
computers, the speedups achieved actually exceeded the 
number of processors allocated when two, four, or six 
processors were used. (The processors were divided 
equally between the two real computers.) A speedup of 
10.96 was achieved when  using  all twelve processors in the 
cluster. The paging on the single-computer system was 
done between central storage and expanded storage. Had 
the program been run on a system that backs central 
storage with  disk  files instead of with expanded storage, 
one would expect even worse speedups on the single- 
computer system. Table 2 summarizes the results of these 
experiments. 

Most scientific problems are not  inflexible  with  regard to 
storage requirements. Scientists can vary grid  dimensions, 
storage structures, the number of variables retained rather 
than recalculated, and the degree of computational 
accuracy required. These parameters are often constrained 
artificially in order to make a problem fit into the limited 
amount of storage available on a particular computer. 
Because it makes additional storage accessible, clustering 
can ease these constraints. 

computer, instead of clustering several computers 
together? One reason is that the hardware designers may 
not be able to add more memory to a given computer. 
Memory systems are typically implemented  with 
hierarchies of fast to slow storage. Factors such as cable 
lengths, power supplies, and cabinet dimensions may 
preclude adding more fast storage. Another reason is that 
the computer may be well balanced, with respect to 
memory and processors, for its normal  run of jobs. 

One  may ask, Why  not  simply expand the storage of one 

Table 2 Speedups due to clustering of additional  real 
memory as well as processors  for a seismic modeling 
application (adapted from [28]; reproduced with permission). 

Number of Small problem Large problem 

processors Speedup Speedup Speedup Speedup 
using one using two using one using two 
computer computers computer computers 

vector 

1  1 .oo - 1 .oo 
2 1.98 1.95  1.57 2.21 
4 3.85  3.78 2.02 4.33 
6  5.68  5.51 1.95 6.24 

12 - 9.71 - 10.96 

- 

Additional, expensive memory  may  help only a few 
applications. Clustering, in contrast, lets an application use 
more memory without affecting the overall balance of the 
system. Given a group of existing computers and  given a 
job that needs more  memory than is available on any one 
of the computers, a system manager  now has a choice. 
Buying a bigger machine is one way to run the job. 
Linking the computers into a cluster is another. 

Concluding remarks 
Clustered FORTRAN extends the supercomputing 
capabilities of the IBM  ES/3090  and  ES/9000 computer 
systems by allowing customers with appropriate 
applications to employ the resources of multiple  high-end 
systems for the execution of single  FORTRAN programs. 
Clustering can substantially reduce the time required to 
run such applications, since additional processors can be 
brought to bear on computations and since additional 
storage is available for data. Through clustering, a scientist 
can run problems today which otherwise would  have to 
wait for future machines. 

Clustered FORTRAN enables programmers to take 
advantage simultaneously of multiple computers with 
distributed memory, of multiple processors sharing 
memory,  and of multiple vector-processing elements. 
Clustered applications can be, but  need not be, executed 
with dedicated system resources. They can therefore be 
developed and executed in normal system environments. 
When, however, a customer such as the CNSF at Cornel1 
desires it, all  of the dedicated resources of two 
ES/3090-600J computers can be used  for a single 
FORTRAN application. 

The design of Clustered FORTRAN permits 
experimentation and leaves open paths for possible future 
exploration in parallel programming. For example, at all  of 
the language interfaces where Clustered FORTRAN 
communicates data between virtual computers, the mode 
and type of the data involved are known. If it becomes 
necessary to translate number formats, perhaps to support 
clustering for machines of different architectures, the 677 
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library can be given the information needed for data 
conversion. This information can be accumulated by the 
compiler without requiring the user to specify modes and 
types explicitly. Similarly, virtual configurations need not 
map directly to the real configurations available, so virtual 
configurations can be used to simulate other clusters of 
computers. For example, a configuration of 32 virtual 
computers has been used to simulate the IBM Parallel 
Processing Compute Server installed at CERN in 
Geneva [29, 301. Such experimentation may provide 
valuable information for the design of larger clustered 
systems. 
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