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The  Parallel  Processing  Compute Server 
(PPCS) is a  distributed-memory 
multiprocessing  system  consisting of 
System/370m  microprocessors  (33  at  present) 
interconnected  through  a  matrix  switch.  This 
paper  describes  the  hardware  configuration, 
the  extensions  to  the  System/37O  instruction 
set that  are  provided to support  the  distributed 
memory  and  interprocessor  signaling,  the 
modifications to the  VM/SP  operating  system 
that  allow  it to run  effectively  on  many  closely 
coupled  processors  (most of which  have  no 
disks),  and  the  application-support  layer, 
which  permits FORTRAN programs  to  take 
advantage of the  highly  parallel  environment. 
Development of the  PPCS is a  joint  effort of 
the  IBM  Boblingen  Development  Laboratory 
and  the  IBM  Thomas J. Watson  Research 
Center. A prototype  PPCS  has  been  installed 
at CERN. 

Introduction 
The Parallel Processing Compute Server (PPCS) is a 
distributed-memoly multiprocessor that uses message 
passing for interprocessor communication. It comprises an 
IBM Enterprise System/9373  (ES/9373)  Model  301 [l] 

System/9370T“ (ES/937OTW), which is a family of IBM System/370TM processors that 
support many users and applications in the commercial, engineering, scientific, and 
industrial environments. 

The ES/9373 Model 30 is an entrylevel processor of the Enterprise 

integrated host (I-host) system and 32 (at present) 
System/370 satellite processors [2],  all interconnected via 
a matrix switch designed to accommodate 62 ports. The 
I-host is the only processor with 1/0 capability; otherwise, 
the satellite processors are functionally identical to the 
I-host processor. Running under the control of Parallel 
VM, a modified  form of the IBM Virtual Machine/System 
Product (VM/SP) operating system [3], the PPCS is 
suitable for a variety of numerically intensive computing 
programs. 

Parallel VM features “diskless” operation on the 
satellite processors (but is designed to exploit I/O-capable 
satellite processors, if they exist), fast interprocessor 
communications, local and remote inter-virtual-machine 
message-passing, and, to a large degree, a single-system 
image as seen by the application programmer. 

Distributed VS FORTRAN, a prototype programming 
environment for PPCS, has been developed. VS 
FORTRAN [4] application programs must be reorganized 
by the user to exploit parallel processing by originating, 
scheduling, and synchronizing subtasks. A subroutine 
library for task management  and data transfer has been 
developed in the spirit of  IBM Parallel  FORTRAN [5]. The 
implementation of this Distributed VS FORTRAN library 
is based on a CMS  [3] extension, called  CS/X, that takes 
advantage of the Parallel VM functions. 

A PPCS  with 32 satellite processors, Parallel VM, and 
CS/X has been installed at the European Organization for 
Nuclear Research (CERN) and  is  running applications used 
by the high-energy physics (HEP) community.  At CERN, 
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on-line data acquisition and preprocessing of experimental 
data is a major computing task. High-energy physics 
experiments can generate streams of data at a rate of 
several gigabytes per second. Once filtered and recorded, 
data are subject to further analysis off-line. Both on-line 
and off-line processing are numerically intensive 
computing jobs. The PPCS is primarily intended for the 
off-line processing, but it can be used for on-line work 
as well. 

The PPCS provides a raw performance potential of  33 
times the performance of a single processor. The actual 
performance depends on the application programs 
executed. In general, the greater the ratio of CPU time to 
1/0 time and data-transfer time, the higher the throughput. 
Several CERN applications [6] that make extensive use of 
bulk data transfer have shown speedup factors of about 30, 
using 32 satellite processors. 

With the established PPCS infrastructure (matrix switch, 
Parallel VM, and Distributed VS FORTRAN), the 
groundwork was put in place for the development of a 
more powerful PPCS with  new Enterprise Systems 
Architecture/39Om  (ESA/390TM) microprocessors, as used in 
the IBM Enterprise System/9000m  (ES/9000TM)  Model  150’ 
computer [7]. 

The following sections describe the background of 
PPCS-like systems, the PPCS hardware, its architecture, 
the Parallel VM operating system, and the Distributed VS 
FORTRAN environment. 

Background 
Since Paul Kunz of the Stanford Linear Accelerator Center 
(SLAC) constructed a “farm” of processors, each of 
which emulated, in part, the instruction set of the IBM 
System/370 computer [8], CERN, SLAC and the 
Massachusetts Institute of Technology have developed a 
considerable number of these emulators for use as 
computer farms [9-131, which use small processors for 
running applications written in FORTRAN. In these farms, 
only the host processor has I/O capability. Computer farms 
generally have a straightforward master-slave control 
structure, with each processor working on an independent 
unit of work and no requirement for any-to-any processor 
communication. A typical use of these farms in the HEP 
community is the analysis of “event data” from  an 
experiment. Each processor of the farm is loaded with the 
same program. A scheduling program on the host then 
“feeds” the application programs with event data and 
receives the results upon completion. Since all  of the 
events are disjoint, any event can be sent to any processor 
in the farm. Communication with the farm processors is 
typically via a VME bus [14] or something similar. .A good 

2 The ES/9000 Model 150 computer is a rack-mounted processor of the ES/9M)O 
family of processors. It is an advanced, general-purpose, intermediate computer 

654 that implements the ESN390 and  the Systed370 architecture. 
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review of these machines can be found in  [6]. Similar 
farms based on machine architectures other than 
System/370 have been built at other laboratories [15-171. 
These farms generally do not have operating systems 
running on the satellite nodes, but rather very primitive 
kernels sufficient to execute FORTRAN programs. For 
example, this kernel is several hundred lines of FORTRAN 
on the Fermi National Accelerator Laboratory Advanced 
Computer Program (ACP) [MI.  Although this is a simple 
approach that performs well,  it  can be problematic for the 
development and debugging of applications. 

PPCS  development was initiated  primarily  because of HEP 
computing requirements. The PPCS  is a parallel processing 
system that extends the concept of a processor farm. The 
matrix switch provides a high-speed interconnection 
network that allows any-to-any processor communication. 
This permits the PPCS to be used for more general parallel 
applications, such as lattice gauge calculations [16]. A 
consistent approach to System/370 architecture and system 
software (Parallel VM and Distributed VS FORTRAN) is 
used throughout the system and provides a large set of 
functions that operate on the I-host as well as on the 
satellite processors. The presence of a full-function 
operating system provides editing, compiling, testing, and 
debugging facilities throughout the farm. 

Hardware system 
A PPCS  is  primarily composed of “off-the-shelf” 
components from the IBM  ES/9373  Model 30 system. It is 
housed in three standard IBM racks. The logical system 
structure is depicted in Figure 1. The matrix switch 
interconnects the I-host system, the 32 satellite processors, 
and, optionally, an external controller. 

I-host system 
The I-host processor has 16 megabytes of main storage and 
contains two internal I/O buses. One bus links the I-host to 
the matrix switch; the other bus connects four IBM  9332 
disk units, an  IBM 9347 tape unit, a workstation 
controller, a communication controller, and a block 
multiplexer (BMPX) channel to the I-host processor. One 
can use the BMPX channel to connect the I-host to a large 
System/370  mainframe or to attach tape drives. The disk 
units are used to store the Parallel VM operating system, 
application programs, and data. The tape units serve  as 
external input/output devices. An IBM  PS/2@  Model  30 
attached to the I-host is used as a system console to 
control the entire PPCS,  and as a support processor for 
IML (initial microprogram load), IPL (initial  program  load), 
error recovery, error logging,  and console  operations. 

Satellite processors 
The satellite processors employ the System/370 mainframe 
architecture, including  floating-point, square root, and 

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERNOVEMBER 1991 



high-accuracy arithmetic [19]. To optimize performance, 
many frequently executed instructions are executed by the 
hardware without microcode. 

As shown in Figure 2, each satellite processor consists 
of a processor card, an 8-megabyte memory card, and a 
switch-adapter card. The processor chips [2] have an  80-ns 
cycle time. 

programmable read-only memory (EPROM) with bootstrap 
microcode to prepare for IML, an interface for displaying 
the status of the satellite processor, a bus switch adapter 
(BSA), which connects one internal I/O bus to the switch 
cable, and an interface to connect an optional service 
processor. The service processor is a tool that can be 
temporarily connected to a satellite processor for 
maintenance purposes. Its configuration  is similar to that 
of the support processor. 

The following types of data are transported across the 
switch between connected processors, under the control of 
the BSA: 

The switch-adapter card contains an electrically 

Messages (from  mailbox to destination message queue). 
Data blocks (from  memory to memory). 
Control commands. 

The BSA resolves message collisions with a minimum 
impact on performance. 

It is a transmission-line cable (2-meter flat cable) with 15 
signal  and  five  ground  lines. The cable supports a 
bidirectional, 1-byte-wide, synchronous data transfer. 

The switch cable connects the BSA  with its switch port. 

Switch 
The switch is the interconnection facility for the PCCS. It 
uses the switch element from the ESCON Director [20], 
used in the IBM  System/390m computer. The switch 
consists of  62 ports, the switch element itself, and a switch 
controller. Although the switch is  designed for 62 ports, 
only 33 are used in the current PPCS system: to connect 
the I-host system and 32 satellite processors. Optionally an 
additional port can be  used for an external controller. The 
switch is nonblocking  and allows up to 16 two-party 
communication paths to exist simultaneously. In addition, 
it has a broadcasting mechanism that allows the I-host to 
IML all satellite processors simultaneously. The switch is 
controlled through a set of new System/370 interprocessor 
communication instructions, which are described in the 
next section. 

PPCS machine architecture 
The PPCS machine architecture is an extension of 
System/370 architecture [21] to support a switch-connected 
distributed-memory parallel processing system. To enable 
the processors to work together efficiently on a single job, 
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the architecture includes synchronous instructions that 
allow a processor to access the memory of other 
processors and to signal other processors. These 
interprocessor memory accesses are key-protected in the 
same way as local  memory access. In  effect, this provides 
a message-passing architecture complemented with 
facilities that are usually  included only in shared-memory 
multiprocessor systems. In addition, instructions are 
included that allow direct function invocation on a remote 
processor without the overhead of interrupt-handling 
routines. 

The new instructions are listed below: 

Synchronous data transfer 
IPPUT Write data to destination processor memory. 
IPGET Read data from destination processor 

memory. 
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Satellite  orocessor - interconnections  and  internal  elements. 

Signaling 
SIGP Signal destination processor. 
Remote function invocation 
IPCALL Invoke remote function at destination 

processor; save original environment in a save 
area. 

IPSS Retrieve environment from  local save area 
(for inspection). 

IPRET Resume environment kept in local save area. 

The IPPUT and IPGET instructions are used for data 
transfer between two processors. 

The signaling instruction, SIGP, extends the standard 
656 System/370 SIGP instruction to a distributed-memory 

parallel processor environment. The SIGP instruction 
accepts as one of its operands an order code, which 
determines the type of signal to be presented at the 
destination processor. For PPCS,  new orders are provided 
with SIGP; for instance, the external  call  with parameter 
order passes a 32-bit parameter along  with the “external 
call” signal. 

The IPCALL instruction permits function invocation on 
a remote processor. The issuing processor supplies an 
entry-point address (on the remote processor) and a set of 
parameters, and the specified routine is invoked in much 
the same way as an interrupt-handling routine. This routine 
may retrieve the interrupted state of its processor into 
main  memory with the IPSS instruction, and  may “return 
to” this interrupted state with IPRET. 
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Standard System/370 machine instructions are 
implemented partly in hardware and partly in microcode. 
The  new PPCS-unique instructions are all implemented in 
microcode  and  additional  hardware in the switch  subsystem. 

The microcode load (IML) for the PPCS is initiated by 
the I-host support processor and is performed for all 
processors, in parallel. Thus, the IML time for the entire 
PPCS is only slightly  longer than for a single processor. 

Systeml370 layer, the PPCS microcode, and the switch 
subsystem. PPCS microcode is invoked when one of the 
new instructions is issued or when a message arrives from 
another processor over the switch. Requests from the 
PPCS microcode in a processor are given to the switch 
hardware (to send a message or to transfer data) by placing 
them in a special “mailbox” location in the internal 
memory of the processor and then raising a signal  line to 
notify the switch hardware of the request. The switch 
hardware delivers a message by placing  it on the inbound 
message queue in internal memory and by raising a signal 
line to notify the PPCS microcode in that processor. Data 
transfer is performed by the switch hardware by moving 
data directly between the main memories of the 
appropriate processors. 

data-transfer request (of type write in this case) to the 
switch hardware. The instruction is completed after the 
hardware has performed the data transfer and dropped the 
signal  line. The PPCS microcode of the destination 
processor is not involved. 

This causes the PPCS microcode to send a request 
message to the destination processor. The PPCS 
microcode of the destination processor performs the order 
(e.g.,  by presenting an external interrupt to the System/370 
layer for the order external call with parameter) and sends 
back a response message containing status information. 
The microcode of the issuing processor synchronously 
waits for the response message  and then completes the 
SIGP instruction with the appropriate condition code. 

Figure 3 illustrates the interfaces between the 

For example, invoking the IPPUT instruction leads to a 

Consider another example:  invoking a SIGP instruction. 

Parallel VM 
The control program (CP) of  VM/SP manages the 
resources of a single computer so that multiple systems 
appear to exist. Each ‘‘virtual’’ computing system, or 
virtual machine, is the functional equivalent of a 
Systed370 computer. CP also manages the 
communications among virtual machines, and between a 
virtual machine and the real system. It seemed natural to 
extend virtual-machine-to-virtual-machine communication 
across processors. By  using  VM/SP as the base, we 
developed a message-passing parallel system, Parallel VM. 

Processor-to-processor communication is the most 
critical component of Parallel VM. Communication is 

Switch 
interface 

Switch 
d0mahr 

Switch 
operation 

PPCS machine interfaces. 

required at all levels of the Parallel VM system, ranging 
from “stand-alone” communication to support IPL and 
dump through  higher levels to support CP operations (e.g., 
paging and spooling) and the end users running under 
CMS3 (e.g., minidisks4 and message passing). 

There is a single version of the operating system for the 
PPCS, so Parallel VM must  dynamically determine its 
environment (e.g.,  is  an I/O operation for a local or remote 
device?). 1/0 requests from satellites to remote devices 
(i.e., those attached to the I-host) are redirected to a file 
server on the I-host. 

Figure 4 shows the Parallel VM components and their 
interrelationship, for the I-host and two of the 32 satellites. 
The components are described in the following 
subsections. 

Communication 

Native CP Communication component 
Parallel VM includes a basic processor-to-processor 
communication facility as a native part of CP. The 
communication component provides CP (and, by 
extension, the various virtual machines) with an arbitrary 

3 The Conversational Monitor System (CMS) is a single-user operating system that 
executes in a virtual machine. It runs under  CP to provide a general-purpose, 
conversational, time-sharing facility. 
4 A minidisk is a contiguous subset of a  real disk. In V M ,  a minidisk is used by the 
CMS file system to contain a set of files and  their associated directory. 
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Parallel VM structure. 

number of logical sessions that provide connections to CP 
components in the other processors of the PPCS. Each 
session provides reliable and orderly movement of data 
between “peer” CP components on a pair of processors. If 
an error prevents this orderly movement of data, the two 
components are notified  of the failure. 

We could have implemented an ad hoc communication 
protocol that would have worked adequately. However, 
even a specialized, ad hoc protocol must address the basic 
problems of communication: flow control (pacing), error 
control, data transparency, naming, addressing, and 
multiplexing/routing. Once these issues have been tackled, 
the implementer finds that he has reinvented techniques 
that have already been developed for the various 
“standard” communication protocols. We therefore 
decided to produce an implementation of  an existing 

658 communication protocol: the IBM Advanced Peer-to-Peer 

Networking (APPN, also known as PU-2.1)  [22],  which 
provides Logical Unit 6.2 (LU-6.2) sessions [23] to the 
various components of CP. 

For expediency, only a subset of the full APPN and 
LU-6.2 protocols has been  implemented. The native CP 
Communication component does not provide the 
“Presentation Services” function of LU-6.2, because our 
immediate client is system code (as opposed to application 
code), and because the Presentation Services function 
already exists in the Advanced Program-to-Program 
Communication component of  VM/SP. Routing in the 
PPCS  machine  is  trivial because each processor has direct 
access to every other processor; therefore, a trivial subset 
of APPN routing has been implemented. We have merged 
the address of each processor into the names used  on that 
processor (e.g., SYSQQQ5 on processor 5), obviating the 
need for a directory function. 
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Since so much of the system depends on 
communication, the implementation must be fast. All 
communication processing is event-driven to minimize 
dispatching and queuing overhead. Excess copying of data 
within the memory of each processor has been eliminated 
by a special I/O-buffer-tracking discipline: Data being sent 
and received are copied at most once. Pointers to 
processing routines are stored in control blocks, and these 
pointers are changed to point to different routines to reflect 
major state changes in the communication system; this 
eliminates the need for extraneous conditional tests and 
branches in the mainline code. Since the various PPCS- 
unique instructions are relatively expensive operations, 
considerable work has gone into minimizing the use of 
these instructions. The net communication cost to send a 
request and receive a response is approximately 1200 
instructions, plus two PPCS-unique instructions. 

Ertual Machine Communications Facility (VMCF) 
VMCF [3], a component of CP,  allows a virtual machine to 
send messages and data to another virtual machine on the 
same processor. We  modified VMCF so that a virtual 
machine on one processor can also communicate with a 
peer on a different processor in the PPCS cluster. 

SEND/RECV is  an example of a VMCF protocol. It 
consists of the SEND/RECV, RECEIVE, and REPLY 
functions. SEND/RECV directs data to another virtual 
machine and requests a reply. RECEIVE (on the target 
virtual machine) accepts data sent. REPLY directs data 
back to the originator of the SEND/RECV function. 
Figure 5 depicts the local SEND/RECV protocol, and 
Figure 6 depicts the remote one. The originating virtual 
machine is  called the source virtual machine,  and the 
destination virtual machine  is the sink virtual machine. 

When converting local VMCF into remote VMCF, we 
tried to maintain the VMCF interface and structure. The 
VMCF functions to be executed are the same, but in the 
remote case some are executed on the source processor 
while others are executed on the sink processor. For 
example, for a SEND/RECV, validity checking of the 
SEND and REPLY buffer addresses and “locking” of the 
virtual pages into real storage frames must occur on the 
source processor. Ensuring that the sink virtual machine  is 
logged  on and authorized for VMCF occurs on the sink 
processor. 

Remote VMCF uses CP Communications to exchange 
control information. For a remote data transfer, IPGET 
and IPPUT are used to move data directly between virtual 
machines instead of the intraprocessor MOVE LONG 
instruction. 

Ertual channel-to-channel (VCTC) 
To interconnect the satellites to the I-host for spool file 
interchange and “remote” log-on, virtual channel-to- 
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channel links are established over sessions provided by CP 
Communications. These links are used by the Remote 
Spooling Communications Subsystem (RSCS) and the 
VM/Pass-Through Facility (PVM) to provide an intra- 
PPCS “network” and a gateway to other systems [3]. For 
example, a user at CERN can log on to any satellite; edit, 
compile, test, and run a FORTRAN program; and then 
have any output forwarded to another system. 

Diskless operation 

Server 
I/O operations (CP and CMS)  from satellites for devices 
attached to the I-host (and consequently remote to a 
satellite) are handled by a server running  in a virtual 
machine on the I-host that has access to PPCS minidisks. 
This server is a modified and extended version of a 
prototype developed at the IBM Thomas J. Watson 
Research Center’ [24]. 

satellites is performed through a special interface to 
VMCF,  using the SEND/RECV protocol. The server 
recognizes two types of requests: input/output requests 
(read or write a block on a minidisk)  and  command 
requests (e.g., LINK or DETACH a minidisk). 

The server performs 1/0 to CMS  minidisks  using the 
IUCV *BLOCKIO [3] system service; multiple blocks can 
be read or written with one request. The server is  designed 
to support multiple concurrent 1/0 operations. 

Minidisk cache 
File caching is done on the I-host and satellites. The 
satellite file cache  stores data previously received from the 
I-host server. This reduces the load on the I-host server, 
alleviating a potential bottleneck. The file cache is a 
modification of the VM/XA@  minidisk cache [25]. It was 
modified to use processor memory page frames instead of 
expanded storage frames. An arbiter dynamically adjusts 
the size of the cache in response to contending demands 
for processor memory. 

Communication between the server and its clients on the 

CMS 
CMS was modified to exploit remote minidisk access’ [24] 
and local caching of remote minidisk data. 

A prototype of remote minidisk access was developed at 
the IBM Thomas J. Watson Research Center in 1984 by 
Xavier de Lamberterie’. The prototype intercepted remote 
minidisk I/O requests at their entry to the lowest layer of 
the CMS  file system (DMSDIO), which services requests 
to read sets of blocks on a minidisk. The intercepted 
requests used a special communication facility which, for 

660 
Xavier de Lamberterie, Remote Disk Access Design Notes, IBM Thomas J. 

Watson Research Center, Yorktown Heights, NY, 1984. 
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performance reasons, was deemed inappropriate for the 
PPCS because the communication path went through 
several virtual machines. Therefore, while  retaining the 
intercept point  in  DMSDIO,  CMS  in Parallel VM uses a 
special interface with VMCF for file system I/O. 

Modifications were made to the CMS  initialization 
routines to support a completely diskless environment. 

To preserve the behavior of  CMS minidisk sharing 
among readers and writer, a diagnose6 interface was 
provided to the local  minidisk cache. The diagnose is used 
during a CMS ACCESS7 to verify the consistency of the 
minidisk  in the local cache. If  it is  not consistent, the 
cache is purged of  all data from this minidisk.  The cache is 
not  purged frequently, since in the PPCS environment the 
files  with the greatest probability of being rereferenced are 
either on read-only libraries or private, unshared 
minidisks. 

CP I/O 
The I/O that CP does for itself or when  providing a virtual 
machine  image  (i.e.,  all 1/0 not directly initiated by a 
virtual machine) is normally directed to system disk areas. 
In a sense, CP can be considered to have a primitive file 
system. In  Parallel V M ,  CMS  minidisks  managed by the 
server on the I-host replace these CP  files. Since CP does 
I/O in 4-kilobyte (4KB) blocks, it is easy to map these files 
into 4KB-blocked  CMS  minidisks. 

Each satellite has access to two system “volumes.” The 
first one, shared by all satellites as well as the I-host, is 
the system residence volume; it contains all  of the read- 
only data common to all processors. For example,  it 
contains the operating systems (e.g.,  CP and CMS) and the 
user directory.’ The second volume contains all  of the 
read-write areas required by each satellite (e.g., warm- 
start, checkpoint, and error-recording areas and  page  and 
spool space). Therefore, the I-host server manages one 
read-only minidisk  for all shared read-only system data and 
as many read-write minidisks as there are satellites without 
local read-write system volumes. 

operations. When the page  manager  is called, its parameter 
list specifies the system volume and the block number  on 
that volume. If the volume is remote, the page  manager 
builds a VMCF parameter list  specifying the equivalent 
block  number  within the I-host server CMS  minidisk. 
VMCF then calls CP Communications to redirect the I/O 
request to the server on the I-host. Once the request is 
complete, the page  manager  is resumed. 

The page  manager performs almost all CP 1/0 

6 A diagnose is a special instruction-level interface between a virtual machine and 
CP. Each diagnose has a unique identifying code and typically points to a set of 
parameters. 
7 The ACCESS command identifies the minidisk to CMS. Also, it reads the file 
directory and, if the user has write capability, the allocation bit map into the user’s 
virtual memory. 
8 The user directory in  VM is a list of all users of the system along with their 
resources-in particular, minidisks. 
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Satellite initialization (IPL) and satellite failure recovery 
(dump) do not use the page  manager for their I/O 
operations. These components were also modified to run in 
a diskless environment. 

The I-host is IPLed in the traditional System/370 way. 
The IPL is started by specifying load on the processor 
console, causing a channel program to be read from the 
selected input device. The channel program specifies that 
the CP nucleus initialization  program (NIP) is to be read 
into memory. Control then passes to the NIP, which 
proceeds to read the rest of the CP modules into memory. 

The satellites cannot be IPLed in the traditional manner, 
because they have neither I/O devices nor a processor 
console. Instead, as part of the I-host initialization, IPPUT 
instructions inject the NIP into the memory of  all on-line 
satellite processors. Once the NIP is loaded, a SIGP 
instruction starts each satellite. 

The satellite must now read in portions of the CP 
operating system, but it lacks I/O capability. The satellite 
requires that CP Communications forward the I/O requests 
to the server on the I-host, but it is too early in the 
satellite initialization to support CP Communications (e.g., 
the satellite does not yet have storage management 
services and an external interrupt handler). To solve this 
problem, a “thin-layer” communication routine, a very 
small subset of CP Communications, is  included in the 
satellite NIP. The thin layer does  its own storage 
management; it statically allocates storage from  an area 
that is not yet needed by the operating system. It has its 
own external interrupt handler for notification by the I-host 
when data have arrived or when a buffer has become 
available. 

Requests from the first IPLing satellite cause the server 
to read the remainder of the CP  modules  from the system 
residence volume. Since IUCV *BLOCKIO is a cachable 
interface, these pages are also inserted into the I-host 
minidisk cache, from which the needs of subsequently 
IPLing satellites can be satisfied without further disk  I/O. 
When initialization is complete, CP Communications takes 
over the function of the thin layer. 

Systems management 
The systems management of  33 processors could have 
been unwieldy, but packaging the PPCS  with  only one 
processor console has simplified its management. The 
I-host operator serves as the PPCS cluster operator 
through the use of the Programmable Remote Operator 
Program (PROP) [3]  and additional commands to control 
satellites and display their memory. With  PROP, important 
satellite messages are redirected to the I-host operator. 
The I-host operator can broadcast commands (e.g., IPL a 
satellite) or direct them to a specific satellite. Displaying 
satellite memory from the I-host is particularly useful  when 
debugging a problem on a satellite. 
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Having one disk copy of the system residence volume 
also simplifies the management of the PPCS.  If changes are 
made to the operating system, only one system generation 
is required instead of  33. Since there is a common user 
directory and  all  minidisks are accessed through a server 
on the I-host, file data are accessible by any processor 
(subject to normal password protection). 

Future plans 
As a result of using  Parallel VM at several IBM sites and 
CERN, we intend to extend the existing prototype. These 
extensions will further enhance the single-system image 
and broaden the I/O transparency. 

The separate spools on the PPCS cluster result in an 
inefficient  use of space and reduce the illusion of a single 
system. Spool files for a single user may be located on 
several processors within the cluster. Although  it is 
relatively straightforward to collect them in one place 
(e.g., the I-host), this can be confusing to users. Also, 
global spool file maintenance is complicated, because 33 
different spools are involved. As the number of processors 
in the PPCS grows, the maintenance becomes more 
complicated; therefore, any future work would solve this 
by creating a true single spool shared by all systems in the 
PPCS. 

Although the I/O-server approach combined  with 
cacheing has worked well,  it  would be better if I/O were 
completely transparent on the satellites. Then any device, 
such as a tape drive, could be attached to any virtual 
machine  in the PPCS cluster. This can be  accomplished by 
intercepting remote 1/0 requests in  CP. 

The simple canonical naming  used on the current 
prototype will also be relaxed by introducing a more 
sophisticated routing function. This constraint has not 
proved to be very annoying, but it does diminish the image 
of a single system. 

Distributed VS FORTRAN environment 
For the distributed-memory, parallel processing 
architecture of PPCS, a programming environment was 
needed to serve the requirements of the HEP community 
at CERN. The prevailing requirement at CERN [6, 171 was 
for control over individual processors, interprocessor data 
transfer, VS FORTRAN support, and facilities to program 
for high performance. The Multitasking Facility of  VS 
FORTRAN  and  Parallel  FORTRAN were evaluated with 
respect to PPCS requirements. 

capabilities of Parallel  FORTRAN that are suitable for 
coarse-grained parallel programming on the PPCS system 
in the style of the computer farm [6, 131 model. The 
programming facilities of Distributed VS FORTRAN are 
provided by the Compute Server Library (CS/L), a 
collection of subroutines. There are no modifications either 

The Distributed VS  FORTRAN prototype includes those 
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to the VS FORTRAN language or  to any of the compilers 
and libraries in the VS FORTRAN family. A distinct 
software component, named Compute Server Executive 
(CSK), is loaded into all virtual machines that execute 
computationally intensive tasks. 

Tasking  model 
The tasking model for PPCS is based on  an abstraction of 
computational resources that is represented by a set of 
virtual machines. One of these virtual machines acts  as the 
host processor, where the application execution originates. 
This host virtual machine is typically on the I-host, since 
the I-host provides a direct connection to the application 
data. The remaining virtual machines on the satellites act 
as “slave” processors for computationally intensive work. 
A configuration file  in the host environment defines a set of 
satellite virtual machines for the execution of  an 
application. That configuration  file  is  supplied by the 
application programmer as a specification of the processor 
requirements of a particular application. 

Distributed VS FORTRAN distinguishes between a main 
task running on the I-host and subtasks running on satellite 
processors. The main task initiates subtasks on satellite 
virtual machines. Only the main task may schedule VS 
FORTRAN subroutines for execution in subtasks. 

The tasking functions are summarized as follows: 

NPROCS 

ORGTSK 

TRMTSK 

SCHDTSK 

QYTSK 
BRKTSK 

RSMTSK 

WTTSK 

WANY 

WALL 

Returns the number of available satellite 
virtual machines. 
Creates a new task and initializes its virtual 
machine. 
Deletes a task and frees the associated 
resources. 
Orders a specified task to execute a named 
subroutine. 
Returns the status of a task. 
Causes a task to wait to rendezvous with its 
parent. 
Resumes the execution of a task after a 
BRKTSK rendezvous. 
Causes a parent to wait for the completion 
of a specified subtask. 
Causes a parent to wait for the completion 
of any of its subtasks. 
Causes a parent to wait for the completion of 
all  of its subtasks. 

Model  of  data  transfer 
Because PPCS is a distributed-memory system, it was 
determined that all data movements would be explicitly 
programmed. Except for the remote subtask invocation, 
synchronous semantics were chosen for most of the CS/L 
subroutines. 

Data exchange between the host and subtasks may be 
done only by copying  FORTRAN  COMMON blocks to 
and from virtual machines on satellite processors. 
(Copying data from subtask to subtask has not been 
implemented  in the first  CS/X prototype.) Subsets of 
COMMON blocks may be copied if the programmer 
provides offsets or addresses and lengths that can be 
checked against COMMON block boundaries. 

The copy functions in  CS/L are decoupled from the 
schedule function that assigns work to a subtask. In this 
way, CS/L deviates from the Parallel  FORTRAN 
semantics in which copying of data can be expressed as 
part of the schedule statement. The CS/L copy functions 
require synchronization between the main task and the 
subtask to ensure the integrity of  COMMON block data. 
Data copy always occurs under control of the main task, 
independent of the direction of data flow.  If a subtask 
executed a VS FORTRAN subroutine at the time of an 
incoming copy request, the addressed data could be in  an 
undefined state. Only  in the case of “break” points 
invoked by BRKTSK does the subtask participate in 
controlling the “rendezvo~s.” 

In that respect, the CS/L copy functions differ  from 
classical schemes of synchronous message  passing [26], in 
which the send request can be issued at any time, at the 
expense of blocking the sender until the receiver is  willing 
to accept the data. 

The copy functions are summarized as follows: 

CPYIN 

ACPYIN 

UCPYIN 

CPYOUT 

ACPYOUT 

UCPYOUT 

A named  COMMON block or subset 
thereof is copied from the main task to the 
workspace of a specified subtask. 
A variant of CPYIN that accepts addresses 
of variables as the starting place of the 
COPY- 
A set of contiguous COMMON blocks is 
copied to the workspace of a specified 
subtask. 
The analog of CPYIN for copying  from a 
subtask to the parent. 
The analog of ACPYIN for copying  from a 
subtask to the parent. 
The analog of UCPYIN for copying  from a 
subtask to the parent. 

The variants UCPYIN and UCPYOUT implement “bulk 
data transfer” by reducing the overhead associated with 
data transfer. Since the setup time  involved  in sending a 
message is largely independent of the message size, it  is 
more efficient to send one large message than a sequence 
of smaller ones that sum to the same size. If these 
COMMON blocks are consecutively allocated in memory, 
either UCPYIN or UCPYOUT can be used to transfer 
them in one single CS/L request. 
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Sample of an event-processing application 
The feasibility of the CS/L approach is demonstrated by a 
sample derived from CERN event-processing applications 
[6,  171. Physical interactions of particles are transformed 
into “event data blocks” by signal-processor hardware 
during high-energy physics experiments. These event data 
blocks are either saved for off-line analysis or processed 
on-line by a computer farm. 

that executes M units of work with the help of N parallel 
subtasks. The subroutine CRUNCH is invoked on  all 
satellite processors to perform the analysis of event data. 
Arrays of M input event data blocks (EDATA) and M 
corresponding result data blocks (RDATA) are maintained 
by the host  program. 

The STATUS variable associated with CS/L calls is a 
result parameter, reflecting the operational conditions upon 
completion of the call. An application running in 
production mode  must test that status information. 

Implementation 
The software component for managing distributed 
applications, the Compute Server Executive (CS/X), is  not 
linked to the application program but resides as a CMS 
nucleus extension in the virtual memory of host and 
satellite virtual machines. The separation of application 
and run-time support software is equivalent to the 
relationship of user processes and their invocation of 
operating system functions. 

CS/X implements distributed protocols based on passing 
messages between host and satellite virtual machines in the 
client-server [26] style. User-defined subtasks are mapped 
in a one-to-one manner to satellite virtual machines to 
avoid resource contention. 

Figure 7 sketches a sample program of a host application 

CS/X  is multithreaded [27, 281 to respond in a timely 
fashion to requests from remote clients. There are separate 
threads for VS FORTRAN execution and satellite 
monitoring running in the same CS/X address space. 

Communication between CS/X instances in different 
virtual machines is accomplished with the interprocessor 
implementation of VMCF by Parallel VM. CS/X does not 
interface directly with interprocessor facilities of the PPCS 
hardware; therefore, it can be run on a collection of virtual 
machines under a nonparallel VM/SP system (e.g., for 
debugging purposes). 

Performance 
The performance of the computer farms used by the HEP 
community depends largely on the 1/0 bandwidth of the 
host (i.e., how fast it can read event data and write output 
data) and the communication bandwidth from the host to 
the farm processors (i.e.,  how rapidly the host can send 
data to and receive data from the farm processors). A 
balanced system matches the I/O and communication 

do 28 i = 1.n 
call ACPYIN (tskid(i).’EVE#TS’.edata(i.l),Levent,status) 
call SCHDTSK (t$kid(i) .‘CRUWCH’,status) 

1 Sample of an event-processing application. 

speed to the computing speed of the processors for the 
intended set of applications. This allows speedups 
(comparing the amount of work per  unit of time that can 
be done on a single system to that done on a farm of 
similar processors) that approach the number of processors 
in the farm. 

In October 1988 CERN and IBM agreed on a joint 
project that would construct and evaluate several farm 
prototypes based on System/370 microprocessors. Two of 
these systems have been delivered to CERN to date: One 
is the PPCS described in this paper, and the other is a 
VME-bus-connected system very similar to the traditional 663 
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VMCF speed:  local vs. remote. 

farm. Like the other farms, the latter system does not have 
an operating system running on the farm processors, but 
rather a small kernel merely sufficient to support the 
execution of a FORTRAN program. This approach was 
taken primarily for simplicity  (it is difficult to initialize and 
run an operating system such as VM/370  in a processor 
without 1/0 capability) but also for performance (it was 
thought that an operating system might introduce overhead 
that would reduce the efficiency of the farm). 

applications (e.g., TRIDENT [29] and a Monte Carlo 
proton-antiproton event generator, ISAJET) on both of 
these systems and found them to have essentially identical 
performance characteristics. Both the PPCS  and the VME- 
bus system obtain speedups that approximate the number 
of processors in the farm. Details and performance 
comparisons with traditional HEP farms are given in  [6]. 

the PPCS is the low-overhead interprocessor 
communications. Figure 8 gives the speed of data transfer 
as a function of the message size. (The saturation effect  is 
due to the bandwidth limits of memory and the switch.) 
The figure compares the speeds of local and remote VMCF 
transfers. Remote VMCF speed varies between 80% of 
local (with 4-byte messages) to about 90% (with  large 
messages). This is a significant achievement, as the 
effective intraprocessor memory bandwidth is 
approximately double the effective switch bandwidth. 

CERN has analyzed several of its typical  farm 

One of the major reasons for the performance attained in 

Conclusion 
The switch-connected PPCS provides, in a way fully 
compatible with standard System/370 architecture, the 
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numerically intensive computing capabilities of a 
System/370 system. This coherent system structure allows 
application program parts to be offloaded  from the host 
system and executed on the satellite processors. This is 
accomplished  through the Parallel VM operating system 
and a Distributed VS FORTRAN  programming 
environment. 

The  PPCS  is suitable for a variety of numerically 
intensive computing problems with a high content of 
partitionable tasks. It provides facilities for coarse-grain 
parallelism,  with the full support of a general-purpose 
operating system. In addition, task-management and data- 
transfer support are provided to the application 
programmer. 

The PPCS  is  running at a few  IBM sites and at CERN. 
Various applications have been ported to the PPCS, 
including TRIDENT [29] and magnetohydrodynamics [30]. 
Several of the CERN applications that use bulk data 
transfer extensively have shown speedup factors of about 
30 with 32 satellite processors. 

Boblingen Development Laboratory and the IBM Thomas 
J. Watson Research Center for a PPCS based on ESN390 
CMOS microprocessors, which delivers enhanced 
performance and function. 
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