
The Parallel
Processing
Compute
Server

by E. M. Ammann
R. R. Berbec
G. Bozman
M. Faix
G. A. Goldrian
J. A. Pershing, Jr.
J. Ruvolo-Chong
F. Scholz

The Parallel Processing Compute Server
(PPCS) is a distributed-memory
multiprocessing system consisting of
System/370m microprocessors (33 at present)
interconnected through a matrix switch. This
paper describes the hardware configuration,
the extensions to the System/37O instruction
set that are provided to support the distributed
memory and interprocessor signaling, the
modifications to the VM/SP operating system
that allow it to run effectively on many closely
coupled processors (most of which have no
disks), and the application-support layer,
which permits FORTRAN programs to take
advantage of the highly parallel environment.
Development of the PPCS is a joint effort of
the IBM Boblingen Development Laboratory
and the IBM Thomas J. Watson Research
Center. A prototype PPCS has been installed
at CERN.

Introduction
The Parallel Processing Compute Server (PPCS) is a
distributed-memoly multiprocessor that uses message
passing for interprocessor communication. It comprises an
IBM Enterprise System/9373 (ES/9373) Model 301 [l]

System/9370T“ (ES/937OTW), which is a family of IBM System/370TM processors that
support many users and applications in the commercial, engineering, scientific, and
industrial environments.

The ES/9373 Model 30 is an entrylevel processor of the Enterprise

integrated host (I-host) system and 32 (at present)
System/370 satellite processors [2], all interconnected via
a matrix switch designed to accommodate 62 ports. The
I-host is the only processor with 1/0 capability; otherwise,
the satellite processors are functionally identical to the
I-host processor. Running under the control of Parallel
VM, a modified form of the IBM Virtual Machine/System
Product (VM/SP) operating system [3], the PPCS is
suitable for a variety of numerically intensive computing
programs.

Parallel VM features “diskless” operation on the
satellite processors (but is designed to exploit I/O-capable
satellite processors, if they exist), fast interprocessor
communications, local and remote inter-virtual-machine
message-passing, and, to a large degree, a single-system
image as seen by the application programmer.

Distributed VS FORTRAN, a prototype programming
environment for PPCS, has been developed. VS
FORTRAN [4] application programs must be reorganized
by the user to exploit parallel processing by originating,
scheduling, and synchronizing subtasks. A subroutine
library for task management and data transfer has been
developed in the spirit of IBM Parallel FORTRAN [5]. The
implementation of this Distributed VS FORTRAN library
is based on a CMS [3] extension, called CS/X, that takes
advantage of the Parallel VM functions.

A PPCS with 32 satellite processors, Parallel VM, and
CS/X has been installed at the European Organization for
Nuclear Research (CERN) and is running applications used
by the high-energy physics (HEP) community. At CERN,

Wopyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (I) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, hut no other portions, of
this paper may he copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must he obtained from the Editor. 653

IBM .I. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBERINOVEMBER 1991 E. M. A ” A N N ET AL.

on-line data acquisition and preprocessing of experimental
data is a major computing task. High-energy physics
experiments can generate streams of data at a rate of
several gigabytes per second. Once filtered and recorded,
data are subject to further analysis off-line. Both on-line
and off-line processing are numerically intensive
computing jobs. The PPCS is primarily intended for the
off-line processing, but it can be used for on-line work
as well.

The PPCS provides a raw performance potential of 33
times the performance of a single processor. The actual
performance depends on the application programs
executed. In general, the greater the ratio of CPU time to
1/0 time and data-transfer time, the higher the throughput.
Several CERN applications [6] that make extensive use of
bulk data transfer have shown speedup factors of about 30,
using 32 satellite processors.

With the established PPCS infrastructure (matrix switch,
Parallel VM, and Distributed VS FORTRAN), the
groundwork was put in place for the development of a
more powerful PPCS with new Enterprise Systems
Architecture/39Om (ESA/390TM) microprocessors, as used in
the IBM Enterprise System/9000m (ES/9000TM) Model 150’
computer [7].

The following sections describe the background of
PPCS-like systems, the PPCS hardware, its architecture,
the Parallel VM operating system, and the Distributed VS
FORTRAN environment.

Background
Since Paul Kunz of the Stanford Linear Accelerator Center
(SLAC) constructed a “farm” of processors, each of
which emulated, in part, the instruction set of the IBM
System/370 computer [8], CERN, SLAC and the
Massachusetts Institute of Technology have developed a
considerable number of these emulators for use as
computer farms [9-131, which use small processors for
running applications written in FORTRAN. In these farms,
only the host processor has I/O capability. Computer farms
generally have a straightforward master-slave control
structure, with each processor working on an independent
unit of work and no requirement for any-to-any processor
communication. A typical use of these farms in the HEP
community is the analysis of “event data” from an
experiment. Each processor of the farm is loaded with the
same program. A scheduling program on the host then
“feeds” the application programs with event data and
receives the results upon completion. Since all of the
events are disjoint, any event can be sent to any processor
in the farm. Communication with the farm processors is
typically via a VME bus [14] or something similar. .A good

2 The ES/9000 Model 150 computer is a rack-mounted processor of the ES/9M)O
family of processors. It is an advanced, general-purpose, intermediate computer

654 that implements the ESN390 and the Systed370 architecture.

E. M. AMMANN ET AL.

review of these machines can be found in [6]. Similar
farms based on machine architectures other than
System/370 have been built at other laboratories [15-171.
These farms generally do not have operating systems
running on the satellite nodes, but rather very primitive
kernels sufficient to execute FORTRAN programs. For
example, this kernel is several hundred lines of FORTRAN
on the Fermi National Accelerator Laboratory Advanced
Computer Program (ACP) [MI. Although this is a simple
approach that performs well, it can be problematic for the
development and debugging of applications.

PPCS development was initiated primarily because of HEP
computing requirements. The PPCS is a parallel processing
system that extends the concept of a processor farm. The
matrix switch provides a high-speed interconnection
network that allows any-to-any processor communication.
This permits the PPCS to be used for more general parallel
applications, such as lattice gauge calculations [16]. A
consistent approach to System/370 architecture and system
software (Parallel VM and Distributed VS FORTRAN) is
used throughout the system and provides a large set of
functions that operate on the I-host as well as on the
satellite processors. The presence of a full-function
operating system provides editing, compiling, testing, and
debugging facilities throughout the farm.

Hardware system
A PPCS is primarily composed of “off-the-shelf”
components from the IBM ES/9373 Model 30 system. It is
housed in three standard IBM racks. The logical system
structure is depicted in Figure 1. The matrix switch
interconnects the I-host system, the 32 satellite processors,
and, optionally, an external controller.

I-host system
The I-host processor has 16 megabytes of main storage and
contains two internal I/O buses. One bus links the I-host to
the matrix switch; the other bus connects four IBM 9332
disk units, an IBM 9347 tape unit, a workstation
controller, a communication controller, and a block
multiplexer (BMPX) channel to the I-host processor. One
can use the BMPX channel to connect the I-host to a large
System/370 mainframe or to attach tape drives. The disk
units are used to store the Parallel VM operating system,
application programs, and data. The tape units serve as
external input/output devices. An IBM PS/2@ Model 30
attached to the I-host is used as a system console to
control the entire PPCS, and as a support processor for
IML (initial microprogram load), IPL (initial program load),
error recovery, error logging, and console operations.

Satellite processors
The satellite processors employ the System/370 mainframe
architecture, including floating-point, square root, and

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERNOVEMBER 1991

high-accuracy arithmetic [19]. To optimize performance,
many frequently executed instructions are executed by the
hardware without microcode.

As shown in Figure 2, each satellite processor consists
of a processor card, an 8-megabyte memory card, and a
switch-adapter card. The processor chips [2] have an 80-ns
cycle time.

programmable read-only memory (EPROM) with bootstrap
microcode to prepare for IML, an interface for displaying
the status of the satellite processor, a bus switch adapter
(BSA), which connects one internal I/O bus to the switch
cable, and an interface to connect an optional service
processor. The service processor is a tool that can be
temporarily connected to a satellite processor for
maintenance purposes. Its configuration is similar to that
of the support processor.

The following types of data are transported across the
switch between connected processors, under the control of
the BSA:

The switch-adapter card contains an electrically

Messages (from mailbox to destination message queue).
Data blocks (from memory to memory).
Control commands.

The BSA resolves message collisions with a minimum
impact on performance.

It is a transmission-line cable (2-meter flat cable) with 15
signal and five ground lines. The cable supports a
bidirectional, 1-byte-wide, synchronous data transfer.

The switch cable connects the BSA with its switch port.

Switch
The switch is the interconnection facility for the PCCS. It
uses the switch element from the ESCON Director [20],
used in the IBM System/390m computer. The switch
consists of 62 ports, the switch element itself, and a switch
controller. Although the switch is designed for 62 ports,
only 33 are used in the current PPCS system: to connect
the I-host system and 32 satellite processors. Optionally an
additional port can be used for an external controller. The
switch is nonblocking and allows up to 16 two-party
communication paths to exist simultaneously. In addition,
it has a broadcasting mechanism that allows the I-host to
IML all satellite processors simultaneously. The switch is
controlled through a set of new System/370 interprocessor
communication instructions, which are described in the
next section.

PPCS machine architecture
The PPCS machine architecture is an extension of
System/370 architecture [21] to support a switch-connected
distributed-memory parallel processing system. To enable
the processors to work together efficiently on a single job,

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWNOVEMBER 1991

Satellite

To larger Systed370
systems or tape drives

I-host system

unit controller

processor 1

Memory

Processing
unit

Bus-switch port

Matrix
switch j”-l

Switch control

adapter

Satellite
processor 32 . element

Switch

Memory

Processing
unit

Bus-switch port 32
adapter 1”””-

(not used at present)

PPCS hardware structure.

the architecture includes synchronous instructions that
allow a processor to access the memory of other
processors and to signal other processors. These
interprocessor memory accesses are key-protected in the
same way as local memory access. In effect, this provides
a message-passing architecture complemented with
facilities that are usually included only in shared-memory
multiprocessor systems. In addition, instructions are
included that allow direct function invocation on a remote
processor without the overhead of interrupt-handling
routines.

The new instructions are listed below:

Synchronous data transfer
IPPUT Write data to destination processor memory.
IPGET Read data from destination processor

memory.

E. M. AMMANN ET A L .

655

Satellite orocessor - interconnections and internal elements.

Signaling
SIGP Signal destination processor.
Remote function invocation
IPCALL Invoke remote function at destination

processor; save original environment in a save
area.

IPSS Retrieve environment from local save area
(for inspection).

IPRET Resume environment kept in local save area.

The IPPUT and IPGET instructions are used for data
transfer between two processors.

The signaling instruction, SIGP, extends the standard
656 System/370 SIGP instruction to a distributed-memory

parallel processor environment. The SIGP instruction
accepts as one of its operands an order code, which
determines the type of signal to be presented at the
destination processor. For PPCS, new orders are provided
with SIGP; for instance, the external call with parameter
order passes a 32-bit parameter along with the “external
call” signal.

The IPCALL instruction permits function invocation on
a remote processor. The issuing processor supplies an
entry-point address (on the remote processor) and a set of
parameters, and the specified routine is invoked in much
the same way as an interrupt-handling routine. This routine
may retrieve the interrupted state of its processor into
main memory with the IPSS instruction, and may “return
to” this interrupted state with IPRET.

E. M. AMMANN ET AL. IBM J. RES. DEVELOP. VOL. 35 NO. SI6 SEPTEMBERINOVEMBER 1991

e

Standard System/370 machine instructions are
implemented partly in hardware and partly in microcode.
The new PPCS-unique instructions are all implemented in
microcode and additional hardware in the switch subsystem.

The microcode load (IML) for the PPCS is initiated by
the I-host support processor and is performed for all
processors, in parallel. Thus, the IML time for the entire
PPCS is only slightly longer than for a single processor.

Systeml370 layer, the PPCS microcode, and the switch
subsystem. PPCS microcode is invoked when one of the
new instructions is issued or when a message arrives from
another processor over the switch. Requests from the
PPCS microcode in a processor are given to the switch
hardware (to send a message or to transfer data) by placing
them in a special “mailbox” location in the internal
memory of the processor and then raising a signal line to
notify the switch hardware of the request. The switch
hardware delivers a message by placing it on the inbound
message queue in internal memory and by raising a signal
line to notify the PPCS microcode in that processor. Data
transfer is performed by the switch hardware by moving
data directly between the main memories of the
appropriate processors.

data-transfer request (of type write in this case) to the
switch hardware. The instruction is completed after the
hardware has performed the data transfer and dropped the
signal line. The PPCS microcode of the destination
processor is not involved.

This causes the PPCS microcode to send a request
message to the destination processor. The PPCS
microcode of the destination processor performs the order
(e.g., by presenting an external interrupt to the System/370
layer for the order external call with parameter) and sends
back a response message containing status information.
The microcode of the issuing processor synchronously
waits for the response message and then completes the
SIGP instruction with the appropriate condition code.

Figure 3 illustrates the interfaces between the

For example, invoking the IPPUT instruction leads to a

Consider another example: invoking a SIGP instruction.

Parallel VM
The control program (CP) of VM/SP manages the
resources of a single computer so that multiple systems
appear to exist. Each ‘‘virtual’’ computing system, or
virtual machine, is the functional equivalent of a
Systed370 computer. CP also manages the
communications among virtual machines, and between a
virtual machine and the real system. It seemed natural to
extend virtual-machine-to-virtual-machine communication
across processors. By using VM/SP as the base, we
developed a message-passing parallel system, Parallel VM.

Processor-to-processor communication is the most
critical component of Parallel VM. Communication is

Switch
interface

Switch
d0mahr

Switch
operation

PPCS machine interfaces.

required at all levels of the Parallel VM system, ranging
from “stand-alone” communication to support IPL and
dump through higher levels to support CP operations (e.g.,
paging and spooling) and the end users running under
CMS3 (e.g., minidisks4 and message passing).

There is a single version of the operating system for the
PPCS, so Parallel VM must dynamically determine its
environment (e.g., is an I/O operation for a local or remote
device?). 1/0 requests from satellites to remote devices
(i.e., those attached to the I-host) are redirected to a file
server on the I-host.

Figure 4 shows the Parallel VM components and their
interrelationship, for the I-host and two of the 32 satellites.
The components are described in the following
subsections.

Communication

Native CP Communication component
Parallel VM includes a basic processor-to-processor
communication facility as a native part of CP. The
communication component provides CP (and, by
extension, the various virtual machines) with an arbitrary

3 The Conversational Monitor System (CMS) is a single-user operating system that
executes in a virtual machine. It runs under CP to provide a general-purpose,
conversational, time-sharing facility.
4 A minidisk is a contiguous subset of a real disk. In V M , a minidisk is used by the
CMS file system to contain a set of files and their associated directory.

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEWOVEMBER 1991 E. M. AMMANN ET AL.

Parallel VM structure.

number of logical sessions that provide connections to CP
components in the other processors of the PPCS. Each
session provides reliable and orderly movement of data
between “peer” CP components on a pair of processors. If
an error prevents this orderly movement of data, the two
components are notified of the failure.

We could have implemented an ad hoc communication
protocol that would have worked adequately. However,
even a specialized, ad hoc protocol must address the basic
problems of communication: flow control (pacing), error
control, data transparency, naming, addressing, and
multiplexing/routing. Once these issues have been tackled,
the implementer finds that he has reinvented techniques
that have already been developed for the various
“standard” communication protocols. We therefore
decided to produce an implementation of an existing

658 communication protocol: the IBM Advanced Peer-to-Peer

Networking (APPN, also known as PU-2.1) [22], which
provides Logical Unit 6.2 (LU-6.2) sessions [23] to the
various components of CP.

For expediency, only a subset of the full APPN and
LU-6.2 protocols has been implemented. The native CP
Communication component does not provide the
“Presentation Services” function of LU-6.2, because our
immediate client is system code (as opposed to application
code), and because the Presentation Services function
already exists in the Advanced Program-to-Program
Communication component of VM/SP. Routing in the
PPCS machine is trivial because each processor has direct
access to every other processor; therefore, a trivial subset
of APPN routing has been implemented. We have merged
the address of each processor into the names used on that
processor (e.g., SYSQQQ5 on processor 5), obviating the
need for a directory function.

E. M. AMMANN ET AL. IBM J . RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERINOVEMBER 1991

Since so much of the system depends on
communication, the implementation must be fast. All
communication processing is event-driven to minimize
dispatching and queuing overhead. Excess copying of data
within the memory of each processor has been eliminated
by a special I/O-buffer-tracking discipline: Data being sent
and received are copied at most once. Pointers to
processing routines are stored in control blocks, and these
pointers are changed to point to different routines to reflect
major state changes in the communication system; this
eliminates the need for extraneous conditional tests and
branches in the mainline code. Since the various PPCS-
unique instructions are relatively expensive operations,
considerable work has gone into minimizing the use of
these instructions. The net communication cost to send a
request and receive a response is approximately 1200
instructions, plus two PPCS-unique instructions.

Ertual Machine Communications Facility (VMCF)
VMCF [3], a component of CP, allows a virtual machine to
send messages and data to another virtual machine on the
same processor. We modified VMCF so that a virtual
machine on one processor can also communicate with a
peer on a different processor in the PPCS cluster.

SEND/RECV is an example of a VMCF protocol. It
consists of the SEND/RECV, RECEIVE, and REPLY
functions. SEND/RECV directs data to another virtual
machine and requests a reply. RECEIVE (on the target
virtual machine) accepts data sent. REPLY directs data
back to the originator of the SEND/RECV function.
Figure 5 depicts the local SEND/RECV protocol, and
Figure 6 depicts the remote one. The originating virtual
machine is called the source virtual machine, and the
destination virtual machine is the sink virtual machine.

When converting local VMCF into remote VMCF, we
tried to maintain the VMCF interface and structure. The
VMCF functions to be executed are the same, but in the
remote case some are executed on the source processor
while others are executed on the sink processor. For
example, for a SEND/RECV, validity checking of the
SEND and REPLY buffer addresses and “locking” of the
virtual pages into real storage frames must occur on the
source processor. Ensuring that the sink virtual machine is
logged on and authorized for VMCF occurs on the sink
processor.

Remote VMCF uses CP Communications to exchange
control information. For a remote data transfer, IPGET
and IPPUT are used to move data directly between virtual
machines instead of the intraprocessor MOVE LONG
instruction.

Ertual channel-to-channel (VCTC)
To interconnect the satellites to the I-host for spool file
interchange and “remote” log-on, virtual channel-to-

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBERiiiOVEMBER 1991

Data transfer (MOVE LONG) ”----+

I I- REPLY

1 protocol for a local SENDRECV request.

C -

- CP Communications ”+ ~ ~ t e ~ d
interrupt-

4- RECEIVE
I .

~ a t a transfer (I P G E T) . ~

...t“-------- Data transfer (IPPUT)
..

I I I

+intempt
External

(find response)

+ CP Communications - U
1 Protocol for a remote SENDRECV request.

E. M. AMMANN ET AL.

659

channel links are established over sessions provided by CP
Communications. These links are used by the Remote
Spooling Communications Subsystem (RSCS) and the
VM/Pass-Through Facility (PVM) to provide an intra-
PPCS “network” and a gateway to other systems [3]. For
example, a user at CERN can log on to any satellite; edit,
compile, test, and run a FORTRAN program; and then
have any output forwarded to another system.

Diskless operation

Server
I/O operations (CP and CMS) from satellites for devices
attached to the I-host (and consequently remote to a
satellite) are handled by a server running in a virtual
machine on the I-host that has access to PPCS minidisks.
This server is a modified and extended version of a
prototype developed at the IBM Thomas J. Watson
Research Center’ [24].

satellites is performed through a special interface to
VMCF, using the SEND/RECV protocol. The server
recognizes two types of requests: input/output requests
(read or write a block on a minidisk) and command
requests (e.g., LINK or DETACH a minidisk).

The server performs 1/0 to CMS minidisks using the
IUCV *BLOCKIO [3] system service; multiple blocks can
be read or written with one request. The server is designed
to support multiple concurrent 1/0 operations.

Minidisk cache
File caching is done on the I-host and satellites. The
satellite file cache stores data previously received from the
I-host server. This reduces the load on the I-host server,
alleviating a potential bottleneck. The file cache is a
modification of the VM/XA@ minidisk cache [25]. It was
modified to use processor memory page frames instead of
expanded storage frames. An arbiter dynamically adjusts
the size of the cache in response to contending demands
for processor memory.

Communication between the server and its clients on the

CMS
CMS was modified to exploit remote minidisk access’ [24]
and local caching of remote minidisk data.

A prototype of remote minidisk access was developed at
the IBM Thomas J. Watson Research Center in 1984 by
Xavier de Lamberterie’. The prototype intercepted remote
minidisk I/O requests at their entry to the lowest layer of
the CMS file system (DMSDIO), which services requests
to read sets of blocks on a minidisk. The intercepted
requests used a special communication facility which, for

660
Xavier de Lamberterie, Remote Disk Access Design Notes, IBM Thomas J.

Watson Research Center, Yorktown Heights, NY, 1984.

E. M. AMMANN ET AL.

performance reasons, was deemed inappropriate for the
PPCS because the communication path went through
several virtual machines. Therefore, while retaining the
intercept point in DMSDIO, CMS in Parallel VM uses a
special interface with VMCF for file system I/O.

Modifications were made to the CMS initialization
routines to support a completely diskless environment.

To preserve the behavior of CMS minidisk sharing
among readers and writer, a diagnose6 interface was
provided to the local minidisk cache. The diagnose is used
during a CMS ACCESS7 to verify the consistency of the
minidisk in the local cache. If it is not consistent, the
cache is purged of all data from this minidisk. The cache is
not purged frequently, since in the PPCS environment the
files with the greatest probability of being rereferenced are
either on read-only libraries or private, unshared
minidisks.

CP I/O
The I/O that CP does for itself or when providing a virtual
machine image (i.e., all 1/0 not directly initiated by a
virtual machine) is normally directed to system disk areas.
In a sense, CP can be considered to have a primitive file
system. In Parallel V M , CMS minidisks managed by the
server on the I-host replace these CP files. Since CP does
I/O in 4-kilobyte (4KB) blocks, it is easy to map these files
into 4KB-blocked CMS minidisks.

Each satellite has access to two system “volumes.” The
first one, shared by all satellites as well as the I-host, is
the system residence volume; it contains all of the read-
only data common to all processors. For example, it
contains the operating systems (e.g., CP and CMS) and the
user directory.’ The second volume contains all of the
read-write areas required by each satellite (e.g., warm-
start, checkpoint, and error-recording areas and page and
spool space). Therefore, the I-host server manages one
read-only minidisk for all shared read-only system data and
as many read-write minidisks as there are satellites without
local read-write system volumes.

operations. When the page manager is called, its parameter
list specifies the system volume and the block number on
that volume. If the volume is remote, the page manager
builds a VMCF parameter list specifying the equivalent
block number within the I-host server CMS minidisk.
VMCF then calls CP Communications to redirect the I/O
request to the server on the I-host. Once the request is
complete, the page manager is resumed.

The page manager performs almost all CP 1/0

6 A diagnose is a special instruction-level interface between a virtual machine and
CP. Each diagnose has a unique identifying code and typically points to a set of
parameters.
7 The ACCESS command identifies the minidisk to CMS. Also, it reads the file
directory and, if the user has write capability, the allocation bit map into the user’s
virtual memory.
8 The user directory in VM is a list of all users of the system along with their
resources-in particular, minidisks.

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEFUNOVEMBER 1991

Satellite initialization (IPL) and satellite failure recovery
(dump) do not use the page manager for their I/O
operations. These components were also modified to run in
a diskless environment.

The I-host is IPLed in the traditional System/370 way.
The IPL is started by specifying load on the processor
console, causing a channel program to be read from the
selected input device. The channel program specifies that
the CP nucleus initialization program (NIP) is to be read
into memory. Control then passes to the NIP, which
proceeds to read the rest of the CP modules into memory.

The satellites cannot be IPLed in the traditional manner,
because they have neither I/O devices nor a processor
console. Instead, as part of the I-host initialization, IPPUT
instructions inject the NIP into the memory of all on-line
satellite processors. Once the NIP is loaded, a SIGP
instruction starts each satellite.

The satellite must now read in portions of the CP
operating system, but it lacks I/O capability. The satellite
requires that CP Communications forward the I/O requests
to the server on the I-host, but it is too early in the
satellite initialization to support CP Communications (e.g.,
the satellite does not yet have storage management
services and an external interrupt handler). To solve this
problem, a “thin-layer” communication routine, a very
small subset of CP Communications, is included in the
satellite NIP. The thin layer does its own storage
management; it statically allocates storage from an area
that is not yet needed by the operating system. It has its
own external interrupt handler for notification by the I-host
when data have arrived or when a buffer has become
available.

Requests from the first IPLing satellite cause the server
to read the remainder of the CP modules from the system
residence volume. Since IUCV *BLOCKIO is a cachable
interface, these pages are also inserted into the I-host
minidisk cache, from which the needs of subsequently
IPLing satellites can be satisfied without further disk I/O.
When initialization is complete, CP Communications takes
over the function of the thin layer.

Systems management
The systems management of 33 processors could have
been unwieldy, but packaging the PPCS with only one
processor console has simplified its management. The
I-host operator serves as the PPCS cluster operator
through the use of the Programmable Remote Operator
Program (PROP) [3] and additional commands to control
satellites and display their memory. With PROP, important
satellite messages are redirected to the I-host operator.
The I-host operator can broadcast commands (e.g., IPL a
satellite) or direct them to a specific satellite. Displaying
satellite memory from the I-host is particularly useful when
debugging a problem on a satellite.

IBM I. RES. DEVELOP. VOL. 35 NO. 5/6 SEFTEMBERNOVEMBER 1991

Having one disk copy of the system residence volume
also simplifies the management of the PPCS. If changes are
made to the operating system, only one system generation
is required instead of 33. Since there is a common user
directory and all minidisks are accessed through a server
on the I-host, file data are accessible by any processor
(subject to normal password protection).

Future plans
As a result of using Parallel VM at several IBM sites and
CERN, we intend to extend the existing prototype. These
extensions will further enhance the single-system image
and broaden the I/O transparency.

The separate spools on the PPCS cluster result in an
inefficient use of space and reduce the illusion of a single
system. Spool files for a single user may be located on
several processors within the cluster. Although it is
relatively straightforward to collect them in one place
(e.g., the I-host), this can be confusing to users. Also,
global spool file maintenance is complicated, because 33
different spools are involved. As the number of processors
in the PPCS grows, the maintenance becomes more
complicated; therefore, any future work would solve this
by creating a true single spool shared by all systems in the
PPCS.

Although the I/O-server approach combined with
cacheing has worked well, it would be better if I/O were
completely transparent on the satellites. Then any device,
such as a tape drive, could be attached to any virtual
machine in the PPCS cluster. This can be accomplished by
intercepting remote 1/0 requests in CP.

The simple canonical naming used on the current
prototype will also be relaxed by introducing a more
sophisticated routing function. This constraint has not
proved to be very annoying, but it does diminish the image
of a single system.

Distributed VS FORTRAN environment
For the distributed-memory, parallel processing
architecture of PPCS, a programming environment was
needed to serve the requirements of the HEP community
at CERN. The prevailing requirement at CERN [6, 171 was
for control over individual processors, interprocessor data
transfer, VS FORTRAN support, and facilities to program
for high performance. The Multitasking Facility of VS
FORTRAN and Parallel FORTRAN were evaluated with
respect to PPCS requirements.

capabilities of Parallel FORTRAN that are suitable for
coarse-grained parallel programming on the PPCS system
in the style of the computer farm [6, 131 model. The
programming facilities of Distributed VS FORTRAN are
provided by the Compute Server Library (CS/L), a
collection of subroutines. There are no modifications either

The Distributed VS FORTRAN prototype includes those

E. M. A ” A N N ET AL.

661

662

to the VS FORTRAN language or to any of the compilers
and libraries in the VS FORTRAN family. A distinct
software component, named Compute Server Executive
(CSK), is loaded into all virtual machines that execute
computationally intensive tasks.

Tasking model
The tasking model for PPCS is based on an abstraction of
computational resources that is represented by a set of
virtual machines. One of these virtual machines acts as the
host processor, where the application execution originates.
This host virtual machine is typically on the I-host, since
the I-host provides a direct connection to the application
data. The remaining virtual machines on the satellites act
as “slave” processors for computationally intensive work.
A configuration file in the host environment defines a set of
satellite virtual machines for the execution of an
application. That configuration file is supplied by the
application programmer as a specification of the processor
requirements of a particular application.

Distributed VS FORTRAN distinguishes between a main
task running on the I-host and subtasks running on satellite
processors. The main task initiates subtasks on satellite
virtual machines. Only the main task may schedule VS
FORTRAN subroutines for execution in subtasks.

The tasking functions are summarized as follows:

NPROCS

ORGTSK

TRMTSK

SCHDTSK

QYTSK
BRKTSK

RSMTSK

WTTSK

WANY

WALL

Returns the number of available satellite
virtual machines.
Creates a new task and initializes its virtual
machine.
Deletes a task and frees the associated
resources.
Orders a specified task to execute a named
subroutine.
Returns the status of a task.
Causes a task to wait to rendezvous with its
parent.
Resumes the execution of a task after a
BRKTSK rendezvous.
Causes a parent to wait for the completion
of a specified subtask.
Causes a parent to wait for the completion
of any of its subtasks.
Causes a parent to wait for the completion of
all of its subtasks.

Model of data transfer
Because PPCS is a distributed-memory system, it was
determined that all data movements would be explicitly
programmed. Except for the remote subtask invocation,
synchronous semantics were chosen for most of the CS/L
subroutines.

Data exchange between the host and subtasks may be
done only by copying FORTRAN COMMON blocks to
and from virtual machines on satellite processors.
(Copying data from subtask to subtask has not been
implemented in the first CS/X prototype.) Subsets of
COMMON blocks may be copied if the programmer
provides offsets or addresses and lengths that can be
checked against COMMON block boundaries.

The copy functions in CS/L are decoupled from the
schedule function that assigns work to a subtask. In this
way, CS/L deviates from the Parallel FORTRAN
semantics in which copying of data can be expressed as
part of the schedule statement. The CS/L copy functions
require synchronization between the main task and the
subtask to ensure the integrity of COMMON block data.
Data copy always occurs under control of the main task,
independent of the direction of data flow. If a subtask
executed a VS FORTRAN subroutine at the time of an
incoming copy request, the addressed data could be in an
undefined state. Only in the case of “break” points
invoked by BRKTSK does the subtask participate in
controlling the “rendezvo~s.”

In that respect, the CS/L copy functions differ from
classical schemes of synchronous message passing [26], in
which the send request can be issued at any time, at the
expense of blocking the sender until the receiver is willing
to accept the data.

The copy functions are summarized as follows:

CPYIN

ACPYIN

UCPYIN

CPYOUT

ACPYOUT

UCPYOUT

A named COMMON block or subset
thereof is copied from the main task to the
workspace of a specified subtask.
A variant of CPYIN that accepts addresses
of variables as the starting place of the
COPY-
A set of contiguous COMMON blocks is
copied to the workspace of a specified
subtask.
The analog of CPYIN for copying from a
subtask to the parent.
The analog of ACPYIN for copying from a
subtask to the parent.
The analog of UCPYIN for copying from a
subtask to the parent.

The variants UCPYIN and UCPYOUT implement “bulk
data transfer” by reducing the overhead associated with
data transfer. Since the setup time involved in sending a
message is largely independent of the message size, it is
more efficient to send one large message than a sequence
of smaller ones that sum to the same size. If these
COMMON blocks are consecutively allocated in memory,
either UCPYIN or UCPYOUT can be used to transfer
them in one single CS/L request.

E. M. A ” A N N ET AL. IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBEWOVEMBER 1991

Sample of an event-processing application
The feasibility of the CS/L approach is demonstrated by a
sample derived from CERN event-processing applications
[6, 171. Physical interactions of particles are transformed
into “event data blocks” by signal-processor hardware
during high-energy physics experiments. These event data
blocks are either saved for off-line analysis or processed
on-line by a computer farm.

that executes M units of work with the help of N parallel
subtasks. The subroutine CRUNCH is invoked on all
satellite processors to perform the analysis of event data.
Arrays of M input event data blocks (EDATA) and M
corresponding result data blocks (RDATA) are maintained
by the host program.

The STATUS variable associated with CS/L calls is a
result parameter, reflecting the operational conditions upon
completion of the call. An application running in
production mode must test that status information.

Implementation
The software component for managing distributed
applications, the Compute Server Executive (CS/X), is not
linked to the application program but resides as a CMS
nucleus extension in the virtual memory of host and
satellite virtual machines. The separation of application
and run-time support software is equivalent to the
relationship of user processes and their invocation of
operating system functions.

CS/X implements distributed protocols based on passing
messages between host and satellite virtual machines in the
client-server [26] style. User-defined subtasks are mapped
in a one-to-one manner to satellite virtual machines to
avoid resource contention.

Figure 7 sketches a sample program of a host application

CS/X is multithreaded [27, 281 to respond in a timely
fashion to requests from remote clients. There are separate
threads for VS FORTRAN execution and satellite
monitoring running in the same CS/X address space.

Communication between CS/X instances in different
virtual machines is accomplished with the interprocessor
implementation of VMCF by Parallel VM. CS/X does not
interface directly with interprocessor facilities of the PPCS
hardware; therefore, it can be run on a collection of virtual
machines under a nonparallel VM/SP system (e.g., for
debugging purposes).

Performance
The performance of the computer farms used by the HEP
community depends largely on the 1/0 bandwidth of the
host (i.e., how fast it can read event data and write output
data) and the communication bandwidth from the host to
the farm processors (i.e., how rapidly the host can send
data to and receive data from the farm processors). A
balanced system matches the I/O and communication

do 28 i = 1.n
call ACPYIN (tskid(i).’EVE#TS’.edata(i.l),Levent,status)
call SCHDTSK (t$kid(i) .‘CRUWCH’,status)

1 Sample of an event-processing application.

speed to the computing speed of the processors for the
intended set of applications. This allows speedups
(comparing the amount of work per unit of time that can
be done on a single system to that done on a farm of
similar processors) that approach the number of processors
in the farm.

In October 1988 CERN and IBM agreed on a joint
project that would construct and evaluate several farm
prototypes based on System/370 microprocessors. Two of
these systems have been delivered to CERN to date: One
is the PPCS described in this paper, and the other is a
VME-bus-connected system very similar to the traditional 663

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBERINOVEMBER 1991 E. M. A ” A N N ET AL.

664

VMCF speed: local vs. remote.

farm. Like the other farms, the latter system does not have
an operating system running on the farm processors, but
rather a small kernel merely sufficient to support the
execution of a FORTRAN program. This approach was
taken primarily for simplicity (it is difficult to initialize and
run an operating system such as VM/370 in a processor
without 1/0 capability) but also for performance (it was
thought that an operating system might introduce overhead
that would reduce the efficiency of the farm).

applications (e.g., TRIDENT [29] and a Monte Carlo
proton-antiproton event generator, ISAJET) on both of
these systems and found them to have essentially identical
performance characteristics. Both the PPCS and the VME-
bus system obtain speedups that approximate the number
of processors in the farm. Details and performance
comparisons with traditional HEP farms are given in [6].

the PPCS is the low-overhead interprocessor
communications. Figure 8 gives the speed of data transfer
as a function of the message size. (The saturation effect is
due to the bandwidth limits of memory and the switch.)
The figure compares the speeds of local and remote VMCF
transfers. Remote VMCF speed varies between 80% of
local (with 4-byte messages) to about 90% (with large
messages). This is a significant achievement, as the
effective intraprocessor memory bandwidth is
approximately double the effective switch bandwidth.

CERN has analyzed several of its typical farm

One of the major reasons for the performance attained in

Conclusion
The switch-connected PPCS provides, in a way fully
compatible with standard System/370 architecture, the

E. M. AMMANN ET AL.

numerically intensive computing capabilities of a
System/370 system. This coherent system structure allows
application program parts to be offloaded from the host
system and executed on the satellite processors. This is
accomplished through the Parallel VM operating system
and a Distributed VS FORTRAN programming
environment.

The PPCS is suitable for a variety of numerically
intensive computing problems with a high content of
partitionable tasks. It provides facilities for coarse-grain
parallelism, with the full support of a general-purpose
operating system. In addition, task-management and data-
transfer support are provided to the application
programmer.

The PPCS is running at a few IBM sites and at CERN.
Various applications have been ported to the PPCS,
including TRIDENT [29] and magnetohydrodynamics [30].
Several of the CERN applications that use bulk data
transfer extensively have shown speedup factors of about
30 with 32 satellite processors.

Boblingen Development Laboratory and the IBM Thomas
J. Watson Research Center for a PPCS based on ESN390
CMOS microprocessors, which delivers enhanced
performance and function.

Acknowledgments
We gratefully acknowledge the contributions to this project
by our colleagues in IBM, especially W. G. Spruth’s
advanced technology team and H. Diel for their work on
the basic concept of the PPCS. Special thanks goes to the
entire PPCS development team.

System/370, Enterprise Systed9370, ES/9370, Enterprise
Systems Architecture/390, ESA/390, Enterprise System/9000,
ES/9000, Systed390, and VMiXA are trademarks, and PS/2 is
a registered trademark, of International Business Machines
Corporation.

Prototype development work continues at the IBM

References
1. IBM ES/9370: Introducing the System, Order No. GA24-

4030, 1989; available through IBM branch offices.
2. W. G. Spruth, The Design of a Microprocessor, Springer-

Verlag, New York, 1989.
3. Krtual MachinelSystem Product Introduction, Order No.

GC19-6200-4, 1986; available through IBM branch offices.
4. VS FORTRAN Version 2 Language and Library

Reference, Order No. SC26-4221-2, 1987; available
through IBM branch offices.

5 . Parallel FORTRAN Language and Library Reference,
Order No. SC23-0431-0, 1988; available through IBM
branch offices.

Koratzinos, H. Masuch, A. Paton, C. Pirotte, and S .
Tether, “CERN, Emulators and Parallel Processing
Compute Servers,’’ Proceedings of SHARE Europe
Anniversary Meeting, Paris, Oct. 1-5, 1990, SHARE
Europe HQ, Geneva, 1990, Vol. 11, pp. 929-941.

4186-0, 1990; available through IBM branch offices.

6. D. Lord, A. Fucci, P. Sphicas, P. Favre, J. P. Ikonen, M.

7. IBM ES/9000: Introducing the System, Order No. GA24-

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBEWOVEMBER 1991

8. P. F. Kunz, “The LASS Hardware Processor,” Nuclear

9. S. Cittolin, M. Demoulin, A. Fucci, W. Haynes, B.
Imtrum. & Meth. 135, 435-440 (1976).

Martin, J. P. Porte, and P. Sphicas, “Third-Level Trigger
and Output Event Unit of the UA1 Data-Acquisition
System,” Proceedings of the International Conference on
Computing in High-Energy Physics, Oxford, England,
April 10-14, 1989, pp. 370-374.

10. P. Rankin et al., “The 3081/E Processor and Its On-Line
Use,” presented at the Conference on Real Time
Computer Applications in Nuclear and Particle Physics,
Chicago, 1985.

11. A. Fucci and K. M. Storr, “Using the 3081/E Emulators
in On-Line and Off-Line Environments,” Proceedings of
the Three-Day In-Depth Review of the Impact of
Specialized Processors in Elementary Particle Physics,
INFN, Padua, Italy, March 1983, pp. 213-228.

Future Generation Computer Systems, Vol. 6, North-
Holland, Amsterdam, pp. 185-196.

13. P. A. Sphicas, “UAl Experience with 3081/E Systems,”
Proceedings of the Conference on Computing in High
Energy Physics, Asilomar, CA, February 2-6, 1987, pp.
339-343.

Solid-state Electronics, Motorola Corporation, Inc.,
October 1985.

15. T. Nash, H. Areti, R. Atac, J. Biel, G. Case, A. Cook, M.
Fischler, I. Gaines, R. Hance, D. Husby, and T. Zmuda,
“The ACP Multiprocessor System at Fermilab,” presented
at the 23rd International Conference on High-Energy
Physics, Berkeley, CA, July 16-23, 1986.

Fischler, R. Hance, D. Husby, T. Nash, and T. Zmuda,
“The ACP Multiprocessor System at Fermilab,”
Proceedings of the Conference on Computing in High-
Energy Physics, Asilomar, CA, February 2-6, 1987, pp.
323-329.

17. T. Nash, “Event Parallelism: Distributed-Memory Parallel
Computing for High-Energy Physics Experiments,”
Proceedings of the Conference on Computing in High-
Energy Physics, Oxford, England, April 10-14, 1989, pp.
47-56.

Gaines, C. Kaliher, R. Hance, D. Husby, T. Nash, and T.
Zmuda, “Software for the ACP Multiprocessor System,”
Proceedings of the Conference on Computing in High-
Energy Physics, Asilomar, CA, February 2-6, 1987, pp.
331-338.

19. High-Accuracy Arithmetic Subroutine Library General
Information Manual, Order No. GC33-6163-2, 1986;
available through IBM branch offices.

20. C. J. Georgiou, T. A. Larsen, P. W. Oakhill, and B.
Salimi, “The ESCON Director: A Dynamic Switch for
200-Mb/s Fiber-optic Links,” Research Report RC-16475,
IBM Thomas J. Watson Research Center, Yorktown
Heights, N Y , 1991.

21. IBM System1370 Principles of Operation, Order No.
GA22-7000-10, 1987; available through IBM branch offices.

22. SNA Type 2.1 Node Reference, Order No. SC30-3422,
1991; available through IBM branch offices.

23. SNA LU-6.2 Reference: Peer Protocols, Order No. SC31-
6808, 1990; available through IBM branch offices.

24. Noah Mendelsohn, “Transparent Remote Disk Access for
the CMS File System,” Technical Report 2220-6467, IBM
Palo Alto Scientific Center, Palo Alto, CA, 1984.

25. G. P. Bozman, “VM/XA SP2 Minidisk Cache,” IBM Syst.
J. 28, 165-174 (1989).

26. D. R. Cheriton, “The V Distributed System,” Commun.
ACM 31, 314-333 (1991).

27. R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin,
D. Golub, and M. Jones, “Mach: A System Software

12. A. J. G. Hey, “Experiments in MIMD Parallelism,”

14. “The VMEbus Specification,” Revision C.l, Series in

16. I. Gaines, H. Areti, R. Atac, J. Biel, A. Cook, M.

18. J. Biel, H. Areti, R. Atac, A. Cook, M. Fischler, I.

Kernel,” Proceedings of ZEEE Spring COMPCON 89,
IEEE Computer Society Press, San Francisco, February
1989, pp. 1?6-178.

28. Th. E. Anderson. H. M. Lew. B. N. Bershead. and E. D.
Lazowsky, “The’lnteraction bi- Architecture and
Operating System Design,” Proceedings of the ACM
ASPLOS-WConference, Santa Clara, CA, 1991, pp.

29. J. C. Lasalle, F. Carena, and S. Pensotti, “TRIDENT: A
Track and Vertex Identification Program for the CERN
OMEGA Particle Detector System,” Nuclear Znstrum. &
Meth. 176, 371-379 (1980).

30. W. Gentsch, F. Szelenyi, and V. Zecca, “Use of IBM
Parallel FORTRAN for Some Engineering Problems on the
IBM 3090 VF Multiprocessor,” Technical Report ICE-
0023, IBM Rome Scientific Center, Rome, Italy, 1988.

108-120.

Received October 2, 1990; accepted for publication
January 22, 1991

Eckhard M. Ammann IBM Data Systems Division,
Development Laboratory, Schonicherstrasse 220, 7030
Boblingen I, Germany. Dr. Ammann received a diploma
(M.S.) in mathematics in 1980 and a Ph.D. in information
sciences in 1983, both from the University of Tiibingen,
Germany. His doctoral research focused on graph-theoretical
models for self-diagnosis and fault tolerance of computer
systems. In 1984 he joined IBM at the Boblingen laboratory,
where he participated in development work for the IW370
operating system. Since 1988 Dr. Ammann has been working
on various aspects of PPCS, especially in the communication
area. His current research interests include parallel systems
and fault tolerance. He is a member of the Gesellschaft fiir
Informatik (GI), Germany.

Robert R. Berbec IBM Research Division, Thomas J.
Watson Research Center, P. 0. Box 704, Yorktown Heights,
New York 10598. Mr. Berbec received his M.S. in statistics
from Stanford University in 1968. After joining IBM in 1968,
he participated in the development and extension of the MVS
operating system. Since 1988 he has worked on VM for PPCS.
His research interests focus on operating systems and data
structures.

Gerald Bozman IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598. Mr. Bozman is a programmer with a special interest in
operating systems.

Michael Faix IBM Data Systems Division, Development
Laboratory, Schonicherstrasse 220, 7030 Boblingen I,
Germany. Mr. Faix joined IBM Germany in 1962 and worked
in the areas of programming of engineering/scientific
applications and OS/360. In 1968 he joined the IBM
Development Laboratory Boblingen and worked on computer
architecture and evaluation, and System/370 processor and
system design. In his more recent work he has participated in
the development of the System/370 channel-attached IBM 4994
ASCII Device Control Unit, the System/370 CMOS I1
microprocessor used in the IBM systems ES19370, 9371, and
3092 Model 4/5, and the dual-processor-based IBM 3092 Model
415 processor controller element (PCE) for large IBM 665

IBM J. RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBERPIOVEMBER 1991 E. M. AMMANN ET AL.

mainframes (ES/3090 and ES/9021). Mr. Faix's major interest
is in architecture and system design. He is currently a Senior
Technical Staff Member involved in the PPCS system design.

Gottfried A. Goldrian IBM Data Systems Division,
Development Laboratory, Schonicherstrasse 220, 7030
Boblingen 1, Germany. Mr. Goldrian received his Diploma in
electrical engineering from the Polytechnikum in Munich,
Germany, in 1964. He joined IBM in 1967 and participated in
the invention and the design of the first digital recorder for
computer problem analysis. Since then he has worked in many
different development projects in the Boblingen and San Jose
laboratories. Mr. Goldrian is currently a Senior Engineer with
major interests in analog and digital electronics, especially in
computer interfaces. His contribution to the PPCS is the
design of the interconnection network.

John A. Pershing, Jr. IBM Research Division, Thomas J.
Watson Research Center, P. 0. Box 704, Yorktown Heights,
New York 10598. Mr. Pershing received his B.S. and M S .
degrees from MIT in 1975 and 1978, respectively. He worked
for Bolt, Beranek, and Newman before joining IBM Research
in 1981 as a Research Staff Member. His main interest is
system coupling: specifically, the interaction of operating
systems with communication network protocols and
implementations.

Joann Ruvolo-Chong IBM Research Division, Thomas J.
Watson Research Center, P. 0. Box 704, Yorktown Heights,
New York 10598. Ms. Ruvolo-Chong is a programmer.

Frank Scholz IBM Data Systems Division, Development
Laboratory, Schonicherstrasse 220, 7030 Boblingen 1,
Germany. Dr. Scholz received his diploma thesis and his
Ph.D. in computer science from the University of Karlsruhe,
Germany, in 1976 and 1981, respectively. After joining IBM in
1981, he participated in the development of the VSE and
IW370 operating systems. Since 1988 he has been working on
programming environments for PPCS. His research interests
focus on operating systems and parallel processing. Dr. Scholz
is a member of the ACM, the IEEE Computer Society, and
the Gesellschaft fiir Informatik (GI), Germany.

