
The RP3 by D. N. Kimelman 
T. A. Ngo 

program 
visualization 
environment 

The  performance  promised for parallel 
systems  often  proves to be  somewhat  elusive. 
This paper discusses  one  important  technique 
for improving the  performance  of  parallel 
software: program  visualizafion- helping 
programmers  visualize  the  real  behavior  of  an 
application  or  system by presenting its state 
and  progress in a  continuous  graphic  fashion. 
An  environment for visualization  of  program 
execution is described.  Within this 
visualization  environment, programmers 
dynamically  establish  views  of  the  behavior  of 
a  program in execution  and  watch for trends, 
anomalies,  and  correlations  as  information is 
displayed.  By  continually refining the  view of 
the  program  and  replaying  the  execution  of  the 
program,  programmers  can  gain an 
understanding  of  program  (mis)behavior.  This 
is essential for the  debugging,  performance 
analysis,  and tuning of parallel  software. 
Design  goals for the  visualization  environment 
include  expandibility,  portability,  and  the 
ability to accommodate  diverse  architectures, 
including highly parallel  shared-memory 
systems  and  large-scale  message-passing 
systems.  Results  from  visualization  of  systems 
and  applications running on the RP3, an 
experimental  shared-memory  multiprocessor, 
are  presented in the  form  of  color 
reproductions  of  typical,  useful  displays. 

Introduction 
It is  now generally accepted that parallelism  significantly 
compounds the difficulties  involved in producing software 
that is correct and performs well. As a result, debugging 
and  tuning are now  widely recognized as crucial aspects of 
developing software for parallel systems. Unfortunately, 
support for these activities is often rudimentary at best 
(although much research has recently been devoted to 
improving this situation [l, 21). With parallel debuggers, 
programmers can suspend execution of a program  and 
examine the state of the system, but debuggers provide 
only snapshots of small subsets of the total program state. 
Typically, these snapshots are widely separated in time. 
Significant events can easily be  missed or overlooked. 
Further, with conventional tracing facilities, programmers 
can quickly be overwhelmed by volumes of textual output. 

Recently, it has become apparent that a more  effective 
way to present program behavior is in a continuous 
graphic fashion. An important lesson from scientific 
visualization [3] in the computational sciences is that users 
can deal  much  more effectively with  large amounts of data 
when the data are presented visually. Information is  more 
rapidly assimilated, and trends and anomalies are more 
readily recognized. Program visualization aims at 
capitalizing on this human capacity by presenting the 
results of monitoring a system in a visual fashion [4-91. 

Program visualization can be crucial for debugging 
parallel applications, for  tuning these applications, and for 
adapting them to the variety of architectures on  which they 
may have to run. Visualization facilities can also help 
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ensure that various models of parallel computation or 
models for performance prediction do in fact accurately 
reflect the behavior of an application. In addition, 
visualization can be used to verify that automatic 
parallelization is working effectively and to identify regions 
of code where further manual amendment might  yield 
substantial improvement in overall performance. 

This paper describes the RP3  program visualization 
environment. With this environment, programmers can 
dynamically establish views of program behavior on a 
display and have the execution of a program presented in a 
continuous graphic fashion through these views. At any 
time during the execution of the program, the programmer 
can dynamically reconfigure the display by placing 
additional views on the display, by removing some of the 
existing views from the display, or by rearranging the 
views on the display. Program execution may be 
“replayed” by repeatedly viewing a recorded execution 
history or by viewing repeated executions of the program 
as they occur. By continually refining the arrangement of 
the views and replaying the display of program behavior, 
programmers can gain  an understanding of program 
(mis)behavior. The work described here is novel in that 
behavior from all levels of a system-hardware, operating 
system, run-time libraries, and  application-are displayed 
simultaneously for correlation by the user. Furthermore, 
the system is highly extensible and adaptable to new 
parallel architectures. Results of the use of this 
environment are presented in the form of color 
reproductions of typical, useful displays. 

One  approach to program  visualization 
Our general approach to program visualization arises from 
our perception of common practices in hardware 
development. In certain respects, tools for analysis of 
software behavior lag  far  behind those for analysis of 
hardware. When hardware under development 
malfunctions or behaves unexpectedly, a developer rolls 
up a cart loaded with diagnostic equipment, attaches clips, 
extenders, probes, indicators, meters, scopes, and 
analyzers to a circuit board, and rapidly obtains a good 
graphic characterization of the behavior of the logic. 

Our  goal  is to establish this type of facility in the 
software domain. For an application, one should be able to 
create a graphic representation of the program, run  it  until 
some condition of interest is encountered, and stop and 
run  it backward, looking for what led to this situation. 
Then one might change the representation of the program, 
on the basis of a hypothesis concerning the underlying 
cause of the situation, and  run the application forward 
again. By continually repeating this process, one could 
isolate program behavior of interest. 

We propose a toolkit approach to program visualization, 
636 analogous to the diagnostic tools classically employed for 

hardware development: a large assortment of standard, 
generally applicable, “snap-on” components. “Probes” 
are clipped onto the target system (the system whose 
behavior is being visualized) to extract information of 
interest while the system is  running. This information is 
passed to a visualization workstation, where graphic 
display attachments are connected to the information 
streams emanating from the various probes. 

Examples of information for which a user might probe 
include the following: at the hardware level-instruction- 
execution rate, cache misses, memory and interconnection- 
network traffic, samples of program-counter contents, and 
physical addresses of instructions and data; at the 
operating system level-page faults, binding of threads to 
processors, scheduling of threads, and binding of various 
pages of a virtual address space to pages at various places 
within the memory hierarchy; at the level of the 
programming  language run-time library-entering and 
exiting parallel sections, acquiring and releasing locks, 
arriving at and departing from barriers, dispatching work 
from parallel loops, and calling and returning from 
procedures; and, at the application level-high-level data 
operations and  algorithm state transitions. 

The assortment of graphic attachments for displaying the 
extracted information might include dials, meters, lights 
with varying brightness and color, scales, bar charts, plots, 
histograms, timing diagrams, source text, data-structure 
diagrams, symbol tables, call graphs, control-flow and 
dependence graphs, synchronization graphs, and system- 
architecture diagrams. 

Support for program visualization must be included  in 
parallel systems at all  levels: within the hardware, the 
operating system, the run-time library, and the application. 
Facilities must exist for capturing traces-streams of data 
describing events of interest in the execution of a program. 
Support must be provided both in the form of a general 
monitoring  mechanism, for controlling trace generation and 
for  handling trace data, and in the form of specific 
instrumentation-individual pieces of additional code or 
logic for generating data describing particular events. 
Monitoring mechanisms must  be relatively unobtrusive in 
order to minimize perturbation of true program behavior. 
Monitoring  must also include the capacity to transfer 
significant volumes of generated data from the monitored 
system as quickly as it is being produced, either for long- 
term storage or for immediate display. Instrumentation 
code at any of the software levels can either exist 
permanently within a system and be enabled and disabled 
dynamically, or it can be dynamically inserted into a 
system by means of unobtrusive debugging techniques. 
Hardware assists can be provided to allow instrumentation 
code to produce trace data in a way that interferes as little 
as possible with the normal operation of the machine. This 
can be accomplished with special user-writable registers 
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and buffers, and separate data paths out of the monitored 
system. 

Development environments must provide means for 
dynamically enabling selected instrumentation, retrieving 
the resulting event streams, and dynamically configuring 
displays of program behavior that are driven by the event 
streams. Displays can be based on extensible, object- 
oriented collections of standard graphic components. A 
windowing system can serve as a framework that handles 
the creation of new windows, allows “zooming” and 
“panning” within  windows,  and facilitates dynamic 
reconfiguration of windows across multiscreen displays. 

it be “open” or “extensible.” By clearly defining the 
architecture of the system and explicitly specifying 
interfaces and protocols, we can ensure the ability to 
incorporate custom, user-developed components into the 
system. 

All of this constitutes a visualization environment- 
an architecture and a large collection of standard, generally 
applicable snap-on components for information capture and 
display. Within such an environment, programmers can 
construct an effective graphic presentation of the state and 
progress of an application in execution. With a set of tools 
that can be readily applied to fresh problems across a 
broad range of applications, a programmer can have a 
quick and easy way to take a fast first  look at unexpected 
system behavior, and have, as well, a facility for more 
extensive investigation of behavioral phenomena. 

By comparison, many first-generation visualization 
systems are based on statically embedded instrumentation, 
handcrafted custom graphics, fixed displays, unwieldy user 
interfaces, and  limited control over execution-history 
replay. 

An important requirement for this form of system is that 

The RP3 monitoring  and  visualization 
architecture 

Hardware monitoring 
The IBM Research Parallel Processor Prototype (RP3) was 
an experimental, 64-way shared-memory multiprocessor 
[lo]. Each of the 64 processor-memory elements (PMEs) in 
the RP3 architecture consists of a processor, a floating- 
point  unit, a memory-management unit, an I/O interface, a 
performance monitor, a cache, and 8 MB of memory. The 
PMEs are interconnected by a multistage packet-switched 
omega network. A processor may obtain data from its 
cache, from its own  memory (“local”), and from the 
memory of some other PME (“global”). 

The RP3 was designed as a flexible, dynamically 
reconfigurable system for studying and experimenting with 
highly parallel architectures, systems, and applications. An 
important manifestation of the RP3 orientation toward 
experimentation and analysis is the performance 
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measurement chip (PMC) [ l l ]  in each PME. The PMC 
contains a set of counters for events such as instruction 
completions, memory references, cache and translation- 
lookaside-buffer (TLB) misses, local and global  memory 
requests, and requests to the local memory from all other 
processors. The PMC also contains buffers that can collect 
virtual- or absolute-address samples, or samples of delays 
encountered while accessing global data via the network. 
The counters are incremented and the samples are 
collected automatically and unobtrusively by the hardware. 
Whenever a counter overflows, the processor is 
interrupted. The processor can then unload the counters 
and  buffers,  and reset them. Alternatively, the system 
console and 1/0 processors can  unload the counters and 
buffers periodically through special access paths, without 
interrupting the RP3 processors and without involving the 
operating system. This minimizes perturbation of system 
behavior. 

The PMC also contains three user-writable “annotation” 
registers. With a single user-mode instruction, an 
application can write an arbitrary integer value into any 
one of these registers. The values in these registers are 
sent with the rest of the PMC data whenever the PMC  is 
unloaded. An application typically deposits an identifying 
value into one of these registers each time  it enters another 
phase of its computation. The value of one or two 
important state variables, such as measures of convergence 
for numerical algorithms or temperatures for simulated 
annealing, can be deposited into the other registers. In this 
way, the application annotates, in effect, each segment of 
the hardware-performance data stream. The annotations 
provide an indication of the application activity to which 
each segment corresponds. 

and has been extended to provide control over unique 
architectural features of  RP3  [13]. Support for the PMC 
has been incorporated into the Mach kernel in the form of 
a Virtual PMC  (VPMC) facility [14]. The  VPMC  facility 
provides the illusion of much wider event-counter registers 
and of PMCs that follow a thread across context switches 
and  from one processor to another. 

Event  logging 
Mach  for  RP3 has also been extended to incorporate an 
event-logging facility. As execution reaches various points 
in the application, run-time, and kernel, instrumentation 
code generates event records-records containing event- 
specific data describing the progress of the system. The 
instrumentation code places these event records into the 
event log-a buffer  maintained in memory  by the kernel. 
Periodically, the kernel unloads all  of the PMC data and 
generates an event record containing these data. At the 
end of a run, at convenient pauses during a run  (e.g., at 
barrier synchronization points), or at regular intervals, the 

The  Mach operating system [12] has been ported to RP3 
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event records are retrieved from the log and transmitted 
out of the system on a communication link. Typically, they 
are analyzed immediately  and displayed on a workstation 
or stored as trace files on disk. 

By convention, all event records contain an event ID 
followed  by arbitrary event-specific binary data. Examples 
of event-specific data include phase ID (for an application 
entering another phase of a computation), loop ID and 
loop index values (for a run-time scheduler dispatching 
work for a parallel loop), thread ID and some state 
information (for the operating system scheduling a thread), 
and current values of the PMC registers (for the operating 
system handling an interrupt from the PMC). A time stamp 
and the ID  of the processor from which the record was 
written are automatically added to each event record by 
the logging  mechanism. The time stamp is obtained from a 
free-running clock in each processor. The clock resolution 
is 1 ms. A clock-synchronization algorithm  running in the 
kernel keeps the clocks consistent to within 5 ms. This 
accuracy is  more than adequate for the higher-order 
software behavior that is typically being investigated. 

in the presence of faulty user-provided instrumentation, 
the event log  is  managed by the kernel. Instrumentation 
inside the kernel accesses the log via read and write 
routines internal to the kernel. Access to the log for user- 
mode code, such as instrumentation in the run-time library 
or an application, is provided by a parallel UNIX@-style 
system call.  In cases in which the overhead of a system 
call  is unacceptable, instrumentation code can accumulate 
event records and place them in the event log as a group. 
Time stamps can be obtained from the kernel by using  an 
extremely low-overhead system call (approximately 
100 ps) as the individual events of the batch are collected. 
For cases in which such accumulation is unacceptable and 
guarantees concerning integrity of the log can be forsaken, 
an event log can be maintained in memory directly 
accessible to all instrumentation. 

In order to ensure global integrity of the event log, even 

The kernel maintains a section of the buffer  for the 
event log  in (protected) kernel memory on each PME. 
Event records are placed  in the buffer in the local memory 
of the processor that created them. This avoids the 
contention that would occur if there were a single event- 
log  buffer in the memory of one PME, and introduces no 
additional traffic on the network that interconnects the 
PMEs. 

Event collection 
Figure 1 illustrates the configuration typically employed 
on the RP3 for event collection and collation by the 
visualization system. A number of processors (at the left of 
the monitored-system block) are dedicated to running an 
application. Instrumentation at each level of the system 
(application, run-time library, kernel, and hardware) 

generates events, which are fed into the event-log-buffer 
sections corresponding to these processors. A few  of the 
processors (at the bottom of the monitored-system block) 
are dedicated to event-handling tasks. We assert that, in 
many cases, 90% of the RP3 processors and  memory are 
sufficient for realistic runs of an application for 
experimental purposes. Thus, we can devote 10% of the 
processors and memory to monitoring and visualization. 
One of the monitoring processors captures the UNIX 
standard output of the application and bundles it into 
event records, which  it deposits into the event log. 
Subsequently, this output can be correlated with the other 
data in the log. Another processor (at the right of the 
monitored-system block) collects event records from the 
event-log-buffer sections corresponding to the application 
processors, collates the event records according to time 
stamp, and forwards them out of the system, across a 
network link to a workstation. 

The various collections of instrumentation embedded 
within the system are enabled or disabled at the beginning 
of each run of the application. It would be a simple matter 
to implement a facility that would  allow instrumentation to 
be enabled and disabled dynamically during the run, on 
demand  from a workstation. 

Analysis and display 
Analysis and display of event streams emanating from the 
target system is performed by software that runs on a 
workstation. As illustrated in Figure 1, event records 
arrive over the network from a running monitored system, 
or they are read from a stored trace file. The event records 
are placed in  an internal buffer  and are then passed 
through a configuration consisting of couplings of analysis 
components and display components (at the right of the 
visualization workstation block) in order to produce a 
display. 

An example of  an analysis component is one that 
accepts a stream of event records containing PMC counter 
values and produces a stream of single data values. For 
instance, each time  an event record is received, a data 
value could be produced that gives the instruction 
execution rate of a processor over the interval between the 
previous event for that processor and the one currently 
being processed. An example of a display component is 
one that accepts a stream of single data values, and 
displays a bar graph. Each time a data value is accepted, 
the bar graph  is updated to show the current value. 

Our intent is to have a small  number of types of 
streams, and for each type of stream, a large  number of 
analysis and display components. This provides a large 
number of ways to display any piece of information. 
Further, when a new analysis component is added to the 
system, it immediately has available to it  all of the existing 
display components that accept the type of stream that it 
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produces. Similarly,  when the system is extended with a 
new display component, the component can be used 
immediately to display data from any of the existing 
analysis components that produce the type of stream 
that it accepts. 

be dynamically reconfigured to present additional 
information, the system must obtain additional analysis 
and display components of appropriate types, couple them, 
and connect them to the flow of events from the internal 
workstation buffer.  At that time, if appropriate, a request 
could be sent to a running target system to enable the 
instrumentation that provides the information required by 
the analysis component. 

Thus, when a user requests that the workstation display 

Visualization  software  structure 
The visualization software running  on the workstation is an 
X Window SystemTM application [15]. The X Toolkit [16] 
provides a rudimentary object-oriented programming 
facility, and the Hewlett-Packard Widget set [17] 
(a precursor of the OSF Motif TM Widgets [18]) constitutes 
a graphic-object library upon  which the user interface is 
based. Any X window  manager  may be used to manipulate 

(reposition, resize, iconify) the windows through which the 
application produces its displays. 

Within the context of the X Toolkit, objects are referred 
to as “widgets,” and each object automatically has a 
corresponding window in which  it displays its graphics. 
Widget classes include routines to initialize a new instance, 
redisplay the graphics of an instance, handle  window size 
changes, and accept new values for object parameters, 
referred to as “resources.” Widgets are created within a 
dynamic hierarchy, distinct from the static class hierarchy. 
This dynamic hierarchy facilitates inheritance of values for 
resources and, to some extent, reflects the nesting of 
widgets on the display. 

software are implemented as widgets. An “event widget” 
accepts a stream of event records, analyzes the events as 
discussed in the above subsection on analysis and display, 
and produces a stream of data, which can be filtered  and 
displayed in any of a number of ways.’ A “filter widget” 
accepts a stream of data, performs a function (such as 

The analysis and display components of the visualization 

oriented programming, even though event and  filter objects do not produce 
1 We use the X Toolkit and widgets uniformly throughout  the application for object- 

graphics. 
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Configuration-dialog box. 

scaling values or maintaining a maximum,  minimum, or 
average of the values encountered), and produces a new 
stream of data. A “meter widget” accepts a stream of 
data and produces a display. “Trigger widgets” are 
pseudo-meters which, rather than displaying data, exert 
control over the system based on the data that they 
receive. For example, a trigger  might be used to suspend 
the replay of program execution whenever a value 
exceeds some allowable threshold. Without loss of 
generality, trigger widgets are omitted from the following 
discussions. 

There is a class description for each kind of event, filter, 
and meter widget,  and there is a global table that lists all 
of these classes along with various attributes related to 
their use in configuring visualization displays. When a user 
requests an addition to the current configuration of 
widgets, a “dialog box” is derived automatically from the 
global table and is presented to the user, as shown in 
Figure 2. 

filter classes, and a meter class from the dialog box 
(invalid combinations of widgets are disallowed). An 
instance of each selected event class is created, and each 
instance is coupled to a chain of filter widgets obtained by 
instantiating the selected filter classes. Each of the 
resulting event-to-filter-chain couplings is then coupled to a 
distinct instance of the selected meter class. In cases 
where an instance of the meter class can accommodate 
more than one input, all  of the event-to-filter-chain 
couplings are simply fanned in to a single meter widget. 
All  of this can be replicated for each of a number of 
processors of the monitored system. In some cases, a 
single event widget can be coupled to a number of distinct 

The user selects a number of event classes, a number of 

640 
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filter chains corresponding to a number of distinct 
processors. For example, when a user selects MIPS, 
FLOPS, CaUtil, TLBmiss, and Memory events, as well as 
the Light meter, for processors 0 through 63, as shown in 
Figure 2, the resulting widget  configuration involves one 
PMC event widget for each of the selected statistics, each 
event widget  driving 64 Light meter widgets. The resulting 
display is shown at the top right of Figure 3. This display 
is  found in several of the following  figures  and is discussed 
in greater detail below. If the user had selected the 
Average filter,  an Average filter  widget  would have been 
placed between each event-widget-Light-widget  pair. 

This user interface protocol for configuring displays is 
not entirely general, but it does allow simple configurations 
to be created quickly and easily. So far, in practice, this 
protocol has not precluded any configuration that our users 
attempted naturally. As an option, a more elaborate 
configuration  language or a graphic protocol for 
configuring arbitrary graphs of widgets [19-211 could be 
provided. 

A simple language has been developed for describing 
configurations, so that once a useful  configuration is 
achieved, it can be saved as a text file and subsequently 
reloaded. 

Extending the system to provide a new  kind of display 
or to accommodate a new  form of event involves writing a 
new event, filter, or meter class, compiling it, making a 
new entry in the global table, recompiling the global table, 
and  relinking the system. Experience indicates that a 
programmer familiar  with the system and with a clear 
notion of the function of the new  widget can extend the 
system in this way in one half to two days. Initially, 
achieving the requisite familiarity  may require four to six 
weeks. 

The types of configurations discussed above, consisting 
of event widgets coupled to filter  widget chains and meter 
widgets, constitute an event-data distribution network 
superimposed on the normal dynamic widget hierarchy. 
This network is implemented by a structure incorporated 
into each widget, which lists the widgets to which it 
provides data. These structures are similar to, but distinct 
from, those maintained for manager widgets to list those 
widgets under their control. The X Toolkit has been 
extended to include intrinsics for attaching widgets to and 
detaching them from the event-data distribution network. 
A common superclass for event and filter widgets provides 
the additional structure for the widgets. It also provides 
default (inherited) routines for maintaining this structure 
when widgets are attached and detached. 

The standard toolkit intrinsic for setting resource values 
could have been used to pass data from one widget to the 
next  along the network. This, however, was found to be 
excessively slow because of the need to perform 
conversion for typed values and to interrogate the 
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Hardware-utilization display. 

superclass chain of the widgets in order to find the routines 
responsible for handling the resource. Instead, the toolkit 
has been extended to include an intrinsic for passing 
untyped values directly to a widget. This yields an 
improvement of roughly 40% in the performance of the 
visualization system. Note that the global widget-class 
table discussed above contains sufficient information to 
allow the configuration routines to guard against 
connecting incompatible widgets. The common superclass 
for event and filter widgets provides a default routine, 
corresponding to this new intrinsic, which passes received 
data onward, without change, to all  of the widgets to 
which  it is attached. Thus, a fan-out within the distribution 
network can be implemented by instantiating the common 
superclass itself. 
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The use of X as the graphics system on  which the 
visualization software is based results in a number of 
benefits in addition to graphics functionality. Convenience 
and familiarity  for users result from  employing standard X 
operating procedures and  window managers. The system is 
extensible, in the sense that analyzing  new forms of events 
or displaying data in a new way require only that new 
widgets be written in the standard fashion. The system is 
portable, in that the visualization software can be  run  on 
any UNIX workstation supporting X. Finally, the network 
transparency and device independence of X allow the 
visualization display to be  run at remote sites on any of a 
number of different workstations. We have demonstrated 
this a number of times, by running an application on RP3 
at Yorktown Heights, New York, having the event stream 641 

D. N. KIMELMAN AND T. A. NGO 



sent over a local area network to the visualization software 
running  on an IBM RT@ workstation in Yorktown Heights, 
and having the graphics sent over a network to a Sun 
workstation at sites such as Syracuse, New York, or 
Calgary, Alberta. 

system by the use of standard network protocols allows 
the visualization system to be easily adapted to new 
monitored systems. Accommodating a new monitored 
system requires producing an event stream from that 
monitored system by whatever means are available and 
converting the event stream into the format understood by 
the visualization system. 

Separating the monitored system from the visualization 

Replay  control 
Comprehensive control over the replay of execution 
history from trace files (or live presentation of displays as 
execution proceeds) is provided by the control panel, 
shown at the top left of Figure 3. The user can suspend 
replay, resume it, step it one event at a time, or run  it 
forward or backward at varying speeds. In the future the 
system will  allow a user to “drive” the replay from the 
keyboard (in order to be more responsive). 

fact essential for the intended mode of operation of the 
system. As discussed earlier, users typically  run the 
visualization system until a situation of interest arises, then 
step or run the system back and forth slowly, isolating the 
precise moment the behavior of interest occurs. At the 
same time, the user looks for correlations between the 
various display components that might suggest the 
underlying cause of the given behavior. One example of 
such a correlation might be a dramatic decrease in 
processor speed when departing from a particular state or 
accessing particular data (due, for example, to thrashing in 
a set-associative cache as a result of unfortunate memory- 
access patterns or layouts of data in memory). Note that, 
while temporal correlations can be transformed into spatial 
correlations by displays that incorporate time  along one 
axis, not all forms of display have an obvious or practical 
means for incorporating time. 

One measure of the importance of this degree of control 
over replay is the amount of frustration experienced by 
users who became accustomed to this style of interaction, 
and later had to deal  with some other system in which this 
degree of control had not yet been implemented. 

While such control might at first seem frivolous, it is in 

Selected  results 
This section illustrates both the type of displays that have 
been developed and  found  useful, and the type of 
information that can be gained  from these displays 
concerning program behavior. Figures 3 through 9 are 
images of workstation display screens captured during RP3 

642 program-visualization sessions. 
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Hardware and application behavior 
Figure 3 is a hardware-oriented display. A user might 
configure such a display in order to provide a general view 
of data being obtained from the PMCs.’ 

The trace viewed in Figure 3 was obtained using the 
system console and I/O processors, as discussed earlier in 
the subsection on hardware monitoring, rather than the 
event-logging facility. In this manner, with extremely low 
overhead and little perturbation of the true system 
behavior, execution history was captured from the 
beginning of the operating system boot through the end of 
the execution of a hydrodynamics application. The trace 
consists of only PMC event records generated once per 
second for eight processors. The trace file covers 
20 minutes of execution time and occupies 860 KB of disk 
storage. 

The control panel displayed at the top left of Figure 3 
indicates how far the replay has progressed (575 seconds) 
and the rate (fast) at which replay is proceeding. The 
control panel also provides pull-down menus for 
configuring the system and controlling its operation. 

The display at the top right of Figure 3 is the highest- 
level view of hardware activity. It consists of a number of 
color dots (lights), with one column for each PME and one 
row for each statistic of interest: instructions executed per 
second, floating-point operations per second, cache 
utilization, TLB misses per second, and memory activity. 
Note that only eight processors are active. Each light 
varies in color from blue (cold) for low values through  red 
(hot) for high values. To a “seasoned observer,” the 
various patterns of color in the lights indicate the kind of 
activity taking place, the phases through which a 
computation is  moving, and where difficulties are arising. 
Problems such as memory contention and thrashing in 
caches stand out dramatically. For example, at the time 
represented by this display, it is clear that processor 3 is 
incurring far more TLB misses than any of the other active 
processors. 

Since there is a fixed amount of screen space, the user is 
continually faced  with the trade-off between the number of 
different kinds of information that can be displayed and the 
amount of detail that can be displayed for each kind of 
information. The three bar charts down the left side of 
Figure 3 give  more detailed information  with  finer 
resolution than the array of lights, but for fewer 
performance characteristics. Each chart consists of a bar 
(actually, a floating dot) for each PME, the height of the 
bar indicating the value of a given statistic for that PME. 
The top chart shows instructions per second, the middle 

2 Please note that color is used extensively in these displays. It highlights the 
structure and organization of the various displays, it distinguishes among kinds of 
data being plotted on a single display, and it provides another dimension for 
plotting data values. Unfortunately, the full range of color in the displays may not 
be reproducible by the printing process.  Hence,  some of the displays shown here 
may prove slightly difficult to comprehend. 
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chart shows references by each processor to its local 
memory (as a percentage of the maximum possible rate), 
and the bottom chart shows activity of the PME memory 
from all sources. Spikes and dips in these charts reflect  an 
uneven load on the system. Spikes such as those for 
processor 3 in the middle and bottom charts often result 
from  heavily accessed code or data being concentrated in a 
particular PME. It is possible, for example, that a small 
amount of shared data is being accessed repeatedly by all 
of processors 1 through 7 and that, by virtue of 
interleaving, the data lie mostly in the memory of PME 3 
and partly in the memory of PME 2. In this case, the 
references made by processor 3 to these data are mostly 
local references, whereas the references made to these 
data by the other processors are mostly global. Further, 
because it holds the data being accessed by all  of the 
processors, the memory in PME 3 sees greater activity 
than the other memory units. 

The five graphs down the right side of Figure 3 give 
information for fewer PMEs, but include history. Each 
graph consists of a line for each PME, showing the value 
of a given statistic for that PME over time,  and each PME 
is assigned a different color (corresponding to the order of 
the label colors). Corresponding points in time  on the 
different graphs are aligned vertically. At the left section of 
these graphs, only PME 0 is active, and the rest of the 
PMEs are idle except for periodic clock handling. We 
conclude that this must be the time  during  which the 
operating system (running on PME 0) loads the 
application. This is followed by a flurry of TLB miss 
activity by PME 1 (green), concurrent with  low processor 
activity (MIPS chart) by PME 1, moderate processor 
activity by PME 0, and high processor activity by the 
remaining PMEs. This must be the phase in which the 
master application processor (PME 1) is initializing the 
application address space and incurring numerous page 
faults, which are being serviced by the operating system. 
The remaining processors are spinning at a barrier 
synchronization point, waiting for the master to complete 
the initialization. (Spinning  is the only way that they can 
achieve the instruction rates shown.) After this flurry of 
activity, the application processors settle down to a regular 
pattern of behavior. There are flat stretches at a moderate 
instruction rate, during which they are doing  useful work, 
and spikes at a high instruction rate, where they are 
spinning while waiting at a barrier. The first barrier of each 
pair of barriers ends the first phase of a two-phase 
iteration, and the second barrier ends the second phase. 
Note how the various phases of a computation can 
be recognized readily just from hardware-level 
information, even without any displays of higher-level 
function. 

Figures 4 and 5 are views of activity from earlier times 
in the same trace. They show various phases through 
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Graphs showing hardware-utilization history. 

which the operating system progresses during the boot 
process. Initially, all PMEs clear their local  memories. 
Each executes a small piece of code from its local 
memory,  with address translation and cacheing disabled. 
As shown by the bar charts in Figure 5(a), all references 
are local. Further, because of disabled caches, the 
processors run quite slowly and memory  is (uniformly) 
quite busy. Next [Figure 5(b)], PME 0 (the master system 
processor) copies the operating system kernel instructions 
into global interleaved memory, while the other PMEs 
(slave processors) busy-wait (wait by executing a small 
loop repeatedly). As shown in Figure 5(b), PME 0 no 
longer makes local references exclusively. Further, as a 
result of its references to global  memory, its processor 
runs even more  slowly,  and its memory has less activity. 
Interleaving distributes the global memory activity evenly 
across the other PMEs, and this activity causes an 
imperceptible increase [compared with Figure 5(a)] in the 
memory activity of the other PMEs. This increase is seen 
in the minute increase in the height  of the corresponding 
memory bars. Once the kernel code has been copied to 
global memory, all processors enable address translation 
and cacheing and  begin executing from this single copy of 
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mory. (b) Copying  kernel code to global  memory. 
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Thread state-history display. 

the code. The third  graph in Figure 4 shows some of the 
resulting cache activity, and the bar charts show a 
corresponding reduction in demand on memory. The 
second graph  in Figure 4 also shows TLB miss activity for 
PME 0 as the master begins traversing its address space 
while  initializing kernel data structures. Processor speed 
for the slaves has dropped to nearly zero, because all  of 
them have executed wait instructions rather than busy- 
waiting for the m a ~ t e r . ~  Figure 5(d) shows the slave 
processors “waking up” as an application begins to run. 
Each slave experiences a number of TLB misses (Figure 4) 
as it  initially traverses the address space. Local memory 
access and instruction rate vary widely because the slaves 
proceed at different speeds through the initialization code. 
They may incur TLB misses or page faults at different 
times,  and resolution of these situations may take different 
amounts of time. Once the application begins its main 
work, conditions stabilize, resulting in patterns similar to 
those in Figure 3. 

Thread  behavior 
Figure 6 is a thread-oriented display (from  an early 
prototype of the visualization environment) that depicts the 
state history of each of a number of application threads in 
the form of a timing  diagram,  with one line for each 
thread. The trace in Figure 6 results from instrumentation 
at a number of different levels. Application-level 

3 A more detailed description of the workings of the RP3 kernel can be found in 
P-21. 
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instrumentation provides information concerning access to 
various regions of data, as well as information concerning 
transitions between algorithm phases, by generating event- 
records containing the relevant data. Run-time-library-level 
instrumentation provides information concerning thread 
dispatching and synchronization activity. PMC data were 
collected to provide hardware-level information. The trace 
file covers six minutes of execution time  and occupies 
187 KB of disk storage. Companion displays shown in [6] 
illustrate access by the application to matrix data, and the 
corresponding hardware utilization. 

divided into two horizontal bands. Time increases from  left 
to right  and wraps from the right  edge of the top band to 
the left  edge of the bottom band. The  left  edge of each 
band  is annotated to indicate five  higher-level states 
through which a thread progresses: I-getting work; 
F-doing one kind  of work; S-doing another kind  of 
work; L-waiting for, and then holding, a lock that allows 
the thread to complete its work; and  B-waiting at a 
barrier synchronization point. (See [23] for a discussion of 
barrier synchronization.) The thick vertical bars appearing 
occasionally along the diagram indicate that time passed 
without any state changes. The height  of the hollow bar 
inside the dark bar indicates the amount of time that 
passed; a full-height  hollow bar indicates time  equal to the 
full  width of the display. 

The first barrier synchronization occurs just after the 
start of the bottom band. It is interesting to note that one 
thread seems to have arrived at the barrier a good  deal 

The display in Figure 6 follows four threads. It is 
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Thread scheduling by the operating system. 

earlier than all  of the others (near the end of the top band). 
This might indicate a load-balancing problem, the need for 
dispatching finer-grain work, unfortunate input data, or 
higher or lower performance of the particular processor on 
which the thread was running. Some of these hypotheses 
can be confirmed or refuted by studying the correlation of 
the state-history diagram with other displays that show, for 
example, hardware performance or data-access patterns. 
On the other hand, when  we consider the elision bars, we 
see that the amount of time by which the one thread 
precedes the others to the barrier is actually quite small 
compared to the time required to do a single  piece of work 
(time spent in the F or S state), and may  not be a cause 
for concern. 

A second barrier synchronization occurs just past the 
halfway  point in the bottom band. Judging  by the 
difference in appearance of the thread behavior between 
the top band and the bottom band, one may reasonably 
conclude that the work taking place between the first and 
second barriers must  be the second phase of (at least) a 
two-phase computation. In fact, if we  examine  more of the 
trace, we realize that this is an iterative computation with 
a two-phase iteration. It is interesting to note that the 
second phase takes much less time than the first, that no 
locking  is required in the second phase, and that there are 
only enough data to provide one piece of work for each 
thread. Thus, dynamic structure of an application, or 
high-level patterns of behavior, which would  be 
extremely difficult to deduce or discern by any 
conventional method, can be readily  recognized  with a 
visualization system, even without detailed knowledge 
of an application. 

Operating system behavior 
Figure 7 is a display oriented toward operating-system- 
level scheduler activity. It illustrates the migration history 
of a set of threads. The trace includes both operating- 
system-level information  and run-time-library-level 
information, in addition to the hardware-level information 
from the PMCs. Operating system instrumentation 
provides information concerning context switching by 646 
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processors from thread to thread. C Threads run-time 
library [24] instrumentation provides information 
concerning creation, naming, and destruction of 
C Threads, as well as dispatching C Threads to Mach 
threads, and operations on lock and condition variables. 
The trace file covers two minutes of execution time  and 
occupies 136 KB of disk storage. 

The eight horizontal color strips in Figure 7 show the 
scheduling of threads onto processors, over time. There 
is one strip for each processor, from the top strip for 
processor 0 to the bottom strip for processor 7. Time 
increases from  left to right. The strips scroll to the left as 
time passes. Each user thread is assigned a distinct color; 
the darkest blue  is  used to represent all kernel threads. 
The strips are colored according to the threads that are 
running on the corresponding processors at each instant. 
For example, the display shows that processor 5 initially 
runs one or more kernel threads (most likely the “idle 
thread”) for a while  and then runs the magenta thread 
briefly. The magenta thread then runs briefly  on processors 
0 and 1 before settling on processor 1. The cyan thread 
begins  on processor 3, runs there briefly, migrates in quick 
succession to processors 0, 4, and 7, and then settles on 
processor 2, where it runs to completion. Note that the red 
thread runs periodically for brief intervals, alternating 
between processor 6 and processor 0. This thread was 
alluded to earlier in the section on event collection: It is 
the process that collects event records from the event log, 
collates them, and forwards them over the network. 
Writing to the network requires a UNIX system call, 
which can be executed only on processor 0. Thus, the 
thread is forced to processor 0 for each system call and 
then returned to processor 6 to continue processing. 

Language-level behavior 
Figures 8 and 9 are displays of run-time-library-level 
scheduler activity. They illustrate dynamic load balancing 
in the scheduling of nested parallel loops (loops in which 
iterates can be executed in parallel) for PTRAN, a parallel 
FORTRAN system [25]. 

The trace viewed in Figures 8 and 9 includes both the 
hardware-level information from the PMCs  and run-time- 
library-level information generated by instrumentation 
embedded within the PTRAN scheduler. As a parallel loop 
is executed, this instrumentation provides information 
concerning which “chunks,” or sub-sequences of the 
iterations of the loop, are assigned to which threads (each 
thread is bound to a distinct processor). Also provided are 
the times at which execution of the chunks begins  and 
ends and the times during which threads are idle. The 
trace file covers 38 seconds of execution time and occupies 
320 KJ3 of disk storage. 

Figure 8(a) represents the iteration space of the parallel 
loop currently being executed. Either a single  parallel loop 
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Run-time  scheduling  of  nested  parallel  loops:  (a)  Beginning of the execution of a  parallel loop. (b) Near  completion  of.the  work  of most 
threads. (c) Dynamic  load  balancing. 

or a nested pair of parallel loops can be di~played.~ The 
x-axis represents the iterates of the outer loop, and the 
y-axis represents the iterates of the inner loop, if an  inner 
loop exists. As execution proceeds, regions in the display 
of the iteration space are colored according to the thread 
that is executing the corresponding chunk of iterations. 
For example, in Figure 8(a), the green thread has taken the 
first chunk of the  outer loop-the green horizontal block, 
and the magenta thread has taken the second chunk of the 
outer l o o p t h e  magenta horizontal block. (A window  can 
be popped up to reveal that in this case the green thread 
corresponds to processor 1. Additional displays can be 
configured to show, for instance, that the chunk taken by 
the green thread is iterations 1 through 15 and that the 
chunk taken by  the magenta thread is iterations 16 through 
30.) Further, in Figure 8(a), for each of the individual 
iterates of its chunk of the outer loop, the green thread is 
progressing, a chunk at a time (the green vertical blocks), 
through the iterations of complete instances of the inner 
loop. At the time of this display, it is executing iterations 
1 through 15 of the inner loop for iteration 5 of the outer 

Note that for loops with a large number of iterations, 
each pixel of the display could represent a group of 
iterates rather than a single iterate. As well, the user could 
be allowed to zoom  in  and out and pan back and forth 
across the iteration space. As new loops are encountered, 
the entire display could be scrolled to the left. In cases in 
which the parallel loop indices are simply used as 
subscripts of an array, the display could also be regarded 

loop. 

A new  scheme is currenlly under consideration for representing the iteration 
space in  a way that could accommodate arbitrarily deep nesting of loops. 
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as an illustration of which areas of data are being accessed 
by which threads or processors. 

At the time of the display in Figure 8(b), most of the 
threads are nearing completion of  all  of the instances of 
the inner loop for all of the iterates of their chunks of the 
outer loop, but the blue thread seems to lag far behind the 
others. In Figure 8(c), dynamic load balancing is apparent: 
The yellow thread has helped the magenta  and dark blue 
threads finish their work; now  all  of these threads are 
undertaking work that would  originally have been expected 
to have  been performed by the dark blue thread. 

The reason for the blue thread lagging so far behind the 
others is revealed in Figure 9, in which additional displays 
have been configured and execution history has been 
replayed. Having learned from a pop-up window that the 
blue thread is running on processor 3, we can see from the 
array of lights that the processor for the blue thread is 
incurring an inordinately large  number of TLB misses. 
Thus, a significant fraction of the capacity of this 
processor is lost to the “overhead” of servicing the TLB 
misses, rather than  being devoted to the true work of the 
application. The graph at the bottom right  of Figure 9 
provides a further indication that processor 3, the blue 
processor in this display, consistently takes far more TLB 
misses than the other processors. 

The graph at the bottom left of Figure 9 provides an 
indication of the parallelism actually achieved by the 
application. Time increases from  left to right.  At any 
instant, a vertical slice through the graph can have a red 
component, a green component, and a yellow component, 
one above the other. The height of the red component 
indicates the number of threads currently working, the 
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Correlation of loop scheduling  with hardware utilization  (based on same trace as Figure 8). 

height of the green component indicates the number of 
threads currently getting another chunk of work to do, and 
the height of the yellow component indicates the number 
of threads currently idling. A thread is counted as idle only 
when  it is ready for another chunk but  no chunks are 
available to be assigned to it from the queue. Thus, the 
upward green spikes in the early part of the graph 
represent threads finishing one chunk and  picking  up 
another one. The broad upward yellow spikes at the right 

648 of the graph are threads going  idle.  By replaying 

execution, we realized that threads begin to be idle at 
about the time the other threads in the computation come 
to the aid of the blue thread. This corresponds to the time 
at which contention for a work queue first becomes a 
possibility. However, rather than contention, the more 
likely cause for the idle threads is the fact that there is 
barrier synchronization at the end of each instance of the 
inner loop, and the fact that there  are only five chunks of 
work per instance of the inner loop. Unfortunately, the 
blue thread always picks up one of these chunks. As 
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threads finish their single chunk of  an instance of the inner 
loop, they must become idle  while  waiting for all other 
threads to complete their chunks. Thus, it is  highly  likely 
that some number of threads will become idle at the end of 
each instance of the inner loop, waiting for the (slower) 
blue thread to finish. 

Figure 9 also led to the observation that the green thread 
never joins the other threads in completing the work of the 
blue thread. This turned out to be  an opportunity for 
improvement of the design of the scheduler. In cases in 
which  an inner loop has sufficient work to keep a number 
of threads busy, this lack of participation in dynamic load 
balancing by the green thread could have a significant 
impact on the performance of the system. 

The excessive idling  and the loss of a thread are 
situations that seem to present opportunities for important 
improvements to the scheduler. These phenomena were 
apparent almost immediately from the visualization 
displays but  would  almost certainly have gone unnoticed 
for quite some time  in a more conventional environment. 

This section has described the display of information 
from a number of different levels within the system. 
Although  many of the displays were initially developed as 
examples, they have, in fact, proved to be  highly  effective 
in examining  and understanding system behavior. As was 
noted in each case above, a relatively small amount of 
trace data was required to produce these displays. Trace 
data rates were often less than 10 KJ3 per second. 
Overhead, measured as variation in total run time, 
typically was between 5 and 10 percent. Perturbation was 
minimal.  Most of the problematic behavior that was being 
investigated was reproducible and  remained reproducible 
after instrumentation was enabled. 

Future  directions 
A number of directions are possible for further work in 
this area. First, comprehensive, documented case studies 
are sorely needed to demonstrate the broad applicability, 
viability, and effectiveness of program visualization. As 
well, displays for systems with hundreds, thousands, and 
tens of thousands of processors will soon be required. 
Some of the displays presented here will generalize quite 
well to significantly  larger numbers of processors; others 
will not. Further, even for smaller-scale systems, there is a 
need to consider more abstract displays with the potential 
to provide more revealing views of program behavior at all 
levels within the system. 

New displays are required for more direct correlation of 
system behavior with  program source. For example, a 
display of source code could be presented, and colored to 
show the location of each processor based on program 
counter samples. Source code could also be colored to 
show the location of cache misses or page faults. 
Subroutine-call graphs could be colored to show profile 

information such as how  much  time is being spent in each 
routine. 

Design goals for the RP3 visualization environment 
include 

Ektensibility, so that custom components specific to 
particular application domains or classes of machines can 
be added easily. 

on any workstation providing X and UNIX. 

diverse as highly parallel shared-memory systems, 
large-scale message-passing systems, and multiprocessor 
systems with a few very powerful vector 
processors. 

Portability, so that the visualization software can  be run 

Returgetubility, to accommodate architectures as 

Efforts are currently under way to accommodate traces 
from  an application running on Victor [26,  271, a 256-node 
mesh-connected transputer-based message-passing system. 
A few additional event widgets and one or two additional 
meter widgets, combined with the existing  widget set, 
should provide a powerful facility for  visualizing the 
behavior of message-passing applications running on this 
system. 

Plans are also in place for porting the visualization 
environment from the Mach IBM RT workstation on which 
it was developed to newer UNIX workstations. Once the 
environment is ported to one or more  newer workstations, 
a standard base set of widgets can be completed. The 
environment can then be deployed for use by application 
programmers. Field trials and experimental evolution will 
provide valuable feedback concerning the effectiveness of 
the various components of the present facility and  insight 
into the visualization requirements of different application 
domains and  different classes of systems. Eventually, 
perhaps, a central catalog or repository can be established, 
to which the user community can contribute successful 
widgets, event generators, operating system modifications 
for event collection, and interesting application traces. 
This  would  allow  new users to rapidly tailor their 
environments to their tastes or requirements, using 
collections of proven components applicable to their 
particular context. 

Conclusion 
The development of a visualization environment for RP3 
has been completed. The environment provides an 
architecture and an extensible collection of generally 
applicable snap-on components for information capture, 
information analysis, and  information display. These tools 
can be readily  applied to fresh problems across a broad 
range of applications. Using the environment, 
programmers dynamically configure views of programs in 
execution and watch for trends, anomalies, and 649 
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correlations in the information that is displayed. By 
continually refining the  view of the program and replaying 
execution,  programmers  can gain an  understanding of 
program  (mis)behavior. 

We  have  demonstrated  remote  operation of the  system 
over a network  and achieved system-independent display 
on workstations from  a number of different vendors. 
Working at  sites  far  removed from the RP3, we  were  able 
to  start an  application, and  we  were  able  to get better 
feedback  concerning  its  execution  than most users could 
get  sitting in the machine  room. The  displays  shown in this 
paper have exposed  behavior  that would have  taken much 
longer or been much more difficult to  uncover  by 
conventional  means. 

We  are highly encouraged by  the effectiveness of even 
the simplest  visualization  tools, and  we  are optimistic 
about  the potential of extensible  environments for the 
visualization of program execution. Certainly, some 
problems will resist  this  form of attack,  but  even if we  can 
resolve  just  the  “easy” bugs and  performance  problems 
with  these  new  methods  and  then  revert  to  older, more 
time-consuming methods  for  the  remainder of the 
problems, these  environments will have  been well worth 
the time spent on their development. 
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