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systems often proves to be somewhat elusive.
This paper discusses one important technique
for improving the performance of parallel
software: program visualization—helping
programmers visualize the real behavior of an
application or system by presenting its state
and progress in a continuous graphic fashion.
An environment for visualization of program
execution is described. Within this
visualization environment, programmers
dynamically establish views of the behavior of
a program in execution and watch for trends,
anomalies, and correlations as information is
displayed. By continually refining the view of
the program and replaying the execution of the
program, programmers can gain an
understanding of program (mis)behavior. This
is essential for the debugging, performance
analysis, and tuning of parallel software.
Design goals for the visualization environment
include expandibility, portability, and the
ability to accommodate diverse architectures,
including highly parallel shared-memory
systems and large-scale message-passing
systems. Results from visualization of systems
and applications running on the RP3, an
experimental shared-memory multiprocessor,
are presented in the form of color
reproductions of typical, useful displays.

It is now generally accepted that parallelism significantly
compounds the difficulties involved in producing software
that is correct and performs well. As a result, debugging
and tuning are now widely recognized as crucial aspects of
developing software for parallel systems. Unfortunately,
support for these activities is often rudimentary at best
(although much research has recently been devoted to
improving this situation [1, 2]). With parallel debuggers,
programmers can suspend execution of a program and
examine the state of the system, but debuggers provide

" only snapshots of small subsets of the total program state.

Typically, these snapshots are widely separated in time.
Significant events can easily be missed or overlooked.
Further, with conventional tracing facilities, programmers
can quickly be overwhelmed by volumes of textual output.

Recently, it has become apparent that a more effective
way to present program behavior is in a continuous
graphic fashion. An important lesson from scientific
visualization [3] in the computational sciences is that users
can deal much more effectively with large amounts of data
when the data are presented visually. Information is more
rapidly assimilated, and trends and anomalies are more
readily recognized. Program visualization aims at
capitalizing on this human capacity by presenting the
results of monitoring a system in a visual fashion [4-9].

Program visualization can be crucial for debugging
parallel applications, for tuning these applications, and for
adapting them to the variety of architectures on which they
may have to run. Visualization facilities can also help
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ensure that various models of parallel computation or
models for performance prediction do in fact accurately
reflect the behavior of an application. In addition,
visualization can be used to verify that automatic
parallelization is working effectively and to identify regions
of code where further manual amendment might yield
substantial improvement in overall performance.

This paper describes the RP3 program visualization
environment. With this environment, programmers can
dynamically establish views of program behavior on a
display and have the execution of a program presented in a
continuous graphic fashion through these views. At any
time during the execution of the program, the programmer
can dynamically reconfigure the display by placing
additional views on the display, by removing some of the
existing views from the display, or by rearranging the
views on the display. Program execution may be
“‘replayed” by repeatedly viewing a recorded execution
history or by viewing repeated executions of the program
as they occur. By continually refining the arrangement of
the views and replaying the display of program behavior,
programmers can gain an understanding of program
(mis)behavior. The work described here is novel in that
behavior from all levels of a system—hardware, operating
system, run-time libraries, and application—are displayed
simultaneously for correlation by the user. Furthermore,
the system is highly extensible and adaptable to new
parallel architectures. Results of the use of this
environment are presented in the form of color
reproductions of typical, useful displays.

One approach to program visualization

Our general approach to program visualization arises from
our perception of common practices in hardware
development. In certain respects, tools for analysis of
software behavior lag far behind those for analysis of
hardware. When hardware under development
malfunctions or behaves unexpectedly, a developer rolls
up a cart loaded with diagnostic equipment, attaches clips,
extenders, probes, indicators, meters, scopes, and
analyzers to a circuit board, and rapidly obtains a good
graphic characterization of the behavior of the logic.

Our goal is to establish this type of facility in the
software domain. For an application, one should be able to
create a graphic representation of the program, run it until
some condition of interest is encountered, and stop and
run it backward, looking for what led to this situation.
Then one might change the representation of the program,
on the basis of a hypothesis concerning the underlying
cause of the situation, and run the application forward
again. By continually repeating this process, one could
isolate program behavior of interest.

We propose a toolkit approach to program visualization,
analogous to the diagnostic tools classically employed for
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hardware development: a large assortment of standard,
generally applicable, ‘“snap-on’” components. ‘“‘Probes”
are clipped onto the target system (the system whose
behavior is being visualized) to extract information of
interest while the system is running. This information is
passed to a visualization workstation, where graphic
display attachments are connected to the information
streams emanating from the various probes.

Examples of information for which a user might probe
include the following: at the hardware level—instruction-
execution rate, cache misses, memory and interconnection-
network traffic, samples of program-counter contents, and
physical addresses of instructions and data; at the
operating system level—page faults, binding of threads to
processors, scheduling of threads, and binding of various
pages of a virtual address space to pages at various places
within the memory hierarchy; at the level of the
programming language run-time library——entering and
exiting parallel sections, acquiring and releasing locks,
arriving at and departing from barriers, dispatching work
from parallel loops, and calling and returning from
procedures; and, at the application level—high-level data
operations and algorithm state transitions.

The assortment of graphic attachments for displaying the
extracted information might include dials, meters, lights
with varying brightness and color, scales, bar charts, plots,
histograms, timing diagrams, source text, data-structure
diagrams, symbol tables, call graphs, control-flow and
dependence graphs, synchronization graphs, and system-
architecture diagrams.

Support for program visualization must be included in
parallel systems at all levels: within the hardware, the
operating system, the run-time library, and the application.
Facilities must exist for capturing traces—streams of data
describing events of interest in the execution of a program.
Support must be provided both in the form of a general
monitoring mechanism, for controlling trace generation and
for handling trace data, and in the form of specific
instrumentation—individual pieces of additional code or
logic for generating data describing particular events.
Monitoring mechanisms must be relatively unobtrusive in
order to minimize perturbation of true program behavior.
Monitoring must also include the capacity to transfer
significant volumes of generated data from the monitored
system as quickly as it is being produced, either for long-
term storage or for immediate display. Instrumentation
code at any of the software levels can either exist
permanently within a system and be enabled and disabled
dynamically, or it can be dynamically inserted into a
system by means of unobtrusive debugging techniques.
Hardware assists can be provided to allow instrumentation
code to produce trace data in a way that interferes as little
as possible with the normal operation of the machine. This
can be accomplished with special user-writable registers
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and buffers, and separate data paths out of the monitored
system.

Development environments must provide means for
dynamically enabling selected instrumentation, retrieving
the resulting event streams, and dynamically configuring
displays of program behavior that are driven by the event
streams. Displays can be based on extensible, object-
oriented collections of standard graphic components. A
windowing system can serve as a framework that handles
the creation of new windows, allows ‘‘zooming” and
““panning’’ within windows, and facilitates dynamic
reconfiguration of windows across multiscreen displays.

An important requirement for this form of system is that
it be “open”” or ““extensible.”” By clearly defining the
architecture of the system and explicitly specifying
interfaces and protocols, we can ensure the ability to
incorporate custom, user-developed components into the
system.

All of this constitutes a visualization environment—
an architecture and a large collection of standard, generally
applicable snap-on components for information capture and
display. Within such an environment, programmers can
construct an effective graphic presentation of the state and
progress of an application in execution. With a set of tools
that can be readily applied to fresh problems across a
broad range of applications, a programmer can have a
quick and easy way to take a fast first look at unexpected
system behavior, and have, as well, a facility for more
extensive investigation of behavioral phenomena.

By comparison, many first-generation visualization
systems are based on statically embedded instrumentation,
handcrafted custom graphics, fixed displays, unwieldy user
interfaces, and limited control over execution-history
replay.

The RP3 monitoring and visualization
architecture

® Hardware monitoring

The IBM Research Parallel Processor Prototype (RP3) was
an experimental, 64-way shared-memory multiprocessor
[10]. Each of the 64 processor-memory elements (PMEs) in
the RP3 architecture consists of a processor, a floating-
point unit, a memory-management unit, an I/O interface, a
performance monitor, a cache, and 8 MB of memory. The
PMEs are interconnected by a multistage packet-switched
omega network. A processor may obtain data from its
cache, from its own memory (“‘local’’), and from the
memory of some other PME (““global’’).

The RP3 was designed as a flexible, dynamically
reconfigurable system for studying and experimenting with
highly parallel architectures, systems, and applications. An
important manifestation of the RP3 orientation toward
experimentation and analysis is the performance
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measurement chip (PMC) [11] in each PME. The PMC
contains a set of counters for events such as instruction
completions, memory references, cache and translation-
lookaside-buffer (TLB) misses, local and global memory
requests, and requests to the local memory from all other
processors. The PMC also contains buffers that can collect
virtual- or absolute-address samples, or samples of delays
encountered while accessing global data via the network.
The counters are incremented and the samples are
collected automatically and unobtrusively by the hardware.
Whenever a counter overflows, the processor is
interrupted. The processor can then unload the counters
and buffers, and reset them. Alternatively, the system
console and I/O processors can unload the counters and
buffers periodically through special access paths, without
interrupting the RP3 processors and without involving the
operating system. This minimizes perturbation of system
behavior.

The PMC also contains three user-writable ““annotation”
registers. With a single user-mode instruction, an
application can write an arbitrary integer value into any
one of these registers. The values in these registers are
sent with the rest of the PMC data whenever the PMC is
unloaded. An application typically deposits an identifying
value into one of these registers each time it enters another
phase of its computation. The value of one or two
important state variables, such as measures of convergence
for numerical algorithms or temperatures for simulated
annealing, can be deposited into the other registers. In this
way, the application annotates, in effect, each segment of
the hardware-performance data stream. The annotations
provide an indication of the application activity to which
each segment corresponds.

The Mach operating system [12] has been ported to RP3
and has been extended to provide control over unique
architectural features of RP3 [13]. Support for the PMC
has been incorporated into the Mach kernel in the form of
a Virtual PMC (VPMC) facility {14]. The VPMC facility
provides the illusion of much wider event-counter registers
and of PMCs that follow a thread across context switches
and from one processor to another.

® Event logging

Mach for RP3 has also been extended to incorporate an
event-logging facility. As execution reaches various points
in the application, run-time, and kernel, instrumentation
code generates event records—records containing event-
specific data describing the progress of the system. The
instrumentation code places these event records into the
event log—a buffer maintained in memory by the kernel.
Periodically, the kernel unloads all of the PMC data and
generates an event record containing these data. At the
end of a run, at convenient pauses during a run (e.g., at

barrier synchronization points), or at regular intervals, the 637
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event records are retrieved from the log and transmitted
out of the system on a communication link. Typically, they
are analyzed immediately and displayed on a workstation
or stored as trace files on disk.

By convention, all event records contain an event ID
followed by arbitrary event-specific binary data. Examples
of event-specific data include phase ID (for an application
entering another phase of a computation), loop ID and
loop index values (for a run-time scheduler dispatching
work for a parallel loop), thread ID and some state
information (for the operating system scheduling a thread),
and current values of the PMC registers (for the operating
system handling an interrupt from the PMC). A time stamp
and the ID of the processor from which the record was
written are automatically added to each event record by
the logging mechanism. The time stamp is obtained from a
free-running clock in each processor. The clock resolution
is 1 ms. A clock-synchronization algorithm running in the
kernel keeps the clocks consistent to within 5 ms. This
accuracy is more than adequate for the higher-order
software behavior that is typically being investigated.

In order to ensure global integrity of the event log, even
in the presence of faulty user-provided instrumentation,
the event log is managed by the kernel. Instrumentation
inside the kernel accesses the log via read and write
routines internal to the kernel. Access to the log for user-
mode code, such as instrumentation in the run-time library
or an application, is provided by a parallel UNIX®-style
system call. In cases in which the overhead of a system
call is unacceptable, instrumentation code can accumulate
event records and place them in the event log as a group.
Time stamps can be obtained from the kernel by using an
extremely low-overhead system call (approximately
100 us) as the individual events of the batch are collected.
For cases in which such accumulation is unacceptable and
guarantees concerning integrity of the log can be forsaken,
an event log can be maintained in memory directly
accessible to all instrumentation.

The kernel maintains a section of the buffer for the
event log in (protected) kernel memory on each PME.
Event records are placed in the buffer in the local memory
of the processor that created them. This avoids the
contention that would occur if there were a single event-
log buffer in the memory of one PME, and introduces no
additional traffic on the network that interconnects the
PMEs.

® Event collection

Figure 1 illustrates the configuration typically employed

on the RP3 for event collection and collation by the
visualization system. A number of processors (at the left of
the monitored-system block) are dedicated to running an
application. Instrumentation at each level of the system
(application, run-time library, kernel, and hardware)
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generates events, which are fed into the event-log-buffer
sections corresponding to these processors. A few of the
processors (at the bottom of the monitored-system block)
are dedicated to event-handling tasks. We assert that, in
many cases, 90% of the RP3 processors and memory are
sufficient for realistic runs of an application for
experimental purposes. Thus, we can devote 10% of the
processors and memory to monitoring and visualization.
One of the monitoring processors captures the UNIX
standard output of the application and bundles it into
event records, which it deposits into the event log.
Subsequently, this output can be correlated with the other
data in the log. Another processor (at the right of the
monitored-system block) collects event records from the
event-log-buffer sections corresponding to the application
processors, collates the event records according to time
stamp, and forwards them out of the system, across a
network link to a workstation.

The various collections of instrumentation embedded
within the system are enabled or disabled at the beginning
of each run of the application. It would be a simple matter
to implement a facility that would allow instrumentation to
be enabled and disabled dynamically during the run, on
demand from a workstation.

® Analysis and display

Analysis and display of event streams emanating from the
target system is performed by software that runs on a
workstation. As illustrated in Figure 1, event records
arrive over the network from a running monitored system,
or they are read from a stored trace file. The event records
are placed in an internal buffer and are then passed
through a configuration consisting of couplings of analysis
components and display components (at the right of the
visualization workstation block) in order to produce a
display.

An example of an analysis component is one that
accepts a stream of event records containing PMC counter
values and produces a stream of single data values. For
instance, each time an event record is received, a data
value could be produced that gives the instruction
execution rate of a processor over the interval between the
previous event for that processor and the one currently
being processed. An example of a display component is
one that accepts a stream of single data values, and
displays a bar graph. Each time a data value is accepted,
the bar graph is updated to show the current value.

Our intent is to have a small number of types of
streams, and for each type of stream, a large number of
analysis and display components. This provides a large
number of ways to display any piece of information.
Further, when a new analysis component is added to the
system, it immediately has available to it all of the existing
display components that accept the type of stream that it
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produces. Similarly, when the system is extended with a
new display component, the component can be used
immediately to display data from any of the existing
analysis components that produce the type of stream
that it accepts.

Thus, when a user requests that the workstation display
be dynamically reconfigured to present additional
information, the system must obtain additional analysis
and display components of appropriate types, couple them,
and connect them to the flow of events from the internal
workstation buffer. At that time, if appropriate, a request
could be sent to a running target system to enable the
instrumentation that provides the information required by
the analysis component.

Visualization software structure

The visualization software running on the workstation is an
X Window System™ application [15]. The X Toolkit [16]
provides a rudimentary object-oriented programming
facility, and the Hewlett-Packard Widget set [17]

(a precursor of the OSF Motif ™ Widgets [18]) constitutes
a graphic-object library upon which the user interface is
based. Any X window manager may be used to manipulate
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(reposition, resize, iconify) the windows through which the
application produces its displays.

Within the context of the X Toolkit, objects are referred
to as ““widgets,”” and each object automatically has a
corresponding window in which it displays its graphics.
Widget classes include routines to initialize a new instance,
redisplay the graphics of an instance, handle window size
changes, and accept new values for object parameters,
referred to as “‘resources.”” Widgets are created within a
dynamic hierarchy, distinct from the static class hierarchy.
This dynamic hierarchy facilitates inheritance of values for
resources and, to some extent, reflects the nesting of
widgets on the display.

The analysis and display components of the visualization
software are implemented as widgets. An “event widget™
accepts a stream of event records, analyzes the events as
discussed in the above subsection on analysis and display,
and produces a stream of data, which can be filtered and
displayed in any of a number of ways." A “filter widget”’
accepts a stream of data, performs a function (such as

! We use the X Toolkit and widgets uniformly throughout the application for object-
oriented programming, even though event and filter objects do not produce
graphics.
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scaling values or maintaining a maximum, minimum, or
average of the values encountered), and produces a new
stream of data. A ““meter widget” accepts a stream of
data and produces a display. ““Trigger widgets’” are
pseudo-meters which, rather than displaying data, exert
control over the system based on the data that they
receive. For example, a trigger might be used to suspend
the replay of program execution whenever a value
exceeds some allowable threshold. Without loss of
generality, trigger widgets are omitted from the following
discussions.

There is a class description for each kind of event, filter,
and meter widget, and there is a global table that lists all
of these classes along with various attributes related to
their use in configuring visualization displays. When a user
requests an addition to the current configuration of
widgets, a “‘dialog box™’ is derived automatically from the
global table and is presented to the user, as shown in
Figure 2.

The user selects a number of event classes, a number of
filter classes, and a meter class from the dialog box
(invalid combinations of widgets are disallowed). An
instance of each selected event class is created, and each
instance is coupled to a chain of filter widgets obtained by
instantiating the selected filter classes. Each of the
resulting event-to-filter-chain couplings is then coupled to a
distinct instance of the selected meter class. In cases
where an instance of the meter class can accommodate
more than one input, all of the event-to-filter-chain
couplings are simply fanned in to a single meter widget.
All of this can be replicated for each of a number of
processors of the monitored system. In some cases, a
single event widget can be coupled to a number of distinct
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filter chains corresponding to a number of distinct
processors. For example, when a user selects MIPS,
FLOPS, CaUtil, TLBmiss, and Memory events, as well as
the Light meter, for processors 0 through 63, as shown in
Figure 2, the resulting widget configuration involves one
PMC event widget for each of the selected statistics, each
event widget driving 64 Light meter widgets. The resulting
display is shown at the top right of Figure 3. This display
is found in several of the following figures and is discussed
in greater detail below. If the user had selected the
Average filter, an Average filter widget would have been
placed between each event-widget-Light-widget pair.

This user intetface protocol for configuring displays is
not entirely general, but it does allow simple configurations
to be created quickly and easily. So far, in practice, this
protocol has not precluded any configuration that our users
attempted naturally. As an option, a more elaborate
configuration language or a graphic protocol for
configuring arbitrary graphs of widgets [19-21] could be
provided.

A simple language has been developed for describing
configurations, so that once a useful configuration is
achieved, it can be saved as a text file and subsequently
reloaded.

Extending the system to provide a new kind of display
or to accommodate a new form of event involves writing a
new event, filter, or meter class, compiling it, making a
new entry in the global table, recompiling the global table,
and relinking the system. Experience indicates that a
programmer familiar with the system and with a clear
notion of the function of the new widget can extend the
system in this way in one half to two days. Initially,
achieving the requisite familiarity may require four to six
weeks.

The types of configurations discussed above, consisting
of event widgets coupled to filter widget chains and meter
widgets, constitute an event-data distribution network
superimposed on the normal dynamic widget hierarchy.
This network is implemented by a structure incorporated
into each widget, which lists the widgets to which it
provides data. These structures are similar to, but distinct
from, those maintained for manager widgets to list those
widgets under their control. The X Toolkit has been
extended to include intrinsics for attaching widgets to and
detaching them from the event-data distribution network.
A common superclass for event and filter widgets provides
the additional structure for the widgets. It also provides
default (inherited) routines for maintaining this structure
when widgets are attached and detached.

The standard toolkit intrinsic for setting resource values
could have been used to pass data from one widget to the
next along the network. This, however, was found to be
excessively slow because of the need to perform
conversion for typed values and to interrogate the
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superclass chain of the widgets in order to find the routines
responsible for handling the resource. Instead, the toolkit
has been extended to include an intrinsic for passing
untyped values directly to a widget. This yields an
improvement of roughly 40% in the performance of the
visualization system. Note that the global widget-class
table discussed above contains sufficient information to
allow the configuration routines to guard against
connecting incompatible widgets. The common superclass
for event and filter widgets provides a default routine,
corresponding to this new intrinsic, which passes received
data onward, without change, to all of the widgets to
which it is attached. Thus, a fan-out within the distribution
network can be implemented by instantiating the common
superclass itself.
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The use of X as the graphics system on which the
visualization software is based results in a number of
benefits in addition to graphics functionality. Convenience
and familiarity for users result from employing standard X
operating procedures and window managers. The system is
extensible, in the sense that analyzing new forms of events
or displaying data in a new way require only that new
widgets be written in the standard fashion. The system is
portable, in that the visualization software can be run on
any UNIX workstation supporting X. Finally, the network
transparency and device independence of X allow the
visualization display to be run at remote sites on any of a
number of different workstations. We have demonstrated
this a number of times, by running an application on RP3
at Yorktown Heights, New York, having the event stream
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sent over a local area network to the visualization software
running on an IBM RT® workstation in Yorktown Heights,
and having the graphics sent over a network to a Sun
workstation at sites such as Syracuse, New York, or
Calgary, Alberta.

Separating the monitored system from the visualization
system by the use of standard network protocols allows
the visualization system to be easily adapted to new
monitored systems. Accommodating a new monitored
system requires producing an event stream from that
monitored system by whatever means are available and
converting the event stream into the format understood by
the visualization system.

Replay control

Comprehensive control over the replay of execution
history from trace files (or live presentation of displays as
execution proceeds) is provided by the control panel,
shown at the top left of Figure 3. The user can suspend
replay, resume it, step it one event at a time, or run it
forward or backward at varying speeds. In the future the
system will allow a user to “drive” the replay from the
keyboard (in order to be more responsive).

While such control might at first seem frivolous, it is in
fact essential for the intended mode of operation of the
system. As discussed earlier, users typically run the
visualization system until a situation of interest arises, then
step or run the system back and forth slowly, isolating the
precise moment the behavior of interest occurs. At the
same time, the user looks for correlations between the
various display components that might suggest the
underlying cause of the given behavior. One example of
such a correlation might be a dramatic decrease in
processor speed when departing from a particular state or
accessing particular data (due, for example, to thrashing in
a set-associative cache as a result of unfortunate memory-
access patterns or layouts of data in memory). Note that,
while temporal correlations can be transformed into spatial
correlations by displays that incorporate time along one
axis, not all forms of display have an obvious or practical
means for incorporating time.

One measure of the importance of this degree of control
over replay is the amount of frustration experienced by
users who became accustomed to this style of interaction,
and later had to deal with some other system in which this
degree of control had not yet been implemented.

Selected results
This section illustrates both the type of displays that have
been developed and found useful, and the type of

~ information that can be gained from these displays
" concerning program behavior. Figures 3 through 9 are

images of workstation display screens captured during RP3
program-visualization sessions.
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® Hardware and application behavior

Figure 3 is a hardware-oriented display. A user might
configure such a display in order to provide a general view
of data being obtained from the PMCs.’

The trace viewed in Figure 3 was obtained using the
system console and I/O processors, as discussed earlier in
the subsection on hardware monitoring, rather than the
event-logging facility. In this manner, with extremely low
overhead and little perturbation of the true system
behavior, execution history was captured from the
beginning of the operating system boot through the end of
the execution of a hydrodynamics application. The trace
consists of only PMC event records generated once per
second for eight processors. The trace file covers
20 minutes of execution time and occupies 860 KB of disk ®
storage.

The control panel displayed at the top left of Figure 3
indicates how far the replay has progressed (575 seconds)
and the rate (fast) at which replay is proceeding. The
control panel also provides pull-down menus for
configuring the system and controlling its operation.

The display at the top right of Figure 3 is the highest-
level view of hardware activity. It consists of a number of
color dots (lights), with one column for each PME and one
row for each statistic of interest: instructions executed per
second, floating-point operations per second, cache
utilization, TLB misses per second, and memory activity.
Note that only eight processors are active. Each light
varies in color from blue (cold) for low values through red
(hot) for high values. To a ‘‘seasoned observer,” the
various patterns of color in the lights indicate the kind of
activity taking place, the phases through which a
computation is moving, and where difficulties are arising.
Problems such as memory contention and thrashing in
caches stand out dramatically. For example, at the time
represented by this display, it is clear that processor 3 is
incurring far more TLB misses than any of the other active
processors.

Since there is a fixed amount of screen space, the user is
continually faced with the trade-off between the number of
different kinds of information that can be displayed and the
amount of detail that can be displayed for each kind of
information. The three bar charts down the left side of
Figure 3 give more detailed information with finer
resolution than the array of lights, but for fewer
performance characteristics. Each chart consists of a bar
(actually, a floating dot) for each PME, the height of the
bar indicating the value of a given statistic for that PME.
The top chart shows instructions per second, the middle

2 Please note that color is used extensively in these displays. It highlights the
structure and organization of the various displays, it distinguishes among kinds of
data being plotted on a single display, and it provides another dimension for
plotting data values. Unfortunately, the full range of color in the displays may not
be reproducible by the printing process. Hence, some of the displays shown here
may prove slightly difficult to comprehend.
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chart shows references by each processor to its local
memory (as a percentage of the maximum possible rate),
and the bottom chart shows activity of the PME memory
from all sources. Spikes and dips in these charts reflect an
uneven load on the system. Spikes such as those for
processor 3 in the middle and bottom charts often result
from heavily accessed code or data being concentrated in a
particular PME. It is possible, for example, that a small
amount of shared data is being accessed repeatedly by all
of processors 1 through 7 and that, by virtue of
interleaving, the data lic mostly in the memory of PME 3
and partly in the memory of PME 2. In this case, the
references made by processor 3 to these data are mostly
local references, whereas the references made to these
data by the other processors are mostly global. Further,
because it holds the data being accessed by all of the
processors, the memory in PME 3 sees greater activity
than the other memory units.

The five graphs down the right side of Figure 3 give
information for fewer PMEs, but include history. Each
graph consists of a line for each PME, showing the value
of a given statistic for that PME over time, and each PME
is assigned a different color (corresponding to the order of
the label colors). Corresponding points in time on the
different graphs are aligned vertically. At the left section of
these graphs, only PME 0 is active, and the rest of the
PMEs are idle except for periodic clock handling. We
conclude that this must be the time during which the
operating system (running on PME 0) loads the
application. This is followed by a flurry of TLB miss
activity by PME 1 (green), concurrent with low processor
activity (MIPS chart) by PME 1, moderate processor
activity by PME 0, and high processor activity by the
remaining PMEs. This must be the phase in which the
master application processor (PME 1) is initializing the
application address space and incurring numerous page
faults, which are being serviced by the operating system.
The remaining processors are spinning at a barrier
synchronization point, waiting for the master to complete
the initialization. (Spinning is the only way that they can
achieve the instruction rates shown.) After this flurry of
activity, the application processors settle down to a regular
pattern of behavior. There are flat stretches at a moderate
instruction rate, during which they are doing useful work,
and spikes at a high instruction rate, where they are
spinning while waiting at a barrier. The first barrier of each
pair of barriers ends the first phase of a two-phase
iteration, and the second barrier ends the second phase.
Note how the various phases of a computation can
be recognized readily just from hardware-level
information, even without any displays of higher-level
function.

Figures 4 and 5 are views of activity from earlier times
in the same trace. They show various phases through
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Graphs showing hardware-utilization history.

which the operating system progresses during the boot
process. Initially, all PMEs clear their local memories.
Each executes a small piece of code from its local
memory, with address translation and cacheing disabled.
As shown by the bar charts in Figure 5(a), all references
are local. Further, because of disabled caches, the
processors run quite slowly and memory is (uniformly)
quite busy. Next [Figure 5(b)], PME 0 (the master system
processor) copies the operating system kernel instructions
into global interleaved memory, while the other PMEs
(slave processors) busy-wait (wait by executing a small
loop repeatedly). As shown in Figure 5(b), PME 0 no
longer makes local references exclusively. Further, as a
result of its references to global memory, its processor
runs even more slowly, and its memory has less activity.
Interleaving distributes the global memory activity evenly
across the other PMEs, and this activity causes an
imperceptible increase [compared with Figure 5(a)] in the
memory activity of the other PMEs. This increase is seen
in the minute increase in the height of the corresponding
memory bars. Once the kernel code has been copied to
global memory, all processors enable address translation
and cacheing and begin executing from this single copy of
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Bar charts corresponding to instants in Figure 4: (a) Kernel boot—clearing local memory. (b) Copying kernel code to global memory.
(c) Initialization of kernel data structures. (d) Beginning an application.
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Thread state-history display.

the code. The third graph in Figure 4 shows some of the
resulting cache activity, and the bar charts show a
corresponding reduction in demand on memory. The
second graph in Figure 4 also shows TLB miss activity for
PME 0 as the master begins traversing its address space
while initializing kernel data structures. Processor speed
for the slaves has dropped to nearly zero, because all of
them have executed wait instructions rather than busy-
waiting for the master.’ Figure 5(d) shows the slave
processors ““waking up’’ as an application begins to run.
Each slave experiences a number of TLB misses (Figure 4)
as it initially traverses the address space. Local memory
access and instruction rate vary widely because the slaves
proceed at different speeds through the initialization code.
They may incur TLB misses or page faults at different
times, and resolution of these situations may take different
amounts of time. Once the application begins its main
work, conditions stabilize, resulting in patterns similar to
those in Figure 3.

® Thread behavior

Figure 6 is a thread-oriented display (from an early
prototype of the visualization environment) that depicts the
state history of each of a number of application threads in
the form of a timing diagram, with one line for each
thread. The trace in Figure 6 results from instrumentation
at a number of different levels. Application-level

3 A more detailed description of the workings of the RP3 kernel can be found in
[22].
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instrumentation provides information concerning access to
various regions of data, as well as information concerning
transitions between algorithm phases, by generating event-
records containing the relevant data. Run-time-library-level
instrumentation provides information concerning thread
dispatching and synchronization activity. PMC data were
collected to provide hardware-level information. The trace
file covers six minutes of execution time and occupies

187 KB of disk storage. Companion displays shown in [6]
illustrate access by the application to matrix data, and the
corresponding hardware utilization.

The display in Figure 6 follows four threads. It is
divided into two horizontal bands. Time increases from left
to right and wraps from the right edge of the top band to
the left edge of the bottom band. The left edge of each
band is annotated to indicate five higher-level states
through which a thread progresses: I—getting work;
F—doing one kind of work; S—doing another kind of
work; L—waiting for, and then holding, a lock that allows
the thread to complete its work; and B—waiting at a
barrier synchronization point. (See [23] for a discussion of
barrier synchronization.) The thick vertical bars appearing
occasionally along the diagram indicate that time passed
without any state changes. The height of the hollow bar
inside the dark bar indicates the amount of time that
passed; a full-height hollow bar indicates time equal to the
full width of the display.

The first barrier synchronization occurs just after the
start of the bottom band. It is interesting to note that one
thread seems to have arrived at the barrier a good deal
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Thread scheduling by the operating system.

earlier than all of the others (near the end of the top band).
This might indicate a load-balancing problem, the need for
dispatching finer-grain work, unfortunate input data, or
higher or lower performance of the particular processor on
which the thread was running. Some of these hypotheses
can be confirmed or refuted by studying the correlation of
the state-history diagram with other displays that show, for
example, hardware performance or data-access patterns.
On the other hand, when we consider the elision bars, we
see that the amount of time by which the one thread
precedes the others to the barrier is actually quite small
compared to the time required to do a single piece of work
(time spent in the F or § state), and may not be a cause
for concern.

A second barrier synchronization occurs just past the
halfway point in the bottom band. Judging by the
difference in appearance of the thread behavior between
the top band and the bottom band, one may reasonably
conclude that the work taking place between the first and
second barriers must be the second phase of (at least) a
two-phase computation. In fact, if we examine more of the
trace, we realize that this is an iterative computation with
a two-phase iteration. It is interesting to note that the
second phase takes much less time than the first, that no
locking is required in the second phase, and that there are
only enough data to provide one piece of work for each
thread. Thus, dynamic structure of an application, or
high-level patterns of behavior, which would be
extremely difficult to deduce or discern by any
conventional method, can be readily recognized with a
visualization system, even without detailed knowledge
of an application.

® Operating system behavior

Figure 7 is a display oriented toward operating-system-
level scheduler activity. It illustrates the migration history
of a set of threads. The trace includes both operating-
system-level information and run-time-library-level
information, in addition to the hardware-level information
from the PMCs. Operating system instrumentation
provides information concerning context switching by
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processors from thread to thread. C Threads run-time
library {24] instrumentation provides information
concerning creation, naming, and destruction of

C Threads, as well as dispatching C Threads to Mach
threads, and operations on lock and condition variables.
The trace file covers two minutes of execution time and
occupies 136 KB of disk storage.

The eight horizontal color strips in Figure 7 show the
scheduling of threads onto processors, over time. There
is one strip for each processor, from the top strip for
processor ( to the bottom strip for processor 7. Time
increases from left to right. The strips scroll to the left as
time passes. Each user thread is assigned a distinct color;
the darkest blue is used to represent all kernel threads.
The strips are colored according to the threads that are
running on the corresponding processors at each instant.
For example, the display shows that processor 5 initially
runs one or more kernel threads (most likely the ““idle
thread””) for a while and then runs the magenta thread
briefly. The magenta thread then runs briefly on processors
0 and 1 before settling on processor 1. The cyan thread
begins on processor 3, runs there briefly, migrates in quick
succession to processors 0, 4, and 7, and then settles on
processor 2, where it runs to completion. Note that the red
thread runs periodically for brief intervals, alternating
between processor 6 and processor 0. This thread was
alluded to earlier in the section on event collection: It is
the process that collects event records from the event log,
collates them, and forwards them over the network.
Writing to the network requires a UNIX system call,
which can be executed only on processor 0. Thus, the
thread is forced to processor 0 for each system call and
then returned to processor 6 to continue processing.

® Language-level behavior

Figures 8 and 9 are displays of run-time-library-level
scheduler activity. They illustrate dynamic load balancing
in the scheduling of nested parallel loops (loops in which
iterates can be executed in parallel) for PTRAN, a parallel
FORTRAN system [25].

The trace viewed in Figures 8 and 9 includes both the
hardware-level information from the PMCs and run-time-
library-level information generated by instrumentation
embedded within the PTRAN scheduler. As a parallel loop
is executed, this instrumentation provides information
concerning which ““chunks,” or sub-sequences of the
iterations of the loop, are assigned to which threads (each
thread is bound to a distinct processor). Also provided are
the times at which execution of the chunks begins and
ends and the times during which threads are idle. The
trace file covers 38 seconds of execution time and occupies
320 KB of disk storage.

Figure 8(a) represents the iteration space of the parallel
loop currently being executed. Either a single parallel loop
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threads. (c) Dynamic load balancing.

or a nested pair of parallel loops can be displayed.‘ The
x-axis represents the iterates of the outer loop, and the
y-axis represents the iterates of the inner loop, if an inner
loop exists. As execution proceeds, regions in the display
of the iteration space are colored according to the thread
that is executing the corresponding chunk of iterations.
For example, in Figure 8(a), the green thread has taken the
first chunk of the outer loop—the green horizontal block,
and the magenta thread has taken the second chunk of the
outer loop—the magenta horizontal block. (A window can
be popped up to reveal that in this case the green thread
corresponds to processor 1. Additional displays can be
configured to show, for instance, that the chunk taken by
the green thread is iterations 1 through 15 and that the
chunk taken by the magenta thread is iterations 16 through
30.) Further, in Figure 8(a), for each of the individual
iterates of its chunk of the outer loop, the green thread is
progressing, a chunk at a time (the green vertical blocks),
through the iterations of complete instances of the inner
loop. At the time of this display, it is executing iterations
1 through 15 of the inner loop for iteration 5 of the outer
loop.

Note that for loops with a large number of iterations,
each pixel of the display could represent a group of
iterates rather than a single iterate. As well, the user could
be allowed to zoom in and out and pan back and forth
across the iteration space. As new loops are encountered,
the entire display could be scrolled to the left. In cases in
which the parallel loop indices are simply used as
subscripts of an array, the display could also be regarded

4 A new scheme is currently under consideration for representing the iteration
space in a way that could accommodate arbitrarily deep nesting of loops.
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as an illustration of which areas of data are being accessed
by which threads or processors.

At the time of the display in Figure 8(b), most of the
threads are nearing completion of all of the instances of
the inner loop for all of the iterates of their chunks of the
outer loop, but the blue thread seems to lag far behind the
others. In Figure 8(c), dynamic load balancing is apparent:
The yellow thread has helped the magenta and dark blue
threads finish their work; now all of these threads are
undertaking work that would originally have been expected
to have been performed by the dark blue thread.

The reason for the blue thread lagging so far behind the
others is revealed in Figure 9, in which additional displays
have been configured and execution history has been
replayed. Having learned from a pop-up window that the
blue thread is running on processor 3, we can see from the
array of lights that the processor for the blue thread is
incurring an inordinately large number of TLB misses.
Thus, a significant fraction of the capacity of this
processor is lost to the “‘overhead” of servicing the TLB
misses, rather than being devoted to the true work of the
application. The graph at the bottom right of Figure 9
provides a further indication that processor 3, the blue
processor in this display, consistently takes far more TLB
misses than the other processors.

The graph at the bottom left of Figure 9 provides an
indication of the parallelism actually achieved by the
application. Time increases from left to right. At any
instant, a vertical slice through the graph can have a red
component, a green component, and a yellow component,
one above the other. The height of the red component
indicates the number of threads currently working, the
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height of the green component indicates the number of
threads currently getting another chunk of work to do, and
the height of the yellow component indicates the number
of threads currently idling. A thread is counted as idle only
when it is ready for another chunk but no chunks are
available to be assigned to it from the queue. Thus, the
upward green spikes in the early part of the graph
represent threads finishing one chunk and picking up
another one. The broad upward yellow spikes at the right
of the graph are threads going idle. By replaying
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Correlation of loop scheduling with hardware utilization (based on same trace as Figure 8).

execution, we realized that threads begin to be idle at
about the time the other threads in the computation come
to the aid of the blue thread. This corresponds to the time
at which contention for a work queue first becomes a
possibility. However, rather than contention, the more
likely cause for the idle threads is the fact that there is
barrier synchronization at the end of each instance of the
inner loop, and the fact that there are only five chunks of
work per instance of the inner loop. Unfortunately, the
blue thread always picks up one of these chunks. As
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threads finish their single chunk of an instance of the inner
loop, they must become idle while waiting for all other
threads to complete their chunks. Thus, it is highly likely
that some number of threads will become idle at the end of
each instance of the inner loop, waiting for the (slower)
blue thread to finish.

Figure 9 also led to the observation that the green thread
never joins the other threads in completing the work of the
blue thread. This turned out to be an opportunity for
improvement of the design of the scheduler. In cases in
which an inner loop has sufficient work to keep a number
of threads busy, this lack of participation in dynamic load
balancing by the green thread could have a significant
impact on the performance of the system.

The excessive idling and the loss of a thread are
situations that seem to present opportunities for important
improvements to the scheduler. These phenomena were
apparent almost immediately from the visualization
displays but would almost certainly have gone unnoticed
for quite some time in a more conventional environment.

This section has described the display of information
from a number of different levels within the system.
Although many of the displays were initially developed as
examples, they have, in fact, proved to be highly effective
in examining and understanding system behavior. As was
noted in each case above, a relatively small amount of
trace data was required to produce these displays. Trace
data rates were often less than 10 KB per second.
Overhead, measured as variation in total run time,
typically was between 5 and 10 percent. Perturbation was
minimal. Most of the problematic behavior that was being
investigated was reproducible and remained reproducible
after instrumentation was enabled.

Future directions

A number of directions are possible for further work in
this area. First, comprehensive, documented case studies
are sorely needed to demonstrate the broad applicability,
viability, and effectiveness of program visualization. As
well, displays for systems with hundreds, thousands, and
tens of thousands of processors will soon be required.
Some of the displays presented here will generalize quite
well to significantly larger numbers of processors; others
will not. Further, even for smaller-scale systems, there is a
need to consider more abstract displays with the potential
to provide more revealing views of program behavior at all
levels within the system.

New displays are required for more direct correlation of
system behavior with program source. For example, a
display of source code could be presented, and colored to
show the location of each processor based on program
counter samples. Source code could also be colored to
show the location of cache misses or page faults.
Subroutine-call graphs could be colored to show profile
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information such as how much time is being spent in each
routine.

Design goals for the RP3 visualization environment
include

» Extensibility, so that custom components specific to
particular application domains or classes of machines can
be added easily.

« Portability, so that the visualization software can be run
on any workstation providing X and UNIX.

& Retargetability, to accommodate architectures as
diverse as highly parallel shared-memory systems,
large-scale message-passing systems, and multiprocessor
systems with a few very powerful vector
Processors.

Efforts are currently under way to accommodate traces
from an application running on Victor [26, 27], a 256-node
mesh-connected transputer-based message-passing system.
A few additional event widgets and one or two additional
meter widgets, combined with the existing widget set,
should provide a powerful facility for visualizing the
behavior of message-passing applications running on this
system.

Plans are also in place for porting the visualization
environment from the Mach IBM RT workstation on which
it was developed to newer UNIX workstations. Once the
environment is ported to one or more newer workstations,
a standard base set of widgets can be completed. The
environment can then be deployed for use by application
programmers. Field trials and experimental evolution will
provide valuable feedback concerning the effectiveness of
the various components of the present facility and insight
into the visualization requirements of different application
domains and different classes of systems. Eventually,
perhaps, a central catalog or repository can be established,
to which the user community can contribute successful
widgets, event generators, operating system modifications
for event collection, and interesting application traces.
This would allow new users to rapidly tailor their
environments to their tastes or requirements, using
collections of proven components applicable to their
particular context.

Conclusion

The development of a visualization environment for RP3
has been completed. The environment provides an
architecture and an extensible collection of generally
applicable snap-on components for information capture,
information analysis, and information display. These tools
can be readily applied to fresh problems across a broad
range of applications. Using the environment,
programmers dynamically configure views of programs in

execution and watch for trends, anomalies, and 649
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correlations in the information that is displayed. By
continually refining the view of the program and replaying
execution, programmers can gain an understanding of
program (mis)behavior.

We have demonstrated remote operation of the system
over a network and achieved system-independent display
on workstations from a number of different vendors.
Working at sites far removed from the RP3, we were able
to start an application, and we were able to get better
feedback concerning its execution than most users could
get sitting in the machine room. The displays shown in this
paper have exposed behavior that would have taken much
longer or been much more difficult to uncover by
conventional means.

We are highly encouraged by the effectiveness of even
the simplest visualization tools, and we are optimistic
about the potential of extensible environments for the
visualization of program execution. Certainly, some
problems will resist this form of attack, but even if we can
resolve just the ‘‘easy”” bugs and performance problems
with these new methods and then revert to older, more
time-consuming methods for the remainder of the
problems, these environments will have been well worth
the time spent on their development.
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