Operating
system support
for parallel
programming
on RP3

by R. M. Bryant
H.-Y. Chang
B. S. Rosenburg

RP3, the Research Parallel Processing
Prototype, was a research vehicle for exploring
the hardware and software aspects of highly
parallel computation. RP3 was a shared-
memory machine that was designed to be
scalable to 512 processors; a 64-processor
machine was in operation from October 1988
through March 1991. A parallel-programming
environment based on the Mach operating
system was developed, and a variety of
programming models were tested on the
machine. To help user programs realize the full
potential of parallelism on RP3, the RP3
operating system was extended to support
such RP3 architectural features as
noncoherent caches, local and interleaved
storage, and a hardware performance monitor.
The system included explicit job-scheduling
and processor-allocation facilities, facilities for
exploiting the RP3 memory hierarchy, and
performance-data collection and logging
facilities. This paper describes these
components of the RP3 operating system,
provides the rationale for the design decisions

that were made, and discusses the
implementation of these operating system
facilities.

Introduction

RP3, the Research Parallel Processing Prototype, was a
research vehicle for exploring the hardware and software
aspects of highly parallel computation. RP3 was a shared-
memory machine that was designed to be scalable to 512-
way multiprocessing; a 64-way machine was built and was
in operation from October 1988 through March 1991.

To allow efficient shared-memory parallel programming,
the RP3 architecture included several features designed to
minimize memory conflicts and spread memory references
as uniformly as possible across the machine. The intent of
these features was to eliminate (as much as possible)
bottlenecks in the hardware that wouid keep applications
from achieving acceptable parallel performance. For
similar reasons, although each processor on the machine
had a 32-kilobyte (KB) cache, there was no hardware
support for keeping the contents of caches on different
processors consistent. Instead, it was intended that
application code would issue explicit cache-invalidation

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

617

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

618

operations to ensure consistent access to shared data via
the cache. The architecture also allowed noncached access
to data for which explicit cache management was not
feasible. In summary, the RP3 architecture was designed
to give application code direct control over the hardware
in order to let applications achieve maximum parallel
performance. This design philosophy was carried forward
in the design of the RP3 operating system.

Early in the project, it was decided that RP3 should run
a version of the Berkeley Software Distribution (BSD)
UNIX® operating system [1]. The rationale for this
decision was that

e BSD UNIX systems were in common use at many
universities. (One of the goals of the RP3 project was to
encourage collaboration with university researchers in
the field of parallel processing.)

¢ The BSD system was thought to be relatively easy to
port, and source code for the system was readily
available.

¢ The UNIX system has features (e.g., pipes, fork) useful
for parallel processing.

* Many people are familiar with the UNIX programming
interface; a somewhat smaller group is familiar with
UNIX system internals.

Given this decision, the RP3 operating system designers
were faced with the challenge of extending the UNIX
programming interface to support the kind of
experimentation and usage that was envisioned for RP3.

In the remainder of this paper, we describe the RP3
architecture, especially those features of the architecture
that required special operating system support. We then
discuss the major programming models the RP3 operating
system was expected to support, and we justify our choice
of the Mach operating system [2] from Carnegie Mellon
University (an operating system compatible with the BSD
UNIX system) as the UNIX system to be ported to RP3,
Finally, we discuss the extensions to Mach that we made
for RP3: parallel-program-scheduling support, support for
the RP3 memory model, and performance-measurement
support.

This paper focuses on the definition and implementation
of the operating system extensions we made. An
evaluation of these extensions and a discussion of our
experience in implementing the RP3 operating system can
be found in [3].

RP3 hardware overview

Figure 1 illustrates the RP3 architecture. An RP3 machine
could consist of up to 512 processor-memory elements
(PMEs). The prototype hardware that was actuaily built,
called RP3x, consisted of 64 PMEs. Each PME included
the following components:

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

CPU Central processing unit, a 32-bit RISC
processor. The same processor was used in
the original IBM RT Personal Computer.®

FPU Floating-point unit, similar to the floating-
point unit found in second-generation IBM
RT Personal Computers. It used the
Motorola MC68881 floating-point chip,
which implements the IEEE floating-point
standard.

I/0 I/O interface, which provided a connection
to an IBM PC/AT® system that served as
an I/O and Support Processor, or ISP. Each
ISP was connected to eight PMEs; all ISPs
were also connected to an IBM
System/370™ mainframe.

The memory-management unit. The MMU

provided a typical segment and page-table

address-translation mechanism and included

a 64-entry, two-way-set-associative

translation lookaside buffer (TLB).

A 32KB, two-way-set-associative, real-

address cache. To allow cache lookup to

proceed simultaneously with virtual-address
translation, the RP3 page size was made
equal to the cache set size of 16 KB.

MC Memory controller. The memory controller
examined each memory request to
determine whether it was for this PME (in
which case it was passed to the memory
module) or a remote PME (in which case it
was passed to the switch). The first nine
bits of the address specified the target
PME.

Memory An 8-megabyte memory module.

PMC Performance-measurement chip. This
device included registers that counted such
things as instruction completions, cache
hits and misses, local and remote memory
references, and TLB misses. It could also
periodically sample the switch response
time. Use of the PMC under Mach/RP3 is
further described below in the section on
operating system support for performance
measurement on the RP3.

MMU

Cache

All the PMEs of an RP3 machine were connected by a
multistage interconnection network or switch. The switch,
which was constructed using water-cooled bipolar
technology, had 64-bit data paths and a bandwidth of
roughly 14 megabytes per second per PME.

All memory on RP3 was local to individual PMEs but
was accessible from any PME in the machine. However, a
performance penalty was incurred by a PME when
accessing remote memory. RP3x had an access-time ratio

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

__________ Data paths
CPU 1 SURN LI SRR I B ettt Performance-monitoring paths
. PMC Meniory
FPU ! - Switch
ISP - 170 \ MMU \ Cache
MC
.
[
° PME, ,
CPU P
. PMC Memory
FPU ;
ISP - o \ MMU \ Cache
MC

E The RP3 architecture.

of 1:12:20 between cache, local, and remote memory,
assuming no switch or memory contention. The fact that
not all memory in the system had the same access time put
RP3 in the class of nonuniform-memory-access (NUMA)
machines. Other machines in this class include the BBN
Monarch [4] and the Illinois Cedar [5] parallel processors.
Support of the RP3 NUMA architecture required operating
system extensions that are discussed below in the section
on operating system support for the RP3 memory
architecture.

To spread memory references evenly across memory
modules (and thus decrease the chance of encountering
memory bottlenecks), the RP3 memory-management unit
supported interleaved pages. That is, addresses for
interleaved pages underwent an additional transformation
after virtual-to-real address translation. The interleaving
transformation exchanged bits in the low- and high-order
portions of the real address [see Figure 2(a)]. Since the
high-order bits of the address specified the PME number,
the effect of the interleaving transformation was to spread
interleaved pages across memory modules in the system,
with adjacent double-words being stored in different

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

memory modules. The number of bits interchanged (hence
the base-2 logarithm of the number of modules used to
store the interleaved page) was specified by the interleave
amount in the page table. Figure 2(b) shows how the
interleaving transformation could be used to spread the
pages of a virtual address space across multiple PMEs. For
example, the first page of the illustrated virtual address
space (at the top) is mapped with an interleave amount of
two, so the page actually occupies a fourth of a physical
page in each of four adjacent PME memory modules. The
real address (before interleaving) to which the virtual page
is mapped determines which PMEs and which regions
within those PMEs the virtual page will occupy. (The
diagram is somewhat simplified, in that interleaved pages
do not really occupy contiguous regions of physical
storage. A virtual page mapped with an interleave amount
of two, for example, will actually occupy every fourth
double-word of a physical page in each of four memory
modules, rather than a contiguous fourth of each page.)
Normally, all variables used by more than one PME
were stored in interleaved memory. For this reason,
interleaved memory was also referred to as global

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

619

620

0 : 718 3
* Page number Prge offset Virtual address

Page table
Y J
A
- N N
Real address
Tnterleave amount
(nutnber of bits)
PME number [Offset Absolute addréss
0 89 282931
@
""0”'(‘"""1
RESSRRg] e |
BRRRaas] o PME, PME, PME, PMB PME,,
g -— o L JEX N)

Interleave ‘

amountlog, N.

(fully interleaved)] el

V2227774 l II)'IIIIA I PITIIIPD \VIOIIIE |
eserststaeed . TSR ..““m““\“ . Avnivsvaaaa | vl i+
- . s .00
A virtual address PME memory modules

®

The RP3 interleaving transformation: (a) Virtual address to absolute address translation. (b) Example of interleaving.

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

memory. Noninterleaved memory was referred to as local
memory. (All memory, of course, was packaged with one
PME or another.)

If enabled in the hardware, a one-to-one hashing
transformation was applied before the interleaving
transformation. The hashing transformation randomized
sequential memory references as an additional technique to
minimize memory conflicts. The hashing transformation
was transparent to application and operating system
software, so it is not further discussed here (see [3] for
experience with the hashing transformation on RP3).

The RP3 hardware did not provide any mechanism for
keeping caches coherent among PMEs; cache coherency
had to be maintained in software. The page tables included
cacheability information specifying which pages were to be
accessed through the cache mechanism (cacheable pages)
and which pages were not (noncacheable pages). Since
there was no page table associated with real-mode memory
access, all real-mode memory accesses on RP3 were
noncacheable references. The cache was visible to
application code, in the sense that user-mode instructions
to invalidate all or parts of the cache were provided.
Cacheable memory could be further identified as marked
data. A single cache operation could be used to invalidate
all data in the cache that had been loaded from virtual
memory identified as marked data.

RP3 provided the fetch&add [6] operation (as well as
fetch&or, fetch&and, etc.) as the basic synchronization
primitive. Fetch&add(location,value) is an atomic
operation that returns the contents of “‘location’ and then
increments the contents of the location by ““value.”

Further details of the design of the RP3 PME and
system organization can be found in [7] and [8]. Details of
how the prototype RP3x differed from this published
design are given in [3].

Parallel-programming models

The RP3 operating system was expected to support a
variety of parallel-programming models. Such models
define the nature of the individual components of a parallel
program and the manner in which the components access
shared memory. Here we discuss three models of parallel
computation: the process model, the task/thread model,
and the thread/work-queue model.

® Process model

In many multiprocessor versions of the UNIX operating
system, parallel programs are composed of multiple UNIX
processes, typically one per real processor on the system,
with each process having access to a region of shared
storage where global variables are placed. Multiple
processes are created using the UNIX fork system call; a
child process is created for each processor in the system.
Since the processes are independently schedulable entities,

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

they run concurrently on separate processors, provided
that enough processors are available.

Because of the expense of the fork system call, it is
more efficient to create the child processes once, at the
start of program execution, rather than to create and
destroy them as the program runs. User-level
synchronization primitives are used to coordinate the child
processes.

In this programming model, the child address spaces are
independent and private except for a common global
segment that is shared among all the child processes. Code
that is identical in each child may be shared as well.

There are several advantages to this approach to parallel
processing. First, system support for this model is easy to
implement. Beyond basic support for sequential processes,
all that is necessary are facilities for creating and accessing
a shared storage segment and for using the basic
synchronization primitives of the underlying hardware
(test&set, compare&swap, or fetch&add, for example).
Second, this programming model is supported by a number
of different operating systems, so applications can be
readily ported from one environment to another. Finally,
this approach to parallel programming requires no special
compiler or language run-time support. The entities that
comprise a parallel program are simple sequential
processes with private address spaces.

The EPEX [9] parallel-programming environment uses
the process model of parallel computation. This
programming environment was developed to let
programmers experiment with RP3 applications long before
the RP3x prototype was available. The EPEX environment
was first implemented under VM/370 on multiprocessor
System/370 mainframes. It was later ported to the
IBM RT PC® workstation and then to RP3 itself. A
significant collection of RP3 applications were developed
under the EPEX environment.

The disadvantages of the UNIX process model of
parallel computation are discussed in the following
subsections.

Private address spaces Except for the single shared
segment, the child process address spaces are private.
Variables stored outside the shared region are not
accessible to other processes in the program. Since the
program stack is normally in the private area, automatic
(local) variables within the program cannot be shared
between processes. In addition, the existence of private
variables can make a process special in the sense that it is
the only process that can complete a particular portion of a
job.! It may therefore be impossible for the operating
system to remove a processor from the program without

1'In this paper, we use the terms “job,” ““application,” and ‘‘program’”
interchangeably.

621

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

622

causing the parallel program to become deadlocked or
otherwise fail.

Local resource ownership Because in the UNIX system
the process is the entity that owns resources, resources
cannot be shared among the different parts of a parallel
program. For example, a file opened by one child process
is not accessible to other child processes, unless they open
the file as well. This particular problem is avoided if the
file is opened in the parent before the child processes are
created, but such a priori acquisition of resources is not
always possible. The result of this limitation is that often
one must designate a particular process to handle all input
and output for the entire parallel application, and this
designated process can easily become an unacceptable
serial bottleneck in a highly parallel program.

Heavyweight processes In standard UNIX systems, the
only way to make use of a processor is to create a process
and its associated address space. This restriction can make
changing the number of processors allocated to a particular
program prohibitively expensive. This problem is not
severe if only one job is executed at a time, but for
multiple-job parallel processing, processor reallocation is
occasionally required. Furthermore, in the typical UNIX
model, it is not clear how to organize the code to take
advantage of a newly available processor or to recover
when a processor is removed (because of the private-data
problem mentioned above). In addition, start-up overhead
can be significant when many processors are involved and
large numbers of address spaces must be created.

These problems can be solved by using the task and
thread constructs of the Mach operating system [2].

® Task/thread model

In Mach, the UNIX process construct is split into task
and thread primitives. The task is the entity that owns
resources. It has an address space and a UNIX process
identifier, and it can own communication port
rights—software capabilities that allow tasks to send data
to and receive data from other tasks. The thread is the
entity that executes code; it can be thought of as a
lightweight process. A thread executes in the context of a
single task throughout its life, but many threads may
belong to the same task. In a multiprocessor, the threads
can execute simultaneously on separate processors. The
resources of a task are available to all the threads that
belong to it. A UNIX process is emulated in Mach by a
task with a single thread.

Thus, in Mach a parallel application can be structured
as a number of threads running within a single task. Each
thread needs an individual work area within the shared
address space, but all storage is accessible to all the
threads. Addresses generated by one thread are equally

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

valid for all threads, so work can easily be transferred
from one thread to another. The threads also share
resources such as communication port rights and open
files, so no single thread becomes a serial bottleneck.
Finally, since thread creation and destruction do not
involve the address space or other resources, these
operations are relatively inexpensive. An application can
afford to vary its processor usage during the course of a
computation.

The task/thread model does not by itself let the
operating system vary the number of processors dedicated
to a parallel application, but programs using the model can
be structured in such a way that they can readily adapt to
such changes.

® Thread/work-queue model

The thread/work-queue model of parallel computation is a
refinement of the task/thread model that lets application
programs adapt to changes in the number of processors
available to the applications. The model has the following
characteristics:

¢ Each parallel application (or job) runs in a single address
space.

e Multiple threads may be created in the address space.

¢ A work queue is defined by the application.

¢ Each thread selects work to do by removing an entry
from the work queue, executing that request to
completion, and returning to the queue for the next work
item.

e Execution of a work item can result in the addition of
new items to the work queue.

e When new processors are allocated to the job, new

threads are created to use them. These threads begin

execution by selecting a work item from the work queue.

When a processor is removed from a job, the thread

running on that processor is suspended, and its

execution state is saved in the work queue. The

interrupted work item is completed by the next thread

that examines the work queue.

This approach allows the user to specify how processors
are used and to assign work to those processors in an
application-dependent way. For example, in a Parallel
FORTRAN program, a work item may be the execution of
a single DO-loop iteration, and selection of the next work
item may be as simple as taking the next loop index value
from a global variable. In this case, the work queue
implementation is trivial; more complex implementations
are required if the work descriptor is more complicated
than the value of an iteration variable.

If multiple jobs are executed at the same time, a “‘global
processor allocation”” component of the operating system
is responsible for allocating processors among the jobs.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

While the thread/work-queue model allows processors to
be added to or removed from an application, these
operations are still too expensive to be done every time
the work queue is inspected. Global processor allocation
decisions are therefore made on a medium-term basis
(minutes, rather than seconds); thus, once a processor is
allocated to a job it remains allocated to that job for a
reasonable period of time.

On RP3, programs written using PTRAN [10-12] and the
C-Threads package [13] used the thread/work-queue model
of parallel computation.

Operating system support for the RP3
architecture

We adopted Mach as the base operating system for RP3
for a variety of reasons:

® Mach was compatible with BSD UNIX operating
systems. As discussed in the Introduction, this
compatibility was a requirement for the RP3 operating
system.

e Mach was already available on the IBM RT PC
workstation. (RP3 used the same processor as the RT PC.)

e Mach could run on shared-memory multiprocessors.
Other BSD UNIX systems available to us were not
multiprocessor-capable.

& Mach supported the UNIX process model of parallel
computation. Such support was necessary because of the
existing collection of EPEX applications.

® Mach supported the task/thread and thread/work-queue
models of parallel computation. New RP3 applications
were programmed using these models.

Choosing Mach as the base RP3 operating system allowed
us to concentrate on specific operating system issues
relevant to the RP3 architecture: multiprocessor
scheduling, memory management, and performance
measurement.

® Multiprocessor scheduling

One of the problems with the Mach scheduler (and UNIX
. schedulers in general) is that the operating system is not
aware that the collection of threads’ comprising a parallel
program is an entity that should be scheduled as a unit.
Instead, the operating system scheduler regards the
threads in the parallel program as independent entities.
Some of the problems that may arise are the following.

Inefficient work partitioning Under the EPEX [9]
system, DO-loops are partitioned across processors by

2 This discussion applies to both the Mach task/thread model of parallel
computation and to the UNIX process model. For the latter model, the terms
thread and process are synonymous. A parallel computation consists of a number
of threads; whether those threads have separate address spaces or share a single
address space is irrelevant to the scheduling issue.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

having each processor execute the DO-loop body for a
subrange of the DO-loop index values. Then, at the end of
its portion of the loop, each processor waits until all the
other processors have completed their portions. The size
of the subrange is calculated at run time by dividing the
DO-loop range as equally as possible among the available
processors. If the operating system changes the number of
processors available to the program (for example, by
suspending execution of one of the threads in the paraliel
program), the partitioning of the DO-loop is not optimal.
To solve this problem, one can create an interface that
allows the operating system to inform the application when
one of its threads has been suspended [14]. Alternatively,
the operating system can guarantee to the application that
if any of the threads in the application are running on a
processor, all of the threads are running. We followed the
latter approach in Mach/RP3.

Excessive spin-waiting In order to protect the integrity
of shared data, parallel programs must use a
synchronization protocol. A locking protocol is an example
of a synchronization protocol; barriers and serial sections
{9] are other primitives used. When a thread attempts to
acquire a lock that is not currently available, the thread
must wait until the lock is released.

Waiting can be implemented as either spin-waiting or
suspend-waiting (or some combination of these two
approaches [15]). With spin-waiting, the waiting thread
repeatedly tries to acquire the lock. With suspend-waiting,
the waiting thread is suspended until the lock becomes
available. While suspend-waiting is more efficient (the
waiting thread is not using a processor), the cost of
suspending and then resuming the thread may be higher
than the cost of spin-waiting, particularly if the lock is held
for only short periods of time. Many parallel programs use
spin-waiting, because the critical sections protected by
locks are very short.

This strategy works when there are enough processors
to satisfy the demands of all active parallel programs.
However, when multiple parallel programs share the
machine, there is the possibility that at least one thread in
a parallel program will be suspended while other threads of
the program are running. The performance of the parallel
program can deteriorate because of excessive spin-waiting
by threads waiting for the suspended thread. Similarly,
programming models such as EPEX [9] use a spin-waiting
barrier at the end of each parallel loop. If a thread cannot
reach the barrier because it has been preempted, all the
rest of the threads in the job will spin-wait at the end of
the loop, waiting for the last thread to complete the loop.

Poor job response time In a uniprocessor system, the
shortest-job-first policy has the best job response time

among the class of conservative scheduling algorithms. By 623

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

624

Family-spcciﬁcatioh routines:
family create(&family)
Afamily remove()

Processor-allocation routines:
‘processor_allocate(family, min_num_processors,
~-max_num_processors, block)
" processor_deallocate(family, num_processors)

Thread-binding routines:
thread bind(thread)
thread. addbind(bound_thread, thread)
thread. unbind(thread)

The RP3 family-scheduling operating system interface.

analogy, in a multiprocessor system a policy that gives
priority to jobs with lower total processing requirements
should give the best job response time. In practice the
computation times of jobs are not known in advance, and a
round-robin policy is often used. As Leutenegger and
Vernon [16] point out, a thread-based round-robin
scheduling policy may perform much worse than a job-
based policy, because round-robin among all threads will
give preference to parallel programs that have more
threads. However, such programs most likely require
longer total computation times, violating the shortest-job-
first scheduling principle.

RP3 family-scheduling interface

To solve these problems, the operating system had to
provide a version of coscheduling [17] or gang scheduling
[18]. We use the term family scheduling to describe the
facility that was implemented in Mach/RP3. The routines
of the RP3 family-scheduling interface are listed in
Figure 3. They fall into three categories: family-
specification routines, processor-allocation routines, and
thread-binding routines.

In Mach/RP3, a thread family was a set of cooperating
threads working toward a single goal. All of the threads in
a particular parallel application would normally be part of
the same thread family. These threads exchanged
messages, synchronized computational steps, and shared
part or all of their address spaces. The thread family was
the largest schedulable unit in Mach/RP3. That is, all of
the threads in a thread family were scheduled to run at the
same time, and if any of the threads in the thread family

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

were suspended by the operating system, all of the threads
were suspended. The thread that created a family (via the
Jfamily_create system call) was originally the sole member
of the family. The family was then built through
inheritance: Threads created by a member of a family (by
the standard Mach mechanism) were automatically
included in the family. A thread could remove itself from
its family via the family_remove call. When a family was
created, a Mach port (the family port) that represented the
family was returned via the family parameter of the
family_create call. Rights to this port could be passed to
other threads. Any thread that had rights to a family port
could request that processors be allocated to or
deallocated from the thread family.

The processor_allocate system call allowed the user to
request that a number of processors be allocated to a
thread family. The block parameter of the
processor_allocate system call indicated whether the
requestor wished to be blocked if the processor allocation
request could not immediately be satisfied, or to be given
an error return code that indicated that not enough free
processors were available to satisfy the request. If the
requestor was blocked, the requestor’s thread family was
suspended as a whole until the required resources became
available. The programmer could choose the appropriate
interface, depending on whether the application had an
absolute or flexible need for processing power. Processors
could be deallocated from a thread family by means of the
processor_deallocate system call.

Once processors had been allocated to a thread family,
threads in the family were allowed to run only on those
processors. Nonfamily threads were barred from the
allocated processors. The threads of the family time-shared
the family processors in the normal UNIX sense. On RP3
it was sometimes useful to ““bind”’ threads to individual
processors. An application could dedicate processing
power to important threads by binding them to processors.
Furthermore, a thread could use local storage if it knew it
would not be moved from one processor to another. For a
discussion of local memory allocation, see the section on
operating system support for the RP3 memory
architecture. A thread could be bound to one of its
family’s allocated processors with the thread_bind system
call. Typically, a thread would “‘bind” itself. In this case,
when the thread_bind request returned (successfully), the
thread would be running on the bound processor. Note
that a thread did not have to be bound to a processor in
order to execute. An unbound thread in a family could
execute on any available processor. Mach/RP3 also
provided a thread_addbind call that let a thread be bound
to the same processor as a previously bound thread. It was
thus possible to bind several threads to one processor in
order to share the processor and its local memory. A
bound thread could be unbound using the thread_unbind

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

Global
queue
YO hl
[4
Suspended-family
e 11711
Family
queue

A\ E)
OO0
Family
queue

(O Nonfamily thread

(@ Unbound family thread

@ Bound family thread

" Figured

The RP3 family-scheduling mechanism.

system call. We decided not to use processor identifiers in
the family-scheduling interface. Instead, the thread
identifier of a bound thread served as a handle for a
processor. If a user wished to allocate storage that was
local to a processor, the user had to supply the thread
identifier of a thread bound to that processor.

A notable feature of the RP3 family-scheduling interface
was its flexibility in allowing threads to issue requests on
behalf of other threads. For example, one thread could
bind another thread, and a thread could allocate processors
for a family to which it did not itself belong. This flexibility
allowed a server thread to manage processor allocation and
binding for a collection of families.

Scheduling mechanisms

The RP3 family-scheduling implementation required three
categories of scheduling queues. The first consisted of one

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

7
0
}_Unallocated
1 Processors
2
Processor queue J
[T11~® -
Processor queue
oee ~|® -
Processor queue
}Allocaled
5 Pprocessors
6
1)

queue for each processor (the processor queues),
containing the threads bound to that processor. The
second category consisted of one queue for each family
(the family queues), containing the unbound threads in that
family, and a global queue, containing threads not
belonging to any family. The third category consisted of a
single queue of suspended families (the suspended-family
queue). The processor and family queues contained only
threads that were ready to run but were not currently
executing. Threads that were currently executing were
assigned to a processor.

Figure 4 illustrates the various scheduling queues. The
diagram shows eight processors, the first three of which
are unallocated. Each unallocated processor is executing a
nonfamily thread; two other nonfamily threads are ready to
run and are therefore in the global queue. Processors 3 and
4 are allocated to one family, while processors 5, 6, and 7

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

625

626

are allocated to another. The second family includes five
unbound threads and four bound threads. Processor 5, to
which no threads have been bound, is executing one of the
unbound family threads. Three threads have been bound to
processor 6, and one of them is executing. One thread has
been bound to processor 7, but an unbound family thread
is currently running on that processor. The other three
unbound family threads are in the family queue. A third
family, consisting of one unbound thread and three bound
threads, has been suspended and is in the suspended-
family queue.

In the first version of the family-scheduling mechanism,
when a processor reached a rescheduling point (that is,
when the currently executing thread was blocked or
terminated), the processor would take the first bound
thread from the processor queue. Only when the processor
queue was empty would the processor take an unbound
thread from its family queue. This priority scheme led to a
deadlock situation in which an unbound thread could not
release the locks that would let the bound threads proceed.
(The bound threads were spin-waiting for locks that only
the unbound thread could release.) This problem prompted
a redesign that decoupled priority from thread binding. As
a result, high-priority unbound threads could execute on
family-owned processors even if lower-priority threads had
been bound to those processors. Mach (and Mach/RP3)
retained the UNIX dynamic-priority scheme that adjusts
the dispatching priority of all threads to give long-waiting
threads a chance to run.

This scheduling scheme did not apply to the ““master
processor,” which—under the version of Mach we used
on RP3—was reserved for system call service and
therefore was not allocatable.

The suspended-family queue was a simple first-in-first-
out queue. However, there were privileged system calls
that provided an interface to a medium-term policy server
that controlled family-level resource allocation. These calls
allowed the policy server to suspend or resume an entire
family. When a family was resumed, the original PMEs
had to be reclaimed and the original thread bindings had to
be restored, since the bound threads might have allocated
local memory. (The potential impact of this restriction on
machine utilization was never observed, because in
practice RP3x usually ran a single job at a time.)

One problem that arose in the implementation of thread
binding resulted from the fact that one thread could bind
another. The semantics of the thread_bind call guaranteed
that once the call returned, the target thread would be
running on its bound processor. It was sometimes
necessary to forcibly preempt the target thread from
the processor on which it was currently running.

" 'The implementation of the thread_bind call used

an interprocessor interrupt to accomplish this
preemption.

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

Scheduling policies

The family-scheduling facility was a general facility that
could meet the scheduling requirements of a broad range
of system and user environments. For example, the family
scheduler allowed multiple parallel applications to execute
simultaneously in a production environment where system
resource utilization might be very important. On the other
hand, RP3x was most often used as a research machine for
the measurement and evaluation of parallel algorithms. To
obtain accurate measurements, interference among parallel
applications had to be kept to a minimum. An application
could use the facilities of the family scheduler to ensure
that no other application would run at the same time. In
practice, applications were supplied to RP3x via a batch
server, and the batch server allowed a job to specify either
shared or exclusive mode. In exclusive mode, a job had
the machine to itself, while multiple jobs could coexist in
shared mode, relying on the family-scheduling facility to
equitably allocate resources.

The family-scheduling mechanism depended on parallel
applications to properly specify their own processor-
resource requirements. This dependence caused the waste
of processing power for two reasons.

Wasted processing power inside an application ~While
the family-scheduling interface allowed dynamic allocation
and deallocation of processors, applications were not
required to release unused processors, which resulted in
wasted processor power within the application.

Wasted processing power due to processor allocation
Waste of processing resources could also occur when
processors were available but none of the waiting families
could run because there were not enough free processors
to accommodate the total requirements of any waiting
family.

The family-scheduling approach described in [19] avoids
this problem by having the system control the sizes of
individual families. Families are forced to reduce their
processor requirements until they can coexist. The major
shortcoming of this scheme is its failure to recognize that a
job may not be able to utilize different numbers of
processors equally efficiently. A better scheme is to choose
family sizes through negotiation, in order to maximize the
total efficient utilization of resources [20].

Another approach is to schedule the threads of a waiting
family on all free processors in a round-robin manner.
Because the guarantee that all members of a family will be
run simultaneously is not maintained, performance may be
poor, but at least the leftover processors are not
completely wasted.

For RP3, we decided it was more important to give
families all the resources they required than to optimize
processor utilization. The system-call interface allowed the

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

application to adjust its processor-resource request in
relation to the number of free processors. In addition, we
felt that since there were a large number of processors on
RP3, we did not need to be concerned with maximizing
utilization of individual processors. Finally, we felt that
this approach was most consistent with our philosophy of
allowing user code to control the machine resources
directly, thus allowing maximum experimental flexibility
without operating system interference.

Comparison to the CMU processor-allocation scheme
Subsequent to the development of the family-scheduling
interface in Mach/RP3, the Mach group at Carnegie Mellon
University extended the system to support processor
allocation [21]. In this section we compare the latter
approach (the “CMU approach’’) to the Mach/RP3 family
scheduler.

The CMU approach is based on processor sets rather
than on thread families. Processors and threads can be
assigned to or removed from processor sets. The threads
assigned to a processor set are constrained to run only on
the processors assigned to the set. If all processors are
removed from a processor set, the threads assigned to that
set are suspended. Processor allocation is accomplished by
mOoving processors among processor sets.

The CMU approach clearly separates processor-
allocation policy from mechanism. The processor-set
mechanism is implemented in the operating system.
Processor-allocation policy is implemented in a user-level
server that moves processors and threads among processor
sets. The policy/mechanism split is not as clearly defined
in the Mach/RP3 family scheduler.

However, binding threads to processors is somewhat
cumbersome under the CMU approach. Threads are bound
to a processor by assigning them to a processor set that
holds just one processor. A given processor cannot serve
both as the host for one or more bound threads and as a
member of the pool of processors available to the unbound
threads of a family. The RP3 approach allows a processor
to be used in this way because processor allocation and
thread binding are separate operations.

® QOperating system support for the RP3 memory
architecture

The Mach operating system was designed for shared-
memory multiprocessors, but it does not support
nonuniform-memory-access (NUMA) architectures such as
that of the RP3. A straightforward Mach implementation
on the RP3 would have made all memory access consistent
and essentially uniform by disabling the individual
processor caches and by interleaving all virtual memory
addresses across the entire machine. However, maximum
RP3 performance could not have been achieved without
exploiting the cache and local-memory features of the

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

architecture, and exploiting these features required
extensions to the Mach system.

A major decision we had to make early in the
development was whether to expose the nonuniform
memory model to application programs (that is, to let the
programmer deal with such issues as memory placement
and cacheability), or to preserve the standard Mach
program interface while augmenting the operating system
with algorithms that try to exploit the nonuniform memory
architecture without help from the programmer. The latter
approach has been investigated by the Platinum project at
the University of Rochester [22] and by the 8CE project at
IBM Research [23]. We chose the former approach for two
reasons. First, it was consistent with the philosophy of
making the basic hardware features of the architecture
freely available to application programs and language run-
time environments. Application and language researchers
insisted on explicit control over memory placement and
cacheability and did not want the operating system making
such decisions for them. For these users, it was a
requirement that we export the nonuniform memory
model. Second, we believed that without help from
application programmers or compilers, the operating
system had little chance of making optimal placement and
cacheability decisions. The 16KB RP3 page size was so
large that unless an application segregated its data
explicitly into regions with similar usage patterns, there
was little hope that a given page would have such
homogeneous content that a single choice of location and
cacheability would be optimal. Once an application had
partitioned its data into typed regions, it could easily
indicate to the system the location and cacheability
decisions that were appropriate for those regions.

While, in principle, the RP3 interleaving mechanism
allowed the specification of different interleave amounts for
different virtual pages, the mechanism was normally used
to spread virtual pages across all 64 memory modules of
RP3x. Supporting multiple interleave amounts would have
significantly complicated the real-storage allocation
algorithms in the operating system, and we never found an
application whose requirement for this feature was
significant enough to warrant the implementation effort.
(We almost never ran more than one application at a time
on RP3x, so using the interleaving mechanism to isolate
independent jobs from one another was not attempted.
See [3] for further discussion of this issue.) We simply
partitioned the real memory of the machine into
interleaved and noninterleaved pages at boot time. Regions
of equal size (the size was a boot-time parameter) were
taken from each PME and coalesced into a single region
whose pages were interleaved across all the PMEs of the
machine. We called this region the global region, although
any particular byte of the global region was necessarily
located in the local memory of some PME. Real memory

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

627

628

that was not incorporated in the global region remained in
processor-specific local regions.

Virtual-memory attributes

The standard Mach programming interface included system
calls that could be used to specify the protection level for
pages of a virtual address space and to specify the manner
in which such pages were to be inherited across UNIX
fork operations. The Mach/RP3 interface added the notion
of virtual memory attributes that a program could specify
for pages of its virtual address space. A new system call,
vm_set_attributes, let an application program place pages
of its address space in memory of specified categories.
Another new call, vim_get_attributes, let an application
determine the current memory attributes of a particular
page. The following virtual-memory attributes were
defined:

& Location attribute. Virtual pages could be placed in
global storage or in storage local to the processor to
which a specified thread had been bound. Memory was
declared local to a particular (bound) thread rather than
to a particular processor, in keeping with the philosophy
of not using processor identifiers in the system interface.

& Replication attribute. An application program could also
request that specific virtual pages be copied from global
storage into memory local to each bound thread that
accessed those pages. Each bound thread essentially
received a private copy of such pages. Unbound threads
continued to share the original pages in global storage.
The application program was responsible for keeping the
replicated copies of a page consistent with one another
and with the global copy, if such consistency was
necessary. Replicated storage was typically used for
read-only code pages.

» Cacheability attribute. Virtual pages could be made
cacheable or noncacheable, independently of the location
and replication attributes. All references to a cacheable
page were handled through the local processor caches.
Cache consistency was the responsibility of the
application if a cacheable page was accessed by two or
more threads.

& Marked-data attribute. A cacheable virtual page could be
marked or unmarked (see the description of marked data
in the RP3 hardware overview). Applications could use
the marked-data attribute to improve the efficiency of
software cache-coherence protocols.

By default, all application pages were placed in global
storage and were made cacheable. This default value for
the cacheability attribute was the wrong choice for parallel

" programs written for cache-coherent multiprocessors, but

it let standard UNIX utility programs execute efficiently
without modification. Single-threaded programs executed

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

correctly in either cacheable or noncacheable mode on
RP3, but they ran significantly faster in cacheable mode.
Adding the necessary vm_set_attributes calls to the parallel
programs that required noncacheable storage was not hard,
because most such programs had to be modified for RP3

anyway.

Implementation

One of the important features of Mach is the separation of
the memory-management system into machine-independent
and machine-dependent layers. The machine-independent
layer, which is called simply the VM module, implements
all the traditional functions of a memory-management
system. It manages the pool of free physical pages, it
maintains mappings from user virtual address spaces to
physical pages, and it keeps track of virtual pages that
have been paged to disk. The machine-dependent layer is
called the physical map, or pmap, module. The pmap
module is responsible for maintaining actual hardware page
tables, which are of course architecture-specific. It
presents a well-defined procedural interface through which
the VM module can request that particular virtual-to-
physical mappings be entered in or removed from machine-
specific page tables.

The physical address space that is used in the interface
between the VM and pmap modules is really an
abstraction maintained by the pmap module. It may or
may not match the actual storage layout of the underlying
hardware. This property of the interface allowed us to
implement most of the support for the RP3 NUMA
architecture in the machine-dependent pmap module. Our
machine-independent VM module maintained attribute
specifications for regions of address spaces and passed
them to the pmap module when necessary, but it did not
itself interpret the specifications. The pmap module was
responsible for ensuring that mapped virtual pages were
located in memory of the types specified by their
attributes.

Implementation of the NUMA support for RP3 took
place in two phases. In the first phase, the operating
system itself was restructured to make use of the RP3
memory architecture. To complete this phase, we had to
partition the operating system code and data structures
into local and global segments. The local segment of the
operating system consisted of processor-specific data
structures required by the hardware (interrupt vectors and
machine-state save areas, for example) and operating-
system code that executed in real mode (first-level
interrupt handlers, for example). Most of the operating-
system code executed in virtual mode and was placed in
the global segment, along with the bulk of the system data
structures. The local segment was replicated in the local
storage of each PME, while a single copy of the global
segment was placed in global storage—that is, in storage

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

that was interleaved across all the PMEs. The resulting
storage layout is shown in Figure 5.

In the second phase, the user-level system calls that let
applications exploit the RP3 memory architecture were
implemented. The different virtual-memory attributes
required different implementation strategies.

Cacheability and marked-data attributes The
implementation of the cacheability and marked-data
attributes was straightforward. The cacheability of a virtual
page was determined by a pair of bits in the page-table
entry that mapped the virtual page to a physical page.
When the pmap module was asked to enter a virtual-to-
physical mapping in a page table, the required attributes
for the virtual page were passed as part of the request. If
““‘cacheable” or ““marked-data® were among the attributes,
the pmap module simply set the appropriate page-table-
entry bits as it constructed the mapping.

Location attribute The implementation of the location
attribute was more complicated. In Mach/RP3, the pmap
module had to be able to move pages from one region of
memory to another without involving the VM module, so it
was necessary to implement a new level of indirection
below the physical memory abstraction presented to the
VM module. For the remainder of this discussion, we use
the adjective ““physical” to describe the abstract physical
memory that is used in the interface between the pmap
module and the VM module, and we use the adjective
““absolute” to describe the true physical memory of the
RP3 machine.

The abstract physical address space is illustrated in
Figure 6. For clarity, the diagram shows just two PMEs
and two virtual-address spaces. The machine-independent
VM moduie maintained mappings from a number of virtual
address spaces to the single physical address space, while
the pmap module maintained a one-to-one mapping
between the physical and absolute address spaces. From
the figure, one can see how a page could be moved from
global to local storage without changing the virtual-to-
physical mappings maintained by the VM module. Of
course, the actual page tables maintained by the pmap
module were used by the hardware memory-management
units and had to map virtual addresses directly to absolute
addresses. Therefore the pmap module had to keep its
page tables up-to-date when it relocated pages and
permuted the physical-to-absolute mapping.

The pmap module constructed the initial physical-to-
absolute mapping at boot time. Those physical pages that
corresponded to global absolute pages were placed on the
single machine-independent free-page list maintained by
the VM module. The remaining physical pages were placed
on local free lists that were maintained by the pmap
module itself. Essentially, the VM module managed the

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

PME, PME, PME PME

2 'N-1
r v N '
NV A... ysem
(replicated)
Local-{ e
s o }-Application
L Boundary fixed at boot time)
[)
R FApplication
Global

Operating system and application storage layout in Mach/RP3.

pool of pages that were interleaved across the entire
machine, while the pmap module managed the pages that
were local to individual processors.

The VM module did not interpret virtual-memory
attributes and therefore did not distinguish local from
global pages. Before a page could be used, however, a
mapping for it would have to be entered in a machine-
dependent page table; at that time the pmap module could
relocate the page, if necessary, to make its location
consistent with its attributes. When the pmap module was
asked to establish a virtual-to-physical mapping, it would
check the attributes specified for the virtual page against
the current location of the specified physical page. If the
physical page were in the wrong location for the specified
attributes (global when it should have been local, local
when it should have been global, or local to one processor
when it should have been local to another), the pmap
module would allocate an appropriate physical page, either
from one of its local free lists or from the VM-module
global free list. It would copy the contents of the original
absolute page to the newly allocated absolute page and
swap the physical-to-absolute mappings of the original and
newly allocated physical pages. The original physical page
would now be bound to an absolute page of the right type,
and the pmap module could proceed to enter the mapping
in a page table. The newly allocated physical page, which
would now be bound to the original absolute page, would
be returned to an appropriate free list.

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

629

630

Physical

4

T
w

>~ Global

The abstract physical address space.

One problem with this approach was that since the VM
module did not interpret memory attributes, it would
frequently allocate and initialize a global page, only to
have the page immediately copied to local memory. To
eliminate this unnecessary copying, we extended the
interface between the VM and pmap modules to let the
pmap module allocate and deallocate local pages when
appropriate.

Replication attribute The replication attribute required
that a single virtual page be mapped to different absolute
pages on different processors. The RP3 page-table
structure, however, was designed to map each virtual page
to a single absolute page. Since the structure was
incapable of representing the one-to-many mapping implied
by the replication attribute, we implemented a software
extension of the page-table architecture. This extension
was possible because the processors in RP3 had
independent translation lookaside buffers and because

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

system software could load mapping information directly
into processor TLBs.

The Mach/RP3 pmap module maintained processor-
specific virtual-to-absolute mappings in auxiliary tables
associated with the page-table entries that would normally
have mapped replicated virtual pages. These page-table
entries were marked invalid, so that any attempt to access
a replicated page would cause a page fault. When a fault
occurred on a replicated page, the low-level page-fault
handler would look in the auxiliary table for a processor-
specific mapping for the page. If no such mapping existed,
the fault would be passed to the VM moduie as an
ordinary page fault. If a processor-specific mapping were
found, the page-fault handler would load it directly into the
processor TLB and would return immediately to the
executing thread. Subsequent accesses to the replicated
page would continue to succeed as long as the mapping
remained in the TLB. Because each processor
had its own TLB, the replicated virtual page could

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

be mapped to different absolute pages on different
Processors.

o (QOperating system support for performance measurement
on RP3

Since RP3x was an experimental machine built to help
users explore issues related to parallel processing, support
for performance measurement was an important part of the
operating system. It included the virtual performance
measurement chip (VPMC) facility and the event-logging
facility.

RP3 performance monitor

As discussed previously in the RP3 hardware overview,
each PME on RP3 included a performance-measurement
chip (PMC). The PMC contained a set of counters, a
memory for samples of switch-delay times, and control and
status registers. PME components would signal event
occurrences to the PMC, and the PMC would increment
the corresponding counters. A master counter in the PMC
was incremented each processor cycle. The events counted
by the PMC included

e Instructions completed.

¢ Floating-point operations completed.
e Translated memory requests.

o Nontranslated memory requests.

¢ Local-memory requests.

¢ Nonlocal-memory requests.

¢ Cacheable-memory requests.

e Cache misses.

¢ TLB misses.

e Memory requests from other PMEs.
e Memory-controller busy cycles.

¢ Switch-interface waiting cycles.

In addition to maintaining event counts, the PMC could
sample switch-delay times. When any of the PMC counters
overflowed, the PMC would freeze all the counters and, if
the interrupt-enable bit were set in the PMC control
register, would generate a processor interrupt.

The PMC was a device on the processor bus and was
accessible from user programs. The advantages of using
the PMC directly were low overhead and precise control,
but there were problems as well. First, the PMC master
counter was only 22 bits wide and overflowed every 1.2
seconds, so measuring a program section that executed
longer than that interval was difficult. Second, any context
switch that occurred during a monitored portion of a
program would corrupt the measurements. Third, the
PMC could record only 16 switch-delay samples. The
virtual PMC facility was created to solve these
problems.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

Virtual PMC facility
A virtual PMC, or VPMC, was a system-maintained data
structure that accumulated information from one or more
physical PMCs and provided it to applications in a
convenient form. A VPMC provided 64-bit counters that
essentially never overflowed, and it provided a histogram
of switch-delay samples that could contain an arbitrary
number of entries. VPMCs could be associated with
processors or with individual threads. A processor VPMC
was like an actual PMC, in that it recorded all the activity
on a particular PME. A thread VPMC, on the other hand,
recorded just the activity of a particular thread. It was
insensitive to context switches and continued to
accumulate measurements as the thread moved from one
processor to another. Processor and thread VPMCs could
be active concurrently.

Mach/RP3 provided three methods for accessing a
VPMC:

® Mach-IPC access. Mach/RP3 provided VPMC access as

a service available through the general Mach

interprocess communication (IPC) facility. An

application could use this service to obtain a current
copy of any VPMC for which it held the necessary
access rights. (Controlled distribution of access rights is

a feature of Mach IPC.) The Mach IPC mechanism made

VPMC access available both to applications running on

RP3x itself and to monitoring programs running outside

RP3x.

System-call access. Mach/RP3 provided a system call

that would return a current copy of the calling thread

VPMC. This method lacked the generality of the Mach

IPC version, but it ran much faster.

e Memory-mapped access. Mach/RP3 provided a
mechanism for mapping a VPMC data structure directly
into an application address space, where it could be
examined without operating system intervention. The
information in a mapped VPMC could be accessed very
quickly, but it was usually somewhat out-of-date because
it was updated only when the underlying hardware PMC
generated an interrupt. A thread could obtain up-to-date
information about its own activity by reading the
hardware PMC directly and adding the counter values to
the corresponding counters of its own mapped VPMC. A
concurrent readers/writers synchronization algorithm was
used to avoid reading the mapped data while the
operating system was updating the VPMC.

The costs (measured in numbers of instructions) of the
various PMC and VPMC access methods are shown in
Table 1. The programmer could choose the cheapest
access method that satisfied the functional requirements of
a particular application. Further details on the RP3 VPMC

facility can be found in [24]. 631

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

632

Table 1 Number of instructions required for PMC and
VPMC access.

Access method Number of instructions

Direct PMC 50

Memory-mapped VPMC 500

System-call VPMC 3000

Mach-IPC VPMC 14,000
Event-logging facility

The performance of a parallel program on RP3 depended
on the performance of many components, including the
program itself, libraries the program used, the operating

.system, and the hardware. One method for determining

where time was spent was to instrument the various
components in order to collect traces. The RP3 event-logging
facility was developed to provide a uniform means for
recording trace information from all levels of the system.

An event record consisted of a time stamp, a processor
number, an integer event type, and a variable-length data
section. The event-logging facility maintained a separate
event buffer or log in the local storage of each PME.
Events generated on a particular PME were recorded in its
log, so event logging itself did not increase switch traffic.
Events from different logs could later be correlated by time
stamp. A boot-time parameter determined the size of the
local event logs. Events could be generated by the
operating system and by application programs, and an
application could read and remove event records from the
local event logs. An event record was discarded if the local
log was full when the event was generated, but the fact
that events were lost was itself recorded as an event.

The RP3 event-logging facility was used to collect data
from all components of the RP3 system. The operating
system could be configured to record hardware PMC data
in the event log. Operating system events such as
scheduling points and page faults could also be recorded.
The C-Threads package [13] was instrumented to generate
events corresponding to internal scheduling decisions.
Finally, a variety of application programs were modified to
generate application-specific events. A programmer could
use the event-logging facility to correlate the moment-by-
moment behavior of a parallel program with activity in the
underlying run-time package, operating system, and
hardware. The RP3 performance visualization system [25]
was developed to display data from the event-logging
facility in a variety of graphical formats.

Concluding remarks

In this paper, we have discussed how the Mach operating
system was extended to enable efficient parallel processing
on RP3. Our goal was to provide an extended UNIX
programming interface that allowed application code

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

running on RP3 to take full advantage of the underlying
processor and memory structure. In addition, we provided
convenient facilities for measuring the performance of
applications running on the machine, and we provided a
simple event-logging facility that allowed measurement
data from multiple sources in the system to be combined
and accessed in a uniform way.

Our philosophy of allowing the user full access to the
basic facilities of the hardware ran counter to the prevalent
operating system philosophy of hiding the complexities of
the underlying machine from the user. For the range of
applications that RP3 was designed to investigate, we
believe the usual approach was incorrect and would not
have allowed the maximum performance to be achieved.
Our experience has been that compiler and run-time-
package developers wholeheartedly supported our
approach, while users who had to deal directly with the
system-call interface found the system difficult to use.
This was to be expected, since our decisions were made
in favor of those programmers and compiler developers
willing to expend significant effort in exploiting the RP3
architecture. The long-range intent was that application
programmers would not have to deal directly with the
family-scheduler or memory-attributes system calls, but
would instead deal with the problems of specifying parallel
algorithms in forms acceptable to compilers that used these
interfaces.

Acknowledgments

The RP3 project was supported in part by the Defense
Advanced Research Projects Agency under Contract
Number N00039-87-C-0122 (Multi-processor System
Architecture). Our work on RP3 depended on the
assistance of many people, without whose conscientious
efforts the system would never have existed. In particular,
we would like to thank Frances Allen, Gordon Braudaway,
Walter Kleinfelder, Matthew Thoennes, and Herbert
Liberman for their assistance and support during the RP3
project. Rajat Datta implemented the System/370 side of
the RP3 I/O system; Rajat also contributed significantly to
the first port of Mach to an RP3 PME. Anthony
Bolmarcich was responsible for the implementations of
EPEX for Mach/RT and Mach/RP3. The original port of
Mach to the RP3 simulator was completed by Daniel Julin
of Carnegie Mellon University while he was a summer
student working in the IBM Research Division. The Mach
research group at Carnegie Mellon University, led by
Professor Richard Rashid, was very supportive of our
work with Mach, and their special efforts to make the
latest versions of Mach available to us are greatly
appreciated. Daniel Rencewicz of the IBM-CMU
Information Technology Center was responsible for
obtaining production releases of Mach for the RT® system
and making them available within IBM.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

UNIX is a registered trademark of UNIX Systems
Laboratories, Inc.

RT Personal Computer, PC/AT, RT PC, and RT are registered
trademarks, and System/370 is a trademark, of International
Business Machines Corporation.

References

1. S. Leffler, M. McKusick, M. Karels, and J. Quarterman,
The Design and Implementation of the 4.3BSD UNIX
Operating System, Addison-Wesley Publishing Co.,
Reading, MA, 1989.

2. M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young, ‘“Mach: A New Kernel
Foundation for UNIX Development,”” Proceedings of the
Summer 1986 USENIX Conference, USENIX Association,
Atlanta, July 1986, pp. 93-113.

3. R. Bryant, H. Chang, and B. Rosenburg, ‘‘Experience
Developing the RP3 Operating System,” Computing Syst.
4, No. 3, 183-216 (1991).

4. R. Rettberg, W. Crowther, P. Carvey, and R. Tomlinson,
““The Monarch Parallel Processor Hardware Design,”
IEEE Computer 23, No. 4, 18-30 (1990).

5. P. Yew, “Architecture of the Cedar Parallel
Supercomputer,”” CSRD Technical Report 609, Center for
Supercomputing Research and Development, University of
Tllinois, Urbana-Champaign, August 1986.

6. A. Gottlieb, B. Lubachevsky, and L. Rudolph, ‘“Basic
Techniques for the Efficient Coordination of Very Large
Numbers of Cooperating Sequential Processors,” 4CM
Trans. Programming Lang. & Syst. §, No. 2, 164-189
(1983).

7. G. Pfister, W. Brantley, D. George, S. Harvey, W.
Kleinfelder, K. McAuliffe, E. Melton, V. Norton, and J.
Weiss, “The IBM Research Parallel Processor Prototype
(RP3): Introduction and Architecture,”” Proceedings of the
1985 International Conference on Parallel Processing,
IEEE Computer Society, Chicago, August 1985, pp.
764-771.

8. W. Brantley, K. McAuliffe, and J. Weiss, “RP3
Processor-Memory Element,” Proceedings of the 1985
International Conference on Parallel Processing, IEEE
Computer Society, Chicago, August 1985, pp. 782-789.

9. F. Darema, D. George, V. Norton, and G. Pfister, “A
Single-Program-Multiple-Data Computational Model for
EPEX/FORTRAN,’ Parallel Computing 7, No. 1, 11-24
(1988).

10. F. Allen, M. Burke, P. Charles, R. Cytron, and J.
Ferrante, ‘“An Overview of the PTRAN Analysis System
for Multiprocessing,”” J. Parallel & Dist. Computing §,
No. 5, 617-640 (1988).

11. V. Sarkar, ‘““‘Automatic Partitioning of a Program
Dependence Graph into Parallel Tasks,”” IBM J. Res.
Develop. 35, 779-804 (1991, this issue).

12. S. F. Hummel and E. Schonberg, ‘‘Low-Overhead
Scheduling of Nested Parallelism,”” IBM J. Res. Develop.
38, 743-765 (1991, this issue).

13. E. Cooper and R. Draves, ‘‘C Threads,”” Technical Report
CMU-CS-88-154, Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, February
1988.

14. T. Anderson, B. Bershad, E. Lazowska, and H. Levy,
““‘Scheduler Activations: Effective Kernel Support for the
User-Level Management of Parallelism,” Proceedings of
the Thirteenth ACM Symposium on Operating System
Principles, Pacific Grove, CA, October 1991, pp.

95-109.

15. A. Karlin, K. Li, M. Manasse, and S. Owicki, ‘“Empirical

Studies of Competitive Spinning for a Shared-Memory

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Multiprocessor,”” Proceedings of the Thirteenth ACM
Symposium on Operating System Principles, Pacific
Grove, CA, October 1991, pp. 41-55.

S. Leutenegger and M. Vernon, ““The Performance of
Multiprogrammed Multiprocessor Scheduling Policies,”
Proceedings of the ACM Sigmetrics Conference, Boulder,
CO, May 1990, pp. 226-236.

J. Ousterhout, “Scheduling Techniques for Concurrent
Systems,”” Proceedings of the Distributed Computing
Systems Conference, IEEE Computer Society, 1982, pp.
22-30.

M. Seager and J. Stichnoth, *‘Simulating the Scheduling of
Parallel Supercomputer Applications,”” Technical Report
UCRL-102059, Lawrence Livermore National Laboratory,
Livermore, CA, September 1989.

A. Tucker and A. Gupta, “‘Process Control and
Scheduling Issues for Multiprogrammed Shared-Memory
Multiprocessors,”” Proceedings of the Twelfth ACM
Symposium on Operating System Principles, Litchfield
Park, AZ, December 1989, pp. 159-166.

B. Rosenburg and H. Chang, ¢ ‘Ration Function’ that
Lets a Parallel Program Adapt Its Processor Requirements
to System Load,” IBM Tech. Disclosure Bull. 32, No. 8B,
123-125 (1990).

D. Black, “‘Scheduling Support for Concurrency and
Parallelism in the Mach Operating System,”’ JEEE
Computer 23, No. 5, 35-43 (1990).

A. Cox, R. Fowler, and M. Scott, “The Implementation of
a Coherent Memory Abstraction on a NUMA
Multiprocessor: Experiences with PLATINUM,”
Proceedings of the Twelfth ACM Symposium on Operating
System Principles, Litchfield Park, AZ, December 1989,
pp- 32-44.

W. Bolosky, R. Fitzgerald, and M. Scott, ‘“‘Simple But
Effective Techniques for NUMA Memory Management,””
Proceedings of the Twelfth ACM Symposium on Operating
System Principles, Litchfield Park, AZ, December 1989,
pp. 19-31.

H. Chang and W. Brantley, “Support Environment for the
RP3 Performance Monitor,”” Proceedings of the Workshop
on Supercomputer Measurement and Visualization,
Addison-Wesley Publishing Co., Reading, MA, 1990, pp.
117-134,

D. N. Kimelman and T. A. Ngo, “The RP3 Program
Visualization Environment,”* IBM J. Res. Develop. 35,
635-651 (1991, this issue).

Received November 2, 1990; accepted for publication
April 19, 1991

Raymond M. Bryant IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown Heights,
New York 10598. Dr. Bryant received his B.S. degree from the
South Dakota School of Mines and Technology, Rapid City, in
1971, and his Ph.D. in 1978 from the University of Maryland,
College Park, both in mathematics. From 1978 to 1981 he was
on the faculty of the Computer Sciences Department at the
University of Wisconsin-Madison. He joined IBM in 1981 as a
Research Staff Member in the Computer Sciences Department

of the IBM Thomas J. Watson Research Center. He began

633

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

634

working with the RP3 project in 1985, and in 1989 received an
IBM Outstanding Technical Achievement Award for his work
on a functional simulator for RP3. Since 1991, he has been
working on the use of shared virtual memory for parallel
processing and on operating systems for multicomputers. Dr.
Bryant is a member of the Association for Computing
Machinery and the Institute of Electrical and Electronics
Engineers.

Hung-Yang Chang IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown Heights,
New York 10598. Dr. Chang received his Ph.D. in computer
sciences from the University of Wisconsin-Madison in 1987.
His Ph.D. dissertation was a study of distributed real-time
scheduling algorithms. He has been a Research Staff Member
in the Computer Sciences Department of the IBM Thomas J.
Watson Research Center since 1987. Dr. Chang initially joined
the operating system group of the RP3 multiprocessor project.
He is currently interested in extending microkernel operating
systems to support parallel programming and in global job
scheduling (load distribution). Dr. Chang is a member of the
Association for Computing Machinery.

Bryan S. Rosenburg IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown Heights,
New York 10598. Dr. Rosenburg received his B.S. degree in
mathematics from Michigan State University in 1979, and his
Ph.D. in computer sciences from the University of
Wisconsin-Madison in 1986. In 1987 he joined the IBM
Thomas J. Watson Research Center as a Research Staff
Member with the operating system group of the RP3 project.
His current research interest is in exploring microkernel-based
operating systems for large-scale non-shared-memory
multicomputers. Dr. Rosenburg is a member of the
Association for Computing Machinery.

R. M. BRYANT, H.-Y. CHANG, AND B. S. ROSENBURG

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

