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RP3, the Research Parallel Processing 
Prototype,  was  a  research vehicle for exploring 
the hardware and software aspects of highly 
parallel computation. RP3 was  a  shared- 
memory machine that was designed to be 
scalable to 512 processors; a  64-processor 
machine was in operation from October 1988 
through March 1991. A parallel-programming 
environment based on the Mach operating 
system was  developed, and a variety of 
programming models were tested on the 
machine.  To help user programs realize the full 
potential of parallelism on RP3, the RP3 
operating system was  extended to support 
such RP3 architectural features as 
noncoherent caches, local and interleaved 
storage, and a  hardware performance monitor. 
The system included explicit job-scheduling 
and processor-allocation facilities, facilities  for 
exploiting the RP3 memory  hierarchy, and 
performance-data collection and logging 
facilities. This paper describes these 
components of the RP3 operating system, 
provides the rationale for  the design decisions 

that were made, and discusses the 
implementation of these operating system 
facilities. 

Introduction 
RP3, the Research Parallel Processing Prototype, was a 
research vehicle for exploring the hardware and software 
aspects of  highly parallel computation. RP3 was a shared- 
memory  machine that was designed to be scalable to 512- 
way multiprocessing; a 64-way  machine was built  and was 
in operation from October 1988 through  March 1991. 

To allow  efficient shared-memory parallel programming, 
the RP3 architecture included several features designed to 
minimize  memory  conflicts  and spread memory references 
as uniformly as possible across the machine. The intent of 
these features was to eliminate (as much as possible) 
bottlenecks in the hardware that would keep applications 
from  achieving acceptable parallel performance. For 
similar reasons, although each processor on the machine 
had a 32-kilobyte (KB) cache, there was no hardware 
support for keeping the contents of caches on  different 
processors consistent. Instead, it was intended that 
application code would issue explicit cache-invalidation 
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operations to ensure consistent access to shared data via 
the cache. The architecture also allowed noncached access 
to data for which explicit cache management was not 
feasible. In summary, the RP3 architecture was designed 
to give application code direct control over the hardware 
in order to let applications achieve maximum parallel 
performance. This design philosophy was carried forward 
in the design of the RP3 operating system. 

Early in the project, it was decided that RP3 should run 
a version of the Berkeley Software Distribution (BSD) 
UNIX@ operating system [l]. The rationale for this 
decision was that 

BSD UNIX systems were in common use at  many 
universities. (One of the goals of the RP3 project was to 
encourage collaboration with university researchers in 
the field  of parallel processing.) 
The BSD system was thought to be relatively easy to 
port, and source code for the system was readily 
available. 
The UNIX system has features (e.g., pipes, fork) useful 
for parallel processing. 
Many people are familiar  with the UNIX programming 
interface; a somewhat smaller group is familiar  with 
UNIX system internals. 

Given this decision, the RP3 operating system designers 
were faced with the challenge of extending the UNIX 
programming interface to support the kind of 
experimentation and usage that was envisioned for RP3. 

In the remainder of this paper, we describe the RP3 
architecture, especially those features of the architecture 
that required special operating system support. We then 
discuss the major  programming  models the RP3 operating 
system was expected to support, and we justify our choice 
of the Mach operating system [2] from Carnegie Mellon 
University (an operating system compatible with the BSD 
UNIX system) as the UNIX system to be ported to RP3. 
Finally, we discuss the extensions to Mach that we  made 
for RP3: parallel-program-scheduling support, support for 
the RP3 memory model, and performance-measurement 
support. 

of the operating system extensions we made. An 
evaluation of these extensions and a discussion of our 
experience in implementing the RP3 operating system can 
be found in  [3]. 

This paper focuses on the definition  and implementation 

RP3 hardware  overview 
Figure 1 illustrates the RP3 architecture. An  RP3 machine 
could consist of  up to 512processor-memory elements 
(PMEs). The prototype hardware that was actually built, 
called W 3 x ,  consisted of  64 PMEs. Each PME included 

61 8 the following components: 

CPU 

FPU 

I/O 

MMU 

Cache 

MC 

Memory 
PMC 

Central processing unit, a 32-bit RISC 
processor.  The  same  processor  was used in 
the original IBM  RT  Personal Computer.@ 
Floating-point  unit,  similar to  the floating- 
point unit found in second-generation IBM 
RT Personal Computers.  It used the 
Motorola MC68881 floating-point chip, 
which  implements the  IEEE floating-point 
standard. 
I/O interface,  which provided a connection 
to  an  IBM PC/AT@ system  that  served  as 
an I/O  and  Support  Processor, or ISP. Each 
ISP  was  connected  to eight PMEs; all ISPs 
were  also  connected  to  an IBM 
System/370TM mainframe. 
The memory-management unit. The  MMU 
provided  a  typical  segment and page-table 
address-translation mechanism and included 
a  64-entry,  two-way-set-associative 
translation  lookaside buffer (TLB). 
A 32KB, two-way-set-associative, real- 
address  cache. To allow cache  lookup  to 
proceed  simultaneously  with virtual-address 
translation, the RP3  page size  was  made 
equal to  the  cache  set  size of 16 KB. 
Memory  controller. The  memory  controller 
examined each  memory  request  to 
determine  whether it was for  this PME (in 
which case it was  passed  to  the  memory 
module) or a remote  PME (in which case it 
was  passed  to  the  switch).  The first nine 
bits of the  address specified the target 
PME. 
An 8-megabyte memory module. 
Performance-measurement  chip.  This 
device  included  registers that  counted  such 
things as instruction  completions, cache 
hits  and  misses, local and  remote  memory 
references, and TLB misses.  It  could also 
periodically sample  the switch response 
time. Use of the  PMC  under Mach/RP3 is 
further  described below in the section on 
operating system  support for  performance 
measurement  on  the RP3. 

All the PMEs of an RP3 machine were connected by a 
multistage interconnection network or switch. The switch, 
which was constructed using water-cooled bipolar 
technology, had  64-bit data paths and a bandwidth of 
roughly 14 megabytes per second per PME. 

All memory on RP3 was local to individual PMEs but 
was accessible from  any  PME in the machine. However, a 
performance penalty was incurred by a PME  when 
accessing remote memory.  RP3x  had  an access-time ratio 
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1 The RP3 architecture. 

of  1:12:20 between cache, local, and remote memory, 
assuming no switch or memory contention. The fact that 
not  all  memory in the system had the same access time put 
RP3  in the class of nonunifomz-memoly-access (NUMA) 
machines. Other machines in this class include the BBN 
Monarch [4] and the Illinois Cedar [5] parallel processors. 
Support of the RP3  NUMA architecture required operating 
system extensions that are discussed below in the section 
on operating system support for the RP3  memory 
architecture. 

To spread memory references evenly across memory 
modules (and thus decrease the chance of encountering 
memory bottlenecks), the RP3 memory-management unit 
supported interleaved pages. That is, addresses for 
interleaved pages underwent an additional transformation 
after virtual-to-real address translation. The interleaving 
transformation exchanged bits in the low-  and high-order 
portions of the real address [see Figure 2(a)]. Since the 
high-order bits of the address specified the PME number, 
the effect of the interleaving transformation was to spread 
interleaved pages across memory modules in the system, 
with adjacent double-words being stored in different 

memory  modules.  The number of bits interchanged (hence 
the base-2 logarithm of the number of modules used to 
store the interleaved page) was specified  by the interleave 
amount in the page table. Figure 2(b) shows how the 
interleaving transformation could be used to spread the 
pages of a virtual address space across multiple PMEs. For 
example, the first  page of the illustrated virtual address 
space (at the top) is  mapped  with an interleave amount of 
two, so the page actually occupies a fourth of a physical 
page in each of four adjacent PME memory modules. The 
real address (before interleaving) to which the virtual page 
is mapped determines which PMEs and which  regions 
within those PMEs the virtual page  will occupy. (The 
diagram  is somewhat simplified, in that interleaved pages 
do not really occupy contiguous regions of physical 
storage. A virtual page  mapped  with  an interleave amount 
of two, for example, will actually occupy every fourth 
double-word of a physical  page in each of four memory 
modules, rather than a contiguous fourth of each page.) 

Normally, all variables used by  more than one PME 
were stored in interleaved memory. For this reason, 
interleaved memory was also referred to as global 61 9 
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The RP3 interleaving  transformation:  (a) Virtual address  to  absolute  address  translation.  (b)  Example of interleaving. 
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memory. Noninterleaved memory was referred to as  local 
memory. (All memory, of course, was packaged with one 
PME or another.) 

If enabled in the hardware, a one-to-one hashing 
transformation was applied before the interleaving 
transformation. The hashing transformation randomized 
sequential memory references as an additional technique to 
minimize memory conflicts. The hashing transformation 
was transparent to application and operating system 
software, so it is not further discussed here (see [3] for 
experience with the hashing transformation on  RP3). 

The RP3 hardware did  not provide any mechanism for 
keeping caches coherent among PMEs; cache coherency 
had to be maintained in software. The page tables included 
cacheability information specifying which pages were to be 
accessed through the cache mechanism (cacheable pages) 
and which pages were not (noncacheable pages). Since 
there was no  page table associated with real-mode memory 
access, all real-mode memory accesses on RP3 were 
noncacheable references. The cache was visible to 
application code, in the sense that user-mode instructions 
to invalidate all or parts of the cache were provided. 
Cacheable memory could be further identified as marked 
data. A single cache operation could be used to invalidate 
all data in the cache that had been loaded from virtual 
memory identified as marked data. 

RP3 provided the fetch&add [6] operation (as well as 
fetchdior, fetch&and, etc.) as the basic synchronization 
primitive. Fetch&add(location,value) is an atomic 
operation that returns the contents of ‘‘location’’  and then 
increments the contents of the location by “value.” 

Further details of the design of the RP3 PME and 
system organization can be found in [7] and [8]. Details of 
how the prototype RP3x  differed  from this published 
design are given in  [3]. 

Parallel-programming  models 
The RP3 operating system was expected to support a 
variety of parallel-programming  models. Such models 
define the nature of the individual components of a parallel 
program and the manner in which the components access 
shared memory. Here we discuss three models of parallel 
computation: the process model, the taskhhread model, 
and the threadlwork-queue model. 

Process model 
In many multiprocessor versions of the UNIX operating 
system, parallel programs are composed of multiple UNIX 
processes, typically one per real processor on the system, 
with each process having access to a region  of shared 
storage where global variables are placed. Multiple 
processes are created using the  UNIXfork system call; a 
child process is created for each processor in the system. 
Since the processes are independently schedulable entities, 

they run concurrently on separate processors, provided 
that enough processors are available. 

Because of the expense of the fork system call, it  is 
more  efficient to create the child processes once, at the 
start of program execution, rather than to create and 
destroy them as the program runs. User-level 
synchronization primitives are used to coordinate the child 
processes. 

In this programming  model, the child address spaces  are 
independent and private except for a common  global 
segment that is shared among all the child processes. Code 
that is identical in each child  may be shared as well. 

There are several advantages to this approach to parallel 
processing. First, system support for this model is easy to 
implement.  Beyond basic support for sequential processes, 
all that is necessary are facilities for creating and accessing 
a shared storage segment and for using the basic 
synchronization primitives of the underlying hardware 
(testhet,  comparehwap, or fetchhdd, for example). 
Second, this programming  model is supported by a number 
of different operating systems, so applications can be 
readily ported from one environment to another. Finally, 
this approach to parallel programming requires no special 
compiler or language run-time support. The entities that 
comprise a parallel program are simple sequential 
processes with private address spaces. 

the process model of parallel computation. This 
programming environment was developed to let 
programmers experiment with  RP3 applications long before 
the RP3x prototype was available. The EPEX environment 
was first implemented under VM/370 on multiprocessor 
System/370 mainframes. It  was later ported to the 
IBM  RT  PC@ workstation and then to RP3  itself. A 
significant collection of  RP3 applications were developed 
under the EPEX environment. 

The EPEX [9] parallel-programming environment uses 

The disadvantages of the UNIX process model of 
parallel computation are discussed in the following 
subsections. 

Private  address spaces Except for the single shared 
segment, the child process address spaces are private. 
Variables stored outside the shared region are not 
accessible to other processes in the program. Since the 
program stack is  normally in the private area, automatic 
(local) variables within the program cannot be shared 
between processes. In addition, the existence of private 
variables can make a process special in the sense that it is 
the only process that can complete a particular portion of a 
job. It may therefore be impossible for the operating 
system to remove a processor from the program without 

I In this paper, we use the terms “job,” “application,” and  “program” 
interchangeably. 621 
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causing the parallel program to become deadlocked or 
otherwise fail. 

Local resource  ownership Because in the UNIX system 
the process is the entity that owns resources, resources 
cannot be shared among the different parts of a parallel 
program. For example, a file opened by one child process 
is not accessible to other child processes, unless they open 
the file as well. This particular problem  is avoided if the 
file is opened in the parent before the child processes are 
created, but such a priori acquisition of resources is not 
always possible. The result of this limitation  is that often 
one must designate a particular process to handle  all  input 
and output for the entire parallel application, and this 
designated process can easily become an unacceptable 
serial bottleneck in a highly parallel program. 

Heavyweight processes In standard UNIX systems, the 
only way to make use of a processor is to create  a process 
and its associated address space. This restriction can make 
changing the number of processors allocated to a particular 
program prohibitively expensive. This problem is not 
severe if only one job is executed at a time, but for 
multiple-job parallel processing, processor reallocation is 
occasionally required. Furthermore, in the typical UNIX 
model, it is not clear how to organize the code to take 
advantage of a newly available processor or to recover 
when a processor is removed (because of the private-data 
problem mentioned above). In addition, start-up overhead 
can be significant when many processors are involved and 
large numbers of address spaces must  be created. 

These problems can be solved by  using the task and 
thread constructs of the Mach operating system [2]. 

TaskJthread model 
In  Mach, the UNIX process construct is split into task 
and thread primitives. The task is the entity that owns 
resources. It has an address space and a UNIX process 
identifier, and  it can own communication port 
rights-software capabilities that allow tasks to send data 
to and receive data from other tasks. The thread is the 
entity that executes code; it can be thought of as  a 
lightweight process. A thread executes in the context of a 
single task throughout its life, but many threads may 
belong to the same task. In a multiprocessor, the threads 
can execute simultaneously on separate processors. The 
resources of a task are available to all the threads that 
belong to it. A UNIX process is emulated in Mach by a 
task with a single thread. 

Thus, in Mach a parallel application can be structured 
as  a number of threads running within a single task. Each 
thread needs an  individual work area within the shared 
address space, but all storage is accessible to all the 
threads. Addresses generated by one thread are equally 

valid for all threads, so work can easily be transferred 
from one thread to another. The threads also share 
resources such as communication port rights and open 
files, so no  single thread becomes a serial bottleneck. 
Finally, since thread creation and destruction do not 
involve the address space or other resources, these 
operations are relatively inexpensive. An application can 
afford to vary its processor usage  during the course of a 
computation. 

operating system vary the number of processors dedicated 
to a parallel application, but programs using the model can 
be structured in such a way that they can readily adapt to 
such changes. 

The tasWthread  model does not by  itself let the 

ThreadJwork-queue model 
The thread/work-queue model of parallel computation is a 
refinement of the tasWthread  model that lets application 
programs adapt to changes in the number of processors 
available to the applications. The model has the following 
characteristics: 

Each parallel application (or job) runs in a single address 

Multiple threads may be created in the address space. 
A work queue is defined by the application. 
Each thread selects work to do by removing an entry 

space. 

from the work queue, executing that request to 
completion, and returning to the queue for the next work 
item. 
Execution of a work item can result in the addition of 
new items to the work queue. 

threads are created to use  them. These threads begin 
execution by selecting a work item  from the work queue. 
When a processor is removed from a job, the thread 
running  on that processor is suspended, and its 
execution state is saved in the work queue. The 
interrupted work item is completed by the next thread 
that examines the work queue. 

When  new processors are allocated to the job, new 

This approach allows the user to specify how processors 
are used and to assign work to those processors in an 
application-dependent way. For example, in a Parallel 
FORTRAN program, a work item  may  be the execution of 
a single DO-loop iteration, and selection of the next work 
item  may  be as simple as taking the next loop index value 
from a global variable. In this case, the work queue 
implementation is  trivial;  more complex implementations 
are required if the work descriptor is  more complicated 
than the value of  an iteration variable. 

processor allocation” component of the operating system 
is responsible for allocating processors among the jobs. 

If multiple jobs are executed at the same time, a “global 



While the thread/work-queue model  allows processors to 
be added to  or removed  from  an application, these 
operations are still too expensive to be done every time 
the work queue is inspected. Global processor allocation 
decisions are therefore made on a medium-term basis 
(minutes, rather than seconds); thus, once a processor is 
allocated to a  job it remains allocated to that job for a 
reasonable period of time. 

On  RP3, programs written using  PTRAN  [lo-121 and the 
C-Threads package [13] used the thread/work-queue model 
of parallel computation. 

Operating  system  support  for  the RP3 
architecture 
We adopted Mach as the base operating system for RP3 
for a variety of reasons: 

Mach was compatible with  BSD UNIX operating 
systems. As discussed in the Introduction, this 
compatibility was  a requirement for the RP3 operating 
system. 
Mach was already available on the IBM  RT  PC 
workstation.  (RP3  used the same processor as the RT PC.) 
Mach  could  run on shared-memory multiprocessors. 
Other BSD UNIX systems available to us were not 
multiprocessor-capable. 
Mach supported the UNIX process model  of parallel 
computation. Such support was necessary because of the 
existing collection of EPEX applications. 
Mach supported the taswthread and thread/work-queue 
models of parallel computation. New RP3 applications 
were programmed  using these models. 

Choosing  Mach as the base RP3 operating system allowed 
us to concentrate on specific operating system issues 
relevant to the RP3 architecture: multiprocessor 
scheduling, memory management, and performance 
measurement. 

Multiprocessor  scheduling 
One of the problems with the Mach scheduler (and UNIX 
schedulers in general) is that the operating system is  not 
aware that the collection of threads2 comprising a parallel 
program is an entity that should be scheduled as  a unit. 
Instead, the operating system scheduler regards the 
threads in the parallel program as independent entities. 
Some of the problems that may arise are the following. 

Ineficient workpanitioning Under the EPEX [9] 
system, DO-loops are partitioned across processors by 

This discussion applies to both the  Mach taswthread model of parallel 

thread and process are synonymous. A parallel computation consists of a number 
computation and to the UNlX process model. For the  latter model, the terms 

of threads; whether those threads have separate address spaces or share a single 
address space is irrelevant to the scheduling issue. 

having each processor execute the DO-loop body for a 
subrange of the DO-loop index values. Then, at the end of 
its portion of the loop, each processor waits until  all the 
other processors have completed their portions. The size 
of the subrange is calculated at run  time by dividing the 
DO-loop  range as equally as possible among the available 
processors. If the operating system changes the number of 
processors available to the program (for example, by 
suspending execution of one of the threads in the parallel 
program), the partitioning of the DO-loop is not optimal. 
To solve this problem, one can create an interface that 
allows the operating system to inform the application when 
one of its threads has been suspended [14]. Alternatively, 
the operating system can guarantee to the application that 
if any of the threads in the application are running on a 
processor, all  of the threads are running. We followed the 
latter approach in Mach/RP3. 

Excessive  spin-waiting In order to protect the integrity 
of shared data, parallel programs must  use a 
synchronization protocol. A locking protocol is an example 
of a synchronization protocol; barriers and serial  sections 
[9] are other primitives used. When a thread attempts to 
acquire a lock that is not currently available, the thread 
must  wait  until the lock  is released. 

Waiting can be implemented as either spin-waiting or 
suspend-waiting (or some combination of these two 
approaches [15]).  With spin-waiting, the waiting thread 
repeatedly tries to acquire the lock.  With suspend-waiting, 
the waiting thread is suspended until the lock becomes 
available. While suspend-waiting is  more  efficient (the 
waiting thread is  not  using a processor), the cost of 
suspending and then resuming the thread may  be  higher 
than the cost of spin-waiting, particularly if the lock  is  held 
for only short periods of time.  Many parallel programs use 
spin-waiting, because the critical sections protected by 
locks are very short. 

to satisfy the demands of  all active parallel programs. 
However, when  multiple parallel programs share the 
machine, there is the possibility that at least one thread in 
a parallel  program will  be suspended while other threads of 
the program are running.  The performance of the parallel 
program can deteriorate because of excessive spin-waiting 
by threads waiting  for the suspended thread. Similarly, 
programming models such as EPEX [9] use a spin-waiting 
barrier at the end of each parallel loop. If a thread cannot 
reach the barrier because it has been preempted, all the 
rest of the threads in the job will spin-wait at the end of 
the loop, waiting for the last thread to complete the loop. 

This strategy works when there are enough processors 

Poor job response  time In a uniprocessor system, the 
shortest-job-first policy has the best job response time 
among the class of conservative scheduling algorithms. By 623 
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The RP3 family-scheduling operating system interface. 

analogy, in a multiprocessor system a policy that gives 
priority to jobs with  lower total processing requirements 
should give the best  job response time. In practice the 
computation times of jobs are not known in advance, and 
round-robin policy  is often used. As Leutenegger and 
Vernon [16] point out, a thread-based round-robin 
scheduling policy  may perform much worse than a job- 
based policy, because round-robin among  all threads will 
give preference to parallel programs that have more 
threads. However, such programs most  likely require 
longer total computation times, violating the shortest-job- 
first scheduling principle. 

a 

RP3 family-scheduling interface 
To solve these problems, the operating system had to 
provide a version of coscheduling [17] or gang scheduling 
[18]. We use the term family scheduling to describe the 
facility that was implemented in Mach/RP3. The routines 
of the RP3 family-scheduling interface are listed in 
Figure 3. They fall into three categories: family- 
specification routines, processor-allocation routines, and 
thread-binding routines. 

In Mach/RP3, a thread family was a set of cooperating 
threads working toward a single  goal. All of the threads in 
a particular parallel application would normally be part of 
the same thread family. These threads exchanged 
messages, synchronized computational steps, and shared 
part or all  of their address spaces. The thread family was 
the largest schedulable unit  in Mach/RP3. That is, all  of 
the threads in a thread family were scheduled to run at the 
same time, and if any of the threads in the thread family 624 
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were suspended by the operating system, all of the threads 
were suspended. The thread that created a family  (via the 
family-create system call) was originally the sole member 
of the family. The family was then built  through 
inheritance: Threads created by a member of a family (by 
the standard Mach mechanism) were automatically 
included in the family. A thread could remove itself from 
its family via the family-remove call.  When a family was 
created, a Mach port (the farnilyport) that represented the 
family was returned via the family parameter of the 
family-create call.  Rights to this port could be passed to 
other threads. Any thread that had rights to a family port 
could request that processors be allocated to or 
deallocated from the thread family. 

request that a number of processors be allocated to a 
thread family. The block parameter of the 
processor-allocate system call indicated whether the 
requestor wished to be blocked if the processor allocation 
request could not immediately be satisfied, or to be given 
an error return code that indicated that not enough free 
processors were available to satisfy the request. If the 
requestor was blocked, the requestor’s thread family was 
suspended as a whole  until the required resources became 
available. The programmer could choose the appropriate 
interface, depending on whether the application had  an 
absolute or flexible need for processing power. Processors 
could be deallocated from a thread family by means of the 
processor-deallocate system call. 

Once processors had been allocated to a thread family, 
threads in the family were allowed to run only on those 
processors. Nonfamily threads were barred from the 
allocated processors. The threads of the family time-shared 
the family processors in the normal UNIX sense. On  RP3 
it was sometimes useful to “bind” threads to individual 
processors. An application could dedicate processing 
power to important threads by binding them to processors. 
Furthermore, a thread could use local storage if it  knew it 
would not be moved  from one processor to another. For a 
discussion of local  memory allocation, see the section on 
operating system support for the RP3  memory 
architecture. A thread could be bound to one of its 
family’s allocated processors with the thread-bind system 
call. Typically, a thread would “bind” itself.  In this case, 
when the thread-bind request returned (successfully), the 
thread would  be running on the bound processor. Note 
that a thread did not have to be bound to a processor in 
order to execute. An unbound thread in a family could 
execute on any available processor. Mach/RP3 also 
provided a thread-addbind call that let a thread be bound 
to the same processor as a previously bound thread. It  was 
thus possible to bind several threads to one processor in 
order to share the processor and its local  memory. A 
bound thread could be unbound using the thread-unbind 

The processor-allocate system call  allowed the user to 
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system call. We decided not to use processor identifiers  in 
the family-scheduling interface. Instead, the thread 
identifier of a bound thread served as a handle for a 
processor. If a user wished to allocate storage that was 
local to a processor, the user had to supply the thread 
identifier of a thread bound to that processor. 

was its flexibility  in  allowing threads to issue requests on 
behalf of other threads. For example, one thread could 
bind another thread, and a thread could allocate processors 
for a family to which it did  not  itself  belong. This flexibility 
allowed a server thread to manage processor allocation and 
binding for a collection of families. 

A notable feature of the RP3  family-scheduling interface 

Scheduling mechanisms 
The RP3  family-scheduling implementation required three 
categories of scheduling queues. The first consisted of one 

queue for each processor (the processor queues), 
containing the threads bound to that processor. The 
second category consisted of one queue for each family 
(thefamily queues), containing the unbound threads in that 
family,  and a global queue, containing threads not 
belonging to any family. The third category consisted of a 
single queue of suspended families (the suspended-family 
queue). The processor and  family queues contained only 
threads that were ready to run but were not currently 
executing. Threads that were currently executing were 
assigned to a processor. 

Figure 4 illustrates the various scheduling queues. The 
diagram shows eight processors, the first three of which 
are unallocated. Each unallocated processor is executing a 
nonfamily thread; two other nonfamily threads are ready to 
run  and are therefore in the global queue. Processors 3 and 
4 are allocated to one family,  while processors 5, 6, and 7 625 
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are allocated to another. The second family includes five 
unbound threads and four bound threads. Processor 5, to 
which no threads have been bound, is executing one of the 
unbound  family threads. Three threads have been bound to 
processor 6, and one of them is executing. One thread has 
been bound to processor 7, but an unbound family thread 
is currently running  on that processor. The other three 
unbound family threads are in the family queue. A third 
family, consisting of one unbound thread and three bound 
threads, has been suspended and is in the suspended- 
family queue. 

when a processor reached a rescheduling point (that is, 
when the currently executing thread was blocked or 
terminated), the processor would take the first bound 
thread from the processor queue. Only  when the processor 
queue was empty would the processor take an  unbound 
thread from its family queue. This priority scheme led to a 
deadlock situation in which an unbound thread could not 
release the locks that would let the bound threads proceed. 
(The bound threads were spin-waiting for locks that only 
the unbound thread could release.) This problem prompted 
a redesign that decoupled priority from thread binding.  As 
a result, high-priority unbound threads could execute on 
family-owned processors even if lower-priority threads had 
been bound to those processors. Mach (and MachIRP3) 
retained the UNIX dynamic-priority scheme that adjusts 
the dispatching priority of  all threads to give  long-waiting 
threads a chance to run. 

This scheduling scheme did  not apply to the “master 
processor,” which-under the version of Mach  we  used 
on R P 3 w a s  reserved for system call service and 
therefore was not allocatable. 

In the first version of the family-scheduling mechanism, 

The suspended-family queue was a simple  first-in-first- 
out queue. However, there were privileged system calls 
that provided an interface to a medium-term policy server 
that controlled family-level resource allocation. These calls 
allowed the policy server to suspend or resume an entire 
family.  When a family was resumed, the original PMEs 
had to be  reclaimed  and the original thread bindings  had to 
be restored, since the bound threads might have allocated 
local  memory. (The potential impact of this restriction on 
machine utilization was never observed, because in 
practice RP3x  usually ran a single job at a time.) 

One  problem that arose in the implementation of thread 
binding resulted from the fact that one thread could  bind 
another. The semantics of the threadbind call guaranteed 
that once the call returned, the target thread would be 
running  on its bound processor. It was sometimes 
necessary to forcibly preempt the target thread from 
the processor on  which it was currently running. 
The implementation of the thread-bind call  used 
an interprocessor interrupt to accomplish this 
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Scheduling policies 
The family-scheduling facility was a general facility that 
could  meet the scheduling requirements of a broad range 
of system and user environments. For example, the family 
scheduler allowed  multiple parallel applications to execute 
simultaneously in a production environment where system 
resource utilization might be very important. On the other 
hand, RP3x was most often used as a research machine for 
the measurement and evaluation of parallel  algorithms. To 
obtain accurate measurements, interference among parallel 
applications had to be kept to a minimum. An application 
could use the facilities of the family scheduler to ensure 
that no other application would  run at the same time. In 
practice, applications were supplied to RP3x via a batch 
server, and the batch server allowed a job to specify either 
shared or exclusive mode.  In exclusive mode, a job had 
the machine to itself,  while  multiple jobs could coexist in 
shared mode,  relying  on the family-scheduling facility to 
equitably allocate resources. 

The family-scheduling  mechanism depended on parallel 
applications to properly specify their own processor- 
resource requirements. This dependence caused the waste 
of processing power for two reasons. 

Wasted processing power inside  an  application While 
the family-scheduling interface allowed dynamic allocation 
and deallocation of processors, applications were not 
required to release unused processors, which resulted in 
wasted processor power  within the application. 

Wasted processing power due to processor allocation 
Waste of processing resources could also occur when 
processors were available but none of the waiting  families 
could run because there were not enough free processors 
to accommodate the total requirements of any waiting 
family. 

this problem by having the system control the sizes of 
individual  families. Families are forced to reduce their 
processor requirements until they can coexist. The major 
shortcoming of this scheme is its failure to recognize that a 
job may  not  be able to utilize  different numbers of 
processors equally efficiently. A better scheme is to choose 
family sizes through negotiation, in order to maximize the 
total efficient  utilization of resources [20]. 

Another approach is to schedule the threads of a waiting 
family on all free processors in a round-robin manner. 
Because the guarantee that all members of a family  will be 
run simultaneously is  not maintained, performance may  be 
poor, but at least the leftover processors are not 
completely wasted. 

For RP3, we decided it was more important to give 
families  all the resources they required than to optimize 
processor utilization. The system-call interface allowed the 

The family-scheduling approach described in [ 191 avoids 
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application to adjust its processor-resource request in 
relation to the number of free processors. In addition, we 
felt that since there were a large  number of processors on 
RP3, we did not need to be concerned with  maximizing 
utilization of individual processors. Finally, we  felt that 
this approach was most consistent with our philosophy of 
allowing user code to control the machine resources 
directly, thus allowing  maximum experimental flexibility 
without operating system interference. 

Comparison to the CMU processor-allocation scheme 
Subsequent to the development of the family-scheduling 
interface in Mach/RP3, the Mach group at Carnegie Mellon 
University extended the system to support processor 
allocation [21]. In this section we compare the latter 
approach (the “CMU approach”) to the Mach/RP3 family 
scheduler. 

The CMU approach is based on processor sets rather 
than on thread families. Processors and threads can be 
assigned to or removed from processor sets. The threads 
assigned to a processor set are constrained to run only on 
the processors assigned to the set. If  all processors are 
removed from a processor set, the threads assigned to that 
set  are suspended. Processor allocation is accomplished by 
moving processors among processor sets. 

The CMU approach clearly separates processor- 
allocation policy from  mechanism. The processor-set 
mechanism is implemented in the operating system. 
Processor-allocation policy is implemented in a user-level 
server that moves processors and threads among processor 
sets. The policy/mechanism split is  not as clearly defined 
in the MachIRP3  family scheduler. 

However, binding threads to processors is somewhat 
cumbersome under the CMU approach. Threads are bound 
to a processor by assigning  them to a processor set that 
holds just one processor. A given processor cannot serve 
both as the host for one or more bound threads and as a 
member of the pool  of processors available to the unbound 
threads of a family. The RP3 approach allows a processor 
to be used in this way because processor allocation and 
thread binding are separate operations. 

Operating system s u p p o ~  for the RP3 memory 
architecture 
The Mach operating system was designed for shared- 
memory multiprocessors, but it does not support 
nonuniform-memory-access (NUMA) architectures such as 
that of the RP3. A straightforward Mach implementation 
on the RP3 would have made all memory access consistent 
and essentially uniform  by disabling the individual 
processor caches and  by interleaving all virtual memory 
addresses across the entire machine. However, maximum 
RP3 performance could  not have been achieved without 
exploiting the cache and local-memory features of the 
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architecture, and  exploiting these features required 
extensions to the Mach system. 

A major decision we  had to make early in the 
development was whether to expose the nonuniform 
memory  model to application programs (that is, to let the 
programmer deal with such issues as memory placement 
and cacheability), or to preserve the standard Mach 
program interface while  augmenting the operating system 
with algorithms that try to exploit the nonuniform memory 
architecture without help  from the programmer. The latter 
approach has been investigated by the Platinum project at 
the University of Rochester [22] and by the 8CE project at 
IBM Research [23].  We chose the former approach for two 
reasons. First, it was consistent with the philosophy of 
making the basic hardware features of the architecture 
freely available to application programs and language run- 
time environments. Application and  language researchers 
insisted on explicit control over memory placement and 
cacheability and  did  not want the operating system making 
such decisions for them. For these users, it was a 
requirement that we export the nonuniform memory 
model. Second, we  believed that without help  from 
application programmers or compilers, the operating 
system had little chance of making  optimal placement and 
cacheability decisions. The 16KB RP3  page size was so 
large that unless an application segregated its data 
explicitly into regions with  similar  usage patterns, there 
was little hope that a given  page  would have such 
homogeneous content that a single choice of location and 
cacheability would  be optimal. Once  an application had 
partitioned its data into typed regions, it could easily 
indicate to the system the location and cacheability 
decisions that were appropriate for those regions. 

While, in principle, the RP3 interleaving mechanism 
allowed the specification of different interleave amounts for 
different virtual pages, the mechanism was normally  used 
to spread virtual pages across all 64 memory modules  of 
RP3x. Supporting multiple interleave amounts would have 
significantly complicated the real-storage allocation 
algorithms in the operating system, and  we never found an 
application whose requirement for this feature was 
significant  enough to warrant the implementation effort. 
(We almost never ran more than one application at a time 
on  RP3x, so using the interleaving mechanism to isolate 
independent jobs from one another was not attempted. 
See [3] for further discussion of this issue.) We  simply 
partitioned the real memory of the machine into 
interleaved and noninterleaved pages at boot time.  Regions 
of equal size (the size was a boot-time parameter) were 
taken from each PME and coalesced into a single  region 
whose pages were interleaved across all the PMEs of the 
machine. We called this region the global region, although 
any particular byte of the global  region was necessarily 
located in the local memory of some PME. Real  memory 
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that was not incorporated in the global  region  remained in 
processor-specific local regions. 

Virtual-memory attributes 
The standard Mach  programming interface included system 
calls that could be used to specify the protection level for 
pages of a virtual address space and to specify the manner 
in which such pages were to be inherited across UNIX 
fork operations. The Mach/RP3 interface added the notion 
of virtual memory attributes that a program  could specify 
for pages of its virtual address space. A new system call, 
vm-set-attributes, let an application program  place  pages 
of its address space in memory of specified categories. 
Another new  call, vm-get-attributes, let an application 
determine the current memory attributes of a particular 
page. The following virtual-memory attributes were 
defined: 

Location attribute. Virtual pages  could  be  placed in 
global storage or in storage local to the processor to 
which a specified thread had been bound. Memory was 
declared local to a particular (bound) thread rather than 
to a particular processor, in keeping  with the philosophy 
of not  using processor identifiers in the system interface. 
Replication attribute. An application program  could also 
request that specific virtual pages be copied from  global 
storage into memory local to each bound thread that 
accessed those pages. Each bound thread essentially 
received a private copy of such pages. Unbound threads 
continued to share the original  pages in global storage. 
The application program was responsible for keeping the 
replicated copies of a page consistent with one another 
and  with the global copy, if such consistency was 
necessary. Replicated storage was typically used for 
read-only code pages. 
Cacheability attribute. Virtual pages  could  be  made 
cacheable or noncacheable, independently of the location 
and replication attributes. All references to a cacheable 
page were handled through the local processor caches. 
Cache consistency was the responsibility of the 
application if a cacheable page was accessed by two or 
more threads. 
Marked-data attribute. A cacheable virtual page  could be 
marked or unmarked (see the description of marked data 
in the RP3 hardware overview). Applications could use 
the marked-data attTibute to improve the efficiency of 
software cache-coherence protocols. 

By default, all application pages were placed  in  global 
storage and were made cacheable. This default value for 
the cacheability attribute was the wrong choice for parallel 

' programs written for cache-coherent multiprocessors, but 
it let standard UNIX utility programs execute efficiently 

628 without modification. Single-threaded programs executed 

correctly in either cacheable or noncacheable mode on 
RP3, but they ran significantly faster in cacheable mode. 
Adding the necessary vm-set-attributes calls to the parallel 
programs that required noncacheable storage was not hard, 
because most such programs had to be modified for RP3 
anyway. 

Implementation 
One of the important features of Mach  is the separation of 
the memory-management system into machine-independent 
and machine-dependent layers. The machine-independent 
layer, which  is  called simply the VM module, implements 
all the traditional functions of a memory-management 
system. It manages the pool  of free physical  pages,  it 
maintains mappings  from user virtual address spaces to 
physical pages, and it keeps track of virtual pages that 
have been paged to disk.  The machine-dependent layer is 
called the physical map, or pmap, module. The pmap 
module  is responsible for maintaining actual hardware page 
tables, which are of course architecture-specific. It 
presents a well-defined procedural interface through which 
the VM module can request that particular virtual-to- 
physical mappings  be entered in or removed from  machine- 
specific  page tables. 

The physical address space that is used in the interface 
between the VM and pmap modules  is really an 
abstraction maintained by the pmap  module. It may or 
may  not  match the actual storage layout of the underlying 
hardware. This property of the interface allowed us to 
implement  most of the support for the RP3  NUMA 
architecture in the machine-dependent pmap module. Our 
machine-independent VM module maintained attribute 
specifications for regions of address spaces and passed 
them to the pmap  module when necessary, but it  did  not 
itself interpret the specifications. The pmap module was 
responsible for ensuring that mapped virtual pages were 
located in memory of the types specified by their 
attributes. 

Implementation of the NUMA support for RP3 took 
place in two phases. In the first phase, the operating 
system itself was restructured to make use of the RP3 
memory architecture. To complete this phase, we had to 
partition the operating system code and data structures 
into local and global segments. The local segment of the 
operating system consisted of processor-specific data 
structures required by the hardware (interrupt vectors and 
machine-state save areas, for example) and operating- 
system code that executed in real mode (first-level 
interrupt handlers, for example). Most of the operating- 
system code executed in virtual mode  and was placed in 
the global segment, along  with the bulk of the system data 
structures. The local segment was replicated in the local 
storage of each PME, while a single copy of the global 
segment was placed  in  global  storage-that is, in storage 
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that was interleaved across all the PMEs. The resulting 
storage layout is shown in Figure 5. 

applications exploit the RP3 memory architecture were 
implemented. The different virtual-memory attributes 
required different implementation strategies. 

In the second phase, the user-level system calls that let 

Cacheability and marked-data attributes The 
implementation of the cacheability and marked-data 
attributes was straightforward. The cacheability of a virtual 
page was determined by a pair of bits in the page-table 
entry that mapped the virtual page to a physical page. 
When the pmap module was asked to enter a virtual-to- 
physical mapping in a page table, the required attributes 
for the virtual page were passed as part of the request. If 
“cacheable” or “marked-data’’ were among the attributes, 
the pmap module simply set the appropriate page-table- 
entry bits as it constructed the mapping. 

Location attribute The implementation of the location 
attribute was more complicated. In Mach/RP3, the pmap 
module  had to be able to move  pages  from one region of 
memory to another without involving the VM module, so it 
was necessary to implement a new  level of indirection 
below the physical memory abstraction presented to the 
VM module. For the remainder of this discussion, we  use 
the adjective “physical” to describe the abstract physical 
memory that is used in the interface between the pmap 
module  and the VM module,  and  we  use the adjective 
“absolute” to describe the true physical memory of the 
RP3  machine. 

The abstract physical address space is illustrated in 
Figure 6. For clarity, the diagram shows just two PMEs 
and two virtual-address spaces. The machine-independent 
VM module  maintained  mappings  from a number of virtual 
address spaces to the single physical address space, while 
the pmap module  maintained a one-to-one mapping 
between the physical  and absolute address spaces. From 
the figure, one can see how a page could be moved  from 
global to local storage without changing the virtual-to- 
physical mappings  maintained by the VM module. Of 
course, the actual page tables maintained by the pmap 
module were used by the hardware memory-management 
units and had to map virtual addresses directly to absolute 
addresses. Therefore the pmap module  had to keep its 
page tables up-to-date when it relocated pages and 
permuted the physical-to-absolute mapping. 

The pmap module constructed the initial physical-to- 
absolute mapping at boot time. Those physical pages that 
corresponded to global absolute pages were placed  on the 
single machine-independent free-page list maintained by 
the VM module. The remaining  physical  pages were placed 
on local free lists that were maintained by the pmap 
module  itself. Essentially, the VM module  managed the 

Global ~I 
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pool  of pages that were interleaved across the entire 
machine,  while the pmap  module  managed the pages that 
were local to individual processors. 

The VM module did not interpret virtual-memory 
attributes and therefore did  not  distinguish  local  from 
global  pages.  Before a page  could  be used, however, a 
mapping for it would have to be entered in a machine- 
dependent page table; at that time the pmap  module  could 
relocate the page, if necessary, to make its location 
consistent with its attributes. When the pmap  module was 
asked to establish a virtual-to-physical mapping, it would 
check the attributes specified  for the virtual page  against 
the current location of the specified  physical  page. If the 
physical  page were in the wrong location for the specified 
attributes (global  when it should have been local, local 
when it should have been  global, or local to one processor 
when it should have been  local to another), the pmap 
module  would allocate an appropriate physical page, either 
from one of its local free lists or from the VM-module 
global free list. It would copy the contents of the original 
absolute page to the newly allocated absolute page  and 
swap the physical-to-absolute mappings of the original and 
newly allocated physical pages.  The  original  physical  page 
would  now be bound to an absolute page  of the right type, 
and the pmap module could proceed to enter the mapping 
in a page table. The newly allocated physical page,  which 
would  now  be  bound to the original absolute page,  would 
be returned to an appropriate free list. 629 
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The  abstract  physical  address space. 

One problem with this approach was that since the VM 
module  did  not interpret memory attributes, it  would 
frequently allocate and  initialize a global  page, only to 
have the page  immediately copied to local  memory. To 
eliminate this unnecessary copying, we extended the 
interface between the VM and pmap modules to let the 
pmap module allocate and deallocate local  pages when 
appropriate. 

Replication attribute The replication attribute required 
that a single virtual page be mapped to different absolute 
pages on different processors. The RP3 page-table 
structure, however, was designed to map each virtual page 
to a single absolute page. Since the structure was 
incapable of representing the one-to-many mapping  implied 
by the replication attribute, we implemented a software 
extension of the page-table architecture. This extension 
was possible because the processors in RP3  had 

630 independent translation lookaside buffers  and because 
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system software could load mapping information directly 
into processor TLBs. 

The Mach/RP3 pmap  module maintained processor- 
specific virtual-to-absolute mappings in auxiliary tables 
associated with the page-table entries that would  normally 
have  mapped replicated virtual pages. These page-table 
entries were marked invalid, so that any attempt to access 
a replicated page  would cause a page fault. When a fault 
occurred on a replicated page, the low-level  page-fault 
handler  would look in  the auxiliary table for a processor- 
specific  mapping  for the page. If no such mapping existed, 
the fault would be passed to the VM module as an 
ordinary page fault. If a processor-specific mapping were 
found, the page-fault handler would  load it directly into the 
processor TLB and  would return immediately to the 
executing thread. Subsequent accesses to the replicated 
page  would continue to succeed as long as the mapping 
remained in the TLB. Because each processor 
had its own TLB, the replicated virtual page  could 
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be mapped to different absolute pages on different 
processors. 

Operating system support for  perfomance measurement 
on RP3 
Since RP3x was an experimental machine  built to help 
users explore issues related to parallel processing, support 
for performance measurement was an important part of the 
operating system. It included the virtual performance 
measurement chip (VPMC) facility and the event-logging 
facility. 

RP3 performance monitor 
As discussed previously in the RP3 hardware overview, 
each PME  on RP3 included a performance-measurement 
chip (PMC). The PMC contained a set of counters, a 
memory for samples of switch-delay times, and control and 
status registers. PME components would  signal event 
occurrences to the PMC, and the PMC would increment 
the corresponding counters. A master counter in the PMC 
was incremented each processor cycle. The events counted 
by the PMC included 

Instructions completed. 
Floating-point operations completed. 
Translated memory requests. 
Nontranslated memory requests. 
Local-memory requests. 
Nonlocal-memory requests. 
Cacheable-memory requests. 
Cache misses. 
TLB misses. 
Memory requests from other PMEs. 
Memory-controller busy cycles. 
Switch-interface waiting cycles. 

In addition to maintaining event counts, the PMC  could 
sample switch-delay times.  When any of the PMC counters 
overflowed, the PMC  would freeze all the counters and, if 
the interrupt-enable bit were set in the PMC control 
register, would generate a processor interrupt. 

The PMC was a device on the processor bus and was 
accessible from user programs. The advantages of using 
the PMC directly were low overhead and precise control, 
but there were problems as well. First, the PMC master 
counter was only 22 bits wide and  overflowed every 1.2 
seconds, so measuring a program section that executed 
longer than that interval was difficult. Second, any context 
switch that occurred during a monitored portion of a 
program  would corrupt the measurements. Third, the 
PMC  could record only 16 switch-delay samples. The 
virtual PMC facility was created to solve these 
problems. 
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Wrtual  PMC facility 
A virtual PMC, or W M C ,  was a system-maintained data 
structure that accumulated information from one or more 
physical  PMCs  and provided it to applications in a 
convenient form. A VPMC provided 64-bit counters that 
essentially never overflowed, and it provided a histogram 
of switch-delay samples that could contain an arbitrary 
number of entries. VPMCs could be associated with 
processors or with  individual threads. Aprocessor W M C  
was like  an actual PMC,  in that it recorded all the activity 
on a particular PME. A thread W M C ,  on the other hand, 
recorded just the activity of a particular thread. It was 
insensitive to context switches and continued to 
accumulate measurements as the thread moved  from one 
processor to another. Processor and thread VPMCs could 
be active concurrently. 

VPMC: 
MachJRP3 provided three methods for accessing a 

Mach-ZPC access. MachJRP3 provided VPMC access as 
a service available through the general Mach 
interprocess communication (IPC) facility. An 
application could  use this service to obtain a current 
copy of any VPMC for which  it held the necessary 
access rights. (Controlled distribution of access rights is 
a feature of  Mach IPC.) The Mach IPC mechanism  made 
VPMC access available both to applications running on 
RP3x  itself  and to monitoring programs running outside 
RP3x. 
System-call access. MachIRP3 provided a system call 
that would return a current copy of the calling thread 
VPMC. This method lacked the generality of the Mach 
IPC version, but  it ran much faster. 

mechanism for mapping a VPMC data structure directly 
into an application address space, where it could be 
examined without operating system intervention. The 
information in a mapped  VPMC  could  be accessed very 
quickly, but it was usually somewhat out-of-date because 
it was updated only  when the underlying hardware PMC 
generated an interrupt. A thread could obtain up-to-date 
information about its own activity by reading the 
hardware PMC directly and  adding the counter values to 
the corresponding counters of its own  mapped  VPMC. A 
concurrent readerdwriters synchronization algorithm was 
used to avoid  reading the mapped data while the 
operating system was updating the VPMC. 

Memory-mapped access. MachJRP3 provided a 

The costs (measured in numbers of instructions) of the 
various PMC  and  VPMC access methods are shown in 
Table 1. The programmer could choose the cheapest 
access method that satisfied the functional requirements of 
a particular application. Further details on the RP3  VPMC 
facility  can  be  found in [24]. 

R. M. BRYANT, H:Y. CHANG, AND B. S. ROSENBURG 



Table 1 Number of instructions  required for PMC and 
VPMC access. 

Access method Number of instructions 

Direct  PMC 50 
Memory-mapped  VPMC 500 
System-call  VPMC 3000 
Mach-IPC  VPMC 14,000 

Event-lo@@  facility 
The performance of a parallel program on  RP3 depended 
on the performance of many components, including the 
program  itself, libraries the program used, the operating 
system, and the hardware. One method for determining 
where time was spent was to instrument the various 
components in order to collect traces. The RP3 event-logging 
facility was developed to provide a uniform  means  for 
recording trace information  from  all  levels of the system. 

An event record consisted of a time stamp, a processor 
number, an integer event type, and a variable-length data 
section. The event-logging facility maintained a separate 
event buffer or log  in the local storage of each PME. 
Events generated on a particular PME were recorded in its 
log, so event logging  itself  did  not increase switch traffic. 
Events from  different  logs could later be correlated by time 
stamp. A boot-time parameter determined the size of the 
local event logs. Events could  be generated by the 
operating system and  by application programs, and an 
application could read and remove event records from the 
local event logs. An event record was discarded if the local 
log was full when the event was generated, but the fact 
that events were lost was itself recorded as an event. 

The RP3  event-logging facility was used to collect data 
from  all components of the RP3 system. The operating 
system could be configured to record hardware PMC data 
in the event log. Operating system events such as 
scheduling points and  page faults could also be recorded. 
The C-Threads package [13] was instrumented to generate 
events corresponding to internal scheduling decisions. 
Finally, a variety of application programs were modified to 
generate application-specific events. A programmer could 
use the event-logging facility to correlate the moment-by- 
moment behavior of a parallel program with activity in the 
underlying run-time package, operating system, and 
hardware. The RP3 performance visualization system [25] 
was developed to display data from the event-logging 
facility in a variety of graphical formats. 

Concluding  remarks 
In this paper, we have discussed how the Mach operating 
system was extended to enable efficient parallel processing 
on RP3. Our  goal was to provide an extended UNIX 
programming interface that allowed application code 
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running  on  RP3 to take full advantage of the underlying 
processor and memory structure. In addition, we provided 
convenient facilities for measuring the performance of 
applications running on the machine, and we provided a 
simple event-logging facility that allowed measurement 
data from  multiple sources in the system to be combined 
and accessed in a uniform way. 

Our philosophy of allowing the user full access to the 
basic facilities of the hardware ran counter to the prevalent 
operating system philosophy of hiding the complexities of 
the underlying machine from the user. For the range of 
applications that RP3 was designed to investigate, we 
believe the usual approach was incorrect and  would not 
have allowed the maximum performance to be achieved. 
Our experience has been that compiler and run-time- 
package developers wholeheartedly supported our 
approach, while users who had to deal directly with the 
system-call interface found the system difficult to use. 
This was to be expected, since our decisions were made 
in favor of those programmers and compiler developers 
willing to expend significant  effort in exploiting the RP3 
architecture. The long-range intent was that application 
programmers would  not have to deal directly with the 
family-scheduler or memory-attributes system calls, but 
would instead deal with the problems of specifying parallel 
algorithms in forms acceptable to compilers that used these 
interfaces. 
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