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The design  of  interconnection  networks is a 
central  problem in parallel  computing, 
especially  for  shared-memory  systems,  where 
network  latency,  or  delay, is one factor  that 
limits system  size.  This  paper  discusses 
aspects  of  one  particular  approach to network 
structure,  a  design  comprising  a multiplicity of 
subnetworks  that  form  a  hierarchy  of  paths. 
The  hierarchy  includes  fast  paths  that  are  used 
in the  absence  of  contention,  and  alternate 
paths  with  contention  resolution. That is, just 
as in the  case  of  a  memory  hierarchy,  the 
fastest  component  of  the  hierarchy  that  can 
provide  the  desired function is utilized at a 
given  time.  The viability and robustness of 
hierarchical  networks is studied first by 
examining circuit and  implementation  issues, 
and  then  by  considering  performance  modeling 
and  analysis.  The  overall  performance  of  the 
hierarchy is shown to be  close to that  of  a 
contention-free  network  of  fast  paths. 

1. Introduction 
Shared-memory  and message-passing architectures  are 
widely studied designs  for  parallel  machines. In this paper 
we  deal mainly  with shared-memory  systems,  because  we 
believe  that  the interconnection network in shared-memory 

architectures affects the  performance more significantly 
than in other parallel architectures (e.g., message-passing). 
A  critical parameter in such a network is latency, or delay, 
which we investigate in this paper. 

Storage in a shared-memory  system may take  the form 
of a set of distinct memory  modules with uniform speeds 
of access by all processors. Alternatively, as in [l], 
memory  may be shared  and  distributed, with part of the 
global memory associated with each  processor. In this 
paper  we  concentrate on the  latter  type of organization. 
Consider a system with N processors  (each with a cache 
and private  memory)  and N memory modules  that hold 
shared  data.  Let  each memory module be associated with 
one of the  processors, so that an N X N network, or 
switch, is sufficient to  connect a processor with any  other 
processor-memory-module pair. The fact that  data  are 
shared  may impose  quite  stringent performance 
requirements on the  network, since every  data reference 
may  require  a  round trip. This point can  be  better 
illustrated as follows: Let us  assume  that in a shared- 
memory system,  the delay for accessing data through the 
network must be no greater  than a  small  number of 
instruction cycles (e.g., three [l]), in order  to avoid 
significant performance degradation. This  means  that in a 
system with 10-MIPS processors (i.e.,  instruction cycles of 
100 ns), the combined  total of the round-trip network delay 
and memory access time must be under 300 ns; if a system 
were  to  be built with 100-MIPS processors,  the maximum 
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Typical 8 X 8 interconnection networks: (a) partitioned crossbar; 
(b) multistage. 

latency would  be reduced to only 30 ns.  This requirement 
makes  the  design of the network very critical. 

The types of networks we consider are crossbars and 
multistage networks such as banyans [2]. By a crossbar, 
we  mean a single-stage, nonblocking circuit switch 
(implementable, for example, as an N X N array of 
crosspoints). Figure l(a) is a diagram of  an 8 X 8 crossbar. 
Multistage networks consist of sets of nodes (collections of 
switching elements, such as  crossbars), each with  input 604 

P. A.  FRANASZEK, C .  J .  FEORGIOU. P LND  A.  N.  TANTAWI IBM J .  F 

and output ports. Figure l(b) is a diagram of  an 8 X 8 
multistage network with nodes consisting of 2 X 2 
crossbars. 

Crossbars have a circuit complexity of O ( N 2 ) ,  and 
multistage networks typically have a complexity of 
O(N log N), so it  is sometimes argued that the latter are 
preferable for  large N. However, there is a large  range of 
values within  which crossbars perform  well  and are 
practical. With  modern implementations, crossbars of size 
up to N - 1000 appear reasonable. In fact, the limit seems 
to be tied  more  closely to the problem of control (i.e., 
contention resolution) than to the quadratic growth in the 
number of crosspoints, usually considered to be the 
limiting factor. On the other hand, for  large N, multistage 
networks may not have sufficiently high performance. As 
an example of the performance limitations of multistage 
networks, we note that in at least one instance [l] the 
system performance requirements have led to a design in 
which the multistage network had to be implemented  with 
a circuit technology considerably faster than that of the 
processors. 

The limitations of conventional multistage or crossbar 
networks for shared-memory architectures have led us to 
explore an alternative approach to network design: one 
that employs a hierarchy of networks that may include a 
combination of crossbars and  multistage networks. We 
have  found that such an approach can produce a network ' 

with  sufficiently high performance at a reasonable cost. In 
this paper, we present the hierarchical network approach, 
first by reviewing reasons for a multiple-network structure 
(Section 2 )  and then by discussing network design and 
implementation issues (Sections 3 and 4). Finally, we 
present performance modeling  and analysis results 
(Section 5) .  

2. Network  performance  limitations  and  design 
strategies 
Network latency is the sum of the time required for the 
start of the  message to travel from source to destination 
and  the transmission time for the remainder of the 
message.  The latter can  be decreased almost arbitrarily, 
within the limits of a given technology, by  using  parallel 
paths. The former is a function of a) network design 
parameters, such as the amount of buffering encountered 
en route, the number of chip crossings (number of times 
signals  go  from chip to chip), and the number of levels of 
logic,  and b) contention due to network traffic. Contention 
can  be either for paths or for access to network control 
logic. In a typical network, new messages arrive, may be 
stored (buffered) internally, and ultimately are delivered to 
their destinations. A message  may contend with new 
messages, stored messages at the input, or stored 
messages at the output (because of possible buffer 
overflow). The above suggest that network latency may  be 
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that can  be  interconnected  by a single bus  depends  on  the 
fan-out  characteristics of the technology  used for  the 
partition  implementation.  With current VLSI technology, 
crossbar  partitions  can  be  interconnected  by  means of a 
single bus  for fairly large shared-memory multiprocessor 
systems (e.g., N = 512). 

As previously  pointed out,  crossbars  are  sometimes 
regarded as impractical because of the O(N' )  growth of 
the number of crosspoints.  However,  the  speed of control 
for large crossbars  can  present a more severe problem. An 
N x N crossbar  can  be  controlled  by a single controller 
that serially responds  to  connection  requests received from 
the  ports.  (As many connections as desired may  exist 
simultaneously.)  But this  approach  can result in long 
queuing delays  when N is large.  Alternatively, the  fastest 
control possible  may be achieved by providing a controller 
at  each  output port and  dedicated,  direct signal paths  from 
each of the input ports  to  each of the  output  port 
controllers (Figure 2). When an input port  requires a 605 
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connection to a particular output port, it sends a request 
message to the controller of the output port. The controller 
resolves any possible contention for the port, due to 
requests received simultaneously from  multiple  input ports, 
and sets up a data path  through the crosspoints. This 
scheme requires N outgoing control lines from every input 
port, and N incoming control lines to every output port. 
The  resulting  wiring complexity is  of 0(2N’/P), where P 
is the  number of chip package pins allowed  by the 
implementation technology. 

By contrast, the data-transport part of the crossbar, 
which  can be, as previously discussed, a matrix of simple 
crosspoint switching elements, requires only O[ (2N/P) ’1 
chips. This is a dramatic difference  in complexity. For 
example, with N = 512 and P = 256 (a typical  number of 
pins  with  modern  packaging technologies), data transport 
would  require  approximately 16 chips,  while  fast  contention 
resolution  would  require  of the order of 2000 chips. 

An alternative approach to the scheme outlined above 
shares one controller among  multiple output ports. This 
reduces the wiring complexity but requires the introduction 
of additional complexity in the messages, e.g., addressing 
information, which causes transfer and processing delays. 
Furthermore, the sharing of a controller by multiple ports 
results in queuing delays as well. 

Multistage networks, on the other hand, are structured 
so that data transmissions must pass through  log, N 
sequential network stages, each of which is a k X k 
crosspoint switch. The network of Figure l(b) has three 
stages of 2 X 2 crosspoint switches. The network stages 
are connected by point-to-point interconnections, unlike 
the  bus interconnections of partitioned crossbar networks; 
thus, they are not constrained by the fan-out 
characteristics of the technology. But the performance of 
the  network is affected by its blocking nature and by the 
data-transfer delays between the stages. The latter can be 
a significant factor, as the transmission speed of the off- 
chip data paths is considerably less than that of the on- 
chip paths (typically, smaller by  an order of magnitude). 
This is  primarily due to transmission-line capacitances and 
the simultaneous off-chip driver (OCD) switching 
limitations of chip packages [4].  The  blocking effects of the 
multistage  network  can  be reduced by  utilizing  buffers  at 
each stage. But the  buffers,  and their associated circuitry, 
increase the overall complexity of a stage, thus limiting  the 
number of stages that can be integrated on a single chip. 
This results in a greater number of chip crossings and, 
consequently, in an increase in the delays associated with 
the data transfer. 

Networks with no buffers in which messages are 
retransmitted upon contention can  work well if the  traffic 
is sufficiently  low. However, in general, there will  be 
traffic nonuniformities in space as well as time  (e.g.. “hot 
spots” [5]).  It has been shown [6] that under the former 

condition  bufferless networks can have problems-i.e., the 
number of required retries can  be large. This forces the 
source to keep trying until a successful transmission takes 
place, and may  lead to long delays. It also carries risks 
associated with instabilities in the case of a large  number 
of contending sources [7]. 

The problems of slow performance in multistage 
networks and control complexity in crossbars can  be 
alleviated by  employing a  structure that uses a 
combination of networks. The result can be viewed as a 
hierarchy of paths (studied more abstractly in [8]), for 
which we show that the latency can be, on average, close 
to that of the fastest path. The performance of the network 
hierarchy is analogous to that of a storage hierarchy, 
whose average performance in a good  design  is  largely 
determined by the speed of the fastest component. 

Aside  from the above network traffic problems, there 
may also be congestion associated with saturation of a port 
that contains a hot spot [5]. Here, combining of memory 
operations (e.g., via fetch-and-adds) has been suggested as 
an approach. This, however, requires a network of 
substantial complexity and, therefore, delay. This 
complexity is not required under normal  traffic 
conditions-that  is, conditions under which requests would 
traverse the fast  path in the hierarchy (discussed below). 

The  path hierarchies we consider here have only two 
levels, but this need  not  be true in general. Also, path 
hierarchies are not necessarily limited to cases that include 
a crossbar. Considerations similar to those we discuss 
below  may  lead to hierarchical organizations for other 
classes of networks, but we have concentrated on uniform- 
distance networks. Some preliminary results of the 
hierarchical-network approach are presented in [9]. 

3. Example of a hierarchical  network 

Network organization 
For the purpose of this discussion, we assume that the 
network outlined in the Introduction interconnects a 
distributed, shared-memory system. The interconnection 
network consists of a control-signal network and a data- 
transport network. The control-signal network is a 
hierarchical network of the sort discussed throughout this 
paper. The data-transport network is simply a crossbar, 
referred to below as the data-transport crossbar. 

In this section we illustrate the hierarchical-network 
principles by means of an example, shown in Figure 3 (for 
N = 512). This network consists of three subnetworks, 
each of 512 inputs and outputs: a collision crossbar, a 
return crossbar, and a Delta network. 

These subnetworks are used to form a two-level 
hierarchy of paths. A fast path is provided by the collision 
crossbar, which can reliably deliver requests from a 
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I I 
Delta network 

Example of a  hierarchical  network. 

processor to a memory  only in the absence of contention. 
A slow path  is provided by the Delta network, which 
guarantees the delivery of messages to memories  under  all 
traffic conditions. A return path for sending 
acknowledgments from memories to requesting processors 
(indicating that the requests were properly received) is 
provided by the return crossbar. The transmission of 
acknowledgment messages is simultaneous with other 
memory operations, such as accessing, in order to 
minimize the protocol delays in the fast path. Data are sent 
over the data-transport crossbar. 

The collision crossbar performs collision detection but 
not contention resolution. Contention in the collision 
crossbar by  more than one input (processor) for a path to 
the same output (memory module) is detected at the 
output; thus, the complexities associated with contention 
resolution, discussed in Section 2, are avoided. Collision 

detection can  be done by detecting errors in the 
transmitted bit stream [e.g.,  CRC (cyclic redundancy 
check) errors, or transmission-code violations] [lo]. 

The data-transport and return crossbars have neither 
contention-resolution  nor  contention-detection  mechanisms, 
because of the absence of collisions in the return path  from 
the memories to processors. This is due to the nature of 
our protocol, in which  only one outstanding request from a 
processor to a memory is allowed at a given time. 

The Delta network is a multistage network of  log, N 
stages with store-and-forward capability at each stage, 
such as the Omega network found in [l]. 

Communication protocol 
All communication in the example network is done via 
messages, which  have one of the two formats shown in 
Figure 4: 607 
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Formats of network messages: (a) request message; (b) data 
message. 

1 .  Request messages consist of a destination-address field 
of logN bits, where N is the number of processors and 
of memories (in this example it would be 9 bits); a 
source-address field (9 bits); a cache-line ID field 
(24 bits); a field containing control information, for 
indicating the type of memory operation requested (read 

or write); and error-detection code (7 bits)-for a total 
of approximately 6 bytes. 

2. Data messages (sent over the data-transport crossbar) 
consist of a destination address (9 bits); cache-line ID 
field (24 bits); data field (16 bytes); and CRC field 
(7 bits)-or approximately 21 bytes. 

The sizes of the data and cache-line ID fields  may vary, 
depending on system design considerations. 

Figure 5 shows the network protocol for memory read 
operations. A request from a processor, generated at time 
t,,, enters the collision crossbar (CC) synchronously, under 
the control of a global clock (at time t , ) .  

In the case of noncontention, the request is received at 
the memory at time t , ,  when a determination is made as to 
whether a collision has occurred. Two concurrent 
operations are initiated at time t3: 1) the memory access 
cycle is started, and 2)  an acknowledgment message 
(ACK) is sent back to the requesting processor and 
received at time t , .  When the data become available from 
the memory at time t s ,  they are shipped to the processor 
on the data-transport crossbar. The data transmission is 
complete at time t,. 

In the case of contention, collision  is detected and the 
request is ignored; consequently, no acknowledgment 

Hierarchical  network  protocol:  (a)  no  contention; (b) contention. CC = collision crossbar. 

608 
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message is returned to the requesting processor from the 
memory. The processor, upon expiration of a time interval 
T (at t , )  during  which it expected to receive the 
acknowledgment, retransmits the request over the Delta 
network (time t8 ) .  The request is received at the memory 
at time t , ,  after which the same sequence of steps t3-t,,  as 
described in the “noncontention” case, is repeated. 

Self-routing crosspoint chip 
The basic building  block of the collision  and other 
crossbars is the self-routing crosspoint chip, shown in 
Figure 6. The crosspoint chip is  organized as an array of 
crosspoints C , .  A message enters the chip, as a series of 
bits, from an input pin 1, and is directed to an address 
decoder circuit A , .  The address bits of the message are 
then decoded and select an output Oj by activating a 
crosspoint C,. After a path  is thus established between an 
input  and an output, the message, stripped of its 
destination address bits, is sent to the destination. 

The bandwidth of the serial path is dependent on  the 
technology used to implement the crosspoint chip. If the 
bandwidth provided by a single chip is insufficient,  the 
required bandwidth can  be obtained by using  multiple 
chips in parallel  (i.e., several switching planes). For 
example, if k chips are used, a message of n address and 
rn data bits can be transformed into k frames, each 
consisting of n address and m/k data bits. Each frame  can 
then be sent via a separate crosspoint chip, with the data 
bits from  all frames assembled at the destination to 
reconstruct the original  message. Techniques exist for 
providing the clock distribution and synchronization 
required [ 111. 

Since contention in the  collision crossbar is detected at 
the destination, the output circuits of the crosspoint chips 
must be designed to protect against current overload 
conditions, thus preventing collisions from  damaging the 
chips. 

A variation of the above scheme to protect against 
current overload would  be to provide collision-detection 
circuits at the outputs of each crosspoint chip. These 
circuits would monitor the status of their corresponding 
bus lines and, if traffic  or collisions were detected, would 
signal  the source to abort the transmission and retransmit 
on the slow path. 

4. Performance and complexity  estimates 
The following analysis of the example network shows the 
feasibility of the hierarchical approach. The basic objective 
of this study is to show that with a currently available 
technology such as CMOS-a dense but low-power 
technology-we  could  build a network of size 512. The 
goal of this evaluation is to design a network with 
reasonable hardware complexity that can transfer 16-byte 
data words within five processor cycles, on the average. 

Self-routing crosspoint chip. 

Network delay 
The  message delay through  the  network depends on the 
delays incurred in the  fast  and  slow paths. As previously 
discussed, if contention occurs at the  fast  path  (collision 
crossbar), the  message is retransmitted over the slow  path 
(Delta network). 

network delay, as illustrated in Figure 7, can be derived as 
follows: We assume that the collision  and return crossbars 
have  eight  and  ten switching planes, respectively. We also 
assume that a memory request can  be sent to the collision 
crossbar at the beginning of a transmission synchronization 
cycle. The length of the transmission synchronization cycle 
is four network global  clock cycles. Since the memory 
requests can occur randomly  with respect to the beginning 
of the synchronization cycle, we assume a 50% average 
delay for  the  beginning of a transmission, or two network 
cycles. The destination address header of a message 
(9 bits) requires nine cycles to enter the  collision crossbar 
and be decoded. The  remaining five message bytes for a 
request message require five cycles (over the eight 
switching planes) to be transferred to the destination. 
Thus, a message requires an average of 16 cycles to 
traverse the  collision crossbar. (Circuit delay of the 
crossbar itself  is  negligible.) 

equivalent of eight network cycles and that the assembly 
of the data message requires two cycles. This activity is 
overlapped with  the transmission of the acknowledgment 
message to the processor via  the return crossbar and  with 
the set-up of the path  for  the transfer of the data message 
in the data-transport crossbar. Finally, the data-mes’sage 

If  we assume no contention for the networks, the 

We further assume that the  memory access requires the 
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Network delay. 

61 0 

transfer on the data-transport crossbar over ten switching 
planes requires 16 cycles (20 bytes). The total number of 
network cycles is, therefore, 16 + 10 + 16 = 42 plus the 
cable delay. We assume 20-11s cable delays between each 
network adapter and  the crossbar. If  we assume a cycle 
time of 10 ns,  the total transfer delay is  42 X 10 ns + 
4 X 20  ns = 500 ns. 

Complexity estimates 
We assume that the basic building  block of the network is 
a 128 X 128-crosspoint chip. Such a chip would require a 
300-pin package, which is  well  within the capabilities of 
current technology [ 121. A 512-port collision-crossbar 
plane, therefore, could  be constructed with a  4 X 4 array 
of chips. Thus, for a design  with  eight planes, the collision 
crossbar would require 128 chips. Likewise, the return 
crossbar could  be constructed with 16 chips (one plane). 
An additional 160 chips are required for the data-transport 
crossbar (ten planes). We assume that the Delta network 
could be constructed with 100 chips for a design such as 
that found in [l], but  with a denser and  much slower 

technology. Thus, the network structure, consisting of the 
above four subnetworks, could be built  with a total of 372 
chips packaged on  24 printed-circuit boards. It would 
occupy a volume of three cubic feet. 

5. Performance  modeling  and  analysis 
The performance of the hierarchical network is a function 
of the collision probability. The purpose of this section is 
to model the hierarchical interconnection network, 
calculate the collision probability for various system 
parameters, and evaluate the overall system 
performance. 

Model description 
We  model the multiprocessor system by the closed 
queuing network shown in Figure 8. The population in the 
queuing network corresponds to the number of processors, 
which  is denoted by N .  There are four queuing  models: 
one for the processors, one for the memory modules, one 
for the forward-network path to memory, and one for the 
reverse-network path back to the processor. The queuing 
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Queuing network model. 

models for the processors and the network are delay 
models. Memory  modules are modeled  by independent 
single-server queuing systems. 

model  is described as follows.  After spending time  at a 
processor corresponding to the processing time between 
two consecutive cache misses (with mean Tp), a request 
leaves the processor and travels over the forward-network 
path to one of the memory  modules.  The request is queued 
at the memory  module in question until it receives its 
service and then returns to the originating processor 
through the reverse-network path. We denote the mean 
total network delay, including forward and reverse paths, 
by T, and the mean  memory delay, consisting of both 
queuing  and service at a memory  module, by T,. The 
mean cycle time of a request in this closed  queuing 
network (denoted by l / A )  is therefore given  by the 
sum 

1/A = T, + T, + T, , (1) 

and the system throughput (memory access rate) equals 
A = NA. 

The flow  of a request in such a closed  queuing network 

Expressions for the different delays are derived in [13]. 
The mean processing delay T, is  given  by 

C 
T =A 

p ep ' 

where Cp is the average processor instruction execution 
time, 0 is the average number of memory references per 
instruction, and p is the probability that a memory 
reference to the  local cache is a miss. Let p, denote the 
processor utilization, which is  defined as the fraction of 
time that the processor is busy and  not  waiting  for a cache 
miss  to be satisfied. The processor utilization is given  by 

p = A T .  (3) 

In order to derive the network delay T,,, we consider 
three types of network models, as shown in Figure 9: an 
ideal network, a fixed-delay network, and a hierarchical 
network. A comparison of the performance of systems 
utilizing these three types of networks will help us evaluate 
the relative merits of hierarchically interconnected 
multiprocessor systems. An ideal  network is a network 
without any delays ( T ,  = 0), and serves as a point of 
reference. A fixed-delay network consists of constant 
delays for the forward and reverse paths, which are 
denoted by D,. and Dr,  respectively. (Obviously, the 61 1 
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Network models:  (a)  ideal network; (b) fixed-delay network; 
(c) hierarchical  network. 

network delay is a nondecreasing function of the  traffic. 
But the assumption that the network delay is simply the 
network service time permits us to derive an upper bound 
on the network performance.) The  third type of network 
model that we consider is a hierarchical network. The 
forward path of this network, as previously discussed, 
consists of a hierarchy of two paths: a fast  path  with 
average delay Dr, and a slow  path  with an average, traffic- 
independent delay Dr,. We  may  let D, be the minimum 
network delay in order to determine an upper bound on 
network performance. We denote by a the probability that 
a request succeeds in taking the fast path. This event 
corresponds to the case in which only one request destined 
for a particular memory  module is generated in a given 
network synchronization cycle. If requests collide, they all 
receive negative acknowledgments, after a round-trip delay 
of 2Dr,, and then use  the slow path. We show that since 
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the probability a is  high, the traffic  flowing over the slow 
path  is rather light. Consequently, it is quite reasonable to 
neglect  queuing effects in the slow network. 

Thus, the network delay may be written as 

T, = aDrf + (1 - a)(2Drr + D,,) + Dr 

= Drf + (1 - a)(Drr + DtJ + Dr 9 (4) 

where Dr is the average delay of the reverse network path, 
which is assumed to be a crossbar switch. Since we 
assume that we  have at most one request outstanding per 
processor, collision cannot occur on the reverse path. The 
value of a may  be approximated [12] by 

cx = 1 - p ( p ,  + 6), (5) 

wherep is the probability that a request is generated from 
an active processor during a given network  synchronization 
cycle  and 

6 = ACJ2. (6) 

(Cn is the network synchronization cycle discussed in 
Section 4.) Approximating the processor delay by  an 
exponential distribution, we get 

= 1 - e -w, . 

A memory  module is modeled by a single-server queuing 
system. We assume that memory  modules are pipelined, so 
that a constant memory service time,  which is denoted by 
S, consists of  an initial service time S,, to access the first 
portion of the data being fetched, and a number of service 
epochs, each of length S , ,  to access consecutive portions 
of the data. For example, if a cache line  is  16 bytes long 
and the unit of memory access is four bytes, after a delay 
of S,, the first  four bytes are available  from  memory,  and 
subsequent four-byte portions become available every SI 
time units afterward. Thus, a total of S,, + 3S, time units 
constitute the memory service times. In this case, we 
assume that the processor becomes active as soon as the 
first four bytes are transferred over the return-network 
path. We approximate the behavior of a memory  module 
by that of  an M/D/l queuing system with  mean response 
time [13] 

where p,,, = AS is the memory  utilization. 
By  using Equations (3), (9, and (6) and substituting 

Equations (4) and (7) into Equation (l), we obtain a cubic 
equation in p,, 

- (7J + l)p, + 1 = 0, (8) 

where 
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u =  
S2 

and 

1 

S 
v = - (D, + Dr + S,, + TP). 

Equation (8) has a unique root in the interval [0, 11. 

Model validation 
To assess the error due to our model assumptions and 
analysis approximations, we simulated a system with 64 
processors [13].  We considered two types of networks: a 
buffered multistage interconnection network (MIN) and a 
hierarchical network. In the first case, the network 
consisted of 4 X 4 switches with a maximum  buffer size of 
four requests per port. In the second case, the hierarchy 
consisted of a 64 X 64 collision crossbar and a slow 
buffered MIN. In both cases, the return network was a 
crossbar. We obtained the relative disparity between our 
analytic model  and  simulation results for various values of 
the cache-miss probability. Our  model underestimates the 
network delay, since it does not take the network 
congestion into consideration. From simulation, we found 
the amount of underestimation to be  at  most 7%. Our 
model overestimates the  memory delay by at  most 6%. 
This discrepancy is  due  primarily to the assumption of 
Poisson arrivals at the memory  modules and the infinite- 
queue model. The relative disparity in system throughput, 
hence in the processor and memory utilizations, is at most 
5%. For a typical value of miss probability of  0.06, the 
relative disparity between model  and  simulation  for  both 
types of networks (MIN and hierarchical) is 2-3%. 

Performance analysis 
Using the model  and analysis presented in the previous 
section, we evaluate the performance of multiprocessor 
systems with hierarchical networks. It is interesting to 
compare the performance of such systems to systems in 
which the interconnection network is either ideal (zero 
delay) or nonhierarchical. For ked-delay networks, we 
consider two extremes: a fast network and a slow network, 
with forward-path delays D, = 200 ns and D, = 360 ns, 
respectively. The fast network corresponds to a crossbar 
switch that uses CMOS technology, whereas the slow 
network corresponds to a buffered  Delta network that uses 
a faster technology, such as bipolar.  The hierarchical 
network has a forward path that consists of two levels: a 
fast  path  similar to the fast  network with delay D,, = 200 ns, 
and a slow path that is slower than the slow network 
(D,, = 1080 ns) and uses the same technology as the fast 
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Effect  of  cache-miss  probability on processor  utilization 

path. In all networks, we assume the return-path and 
forward-path delays to be the same, i.e., Dr = D,,  or 
Dr = Dll. 

We assume that the cycle times of the processors and 
the network synchronization cycle are Cp = 100 ns (i.e., 
10-MIPS processors) and Cn = 40 ns (see Section 4), 
respectively, and that the memory service times are 
S,, = 80 ns and S, = 20 ns,  with a 4-byte access unit and 
16-byte cache lines. 

We consider two cases of  traffic distribution: uniform 
traffic, in which  memory  modules are selected with  equal 
probabilities, and skewed traffic, in which one of the 
modules is selected with a higher probability than  the other 
modules. 

Uniform trafic distribution 
System performance is evaluated as a function of the 
cache-miss probability p. In Figure 10, we  plot the 
processor utilization pp as a function of p for the various 
types of interconnection networks. As p increases, the 
request rate (the required network throughput) increases; 
thus, memory contention increases, resulting in poor 
performance. Since the processing time decreases, the 
effective  use of the processors decreases. This is evident in 
the case of the ideal network, in which requests are either 
at  the processors or memory  modules. For example, when 
p = 1, about 25% of the requests are at the processors and 
the remaining 75% are either waiting  at the memory 
module or being serviced there. By comparing the 
hierarchical network and the fixed  fast network, we  find 
that, for low p, both networks exhibit  almost identical 61 3 
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Processor  utilization  relative  to  ideal  networks. 

System  request  rate. 

performance. This is  due to the very small  collision 
probability, which causes very little  traffic to flow over the 
slow  path of the hierarchy. It is also interesting to note 
that even  for high values of p, the processor utilization  for 
the hierarchical network is higher  than that of the fixed 
slow network, even though the network in the latter is 
three times faster than the  slow path in the former. This 
suggests that the collision probability remains small  even 

61 4 for high  traffic rates, so that the existence of the fast path 
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in the hierarchical network overcomes the fact that its 
slow path is quite slow. 

In Figure 11, we  plot the ratio of processor utilization to 
that of an  ideal network. Typically, the miss probability is 
around 0.06 [13]. From the figure we see that for p = 0.06 
the performance of a hierarchical network is 72% of that of 
an ideal network. For p = 1.0, this decreases to about 
40%. For small values of p, the performance of a 
hierarchical network approaches that of a fixed fast 
network. 

The request rate A is plotted as a function of the miss 
probability p in Figure 12. For small p, memory references 
are mostly to cache; therefore, the request rate is  small. 
For medium values of p, the request rate increases almost 
logarithmically  with p for all network  types. It is  interesting 
to note that both the hierarchical and fixed fast networks 
have almost identical request rates for /? < 0.1 and that the 
throughput of the hierarchical network is uniformly  higher 
than that of the fixed slow network (the Delta network). 

Another quantity of interest is a, the probability that a 
request does not  collide  with other requests going to the 
same memory destination during the same network 
synchronization cycle. This is a crucial performance 
measure for hierarchical networks. In Figure 13, we  plot a 
as a function of the cache-miss probability p. We note that 
a is always greater than 0.93; i.e., at least 93%  of memory 
references succeed in using the fast path, and at most 7% 
use the slow path. Again, this shows the validity of the 
assumption of our model that queuing delays due to using 
the  slow  path are negligible. 

The  effect on network performance of other factors, 
such as line length, processor speed, and memory speed, is 
described in [ 131. 

Skewed trafic distribution 
In the previous section, we assumed that memory 
references are uniformly distributed among the different 
memory  modules. In fact, the memory access pattern may 
be skewed, due to the possibility of a “hot spot,” where a 
large  number of processors refer to the same memory 
location [5]. To model such a skewed access pattern, we 
assume that a fraction y of  all memory references is 
destined to a particular memory  module, which we refer to 
as  a “hot module,” or HM. The remaining fraction (1 - y) 
is  uniformly distributed among all memory  modules. Thus, 
the access rate of the HM is  given by 

A ~ ~ = A  y + -  ( I N Y ) ?  

where N is the number of processors, as well as the 
number of memory  modules,  and A is the total system 
throughput. The HM utilization, which is denoted by p,““, 
is obtained by multiplying AHM by the memory service time 
S ,  yielding 
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where p, = hS/N denotes the average memory  utilization. 

obtain the processor utilization 
By  multiplying T, [given  by Equation (2)] by A, we 

Substituting p, from Equation (9) into Equation (10) yields 

p ,  = - sep [I + (N  - l)yl’ 
which  gives the processor utilization as  a function of the 
utilization of the “hot module.” Since p/M < 1, an  upper 
bound on the processor utilization  is  given  by 

where a = CP/{SO[l + (N - l)y]} is a constant. 
Equation (11) is a very interesting relationship between the 
processor utilization bound p, and the miss probability /3 
when the “hot module” is busy with probability close to 1. 
In such a case, pp is inversely proportional to p. This 
behavior  is  depicted in Figure 14, for a system with N = 512 
processors, where we evaluate p, for y varying from 0 to 
0.1. The case y = 0 corresponds to a uniform  memory 
access pattern (as displayed in Figure 11). As y increases, 
we find that pp, a function of p. approximates alp,  given 
by Equation (11). This suggests that the utilization of the 
“hot module” approaches its upper limit of  1. It is 
interesting to note that even for a small value of y ,  system 
performance is degraded quite significantly  for a wide 
range of values of the miss probability. 

The analysis presented above shows that the processor 
utilization is  limited  by  memory rather than communication 
bandwidth. It also supports the suggestion  [2] to 
incorporate a fetch-and-add network into a connection 
hierarchy with  an  average performance close to that of a 
network with  no  combining. This may be an  effective  way 
to handle “hot spots” without  much penalty to overall 
system performance. 

6. Conclusions  and  summary 
In this paper, we have presented a new approach to 
interconnection network design for high-performance 
multiprocessors. This approach assumes a hierarchy of 
subnetworks, each with  different performance and 
complexity characteristics, that is analogous to a memory 
hierarchy. We showed that the complexity of the control 
mechanism  is the primary  limiting factor in large crossbar 
networks, whereas performance is the limiting factor in 
large  multistage networks, and that a combination of 
networks in a hierarchy of paths can alleviate such 
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problems. We studied an  example hierarchy, consisting of 
crossbar and  multistage subnetworks, that is realizable 
with current VLSI technology. Through  modeling  and 
analysis, we investigated the performance of the example 
hierarchical network as  a function of several parameters. 
We showed that its performance is close to that of a fast 
crossbar network. 61 5 
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We believe  that  network  control (Le.,  buffering, 
contention  resolution,  and  pacing)  may be a limiting  factor 
in  multistage  networks, as well.  This  suggests  the 
possibility of a hierarchy  of  multistage  networks,  with  the 
fastest having no buffers. 
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