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The design of interconnection networks is a
central problem in parallel computing,
especially for shared-memory systems, where
network latency, or delay, is one factor that
limits system size. This paper discusses
aspects of one particular approach to network
structure, a design comprising a multiplicity of
subnetworks that form a hierarchy of paths.
The hierarchy includes fast paths that are used
in the absence of contention, and alternate
paths with contention resolution. That is, just
as in the case of a memory hierarchy, the
fastest component of the hierarchy that can
provide the desired function is utilized at a
given time. The viability and robustness of
hierarchical networks is studied first by
examining circuit and implementation issues,
and then by considering performance modeling
and analysis. The overall performance of the
hierarchy is shown to be close to that of a
contention-free network of fast paths.

1. Introduction

Shared-memory and message-passing architectures are
widely studied designs for parallel machines. In this paper
we deal mainly with shared-memory systems, because we
believe that the interconnection network in shared-memory

architectures affects the performance more significantly
than in other parallel architectures (e.g., message-passing).
A critical parameter in such a network is latency, or delay,
which we investigate in this paper.

Storage in a shared-memory system may take the form
of a set of distinct memory modules with uniform speeds
of access by all processors. Alternatively, as in [1],
memory may be shared and distributed, with part of the
global memory associated with each processor. In this
paper we concentrate on the latter type of organization.
Consider a system with N processors (each with a cache
and private memory) and N memory modules that hold
shared data. Let each memory module be associated with
one of the processors, so that an N X N network, or
switch, is sufficient to connect a processor with any other
processor-memory-module pair. The fact that data are
shared may impose quite stringent performance
requirements on the network, since every data reference
may require a round trip. This point can be better
illustrated as follows: Let us assume that in a shared-
memory system, the delay for accessing data through the
network must be no greater than a small number of
instruction cycles (e.g., three [1]), in order to avoid
significant performance degradation. This means that in a
system with 10-MIPS processors (i.e., instruction cycles of
100 ns), the combined total of the round-trip network delay
and memory access time must be under 300 ns; if a system
were to be built with 100-MIPS processors, the maximum
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Typical 8 X 8 interconnection networks: (a) partitioned crossbar;
(b) multistage.

latency would be reduced to only 30 ns. This requirement
makes the design of the network very critical.

The types of networks we consider are crossbars and
multistage networks such as banyans [2]. By a crossbar,
we mean a single-stage, nonblocking circuit switch
(implementable, for example, as an N X N array of
crosspoints). Figure 1(a) is a diagram of an 8 x 8 crossbar.
Multistage networks consist of sets of nodes (collections of
switching elements, such as crossbars), each with input
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and output ports. Figure 1(b) is a diagram of an 8 X 8
multistage network with nodes consisting of 2 X 2
crossbars.

Crossbars have a circuit complexity of O(N?), and
multistage networks typically have a complexity of
O(N log N), so it is sometimes argued that the latter are
preferable for large N. However, there is a large range of
values within which crossbars perform well and are
practical. With modern implementations, crossbars of size
up to N ~ 1000 appear reasonable. In fact, the limit seems
to be tied more closely to the problem of control (i.e.,
contention resolution) than to the quadratic growth in the
number of crosspoints, usually considered to be the
limiting factor. On the other hand, for large N, multistage
networks may not have sufficiently high performance. As
an example of the performance limitations of multistage
networks, we note that in at least one instance [1] the
system performance requirements have led to a design in
which the multistage network had to be implemented with
a circuit technology considerably faster than that of the
processors.

The limitations of conventional multistage or crossbar
networks for shared-memory architectures have led us to
explore an alternative approach to network design: one
that employs a hierarchy of networks that may include a
combination of crossbars and muitistage networks. We
have found that such an approach can produce a network
with sufficiently high performance at a reasonable cost. In
this paper, we present the hierarchical network approach,
first by reviewing reasons for a multiple-network structure
(Section 2) and then by discussing network design and
implementation issues (Sections 3 and 4). Finally, we
present performance modeling and analysis results
(Section 5).

2. Network performance limitations and design
strategies

Network latency is the sum of the time required for the
start of the message to travel from source to destination
and the transmission time for the remainder of the
message. The latter can be decreased almost arbitrarily,
within the limits of a given technology, by using parallel
paths. The former is a function of a) network design
parameters, such as the amount of buffering encountered
en route, the number of chip crossings (number of times
signals go from chip to chip), and the number of levels of
logic, and b) contention due to network traffic. Contention
can be either for paths or for access to network control
logic. In a typical network, new messages arrive, may be
stored (buffered) internally, and ultimately are delivered to
their destinations. A message may contend with new
messages, stored messages at the input, or stored
messages at the output (because of possible buffer
overflow). The above suggest that network latency may be
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reduced by using structures that have little or no
contention for paths, such as crossbars, and by directing
data flow (at least most of the time) over paths that have
no buffering, few chip crossings, and few levels of logic.
These paths can be associated with either crossbars or
multistage networks.

Crossbars typically have few chip crossings and the
nonblocking property. In its simplest form, a crossbar can
be viewed as a grid of crosspoints in which a single
crosspoint is activated to connect an input to an output.
Because of the pin limitations of chip packages, large
crossbars must be partitioned into smaller subnetworks.
For example, the crossbar of Figure 1(a) is partitioned into
four 4 x 4 subnetworks. The partitions can be
interconnected by means of buses [3], so that an input can
be connected to an output by the activation of a single
partition. This implies that the data-transfer delays of a
large partitioned crossbar could be as small as those of a
single-stage network. The number of crossbar partitions
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that can be interconnected by a single bus depends on the
fan-out characteristics of the technology used for the
partition implementation. With current VLSI technology,
crossbar partitions can be interconnected by means of a
single bus for fairly large shared-memory multiprocessor
systems (e.g., N = 512).

As previously pointed out, crossbars are sometimes
regarded as impractical because of the O(N”) growth of
the number of crosspoints. However, the speed of control
for large crossbars can present a more severe problem. An
N x N crossbar can be controlled by a single controller
that serially responds to connection requests received from
the ports. (As many connections as desired may exist
simultaneously.) But this approach can result in long
queuing delays when N is large. Alternatively, the fastest
control possible may be achieved by providing a controller
at each output port and dedicated, direct signal paths from
each of the input ports to each of the output port
controllers (Figure 2). When an input port requires a
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connection to a particular output port, it sends a request
message to the controller of the output port. The controller
resolves any possible contention for the port, due to

condition bufferless networks can have problems—i.e., the
number of required retries can be large. This forces the

source to keep trying until a successful transmission takes
requests received simultaneously from multiple input ports,  place, and may lead to long delays. It also carries risks

and sets up a data path through the crosspoints. This associated with instabilities in the case of a large number

scheme requires NV outgoing control lines from every input  of contending sources 7).

port, and N incoming control lines to every output port.

The resulting wiring complexity is of O(2N*/P), where P

is the number of chip package pins allowed by the

implementation technology.

By contrast, the data-transport part of the crossbar,
which can be, as previously discussed, a matrix of simple
crosspoint switching elements, requires only O[(2N/P)?]
chips. This is a dramatic difference in complexity. For
example, with N = 512 and P = 256 (a typical number of
pins with modern packaging technologies), data transport
would require approximately 16 chips, while fast contention
resolution would require of the order of 2000 chips.

An alternative approach to the scheme outlined above
shares one controller among multiple output ports. This
reduces the wiring complexity but requires the introduction
of additional complexity in the messages, e.g., addressing
information, which causes transfer and processing delays.
Furthermore, the sharing of a controller by multiple ports
results in queuing delays as well.

Multistage networks, on the other hand, are structured
so that data transmissions must pass through log, N
sequential network stages, each of which is a k X k
crosspoint switch. The network of Figure 1(b) has three
stages of 2 X 2 crosspoint switches. The network stages
are connected by point-to-point interconnections, unlike
the bus interconnections of partitioned crossbar networks;
thus, they are not constrained by the fan-out
characteristics of the technology. But the performance of
the network is affected by its blocking nature and by the .

data-transfer delays between the stages. The latter can be 3. Example of a hierarchical network
a significant factor, as the transmission speed of the off-

chip data paths is considerably less than that of the on- ® Network organization

chip paths (typically, smaller by an order of magnitude).
This is primarily due to transmission-line capacitances and
the simultaneous off-chip driver (OCD) switching
limitations of chip packages [4]. The blocking effects of the
multistage network can be reduced by utilizing buffers at
each stage. But the buffers, and their associated circuitry,
increase the overall complexity of a stage, thus limiting the
number of stages that can be integrated on a single chip.
This results in a greater number of chip crossings and,
consequently, in an increase in the delays associated with
the data transfer.

Networks with no buffers in which messages are
retransmitted upon contention can work well if the traffic
is sufficiently low. However, in general, there will be
traffic nonuniformities in space as well as time (e.g., “‘hot
spots” [5]). It has been shown [6] that under the former

The problems of slow performance in multistage
networks and control complexity in crossbars can be
alleviated by employing a structure that uses a
combination of networks. The result can be viewed as a
hierarchy of paths (studied more abstractly in [8}), for
which we show that the latency can be, on average, close
to that of the fastest path. The performance of the network
hierarchy is analogous to that of a storage hierarchy,
whose average performance in a good design is largely
determined by the speed of the fastest component.

Aside from the above network traffic problems, there
may also be congestion associated with saturation of a port
that contains a hot spot [5]. Here, combining of memory
operations (e.g., via fetch-and-adds) has been suggested as
an approach. This, however, requires a network of
substantial complexity and, therefore, delay. This
complexity is not required under normal traffic
conditions—that is, conditions under which requests would

traverse the fast path in the hierarchy (discussed below).

The path hierarchies we consider here have only two
levels, but this need not be true in general. Also, path
hierarchies are not necessarily limited to cases that include
a crossbar. Considerations similar to those we discuss
below may lead to hierarchical organizations for other
classes of networks, but we have concentrated on uniform-
distance networks. Some preliminary results of the
hierarchical-network approach are presented in [9].

For the purpose of this discussion, we assume that the
network outlined in the Introduction interconnects a
distributed, shared-memory system. The interconnection
network consists of a control-signal network and a data-
transport network. The control-signal network is a
hierarchical network of the sort discussed throughout this
paper. The data-transport network is simply a crossbar,
referred to below as the data-transport crossbar.

In this section we illustrate the hierarchical-network
principles by means of an example, shown in Figure 3 (for
N = 512). This network consists of three subnetworks,
each of 512 inputs and outputs: a collision crossbar, a
return crossbar, and a Delta network.

These subnetworks are used to form a two-level
hierarchy of paths. A fast path is provided by the collision
crossbar, which can reliably deliver requests from a
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processor to a memory only in the absence of contention.
A slow path is provided by the Delta network, which
guarantees the delivery of messages to memories under all
traffic conditions. A return path for sending
acknowledgments from memories to requesting processors
(indicating that the requests were properly received) is
provided by the return crossbar. The transmission of
acknowledgment messages is simultaneous with other
memory operations, such as accessing, in order to
minimize the protocol delays in the fast path. Data are sent
over the data-transport crossbar.

The collision crossbar performs collision detection but
not contention resolution. Contention in the collision
crossbar by more than one input (processor) for a path to
the same output (memory module) is detected at the
output; thus, the complexities associated with contention
resolution, discussed in Section 2, are avoided. Collision
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detection can be done by detecting errors in the
transmitted bit stream [e.g., CRC (cyclic redundancy
check) errors, or transmission-code violations] [10].

The data-transport and return crossbars have neither
contention-resolution nor contention-detection mechanisms,
because of the absence of collisions in the return path from
the memories to processors. This is due to the nature of
our protocol, in which only one outstanding request from a
processor to a memory is allowed at a given time.

The Delta network is a multistage network of log, N
stages with store-and-forward capability at each stage,
such as the Omega network found in [1].

& Communication protocol
All communication in the example network is done via
messages, which have one of the two formats shown in

Figure 4: 607
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or write); and error-detection code (7 bits)—for a total
of approximately 6 bytes.

2. Data messages (sent over the data-transport crossbar)
consist of a destination address (9 bits); cache-line ID
field (24 bits); data field (16 byres); and CRC field
(7 bits)—or approximately 21 bytes.

o ; The sizes of the data and cache-line ID fields may vary,
1 byt;”, i "‘lbits‘1 ~ depending on system design considerations.

' e e Figure 5 shows the network protocol for memory read
operations. A request from a processor, generated at time
t,, enters the collision crossbar (CC) synchronously, under
the control of a global clock (at time ¢,).

In the case of noncontention, the request is received at
e the memory at time ¢,, when a determination is made as to
Formats of network messages: (a) request message; (b) data whether a collision has occurred. Two concurrent
message. operations are initiated at time ¢,: 1) the memory access
’ cycle is started, and 2) an acknowledgment message
(ACK) is sent back to the requesting processor and
1. Request messages consist of a destination-address field received at time 7,. When the data become available from

of log N bits, where N is the number of processors and  the memory at time ¢, they are shipped to the processor

s By

of memories (in this example it would be 9 bits); a on the data-transport crossbar. The data transmission is
source-address field (9 bits); a cache-line ID field complete at time ¢,.
(24 bits); a field containing control information, for In the case of contention, collision is detected and the

indicating the type of memory operation requested (read  request is ignored; consequently, no acknowledgment

Hierarchical network protocol: (a) no contention; (b) contention. CC = collision crossbar.
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message is returned to the requesting processor from the
memory. The processor, upon expiration of a time interval
T (at ¢,) during which it expected to receive the
acknowledgment, retransmits the request over the Delta
network (time #;). The request is received at the memory
at time #,, after which the same sequence of steps £,~¢,, as
described in the ““noncontention’ case, is repeated.

& Self-routing crosspoint chip

The basic building block of the collision and other
crossbars is the self-routing crosspoint chip, shown in
Figure 6. The crosspoint chip is organized as an array of
crosspoints C,.. A message enters the chip, as a series of
bits, from an input pin J; and is directed to an address
decoder circuit A,. The address bits of the message are
then decoded and select an output O, by activating a
crosspoint C,.. After a path is thus established between an
input and an output, the message, stripped of its
destination address bits, is sent to the destination.

The bandwidth of the serial path is dependent on the
technology used to implement the crosspoint chip. If the
bandwidth provided by a single chip is insufficient, the
required bandwidth can be obtained by using multiple
chips in parallel (i.e., several switching planes). For
example, if k chips are used, a message of n address and
m data bits can be transformed into k£ frames, each
consisting of n address and m/k data bits. Each frame can
then be sent via a separate crosspoint chip, with the data
bits from all frames assembled at the destination to
reconstruct the original message. Techniques exist for
providing the clock distribution and synchronization
required [11].

Since contention in the collision crossbar is detected at
the destination, the output circuits of the crosspoint chips
must be designed to protect against current overload
conditions, thus preventing collisions from damaging the
chips.

A variation of the above scheme to protect against
current overload would be to provide collision-detection
circuits at the outputs of each crosspoint chip. These
circuits would monitor the status of their corresponding
bus lines and, if traffic or collisions were detected, would
signal the source to abort the transmission and retransmit
on the slow path.

4. Performance and complexity estimates

The following analysis of the example network shows the
feasibility of the hierarchical approach. The basic objective
of this study is to show that with a currently available
technology such as CMOS—a dense but low-power
technology—we could build a network of size 512. The
goal of this evaluation is to design a network with
reasonable hardware complexity that can transfer 16-byte
data words within five processor cycles, on the average.
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8 Network delay

The message delay through the network depends on the
delays incurred in the fast and slow paths. As previously
discussed, if contention occurs at the fast path (collision
crossbar), the message is retransmitted over the slow path
(Delta network).

If we assume no contention for the networks, the
network delay, as illustrated in Figure 7, can be derived as
follows: We assume that the collision and return crossbars
have eight and ten switching planes, respectively. We also
assume that a memory request can be sent to the collision
crossbar at the beginning of a transmission synchronization
cycle. The length of the transmission synchronization cycle
is four network global clock cycles. Since the memory
requests can occur randomly with respect to the beginning
of the synchronization cycle, we assume a 50% average
delay for the beginning of a transmission, or two network
cycles. The destination address header of a message
(9 bits) requires nine cycles to enter the collision crossbar
and be decoded. The remaining five message bytes for a
request message require five cycles (over the eight
switching planes) to be transferred to the destination.
Thus, a message requires an average of 16 cycles to
traverse the collision crossbar. (Circuit delay of the
crossbar itself is negligible.)

We further assume that the memory access requires the
equivalent of eight network cycles and that the assembly
of the data message requires two cycles. This activity is
overlapped with the transmission of the acknowledgment
message to the processor via the return crossbar and with
the set-up of the path for the transfer of the data message
in the data-transport crossbar. Finally, the data-message
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transfer on the data-transport crossbar over ten switching
planes requires 16 cycles (20 bytes). The total number of
network cycles is, therefore, 16 + 10 + 16 = 42 plus the
cable delay. We assume 20-ns cable delays between each
network adapter and the crossbar. If we assume a cycle
time of 10 ns, the total transfer delay is 42 X 10 ns +

4 x 20 ns = 500 ns.

® Complexity estimates

We assume that the basic building block of the network is
a 128 x 128-crosspoint chip. Such a chip would require a
300-pin package, which is well within the capabilities of
current technology [12]. A 512-port collision-crossbar
plane, therefore, could be constructed with a 4 x 4 array
of chips. Thus, for a design with eight planes, the collision
crossbar would require 128 chips. Likewise, the return
crossbar could be constructed with 16 chips (one plane).
An additional 160 chips are required for the data-transport
crossbar (ten planes). We assume that the Delta network
could be constructed with 100 chips for a design such as
that found in [1], but with a denser and much slower
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technology. Thus, the network structure, consisting of the
above four subnetworks, could be built with a total of 372
chips packaged on 24 printed-circuit boards. It would
occupy a volume of three cubic feet.

5. Performance modeling and analysis

The performance of the hierarchical network is a function
of the collision probability. The purpose of this section is
to model the hierarchical interconnection network,
calculate the collision probability for various system
parameters, and evaluate the overall system
performance.

® Model description

We model the multiprocessor system by the closed
queuing network shown in Figure 8. The population in the
queuing network corresponds to the number of processors,
which is denoted by N. There are four queuing models:
one for the processors, one for the memory modules, one
for the forward-network path to memory, and one for the
reverse-network path back to the processor. The queuing
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models for the processors and the network are delay
models. Memory modules are modeled by independent
single-server queuing systems.

The flow of a request in such a closed queuing network
model is described as follows. After spending time at a
processor corresponding to the processing time between
two consecutive cache misses (with mean T ), a request
leaves the processor and travels over the forward-network
path to one of the memory modules. The request is queued
at the memory module in question until it receives its
service and then returns to the originating processor
through the reverse-network path. We denote the mean
total network delay, including forward and reverse paths,
by T and the mean memory delay, consisting of both
queuing and service at a memory module, by T . The
mean cycle time of a request in this closed queuing
network (denoted by 1/A) is therefore given by the
sum

YA =T +T,+T, 1)

and the system throughput (memory access rate) equals
A =N

Expressions for the different delays are derived in [13].
The mean processing delay T is given by
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= Cp
I, = 0B’ @)

where Cp is the average processor instruction execution
time, 6 is the average number of memory references per
instruction, and B is the probability that a memory
reference to the local cache is a miss. Let Py denote the
processor utilization, which is defined as the fraction of
time that the processor is busy and not waiting for a cache
miss to be satisfied. The processor utilization is given by

p,=AT,. 3)

In order to derive the network delay T, we consider
three types of network models, as shown in Figure 9: an
ideal network, a fixed-delay network, and a hierarchical
network. A comparison of the performance of systems
utilizing these three types of networks will help us evaluate
the relative merits of hierarchically interconnected
multiprocessor systems. An ideal network is a network
without any delays (T, = 0), and serves as a point of
reference. A fixed-delay network consists of constant
delays for the forward and reverse paths, which are
denoted by D, and D, respectively. (Obviously, the
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Network models: (a) ideal network; (b) fixed-delay network;
(c) hierarchical network.

network delay is a nondecreasing function of the traffic.
But the assumption that the network delay is simply the
network service time permits us to derive an upper bound
on the network performance.) The third type of network
model that we consider is a hierarchical network. The
forward path of this network, as previously discussed,
consists of a hierarchy of two paths: a fast path with
average delay D, and a slow path with an average, traffic-
independent delay D, . We may let D be the minimum
network delay in order to determine an upper bound on
network performance. We denote by « the probability that
a request succeeds in taking the fast path. This event
corresponds to the case in which only one request destined
for a particular memory module is generated in a given
network synchronization cycle. If requests collide, they all
receive negative acknowledgments, after a round-trip delay

of 2D, and then use the slow path. We show that since
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the probability « is high, the traffic flowing over the slow
path is rather light. Consequently, it is quite reasonable to
neglect queuing effects in the slow network.

Thus, the network delay may be written as
T =aD,+ (1 -a)2D,+ D) + D,

=D, +(1-a)D,+D)+ D, 4)

where D _is the average delay of the reverse network path,
which is assumed to be a crossbar switch. Since we
assume that we have at most one request outstanding per
processor, collision cannot occur on the reverse path. The
value of a may be approximated [12] by

a=1-plp, + b), )

where p is the probability that a request is generated from
an active processor during a given network synchronization
cycle and

8 = AC/2. (6)

(C, is the network synchronization cycle discussed in
Section 4.) Approximating the processor delay by an
exponential distribution, we get

Ty

p=1l-e

A memory module is modeled by a single-server queuing
system. We assume that memory modules are pipelined, so
that a constant memory service time, which is denoted by
S, consists of an initial service time S, to access the first
portion of the data being fetched, and a number of service
epochs, each of length S, to access consecutive portions
of the data. For example, if a cache line is 16 bytes long
and the unit of memory access is four bytes, after a delay
of S, the first four bytes are available from memory, and
subsequent four-byte portions become available every S,
time units afterward. Thus, a total of §, + 35, time units
constitute the memory service times. In this case, we
assume that the processor becomes active as soon as the
first four bytes are transferred over the return-network
path. We approximate the behavior of a memory module
by that of an M/D/1 queuing system with mean response
time [13]

p S

m

T =—"
1 -p,)

where p_ = AS is the memory utilization.

By using Equations (3), (5), and (6) and substituting
Equations (4) and (7) into Equation (1), we obtain a cubic
equation in p_,

+S,, V)]

1
W;+@-u—§%i—w+n%+l=& ®

where
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v=o(D,+D, +8,+T).

Ll -

Equation (8) has a unique root in the interval [0, 1].

® Model validation

To assess the error due to our model assumptions and
analysis approximations, we simulated a system with 64
processors [13]. We considered two types of networks: a
buffered multistage interconnection network (MIN) and a
hierarchical network. In the first case, the network
consisted of 4 X 4 switches with a maximum buffer size of
four requests per port. In the second case, the hierarchy
consisted of a 64 X 64 collision crossbar and a slow
buffered MIN. In both cases, the return network was a
crossbar. We obtained the relative disparity between our
analytic model and simulation results for various values of
the cache-miss probability. Our model underestimates the
network delay, since it does not take the network
congestion into consideration. From simulation, we found
the amount of underestimation to be at most 7%. Our
model overestimates the memory delay by at most 6%.
This discrepancy is due primarily to the assumption of
Poisson arrivals at the memory modules and the infinite-
queue model. The relative disparity in system throughput,
hence in the processor and memory utilizations, is at most
5%. For a typical value of miss probability of 0.06, the
relative disparity between model and simulation for both
types of networks (MIN and hierarchical) is 2-3%.

® Performance analysis

Using the model and analysis presented in the previous
section, we evaluate the performance of multiprocessor
systems with hierarchical networks. It is interesting to
compare the performance of such systems to systems in
which the interconnection network is either ideal (zero
delay) or nonhierarchical. For fixed-delay networks, we
consider two extremes: a fast network and a slow network,
with forward-path delays D, = 200 ns and D, = 360 ns,
respectively. The fast network corresponds to a crossbar
switch that uses CMOS technology, whereas the slow
network corresponds to a buffered Delta network that uses
a faster technology, such as bipolar. The hierarchical
network has a forward path that consists of two levels: a
fast path similar to the fast network with delay D,, = 200 ns,
and a slow path that is slower than the slow network

(D, = 1080 ns) and uses the same technology as the fast
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path. In all networks, we assume the return-path and
forward-path delays to be the same, i.e., D, = D,, or
D =D,

We assume that the cycle times of the processors and
the network synchronization cycle are C, = 100 ns (i.e.,
10-MIPS processors) and C, = 40 ns (see Section 4),
respectively, and that the memory service times are
S, = 80 ns and S, = 20 ns, with a 4-byte access unit and
16-byte cache lines.

We consider two cases of traffic distribution: uniform
traffic, in which memory modules are selected with equal
probabilities, and skewed traffic, in which one of the
modules is selected with a higher probability than the other
modules.

Uniform traffic distribution

System performance is evaluated as a function of the
cache-miss probability B. In Figure 10, we plot the
processor utilization p, as a function of B for the various
types of interconnection networks. As B increases, the
request rate (the required network throughput) increases;
thus, memory contention increases, resulting in poor
performance. Since the processing time decreases, the
effective use of the processors decreases. This is evident in
the case of the ideal network, in which requests are either
at the processors or memory modules. For example, when
B = 1, about 25% of the requests are at the processors and
the remaining 75% are either waiting at the memory
module or being serviced there. By comparing the
hierarchical network and the fixed fast network, we find
that, for low B, both networks exhibit almost identical
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performance. This is due to the very small collision
probability, which causes very little traffic to flow over the
slow path of the hierarchy. It is also interesting to note
that even for high values of B, the processor utilization for
the hierarchical network is higher than that of the fixed
slow network, even though the network in the latter is
three times faster than the slow path in the former. This
suggests that the collision probability remains small even
for high traffic rates, so that the existence of the fast path
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in the hierarchical network overcomes the fact that its
slow path is quite slow.

In Figure 11, we plot the ratio of processor utilization to
that of an ideal network. Typically, the miss probability is
around 0.06 [13]. From the figure we see that for 8 = 0.06
the performance of a hierarchical network is 72% of that of
an ideal network. For 8 = 1.0, this decreases to about
40%. For small values of B, the performance of a
hierarchical network approaches that of a fixed fast
network.

The request rate A is plotted as a function of the miss
probability 8 in Figure 12. For small 8, memory references
are mostly to cache; therefore, the request rate is small.
For medium values of B, the request rate increases almost
logarithmically with S for all network types. It is interesting
to note that both the hierarchical and fixed fast networks
have almost identical request rates for 8 < 0.1 and that the
throughput of the hierarchical network is uniformly higher
than that of the fixed slow network (the Delta network).

Another quantity of interest is a, the probability that a
request does not collide with other requests going to the
same memory destination during the same network
synchronization cycle. This is a crucial performance
measure for hierarchical networks. In Figure 13, we plot «
as a function of the cache-miss probability B. We note that
a is always greater than 0.93; i.e., at least 93% of memory
references succeed in using the fast path, and at most 7%
use the slow path. Again, this shows the validity of the
assumption of our model that queuing delays due to using
the slow path are negligible.

The effect on network performance of other factors,
such as line length, processor speed, and memory speed, is
described in [13].

Skewed traffic distribution

In the previous section, we assumed that memory
references are uniformly distributed among the different
memory modules. In fact, the memory access pattern may
be skewed, due to the possibility of a ““hot spot,”” where a
large number of processors refer to the same memory
location [5]. To model such a skewed access pattern, we
assume that a fraction vy of all memory references is
destined to a particular memory module, which we refer to
as a ““hot module,”” or HM. The remaining fraction (1 — v)
is uniformly distributed among all memory modules. Thus,
the access rate of the HM is given by

1-v
/\HM=A('y+ ),

N

where N is the number of processors, as well as the
number of memory modules, and A is the total system
throughput. The HM utilization, which is denoted by ng,
is obtained by multiplying A™ by the memory service time
S, yielding
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P =1+ (N - 1)ve, )

where p = AS/N denotes the average memory utilization.
By multiplying T, [given by Equation (2)] by A, we
obtain the processor utilization

p=—L=—t0p . (10)

Substituting p, from Equation (9) into Equation (10) yields

HM

C, P

P T SeB [+ (N — 1]’

which gives the processor utilization as a function of the
utilization of the “*hot module.” Since p’” < 1, an upper
bound on the processor utilization is given by

a
p, < B’ (11)
where a = C {S§[1 + (N — 1)v]} is a constant.
Equation (11) is a very interesting relationship between the
processor utilization bound p, and the miss probability 8
when the ““hot module” is busy with probability close to 1.
In such a case, p, is inversely proportional to . This
behavior is depicted in Figure 14, for a system with N = 512
processors, where we evaluate p, for 7y varying from 0 to
0.1. The case y = 0 corresponds to a uniform memory
access pattern (as displayed in Figure 11). As vy increases,
we find that Py d function of B, approximates a/B, given
by Equation (11). This suggests that the utilization of the
“‘hot module”” approaches its upper limit of 1. It is
interesting to note that even for a small value of y, system
performance is degraded quite significantly for a wide
range of values of the miss probability.

The analysis presented above shows that the processor
utilization is limited by memory rather than communication
bandwidth. It also supports the suggestion [2] to
incorporate a fetch-and-add network into a connection
hierarchy with an average performance close to that of a
network with no combining. This may be an effective way
to handle ‘“hot spots’> without much penalty to overall
system performance.

6. Conclusions and summary

In this paper, we have presented a new approach to
interconnection network design for high-performance
multiprocessors. This approach assumes a hierarchy of
subnetworks, each with different performance and
complexity characteristics, that is analogous to a memory
hierarchy. We showed that the complexity of the control
mechanism is the primary limiting factor in large crossbar
networks, whereas performance is the limiting factor in
large multistage networks, and that a combination of
networks in a hierarchy of paths can alleviate such
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problems. We studied an example hierarchy, consisting of
crossbar and multistage subnetworks, that is realizable
with current VLSI technology. Through modeling and
analysis, we investigated the performance of the example
hierarchical network as a function of several parameters.
We showed that its performance is close to that of a fast
crossbar network.
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We believe that network control (i.e., buffering,
contention resolution, and pacing) may be a limiting factor
in multistage networks, as well. This suggests the
possibility of a hierarchy of multistage networks, with the
fastest having no buffers.
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