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A snoopy-cache-based  multiprocessor 
workstation  called TOP-1 (Tokyo research 
Parallel  processor-1)  was  developed to 
evaluate  multiprocessor  architecture  design 
choices  as  well  as to conduct  research on 
operating  systems,  compilers,  and  applications 
for multiprocessor  workstations. TOP-1 is a 
ten-way  multiprocessor using the  Intel 80386" 
microprocessor chip and  the  Weitek WTL 
11 67" floating-point  coprocessor  chip. It is 
currently running under  a  multiprocessor 
version  of AIX@, which was  also  developed  at 
the IBM Tokyo  Research  Laboratory.  Our 
research  interest was focused on the  design of 
an  effective  snoopy  cache (all caches  monitor 
all memory-cache  traffic)  system  and the 
quantitative  evaluation  of its performance. One 
of the unique  aspects  of  the TOP-1 design is 
that  the  cache  supports  four  different, original 
snoopy  protocols,  which may coexist in the 
system.  To  evaluate  the  performance,  we 
implemented  a  hardware statistics monitor  that 
gathers statistical data. This paper  focuses 
mainly on the TOP-1  cache  design-its 
protocol,  and its evaluation  by  means  of  the 
statistics monitor.  Besides its cache  design, 
TOP-1 has  three  other  unique  architectural 
features: two independently  arbitrated  64-bit 
buses  supported  by two snoopy-cache 

C :ontrollers Der process 
and interruption mecha 

;or, a  communication 
Inism for notifying other 

processors of  asynchronous  events,  and  an 
efficient  arbitration  mechanism to allow 
prioritized  quasi-round-robin  service  with 
distributed control. These  features  are  also 
described in detail. 

1. Introduction 
Multiprocessor workstations are a very promising solution 
to the continuously increasing need for computing power 
in workstations. In the past several years, shared-memory, 
shared-bus multiprocessors have been extensively analyzed 
and developed because of the simplicity of the hardware 
and  the  flexibility  with respect to various parallel- 
programming  models.  Most such multiprocessors use a 
snoopy-cache mechanism (in which all caches monitor all 
bus traffic between caches and shared storage) to reduce 
bus traffic  and to maintain  multicache coherency [l-41. 

Historically, the first  implementation of cache memory 
for a commercial computer was the IBM System/360TM 
Model 85 computer [5].  Multicache coherency mechanisms 
were implemented in the IBM  System/370TM  Model 168 [6] 
and 3033  [7] systems with a so-called "broadcast write- 
invalidation" scheme. Also, the IBM  308X system [8] 
included a so-called "directory" scheme for maintaining 
multicache coherency. 

The IBM Tokyo Research Laboratory has been  working 
on a multiprocessor workstation since 1986. As a research 
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vehicle, we developed a snoopy-cache-based 
multiprocessor workstation to evaluate the multiprocessor 
architecture design  and to do research on operating 
systems, compilers, and applications for multiprocessor 
workstations. An overview of the project is  given in [9]. 
The result, TOP-1 (Tokyo research Parallel processor-1), 
is a snoopy-cache-based ten-way multiprocessor with 
shared-memory architecture. 

The unique architectural features of TOP4 are the 
following: a mechanism that allows several different cache- 
coherency protocols to coexist in the system and to be 
changed  by software from one memory operation to the 
next; two-way-interleaved dual  64-bit buses, which are 
supported by two snoopy-cache controllers per processor 
card; a communication and interruption mechanism for 
notifying processors of asynchronous events; and an 
efficient arbitration mechanism that provides prioritized 
quasi-round-robin service with distributed control. 
Moreover, TOP-1 has a hardware statistics monitor that 
enables us to obtain various statistics on cache-algorithm 
performance, operating systems, and applications. 

In this paper, these important architectural features of 
TOP-1 are described. Performance results measured by  the 
statistics monitor are also described. In Section 2, the 
hardware organization of TOP-1 is described. Sections 3 
and 4 discuss considerations in the design of the memory 
system and the interprocessor communication mechanisms. 
In Section 5 ,  we  briefly discuss the performance results 
that were measured by  using the statistics monitor. 

2. System  organization 
One  major objective of the TOP-1 project is to study 
hardware and software trade-offs. We wanted to obtain 
run-time statistics, analyze them, and  reflect  the results in 
the  design of future multiprocessors. We also wanted to 
study the effectiveness of using run-time statistics to 
change the hardware algorithm (by the compiler  or the 
operating system) for dynamic system optimization. We 
therefore implemented  multiple snoopy-cache protocols 
and variable-priority arbitration mechanisms. 

As shown in Figure 1, TOP-1 is  organized around a 
shared bus. Attached to the bus are up to 128 megabytes 
(MB) of system memory  and  up  to 10 identical processing 
units (although the hardware implementation limit to the 
number of processors is 11, the standard configuration of 
TOP-I hardware consists of  10 processing units), each of 
which comprises an  Intel 80386TM microprocessor and a 
Weitek  WTL  1167TM  floating-point coprocessor, a 128- 
kilobyte ( K B )  snoopy cache, and a system-bus interface. 
(The 10-processor limit comes from various factors such as 
an  effective performance target of 30 MIPS, the back-plane 
physical dimension, and a reasonable box size.) Also  on 
the bus is a Micro Channel@ interface adapter card to 
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processor of TOP-1, through the Micro Channel interface 
standard. The adapter card also has a 128KB snoopy 
cache, through  which the PS/2 can directly access the 
TOP-1 shared bus, hence the system memory. This allows 
various I/O devices on the PS/2 to be used as the I/O 
devices of TOP-1. We built a special hard-disk controller 
to provide a hard-disk subsystem with high performance 
and large capacity. One of the ten processors is connected 
to the hard-disk controller via the local bus extension. 

3. Memory  system 
The  memory system uses a so-called snoopy-cache 
mechanism,  like those in other small-scale, tightly coupled 
multiprocessors [l-41, to reduce the bus traffic  and to 
maintain  multicache coherency. Its unique feature is that it 
supports four different protocols. 

Cache  organization 
The main specifications of the TOP-1 cache are as follows: 

128KB cache size: In general, a larger cache size results 
in a higher  hit ratio, hence better performance and lower 
system-bus traffic.  On the other hand, the cache size 
should not  be so large that it represents an expense out 
of proportion to the added performance, nor should it 
occupy an unreasonable fraction of the physical space. 
Moreover, in a multiprocessor system with  an update- 
type snoopy cache (described below), a  very large cache 
may increase the number of shared-state cache lines, 
thus requiring unnecessary updating of the cache lines. 
Considering these trade-offs, we adopted a fairly large 
cache size of  128 KJ3. 
64-bit  line size: In general, a larger  line size results in a 
higher hit ratio (even for a fixed cache size), hence better 
performance. On the other hand, since a large cache line 
is transferred over the bus by  using a so-called burst- 
transfer mode, a larger cache line requires a longer  time 
to complete the transfer. If  we assume extra time for 
transferring a larger cache line (this extra delay seen by 
the processor can  be eliminated by  using a fetch-bypass 
or load-through mechanism), the average memory-access 
time  is  not necessarily decreased, even if the cache-hit 
ratio is  slightly improved. Furthermore, the extra bus 
cycles needed to transfer a longer cache line  may cancel 
out the benefit of a small improvement in the hit ratio, 
even if the fetch-bypass mechanism can be  used. 
Moreover, in a multiprocessor with a snoopy cache, a 
larger  line size may increase the number of shared lines 
in the cache, since an entire cache line has to be in the 
shared state, even if only one byte in the  cache line is 
actually shared. In fact, our simulations show that the 
frequency of occurrence of shared cache lines for a 
128-bit  line  is about 1.5 times that for a 64-bit  line if we 
do not  use  any software techniques for gathering shared 
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data within a limited  memory area. In view of these 
criteria, we adopted a 64-bit  line size, which  is the same 
as the data width of the system bus. (We also believe 
that a much  longer cache line gives better performance, 
at least for a single processor, under conditions in which 
the fetch-bypass mechanism can be used, and that the 
burst transfer can  be  realized very efficiently in practice.) 
Direct mapping: There are also various trade-offs among 
large-set associativity, small-set associativity, and direct 
mapping as the cache placement algorithm. The  most 
important factor is  again the cache-hit ratio, as it is for 
the cache-line size. In general, larger-set associativity 
gives a higher hit ratio, hence better performance, since 
the mechanism  can easily handle several access streams 
(such as code fetch, source data access, and destination 
data access) with a number of processes running at a 
time,  each  with its access locality. This tendency is 
definitely true for a large system that executes a variety 
of very large jobs. For a large cache, however, the 
improvement in the hit ratio achieved by increasing 
associativity is  small [lo], since the probability of 
conflicts  on the same cache line  is very small if the 
cache is large enough. On the other hand, in practice, 
larger-set associativity results in larger circuit delays for 
the tag comparator, since more address tags  must be 
compared with the requested address. Furthermore, for a 
read hit, since the output from the data memory array of 
the set-associative cache must  be selected after the 
comparison of the tag  fields  has  been completed, an 
extra delay is incurred before the data become available 
to the processor. For these reasons (mainly for practical 
implementation reasons), we compromised on a direct- 
mapping cache. 

duplicated so that the processor and the bus-snooping 
hardware can access the cache tag  memory in parallel. 
Cache-access conflicts occur only  when the processor or 
the bus-snooping hardware requires the tag  memory to 
be  updated  and the other component has to read the tag 
memory in the same cycle, or when  both the processor 
and the bus-snooping hardware request the cache data 
memory to be accessed in the same cycle. A read access 
to the tag  memory  for a snoopy address comparison does 
not interfere with a cache access induced by the 
processor, as long as the processor cache access does 
not require the tag  memory to be updated with a new 
value. When cache access conflicts between the 
processor and  the bus-snooping hardware occur, the bus- 
snooping hardware has a higher priority than the 
processor. Therefore, the processor access is delayed at 
least one cycle, until the  conflict condition ends. This 
arbitration policy ensures that the snoopy access is 
completed in a fixed period, simplifying the system-bus 

Duplicated tag memory: The cache tag  memory  is 
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Snoopy protocol 
Each cache controller is  implemented  with  an  IBM  CMOS 
gate array with  16 000 gates. Both the cache tag  and data 
memories are implemented  by means of the IBM fast 
SRAM,  with a 30-ns access time  and  an 8K X 18-bit 
configuration. The controller manages the TOP-1 snoopy- 
cache protocols as well as the shared-bus interface, 
including the arbitration logic. It also includes the 
monitoring hardware for collecting statistics. 

A number of snoopy-cache protocols have been 
proposed, but none of them is considered to be ideal in  all 
situations [ll]. Coherency protocols can generally be 
classified as update or invalidate protocols, each of which 
is suitable for different situations. A novel aspect of TOP-1 
is that it supports both update and invalidate protocols. 
Furthermore, each type of protocol can have two modes: 
standard and block-I/O. In total, there are four protocol 
combinations, all  of which can exist in the system at the 
same time. On each processor, the protocol can be 
dynamically  changed  by program, from one memory 
operation to the next. 

In the TOP-1 protocols, each cache line  is in one of five 
states: clean-private (this is the only copy in the caches, 
and it has not been modified), dirty-private (this is the only 
copy in the caches, but it has been modified), clean-shared 
(other caches may  have a copy; this may or may  not be a 
modified copy, but write-back is  not needed at 
replacement), dirty-shared (write-back is required at 
replacement; other caches may  have a copy), or invalid 
(this does not contain valid  memory data). 

the CH (cache hit) line. The CH  line  is  an open-collector 
wired-OR  line that is activated by one or more snooping 
cache controllers when it holds a copy of the memory 
address broadcast by a requesting cache. The requesting 
cache controller can recognize whether any other cache 
has a copy of the requested memory address by examining 
the CH  line at the end of a bus cycle. 

Each cache controller has a “cache-mode register,” 
which uses two bits to specify the snoopy protocol type 
(update or invalidate) and the protocol mode (standard or 
block-I/O). The first  bit indicates “inv” (invalidate 
protocol) when “1.” The second bit indicates “I/O” 
(block-I/O mode)  when “1.” 

Figure 2 is a state-transition diagram of the TOP-1 
protocols, including both update and invalidate protocols. 
(For simplicity of discussion, only the standard mode  is 
depicted in the figure.  We discuss the block-I/O mode later 
in this section.) Both the state of the CH line  and the 
protocol-type bit control state transitions. 

The TOP-1 protocol can be described as follows: 

A special bus line  used to detect sharing is referred to as 

When one processor experiences a read miss: If another 
cache has a dirty-private or dirty-shared copy, that cache 
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State-transition  diagram for TOP-1 snoopy protocol. 

supplies the data, raises the CH line,  and sets the cache- 
line state (the state of the cache line  being read) to dirty- 
shared, because main  memory  is  not updated with the 
dirty data. (In the TOP-1 protocol, the dirty state implies 
responsibility for write-back to the main memory; hence, 
only one exists in the system at a time.) Otherwise, the 
data come  from  main store, even if they can be found in 
another cache (see the discussion below). Any cache 
with a clean-private or clean-shared copy raises the CH 
line and sets its local state of the cache line to clean- 
shnred. The requesting cache loads the cache line in the 
clean-shared state when the CH line is active. 
Otherwise, it loads the cache line in the clean-private 
state. 
When one processor experiences a cache hit for a write 
access: If the cache line  is dirty-private, the write can be 
completed locally without using the system bus, and no 
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state change occurs. If the cache line  is clean-private, 
the write can also be completed without using the shared 
bus, but the state is changed to dirty-private. If the 
cache line  is in either the clean-shared or dirty-shared 
state, the entire cache line  is broadcast over the system 
bus. Other caches with copies observe the bus. If the 
snoopy-protocol bit in the cache-mode register specifies 
the update protocol (not inv), those caches update their 
own copies with the new data on the bus and activate 
the CH  line. On the other hand, if the snoopy-protocol 
bit specifies the invalidate protocol (inv), those snooping 
caches invalidate their own copies and do not activate 
the CH  line.  The requesting cache can determine 
whether or not the cache line  is  still shared by  examining 
the CH line. If the CH line  is  not activated, the 
requesting cache changes the cache-line state to clean- 
private, since no other cache has a copy. If the CH  line 
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Example of coexistence of update  and invalidate protocols. 

is activated, the cache-line state remains in the clean- 
shared state, since sharing continues. 
When one processor experiences a cache miss for a 
write access: In the TOP-1 protocol, a write miss is 
performed as a combination of a read  miss  and a write 
hit. The requesting cache controller generates a read- 
miss access on the bus and  immediately generates a 
write access if the CH  line was raised during the read- 
miss access. Otherwise, the write is performed  locally 
without using the bus, because there is  no sharing. 

The  TOP-1 protocol is  designed to optimize the cache 
performance by  taking account of the difference between 
the cycle times of the cache memory  and the main  memory 
in the following  ways: 

In the TOP-1 protocol, clean data come from the main 
memory rather than another cache that has a clean copy. 
Since  the  main  memory  can  provide the data in three 
16MHz clock cycles, the same time as for the data 
response from a snooping cache, there is  no difference in 
access time between main memory  and a snooping 
cache. Of course, a cache can provide data to its own 
processor much faster than main  memory can (more 
specifically, a processor needs no  wait cycle to access its 
cache, but it needs three wait cycles to access main 
memory). From  the bus-access point of view, however, 
the cache cannot provide the data so rapidly, because 
the cache data memory  is accessed only after the cache 
tag  is  matched to the bus address, in order to reduce 
unnecessary cache data-array accesses because of bus 
snooping. Thus, the snooping cache requires at  least  two 
cache cycles to respond with  the data (signal flight time 
on the bus should also be added). This data-reply policy 
can reduce the interference between the processor- 
induced access and the bus-induced access on a 

596 snooping cache. (Interference would occur if another 
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cache replied  with a clean copy and delayed a cache 
access induced by the processor until the completion of 
the snoopy data-reply cycle.) 

memory  is  always updated with the new data, since main 
memory  can  be written in three bus-clock cycles, the 
same as the snooping cache-update time. This policy 
reduces the number of dirty lines in the cache that must 
be written back to main  memory at the time of 
replacement, hence reducing  the bus traffic induced by 
write-back activities. 

When a write access occurs on the bus, the main 

When a dirty copy is sent from the owning cache to a 
requesting cache, main  memory is not updated with the 
new data. This  policy  simplifies the memory- and cache- 
control logic, since every bus activity can be completed 
within a fixed  number of clock cycles. (On the other 
hand, if the cache owning the dirty cache line updates 
the main memory as well as the requesting cache, as in 
the Firefly protocol [2], extra cycles are needed to 
update the main memory.) Although this policy  may 
increase the number of dirty copies in the system, thus 
increasing the bus traffic caused by write-back activities, 
the effect  can  be relaxed, since in the TOP-1 protocol, 
every bus write updates the main memory  and changes 
the cache-line state from dirty to clean, as described 
above. 

One  can conclude from the above description of the 
protocol that a requesting cache need  not  know  which 
snoopy protocols (update or invalidate) the other caches 
use. Furthermore, the snoopy protocol bit in the cache- 
mode register of a requesting cache has no  influence on the 
operation of the cache controller, but the bit  affects the 
operation of a snooping cache. 

its operation through the response on the CH line  from 
other caches. Therefore, it should be noted that each 
cache controller can arbitrarily use either an update or an 
invalidate protocol at  any  time. Figure 3 shows an example 
in which two protocols coexist in the system. In the figure, 
processors 2 and 4 are using the update protocol, and 
processor 3 is using the invalidate protocol. The protocol 
used  by processor 1 is irrelevant in this case, since it is a 
requesting processor. When a write access occurs on the 
bus, the corresponding cache lines in processors 2 and 4 
are simultaneously updated with the new data on the bus, 
while the cache line in processor 3 is invalidated. The 
cache controllers of processors 2 and 4 activate the CH 
line,  but that of processor 3 does not.  In this case, the 
cache-line state in the processor 1 cache remains shared 
because the CH  line is activated. 

If  all cache controllers in the system are using the 

The requesting cache has only an indirect influence  on 

update protocol, the resultant protocol is  similar to that of 
the Xerox Dragon [l] and the Digital Equipment 
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Corporation Firefly [2]. If all cache controllers in the 
system are using the invalidate protocol, all  of the shared 
cache lines are invalidated in other caches when a write 
occurs, as in the Berkeley SPUR [3]. 

The block-110  mode is used for consecutive block data 
transfers to and  from external devices, in order to remove 
the cache lines that are no longer needed. Data transfer to 
and  from 1/0 devices must be carefully designed in order 
to maintain data consistency in the multicache system. In 
TOP-1,  we solved the problem by using the snoopy-cache 
mechanism  for the I/O subsystems (I/O Processor and  Disk 
Manager). This method, however, creates  a new  problem, 
since the amount of shared data in the system increases 
after data transfer. This is especially true after paging  from 
a hard  disk. The data read into the shared memory 
continue to reside in the Disk  Manager cache, even after 
the cache line has been used  by a requesting processor. 
The writing overhead for shared cache lines adds extra bus 
traffic  and degrades system performance. The block-I/0 
mode of cache protocol forces the cache line of the 
requesting cache to be written back to main  memory  and 
to be invalidated after the last  word of the cache line has 
been written from the I/O device. The second bit (rnode- 
modification bit) of the cache-mode register of each cache 
controller has no  influence  on the operation of the cache 
controller when it is a snooping cache, but it affects the 
operation when it  is a requesting cache. This control 
mechanism is orthogonal to the protocol-type control. 
Hence, it should be noted that each cache controller can 
be in either standard or block-I/O mode without regard to 
the protocol type. Although the block-I/O mode can also 
maintain cache coherency, even if  it  is used by the 
ordinary processors, it is intended to be  used  only  by the 
I/O Processor and the Disk  Manager. 

System bus 
As mentioned previously, the shared bus is a resource that 
limits system performance, even though a private cache is 
added to each processor to reduce the bus  traffic.  The 
usual  goals in system-bus design are to maximize the bus 
bandwidth and to minimize the delay, with a reasonable 
cost and complexity of hardware. 

There are various design choices for  the bus-transfer 
mechanism, to increase the bus bandwidth. An example  is 
a so-called block-transferred bus, which  can provide a 
higher bus bandwidth if the memory cycle time  is  much 
larger than the bus clock cycle, because one memory cycle 
is required for the first word but only one bus cycle for 
each consecutive word. With current technology, however, 
the memory access time  is only a few times larger than the 
bus cycle, because the bus cycle time  is  limited by delays, 
signal-flight  time,  signal reflection, and clock skews. In the 
case of TOP-1,  we  designed the bus  cycle  time to be 62.5 ns 
(16 MHz), the same as that of the processor clock, and the 
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main  memory access time  to  be 187.5 ns (three cycles of 
the bus clock) including error checking and correction. 
This being so, the data width of the bus and the shared 
memory should usually be as wide as the cache line size, 
since it is desirable to transmit an entire line in one 
transfer-cycle time. 

buses, arbitrated independently, each  with a 64-bit data 
width. The shared memory  and the cache are two-way 
interleaved on 8-byte address boundaries. In particular, 
when a processor accesses an “even address” (an even 
multiple of eight), the access goes to the “even cache.” If 
the access misses in the “even cache,” the “even cache 
controller” issues a memory-access request to the “even 
main memory” through the “even bus.” For an “odd 
address” (an odd  multiple of eight) access, the control 
mechanism  is similar. Consequently, the shared bus can 
provide an 85MBh effective data-transfer rate for  both 
read and write operations, since both require three 
16MHz bus cycles. 

Another novel aspect of the shared-bus design is the 
high-speed  and fair-service arbitration mechanism. With a 
unique arbitration mechanism,  which  we  named  “modified 
back-off arbitration,” the shared-bus arbitration is 
performed in one bus cycle (62.5 ns), using distributed 
control (the arbitration-control logic  is  found in all 
processors). Instead of  an encoded  arbitration  code, as used 
in so-called back-off mechanisms,  each requester issues a 
decoded  code on the bus according to its current request 
priority.  This  mechanism  allows  high-speed  arbitration, 
because no feedback  loop  is  required  to settle the  arbitration 
bus  signal.  After a requester has  obtained  the  right  to access 
the  bus as a result of the  arbitration,  each requester 
increments its priority, so that a quasi-round-robin  service is 
realized.  Moreover,  each requester can set its  priority range 
so that the arbitration  code is constrained to the  specified 
range.  Since  this  mechanism  allows processors to be 
classified  into several groups with  regard to the  arbitration 
priority  range, it is  useful  for process scheduling. For 
instance, some processors used for high-priority  processes 
can  run faster if a high-priority  range  is  assigned.  In  such  an 
application,  however, we  must  be  careful to ensure that all 
processors have  some bus access. 

Instead of using a block-transferred bus, TOP-1 uses two 

4. Multiprocessor  synchronization 
In general, multiprocessor synchronization can be 
implemented  by shared variables in the shared memory or 
by hardware message-passing mechanisms. TOP-1 
implements  both mechanisms. 

Interprocessor signaling 
Although  TOP-1  is a shared-memory multiprocessor, a 
message-passing hardware mechanism is also provided in 
order to allow the processors to communicate 
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asynchronous events or to interrupt one another. Messages 
are broadcast to processors specified as destinations, and 
any  number of processors can  be  specified.  The messages 
are received or discarded by the destination processors, 
according to the state of the receivers’ buffers. We provide 
two  kinds of message-passing protocols: Everybody 
messaging  and Anybody messaging. 

In Everybody messaging, all destination processors 
receive the message, and  an interrupt signal to all receivers 
is generated only  when all the specified receivers receive 
the message. If any of the destination processors cannot 
receive the message because of a full receive buffer,  none 
of them receives the message, and  no interrupt signal  is 
generated to any destination processor. This mechanism  is 
implemented  by  using a special bus line of wired-OR  logic. 
Each processor specified as  a destination activates the 
special bus line  when it cannot receive the message 
because of a full receive buffer. At the end of cycle, each 
destination processor examines the state of the special 
line,  and receives the message  only  when  the  line  is 
inactive, indicating that all of the specified processors can 
receive the message. The sender also examines the state of 
the special line  at  the  end of cycle and recognizes whether 
or not  the  message was successfully sent. Everybody 
messaging  is very useful, since it allows an operating 
system to maintain TLB (translation lookaside buffer) 
consistency among  multiple processors and also allows 
multiprocessing programming  languages to cause 
interruption of the execution of processors. 

In .4nybody  messaging,  each destination receives a 
message  and generates an interrupt signal to its processor 
if it can. Whenever one or more destinations receive the 
message, the sender detects that the  message was 
successfully received. This is implemented by using  the 
special bus  line of wired-OR  logic in a mode opposite to 
that of Everybody messaging. Each processor specified as 
a destination activates the special bus line  when it can 
receive the message because its receive buffer is empty. At 
the end of the cycle, the sender examines the state of the 
special line  and recognizes that the message was 
successfully sent when  the special line is active. The 
mechanism is useful for requesting a service of any 
processor that is ready to serve. 

Bus locking 
Shared-memory multiprocessors must  implement atomic 
“read-modify-and-write” operations. TOP-I implemented 
atomic operations with a so-called “bus-locking’’ 
mechanism in which the system bus is completely owned 
during an execution of the atomic read-modify-and-write 
operation. When a processor issues a locked instruction 
such as XCHG,  the bus is  locked without regard to cache 
hit or miss,  and  the effects of the memory  modification are 
broadcast instantaneously. This allows a spin  lock  on a 598 

s. 5 

semaphore to be effectively implemented by using 
cacheable shared-memory space with a “read-read-modify- 
and-write’’ technique. (A semaphore is examined by a read 
loop of nonlocked instructions, which  can  be  handled 
locally in the cache without issuing any bus access and 
affecting other caches. When the read loop detects that the 
contents of the semaphore are changed, the semaphore is 
examined  again  with a locked instruction to ensure mutual 
exclusion.) 

TOP-1 also provides a mechanism to lock the bus for a 
sequence of instructions. Two 1/0 instructions, called 
Lock and Unlock, lock  and  unlock the bus. A sequence of 
instructions enclosed by Lock and Unlock is executed 
atomically, since the bus is locked during the period. This 
mechanism provides a means of implementing  high-level 
synchronization operations, such as enqueue and dequeue, 
in a very effective way. 

5. Statistics  measurements 
The cache behavior of uniprocessors has been extensively 
discussed in the literature [lo], and some papers have 
reported on the cache performance of tightly coupled 
multiprocessors [ll-141. However, most such reports used 
software simulators driven by statistical parameters or 
traces, as did our preliminary performance evaluation. 

In contrast, we  used the hardware statistics monitor 
built into the TOP-1 cachebus controller to evaluate the 
actual cache and bus performance of TOP-1.  This monitor 
allows us to gather statistical data from the machine 
without any overhead. We can accurately count the 
number of fetches, including instructions that are 
prefetched but  not actually executed owing to prefetch 
queue flushes.  When a program  has a tight  loop that is 
intensively executed, software simulations usually  give 
incorrect results, because the effect of the prefetch queue 
cannot be taken into account. The statistical events 
captured by our monitor are as follows: 

Number of memory accesses (instruction fetch, data 

Cache hit ratio for each type of memory access. 
Number of write accesses to private-state cache lines 

Number of write-backs for dirty cache lines. 
Number of cache updates/invalidations from the snoopy 

Number of dirty-data replies to the requester. 
Number of bus cycles during which a processor waits for 

read, and data write, separately). 

and to shared-state cache lines. 

mechanism. 

the bus. 

In addition, we can dynamically specify the address 
range  (by  page boundaries) for  which the statistics monitor 
counts the numbers shown above. Thus, if the program 
mapping is previously known or can  be controlled by the 
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Table 1 Memory access  rates for three  benchmark  programs. 

Application Instruction fetch Data read Data write 
(%) (%) 

Parallel  MAKE Kernel  processor 
User  processor 

Kernel  processor 
User  processor 

Kernel  processor 
User  txocessor 

Edge  detection 

Ray  tracing 

86 
75 

84 
69 

88 
60 

10 
17 

12 
23 

9 
30 

4 
8 

4 
8 

3 
10 

Table 2 Cache-hit  ratios  for  three  benchmark  programs. 

Application Instruction fetch Data read Data write 
(%I (%) (%) 

Parallel  MAKE Kernel  processor 
User  processor 

Edge  detection Kernel  processor 
User  processor 

Ray  tracing Kernel  processor 
User  processor 

99.99 
99.40 

99.87 
99.95 

99.99 
99.54 

99.99 99.99 
99.69 97.28 

99.89 99.71 
99.42 99.44 

99.99 99.93 
99.19 99.67 

operating system, we  can selectively gather the statistics 
for each memory area. For example, we can get the cache 
hit ratio for the kernel only, for the synchronization 
variables only, or for processing data only. 

We gathered statistics for three benchmark programs, 
“parallel MAKE,” image-edge detection, and ray tracing. 
In “parallel MAKE,” each processor performs MAKE 
(C compile  and bind) independently for the same source 
code. Thus, the measurement is  not  for  parallel processing 
but for multiprocessing. The parallel edge-detection 
program detects edges in images of 1024 X 768 pixels  with 
256 levels of gray scale, by  using two orthogonal 3 X 3 
masks called Sobel masks. The entire image  is spatially 
divided into eight equal subareas. Each task detects the 
image edges in one subarea. Therefore, data sharing occurs 
only on the boundaries of the subareas. The ray-tracing 
program  is parallelized so that one task is executed for 
each horizontal scan line. 

of the operating system TOP-1 OS, since the benchmark 
programs executed on TOP-1  OS (hence their statistical 
data) are greatly affected  by the OS structure. TOP-1 OS, 
implemented at the Tokyo Research Laboratory, is a 
multiprocessor extension of the AIX@ PS/2@ operating 
system. In TOP-1 OS, a modified  AIX kernel runs on the 
Disk Manager, attached to the hard-disk controller (see 
Figure 1). In Tables 1-4, we use the notation “kernel 
processor” to specify the Disk  Manager, dedicated to 
execution of the kernel, and “user processor” to denote 

Before presenting the results, we  mention the structure 

processors dedicated to user-mode execution. For the 
measurements discussed in this paper, the cache-mode 
register of  all processors, including  the  Disk  Manager, was 
set to the update-type protocol with standard mode. For 
evaluations with other combinations of cache protocol and 
mode,  refer to [15-171. 

Table 1 presents the memory access rate statistics for 
instruction fetch, data read, and data write. Memory 
access rate is the percentage of  all memory accesses by a 
processor that fall in a given category. In Table 1, for 
example, 86% of the memory accesses of the kernel 
processor were for instruction fetches when the parallel 
MAKE benchmark was run. It can be seen that the 
instruction fetch rate is very large. We believe the major 
reason  for this is the extra prefetches, instructions that are 
fetched but  not actually executed, due to the prefetch 
queue flush. 

Table 2 presents the cache-hit ratio for each type of 
memory access, and shows that the hit ratio is very high in 
all cases. Although  the  major  reason  for this must be the 
small size of the working sets for all three programs, 
another important reason  can  be  offered. We surmised that 
stack accesses drastically increased the data hit ratio in all 
cases, since most  programs written in C include many 
stack accesses, and stack accesses have  tight locality, both 
in time  and space. We verified this effect  by gathering 
statistics for data areas including  and  excluding  the stack 
area (these data are not shown in the table), and we 
observed that very large percentages of data accesses are 599 
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Table 3 Ratios of shared-data  write and copy-back for three benchmark programs. 

Application Rate of shared- Rate of dirty-line 
datu write copy-back 

(%) (%I 

Parallel MAKE 

Edge detection 

Ray tracing 

Kernel  processor 
User  processor 

Kernel  processor 
User processor 

Kernel  processor 
User processor 

80 
27 

69 
21 

90 
36 

64 
13 

45 
4 

12 
1 

~ ~~ ~~ ~~ ~ 

Table 4 Snoopy  characteristics for three benchmark programs. 

Application Snoopy read 
hit ratio 

(%I 

Snoopy write 
hit ratio 

(%) 

Parallel MAKE 

Edge detection 

Ray tracing 

Kernel  processor 
User  processor 

Kernel processor 
User processor 

Kernel processor 
User  processor 

3.3 
1.9 

1 .o 
1.4 

7.8 
4.8 

78.4 
38.4 

76.3 
12.5 

68.5 
7.4 

generated by stack operations [15]. This  is probably 
because C passes parameters through the stack, local 
variables are allocated to the stack, and the Intel 80386 
does not  have  enough registers, so programs must often 
save and restore the register values on the stack. 

Table 3 shows the statistics for shared-data write and 
dirty-line copy-back, which also generate bus traffic. The 
rate of shared-data write in the table is the percentage of 
the total number of write accesses that resulted in data 
writes to shared data. The rate of dirty-line copy-back is 
the percentage of the total number of cache misses that 
result in copy-back to the  main storage. It  can  be seen that 
the rate of shared writes is very high for  the kernel 
processor. This result depends strongly on the structure of 
TOP-1 OS and  the cache protocol used, since the hard 
disks are directly connected to the kernel processor (Disk 
Manager); hence the data and code read  from  the  hard  disk 
are always transferred via  the cache of the kernel 
processor. Another reason  is the essential data sharing 
between the  kernel processor and the user processors. 

Table 4 shows the  read  hit ratios and the write hit ratios 
for the bus-induced snoopy accesses. The snoopy read hit 
interferes with the processor access only  when the 
corresponding snoopy data are in the dirty state, because 
of the need for a data reply. The snoopy write hit always 
interferes with the processor access, since it always 
requires a cache-data update (in these measurements, all 

caches use the update-type protocol). It can be seen that 
the snoopy read hit ratio is very small,  from 1% to 8%. 
This result indicates that most of the read accesses 
induced  on the bus are for local data read  misses but not 
for shared data. In contrast, it can also be seen that the 
snoopy write hit ratio is very large,  from 69% to 78% for 
the kernel processor and from 7% to 38% for the user 
processors. This is because the bus write access occurs 
only  for shared-state cache lines and never for private- 
state cache lines. 

In this section, we have presented and briefly analyzed 
the measurement results of the TOP-1  memory system 
performance. The situation is drastically changed if the 
configuration  is  different  from the one described above. 
Refer to [15]  and  [17],  which  include a more  detailed 
evaluation for the update and invalidate protocols, and 
[16], which evaluates more extensively the TOP-1  memory 
system under TOP-1 OS for various configurations. 

6. Summary 
We have described the unique hardware features of the 
TOP-1 multiprocessor workstation. The unique features are 
the mechanism that allows several different snoopy 
protocols to coexist, the two independent buses and the 
efficient  and  fair arbitration mechanism for them, and the 
message-broadcasting mechanism for effective 
asynchronous communication. The statistics monitor 



hardware is very useful  for  precisely  measuring the 
frequency of various  hardware  events.  The  hardware is 
now fully operational,  and  several machines  have  been 
built. 

multiprocessor  hardware design more intensively, studying 
more effective operating  systems,  and designing and 
implementing  parallel-processing  languages and 
applications. 
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