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A snoopy-cache-based multiprocessor
workstation called TOP-1 (TOkyo research
Parallel processor-1) was developed to
evaluate multiprocessor architecture design
choices as well as to conduct research on
operating systems, compilers, and applications
for multiprocessor workstations. TOP-1 is a
ten-way multiprocessor using the Intel 80386™
microprocessor chip and the Weitek WTL
1167™ floating-point coprocessor chip. It is
currently running under a multiprocessor
version of AIX®, which was also developed at
the IBM Tokyo Research Laboratory. Our
research interest was focused on the design of
an effective snoopy cache (all caches monitor
all memory-cache traffic) system and the
quantitative evaluation of its performance. One
of the unique aspects of the TOP-1 design is
that the cache supports four different, original
snoopy protocols, which may coexist in the
system. To evaluate the performance, we
implemented a hardware statistics monitor that
gathers statistical data. This paper focuses
mainly on the TOP-1 cache design—its
protocol, and its evaluation by means of the
statistics monitor. Besides its cache desighn,
TOP-1 has three other unique architectural
features: two independently arbitrated 64-bit
buses supported by two snoopy-cache

controllers per processor, a communication
and interruption mechanism for notifying other
processors of asynchronous events, and an
efficient arbitration mechanism to allow
prioritized quasi-round-robin service with
distributed control. These features are also
described in detail.

1. Introduction
Multiprocessor workstations are a very promising solution

to the continuously increasing need for computing power
in workstations. In the past several years, shared-memory,
shared-bus multiprocessors have been extensively analyzed
and developed because of the simplicity of the hardware
and the flexibility with respect to various parallel-
programming models. Most such multiprocessors use a
snoopy-cache mechanism (in which all caches monitor all
bus traffic between caches and shared storage) to reduce
bus traffic and to maintain multicache coherency [1-4].

Historically, the first implementation of cache memory
for a commercial computer was the IBM System/360™
Model 85 computer [5]. Multicache coherency mechanisms
were implemented in the IBM System/370™ Model 168 (6]
and 3033 [7] systems with a so-called “‘broadcast write-
invalidation”” scheme. Also, the IBM 308X system (8]
included a so-called ““directory’” scheme for maintaining
multicache coherency.

The IBM Tokyo Research Laboratory has been working
on a multiprocessor workstation since 1986. As a research
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vehicle, we developed a snoopy-cache-based
multiprocessor workstation to evaluate the multiprocessor
architecture design and to do research on operating
systems, compilers, and applications for multiprocessor
workstations. An overview of the project is given in [9].
The result, TOP-1 (TOkyo research Parallel processor-1),
is a snoopy-cache-based ten-way multiprocessor with
shared-memory architecture.

The unique architectural features of TOP-1 are the
following: a mechanism that allows several different cache-
coherency protocols to coexist in the system and to be
changed by software from one memory operation to the
next; two-way-interleaved dual 64-bit buses, which are
supported by two snoopy-cache controllers per processor
card; a communication and interruption mechanism for
notifying processors of asynchronous events; and an
efficient arbitration mechanism that provides prioritized
quasi-round-robin service with distributed control.
Moreover, TOP-1 has a hardware statistics monitor that
enables us to obtain various statistics on cache-algorithm
performance, operating systems, and applications.

In this paper, these important architectural features of
TOP-1 are described. Performance results measured by the
statistics monitor are also described. In Section 2, the
hardware organization of TOP-1 is described. Sections 3
and 4 discuss considerations in the design of the memory

system and the interprocessor communication mechanisms.

In Section 5, we briefly discuss the performance results
that were measured by using the statistics monitor.

2. System organization

One major objective of the TOP-1 project is to study
hardware and software trade-offs. We wanted to obtain
run-time statistics, analyze them, and reflect the results in
the design of future multiprocessors. We also wanted to
study the effectiveness of using run-time statistics to
change the hardware algorithm (by the compiler or the
operating system) for dynamic system optimization. We
therefore implemented multiple snoopy-cache protocols
and variable-priority arbitration mechanisms.

As shown in Figure 1, TOP-1 is organized around a
shared bus. Attached to the bus are up to 128 megabytes
(MB) of system memory and up to 10 identical processing
units (although the hardware implementation limit to the
number of processors is 11, the standard configuration of
TOP-1 hardware consists of 10 processing units), each of
which comprises an Intel 80386™ microprocessor and a
Weitek WTL 1167™ floating-point coprocessor, a 128-
kilobyte (KB) snoopy cache, and a system-bus interface.
(The 10-processor limit comes from various factors such as
an effective performance target of 30 MIPS, the back-plane
physical dimension, and a reasonable box size.) Also on
the bus is a Micro Channel® interface adapter card to
connect TOP-1 to a PS/2®, which is used as the /O

S. SHIMIZU ET AL.

processor of TOP-1, through the Micro Channel interface
standard. The adapter card also has a 128KB snoopy
cache, through which the PS/2 can directly access the
TOP-1 shared bus, hence the system memory. This allows
various I/O devices on the PS/2 to be used as the 1/O
devices of TOP-1. We built a special hard-disk controller
to provide a hard-disk subsystem with high performance
and large capacity. One of the ten processors is connected
to the hard-disk controller via the local bus extension.

3. Memory system

The memory system uses a so-called snoopy-cache
mechanism, like those in other small-scale, tightly coupled
multiprocessors [1-4], to reduce the bus traffic and to
maintain multicache coherency. Its unique feature is that it
supports four different protocols.

® Cache organization
The main specifications of the TOP-1 cache are as follows:

o ]28KB cache size: In general, a larger cache size results
in a higher hit ratio, hence better performance and lower
system-bus traffic. On the other hand, the cache size
should not be so large that it represents an expense out
of proportion to the added performance, nor should it
occupy an unreasonable fraction of the physical space.
Moreover, in a multiprocessor system with an update-
type snoopy cache (described below), a very large cache
may increase the number of shared-state cache lines,
thus requiring unnecessary updating of the cache lines.
Considering these trade-offs, we adopted a fairly large
cache size of 128 KB.

64-bit line size: In general, a larger line size results in a
higher hit ratio (even for a fixed cache size), hence better
performance. On the other hand, since a large cache line
is transferred over the bus by using a so-called burst-
transfer mode, a larger cache line requires a longer time
to complete the transfer. If we assume extra time for
transferring a larger cache line (this extra delay seen by
the processor can be eliminated by using a fetch-bypass
or load-through mechanism), the average memory-access
time is not necessarily decreased, even if the cache-hit
ratio is slightly improved. Furthermore, the extra bus
cycles needed to transfer a longer cache line may cancel
out the benefit of a small improvement in the hit ratio,
even if the fetch-bypass mechanism can be used.
Moreover, in a multiprocessor with a snoopy cache, a
larger line size may increase the number of shared lines
in the cache, since an entire cache line has to be in the
shared state, even if only one byte in the cache line is
actually shared. In fact, our simulations show that the
frequency of occurrence of shared cache lines for a
128-bit line is about 1.5 times that for a 64-bit line if we
do not use any software techniques for gathering shared
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data within a limited memory area. In view of these
criteria, we adopted a 64-bit line size, which is the same
as the data width of the system bus. (We also believe
that a much longer cache line gives better performance,
at least for a single processor, under conditions in which
the fetch-bypass mechanism can be used, and that the
burst transfer can be realized very efficiently in practice.)
* Direct mapping: There are also various trade-offs among
large-set associativity, small-set associativity, and direct
mapping as the cache placement algorithm. The most
important factor is again the cache-hit ratio, as it is for
the cache-line size. In general, larger-set associativity
gives a higher hit ratio, hence better performance, since
the mechanism can easily handle several access streams
(such as code fetch, source data access, and destination
data access) with a number of processes running at a
time, each with its access locality. This tendency is
definitely true for a large system that executes a variety
of very large jobs. For a large cache, however, the
improvement in the hit ratio achieved by increasing
associativity is small [10], since the probability of
conflicts on the same cache line is very small if the
cache is large enough. On the other hand, in practice,
larger-set associativity results in larger circuit delays for
the tag comparator, since more address tags must be
compared with the requested address. Furthermore, for a
read hit, since the output from the data memory array of
the set-associative cache must be selected after the
comparison of the tag fields has been completed, an
extra delay is incurred before the data become available
to the processor. For these reasons (mainly for practical
implementation reasons), we compromised on a direct-
mapping cache.
Duplicated tag memory: The cache tag memory is
duplicated so that the processor and the bus-snooping
hardware can access the cache tag memory in parallel.
Cache-access conflicts occur only when the processor or
the bus-snooping hardware requires the tag memory to
be updated and the other component has to read the tag
memory in the same cycle, or when both the processor
and the bus-snooping hardware request the cache data
memory to be accessed in the same cycle. A read access
to the tag memory for a snoopy address comparison does
not interfere with a cache access induced by the
processor, as long as the processor cache access does
not require the tag memory to be updated with a new
value. When cache access conflicts between the
processor and the bus-snooping hardware occur, the bus-
snooping hardware has a higher priority than the
processor. Therefore, the processor access is delayed at
least one cycle, until the conflict condition ends. This
arbitration policy ensures that the snoopy access is
completed in a fixed period, simplifying the system-bus
protocol.
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® Snoopy protocol

Each cache controller is implemented with an IBM CMOS
gate array with 16 000 gates. Both the cache tag and data
memories are implemented by means of the IBM fast
SRAM, with a 30-ns access time and an 8K X 18-bit
configuration. The controller manages the TOP-1 snoopy-
cache protocols as well as the shared-bus interface,
including the arbitration logic. It also includes the
monitoring hardware for collecting statistics.

A number of snoopy-cache protocols have been
proposed, but none of them is considered to be ideal in all
situations [11]. Coherency protocols can generally be
classified as update or invalidate protocols, each of which
is suitable for different situations. A novel aspect of TOP-1
is that it supports both update and invalidate protocols.
Furthermore, each type of protocol can have two modes:
standard and block-1/O. In total, there are four protocol
combinations, all of which can exist in the system at the
same time. On each processor, the protocol can be
dynamically changed by program, from one memory
operation to the next.

In the TOP-1 protocols, each cache line is in one of five
states: clean-private (this is the only copy in the caches,
and it has not been modified), dirty-private (this is the only
copy in the caches, but it has been modified), clean-shared
(other caches may have a copy; this may or may not be a
modified copy, but write-back is not needed at
replacement), dirty-shared (write-back is required at
replacement; other caches may have a copy), or invalid
(this does not contain valid memory data).

A special bus line used to detect sharing is referred to as
the CH (cache hit) line. The CH line is an open-collector
wired-OR line that is activated by one or more snooping
cache controllers when it holds a copy of the memory
address broadcast by a requesting cache. The requesting
cache controller can recognize whether any other cache
has a copy of the requested memory address by examining
the CH line at the end of a bus cycle.

Each cache controller has a ““‘cache-mode register,”
which uses two bits to specify the snoopy protocol type
(update or invalidate) and the protocol mode (standard or
block-1/0). The first bit indicates “inv”’ (invalidate
protocol) when ““1.”> The second bit indicates “I/0””
(block-1/0O mode) when ““1.”

Figure 2 is a state-transition diagram of the TOP-1
protocols, including both update and invalidate protocols.
(For simplicity of discussion, only the standard mode is
depicted in the figure. We discuss the block-I/O mode later
in this section.) Both the state of the CH line and the
protocol-type bit control state transitions.

The TOP-1 protocol can be described as follows:

e When one processor experiences a read miss: If another
cache has a dirty-private or dirty-shared copy, that cache
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supplies the data, raises the CH line, and sets the cache-
line state (the state of the cache line being read) to dirry-
shared, because main memory is not updated with the
dirty data. (In the TOP-1 protocol, the dirty state implies
responsibility for write-back to the main memory; hence,
only one exists in the system at a time.) Otherwise, the
data come from main store, even if they can be found in
another cache (see the discussion below). Any cache
with a clean-private or clean-shared copy raises the CH
line and sets its local state of the cache line to clean-
shared. The requesting cache loads the cache line in the
clean-shared state when the CH line is active.
Otherwise, it loads the cache line in the clean-private
state.

« When one processor experiences a cache hit for a write
access: If the cache line is dirty-private, the write can be
completed locally without using the system bus, and no
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state change occurs. If the cache line is clean-private,
the write can also be completed without using the shared
bus, but the state is changed to dirty-private. If the
cache line is in either the clean-shared or dirty-shared
state, the entire cache line is broadcast over the system
bus. Other caches with copies observe the bus. If the
snoopy-protocol bit in the cache-mode register specifies
the update protocol (not inv), those caches update their
own copies with the new data on the bus and activate
the CH line. On the other hand, if the snoopy-protocol
bit specifies the invalidate protocol (inv), those snooping
caches invalidate their own copies and do not activate
the CH line. The requesting cache can determine
whether or not the cache line is still shared by examining
the CH line. If the CH line is not activated, the
requesting cache changes the cache-line state to clean-
private, since no other cache has a copy. If the CH line 595
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Example of coexistence of update and invalidate protocols.

is activated, the cache-line state remains in the clean-
shared state, since sharing continues.

s When one processor experiences a cache miss for a
write access: In the TOP-1 protocol, a write miss is
performed as a combination of a read miss and a write
hit. The requesting cache controller generates a read-
miss access on the bus and immediately generates a
write access if the CH line was raised during the read-
miss access. Otherwise, the write is performed locally
without using the bus, because there is no sharing.

The TOP-1 protocol is designed to optimize the cache
performance by taking account of the difference between
the cycle times of the cache memory and the main memory
in the following ways:

& In the TOP-1 protocol, clean data come from the main
memory rather than another cache that has a clean copy.
Since the main memory can provide the data in three
16MHz clock cycles, the same time as for the data
response from a snooping cache, there is no difference in
access time between main memory and a snooping
cache. Of course, a cache can provide data to its own
processor much faster than main memory can (more
specifically, a processor needs no wait cycle to access its
cache, but it needs three wait cycles to access main
memory). From the bus-access point of view, however,
the cache cannot provide the data so rapidly, because
the cache data memory is accessed only after the cache
tag is matched to the bus address, in order to reduce
unnecessary cache data-array accesses because of bus
snooping. Thus, the snooping cache requires at least two
cache cycles to respond with the data (signal flight time
on the bus should also be added). This data-reply policy
can reduce the interference between the processor-
induced access and the bus-induced access on a
snooping cache. (Interference would occur if another
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cache replied with a clean copy and delayed a cache
access induced by the processor until the completion of
the snoopy data-reply cycle.)

& When a write access occurs on the bus, the main
memory is always updated with the new data, since main
memory can be written in three bus-clock cycles, the
same as the snooping cache-update time. This policy
reduces the number of dirty lines in the cache that must
be written back to main memory at the time of
replacement, hence reducing the bus traffic induced by
write-back activities.

« When a dirty copy is sent from the owning cache to a
requesting cache, main memory is not updated with the
new data. This policy simplifies the memory- and cache-
control logic, since every bus activity can be completed
within a fixed number of clock cycles. (On the other
hand, if the cache owning the dirty cache line updates
the main memory as well as the requesting cache, as in
the Firefly protocol [2], extra cycles are needed to
update the main memory.) Although this policy may
increase the number of dirty copies in the system, thus
increasing the bus traffic caused by write-back activities,
the effect can be relaxed, since in the TOP-1 protocol,
every bus write updates the main memory and changes
the cache-line state from dirty to clean, as described
above.

One can conclude from the above description of the
protocol that a requesting cache need not know which
snoopy protocols (update or invalidate) the other caches
use. Furthermore, the snoopy protocol bit in the cache-
mode register of a requesting cache has no influence on the
operation of the cache controller, but the bit affects the
operation of a snooping cache.

The requesting cache has only an indirect influence on
its operation through the response on the CH line from
other caches. Therefore, it should be noted that each
cache controller can arbitrarily use either an update or an
invalidate protocol at any time. Figure 3 shows an example
in which two protocols coexist in the system. In the figure,
processors 2 and 4 are using the update protocol, and
processor 3 is using the invalidate protocol. The protocol
used by processor 1 is irrelevant in this case, since it is a
requesting processor. When a write access occurs on the
bus, the corresponding cache lines in processors 2 and 4
are simultaneously updated with the new data on the bus,
while the cache line in processor 3 is invalidated. The
cache controllers of processors 2 and 4 activate the CH
line, but that of processor 3 does not. In this case, the
cache-line state in the processor 1 cache remains shared
because the CH line is activated.

If all cache controllers in the system are using the
update protocol, the resultant protocol is similar to that of
the Xerox Dragon [1] and the Digital Equipment
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Corporation Firefly [2]. If all cache controllers in the
system are using the invalidate protocol, all of the shared
cache lines are invalidated in other caches when a write
occurs, as in the Berkeley SPUR [3].

The block-I/O mode is used for consecutive block data
transfers to and from external devices, in order to remove
the cache lines that are no longer nceded. Data transfer to
and from I/O devices must be carefully designed in order
to maintain data consistency in the multicache system. In
TOP-1, we solved the problem by using the snoopy-cache
mechanism for the I/O subsystems (I/O Processor and Disk
Manager). This method, however, creates a new problem,
since the amount of shared data in the system increases
after data transfer. This is especially true after paging from
a hard disk. The data read into the shared memory
continue to reside in the Disk Manager cache, even after
the cache line has been used by a requesting processor.
The writing overhead for shared cache lines adds extra bus
traffic and degrades system performance. The block-1/O
mode of cache protocol forces the cache line of the
requesting cache to be written back to main memory and
to be invalidated after the last word of the cache line has
been written from the I/O device. The second bit (mode-
modification bit) of the cache-mode register of each cache
controller has no influence on the operation of the cache
controller when it is a snooping cache, but it affects the
operation when it is a requesting cache. This control
mechanism is orthogonal to the protocol-type control.
Hence, it should be noted that each cache controller can
be in either standard or block-1/O mode without regard to
the protocol type. Although the block-1/O mode can also
maintain cache coherency, even if it is used by the
ordinary processors, it is intended to be used only by the
1I/O Processor and the Disk Manager.

® System bus

As mentioned previously, the shared bus is a resource that
limits system performance, even though a private cache is
added to each processor to reduce the bus traffic. The
usual goals in system-bus design are to maximize the bus
bandwidth and to minimize the delay, with a reasonable
cost and complexity of hardware.

There are various design choices for the bus-transfer
mechanism, to increase the bus bandwidth. An example is
a so-called block-transferred bus, which can provide a
higher bus bandwidth if the memory cycle time is much
larger than the bus clock cycle, because one memory cycle
is required for the first word but only one bus cycle for
each consecutive word. With current technology, however,
the memory access time is only a few times larger than the
bus cycle, because the bus cycle time is limited by delays,
signal-flight time, signal reflection, and clock skews. In the
case of TOP-1, we designed the bus cycle time to be 62.5 ns
(16 MHz), the same as that of the processor clock, and the
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main memory access time to be 187.5 ns (three cycles of
the bus clock) including error checking and correction.
This being so, the data width of the bus and the shared
memory should usually be as wide as the cache line size,
since it is desirable to transmit an entire line in one
transfer-cycle time.

Instead of using a block-transferred bus, TOP-1 uses two
buses, arbitrated independently, each with a 64-bit data
width. The shared memory and the cache are two-way
interleaved on 8-byte address boundaries. In particular,
when a processor accesses an ‘‘even address’ (an even
multiple of eight), the access goes to the ““even cache.” If
the access misses in the “‘even cache,” the “‘even cache
controlier’” issues a memory-access request to the ““even
main memory’’ through the “‘even bus.”” For an “odd
address” (an odd multiple of eight) access, the control
mechanism is similar. Consequently, the shared bus can
provide an 85MB/s effective data-transfer rate for both
read and write operations, since both require three
16MHz bus cycles.

Another novel aspect of the shared-bus design is the
high-speed and fair-service arbitration mechanism. With a
unique arbitration mechanism, which we named ““modified
back-off arbitration,”” the shared-bus arbitration is
performed in one bus cycle (62.5 ns), using distributed
control (the arbitration-control logic is found in all
processors). Instead of an encoded arbitration code, as used
in so-called back-off mechanisms, each requester issues a
decoded code on the bus according to its current request
priority. This mechanism allows high-speed arbitration,
because no feedback loop is required to settle the arbitration
bus signal. After a requester has obtained the right to access
the bus as a result of the arbitration, each requester
increments its priority, so that a quasi-round-robin service is
realized. Moreover, each requester can set its priority range
so that the arbitration code is constrained to the specified
range. Since this mechanism allows processors to be
classified into several groups with regard to the arbitration
priority range, it is useful for process scheduling. For
instance, some processors used for high-priority processes
can run faster if a high-priority range is assigned. In such an
application, however, we must be careful to ensure that all
processors have some bus access.

4. Multiprocessor synchronization

In general, multiprocessor synchronization can be
implemented by shared variables in the shared memory or
by hardware message-passing mechanisms. TOP-1
implements both mechanisms.

® [nterprocessor signaling
Although TOP-1 is a shared-memory multiprocessor, a
message-passing hardware mechanism is also provided in

order to allow the processors to communicate 597

S. SHIMIZU ET AL.




598

asynchronous events or to interrupt one another. Messages
are broadcast to processors specified as destinations, and
any number of processors can be specified. The messages
are received or discarded by the destination processors,
according to the state of the receivers’ buffers. We provide
two kinds of message-passing protocols: Everybody
messaging and Anybody messaging.

In Everybody messaging, all destination processors
receive the message, and an interrupt signal to all receivers
is generated only when all the specified receivers receive
the message. If any of the destination processors cannot
receive the message because of a full receive buffer, none
of them receives the message, and no interrupt signal is
generated to any destination processor. This mechanism is
implemented by using a special bus line of wired-OR logic.
Each processor specified as a destination activates the
special bus line when it cannot receive the message
because of a full receive buffer. At the end of cycle, each
destination processor examines the state of the special
line, and receives the message only when the line is
inactive, indicating that all of the specified processors can
receive the message. The sender also examines the state of
the special line at the end of cycle and recognizes whether
or not the message was successfully sent. Everybody
messaging is very useful, since it allows an operating
system to maintain TLB (translation lookaside buffer)
consistency among multiple processors and also allows
multiprocessing programming languages to cause
interruption of the execution of processors.

In Anybody messaging, each destination receives a
message and generates an interrupt signal to its processor
if it can. Whenever one or more destinations receive the
message, the sender detects that the message was
successfully received. This is implemented by using the
special bus line of wired-OR logic in a mode opposite to
that of Everybody messaging. Each processor specified as
a destination activates the special bus line when it can
receive the message because its receive buffer is empty. At
the end of the cycle, the sender examines the state of the
special line and recognizes that the message was
successfully sent when the special line is active. The
mechanism is useful for requesting a service of any
processor that is ready to serve.

® Bus locking

Shared-memory multiprocessors must implement atomic
““read-modify-and-write’” operations. TOP-1 implemented
atomic operations with a so-called “‘bus-locking”
mechanism in which the system bus is completely owned
during an execution of the atomic read-modify-and-write
operation. When a processor issues a locked instruction
such as XCHG, the bus is locked without regard to cache
hit or miss, and the effects of the memory modification are
broadcast instantaneously. This allows a spin lock on a
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semaphore to be effectively implemented by using
cacheable shared-memory space with a “‘read-read-modify-
and-write”” technique. (A semaphore is examined by a read
loop of nonlocked instructions, which can be handled
locally in the cache without issuing any bus access and
affecting other caches. When the read loop detects that the
contents of the semaphore are changed, the semaphore is
examined again with a locked instruction to ensure mutual
exclusion.)

TOP-1 also provides a mechanism to lock the bus for a
sequence of instructions. Two I/O instructions, called
Lock and Unlock, lock and unlock the bus. A sequence of
instructions enclosed by Lock and Unlock is executed
atomically, since the bus is locked during the period. This
mechanism provides a means of implementing high-level
synchronization operations, such as enqueue and dequeue,
in a very effective way.

5. Statistics measurements

The cache behavior of uniprocessors has been extensively
discussed in the literature [10], and some papers have
reported on the cache performance of tightly coupled
multiprocessors [11-14]. However, most such reports used
software simulators driven by statistical parameters or
traces, as did our preliminary performance evaluation.

In contrast, we used the hardware statistics monitor
built into the TOP-1 cache/bus controller to evaluate the
actual cache and bus performance of TOP-1. This monitor
allows us to gather statistical data from the machine
without any overhead. We can accurately count the
number of fetches, including instructions that are
prefetched but not actually executed owing to prefetch
queue flushes. When a program has a tight loop that is
intensively executed, software simulations usually give
incorrect results, because the effect of the prefetch queue
cannot be taken into account. The statistical events
captured by our monitor are as follows:

¢ Number of memory accesses (instruction fetch, data
read, and data write, separately).

e Cache hit ratio for each type of memory access.

e Number of write accesses to private-state cache lines
and to shared-state cache lines.

e Number of write-backs for dirty cache lines.

e Number of cache updates/invalidations from the snoopy
mechanism.

¢ Number of dirty-data replies to the requester.

e Number of bus cycles during which a processor waits for
the bus.

In addition, we can dynamically specify the address
range (by page boundaries) for which the statistics monitor
counts the numbers shown above. Thus, if the program
mapping is previously known or can be controlled by the
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Table 1 Memory access rates for three benchmark programs.

Application Instruction fetch Data read Data write
(%) (%) (%)
Kernel processor 86 10 4
Parallel MAKE User processor 75 17 8
. Kernel processor 84 12 4
Edge detection User processor 69 23 8
. Kernel processor 88 9 3
Ray tracing User processor 60 30 10
Table 2 Cache-hit ratios for three benchmark programs.
Application Instruction fetch Data read Data write
(%) (%) (%)
Kernel processor 99.99 99.99 99.99
Parallel MAKE User processor 99.40 99.69 97.28
. Kernel processor 99.87 99.89 99.71
Edge detection User processor 99.95 99.42 99.44
Ravy tracin Kernel processor 99.99 99.99 99.93
o g User processor 99.54 99.19 99.67

operating system, we can selectively gather the statistics
for each memory area. For example, we can get the cache
hit ratio for the kernel only, for the synchronization
variables only, or for processing data only.

We gathered statistics for three benchmark programs,
““parallel MAKE,”” image-edge detection, and ray tracing.
In ““parallel MAKE,”” each processor performs MAKE
(C compile and bind) independently for the same source
code. Thus, the measurement is not for parallel processing
but for multiprocessing. The parallel edge-detection
program detects edges in images of 1024 x 768 pixels with
256 levels of gray scale, by using two orthogonal 3 x 3
masks called Sobel masks. The entire image is spatially
divided into eight equal subareas. Each task detects the
image edges in one subarea. Therefore, data sharing occurs
only on the boundaries of the subareas. The ray-tracing
program is parallelized so that one task is executed for
each horizontal scan line.

Before presenting the results, we mention the structure
of the operating system TOP-1 OS, since the benchmark
programs executed on TOP-1 OS (hence their statistical
data) are greatly affected by the OS structure. TOP-1 OS,
implemented at the Tokyo Research Laboratory, is a
multiprocessor extension of the AIX® PS/2® operating
system. In TOP-1 OS, a modified AIX kernel runs on the
Disk Manager, attached to the hard-disk controller (see
Figure 1). In Tables 1-4, we use the notation “*kernel
processor’” to specify the Disk Manager, dedicated to
execution of the kernel, and ““user processor’ to denote
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processors dedicated to user-mode execution. For the
measurements discussed in this paper, the cache-mode
register of all processors, including the Disk Manager, was
set to the update-type protocol with standard mode. For
evaluations with other combinations of cache protocol and
mode, refer to [15-17].

Table 1 presents the memory access rate statistics for
instruction fetch, data read, and data write. Memory
access rate is the percentage of all memory accesses by a
processor that fall in a given category. In Table 1, for
example, 86% of the memory accesses of the kernel
processor were for instruction fetches when the parallel
MAKE benchmark was run. It can be seen that the
instruction fetch rate is very large. We believe the major
reason for this is the extra prefetches, instructions that are
fetched but not actually executed, due to the prefetch
queue flush.

Table 2 presents the cache-hit ratio for each type of
memory access, and shows that the hit ratio is very high in
all cases. Although the major reason for this must be the
small size of the working sets for all three programs,
another important reason can be offered. We surmised that
stack accesses drastically increased the data hit ratio in all
cases, since most programs written in C include many
stack accesses, and stack accesses have tight locality, both
in time and space. We verified this effect by gathering
statistics for data areas including and excluding the stack
area (these data are not shown in the table), and we

observed that very large percentages of data accesses are 599
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Table 3 Ratios of shared-data write and copy-back for three benchmark programs.

Application Rate of shared- Rate of dirty-line
data write copy-back

(%) (%)
Kernel processor 80 64
Parallel MAKE User processor 27 13
. Kernel processor 69 45
Edge detection User processor 21 4
Ray tracin Kernel processor 90 12
y g User processor 36 1

Table 4 Snoopy characteristics for three benchmark programs.

Application Snoopy read Snoopy write
hit ratio hit ratio
(%) (%)
Kernel processor 33 78.4
Parallel MAKE User processor 1.9 38.4
. Kernel processor 1.0 76.3
Edge detection User processor 1.4 12.5
Rav tracin Kernel processor 7.8 68.5
y J User processor 4.8 7.4

generated by stack operations [15]. This is probably
because C passes parameters through the stack, local
variables are allocated to the stack, and the Intel 80386
does not have enough registers, so programs must often
save and restore the register values on the stack.

Table 3 shows the statistics for shared-data write and
dirty-line copy-back, which also generate bus traffic. The
rate of shared-data write in the table is the percentage of
the total number of write accesses that resulted in data
writes to shared data. The rate of dirty-line copy-back is
the percentage of the total number of cache misses that
result in copy-back to the main storage. It can be seen that
the rate of shared writes is very high for the kernel
processor. This result depends strongly on the structure of
TOP-1 OS and the cache protocol used, since the hard
disks are directly connected to the kernel processor (Disk
Manager); hence the data and code read from the hard disk
are always transferred via the cache of the kernel
processor. Another reason is the essential data sharing
between the kernel processor and the user processors.

Table 4 shows the read hit ratios and the write hit ratios
for the bus-induced snoopy accesses. The snoopy read hit
interferes with the processor access only when the
corresponding snoopy data are in the dirty state, because
of the need for a data reply. The snoopy write hit always
interferes with the processor access, since it always
requires a cache-data update (in these measurements, all
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caches use the update-type protocol). It can be seen that
the snoopy read hit ratio is very small, from 1% to 8%.
This result indicates that most of the read accesses
induced on the bus are for local data read misses but not
for shared data. In contrast, it can also be seen that the
snoopy write hit ratio is very large, from 69% to 78% for
the kernel processor and from 7% to 38% for the user
processors. This is because the bus write access occurs
only for shared-state cache lines and never for private-
state cache lines.

In this section, we have presented and briefly analyzed
the measurement results of the TOP-1 memory system
performance. The situation is drastically changed if the
configuration is different from the one described above.
Refer to [15] and [17], which include a more detailed
evaluation for the update and invalidate protocols, and
[16], which evaluates more extensively the TOP-1 memory
system under TOP-1 OS for various configurations.

6. Summary

We have described the unique hardware features of the
TOP-1 multiprocessor workstation. The unique features are
the mechanism that allows several different snoopy
protocols to coexist, the two independent buses and the
efficient and fair arbitration mechanism for them, and the
message-broadcasting mechanism for effective
asynchronous communication. The statistics monitor
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hardware is very useful for precisely measuring the
frequency of various hardware events. The hardware is
now fully operational, and several machines have been
built.

Using several TOP-1s, we are evaluating the
multiprocessor hardware design more intensively, studying
more effective operating systems, and designing and
implementing parallel-processing languages and
applications.
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