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Victor V256 is a partitionable message-passing
multiprocessor with 256 processors, designed
and in use at the IBM Thomas J. Watson
Research Center. Our goals are to explore
computer architectures based on the message-
passing model and to use these architectures
to solve real applications. We present the
architecture of the Victor system, particularly
its partitioning and nonintrusive monitoring.
We discuss some of the programming
environments on Victor, such as E-kernel, an
embedding kernel developed for the support of
program mapping and network reconfiguration.
We review applications developed and run on
Victor and discuss a few in depth, concluding
with insights we have gained from this project.

1. Introduction

® Victor

The Victor project at the IBM Thomas J. Watson Research
Center started with the dual objectives of investigating
highly parallel, message-passing, distributed-memory
MIMD (multiple-instruction/multiple-data) machines and
using these machines to solve real problems. Our previous

experience with the design of uniprocessors led us to an
understanding that the data access latency and bandwidth
between memory and processor is of supreme consequence
in determining overall system performance [1]. Therefore,
we decided that to obtain the significant speedups that are
expected for highly parallel systems, an architecture based
on distributed memory (hence, the message-passing
communication model) was important.

In late 1986, we embarked on the design and rapid
construction of a message-passing multiprocessor with off-
the-shelf components. An analysis of the availabie single-
chip processors resulted in our choice of the Inmos™
transputer [2], a specialized microprocessor with
interprocessor-communication support incorporated on the
chip. By the summer of 1987, we had produced an
operational 32-processor system called Victor V32. This
system provided us the ability to explore message-passing
and to run real code. Fractals, ray tracing, and Monte
Carlo nuclear physics, described in the applications
section, were the first programs to run on V32, In addition,
V32 was used for the initial development of E-kernel,
which is described in the system software section.

The original Victor V32 prototype led to Victor V256
(with 256 processors) and an associated family of smaller
systems based on the same architecture and card set.
Early motivations and a description of the project can be
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found in [3]). The goals for the Victor project were to
better understand what classes of problems are suited to
this type of architecture and to provide an early
“‘platform” for application development for massively
parallel systems.

This paper discusses the Victor hardware architecture,
in particular the capabilities for nonintrusive monitoring
and partitioning, system software components, and some
applications that have been created and run successfully.
The applications have spanned the communication
spectrum from waveform-relaxation circuit simulation and
logic-fault simulation, which have highly irregular
communication patterns, to Monte Carlo simulations of
nuclear physics problems, which have extremely low
communication requirements and are consequently limited
in performance by only the processing power available at
each node.

® Related work

Before describing in detail the Victor system, we briefly
review some related systems work. The pioneering
machine prototype credited with generating much interest
in distributed-memory machines was the Cosmic Cube at
the California Institute of Technology, a 64-node machine
based on the Intel 8086 processor and interconnected as a
hypercube [4]. Seitz stated in 1985 that the Cosmic Cube
nodes were designed as a hardware simulation of what we
could expect to be integrated into one or two chips in
about five years [4]. The existence of the Inmos transputer
has substantiated this claim [2, 5]. Another chip that has
appeared to support Seitz’s statement is the iWarp
processor, which integrates high-speed computation and
high-speed communication capability in a single
component, achieving 20 MFLOPS and 20 MIPS per node
[6]). The iWarp processor is the basis for the iWarp
distributed-memory architecture developed jointly by
Carnegie Mellon and Intel Corporation. There continues to
be much active research in the development of message-
passing architectures. Dally from MIT is working on the
design of the J-Machine, a fine-grained concurrent
multiprocessor that provides low-overhead primitive
mechanisms for communication, synchronization, and
translation (7]. We now briefly describe three efforts that,
in various ways, are similar to the Victor approach—
Armstrong, Hathi-2, and Esprit.

Armstrong

The primary goal of the Armstrong project was to
construct a useful, controllable, research-oriented parallel
processing test bed [8]. The system, developed in the
Laboratory for Engineering and Man/Machine Systems at
Brown University, has on the order of 100 nodes. Each
Armstrong node contains a Motorola 68010 CPU, one-half
megabyte (MB) of RAM, and eight I/O links. The
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interconnection is point-to-point and can be manually
reconfigured using ““patch-cords.”” Floating-point
performance is achieved through the use of the National
32081 coprocessor.

One goal of the prototype was to allow the same
application code to be run without modification on any
network configuration. The Armstrong operating system
supports the reconfigurable network by providing location-
independent communication. From the programmer’s point
of view, interaction between processes is the same,
whether or not they are on the same node. The operating
system determines the route by using the shortest path
available. It determines the shortest path between nodes
dynamically by broadcasting routing packets periodically;
on Armstrong, this is done every 20 seconds. This
allows the system to adapt to changes in topology
dynamically.

A fundamental difference in the approaches of the
Armstrong operating system and E-kernel (which we
discuss in the system software section) is that the task
graph (which represents the communication structure) of
an Armstrong application program is essentially viewed as
a complete graph. No information from the application lets
the operating system take advantage of the topology of the
application task graph. With E-kernel, the user writes the
code according to the natural task graph of the application,
and E-kernel presents this information to the system in
order to allow an efficient mapping of the program onto the
system.

Hathi-2

Hathi-2 is a reconfigurable, general-purpose,
multiprocessor system that was developed in the
Department of Computer Science at Abo Akademi and the
Technical Research Centre of Finland in Qulu [9].

The current implementation uses 100 transputer nodes,
each with 256 kilobytes (KB) of memory. Several users
can execute applications on Hathi-2 simultaneously. Hathi
boards are interconnected to form a 4 X 6 torus. The
system may be divided into partitions, each with one or
more boards. One particular board out of the 25 is not part
of the torus connection; its links are not connected to any
other board, and it always forms a separate partition
consisting of four nodes. Therefore, the Hathi system
always consists of at least two partitions, and the largest
single partition that can be formed consists of 96
transputers, Partitioning is done with a set of manual
switches on the backplane of Hathi-2 and cannot be
changed during run time, because the system must be
rebooted after partitioning. In comparison, the granularity
of partitioning on Victor is at the node level, so the
partition size, which is under software control, can vary
from one node to the maximum system size of 256 for
V256.
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The Hathi approach in development was similar to ours
for Victor; we quickly developed the prototype of a
32-node system (V32), then designed V256. They built a
Hathi-1 system, which was a 16-node system using off-the-
shelf Inmos B003 boards. Hathi-2 is logically divided into
two separate subsystems: the multiprocessor system and
the control system. The former contains 100 T800
transputers, and the latter consists of 25 T212 transputers,
C004 crossbar switches, monitor hardware, and the
interrupt system. The T212 transputers in the control
system are connected to form a ring and are controlled by
a separate host computer. The control system has two
functions:

¢ Reconfiguration: Controls the setting of the C004
switches.

¢ Monitoring: Forwards monitoring data from the
multiprocessor system to the control-system host.

For monitoring, each T800 transputer writes into its set of
FIFO registers, which are read by the T212s, and data are
sent on the control ring to the host. Information is
collected about the utilization of the CPU and the
communication links, from the processor ‘‘load meter”
and FIFO buffer. The processor load is determined by
dedicated hardware that detects activity on the memory
bus; this is achieved by dedicated hardware and is
nonintrusive to the application. This part of the monitoring
logic is very similar in approach to the Victor monitor. All
additional monitoring information in Hathi, such as link
activity, however, is intrusive. This causes overhead, since
the nodes need to collect the information and write it to
their FIFO registers. This differs from Victor, in which all
monitoring is nonintrusive.

Esprit

Esprit is the European Strategic Program for Research and
Development in Information Technology. The Esprit P1085
program had the objective of developing a MIMD
multiprocessor machine with supporting software, to
demonstrate that high performance can be achieved over a
wide range of applications [10]. The result was a modular,
hierarchical architecture based on reconfigurable nodes of
transputers. In this system a node consists of 16 worker
transputers, each with 256 KB of memory. One additional
node in the system has 16 MB of memory, which is used
for storing and distributing data. Each worker transputer
has four links, with each link connected to a 72 X 72 VLSI
switch controlled by another transputer. Southampton
University designed the basic reconfigurable ‘‘SuperNode™
cluster architecture [11]. Additional internode switches are
used to implement a three-stage Clos network [12] for
reconfiguring nodes. This flexibility allows one to construct
any network that can be built with nodes having four
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network connections. The system provides more
reconfiguration capability in hardware than Victor but
lacks the hardware monitoring facilities.

2. Victor system

Victor is a family of experimental, partitionable,
distributed-memory, message-passing multiprocessors.
Victor V256, the largest in the family, is a 256-processor
system containing one GB (gigabyte) of main memory and
10 GB of distributed DASD. Other members of the Victor
family include a (64-processor) Victor V64 system and
several identical (16-processor) Victor V16 systems. This
section addresses the system hardware design and the
system software developed and run on Victor.

o System hardware

Here we present a view of the hardware, from the high-
level system architecture to the individual node
architectures. There are four distinct types of nodes in the
Victor system: processor, disk, host, and graphics, all
using the Inmos T800 transputer {2]. With these as building
blocks, a wide range of system capabilities can be
provided. We discuss in detail the processor and disk node
architectures, highlighting the partitioning and monitoring
capabilities of Victor. We conclude the hardware section
with a short discussion of implementation details.

System architecture

The processor nodes of V256 form a 16 X 16, two-
dimensional mesh. Figure 1, which is a photograph of the
Victor monitor, presents a snapshot of system activity.
Each box in the central area represents a processor node.
Each white bar represents an active communication link.
The disk nodes are represented in the figure by the row of
16 white, rounded-corner boxes at the top of the screen.
They form a 17th row, with connections to the upper and
lower boundaries of the mesh, thus closing the mesh into a
cylinder. At the time represented by Figure 1, no request
is being made to the file system; therefore, no active links
are shown between the processor and disk nodes. The five
host nodes are shown near the corners of Figure 1 and at
the left center. Four graphics nodes are connected to the
left and right sides of the mesh.

V256 is a partitionable multiuser system for up to four
concurrent users and the superuser (a fifth user). A user is
assigned a host node and a graphics node, and selects an
arbitrarily shaped contiguous region of the processor mesh.
In Figure 1, four individual users are assigned hosts H1
through H4, each owning a region of the system
represented by a group of boxes of a different color.
(Although the shape of partitions may be arbitrary, most
applications that have been run on Victor have used
rectangular partitions. The disk nodes are owned by the

superuser, at host HO, and act as servers, handling all file 575
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Photograph of Victor V256 monitor.

system requests from the users. In the configuration of
Figure 1, each of four regions was active with a different
program. Hardware discussed below provides this
partitioning and prevents users from interfering with one
another. The mesh topology, coupled with the partitioning
strategy, furnishes a user the same general network
characteristics at any one of the four partitions. On the
basis of our experience with V32, we decided that the
practical advantages of a highly regular topology
outweighed the benefits gained from using a more complex
topology of smaller diameter (the maximum distance any
message may have to travel).
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Node architecture
Figure 2 is a block diagram of a Victor processor node.
Each node is based on a 20-MHz T800 transputer chip,
which includes a 64-bit floating-point unit and four
transputer links. The memory subsystem provides 4 MB of
memory per node. Memory access times are given in
Table 1. A standard 32/39-bit error-correcting-code (ECC)
circuit increases system reliability, a very important
consideration in a system with 1 GB of dynamic RAM
running for weeks at a time on a single problem.

Each processor node contains a memory-mapped 16-bit
event status register (EvSR) that contains information
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Figure 2

Victor V256 processor node architecture.

about memory errors and transputer errors, various mask
bits, two software-programmable flags connected to LEDs
(also displayed as 0 and I in Figure 1), and a bit indicating
whether this node is currently being polled by the monitor.
In addition, this register has a four-bit region ID field

(one bit per host) that indicates the present owner of this
node.

It was desired to have sufficient disk I/O in V256. Past
experience with /O traffic in scientific code suggests that a
system with the performance of V256 should ideally have
up to 100 MB/s in I/O capability [13). The capacity of the
16 medium-performance disks integrated into V256 falls
short of this ideal. As discussed in the subsection on the
file system, even though the transfer rate from disk drive
to disk node memory was of the order of 1.0 MB/s, the
effective transfer rate from disk node to processor node
was approximately 310 KB/s. One application to use the
file system is waveform relaxation. The combined data rate
of the 16 disk nodes met the requirements for that
application but is not sufficient for I/O-intensive
applications. We hope to learn how to support parallel 1/0
by using the disk resources currently available on V256.
For instance, if one had the resources to add 64 disk nodes
to V256, where should they be placed?

Figure 3 is the block diagram of a disk node, which is
also based on the T800 transputer. The disk-node memory
consists of 1 MB of static RAM. A SCSI bus controller is
memory-mapped onto the address space of the T800; it
uses asynchronous direct memory access data transfer
at a maximum rate of 1.0 MB/s. The disks used in V256,
V64, and all V16 systems are IBM 600MB and 300MB
drives.

IBM J. RES. DEVELOP. VOL. 35 NO. 5/6 SEPTEMBER/NOVEMBER 1991

and scan bus

Victor V256 disk node architecture.

Table 1 Victor V256 processor node memory access
times.

Memory operation Time
(ns)

Read 300
Write word 250
Write byte 350

Fartitioning and monitoring

In V32, we used a simple switch to allow multiple hosts to
be attached to the system. Although this made it easy to
switch hosts, only one host could use V32 at any one time.
For this reason and because of work in partitioning by Ma
and Krishnamurti [14], a goal for V256 was to make the
system partitionable. Logic on each processor card allows
cach node on that card to be claimed by any of the host
nodes. Once claimed, a processor blocks requests from
other hosts, but the superuser on host HO can always gain
control of the entire system.

A host can acquire a partition of arbitrary size, from one
node up to all 256 nodes, the only restriction being that
there must be a connected path of links from every node in
the partition back to the host. Once the user of a given
partition is done with some or all of its nodes, they are
released back into the pool of nodes available to be
claimed by another host.

In V32, several buffered LEDs per node were hard-
wired to various signals, giving some visual indication of
the activity on the node. Though primitive, this provided
users with a surprising amount of information about the
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Victor V32 four-processor card.

progress of their programs. For V256, the hardware
monitoring was extended and is implemented via a data-
collection bus (the scan bus) that is completely
independent of the regular transputer communication links
and is controlled by a dedicated IBM PS/2® monitor
processor. All nodes (256 processor nodes and 16 disk
nodes) are connected to this systemwide scan bus, which
carries 16 bits of data from each of the nodes. These

" include a subset of the event-status bits and bits conveying

such performance information as external-memory usage
and link activity. The dedicated PS/2 monitor generates
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two signals to control the monitoring: Scan bit and
Scan_clk (as shown in Figure 4). The Scan bit is ““passed”
from node to node at a rate determined by Scan clk. When
a node is ““in possession’’ of the Scan bit, it gates its
status bits onto the scan bus. As shown in Figure 4, a
Scan_bit is injected to processor 0 every 272 scan-clock
cycles. The monitor processor continuously displays the
received status information for the entire system
graphically and optionally files it for later analysis.

System implementation

The logic for the Victor machines is packaged on circuit
cards such as that shown in Figure 5, which shows a
processor node card from the original Victor V32 machine.
The card contains four independent processor nodes, with
each node occupying about 4 X 6 inches. We used the
same card size and node layout for the V256 processor
card, and it too contains four processor nodes. The disk
node uses the same size card, but each card contains only
one disk node.

The host nodes and graphics nodes for V256 were
purchased from vendors of transputer-based hardware. A
small number of modifications were necessary to make
these usable in our system—in particular to make them
conform electrically to our differentially driven
communication-link implementation.

The Victor V256 system is packaged in four 19-inch
racks, as seen in Figure 6. Two of the racks accommodate
the 16 disk-node logic cards and their disk drives, while
the other two racks house the 256 processor nodes and
power supplies. The packaging is designed for a maximum
power dissipation of 20 kW and is air-cooled. It occupies a
small machine room, with the hosts located in an adjacent
room. Remote users gain access through local-area
networks.

Several special measures were taken to enhance system
reliability so that V256 could solve complex problems with
very long run times. These measures include the
following:

& Standard 32/39 ECC code provides single-bit correction
and double-bit detection of memory errors.

» All intercard signals (with the exception of those for the
monitor scan bus) are repowered with TTL-level
differential drivers/receivers.

& A digital filter is included on the system reset lines. This
filter is designed to remove noise pulses that would
otherwise cause system failures, with no possible
recovery.

& All cards run asynchronously. Although the four
processor nodes that are packaged on a card share a
common oscillator, a circuit is provided on each card to
phase-shift the clock before it drives each node. This
phase shift guarantees that the nodes will refresh their
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DRAM memories at different times and reduce the peak
current demand of the card during refresh.

¢ Thermal design is conservative. The hottest air
temperature within the system ranges from 45 to 50°C.

These features, plus engineering attention to logic and
card design details, have produced a family of Victor
systems with excellent proven reliability characteristics.
Since May 1989, when the 256-processor-node system
became operational, we have seen an extremely small
number of memory errors and only one link failure, all of
which were fixed in minutes by plugging in a replacement
card.

o System software

Different message-passing programming environments have
been used on Victor to support the applications discussed
in Section 3. We now discuss a few of them. The
communicating sequential processes model, which
influenced the architecture of the transputer, is discussed
first. We then consider E-kernel, an embedding kernel
developed in the Occam language for experimenting with
program mapping and network reconfiguration on Victor.
Next we discuss the Express environment, which had its
roots in a university project and has been ported to
numerous distributed-memory machines, including Victor.
We conclude this section with a brief discussion of the
Victor file system.

Communicating sequential processes

As we stated in the Introduction, the Inmos transputer was
the choice of processor for Victor V32 in late 1986. At that
time, the most developed programming language for the
transputer was Occam [15, 16}, which we chose for our
early applications. The language is built on the
communicating sequential processes (CSP) paradigm from
the work of C. A. R. Hoare [17, 18]. Fundamental
principles of this paradigm are that input and output are
basic primitives of programming and that parallel
composition of communicating sequential processes is a
fundamental structuring method. Occam is a high-level
language based on the concepts of concurrency and
communication, which enables the behavior of concurrent
systems to be explicitly programmed and controlled. In
Occam, communication between concurrent processes is
implemented using channels. Each channel provides a one-
way, unbuffered connection between two concurrent
processes.

A process performs a sequence of actions and then
terminates. Each action may be an assignment, an input,
or an output. An assignment changes the value of a
variable; an input receives a value from another process on
a channel; and an output sends a value on a channel. The
channel is the synchronization device for coordinating
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Victor V256 system.

concurrent processes. Since there is no buffering, a
channel behaves as a read-only device to a receiving
process and as a write-only device to a transmitting
process. When both the input process and the output
process are ready to communicate on the same channel,
the value from the output process is sent to the input
process via the channel. When this action is complete,
both processes are ready to continue.

A process can be a single primitive process statement, a
group of statements, or a group of processes. Functionally,
a process is a group of statements that share the same
context. Processes are connected to form concurrent
systems; the control flow of a process is coordinated by
constructors, which are used to combine processes to form
larger processes. Some example constructors are SEQ
(which executes its component processes one after
another) and PAR (which causes its component processes
to be executed concurrently). We have used the Occam
language to develop an embedding kernel that is now
discussed.

E-kernel

The better the match between the communication
requirements of parallel programs and the communication
facilities of a parallel system, the better the potential
performance of that system. To achieve a good match on
Victor, we designed and implemented E-kernel, an
embedding kernel, intended to relieve the user of the
concern of optimizing program communication for the
system network topology at hand and to allow the user the
freedom of using a more natural communication topology
for the particular application code being developed. The
communication structures provided by E-kernel to the
application program are meshes and toruses, representing
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many of the intrinsic communication patterns (task graphs)
found in scientific applications [19].

E-kernel is used both to optimize the performance of an
application running on a Victor partition and to experiment
with program performance for systems with different
network topologies. E-kernel has two phases. The first,
program mapping, embeds (maps) the application task
graph onto a chosen system network topology, which may
be a 2D mesh, a ring, or a linear array. E-kernel assumes
that the program task graph has the same number of nodes
as the number of processors in the chosen network and
tries to place the communicating processes of the
application as close together as possible in the system
network in order to minimize the maximum distance
between any two communicating processes. In its second
phase, network reconfiguration, E-kernel embeds the
chosen network topology onto the 2D mesh of a partition
on Victor. The benefit of providing software support for
network reconfiguration is to show the effects of different
system network topologies on performance. Through the
use of E-kernel, without any alteration to the application
code, the same program runs on Victor regardless of
whether the chosen system network is a 2D mesh, a ring,
or a linear array, while the communication optimization of
the program is automatically attempted by E-kernel on the
different network topologies.

The degree of success in the attempt of E-kernel to
optimize the communication depends largely on its
embedding functions, which determine the distances
between the communicating processes, and its routing
strategies, which determine the amount of contention.
Further details are provided in [19-22]. E-kernel was
developed in Occam and allows the application program to
be written in Occam, C, FORTRAN, or Pascal.

Express
A large body of work involving distributed-memory
machines, particularly hypercubes, was performed in the
1980s at the California Institute of Technology and is
described in [23]. Fox et al. have developed a concurrent
programming environment referred to as CrOS 111
(hypercube crystalline operating systems). In CrOS III,
they grouped commonly used communication sequences
into ““conceptual units.”” They believe that collectively
these communication routines have the advantage of
guiding a programmer’s. thinking toward concurrency while
casting the communication operations in a form that may
be efficiently implemented on actual machines.

An area of interest they have pursued is that of
loosely synchronous communication. This refers to
the class of problems in which some parameter can be

“used to synchronize the different processes of the

decomposed computation. This computational parameter
corresponds, for example, to time in-a physical simulation
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or iteration count in the solution of systems of equations
by relaxation.

This work of Fox et al. has continued at Parasoft,
resulting in the Express environment, details of which can
be found in [23, 24]. One programming model that Express
provides is CUBIX, an operating system server that aliows
distributed applications full access to the operating system
resources available on the host computer. Express also
provides performance analysis by means of profiling
utilities that monitor execution, communication, and
events. Several applications running on Victor are
programmed in the Express environment.

File system
The hierarchical file system has been developed to provide
access to the 10 GB of disk storage available on Victor
V256. The file system is a shared resource and is
accessible to any region that has a path to the disk
subsystem, described in the earlier subsection on system
hardware. The file system runs independently on each of
the disk nodes in the system and handles requests from
any application program for data stored on that particular
disk node. This is a step toward a truly distributed file
system which would run across all disk nodes and manage
file storage between disks as well as on individual disks.
We see a usable transfer rate between the file system
executing on a disk node and an application running on a
processor node of about 310 KB/s. Therefore, the
maximum aggregate bandwidth from the file system to an
application is approximately 5 MB/s if all 16 disk nodes
can be utilized effectively. This number reflects the
overhead associated with the file system software and the
application program calls to this software. It also reflects
degradation due to buffering and routing the data through
the message-passing network.

3. Applications

Applications developed for Victor range in scope and
intent from exercising the prototype system to efficiently
solving complex real-world problems. Initially,
development effort focused on applications that are
relatively easy to parallelize in order to gain an empirical
understanding of problem decomposition, distributing
computation across nodes, and balancing communication
between nodes. This experience eventually led to the
design and implementation of parallel programs on Victor
V256 that compare favorably in execution time and
capacity to similar sequential code on state-of-the-art
mainframes.

In the following, we describe in some detail our
experience in implementing applications on Victor. The
eleven applications described here represent a wide cross
section of engineering and scientific disciplines. In each
case, salient points of the problem are described, followed
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by a discussion of some of the implementation aspects and
the performance results. The total number of processors
used in each application varied, depending on the machine
sizes available at the time of implementation as well as on
the peculiarities of the application. In most cases, the
parallel performance is described in terms of the speedups
achieved. The speedup using P processors is defined as the
ratio of the elapsed time for computing the problem on one
processor to the elapsed time for computing the same
problem using all P processors. In cases where the
problem could not be solved on one processor because of
memory limitations, a smaller problem was solved on one
processor, and the times for the larger problem were
extrapolated.

® Fractals and ray tracing

The first applications written for Victor involved problems
that could be divided into independent ‘‘parcels’ of
computations. Among these were the implementation of
fractals and ray-tracing algorithms. Here, complete world
models were replicated in each processor. One of the
processors was designated as the master node from which
the remaining processors obtained new parcels of
computations whenever they were free. In these
applications, the time to evaluate the parcels varies widely;
hence, as far as parallelism is concerned, the main issue is
how to achieve workload balance. A simple dynamic
scheme was found effective, in which the total workload
was subdivided into many more parcels than there were
processors. When a processor finished the computations
associated with a parcel, it requested an additional parcel
from the master node. All the communication overhead
consisted of acquiring the parcels. On the whole, the
overhead was negligible compared to the computations
associated with the parcels. As a result, close to linear
speedups were obtained. The programs were written both
in Occam and in Pascal.

® Monte Carlo nuclear physics

Another interesting early application was a Monte Carlo
solution of a nuclear physics problem. The code used was
a very simplified version of one of eight nuclear physics
programs that had been studied to determine their
suitability for running on message-passing multiprocessor
systems [25]. Using Monte Carlo techniques, this code
calculated the evaporation of neutrons and light charged
particles from nuclear heavy-ion reaction products. The
code operated in three distinct phases: initialization,
computation, and tabulation of final results. In ail
nontrivial cases, the communication-free computation
phase completely dominated the run time, thus leading to
nearly linear speedups. Other than workload balancing,
the only nontrivial issue in parallelizing the serial code
was the well-known problem of concurrent creation of
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pseudorandom numbers, which was solved using staggered
starts [23]. The original serial FORTRAN code was
rewritten in Pascal.

® Neural network simulation

The simulation of neural network models on Victor was
the first complete application in which the ratio of
communication to computation was significant. This
program involved the application of the well-known back-
propagation algorithm to the noisy-character-recognition
problem [26]. The solution proceeded in two phases. In the
first phase, the parameter space (learning rate and
momentum) of the back-propagation algorithm was
explored on multiple processors of Victor. The entire
neural network was represented on each processor. At the
end of the first phase, parameters were determined that
were used in the second phase. In the second phase, the
algorithm was recast, distributing the neural network over
the two-dimensional Victor mesh. Each neural-network
layer was mapped onto a row of the mesh. A centralized
control structure was chosen for the program; as a result,
all message-passing took place via the host processor,
making it a bottleneck and limiting speedups to about 16
on a 32-processor system. The code was written in Occam
and C.

® Computational fluid dynamics

The focus of this work was to study the performance
issues involved in implementation of the implicit-scheme-
based computational fluid dynamics (CFD) applications on
message-passing systems. The ARC-3D program developed
at NASA Ames Research Center was used as
representative application code. Using implicit numerical
methods, this code solves the three-dimensional Euler and
Navier-Stokes equations for compressible flow of gas over
a solid body. See [27] for details on the numerical methods
used in ARC-3D and [28] for a discussion of the
parallelization issues. Detailed timing measurements were
carried out, for both the execution of the application as a
whole and the four major phases of computation. Analyses
were performed for two types of partitioning schemes and
the choice of algorithms for solving the implicit systems.
The salient points of this work are described below.

Partitioning schemes  Two classes of partitioning
schemes were considered: unipartitioning and
multipartitioning. In the former case, the entire
computational domain is divided into P partitions, where
P is the number of processors, and each processor is
assigned one partition. Under the multipartitioning scheme,
the domain is divided into some multiple of P partitions,
and each processor is assigned more than one such
partition. Three different forms of unipartitioning schemes

(1D, 2D, and 3D) and two types of multipartitioning 581
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Table 2 Speedups and percentage of time spent on each task for a computational fluid dynamics program with 30 x 12 x 30

grid.
Task No. of Speedup Percentage of total time
PEs
2D 2D 2D 2D
unipartitioning multipartitioning unipartitioning multipartitioning
BC 4 3.28 2.77 1.20 1.31
16 10.34 2.55 1.34 3.37
RHS 4 3.70 3.45 36.70 36.24
16 13.54 8.17 35.38 36.27
Implicit 4 3.79 3.48 59.78 60.02
16 13.39 9.73 59.70 50.79
Update 4 0.90 0.79 2.31 2.43
16 2.05 0.47 3.58 9.56
Complete time step 4 3.69 3.40 100.0 100.0
16 12.99 8.04 100.0 100.0

schemes (2D diagonal and 3D diagonal) were considered.
In the 2D multipartition case, the computational domain
was divided into P* partitions and each processor was
assigned P such partitions. In the 3D multipartition case,
the computational domain was divided into P** partitions
and each processor was assigned P'” such partitions. In
general, unipartitions have smaller communication
overhead, whereas the multipartitions have minimum data-
dependency delay effects—the delays that are inherent in
implicit computations. See [28] for a detailed discussion on
the trade-offs involved. Both the 3D partitioning schemes
are tolerant to load imbalance. See [29] for the details on
the performance effects of load imbalance on computation
and communication overheads. Depending on the choice of
algorithms, each type of partitioning has certain memory
requirements. Overall, the 2D and 3D type of
unipartitioning and the 3D multipartitioning “‘scale” well
both in terms of the execution time and memory
requirements.

Algorithmic considerations  Each time step computed by
ARC-3D may be divided into four distinct tasks: BC, RHS,
Implicit, and Update, which are computed in that order.
The boundary conditions are set in BC, the right-hand
sides of the equations are evaluated in RHS, the implicit
systems are set up and solved in Implicit, and the updates
are performed in Update. The computations in RHS and
Update are local in nature; at each grid point of the
problem domain, the computations are performed using
the information from the nearest neighbors defined by the
13-point stencil. The computations in BC require nearest-
neighbor information as well as the solution of tridiagonal
systems. Implicit consists of the solution of either scalar
pentadiagonal systems or block tridiagonal systems. Over
96% of the computational work in ARC-3D is in Implicit
and RHS, which is typical of similar CFD applications.
Clearly, to achieve good performance, these two tasks
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must be parallelized well. On a sequential machine, BC
and Update add an insignificant amount of work.
However, BC and Update, when parallelized, add a
significant communication overhead. Moreover, for
unipartitions, BC causes a considerable amount of load
imbalance. For these reasons, all four tasks must be
parallelized so that the total overhead is minimized.

Implementation  All experiments were carried out on a
16-processor Victor. Table 2 summarizes some of the
results for a grid of size 30 x 12 x 30, which was the
largest problem size that could be solved on a single
processor. (In order to calculate speedup, one must
execute the problem on one processor.) The results shown
here are for a case in which the implicit solver was based
on the solution of a scalar pentadiagonal system. The
entire application, including the grid-generation part, was
parallelized. The fully pipelined Thomas algorithm was
used to parallelize Implicit. All computations were
performed using 64-bit arithmetic, and the FORTRAN
code was parallelized using the communication primitives
provided by the 3L parallel FORTRAN (a FORTRAN
compiler for transputers developed by 3L Ltd. [30]).

Results  In Table 2, the performance of the 2D
unipartitions and 2D multipartitions is compared for 4- and
16-processor execution. (The 2D multipartitioning could
not be used with a larger number of processors because
the memory overhead increases with the number of
processors for this type of partitioning. For more than 16
processors, the memory overhead exceeded the available
memory.) On Victor, the 2D unipartitioning scheme clearly
performed better than the 2D multipartitioning scheme.
For a detailed discussion of the observed performance, see
[28]. Another result, not shown in the table, is that the
former scheme is readily scalable. At first these results
seem counterintuitive, since the multipartitioning scheme
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operates at a finer level of granularity and has negligible
data-dependency-delay effects. However, a detailed
analysis showed that for the 2D multipartitions, the
increased number of partitions added considerable
communication and load imbalance overhead, which
outweighed the benefits of negligible data-dependency-delay
effects.

This application was a rather sobering demonstration of
the programming cost of parallelization: The original serial
code contained 4200 lines in 34 subroutines, whereas the
total line count for the parallel version was 20 000 lines in
101 subroutines. This count also includes communication
routines tailored for the application. Currently we are in
the process of implementing the 3D unipartitioning and
3D multipartitioning schemes. These are much harder to
implement, since they involve mapping on a 2D grid of
processors. However, analysis has shown that these two
schemes have lower overheads and they should deliver
superior performance; at the same time they should enable
us to make efficient use of a larger number of processors.

& Solution of linear systems using conjugate gradient
method

The conjugate gradient is a widely used method for solving
linear systems of equations for which the coefficient matrix
is symmetric and positive definite. Such systems arise in
solving elliptic partial differential equations such as

those generated by finite element methods. In our
implementation, the solution of a Poisson equation on a 2D
unit square was used as the model problem. The domain
decomposition technique was used to subdivide the
problem domain into connected but disjoint subdomains.
Each subdomain was assigned to a processor, and the
processor was responsible for performing the computations
involving the nodal variables of that subdomain. With this
type of partitioning, some information exchange is required
between the processors containing neighboring partitions.
For the model problem, the arithmetic work in one
iteration of the conjugate gradient algorithm is comprised
of one matrix-vector multiplication, three SAXPY
operations, and two dot-product operations. These three
component costs depend on the problem discretization and
the implementation methods used. In [31], analytical
expressions are derived for these components in terms of
CPU speeds, message latency, data transmission speeds,
and the diameter of the underlying interconnection
network. On a 64-processor Victor, the largest problem
that could be solved had 641 601 unknowns. This
corresponded to the solution of a 2D Poisson equation on
the unit square with 800 x 800 bilinear element
discretization. The programs were written using the
Express environment. For this problem, we found the
efficiency with the 64-processor Victor to be 0.976, where
the efficiency is defined as the speedup divided by the
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number of processors. In determining the efficiency, we
had to extrapolate the single-processor computation time

from the computation time of a smaller problem, since the
model problem did not fit in the single-processor memory.

® High-temperature superconductivity

High-temperature superconductors are doped perovskite
structure copper oxides, in which the key structure is the
CuO plane. Electrons moving in that plane are believed to
sustain a very strong short-range interelectronic repulsive
interaction U. Because of the strength of U, there is no
analytic procedure for solving the many-particle problem
on a lattice. Thus, an attractive alternative is to invoke

ab initio quantum Monte Carlo (QMC) methods.
Simulations have been carried out on Victor by parallelizing
a projection Monte Carlo method modeling lattices with 200
atoms for 100 time steps [32]. Two versions of the code were
written: In the first version, each processor modeled all
particles, and moves were carried out in parallel, whereas in
the second version, each processor was associated with one
particle. Calculations done with the first version
demonstrated that a widely used phonon-free model of the
CuO plane does not show any evidence of superconductivity.
The major result obtained was that the projection Monte
Carlo technique is feasible, overcoming earlier concerns that
sign oscillations of the many-fermion system would render it
inoperative. The second version of the algorithm (which is
not subject to setious memory constraints), if run on much
faster Victor processors than currently available, might
provide a feasible path to an ab initio understanding of high-
temperature superconductors. The algorithms show
essentially linear speedup up to the 256 nodes of V256 and an
absolute performance comparable to that of a Cray YMP.
The code was written in FORTRAN.

& Environmental modeling
A domain-decomposition algorithm was applied for the
parallel solution of the time-dependent shallow-water
equations for wind-driven oceanic circulation. A
conservation of pollutant-mass equation is also included in
the shallow-water equation set, in order to study the
transport of water-borne contaminants by the wind-
generated oceanic currents.

A series of one-dimensional fast Fourier transforms
(1D FFTs) in each dimension was used as part of the
computational scheme for the solution of the equations,
using Fourier or Chebyshev pseudospectral methods.
These methods consist in expanding the unknown
dependent variables in a global series of orthogonal and
complete sets of functions (basis functions) and requiring
that all of the differential equations be exactly satisfied at a
set of points in the space domain (grid or collocation
points). In most problems where gradients of the
dependent variables must be evaluated, FFTs are
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water equations (N is grid dimension).

Communication time: computation time
o
T
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Ratio of communication time to computation time for shallow-
water equation solution (N is grid dimension).

performed and local derivatives are evaluated analytically
in the spectral domain. In turn, by the application of
inverse FFTs, spectral gradients are transformed to grid-
point gradients with a high order of accuracy. Parallelism
is achieved not by a decomposition of the FFT algorithm
but through the segmentation of the data as evenly as
possible among processing elements (PEs), followed by the
concurrent application of 1D FFTs on arrays resident in
each PE. The need to evaluate gradients of the dependent
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variables in both directions requires the application of

the 1D FFTs across the processors, demanding data
communication among PEs. Once the gradients have been
calculated, explicit time-marching numerical schemes can
be applied independently in each processor partition
without undue concern for the size of the grid. Because of
the global communication demands of the application, and
in order to achieve high communication bandwidths,
efficient data-partitioning, data-blocking, and
communication algorithms were implemented. These
algorithms are portable (and able to be optimized
conveniently for fast migration of sequential code with
similar communication requirements) to distributed-
memory systems.

Actual calculations were carried out on the Victor V256
multiprocessor. The code was written in FORTRAN wusing
the Express CUBIX environment to communicate data-
blocks among processors. Communication was achieved
in each processor by sending and receiving appropriate
messages to and from all participating processors. Express
is responsible for routing the messages to the requested
destinations. The routing process degrades the
performance of the parallel code, since each message
may be passed through several processors before it
reaches its final destination. Furthermore, contention and
latency also contribute to performance degradation in the
parallel code.

Different test runs were performed, and speedup curves
were obtained for square grids of dimension 64, 128,

256, 512, and 1024. As shown in Figure 7, the number

of processors was varied from 1 to 256. A speedup of
almost 160 was achieved on the 1024 x 1024 grid with
256 processors. This was due to the relatively large
number of grid points per processor, which resulted in a
large ratio of computation to communication (see

Figure 8). Runs with smaller grid size (64 and 128) were
performed with fewer processors since they could not be
partitioned efficiently on a 256-node system. A slope
reversal on the speedup curve was realized when the
number of grid points per processor approached 1. This
effect is due to message traffic, network contention, and
latency. When the grid points could not be evenly
partitioned among the processors, the computational load
was unevenly balanced, resulting in the observed inflection
points on the speedup curves (where N is not perfectly
divisible by P).

® Logic fault simulation

Fault simulation is the simulation of a logic design that has
been modified to reflect the presence of a fault, such as an
open wire. Very many of these simulations must be
performed to ensure detection of all plausible faults that
could possibly occur during the manufacturing of a circuit.
Fault simulation was parallelized for Victor by assigning
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small clusters of gates to processors. Before a processor
can execute the fault-simulation operations on a cluster G,
it needs all relevant inputs from clusters logically
preceding G; however, if two clusters are independent, the
evaluation of both can proceed simultaneously. This
parallelism has been exploited. Control of the fault-
simulation process is distributed among the processors by
structuring the simulation as a dataflow process. Upon
completion of operations on a given cluster G, the
processor responsible for G sends result messages to all
processors requiring the results from G. This form of
parallel fault simulation is very communication-intensive,
and the overall performance is limited by overhead of

the present store-and-forward message-passing scheme.
Total speedups achieved were 35 to 40 on 256 nodes

(but not showing signs of leveling off as the number of
processors approached 256). In comparison to this, a
simulation using a centralized-control-structure scheme
“‘saturated”” at a speedup of about 20 to 25, irrespective of
the size of the design [33]. The code was written in
Occam.

& Parallel waveform relaxation

Large-scale circuit simulation is an application that has
outgrown available computational resources. Conventional
tools permit designers to simulate circuits with up to about
5000 transistors, whereas circuits themselves often exceed
several hundred thousand transistors. In the Parallel
Waveform Relaxation project, large digital MOS circuits
are algorithmically partitioned into smaller subcircuits that
can be analyzed separately [34]. After all subcircuits have
been analyzed, node voltage waveforms are shared among
the subcircuits, as in the fault simulation, and a new
analysis is initiated. When all waveforms show little
change from one analysis to the next, the simulation is
complete. The key issues in obtaining high parallel
efficiencies for this problem are workload distribution and
communication load. A static assignment of subcircuits to
processors so that all processors have about the same
number of transistors gives reasonably good workload
balance. Communication is minimized by assigning chains
of subcircuits that share many waveforms to the same
processors. Another unusual feature of the code is the
implementation of a mixed Gauss-Seidel/Gauss-Jacobi
algorithm. The relaxation converges rapidly by using
Gauss-Seidel initially but switches to Gauss-Jacobi once a
processor runs out of subcircuits that can be solved with
Gauss-Seidel. Currently, the simulator code runs on any
number of processors and has been tested with a wide
range of circuits, from 282 transistors in an arithmetic-
logic-unit circuit to the logic portion of a 16MB DRAM
design, with 186 000 transistors. Speedups of up to 200
have been achieved with 256 processors. The largest
simulations run ten times faster than similar sequential
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code on a state-of-the-art mainframe. The code was written
in C.

® Processing strategies for large object-oriented
databases

The purpose of this project was to study the suitability
of the message-passing paradigm for large, object-oriented
databases. A simulator was implemented on Victor to
test algorithms [35] for correctness and performance.
The simulator executes router, controller, query, and
one or more disk-emulator processes on each node. The
host compiles user queries and initiates the actual
processing on the appropriate node. The utilization of
resources and the overall query execution times are
recorded. The simulation results indicate that general-
purpose message-passing systems can be effectively
used for implementing large object-oriented databases.
For the algorithms developed, it was observed that

the retrieval of data from the secondary-storage
devices was the factor limiting performance, even

for very complex queries. Several slow disks per

node were found to be preferable to one fast disk

per node. The communication network limits the
performance only for applications managing very
complex objects or applications having high
interconnectivity among data objects in the final stages
of the query processing.

& Multirobot simulation

Multirobot simulation enables a user to view graphically
the motion and interaction of multiple general robot

arms in a simulated world. This is a problem of
considerable practical interest, since clashes between

real robot arms working simultaneously on a given task
(e.g., populating a printed circuit board) are to be
avoided at all costs. The problem was parallelized in a
coarse-grain sense, with a path-planner process and a
graphics process associated with each robot to be
simulated. The outputs of these processes were directed
to the general graphics server process, which drew

the actual picture. For reasons of performance and

ease of debugging, a small custom-made transputer
operating-system kernel (TOPS) was written [36], and
implemented in Parallel-C from Logical Systems. The
kernel provides blocking and nonblocking message-passing,
broadcasting, routing on a fixed 2D-mesh topology, fast
dynamic-memory-space allocation, event synchronization,
and various degrees of debugging and remote I/O support.
The actual code for robot simulation and user control
reside on top of this kernel. Measured performance of
the system for the simulation of two robots, each with
one prismatic and five revolving joints mounted on a
spinning table, running on a Victor V16 system, was an
animation rate of 2.8 pictures per second. Because of 585
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Table 3 Application speedups on Victor.

Applications Number of Observed

processors  speedups
3D CFD application 16 13
Conjugate gradient 64 62
Environmental modeling 256 170
High-temperature superconductivity 256 =256
Logic fault simulation 256 40
VLSI waveform relaxation 256 200

the very coarse-grained nature of the problem
decomposition, one would not expect higher performance
with more nodes.

8 Summary

In Table 3, we summarize the performance in terms of
speedups of some of the applications described above. The
highest performance measured on the V256 system was
224 MFLOPS (32-bit arithmetic) with an application
(fractals) written in Occam. More typical applications using
FORTRAN or C compilers and 64-bit arithmetic, with
speedups over 150, achieved about 50 MFLOPS. Many of
these applications cannot be organized to perform well on
a vector supercomputer. From our experience, these
applications parallelized well, even on a first-generation
distributed-memory machine such as V256. In some cases,
the performance on V256 was superior to that obtained

on a mainframe or a vector supercomputer. It has been the
objective of this project, however, to provide a test bed for
gaining experience in efficiently parallelizing real
applications on a machine with hundreds of nodes. Toward
that end, we have succeeded very well in achieving our
objectives. In these experiments, several new algorithms
and parallelization methods were implemented and their
performance analyzed. It was also encouraging to see that
very high speedups (over 200) were achieved for important
applications.

4. Conclusions

Here we present some evolving insights stimulated by our
work on the Victor project. Many of these findings are
being applied to Vulcan, the next generation of message-
passing multiprocessors currently being developed in the
Parallel Systems Department at the IBM Thomas J.
Watson Research Center.

S Parallelism and performance

Our most important observation is that many large
scientific and engineering problems exhibit abundant
intrinsic parallelism. While it is true that applications for
parallel machines are often selected just because they are
easy to parallelize, several of the applications studied on
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Victor—particularly the ones related to electronic design
automation—were chosen rather because they represent
large CPU workloads within IBM. It was encouraging to
see that these real problems could be parallelized quite
readily.

The parallelism in large applications appears on many
different levels: from very coarse-grained task parallelism
to fine-grained parallelism found within tight loops. Human
experts familiar with an application usually find it very
easy to identify coarse-grained parallelism, whereas
compilers are making good progress in finding fine-grained
and loop-level parallelism. Thus, humans and compilers
complement each other in finding and exploiting
parallelism, but much work must still be done to develop
better methods for expressing human knowledge about
parallelism to the computer.

Another recurring theme in all of the applications
studied—which furthers a point first stated clearly by
Gustafson et al. [37]—is that it is possible to increase the
number of processors with the problem size and retain
constant parallel efficiency over a wide range of processor
numbers. This observation holds true if the workload per
processor remains constant and neither communication nor
synchronization overhead is the factor limiting performance.

This insight also adds substance to the widely held belief
that a practical market niche for parallel machines exists at
the very high end, where the difficulties of writing parallel
code are accepted by users because there are no
alternatives. There is no doubt now that several of the
applications currently running on or being developed for
V256 will scale gracefully to several thousand processors,
on machines with a similar ratio of communication
capabilities to computation capabilities. We do not yet
know, however, whether this scaling will extend well to
tens of thousands of nodes.

Discussion with scientific users of the Victor machines
has made it clear that they do not mind developing a
parallel program ‘‘from scratch’ if there is a payback in
the form of at least a tenfold performance improvement
over existing machines. At present, this is not the case;
the measured performance of V256 and other large parallel
machines [38] is still only comparable to that of existing
supercomputers. (For a succinct and thoughtful definition
of what a supercomputer is, see the paper by Hey [11].) In
the user community there is considerable faith, however,
that the next generation of parallel machines will deliver
the long-hoped-for performance gains promised by paraliel
computing. Thus, users are willing to develop complex
parallel code today if they believe that the code will be
portable to future systems. As a result, there has been
very high interest among Victor users in the portable
Express environment [24], even though there is currently a
considerable communication performance penalty in using
it [39].
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We have found four significant reasons why speedups
may not be linear in the number of processors:

e Insufficient problem parallelism.
¢ Communication bottlenecks.

e Synchronization overhead.

¢ Workload imbalance.

The first two issues have already been discussed. For
the applications running on Victor, the loss in efficiency
due to synchronization overhead was generally found to be
below 10%. A contributing factor to permitting this
surprisingly small loss is the fact that most large
applications have so much excess parallelism that
processors usually manage to stay busy even though
several individual processes may be blocked.

The problem of balancing workload has proven to be
less troublesome than anticipated. For regular problems, it
is generally straightforward to devise a work-assignment
plan that prevents workload imbalance. For irregular
problems, the simple dynamic balancing scheme described
in Section 3 in the subsection on fractals and ray tracing
worked in several cases. Simple algorithms were found to
work satisfactorily for the remaining applications. More
sophisticated techniques, such as dynamic task migration,
have not proven to be necessary.

® Victor system capabilities

There must be sufficient memory per node—not less than
what is found on state-of-the-art workstations. This has
been the most painful and one of the most telling lessons
of the Victor project. Any MIMD computer that seeks a
significant user community must be able to run large,
unmodified serial code on each node without users being
limited by memory-space restrictions. This implies virtual-
memory capability on all nodes, which, in turn, requires a
large backing-store capability.

With regard to the time required to pass messages
from processor to processor, there is no consensus
among users whether all processors on the network
should appear equidistant (as in a muitistage interconnect
network) or not (as for a mesh or hypercube). Users
with irregular problems most often prefer the former
topology, while those with regular problems favor the
latter.

The visual hardware monitor system has been extremely
valuable in developing and debugging parallel programs.
This is surprising, since the monitor does not recognize
software events such as context switching, but only
hardware conditions such as a communication link being
busy. Two bits per node are displayed by the monitor,
allowing some visual indication of program state. The
global system view provided by the monitor aided in many
complex software-debugging situations. The fact that the
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operation of the monitor cannot be disturbed by any user
action has also been vital.

The transputer provides asynchronous communication
hardware, and there is no system-wide clock in Victor.
Our experience with the reliability of such a potentially
metastable system has been extremely good. It appears
that it will be possible to use such asynchronous systems
for a very large number of processors. Except for the
inconvenience of not being able to generate precise global
timestamps for event tracing, the lack of a global clock has
not been a problem in using the machine.

Another noteworthy feature of the Victor architecture is
the system partitioning, which permits multiuser support.
It has been the experience of our group that a machine of
the size of V256 must be a shared resource. There is no
need to support a large number of users, but a system in
which a few users divide the resources of the machine in a
spatial—not a temporal—sense appears to hold promise for
the high-performance market. The overhead required for
protection in timesharing systems affects context-switching
and message-latency times, both of which are very
sensitive parameters in a parallel computer. But allowing
individual users to use different parts of the system, with
only simple mechanisms to isolate them from one another,
has been very effective.

The lack of high-performance disk I/O and the limited
memory per node on most parallel systems may be reasons
why there are very few parallel production programs
available yet. Fortunately, many scientific and engineering
applications are characterized by sequential accesses to
large files, and it is relatively straightforward to parallelize
disk I/O for access to such files. On Victor, the parallel
waveform relaxation application employs the file system.
It uses the 16 disk nodes in a straightforward, independent
manner. The 16 processing nodes in a column utilize the
disk node in that column as the working data input and
output device. All program files are still kept on the host
node disks. The entire field of parallel file /O and virtual-
memory support is an active research area and will be so
for a long time to come.

® Final statement

In summary, we found that a carefully designed message-
passing multiprocessor system can productively run a
wide range of programs. We found that the software
effort required to run code on such a machine was
reasonable and worth undertaking in view of potential
performance gains. One great challenge of the early nineties
will be to realize the promise of large-scale parallelism

to solve compelling scientific and engineering problems.
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