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Victor  V256 is a  partitionable  message-passing 
multiprocessor  with  256  processors,  designed 
and in use  at  the IBM Thomas J. Watson 
Research  Center.  Our  goals  are  to  explore 
computer  architectures  based  on  the  message- 
passing  model  and  to  use  these  architectures 
to  solve real applications.  We  present  the 
architecture of the  Victor  system,  particularly 
its partitioning  and  nonintrusive  monitoring. 
We  discuss  some  of the  programming 
environments  on  Victor,  such  as  E-kernel,  an 
embedding  kernel  developed  for  the  support  of 
program  mapping  and  network  reconfiguration. 
We  review  applications  developed  and  run  on 
Victor  and  discuss a  few  in  depth,  concluding 
with  insights we  have  gained  from this  project. 

1. Introduction 

Victor 
The Victor project at the IBM Thomas J. Watson Research 
Center started with the dual objectives of investigating 
highly parallel, message-passing, distributed-memory 
MIMD (multiple-instructionlmultiple-data) machines and 
using these machines to solve real problems. Our previous 

experience with the design of uniprocessors led us to an 
understanding that the data access latency and bandwidth 
between memory and processor is of supreme consequence 
in determining overall system performance [l]. Therefore, 
we decided that to obtain the significant speedups that are 
expected for highly parallel systems, an architecture based 
on distributed memory (hence, the message-passing 
communication model) was important. 

construction of a message-passing multiprocessor with off- 
the-shelf components. An analysis of the available single- 
chip processors resulted in our choice of the Inmos'"' 
transputer [2], a specialized microprocessor with 
interprocessor-communication support incorporated on the 
chip. By the summer of  1987, we  had produced an 
operational 32-processor system called Victor V32. This 
system provided us the ability to explore message-passing 
and to run real code. Fractals, ray tracing, and Monte 
Carlo nuclear physics, described in the applications . 
section, were the first programs to run  on  V32, In addition, 
V32 was used for the initial development of E-kernel, 
which is described in the system software section. 

The original Victor V32 prototype led to Victor V256 
(with 256 processors) and  an associated family of smaller 
systems based on the same architecture and card set. 
Early motivations and a description of the project can be 

In late 1986, we embarked on the design and rapid 
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found in  [3]. The goals for the Victor project were to 
better understand what classes of problems are suited to 
this type of architecture and to provide an early 
“platform” for application development for massively 
parallel systems. 

This paper discusses the Victor hardware architecture, 
in particular the capabilities for nonintrusive monitoring 
and partitioning, system software components, and some 
applications that have been created and  run successfully. 
The applications have spanned the communication 
spectrum from waveform-relaxation circuit simulation and 
logic-fault simulation, which have highly irregular 
communication patterns, to Monte Carlo simulations of 
nuclear physics problems, which have extremely low 
communication requirements and are consequently limited 
in performance by only the processing power available at 
each node. 

Related work 
Before describing in detail the Victor system, we tiriefly 
review some related systems work. The pioneering 
machine prototype credited with generating much interest 
in distributed-memory machines was  the Cosmic Cube at 
the California Institute of Technology, a 64-node  machine 
based on the Intel 8086 processor and interconnected as a 
hypercube [4]. Seitz stated in  1985 that the Cosmic Cube 
nodes were designed as a hardware simulation of what we 
could expect to be integrated into one or two chips in 
about five years [4].  The existence of the Inmos transputer 
has substantiated this claim [2, 51. Another chip that has 
appeared to support Seitz’s statement is the iWarp 
processor, which integrates high-speed computation and 
high-speed communication capability in a single 
component, achieving 20 MFLOPS and 20 MIPS per node 
[6]. The iWarp processor is the basis for the iWarp 
distributed-memory architecture developed jointly by 
Carnegie  Mellon and Intel Corporation. There continues to 
be much active research in the development of message- 
passing architectures. Dally from MIT  is  working  on the 
design of the J-Machine, a fine-grained concurrent 
multiprocessor that provides low-overhead primitive 
mechanisms for communication, synchronization, and 
translation [7].  We  now briefly describe three efforts that, 
in various ways, are similar to the Victor approach- 
Armstrong, Hathi-2, and Esprit. 

Armstrong 
The primary goal of the Armstrong project was to 
construct a useful, controllable, research-oriented parallel 
processing test bed [8]. The system, developed in the 
Laboratory for Engineering and  ManIMachine Systems at 
Brown University, has on the order of 100 nodes. Each 
Armstrong node contains a Motorola 68010 CPU, one-half 

574 megabyte  (MB) of  RAM, and  eight 1/0 links. The 

interconnection is point-to-point and can be manually 
reconfigured  using “patch-cords.” Floating-point 
performance is achieved through the use of the National 
32081 coprocessor. 

One  goal of the prototype was to allow the same 
application code to be run without modification  on any 
network configuration.  The Armstrong operating system 
supports  the reconfigurable network by providing location- 
independent communication. From the programmer’s  point 
of view, interaction between processes is the same, 
whether or not they are on the same node. The operating 
system determines the route by using the  shortest  path 
available. It determines the shortest path between nodes 
dynamically by broadcasting routing packets periodically; 
on Armstrong, this is done every 20 seconds. This 
allows the system to adapt to changes in topology 
dynamically. 

A fundamental difference in the approaches of the 
Armstrong operating system and E-kernel (which  we 
discuss in the system software section) is that the task 
graph (which represents the communication structure) of 
an Armstrong application program is essentially viewed as 
a complete graph. No information from the application lets 
the operating system take advantage of the topology of the 
application task graph. With E-kernel, the user writes the 
code according to the natural task graph of the application, 
and E-kernel presents this information to the system in 
order to allow an efficient  mapping of the program onto the 
system. 

Hathi-2 
Hathi-2 is a reconfigurable, general-purpose, 
multiprocessor system that was developed in the 
Department of Computer Science at Ab0 Akademi  and the 
Technical Research Centre of Finland in  Oulu  [9]. 

The current implementation uses 100 transputer nodes, 
each with 256 kilobytes (KB) of memory. Several users 
can execute applications on Hathi-2 simultaneously. Hathi 
boards are interconnected to form a 4 X 6 torus. The 
system may be divided into partitions, each with one or 
more boards. One particular board out of the 25 is  not part 
of the torus connection; its links are not connected to any 
other board, and it always forms a separate partition 
consisting of four nodes. Therefore, the Hathi system 
always consists of at least two partitions, and the largest 
single partition that can be formed consists of  96 
transputers. Partitioning is done with a set of manual 
switches on the backplane of Hathi-2 and cannot be 
changed during  run  time, because the system must be 
rebooted after partitioning. In comparison, the granularity 
of partitioning on Victor is at the node level, so the 
partition size, which  is under software control, can vary 
from one node to the maximum system size of  256 for 
V256. 
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The Hathi approach in development was similar to ours 
for Victor; we quickly developed the prototype of a 
32-node system (V32), then designed V256. They built a 
Hathi-1 system, which was a 16-node system using off-the- 
shelf Inmos BO03 boards. Hathi-2 is logically  divided into 
two separate subsystems: the multiprocessor system and 
the control system. The former contains 100  T800 
transputers, and the latter consists of  25  T212 transputers, 
COO4 crossbar switches, monitor hardware, and the 
interrupt system. The T212 transputers in the control 
system are connected to form a ring  and are controlled by 
a separate host computer. The control system has two 
functions: 

Reconfiguration: Controls the setting of the COO4 

Monitoring: Forwards monitoring data from the 
switches. 

multiprocessor system to the control-system host. 

For monitoring, each T800 transputer writes into its set of 
FIFO registers, which are read by the T212s, and data are 
sent on the control ring to the host. Information is 
collected about the utilization of the CPU and the 
communication links, from the processor “load meter” 
and FIFO buffer. The processor load is determined by 
dedicated hardware that detects activity on the memory 
bus; this is achieved by dedicated hardware and is 
nonintrusive to the application. This part of the monitoring 
logic  is very similar in approach to the Victor monitor. All 
additional monitoring information in Hathi, such as link 
activity, however, is intrusive. This causes overhead, since 
the nodes need to collect the information  and write it to 
their FIFO registers. This  differs  from Victor, in which all 
monitoring is nonintrusive. 

Esprit 
Esprit is the European Strategic Program for Research and 
Development in Information Technology. The Esprit P1085 
program  had the objective of developing a MIMD 
multiprocessor machine with supporting software, to 
demonstrate that high performance can be achieved over a 
wide range of applications [lo]. The result was a modular, 
hierarchical architecture based on reconfigurable nodes of 
transputers. In this system a node consists of  16 worker 
transputers, each with 256 KB of memory.  One additional 
node in the system has 16 MB of memory, which  is  used 
for storing and distributing data. Each worker transputer 
has four links, with each link connected to a 72 X 72 VLSI 
switch controlled by another transputer. Southampton 
University designed the basic reconfigurable “SuperNode” 
cluster architecture [ll]. Additional internode switches are 
used to implement a three-stage Clos network [12] for 
reconfiguring nodes. This flexibility  allows one to construct 
any network that can be  built  with nodes having four 
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network connections. The system provides more 
reconfiguration capability in hardware than Victor but 
lacks the hardware monitoring  facilities. 

2. Victor system 
Victor is a family of experimental, partitionable, 
distributed-memory, message-passing multiprocessors. 
Victor V256, the largest in the family, is a 256-processor 
system containing one GB (gigabyte) of  main memory and 
10 GB of distributed DASD. Other members of the Victor 
family include a (64-processor) Victor V64 system and 
several identical (16-processor) Victor V16 systems. This 
section addresses the system hardware design  and the 
system software developed and  run  on Victor. 

System hardware 
Here we present a view of the hardware, from the high- 
level system architecture to the individual node 
architectures. There are four distinct types of nodes in the 
Victor system: processor,  disk, host, and graphics, all 
using the Inmos T800 transputer [2].  With these as building 
blocks, a wide  range of system capabilities can be 
provided. We discuss in detail the processor and disk node 
architectures, highlighting the partitioning and  monitoring 
capabilities of Victor. We conclude the hardware section 
with a short discussion of implementation details. 

System architecture 
The processor nodes of  V256 form a 16 X 16, two- 
dimensional mesh. Figure 1, which  is a photograph of the 
Victor monitor, presents a snapshot of system activity. 
Each box in the central area represents a processor node. 
Each white bar represents an active communication link. 
The disk nodes are represented in the figure by the row of 
16 white, rounded-corner boxes at the top of the screen. 
They form a 17th row, with connections to the upper and 
lower boundaries of the mesh, thus closing the mesh into a 
cylinder. At the time represented by Figure 1, no request 
is being  made to the file system; therefore, no active links 
are shown between the processor and disk nodes. The five 
host nodes are shown near the corners of Figure 1 and at 
the left center. Four graphics nodes are connected to the 
left  and  right sides of the mesh. 

V256 is a partitionable multiuser system for up to four 
concurrent users and the superuser (a fifth user). A user is 
assigned a host node and a graphics node, and selects an 
arbitrarily shaped contiguous region of the processor mesh. 
In Figure 1, four individual users are assigned hosts H1 
through H4, each owning a region of the system 
represented by a group of boxes of a different color. 
(Although the shape of partitions may  be arbitrary, most 
applications that have been run  on Victor have used 
rectangular partitions. The disk nodes are owned by the 
superuser, at host HO, and act as servers, handling  all  file 

D. G .  SHEA ET AL. 



Photograph of Victor V256 monitor. 

system requests from the users. In the configuration of 
Figure 1, each of four regions was active with a different 
program. Hardware discussed below provides this 
partitioning and prevents users from interfering with one 
another. The mesh topology, coupled with the partitioning 
strategy, furnishes a user the same general network 
characteristics at any one of the four partitions. On the 
basis of our experience with V32, we decided that the 
practical advantages of a highly regular topology 
outweighed the benefits  gained  from  using a more complex 
topology of smaller diameter (the maximum distance any 

576 message  may have to travel). 

Node architecture 
Figure 2 is a block diagram of a Victor processor node. 
Each node is based on a 20-MHz  T800 transputer chip, 
which includes a 64-bit  floating-point unit and four 
transputer links. The memory subsystem provides 4 MB of 
memory per node. Memory access times are given  in 
Table 1. A standard 32/39-bit error-correcting-code (ECC) 
circuit increases system reliability, a very important 
consideration in a system with 1 GB of dynamic RAM 
running for weeks at a time on a single problem. 

event status register (EuSR) that contains information 
Each processor node contains a memory-mapped 16-bit 

D. G .  SHEA ET AL. IBM J .  RES. DEVELOP. VOL. 35 NO. 516 SEPTEMBEIUNOVEMBER 1991 



4 t I e 
'Ibnoden-1 System-services l b n o d e n + l  

and scan bus 

Victor V256 processor node architecture. Victor V256 disk node architecture. 

about memory errors and transputer errors, various mask 
bits, two software-programmable flags connected to LEDs 
(also displayed as 0 and 1 in Figure l), and a bit  indicating 
whether this node is currently being  polled by the monitor. 
In addition, this register has a four-bit region ID field 
(one bit per host) that indicates the present owner of this 
node. 

It was desired to have sufficient disk I/O in V256. Past 
experience with 1/0 traffic in scientific code suggests that a 
system with the performance of V256 should ideally have 
up to 100 MB/s  in 1/0 capability [13]. The capacity of the 
16 medium-performance disks integrated into V256 falls 
short of this ideal. As discussed in the subsection on the 
file system, even though the transfer rate from disk drive 
to disk node memory was of the order of 1.0 MB/s, the 
effective transfer rate from disk node to processor node 
was approximately 310 KB/s. One application to use the 
file system is waveform relaxation. The combined data rate 
of the 16 disk nodes met the requirements for that 
application but is  not  sufficient for I/O-intensive 
applications. We hope to learn how to support parallel I/O 
by using the disk resources currently available on V256. 
For instance, if one had the resources to add 64 disk nodes 
to V256, where should they be placed? 

Figure 3 is the block diagram of a disk node, which is 
also based on the T800 transputer. The disk-node memory 
consists of 1 MB of static RAM. A SCSI bus controller is 
memory-mapped onto the address space of the T800; it 
uses asynchronous direct memory access data transfer 
at a maximum rate of 1.0 MB/s. The disks used in V256, 
V64, and  all V16 systems are IBM  600MB and 300MB 
drives. 

Table 1 Victor V256  processor node memory access 
times. 

Memory operation Time 
( 4  

Read 300 
Write  word  250 
Write byte 350 

Partitioning and  monitoring 
In V32, we used a simple switch to allow  multiple hosts to 
be attached to the system. Although this made  it easy to 
switch hosts, only one host could use V32 at any one time. 
For this reason and because of work in partitioning by Ma 
and Krishnamurti [14], a goal  for V256 was to make the 
system partitionable. Logic on each processor card allows 
each node on that card to be claimed by any of the host 
nodes. Once claimed, a processor blocks requests from 
other hosts, but the superuser on host HO can always gain 
control of the entire system. 

A host can acquire a partition of arbitrary size, from one 
node up to all 256 nodes, the only restriction being that 
there must be a connected path of links from every node in 
the partition back to the host. Once the user of a given 
partition is done with some or all  of its nodes, they are 
released back into the pool of nodes available to be 
claimed by another host. 

In V32, several buffered LEDs per node were hard- 
wired to various signals, giving some visual indication of 
the activity on the node. Though primitive, this provided 
users with a surprising amount of information about the 577 
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Timing diagram for Victor V256 monitor  scan bus. 

Victor V32 four-processor card. 

progress of their programs. For V256, the hardware 
monitoring was extended and is implemented via a data- 
collection bus (the scan bus) that is completely 
independent of the regular transputer communication links 
and  is controlled by a dedicated IBM PS/2@ monitor 
processor. All nodes (256 processor nodes and 16 disk 
nodes) are connected to this systemwide scan bus, which 
carries 16 bits of data from each of the nodes. These 
include a subset of the event-status bits and bits conveying 
such performance information as external-memory usage 
and link activity. The dedicated PS/2 monitor generates 

two signals to contra . ..; monitoring: Scan _bit and 
Scan-clk (as shown in Figure 4). The Scan-bit is “passed” 
from node to node at a rate determined by Scanclk. When 
a node is “in possession” of the Scan-bit, it gates its 
status bits onto the scan bus. As shown in Figure 4, a 
Scan-bit  is injected to processor 0 every 272 scan-clock 
cycles. The  monitor processor continuously displays the 
received status information for the entire system 
graphically and optionally files it for later analysis. 

System implementation 
The logic for the Victor machines is packaged on circuit 
cards such as that shown in Figure 5, which shows a 
processor node card from the original Victor V32 machine. 
The card contains four independent processor nodes, with 
each node occupying about 4 X 6 inches. We  used the 
same card size and node layout for the V256 processor 
card, and it too contains four processor nodes. The disk 
node uses the same size card, but each card contains only 
one disk node. 

The host nodes and graphics nodes for V256 were 
purchased from vendors of transputer-based hardware. A 
small  number of modifications were necessary to make 
these usable in our system-in particular to make  them 
conform electrically to our differentially driven 
communication-link implementation. 

The Victor V256 system is  packaged in four 19-inch 
racks, as seen in Figure 6. Two of the racks accommodate 
the 16 disk-node logic cards and their disk drives, while 
the other two racks house the 256 processor nodes and 
power supplies. The  packaging  is  designed for a maximum 
power dissipation of 20  kW and is air-cooled. It occupies a 
small  machine  room,  with the hosts located in  an adjacent 
room. Remote users gain access through local-area 
networks. 

Several special measures were taken to enhance system 
reliability so that V256 could solve complex problems with 
very long  run times. These measures include the 
following: 

Standard 32/39 ECC code provides single-bit correction 

All intercard signals (with the exception of those for the 
and double-bit detection of memory errors. 

monitor scan bus) are repowered with lTL-level 
differential drivers/receivers. 

filter  is  designed to remove noise pulses that would 
otherwise cause system failures, with  no possible 
recovery. 
All cards run asynchronously. Although the four 
processor nodes that are packaged  on a card share a 
common oscillator, a circuit is provided on each card to 
phase-shift the clock before it drives each node. This 
phase shift guarantees that the nodes will refresh their 

A digital  filter is included  on the system reset lines. This 
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DRAM memories at different times and reduce the peak 
current demand of the card during refresh. 

temperature within the system ranges from 45 to 50°C. 
Thermal design is conservative. The hottest air 

These features, plus engineering attention to logic and 
card design details, have produced a family of Victor 
systems with excellent proven reliability characteristics. 
Since May  1989, when the 256-processor-node system 
became operational, we have seen an extremely small 
number of memory errors and only one link failure, all  of 
which were fixed  in minutes by  plugging  in a replacement 
card. 

System  sofhvare 
Different message-passing programming environments have 
been used on Victor to support the applications discussed 
in Section 3. We  now discuss a few  of them. The 
communicating sequential processes model, which 
influenced the architecture of the transputer, is discussed 
first.  We then consider E-kernel, an embedding kernel 
developed in the Occam  language for experimenting with 
program  mapping and network reconfiguration  on Victor. 
Next we discuss the Express environment, which  had its 
roots in a university project and has been ported to 
numerous distributed-memory machines, including Victor. 
We conclude this section with a brief discussion of the 
Victor file system. 

Communicating  sequential processes 
As we stated in the Introduction, the Inmos transputer was 
the choice of processor for Victor V32  in late 1986.  At that 
time, the most developed programming  language for the 
transputer was Occam [15,  161, which we chose for our 
early applications. The language  is  built on the 
communicating sequential processes (CSP) paradigm  from 
the work of C. A.  R. Hoare [17,  181. Fundamental 
principles of this paradigm are that input and output are 
basic primitives of programming  and that parallel 
composition of communicating sequential processes is a 
fundamental structuring method. Occam  is a high-level 
language based on the concepts of concurrency and 
communication, which enables the behavior of concurrent 
systems to be explicitly programmed and controlled. In 
Occam, communication between concurrent processes is 
implemented using channels. Each channel provides a one- 
way, unbuffered connection between two concurrent 
processes. 

A process performs a sequence of actions and then 
terminates. Each action may be an assignment, an input, 
or an output. An assignment changes the value of a 
variable; an  input receives a value from another process on 
a channel; and an output sends a value on a channel. The 
channel is the synchronization device for coordinating 

Victor V256 system. 

concurrent processes. Since there is  no  buffering, a 
channel behaves as a read-only device to a receiving 
process and as a write-only device to a transmitting 
process. When both the input process and the output 
process are ready to communicate on the same channel, 
the value from the output process is sent to the input 
process via the channel. When this action is complete, 
both processes are ready to continue. 

A process can be a single  primitive process statement, a 
group of statements, or a group of processes. Functionally, 
a process is a group of statements that share the same 
context. Processes are connected to form concurrent 
systems; the control flow  of a process is coordinated by 
constructors, which are used to combine processes to form 
larger processes. Some example constructors are SEQ 
(which executes its component processes one after 
another) and PAR (which causes its component processes 
to be executed concurrently). We have used the Occam 
language to develop an embedding kernel that is  now 
discussed. 

E-kernel 
The better the match between the communication 
requirements of parallel programs and the communication 
facilities of a parallel system, the better the potential 
performance of that system. To achieve a good match on 
Victor, we  designed and implemented E-kernel, an 
embedding kernel, intended to relieve the user of the 
concern of optimizing  program communication for the 
system network topology at hand  and to allow the user the 
freedom of using a more natural communication topology 
for the particular application code being developed. The 
communication structures provided by E-kernel to the 
application program are meshes and toruses, representing 
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many of the intrinsic communication patterns (task graphs) 
found in scientific applications [19]. 

E-kernel is  used both to optimize the performance of  an 
application running on a Victor partition and to experiment 
with  program performance for systems with  different 
network topologies. E-kernel has two phases. The first, 
program mapping, embeds (maps) the application task 
graph onto  a chosen system network topology,  which  may 
be a 2D mesh, a ring,  or a linear array. E-kernel assumes 
that the program task graph has the same number of nodes 
as the number of processors in the chosen network and 
tries to place the communicating processes of the 
application as close together as possible in the system 
network in order to minimize the maximum distance 
between any two communicating processes. In its second 
phase, network reconfiguration, E-kernel embeds the 
chosen network topology onto the 2D mesh of a partition 
on Victor. The benefit of providing software support for 
network reconfiguration is to show the effects of different 
system network topologies on performance. Through the 
use of E-kernel, without any alteration to the application 
code, the same program runs on Victor regardless of 
whether the chosen system network is a 2D mesh, a ring, 
or a linear array, while the communication optimization of 
the program  is automatically attempted by E-kernel on the 
different network topologies. 

optimize the communication depends largely on its 
embedding functions, which determine the distances 
between the communicating processes, and its routing 
strategies, which determine the amount of contention. 
Further details are provided in  [19-221. E-kernel was 
developed in Occam  and allows the application program  to 
be written in Occam, C, FORTRAN, or Pascal. 

The degree of success in the attempt of E-kernel to 

Express 
A large body of work involving distributed-memory 
machines, particularly hypercubes, was performed in the 
1980s  at the California Institute of Technology and  is 
described in [23]. Fox  et al. have developed a concurrent 
programming environment referred to as CrOS 111 
(hypercube crystalline operating systems). In CrOS 111, 
they grouped commonly  used communication sequences 
into “conceptual units.” They believe that collectively 
these communication routines have the advantage of 
guiding a programmerTs  thinking toward concurrency while 
casting the communication operations in a form that may 
be  efficiently  implemented on actual machines. 

An area of interest they have pursued is that of 
foosely synchronous communication. This refers to 
the class of problems in which some parameter can be 

decomposed computation. This computational parameter 
corresponds, for example, to time in a physical simulation 

’ used to synchronize the different processes of the 
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or iteration count in the solution of systems of equations 
by relaxation. 

resulting in the Express environment, details of which can 
be found in  [23,  241. One  programming  model that Express 
provides is CUBIX, an operating system server that allows 
distributed applications full access to the operating system 
resources available on the host computer. Express also 
provides performance analysis by means of profiling 
utilities that monitor execution, communication, and 
events. Several applications running  on Victor are 
programmed in the Express environment. 

This work of Fox et al. has continued at Parasoft, 

File system 
The hierarchical file system has been developed to provide 
access to the 10 GB of disk storage available on Victor 
V256. The file system is a shared resource and  is 
accessible to any region that has a path to the disk 
subsystem, described in the earlier subsection on system 
hardware. The file system runs independently on each of 
the disk nodes in the system and handles requests from 
any application program for data stored on that particular 
disk node.  This is a  step toward a truly distributed file 
system which  would  run across all disk nodes and  manage 
file storage between disks as well as on  individual disks. 

We see  a usable transfer rate between the file system 
executing on a disk node and  an application running  on a 
processor node of about 310 KB/s. Therefore, the 
maximum  aggregate bandwidth from the file system to an 
application is approximately 5 MB/s if  all  16 disk nodes 
can be utilized effectively. This number reflects the 
overhead associated with the file system software and the 
application program calls to this software. It also reflects 
degradation due to buffering  and routing the data through 
the message-passing network. 

3. Applications 
Applications developed for Victor range in scope and 
intent from exercising the prototype system to efficiently 
solving complex real-world problems. Initially, 
development effort focused on applications that are 
relatively easy to parallelize  in order to gain  an  empirical 
understanding of problem decomposition, distributing 
computation across nodes, and balancing communication 
between nodes. This experience eventually led to the 
design and implementation of parallel programs on Victor 
V256 that compare favorably in execution time  and 
capacity to similar sequential code on state-of-the-art 
mainframes. 

In the following, we describe in some detail our 
experience in implementing applications on Victor. The 
eleven applications described here represent a wide cross 
section of engineering  and scientific disciplines. In each 
case, salient points of the problem are described, followed 
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by a discussion of some of the implementation aspects and 
the performance results. The total number of processors 
used in each application varied, depending on the machine 
sizes available at the time of implementation as well as on 
the peculiarities of the application. In  most cases, the 
parallel performance is described in terms of the speedups 
achieved. The speedup using P processors is defined as the 
ratio of the elapsed time  for computing the problem  on one 
processor to the elapsed time  for computing the same 
problem  using  all P processors. In cases where the 
problem  could  not be solved on one processor because of 
memory limitations, a smaller  problem was solved on one 
processor, and the times for the larger problem were 
extrapolated. 

Fractals and ray tracing 
The first applications written for Victor involved problems 
that could be divided into independent “parcels” of 
computations. Among these were the implementation of 
fractals and ray-tracing algorithms. Here, complete world 
models were replicated in each processor. One of the 
processors was designated as the master node from  which 
the remaining processors obtained new parcels of 
computations whenever they were free. In these 
applications, the time to evaluate the parcels varies widely; 
hence, as far as parallelism  is concerned, the main issue is 
how to achieve workload balance. A simple dynamic 
scheme was found effective, in which the total workload 
was subdivided into many more parcels than there were 
processors. When a processor finished the computations 
associated with a parcel, it requested an additional parcel 
from the master node. All the communication overhead 
consisted of acquiring the parcels. On the whole, the 
overhead was negligible compared to the computations 
associated with the parcels. As a result, close to linear 
speedups were obtained. The programs were written both 
in Occam  and  in Pascal. 

Monte Carlo  nuclear physics 
Another interesting early application was a Monte Carlo 
solution of a nuclear physics problem.  The code used was 
a  very simplified version of one of eight nuclear physics 
programs that had been studied to determine their 
suitability for running on message-passing multiprocessor 
systems [25]. Using  Monte Carlo techniques, this code 
calculated the evaporation of neutrons and  light  charged 
particles from nuclear heavy-ion reaction products. The 
code operated in three distinct phases: initialization, 
computation, and tabulation of  final results. In  all 
nontrivial cases, the communication-free computation 
phase completely dominated the run  time, thus leading to 
nearly linear speedups. Other than workload balancing, 
the only nontrivial issue in parallelizing the serial code 
was the well-known  problem of concurrent creation of 

pseudorandom numbers, which was solved using staggered 
starts [23]. The  original serial FORTRAN code was 
rewritten in Pascal. 

Neural network  simulation 
The simulation of neural network models on Victor was 
the first complete application in which the ratio of 
communication to computation was significant. This 
program  involved the application of the well-known back- 
propagation algorithm to the noisy-character-recognition 
problem [26]. The solution proceeded in two phases. In the 
first phase, the parameter space (learning rate and 
momentum) of the back-propagation algorithm was 
explored on multiple processors of Victor. The entire 
neural network was represented on each processor. At the 
end of the first phase, parameters were determined that 
were used in the second phase. In the second phase, the 
algorithm was recast, distributing the neural network over 
the two-dimensional Victor mesh. Each neural-network 
layer was mapped onto  a row of the mesh. A centralized 
control structure was chosen for the program; as  a result, 
all message-passing took place via the host processor, 
making  it a bottleneck and limiting speedups to about 16 
on a 32-processor system. The code was written in Occam 
and C. 

Computational fluid dynamics 
The focus of this work was to study the performance 
issues involved in implementation of the implicit-scheme- 
based computational fluid dynamics (CFD) applications on 
message-passing systems. The ARC3D program developed 
at NASA  Ames Research Center was used as 
representative application code. Using  implicit  numerical 
methods, this code solves the three-dimensional Euler and 
Navier-Stokes equations for compressible flow  of gas over 
a solid body. See [27] for details on the numerical methods 
used in ARC3D and [28] for a discussion of the 
parallelization issues. Detailed  timing measurements were 
carried out, for both the execution of the application as a 
whole  and the four major phases of computation. Analyses 
were performed for two types of partitioning schemes and 
the choice of algorithms for solving the implicit systems. 
The salient points of this work are described below. 

Partitioning schemes Two classes of partitioning 
schemes were considered: unipartitioning and 
multipartitioning. In the former case, the entire 
computational domain  is  divided into P partitions, where 
P is the number of processors, and each processor is 
assigned one partition. Under the multipartitioning scheme, 
the domain  is  divided into some multiple of P partitions, 
and each processor is assigned  more than one such 
partition. Three different forms of unipartitioning schemes 
(lD, 2D, and 3D)  and two types of multipartitioning 581 
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Table 2 Speedups and percentage of time spent on each  task for a computational fluid dynamics  program  with 30 X 12 X 30 
grid. 

Task No. of Speedup 
PES 

Percentage of total  time 

2 0  2 0   2 0  2 0  
unipartitioning  multipartitioning  unipartitioning  multipartitioning 

BC 4 3.28 2.77 1.20 1.31 
16 10.34 2.55 1.34 3.37 

RHS 4 3.70 3.45 36.70 36.24 
16 13.54 8.17 35.38 36.27 

Implicit 4 3.79 3.48 59.78 60.02 
16 13.39 9.73 59.70 50.79 

Update 4 0.90 0.79 2.31 2.43 
16 2.05 0.47 3.58 9.56 

Complete time step 4 3.69 3.40 100.0 100.0 
16 12.99 8.04 100.0 100.0 

schemes (2D  diagonal and 3D diagonal) were considered. 
In the 2D multipartition case, the computational domain 
was divided into P 2  partitions and each processor was 
assigned P such partitions. In the 3D multipartition case, 
the computational domain was divided into P3’2 partitions 
and each processor was assigned such partitions. In 
general, unipartitions have smaller communication 
overhead, whereas the multipartitions have minimum data- 
dependency delay effects-the delays that are inherent in 
implicit computations. See [28] for a detailed discussion on 
the trade-offs involved.  Both the 3D partitioning schemes 
are tolerant to load  imbalance. See [29] for the details on 
the performance effects of load imbalance on computation 
and communication overheads. Depending  on the choice of 
algorithms, each type of partitioning has certain memory 
requirements. Overall, the 2D and 3D type of 
unipartitioning and the 3D multipartitioning “scale” well 
both in terms of the execution time  and  memory 
requirements. 

Algorithmic considerations Each time step computed by 
ARC3D may  be  divided into four distinct tasks: BC, RHS, 
Implicit, and Update, which are computed in that order. 
The boundary conditions are set in BC, the right-hand 
sides of the equations are evaluated in RHS, the implicit 
systems are set up  and solved in Implicit, and the updates 
are performed in Update. The computations in RHS and 
Update are local  in nature; at each grid  point of the 
problem domain, the computations are performed using 
the information from the nearest neighbors defined by the 
13-point stencil. The computations in BC require nearest- 
neighbor information as well as the solution of tridiagonal 
systems. Implicit consists of the solution of either scalar 
pentadiagonal systems or block tridiagonal systems. Over 
96%  of the computational work in ARC-3D  is  in  Implicit 
and  RHS,  which is typical of similar CFD applications. 

582 Clearly, to achieve good performance, these two tasks 

must be parallelized well. On a sequential machine,  BC 
and Update add an insignificant amount of work. 
However, BC and Update, when parallelized, add a 
significant communication overhead. Moreover, for 
unipartitions, BC causes a considerable amount of load 
imbalance. For these reasons, all four tasks must  be 
parallelized so that the total overhead is  minimized. 

Implementation All experiments were carried out on a 
16-processor Victor. Table 2 summarizes some of the 
results for a grid  of size 30 X 12 X 30, which was the 
largest  problem size that could be solved on a single 
processor. (In order to calculate speedup, one must 
execute the problem on one processor.) The results shown 
here are for a case in which the implicit solver was based 
on the solution of a scalar pentadiagonal system. The 
entire application, including the grid-generation part, was 
parallelized. The  fully  pipelined Thomas algorithm was 
used to parallelize Implicit. All computations were 
performed using  64-bit arithmetic, and the FORTRAN 
code was parallelized  using the communication primitives 
provided by the 3L parallel FORTRAN (a FORTRAN 
compiler for transputers developed by 3L Ltd. [30]). 

Results In  Table 2, the performance of the 2D 
unipartitions and 2D multipartitions is compared for 4- and 
16-processor execution. (The 2D multipartitioning could 
not be used with a larger number of processors because 
the memory overhead increases with the number of 
processors for this type of partitioning. For more than 16 
processors, the memory overhead exceeded the available 
memory.) On Victor, the 2D unipartitioning scheme clearly 
performed better than the 2D multipartitioning scheme. 
For a detailed discussion of the observed performance, see 
[28]. Another result, not shown in the table, is that the 
former scheme is  readily scalable. At  first these results 
seem counterintuitive, since the multipartitioning scheme 
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operates at a finer  level of granularity and has negligible 
data-dependency-delay effects. However, a detailed 
analysis showed that for the 2D multipartitions, the 
increased number of partitions added considerable 
communication and  load imbalance overhead, which 
outweighed the benefits of negligible data-dependency-delay 
effects. 

This application was a rather sobering demonstration of 
the programming cost of parallelization: The original serial 
code contained 4200 lines  in  34 subroutines, whereas the 
total line count for the parallel version was 20 000 lines in 
101 subroutines. This count also includes communication 
routines tailored for the application. Currently we are in 
the process of implementing the 3D unipartitioning and 
3D multipartitioning schemes. These are much harder to 
implement, since they involve  mapping on a 2D grid of 
processors. However, analysis has shown that these two 
schemes have lower overheads and they should deliver 
superior performance; at the same time they should enable 
us to make efficient  use of a larger number of processors. 

Solution of linear systems using conjugate gradient 
method 
The conjugate gradient is a widely used method for solving 
linear systems of equations for which the coefficient matrix 
is symmetric and positive definite. Such systems arise in 
solving elliptic partial differential equations such as 
those generated by finite element methods. In our 
implementation, the solution of a Poisson equation on a 2D 
unit square was used as the model problem. The  domain 
decomposition technique was used to subdivide the 
problem  domain into connected but disjoint subdomains. 
Each subdomain was assigned to a processor, and the 
processor was responsible for performing the computations 
involving the nodal variables of that subdomain. With this 
type of partitioning, some information exchange is required 
between the processors containing neighboring partitions. 
For the model problem, the arithmetic work in one 
iteration of the conjugate gradient algorithm is comprised 
of one matrix-vector multiplication, three SAXPY 
operations, and two dot-product operations. These three 
component costs depend on the problem discretization and 
the implementation methods used. In [31], analytical 
expressions are derived for these components in terms of 
CPU speeds, message latency, data transmission speeds, 
and the diameter of the underlying interconnection 
network. On a 64-processor Victor, the largest problem 
that could be solved had 641  601 unknowns. This 
corresponded to the solution of a 2D Poisson equation on 
the unit square with 800 X 800 bilinear element 
discretization. The programs were written using the 
Express environment. For this problem, we  found the 
efficiency  with the 64-processor Victor to be 0.976, where 
the efficiency is defined as the speedup divided by the 583 
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number of processors. In determining the efficiency,  we 
had to extrapolate the single-processor computation time 
from the computation time of a smaller problem, since the 
model  problem  did  not fit in the single-processor memory. 

High-temperature superconductivity 
High-temperature superconductors are doped perovskite 
structure copper oxides, in which the key structure is the 
CuO plane. Electrons moving in that plane are believed to 
sustain a very strong short-range interelectronic repulsive 
interaction U. Because of the strength of U, there is no 
analytic procedure for  solving the many-particle problem 
on a lattice. Thus, an attractive alternative is to invoke 
ab initio quantum Monte Carlo (QMC) methods. 
Simulations  have  been  carried out on  Victor by parallelizing 
a projection  Monte  Carlo  method  modeling  lattices  with 200 
atoms for 100 time steps [32]. Two versions of the code were 
written: In the  first version, each  processor  modeled  all 
particles,  and  moves were carried  out in  parallel, whereas in 
the  second  version,  each  processor was associated  with one 
particle.  Calculations  done  with the first  version 
demonstrated  that a widely  used  phonon-free  model of the 
CuO  plane does not  show  any  evidence of superconductivity. 
The  major  result  obtained was that  the  projection  Monte 
Carlo  technique is feasible,  overcoming  earlier concerns that 
sign oscillations of the many-fermion  system  would  render  it 
inoperative.  The  second  version of the  algorithm  (which  is 
not  subject to serious memory constraints), if run  on  much 
faster Victor processors than currently available,  might 
provide a feasible  path to an ab initio understanding of  high- 
temperature superconductors. The  algorithms  show 
essentially  linear  speedup  up to the 256 nodes of V256 and an 
absolute  performance  comparable to that of a Cray YMP. 
The  code was written in  FORTRAN. 

Environmental  modeling 
A domain-decomposition algorithm was applied for the 
parallel solution of the time-dependent shallow-water 
equations for wind-driven oceanic circulation. A 
conservation of pollutant-mass equation is also included in 
the shallow-water equation set, in order to study the 
transport of water-borne contaminants by the wind- 
generated oceanic currents. 

A series of one-dimensional fast Fourier transforms 
(1D FFTs) in each dimension was used as part of the 
computational scheme for the solution of the equations, 
using Fourier or Chebyshev pseudospectral methods. 
These methods consist in expanding the unknown 
dependent variables in a global series of orthogonal and 
complete sets of functions (basis functions) and requiring 
that all  of the differential equations be exactly satisfied at a 
set of points in the space domain  (grid or collocation 
points). In most problems where gradients of the 
dependent variables must be evaluated, FFTs are 



Speedup  achieved by parallel  solution of time-dependent  shallow- 
water  equations (N is  grid  dimension). 

Ratio of communication  time  to  computation  time for shallow- 
water  equation  solution (N is grid dimension). 

performed and local derivatives are evaluated analytically 
in the spectral domain. In turn, by the application of 
inverse FFTs, spectral gradients are transformed to grid- 
point gradients with a high order of accuracy. Parallelism 
is achieved not by a decomposition of the FFT algorithm 
but through the segmentation of the data as evenly as 
possible among processing elements (PES), followed by the 
concurrent application of 1D FFTs on arrays resident in 

584 each PE. The need to evaluate gradients of the dependent 

variables in both directions requires the application of 
the 1D FFTs across the processors, demanding data 
communication among PES. Once the gradients have been 
calculated, explicit time-marching numerical schemes can 
be applied independently in each processor partition 
without undue concern for the size of the grid. Because of 
the global communication demands of the application, and 
in order to achieve high communication bandwidths, 
efficient data-partitioning, data-blocking, and 
communication algorithms were implemented. These 
algorithms are portable (and able to be optimized 
conveniently for fast migration of sequential code with 
similar communication requirements) to distributed- 
memory systems. 

Actual calculations were carried out on the Victor V256 
multiprocessor. The code was written in FORTRAN  using 
the Express CUBIX environment to communicate data- 
blocks among processors. Communication was achieved 
in each processor by sending and receiving appropriate 
messages to and  from  all participating processors. Express 
is responsible for routing the messages to the requested 
destinations. The routing process degrades the 
performance of the parallel code, since each message 
may  be passed through several processors before it 
reaches its final destination. Furthermore, contention and 
latency also contribute to performance degradation in the 
parallel code. 

were obtained for square grids of dimension 64,  128, 
256,  512, and 1024. As shown in Figure 7, the number 
of processors was varied from 1 to 256. A speedup of 
almost 160 was achieved on the 1024 x 1024  grid with 
256 processors. This was due to the relatively large 
number of grid points per processor, which resulted in a 
large ratio of computation to communication (see 
Figure 8). Runs with smaller grid size (64  and  128) were 
performed with fewer processors since they could not be 
partitioned efficiently on a 256-node system. A slope 
reversal on the speedup curve was realized when the 
number of grid points per processor approached 1. This 
effect  is due to message  traffic, network contention, and 
latency. When the grid points could not be evenly 
partitioned among the processors, the computational load 
was unevenly balanced, resulting in the observed inflection 
points on the speedup curves (where N is not perfectly 
divisible by P )  . 

Different test runs were performed, and speedup curves 

Logic fault simulation 
Fault simulation is the simulation of a logic  design that has 
been  modified to reflect the presence of a fault, such as an 
open wire. Very many of these simulations must be 
performed to ensure detection of  all plausible faults that 
could possibly occur during the manufacturing of a circuit. 
Fault simulation was parallelized for Victor by assigning 
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small clusters of gates to processors. Before a processor 
can execute the fault-simulation operations on a cluster G, 
it needs all relevant inputs from clusters logically 
preceding G; however, if two clusters are independent, the 
evaluation of both can proceed simultaneously. This 
parallelism has been exploited. Control of the fault- 
simulation process is distributed among the processors by 
structuring the simulation as  a dataflow process. Upon 
completion of operations on a given cluster G, the 
processor responsible for G sends result messages to all 
processors requiring the results from  G. This form of 
parallel fault simulation is very communication-intensive, 
and the overall performance is  limited  by overhead of 
the present store-and-forward message-passing scheme. 
Total speedups achieved were 35 to 40 on 256 nodes 
(but not  showing signs of leveling off as the number of 
processors approached 256). In comparison to this, a 
simulation using a centralized-control-structure scheme 
“saturated” at a speedup of about 20 to 25, irrespective of 
the size of the design [33]. The code was written in 
Occam. 

Parallel waveform relaxation 
Large-scale circuit simulation is an application that has 
outgrown available computational resources. Conventional 
tools permit designers to simulate circuits with  up to about 
5000 transistors, whereas circuits themselves often exceed 
several hundred thousand transistors. In the Parallel 
Waveform Relaxation project, large  digital  MOS circuits 
are algorithmically partitioned into smaller subcircuits that 
can be analyzed separately [34]. After all subcircuits have 
been analyzed, node voltage waveforms are shared among 
the subcircuits, as in the fault simulation, and a new 
analysis is initiated. When  all waveforms show little 
change from one analysis to the next, the simulation is 
complete. The key issues in obtaining high parallel 
efficiencies for this problem are workload distribution and 
communication load. A static assignment of subcircuits to 
processors so that all processors have about the same 
number of transistors gives reasonably good workload 
balance. Communication is  minimized by assigning chains 
of subcircuits that share many waveforms to the same 
processors. Another unusual feature of the code is the 
implementation of a mixed Gauss-SeideVGauss-Jacobi 
algorithm. The relaxation converges rapidly by using 
Gauss-Seidel  initially but switches to Gauss-Jacobi once a 
processor runs out of subcircuits that can be solved with 
Gauss-Seidel. Currently, the simulator code runs on  any 
number of processors and has been tested with a wide 
range of circuits, from 282 transistors in an arithmetic- 
logic-unit circuit to the logic portion of a 16MB DRAM 
design,  with 186 000 transistors. Speedups of up to 200 
have been achieved with 256 processors. The largest 
simulations run ten times faster than similar sequential 

code on a state-of-the-art mainframe. The code was written 
in C. 

Processing strategies for large object-oriented 
databases 
The purpose of this project was to study the suitability 
of the message-passing paradigm for large, object-oriented 
databases. A simulator was implemented  on Victor to 
test algorithms [35] for correctness and performance. 
The simulator executes router, controller, query, and 
one or more disk-emulator processes on each node.  The 
host  compiles user queries and initiates the actual 
processing on the appropriate node. The utilization of 
resources and the overall query execution times are 
recorded. The simulation results indicate that general- 
purpose message-passing systems can  be  effectively 
used  for  implementing  large object-oriented databases. 
For the algorithms developed, it was observed that 
the retrieval of data from the secondary-storage 
devices was the factor limiting performance, even 
for very complex queries. Several slow disks per 
node were found to be preferable to one fast disk 
per node. The communication network limits the 
performance only for applications managing very 
complex objects or applications having high 
interconnectivity among data objects in the final stages 
of the query processing. 

Multirobot simulation 
Multirobot  simulation enables a user to view  graphically 
the motion  and interaction of multiple general robot 
arms in a simulated world. This is a problem of 
considerable practical interest, since clashes between 
real robot arms working simultaneously on a given task 
(e.g., populating a printed circuit board) are to be 
avoided at all costs. The problem was parallelized in a 
coarse-grain sense, with a path-planner process and a 
graphics process associated with each robot to be 
simulated. The outputs of these processes were directed 
to the general graphics server process, which drew 
the actual picture. For reasons of performance and 
ease of debugging, a small custom-made transputer 
operating-system kernel (TOPS) was written [36],  and 
implemented in Parallel-C from Logical Systems. The 
kernel provides blocking  and  nonblocking message-passing, 
broadcasting, routing on a fixed  2D-mesh topology, fast 
dynamic-memory-space allocation, event synchronization, 
and various degrees of debugging  and remote I/O support. 
The actual code for robot simulation and user control 
reside on top of this kernel. Measured performance of 
the system for the simulation of two robots, each with 
one prismatic and  five  revolving joints mounted on a 
spinning table, running  on a Victor V16 system, was an 
animation rate of  2.8 pictures per second. Because of 585 
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Table 3 Application  speedups on Victor. 

Applications 

3D CFD  application 
Conjugate  gradient 
Environmental  modeling 
High-temperature  superconductivity 
Logic fault simulation 
VLSI waveform relaxation 

Number of 
processors 

16 
64 

256 
256 
256 
256 

Observed 
speedups 

13 
62 

170 
-256 

40 
200 

the very coarse-grained nature of the problem 
decomposition, one would not expect higher performance 
with  more nodes. 

Summary 
In Table 3, we summarize the performance in terms of 
speedups of some of the applications described above. The 
highest performance measured on the V256 system was 
224 MFLOPS (32-bit arithmetic) with an application 
(fractals) written in Occam. More typical applications using 
FORTRAN or C compilers and  64-bit arithmetic, with 
speedups over 150, achieved about 50 MFLOPS. Many of 
these applications cannot be organized to perform well  on 
a vector supercomputer. From our experience, these 
applications parallelized well, even on a first-generation 
distributed-memory machine such as V256. In some cases, 
the performance on V256 was superior to that obtained 
on a mainframe or a vector supercomputer. It has been the 
objective of this project, however, to provide a test bed for 
gaining experience in  efficiently  parallelizing real 
applications on a machine with hundreds of nodes. Toward 
that end, we have succeeded very well  in  achieving our 
objectives. In these experiments, several new algorithms 
and parallelization methods were implemented and their 
performance analyzed. It  was also encouraging to see that 
very high speedups (over 200) were achieved for important 
applications. 

4. Conclusions 
Here we present some evolving insights stimulated by our 
work on the Victor project. Many of these findings are 
being applied to Vulcan, the next generation of message- 
passing multiprocessors currently being developed in the 
Parallel Systems Department at the IBM Thomas J. 
Watson Research Center. 

Parallelism and pe~ormance 
Our  most important observation is that many large 
scientific and  engineering problems exhibit abundant 
intrinsic parallelism.  While  it  is true that applications for 
parallel machines are often selected just because they are 

586 easy to parallelize, several of the applications studied on 

Victor-particularly the ones related to electronic design 
automation-were chosen rather because they represent 
large CPU workloads within IBM. It was encouraging to 
see that these real problems could be parallelized quite 
readily. 

The  parallelism in large applications appears on  many 
different  levels:  from very coarse-grained task parallelism 
to fine-grained  parallelism found within tight loops. Human 
experts familiar  with an application usually find it very 
easy to identify coarse-grained parallelism, whereas 
compilers are making  good progress in finding  fine-grained 
and loop-level parallelism. Thus, humans and compilers 
complement each other in  finding  and  exploiting 
parallelism, but much work must  still be done to develop 
better methods for expressing human  knowledge about 
parallelism to the computer. 

Another recurring theme in  all  of the applications 
studied-which furthers a point  first stated clearly by 
Gustafson et al. [37]-is that it is possible to increase the 
number of processors with the problem size and retain 
constant parallel efficiency over a wide range of processor 
numbers. This observation holds true if the workload per 
processor remains constant and neither communication nor 
synchronization overhead is the factor  limiting  performance. 

This insight also adds substance to the widely  held  belief 
that a practical market niche for parallel machines exists at 
the very high end, where the difficulties of writing parallel 
code are accepted by users because there are no 
alternatives. There is no doubt now that several of the 
applications currently running  on or being developed for 
V256  will scale gracefully to several thousand processors, 
on machines with a similar ratio of communication 
capabilities to computation capabilities. We do not yet 
know, however, whether this scaling  will extend well to 
tens of thousands of nodes. 

has made it clear that they do not mind developing a 
parallel  program “from scratch” if there is a payback in 
the form of at least a tenfold performance improvement 
over existing machines. At present, this is not the case; 
the measured performance of  V256 and other large parallel 
machines [38] is still only comparable to that of existing 
supercomputers. (For a succinct and thoughtful definition 
of what a supercomputer is, see the paper by Hey [ll].) In 
the user community there is considerable faith, however, 
that the next generation of parallel machines will deliver 
the long-hoped-for performance gains promised by parallel 
computing. Thus, users are willing to develop complex 
parallel code today if they believe that the code will be 
portable to future systems. As a result, there has been 
very high interest among Victor users in the portable 
Express environment [24], even though there is currently a 
considerable communication performance penalty in using 
it  [39]. 

Discussion with scientific users of the Victor machines 
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We have found four significant reasons why speedups 
may not be linear in the number of processors: 

Insufficient problem parallelism. 
Communication bottlenecks. 
Synchronization overhead. 
Workload imbalance. 

The  first two issues have already been discussed. For 
the applications running on Victor, the loss in efficiency 
due to synchronization overhead was generally found to be 
below 10%. A contributing factor to permitting this 
surprisingly small loss is the fact that most large 
applications have so much excess parallelism that 
processors usually  manage to stay busy even though 
several individual processes may be blocked. 

The problem of balancing workload has proven to be 
less troublesome than anticipated. For regular problems, it 
is generally straightforward to devise a work-assignment 
plan that prevents workload imbalance. For irregular 
problems, the simple dynamic balancing scheme described 
in Section 3 in the subsection on fractals and ray tracing 
worked in several cases. Simple algorithms were found to 
work satisfactorily for the remaining applications. More 
sophisticated techniques, such as dynamic task migration, 
have not proven to be necessary. 

Victor system Capabilities 
There must be sufficient memory per node-not less than 
what is found on state-of-the-art workstations. This has 
been the most  painful  and one of the most  telling lessons 
of the Victor project. Any  MIMD computer that seeks a 
significant user community must be able to run large, 
unmodified serial code on each node without users being 
limited  by memory-space restrictions. This implies virtual- 
memory capability on all nodes, which, in turn, requires a 
large backing-store capability. 

from processor to processor, there is no consensus 
among users whether all processors on the network 
should appear equidistant (as in a multistage interconnect 
network) or not (as for a mesh or hypercube). Users 
with irregular problems most often prefer the former 
topology,  while those with  regular problems favor the 
latter. 

With  regard to the time required to pass messages 

The visual hardware monitor system has been extremely 
valuable in developing and debugging  parallel programs. 
This is surprising, since the monitor does not recognize 
software events such as context switching, but only 
hardware conditions such as a communication link  being 
busy. Two bits per node are displayed by the monitor, 
allowing some visual indication of program state. The 
global system view provided  by the monitor aided in many 
complex software-debugging situations. The  fact that the 

operation of the monitor cannot be disturbed by any user 
action has also been vital. 

The transputer provides asynchronous communication 
hardware, and there is no system-wide clock in Victor. 
Our experience with the reliability of such a potentially 
metastable system has been extremely good. It appears 
that it  will  be possible to use such asynchronous systems 
for a very large  number of processors. Except for the 
inconvenience of not  being  able to generate precise global 
timestamps for event tracing, the lack of a global clock has 
not been a problem in using the machine. 

Another noteworthy feature of the Victor architecture is 
the system partitioning, which permits multiuser support. 
It has been the experience of our group that a machine of 
the size of  V256 must  be a shared resource. There is no 
need to support a large  number of users, but a system in 
which a few users divide the resources of the machine in a 
spatial-not a temporal-sense appears to hold promise for 
the high-performance market. The overhead required for 
protection in timesharing systems affects context-switching 
and message-latency times, both of which are very 
sensitive parameters in a parallel computer. But allowing 
individual users to use  different parts of the system, with 
only  simple mechanisms to isolate them  from one another, 
has been very effective. 

The lack of high-performance disk I/O and the limited 
memory per node on most parallel systems may be reasons 
why there are very few  parallel production programs 
available yet. Fortunately, many scientific and  engineering 
applications are characterized by sequential accesses to 
large  files,  and it is relatively straightforward to parallelize 
disk 1/0 for access to such files. On Victor, the parallel 
waveform relaxation application employs the file system. 
It uses the 16 disk nodes in a straightforward, independent 
manner. The 16 processing nodes in a column  utilize the 
disk node in that column as the working data input and 
output device. All program  files are still kept on the host 
node disks. The entire field of parallel file I/O and virtual- 
memory support is  an active research area and  will be so 
for a long  time to come. 

Final statement 
In summary, we  found that a carefully designed message- 
passing multiprocessor system can productively run a 
wide  range of programs. We found that the software 
effort required to run code on such a machine was 
reasonable and worth undertaking in view of potential 
performance  gains.  One great challenge of the early  nineties 
will be to realize  the  promise of large-scale  parallelism 
to solve  compelling  scientific  and  engineering  problems. 
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