390

Enhanced self-
test techniques

by S. Sarma

for VLSI systems

applied to the
IBM Enterprise
System/9000
Type 9121
processor

This paper discusses the problems associated
with obtaining adequate test coverage from
random self-test for thermal conduction
modules (TCMs) in the air-cooled IBM
Enterprise System/9000™ Type 9121
processors. Each 9121 TCM contains
approximately a quarter of a million circuits.
The present complexity of the TCMs made
previous testing methods such as chip-in-
place (CIP) testing inviable. The solution was
to apply self-test techniques to the 9121 TCMs
during the manufacturing process. Analytical
and simulation techniques were used to
predict the random-pattern testability of the
TCMs. The results of the self-test process for

the five distinct 9121 processor TCMs are
presented. Methods of identifying and
modifying random-pattern-resistant logic
structures are discussed. It is also proposed
that a hybrid approach combining random self-
test with deterministic test generation can be
used to enhance testability.

Introduction

The design of the IBM Enterprise System/9000™ Type
9121 processor evolved from that of the IBM Enterprise
System/3090™ Model S processor, which is a general-
purpose multiprocessor using bipolar technology, with a
uniprocessor containing 21 water-cooled thermal
conduction modules (TCMs). In contrast, the 9121

“Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and 1BM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

S. SARMA

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

uniprocessor is made up of five distinct air-cooled TCMs,
all packaged within a single unit. The technology used is a
mixture of bipolar and CMOS circuits. The ES/3090™
Model S processor was tested solely with deterministic and
chip-in-place (CIP) testing methods. This was possible
because every chip input and output signal could be
probed by the tester. However, since in the case of the
9121 processor not all of the chip input and output signals
can be probed, it was impossible to achieve the desired
testability criteria using chip-in-place testing methods.
Hence, it became apparent that new approaches to the
testing problem had to be investigated for the 9121
processor design.

Built-in self-test (BIST) [1] was chosen as the testing
method for the 9121 processor. One of the major
advantages of using BIST is that the test patterns are
generated by a pseudorandom-pattern generator (PRPG)
that is packaged on the TCM itself. Hence, almost no
effort is required to generate the test vectors. The intention
was to use self-test as part of the manufacturing process.
However, this meant that efforts had to be directed toward
design for random-pattern testability. This paper first
presents some background on the self-test architecture
used in the 9121 processor. The self-test methodology is
then discussed, and the random-pattern testability of the
design is analyzed.

Self-test architecture

Most of the self-test circuits reside in a single chip on the
TCM. The circuits added to support the self-test function
constitute approximately 3-5% of the total circuits on each
TCM. The basic self-test architecture involves the use of a
linear feedback shift register (LFSR) to generate the
pseudorandom patterns that are used as the test vectors.
Self-test utilizes a ‘‘scanning mechanism’” facilitated by
level-sensitive scan design (LSSD) techniques [2] to
propagate the test patterns to the circuits on the TCM.
Every shift register latch (SRL) on the TCM is connected
in a scan ring. SRLs are used to apply the test vectors to
the combinational logic blocks and also to capture the
corresponding output responses. The output response of
the TCM is compressed by a multiple-input signature
register (MISR) located on the self-test chip. The
compressed value is called a signature.

The class of self-test used in the 9121 processor is called
the *“STUMPS”’ architecture. ““STUMPS”’ is a hierarchical
acronym that stands for Self-Test Using MISR and Parallel
SRSG (shift register sequence generator) [3]. An overview
of the STUMPS structure is shown in Figure 1; its basic
components are the following:

% Pseudorandom-pattern generator (PRPG). This is a
maximum-length LFSR that generates pseudorandom

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY (991

Pseudorandom-pattern generator (PRPG)

o2 31 4] 5] 6 0 ... 4
i Y Y ¥

Exclusive-OR tree

Channel 1
Channel 2
Channel 3
Channel 4

>

*

-

§
I I N e

Multiple-input signature register (MISR)

Overview of the STUMPS architecture.

R

patterns applied to the circuit under test (CUT). The
PRPG used in the 9121 processor contains 41 bits; its
characteristic polynomial is given by

flo=1+x"+x".

The logic diagram of the PRPG is shown in Figure 2. The
PRPG cycles through 2 — 1 states when initialized with
a nonzero state.

& Exclusive-OR (XOR) tree network. This network takes a
combination of PRPG outputs and creates the patterns
that are loaded to the CUT. This prevents the different
channels from having similar output responses.

& STUMPS channels. These channels contain the SRLs in
the design. All of the SRLs on a particular chip may
belong to the same STUMPS channel, or they may be
scattered among different channels. The amount of time
necessary to test the TCM is directly proportional to the
number of SRLs present in the largest STUMPS
channel. The test time can be optimized by distributing
an equal number of SRLs among the STUMPS channels.

% Multiple-input signature register (MISR). As mentioned
previously, the MISR takes the outputs of the STUMPS
channels and compresses them into a unique response
called a “‘signature.’” The signature obtained for the
CUT is compared against a ‘‘golden signature,”” which is
the signature of a TCM that has been proven to be a
good part. The golden signature is obtained from fault

S. SARMA

391

392

Logic diagram of the pseudorandom-pattern generator.

simulation. The MISR used in the 9121 processor
contains 64 bits, as shown in Figure 3. The MISR is a
maximum-length linear feedback shift register whose
characteristic polynomial is given by

F) =1+ x+ x> +x* + 2™

The ability to scan SRLs is vital during self-test,
because they provide internal observation points. The
organization of the SRLs on the TCM is shown in Figure
4. Each SRL has a scan input (SI) in addition to a data
input (DI). There are four clocks connected to each SRL.
the A, B, CI, and C2 clocks. The A/B clock pair is used
during a scan operation. The application of the A clock
causes the L1 port of the SRL to be loaded with the value
present on SI. The C1 clock causes the value on DI to be
latched into the L1 port. The B and C2 clocks shift the
contents from the L1 port to the L2 port of the SRL. Each
SRL is connected in a scan ring, and the SRLs in a
particular scan ring are controlled by the same A/B clock
pair. In this way, the values of all the SRLs in a ring can
be observed by a scanning operation. An advantage of the

S. SARMA

SRL SRL SRL SRL SRL SRL SRL SRL SRL SRL
C e BT o B o T o o T R IRt BT S I S
\ Y ‘} {V Y !L Y
To XOR tree To XOR tree To XOR tree To XOR tree
To XOR tree To XOR tree
xorR [

STUMPS approach is that the system scan rings are
broken into smaller channels during self-test, reducing the
number of cycles needed to load and unload the scan rings
with data. First, the SRLs are loaded with the
pseudorandom patterns by pulsing the A/B clock pairs.
The STUMPS channels have been initialized with
pseudorandom data. Next, the system clock is applied,
unloading the response from the CUT into the SRLs. This
is followed by pulsing the A/B clocks so that the channel
outputs are shifted into the MISR.

In addition to the above, it is necessary to isolate the
TCM completely so that its expected response may be
calculated. This is accomplished by adding boundary SRLs
(BSRLs) to the design. During self-test, the primary inputs
(PIs) of the TCM are controlled by BSRLs which can be
initialized with pseudorandom patterns. Similarly, the
primary outputs (POs) of the TCM are connected to output
BSRLs which feed the MISR. The concept of using
BSRLs to isolate the TCM completely during the self-test
operation is illustrated in Figure 5. A multiplexer MUX) is
used to select the BSRL output rather than the TCM PI
during self-test mode. In this way, the patterns feeding the

I1BM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

SRL SRL SRL SRL SRL SRL SRL SRL SRL SRL

63-1-621-61W—601~59 —4—3W-21 1 h ©

a —]
O]
XOR XOR XOR XOR XOR | soe XOR XOR XOR XOR XOR
| |
Channel 61
Channel 60 Channel] 63
Channy Channel 62
- €
- xR [Channel 64
Channel 4
Channel 3
Channel 2
Channet 1

Logic diagram of the multiple-input signature register.

From previous SRL in chain
TCM PI
SI SRL, w
DI
L1
) A/Cl
a 5 - |
BiC I_J Combinational
logic
Combinational Combinational Input boundary SRL gi
logic logic
St —T SRLn+1 Self-test mode
DI L1
N\ ACT "
TC
B/C2 F——————-> M PO
Combinational
logic
To next SRL in chain —l—
Output boundary SRL

The organization of SRLs on the TCM. The use of input and output boundary SRLs on the TCM.

393

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991 S. SARMA

394

Scan
Scan in out
-——»l 16-bit data input register |-—‘
Aray self-test \MUX
Scanin
2
&
2
g 16 X 16 logical array
<
Scan out
Chip 1 — lTo logic
MUX

Scan out 16-bit data output regisﬂﬂ————‘

Scan out Scan in

Logic organization during array self-test.

combinational logic on the TCM can be controlled. The
values on the POs of the TCM are latched into output
BSRLs and are therefore observable.

The 9121 processor contains several discrete and
embedded memory arrays which feed combinational logic
on the TCM. These arrays must be initialized to a known
state before the self-test operation. In the case of the 9121
processor, the memory arrays are also tested using the
self-test methodology, and circuitry has been added in
order to support array testing. The self-test approach is
used to test memory array elements because it allows
faster testing. The basic concept is to initialize array cells
with pseudorandom data. Following this, the arrays are
read and a signature response is computed. All of the
arrays on the TCM are tested in parallel. Figure 6 shows
the organization of a 16 X 16 logical array during array
self-test. An address stepper is designed to increment

through every array address and allow the array cells to be

initialized with pseudorandom data from the PRPG. The
array oufputs are captured in a data-output register that
feeds the MISR. The data-input and data-output registers
are scannable during the array self-test operation. In
contrast, the address steppers are not scannable during
array self-test.

The two levels of self-test are manufacturing self-test,
which is used during the manufacturing process, and
system-level self-test, which is used in the field. During
manufacturing self-test, the primary inputs of the TCM are

S. SARMA

exercised by a PRPG that is on the tester. The primary
outputs of the TCM connect to a MISR which is also on
the tester. The hardware capability for system-level self-
test is available because boundary SRLs are present on
each TCM. However, the present intention is to use self-
test at the manufacturing level only.

Self-test methodology
The main requirement of the self-test methodology is that
all LSSD design principles must be followed. In addition,
self-test requires that no indeterminate states exist in the
system during a self-test operation. These ‘X states’
cause the signature to be unpredictable.

The phases entered during self-test are the following:

1. Array initialization. During this phase, every array on
the TCM is initialized with pseudorandom data from
SRLs belonging to a randomized scan ring. The array
write clocks are pulsed in order to achieve this
condition.

2. Array test. The arrays on the TCM are read during this
phase. The array outputs go directly to SRLs which are
placed in the scan rings leading to the MISR.

3. Logic self-test. This phase tests the combinational logic
on the TCM. No array write clocks are pulsed. The
random patterns are funneled through the CUT, and the
response is compressed into a signature that is used as
the ‘‘golden signature.”

Array cells on the TCM feed combinational logic and
consequently affect the signature of the TCM. Therefore,
arrays are initialized with pseudorandom data before logic
self-test is carried out.

Self-test tools

The tools that aided self-test checking and testability
analysis of the design are part of the Engineering Design
System (EDS). A brief description of these tools and the
functions they perform is included here; they are described
in greater detail in [1]. The flow diagram in Figure 7 shows
the process that is followed.

The EDS tools extract information from the chip and
TCM designs to build a hierarchical, technology-
independent model of the CUT. The programs also use
information about the PRPG, MISR, and clock sequences
to completely define the model. The major functions
performed by the programs are the following:

¢ Design rules checking, which checks the design for
adherence to LSSD and self-test rules during logic and
array self-test. Some of the main requirements necessary
to pass design rules checking are the following:
1. There must be no propagation of unknown states
(X-states) into the MISR.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

Table 1 CPU resources utilized on an ES/3090 Model 400
processor for self-test checking of the cache TCM.

Job Total Total
CPU time elapsed time
(min) (min)
TCM CUT, LSSD 17.7 70.5
design rules
checking
Self-test checks 997.41 1019.4
(logic and
array init/test),
fault model build
LFSR simulation 187.42 204.8
Fault simulation 1254.12 1413.6

2. Every STUMPS channel must have a PRPG as its
source and a MISR as its sink.

3. The three-state drivers should not be set to the high-
impedance state during the application of random
patterns.

4. Fixed-value SRLs must be checked to ensure that
their values cannot be altered during self-test.

& Array self-test. Any array values that affect the signature
of the TCM are initialized with pseudorandom data.
These programs verify the initialization of every cell.
They also check to ensure that any stuck faults in array
cells are detected.

& Testability analysis. These tools enable the interactive
analysis of the random-pattern-resistant faults present in
the CUT. This analysis is discussed in greater detail in
the next section.

& Calculation of signatures. The fault coverage analysis
and good-machine signature* calculations are obtained
using the testability analysis for random patterns (TARP)
[1] simulator. TARP generates the test pattern
sequences, calculates the good-machine signature
through fault simulation, determines the random-pattern
testability of the design, and provides tools that allow
interactive testability analysis.

The computer resources required to perform the
different checks and fault simulation on an ES/3090 Model
400 processor are shown in Table 1. The example
considered here is for the cache TCM, which has the
largest logical array; therefore, the array initialization and
test phase used up enormous CPU time. The second
maximum occurred during fault simulation, which required
20.9 CPU hours. These data are depicted graphically in
Figure 8.

*The good-machine signature is the signature of a part that has been qualified as
“good™ and is included in the test data file (TDF) that is sent to manufacturing.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

Build logic structure model J

Design rules checking
+LSSD rules
- Self-test rules

T

[Creation of array pattern sequences J

1

I Array initialization and test l

e

l Testability analysis with random patterns 1

[Anayzesimprove testabitity |

r Test data file to manufacturing I

m
=
g
£

o
=g

@

B
3
o
-
=
a
w
[1]
&
Ing
Iy
g
S

g
&
e
2
»

Time (min)

LFSR simulation
Self-test/fauit model
Job

@PU time - Elapsed time

Fault simulation

CPU resources utilized on an ES/3090 Model 400 processor for
§ self-test checking of the cache TCM.

Random-pattern testability analysis

One of the most involved and time-consuming problems
encountered was the random-pattern testability of the
design. The design techniques employed by the ES/3090
Model S processor designers relied on deterministic test
pattern generation. This meant that inherently random-
pattern-resistant structures were present in the design.

S. SARMA

395

Percentage of faults

Processor Cache Storage Vector

present in the 9121 processor design were due to high-fan-
in trees. These faults are exposed by adding SRLs to the
design. The SRLs serve to improve the controllability and
observability of resistant nets. This increases the chances
of obtaining the sensitizing conditions necessary to expose
the fault.

The second class of faults are untestable with both
deterministic and random patterns. These faults are
detected by optimizing the logic. In some cases,

Storage Channel elimination of redundancies is not possible because of
performance, timing, or packaging constraints.
The testability analysis of the design was carried out on
Migoored foults B4 priori faults [J Valid faults the basis of a fault model built by modeling single stuck

Fault model characteristics of the 9121 processor TCMs.

A great deal of time was spent identifying and modifying
these areas of the design, thereby improving testability
coverage.

In contrast to deterministic test generation, random
patterns are less likely to detect certain classes of faults.
Deterministic test pattern generation algorithms have a
controlled way of arriving at the test vectors on the basis
of the fault model. This allows deterministic test pattern
generation schemes to reach the desired testability
criterion with a minimal number of patterns. The
disadvantage of using random-pattern testing is that it
affords no pattern control; this means that a larger number
of patterns must be applied to achieve the desired test
coverage.

Two classes of random-pattern-resistant faults were
present in the design:

1. Faults involving high-fan-in trees.
2. Faults attributed to redundancies at the local and global
levels.

The first class of faults are less testable with random
patterns, though deterministic patterns can detect these
faults efficiently. Hence, most of the faults that were

faults in the design. Some faults are given an ‘‘a priori
fault credit’’; these faults are marked off because there is
high confidence that they will be detected during the
application of the test patterns. The faults that were
marked off as detected included the following:

o Faults belonging to the PRPG, MISR, and any associated
logic.

¢ Faults within the STUMPS channels.

» Faults belonging to clock logic.

The percentage of faults given an a priori mark-off is
shown in Table 2 for the various 9121 processor TCMs.
This category of faults is a function of the number of SRLs
present in the STUMPS channels. The fault model
characteristics for the 9121 TCMs are shown graphically in
Figure 9. The largest percentage of valid faults is present
on the vector TCM.

Once the untestable faults have been identified, they can
be analyzed with the help of the self-test fault analyzer
(STFA) [1]. This tool attempts to pinpoint the exact nets in
the logic that inhibit the detection of large groups of fault
clusters. The STFA tool runs on the TCM model and
generates a list of fault clusters in descending order.
Hence, the greatest improvements in testability are
achieved by fixing the faults listed at the very top of a
STFA output.

® Detailed analysis of the fault types
In a LSSD design, the stuck faults may be classified
according to the region in which the fault is observable [5].

Table 2 Fault model statistics for the Enterprise System/9000 Type 9121 TCMs.

TCM Total faults Ignored faults A priori tested A priori tested
Saults (%)
Processor 944 891 64 377 134 914 15.322
Cache 566 196 37 447 110 432 20.846
Storage 915 885 86 903 157 173 18.959
Vector 881 388 52 448 102 383 12.351
Channel 975 156 65 891 176 816 19.446
396
S. SARMA IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

The three basic types of faults propagate 1) to an L1 latch,
2) to an L2 latch, and 3) to a primary output.

Most of the faults present in a LSSD design are
observable at the L1 latch. The pattern sequence applied
to expose these faults requires the C1 clock to be pulsed.
The faults observed in the L2 latch require the application
of the B clock and the C2 clock in the pattern. The pattern
sequence that is used for fault simulation is as follows:

—

. Load the system scan rings with pseudorandom data by
pulsing the A/B clocks.

. Apply the data to the combinational logic.

. Apply the C1/C2 system clocks.

. Collect the output responses in the system scan rings.

. Unload the scan rings into the MISR.

[T R VA)

In the following sections, the methods used by the EDS
fault analysis tools to classify the various random-pattern-
resistant faults described in the previous section are
presented.

Faults caused by local and global redundancies

An example of reconvergent fan-out is shown in Figure 10.
A net W in the system fans out into two branches and then
reconverges at a gate G. This can produce testability
problems at G. Reconvergent fan-out can cause three types
of faults—blocked, locally redundant, and multipath.
These fault types, described in greater detail below, are
depicted in Figures 11, 12, and 13. The nomenclature of
Figures 11-13 shows the logical values on each net in
pairs. When a net has a value of A/B, A represents the
value of the net in a good machine and B the value of the
net in a defective machine. For the fault to be detected,
opposing values must be propagated to either SRLs or POs.

Blocked faults These faults may be sensitized by random
patterns, but they do not propagate to an observation
point. Figure 11 shows an example in which a test vector
for a stuck-at-1 fault on the input of the AND gate may be
set up. However, the fault can never be exposed because
it does not propagate to a SRL. Blocked faults are made
testable by adding observation SRLs to the design.

Locally redundant faults These faults cannot be tested
with deterministic or random patterns. The only way to
make the logic more testable is to remove the redundancy
by minimizing the logic. An example of a locally redundant
fault is shown in Figure 12.

Multipath fauits These faults contain a combination of
blocked and redundant faults. An example of a multipath
fault is shown in Figure 13. The change required improves
testability of the net by adding observation SRLs and
minimizing the logic to remove the redundancies.

IBM JI. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

Fan-out branch 1

Net W
Fan-out stem

Cone of logic

Fan-out branch 2

Two-way reconvergent fan-out.

11

171 AND) 11 0/0
o/1
Stuck-at-1 AND AND _EL
o= Har”! E
o1
0/0
0/0

Example of a blocked fault.

1‘0 Stuck-at-0

1/1

> 1/1

SRL

\J

| ~1 OR

11

Example of a locally redundant fault, a simple redundant circuit
where one input is stuck at 0.

Faults caused by EDS modeling techniques

These faults are caused by the nature of the model used to
represent tri-state drivers in the Engineering Design
System (EDS). A tri-state driver can have three states on

S. SARMA

397

398

Blocked
1/1 e AND
1/} —— /1 0/0
Stuck-at-1 AND on AND SRL
0/0 i | 010
OR |
00 0/1
00
Redundant
Stuck-at-1 ""
00 4 00
AND SRL
o0 B

Example of a multipath fault, showing a combination of blocked
and redundant faults.

Data input __._X/_I___>
Tri-state 1
Stuck-at-0 driver >
Inhibit input
P 10

Example of a miscellaneous fault, a stuck-at-0 fault on the inhibit

input of a tri-state driver.

100

wb—"_

Percentage of faults tested

1 i
100 000 150-000 200 000

Number of patterns

Fault coverage versus test pattern length using random testing.

S. SARMA

its output: logic 0, logic 1, and high impedance. In the first
two states, the tri-state driver produces a defined output
value. In the high-impedance state, the driver can be
pulled to a logic state by a pull-up or a pull-down resistor.
Faults of this nature are classified as miscellaneous faults.
In Figure 14, for example, the fault being considered is a
stuck-at-0 fault on the inhibit pin of a tri-state driver. To
test this fault, the inhibit pin must be forced to the active
state, causing the output of the tri-state driver to go to the
high-impedance state. Since this state cannot be measured,
the fault is untestable. However, the inhibit input will
never be forced to the active state during system
operation, and these faults may be removed from the set of
valid faults.

Faults caused by high-fan-in trees
The EDS fault analysis tools rate these faults by giving the
equivalent AND input (EAI) associated with them. The
EAIl is defined as the effective fan-in of the circuit. A net
is random-untestable if the probability of detecting the
fault falls below a specified threshold, ¢, derived from the
number of test patterns used during testability analysis.
For the 9121 processor, faults with an EAI larger than
16 were considered untestable. The probability of detecting
a stuck-at-1 fault at the output of a 16-input AND gate is
given by

1
Prob{detecting fault} (¢) = P, = =z = 1.5259 x 107,

216
The number of patterns required to exhaustively test a 16-
input gate is given by

Patterns needed = L = 65536.

The number of patterns used in the 9121 processor is
approximately 150 000.

® Testability data

The testability numbers for the 9121 processor TCMs,
which were obtained through fault simulation using
testability analysis for random patterns (TARP),
consistently exceeded 95%. The problem with random
testing is the relationship between the fault coverage and
the number of patterns applied (see Figure 15). The
testability of the TCM begins at 20.8%, the percentage of
faults given a priori credit. It can be seen that
approximately 90% of the faults are tested during the
application of the first 50 000 patterns, while the next
100 000 patterns detect only an additional 5% of the
faults. This phenomenon is characteristic of random-
pattern testing, which reaches a point of diminishing
returns beyond which further application of patterns
does not guarantee a proportionate increase in test
coverage.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

8 Proposed process improvements

Tools support for BIST within EDS is quite efficient;
however, the array initialization and test phase of design
rules checking is the most expensive and time-consuming
check. It is vital to break large arrays down into smaller
arrays, thereby speeding up array testing and reducing test
time. Another approach is to block embedded and discrete
array elements from affecting combinational logic. This
precludes the requirement to initialize every array cell
before logic testing is carried out.

In the 9121 processor self-test methodology, the
testability analysis was conducted at the TCM level after
the design had passed the various checks. Many testability
problems could potentially have been identified and
resolved during chip self-test checking. As a process
improvement, the STFA tool can now be run on individual
chips as well as on a small group of chips. This allows
faults embedded at the chip level to be detected and
corrected earlier in the design cycle, which greatly
enhances the efficiency of the self-test methodology.

In some cases, the random-pattern-resistant structures
could not be modified because of packaging and
performance constraints; this had a negative effect on the
testability of the TCM. However, some of the hard faults
could be detected if the test sequence was supplemented
with deterministic patterns, and this approach has been
proposed as a solution to the test coverage problem.

Conclusions

The primary problem with self-test is that the patterns are
not generated in a controlled way. Some of these
drawbacks can be alleviated by using the weighted
random-pattern generation method described in [4]. The
test quality verification of the design is important. The
EDS BIST process relies on fault simulation to generate
testability numbers and also to identify the hard faults in
the circuit. Because fault simulation is an expensive
prospect for TCMs, many of the analytical methods of
predicting [5-7] random-pattern testability have not been
used as part of the self-test methodology within EDS. The
use of these methods would make the process more
efficient.

The advantage of using self-test is that the patterns are
generated with ease, and the process requires merely two
to three minutes of tester time to verify each TCM. This is
a considerable improvement over chip-in-place testing,
which takes approximately three hours. This reduction in
testing time, coupled with the improvement in random-
pattern testability of the design, justifies the extra circuitry
required to implement self-test. Self-test allows the 9121
TCMs to be tested extremely efficiently; however, only
when testability numbers approach 100% as a result of
process improvements and designer education can we
begin to take full advantage of self-test.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

Acknowledgments

There are many individuals to thank for the achievement
of implementing BIST in the 9121 processor family. They
include the logic and systems designers (IBM Kingston),
the tools and test methodology developers (IBM Endicott),
and the test engineers (IBM Kingston and IBM
Poughkeepsie). I would especially like to recognize
Thomas Dick and John Phan for their technical
contributions. I am grateful to Robert Adams, Robert
Herzl, and Arnold Tran for their critique of this paper.
Finally, much appreciation is due Paul Bardell for the
technical discussions and insightful suggestions.

Enterprise System/9000, ES/9000, Enterprise System/3090, and
ES/3090 are trademarks of International Business Machines
Corporation.

References

1. B. L. Keller and T. J. Snethen, ‘*Built-In Self-Test Support
in the IBM Engineering Design System,’” IBM J. Res.
Develop. 34, 406—415 (1990).

2. E. B. Eichelberger and T. W. Williams, ‘‘A Logic Design
Structure for LS Testability,”” Proceedings of the 14th
Design Automation Conference, New Orleans, June 1977,
pp. 462—468.

3. P. H. Bardell and W. H. McAnney, ‘‘Self-Testing of
Multichip Logic Modules,”” Proceedings of the 1982 IEEE
International Test Conference, November 1982, pp.
200-204.

4. J. A. Waicukauski, E. Lindbloom, E. B. Eichelberger, and
O. P. Forlenza, ‘A Method for Generating Weighted
Random Test Patterns,”” IBM J. Res. Develop. 33, 149-161
(1989).

5. J. Savir, G. S. Ditlow, and P. H. Bardell, ‘‘Random Pattern
Testability,”” IEEE Trans. Computers C-33, 79-89 (1984).

6. J. Savir, “‘Improved Cutting Algorithm,”” IBM J. Res.
Develop. 34, 381-388 (1990).

7. K. P. Parker and E. J. McCluskey, ‘‘Probabilistic
Treatment of General Combinational Networks,”” IEEE
Trans. Computers C-24, 668—670 (1975).

Received August 25, 1990

Sudha Sarma IBM Data Systems Division, Neighborhood
Road, Kingston, New York 12401. Ms. Sarma is currently a
Senior Associate Engineer working in the cache design area of
advanced technology systems. She received a B.A. degree in
physics and a B.S. degree in electrical engineering in 1986
from Pennsylvania State University, and an M.S. degree in
computer engineering from Syracuse University in 1988. Since
joining IBM, Ms. Sarma has been involved in various design
assignments that resulted in architectural enhancements on the
ES/3090 Model S and ES/9000™ processors. She worked on
defining the hardware error detection, fault isolation, and
recovery techniques used on the ES/9000 processors. Ms.
Sarma’s primary interests are computer architecture,
especially massively parallel computer architectures and fault-
tolerant networks. She is a member of the Institute of
Electrical and Electronics Engineers.

S. SARMA

399

