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The  system  design  of  the  IBM  Enterprise 
System/900OTM  Type  91  21 processor  was 
intended to provide high performance  and 
dense  packaging within an air-cooled system. 
Packaging  and  technology  factors  had  a  major 
influence on the  fault-tolerance  strategies 
chosen.  This  paper  describes  the  effect  that 
this design point had on the  fault-tolerant 
capabilities of two critical 9121 array 
applications.  Although  the  design  challenges 
faced  by  these  array  applications initially 
appeared to be  very  similar,  the resulting 
solutions represent  very  different  designs with 
differing fault-tolerance  capabilities. The 
rationale for these  approaches is given,  and 
the  error-correction  algorithms are  described. 

Introduction 
As discussed by Hajek [l], the design objective of the air- 
cooled  IBM Enterprise System/9000TM (ES/9WTM) Type 
9121 system was to provide the function and performance 
of Enterprise Systern/3090TM-class systems, but packaged 
so as to allow installation outside the water-cooled, raised- 
floor environments normally required by IBM's high-end 
general-purpose computing systems. Specifically, the goals 
were to minimize overall power consumption, to provide 
cooling via forced air, and to use dense, high-speed  logic 
technologies to achieve the needed function and 
performance. These engineering constraints led to 
decisions to use the differential current switch (DCS) 
circuit family for combinatorial logic and CMOS arrays for 
dense array applications. Additional factors including cost 
and configurability  led to the selection of 64Kb and 128Kb 
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CMOS static RAM  (SRAM) chips [2] for these memory 
array applications. These CMOS  memory chips were 
considered dense enough for the proposed applications and 
operated well within the required power/thermal ranges. 
However, their access times were less than optimal  when 
viewed against the 9121 performance goals. The specified 
array access time consumed over 60% of the proposed 
system cycle time. This had a profound effect on the 
amount and type of combinatorial logic allowable on  any 
logic paths requiring array access, particularly since the 
9121 RAS (reliability, availability, serviceability) objectives 
mandated the inclusion of array fault-correction and fault- 
detection algorithms. 

Two of the 9121 array applications faced difficult  design 
challenges in  meeting the proposed system cycle time and 
RAS requirements. Although its power consumption and 
x32 configuration were attractive from a packaging  point 
of  view, the  inclusion of the CMOS array chip in the design 
of the integrated offload processor’s  (IOP’s)  local working 
store (LWS) created the potential for timing problems.  The 
IOP  design  team therefore adopted a redundant  array  design 
which  did not sacrifice power consumption and cooling 
goals in order to meet the cycle time objective and still 
provide the desired error-correction capabilities. Similarly, 
the 64Kb  CMOS  SRAM provided excellent packaging and 
thermal advantages to the processor cache designers. In 
this case, however, overall system availability required a 
more rigorous fault-tolerance capability than the LWS, 
placing additional design constraints upon the processor 
cache. The cache design team’s solution was to implement 
a multilevel fault-tolerance approach. The bit-sliced cache 
partition, combined with byte-level single-bit error 
correction double-bit error detection (SECDED) error- 
correction code (ECC), provided an excellent fault- 
detection and -correction capability. The cache line delete 
(CLD) function then minimized the probability of 
encountering uncorrectable faults. Thus, what  initially 
appeared to be a similar problem for two critical 9121 
arrays evolved into two very  different approaches to 
providing the needed array fault tolerance. This paper 
discusses these different approaches, examining the 
rationale for the chosen design directions. 

Local working  store  “shadow” 
The 9121 IOP is a modified  RISC processor based on the 
801 architecture. Its primary functions are to monitor and 
control 9121 110 transfers and to participate in I/O 
subsystem recovery operations. The local  working store 
serves as a scratch-pad memory and as a data buffer for 
these IOP functions. It is used to hold control block  fields 
containing information which describes the IIO operations 
currently under way. It is also used to back  up critical IOP 
registers during interrupt handling and error recovery 
operations. 
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The local  working store is logically organized as an 
array which  is 512 addresses deep by 8 bytes wide. A 
double word (8 bytes) of data may  be written to this array 
by the IOP during any system cycle. However, because 
the LWS array write operations are controlled by a mask 
register, it  is possible to  write any number of bytes (from 
1 to 8) during any array write cycle. Further, these data 
bytes need  not  be contiguous. Data are read from the array 
in a similar manner; on an LWS read operation, 8 bytes of 
data leave the array. The IOP then selects the actual data 
byte(s) required. 

capability in the 9121 processor while  maintaining a very 
high level of system data integrity demanded a significantly 
fault-tolerant LWS design. However, these requirements 
also placed  design constraints on the fault-tolerant 
techniques which  could  be used, as follows: 

1. Fast data paths. The relatively slow  CMOS array chip 
access time restricted the amount and type of logic 
allowable in data paths leading to and from the LWS. 
Simply put, if the 9121 cycle time objective was to be 
met, logic  in the data paths into and out of the LWS 
had to be kept to an absolute minimum. 

2. Noncontiguous byte stores. The ability of the IOP to 
write any number of bytes under mask register control 
required fault tolerance at the byte level. Working  with 
wider units of data would have created the need for 
read-modify-write (RMW) operations, thereby adding 
unwanted complexity to the logic in the path of data to 
be written to the LWS. RMW sequences require yet 
another array access to complete the original write 
operation, further degrading overall array performance. 

3. Erasing correctable faults. To minimize the likelihood 
that subsequent faults result in uncorrectable errors and 
to minimize the logic delay penalties for performing 
corrections, a means to “clean up” soft (not stuck-at or 
hard) errors should be provided. This also  adds 
complexity to the write paths while requiring additional 
array accesses. 

The desire to provide increased I/O performance 

These discussions led to the abandonment of traditional 
ECC approaches to fault tolerance for the LWS. 
SEC/DED ECC across each byte of data provided the 
necessary fault tolerance but required an amount of 
additional logic considered unacceptable. While this was 
not strictly a question of performance, the additional 
overhead in logic  and array chips was detrimental to the 
overall 9121 design because the TCM  upon  which the LWS 
resides was already quite dense and was therefore nearing 
the maximum allowable power consumption. ECC 
algorithms across wider units of data, while more efficient, 
forced a need for read-modify-write operations, as 
described above. Even b-adjacent types of codes were 
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LWS physical layout. 

considered and rejected, again because of complexity and 
potential logic delay in a critical path. It should  be noted 
that none of these approaches directly addressed the need 
to clean up soft, correctable array faults [3]. 

For these reasons, an alternative approach involving 
LWS array redundancy was selected. While redundancy 
does not intuitively appear to be  an optimal solution given 
the previously stated cost/power objectives, it does allow 
for a very modular  design in the LWS support logic. 
Although the total chip count (logic + arrays) is  no less 
than  for  other approaches, the difference  is  weighted in 
favor of the considerably lower-power CMOS array chips. 
The LWS array redundancy therefore played a part in 
meeting the air-cooling and overall power consumption 
goals of the 9121 processor. Redundant arrays also 
eliminated any need for Rh4W operations, because no byte 
is dependent upon the contents of any other byte (except 
its redundant image) for its fault tolerance. Also, the array 
redundancy minimized the requirements for cleaning  up 
correctable array failures, because good data can 
reasonably be expected to reside in one half  of the LWS 
array. Finally, this LWS  design makes very  efficient  use of 
the selected logic technology. As described by 

processor are based on selector circuits. The LWS shadow 
design, because it  is composed of comparators and 
selectors, is very efficient in terms of its cell  usage and 

I Eichelberger [4], the DCS  logic cells used in the 9121 
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LWS shadow  design 
The 9121 IOP LWS utilizes six  64Kb  CMOS  SRAM chips 
organized into two identical banks of three chips each. 
One of the LWS banks is called the primary array, while 
the other is the redundant, or shadow, bank. Data are 
partitioned within each bank such that each array chip 
contains three data bits (called a triplet) from each of the 
eight bytes referenced by an LWS address. Associated 
with each triplet is a partial parity bit. The  data triplets 
and corresponding partial parity bits are physically 
partitioned in each LWS  bank as depicted in Figure 1. The 
two LWS banks, while unique and separate, share a 
common data-in bus. This common path helps simplify the 
LWS write logic.  The write mask function is applied at a 
single point, ensuring that  each array receives identical 
data. From this  point on, although the arrays and data 
paths through the LWS are replicated, the redundancy is 
totally transparent to the IOP. 

Read operations from the LWS array are much simpler 
and faster than might have been possible with other 
detection/correction techniques. On an LWS read 
operation, the read address selects eight bytes from the 
LWS address space. These eight bytes are read from the 
primary and shadow banks simultaneously, the data 
selected from each bank are compared, and the “correct” 
data  are gated onto  the LWS data output bus for use by 
the IOP. Correction, per  se, is  not performed; the correct 
data bits already resident in one or both of the LWS banks 
are merely selected onto the active data flow. The LWS 
shadow may therefore be described as a detection and 
selection mechanism, rather than a detection and 
correction algorithm. Thus, the LWS redundancy permits 
the elimination of the level(s) of logic usually required for 
data bit correction operations. Also, since the stored data 
bits are correct in at least one bank of the LWS, there is  no 
need to perform a rewrite of any corrected data back to the 
a m y .  The  LWS  shadow  design therefore creates a 
performance  advantage by  eliminating the need to clean  up 
known  soft  failures  to  avoid  logic  delays to correct bad data. 

Shadow  correction  algorithm 
When data are fetched from the  LWS, a series of 
comparisons are performed upon the data leaving the 
primary  and shadow LWS banks before they are routed for 
use by the IOP. As shown in Figure 2, these comparisons 
are performed in parallel, with the results forming a vector 
which in turn is used to gate the correct  data bits to the 
data output register. 

fetched from the LWS arrays: 

1. DD (data-to-data). Each data triplet from the primary 
LWS bank is compared to the corresponding triplet 
from the shadow bank. 

Three basic types of comparisons are made on the  data 
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State DD PP DP DS Data bunk 
selected 

Data-in register 

AO* 0 0 0 0 Primary 

b BO 1 X 0 1 Primary 
B1 I X 1 0 Shadow 

co 0 1 1 0 Shadow 

CI 0 1 0 1 Primary 
0 X 1 1 

DO 1 X 0 0 Uncorrectable 
1 X I I 

0 1 0 0 

0 0 0 1 

D Dl 0 0 1 0 Uncorrectable 

*No errors. 

2 .  PP (parity-to-parity). The partial parity bits  from each 

3. DP/DS. A partial parity bit is generated  on  each  data 
bank  are  also  compared. 

triplet as it leaves  the  array  chip.  This  new  panty bit  is 
compared  to  the  partial  parity bit previously stored. DP 
compares  refer  to  the  check performed on  the primary 
bank's partial parity  bits, while DS refers to  the 
comparison  performed  on  the  shadow  bank's partial 
parity  bits. 

D 

The  results of this  series of comparisons  are formed into 
the  vector which describes  seven LWS shadow  states. 
These  states  are  summarized in Table 1. Briefly, the  state 
vector  indicates  the condition of the  data  stored in each 
bank of the LWS array,  and,  consequently, which  bank 
should be  used  as  the  source  for  each  requested  data 
triplet. For  example,  when  the  compare  vector indicates 
that all levels of comparison  are successful (no 
miscompares), 

A O = D D - P P * D S * D P ,  (1) 

the LWS can  be said to be in state AO. This  state indicates 
that  the  data triplet at  the  selected  address is correct in 
each of the LWS banks.  The  data  from  either  side of the 
LWS can safely be used in this case, but by  default,  data 
from  the primary bank  are gated to  the  data-out register. 
(This  bank  designation is programmable. That  is, it is 
possible to define  which group of three physical chips is 
designated as  the  primary,  and which the  shadow, via 

diagnostic  and  hardware debugging purposes.) 
When  the triplet comparison (DD) indicates a failure in 

combination with a miscompare in the  generated  vs. stored 
partial  parities,  one of the LWS banks is known  to  contain 

b 

"" 

P 

1 scan-only SRLs. This capability was included for 

v 
F'artial parity generation 

Local 
Working 
S t o r e  - 
Shadow 

t 

LWS data flow. 

DP compare is favorable  but  the DS compare  indicates  an 
error: 

In this case,  the triplet stored in the  shadow  array is 
known to  contain  one  or  more faults. Therefore,  the triplet 
from  the primary bank is gated to  the  output  register. 
Conversely, when DS compares  favorably but DP  indicates 
an  error,  the primary bank  contains  the  fault.  This  state 
(BI) results in the selection of the  shadow  bank triplet for 
use by the IOP. 

primary and  shadow  banks  compare  favorably  but  stored 
partial  parity (PP) and  generated  vs.  stored (DS or DP) 
comparisons indicate failures. As an  example,  Equation (3) 
describes  state C1: 

States CO and C1 occur  when  the  data  bits in the 

C1 = DD * (PP - DS). (3) 

States CO and  C1  indicate that  one of the  stored partial 
parity bits is incorrect but that  the  stored  data  triplets in 
each bank can be considered  to  be  correct. By default, 



are gated for  use.  Therefore,  data  from  the  LWS  shadow 
are used  when state CO occurs  and  data  from  the primary 
when  state C1 occurs. 

When the  compare  vector  contains values that suggest 
multiple, indeterminate  faults,  state DO has been entered. 
In  general,  state DO occurs  when  the  results of the  three 
levels of comparison conflict with one  another.  For 
example,  consider  Equation (4): 
- 
DD.DP.DS.PP. (4) 

The DD and PP results imply that all of the  stored  data 
and  partial parity bits  are  correct,  yet  the  generated vs. 
stored  partial  parity  comparisons yield errors.  The  actual 
failure  may be  due  to multiple failures  in the  array  chips  or 
to  problems in the parity generation logic. In  any  case, this 
is an  uncorrectable fault.  Similarly, state Dl occurs when 
only a single level of comparison  results in a  miscompare. 
Again, the implication  is that multiple stored  bits  are in 
error  or  that a control failure has  occurred.  This,  too, is an 
uncorrectable  state. 

L WS shadow effectiveness 
The 9121 local  working store  shadow design presented 
here  corrects all single-bit failures  within any  data triplet. 
The  checking is  self-correcting; single failures in the  stored 
partial  parity  bits are  also completely correctable. 
Furthermore,  the  LWS  shadow design can successfully 
detect  and  correct all three-bit failures  which fall within  a 
data  unit (triplet + its  partial parity) and  can successfully 
detect all two- and four-bit  failures across this entity. 
These  results  have  been verified through  extensive analysis 
and simulation. 

Processor  cache 
The 9121 processor  cache is a 128KB high-speed buffer 
designed to  match  storage  access  time  to  the  processor 
cycle time. The  cache is the first and  fastest memory  level 
in a multilevel storage  hierarchy,  and it services more than 
90% of the  storage  accesses of the 9121 processor.  The 
cache  access  time is an  order of magnitude faster  than  the 
next  storage level  (main storage).  The 9121 processor 
cache  uses a store-in  management  scheme.  In  other  words, 
data modified by  the  processor  are held in the  cache until 
needed  elsewhere in the  system,  or until the  cache  needs 
to  remove  them  to  make  room  for new data. An alternative 
approach is the  store-through  cache,  where both cache  and 
main storage  are  updated  whenever  data held in the  cache 
are modified. While the  store-through design  is less 
complex  and offers the  advantage of data  redundancy, it 
also  increases  the usage of the  data  bus  to main memory, 
an  important  consideration in systems  where multiple 
processors  and I/O servers all vie for  access  to  system 
memory.  The primary  benefit of a store-in  cache design is 

386 therefore  to minimize the  data traffic to main memory at 
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the  expense of more  complicated control logic. If the 
performance  and  data integrity of the  system  are  to  be 
maintained at their  highest levels,  the reliability of the 
store-in processor  cache  becomes a critical design concern. 
The  cache design team  chose a three-faceted  strategy  to 
achieve  the required high reliability.  Briefly, the 9121 
processor  cache required  a high level of fault  tolerance, 
high error-detection  capability,  and a self-diagnostic and 
self-maintenance facility to minimize exposure to faults. 

Cuche ECC scheme 
As  described  earlier, a 64Kb  CMOS  SRAM  was  chosen  for 
the  processor  cache  application.  It  met  density 
requirements,  and  its organization was  suitable  for  the 
cache application. From  the  start,  the design  goal was  to 
be able to  tolerate  any single point of failure  within any 
cache  array chip. This  meant  that  any  array  failure, 
including those which affect the  entire  chip (chip kill), had 
to result in a correctable  error  scenario. A bit-sliced cache 
design with ECC satisfied this  requirement. 

corrects all  single-bit errors  and  detects all double-bit 
errors within a single byte.  This  requires five ECC 
check bits  per byte of data.  Since  the  cache is read 
a double word at a time, 40 check  bits are required for  each 
double word of data, a  relatively high checking  overhead. 
Although SEC/DED  across a double word can  be 
accomplished with a  minimum of eight check  bits,  ECC at 
the  byte level makes feasible  a  bit-sliced cache design 
using this CMOS  array.  Byte  ECC  also simplifies partial 
data  stores in  which fewer  than eight bytes  have  been 
modified. As in the LWS, the  processor  cache design 
eliminates the  need  for read-modify-write sequences;  byte 
ECC  accomplishes  this. 

The 9121 processor  cache is implemented using 26 64Kb 
chips. The 26 array  chips  are divided into  two identical 
banks of 13 chips  each.  This  array organization permits 
two-way  interleaving of cached  data  for  better  overall 
system  performance.  The  cache is four-way  set- 
associative;  on  each  read  cycle  four  double  words  are  read 
from  the  array.  One of these  double  words is then  selected 
for  use  by  the  processor. 

The  cache  array design and  layout  are  depicted in  Figure 
3. The  CMOS  array  chip  is  used in its x32 mode; it 
contains  only  one  data  or  check bit per  byte.  For  example, 
consider  the  array  chip  corresponding  to bit 0. The 32 
outputs of this chip  are divided into  four  sets of eight bits 
to  take  into  account  the  cache  associativity. Within each 
set,  the eight bits represent bit 0 for  each  byte in the 
double  word.  Thus, eight of the  thirteen  array  chips 
contain  data  bits 0-7, while the remaining five hold the 
required check  bits.  Since  no  two  data  or  check  bits  from 
the  same  byte  reside  together  in a single chip,  any  array 
chip failure within a bank  can  cause  only  correctable 

The 9121 processor  cache  uses  an  ECC  scheme which 
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errors. Additionally, two  chips within the  same bank can 
fail entirely,  yet  the resulting errors will always  be 
detected. 

While the  ECC algorithm selected  for  the 9121 processor 
cache  provides  the required  ability to  detect  and  correct 
array  faults within the  cache, it does  add  delay  to  the  data 
read path. To meet  cycle time requirements,  the path 
through  the  CMOS  array had to  be  extended by 3 ns for 
the  processor  cache application. This  was  done by 
clocking the  registers which capture  the  cache  array  output 
with a clock which  is 3 ns  later  than  the main system 
clocks.  This  results in the loss of 3 ns in the  paths fed by 
these  registers, which  include the  ECC logic paths. 
Fortunately,  the  DCS logic set  provides  for very efficient 
exclusive-OR trees,  the major component of ECC logic. 
The  byte  ECC  scheme  requires only two logic levels for 
generating  syndromes,  and  two  more  for  syndrome  decode 
and  data  correction.  Thus,  the  reduced  cycle time 
requirement  for  the  ECC path  is met. 

Cache line delete 
The  processor  cache  ECC design is capable of correcting 
all single-bit errors  and  detecting all double-bit errors. If a 
cache  array  chip  experiences a hard (stuck-at)  failure,  the 
byte containing the  error is still usable  because  the  error 
can  be  corrected.  However,  error checking subsequently 
performed  on  the line(s)  containing correctable  faults is 
essentially reduced  to parity  checking.  Any other failure, 
whether soft or hard, which  aligns itself within an affected 
byte can  only  be  detected, providing the  rationale  for  the 
cache line delete  (CLD)  function.  This self-diagnostic 
feature is  designed to allow the  system  to gracefully detect 
all  hard  failures and  to minimize any  data integrity risks 
that  they might introduce.  CLD first appeared in high-end 
IBM  processor  caches [ 5 ] .  It is used  to  track  cache  errors 
and  to  determine  whether  they  are  the result of stuck-at 
array  failures. If a hard failure is detected,  the  cache line 
which contains  the failing bit  is  removed from  the  active 
cache configuration. This  prevents  the line from being  used 
and eliminates the potential of another  error  occurring 
within the  same  byte. 

hardware  and licensed internal  code  (LIC).  Whenever a 
cache  access is made,  the  address  and  other  pertinent 
information about  the  access  are retained in dedicated 
registers. If a single-bit error  occurs,  the bit is corrected, 
the  LIC  CLD  function is notified that a data  correction 
took  place,  and  the  dedicated  registers containing 
information about  the  corrected  array  access  are  read.  The 
LIC  checks a CLD  table  to  determine  whether this cache 
line has  experienced  any  other  errors within  a specified 
amount of time. If too many errors have occurred in this 
line during  the specified interval,  the line is assumed  to 
contain a hard,  stuck-at fault and is therefore  deleted.  Both 

The  CLD  function actually consists of a combination of 
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the time interval and  the  error-count  thresholds  are 
programmable. 

function remains  active  only long  enough to  determine  that 
a cache  chip is suffering from a fault which  affects  many 
addresses. Deleting continues until one of two  thresholds 
has been met.  The first concerns  the total number of 
deleted lines  allowable  within the  cache.  This value  should 
be high enough to  determine  that a severe  error  exists,  yet 
low enough that  any loss of performance  due  to  the 
reduction  in cache  capacity is negligible. The  second 
threshold involves the  total  number of deleted lines 
allowed  within  a congruence  class. A congruence  class is 
defined as  the  set of all cache lines into which a system 
address may be  mapped.  Since  the 9121 processor  cache is 
four-way set-associative,  there  are  four lines  in each 
congruence  class. At least  one line in each  congruence 
class must be available at all times.  Therefore,  the 
congruence  threshold  for  this design  is three  lines or 
fewer.  The  deleted line count  and  congruence  thresholds 
are  also  programmable. 

a deleted line threshold  to  be  met,  the 9121 processor 
initiates  a "call home" via the  remote  service facility to 
indicate that  the  cache  has  accumulated  failures  and  that a 
repair action  should be  scheduled.  From  this point on,  no 
further lines are  deleted. Error correction allows any 
remaining  lines  which  may be affected by  the hard  failure 

Line  deletes do not go on indefinitely. The  CLD 

If a hard  failure occurs  and it  is severe  enough  to  cause 
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to  be  read, enabling the  system  to  continue  operating 
normally. Subsequent  array failures can  cause an 
uncorrectable  error  scenario if any  byte is affected by two 
or more  faults, but the probability of this  occurring  during 
the time between  the  “call  home”  and  the  maintenance 
action is very small. Thus,  the  CLD design enhances  the 
overall reliability and availability of the 9121 prpcessor. 

Cache  fault-tolerance  effectiveness 
The 9121 processor  cache  byte  ECC algorithm results in 
the  successful  detection  and  correction of all single-bit 
failures and  the  detection of all double-bit and many 
multiple-bit  failures. The bit-sliced cache design  allows the 
processor  cache  to  continue functioning even in the 
presence of a chip kill in either  or  both  cache banks. This 
design also successfully detects  up  to  two  chip kills per 
bank.  The  CLD  function minimizes the  exposure  to 
uncorrectable  errors when  hard array failures occur.  This 
combination  allows the 9121 processor  to  continue 
operating normally even in the  presence of multiple, severe 
array failures. 

Conclusions 
The  Enterprise System19000 9121 design experience 
confirms that  system  performance  and packaging 
considerations  can  and  do  have a significant impact  upon 
the  type of fault-tolerance  strategy which can  be  used.  It 
has  also  shown  that  the optimal  solution for  one  type of 
array application can  be  very different from  the  best 
solution for  another,  even within the  same  system. 

The 9121 system design objectives led the  IOP and 
processor  cache  designers  to  develop solutions which 
effectively address  the  issue of fault  tolerance  for their 
respective  array  applications without adverse effect on  the 
overall design  goals. Briefly, the local  working store 
shadow  approach  transformed  what  was  expected  to  be a 
serious  performance limitation  within the  IOP  into a 
simple, straightforward design  which met all design criteria 
while efficiently utilizing the technology at  hand.  The result 
is  a very  fast critical array design with excellent 
detectionlcorrection capabilities. The  redundant  approach 
also eliminates correction-related  performance penalties. In 
the case of the  processor  cache,  the integration of the byte 
ECC algorithm  with the  cache line delete  function  results 
in an  extremely reliable cache with excellent self- 
diagnostic  capability. It  ensures  the integrity of data 
contained within the cache-often the only valid copy of 
the  data.  The  fault-tolerance mechanisms  employed are 
unobtrusive  and allow full system availability even in the 
unlikely event of multiple cache  array  chip  faults.  The 
CLD  function minimizes the probability of encountering 
uncorrectable failures by deleting failing cache  addresses 
from  the  active  environment  and causing preventive 

388 maintenance  actions  to  be  scheduled. In short,  the  LWS 

shadow  and  processor  cache  designs  demonstrate  that 
effective and efficient array  fault  tolerance  can  be designed 
despite conflicting system,  RAS,  packaging,  and 
technology constraints. 
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