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The system design of the IBM Enterprise
System/9000™ Type 9121 processor was
intended to provide high performance and
dense packaging within an air-cooled system.
Packaging and technology factors had a major
influence on the fault-tolerance strategies
chosen. This paper describes the effect that
this design point had on the fault-tolerant
capabilities of two critical 9121 array
applications. Although the design challenges
faced by these array applications initially
appeared to be very similar, the resulting
solutions represent very different designs with
differing fault-tolerance capabilities. The
rationale for these approaches is given, and
the error-correction algorithms are described.

Introduction

As discussed by Hajek [1], the design objective of the air-
cooled IBM Enterprise System/9000™ (ES/9000™) Type
9121 system was to provide the function and performance
of Enterprise System/3090™-class systems, but packaged
so as to allow installation outside the water-cooled, raised-
floor environments normally required by IBM’s high-end
general-purpose computing systems. Specifically, the goals
were to minimize overall power consumption, to provide
cooling via forced air, and to use dense, high-speed logic
technologies to achieve the needed function and
performance. These engineering constraints led to
decisions to use the differential current switch (DCS)
circuit family for combinatorial logic and CMOS arrays for
dense array applications. Additional factors including cost
and configurability led to the selection of 64Kb and 128Kb
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CMOS static RAM (SRAM) chips [2] for these memory
array applications. These CMOS memory chips were
considered dense enough for the proposed applications and
operated well within the required power/thermal ranges.
However, their access times were less than optimal when
viewed against the 9121 performance goals. The specified
array access time consumed over 60% of the proposed
system cycle time. This had a profound effect on the
amount and type of combinatorial logic allowable on any
logic paths requiring array access, particularly since the
9121 RAS (reliability, availability, serviceability) objectives
mandated the inclusion of array fault-correction and fault-
detection algorithms.

Two of the 9121 array applications faced difficult design
challenges in meeting the proposed system cycle time and
RAS requirements. Although its power consumption and
%32 configuration were attractive from a packaging point
of view, the inclusion of the CMOS array chip in the design
of the integrated offload processor’s (IOP’s) local working
store (LWS) created the potential for timing problems. The
IOP design team therefore adopted a redundant array design
which did not sacrifice power consumption and cooling
goals in order to meet the cycle time objective and still
provide the desired error-correction capabilities. Similarly,
the 64Kb CMOS SRAM provided excellent packaging and
thermal advantages to the processor cache designers. In
this case, however, overall system availability required a
more rigorous fault-tolerance capability than the LWS,
placing additional design constraints upon the processor
cache. The cache design team’s solution was to implement
a multilevel fault-tolerance approach. The bit-sliced cache
partition, combined with byte-level single-bit error
correction double-bit error detection (SEC/DED) error-
correction code (ECC), provided an excellent fault-
detection and -correction capability. The cache line delete
(CLD) function then minimized the probability of
encountering uncorrectable faults. Thus, what initially
appeared to be a similar problem for two critical 9121
arrays evolved into two very different approaches to
providing the needed array fault tolerance. This paper
discusses these different approaches, examining the
rationale for the chosen design directions.

Local working store ‘“shadow”

The 9121 IOP is a modified RISC processor based on the
801 architecture. Its primary functions are to monitor and
control 9121 1/O transfers and to participate in I/O
subsystem recovery operations. The local working store
serves as a scratch-pad memory and as a data buffer for
these IOP functions. It is used to hold control block fields
containing information which describes the I/0 operations
currently under way. It is also used to back up critical IOP
registers during interrupt handling and error recovery
operations.
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The local working store is logically organized as an
array which is 512 addresses deep by 8 bytes wide. A
double word (8 bytes) of data may be written to this array
by the IOP during any system cycle. However, because
the LWS array write operations are controlled by a mask
register, it is possible to write any number of bytes (from
1 to 8) during any array write cycle. Further, these data
bytes need not be contiguous. Data are read from the array
in a similar manner; on an LWS read operation, 8 bytes of
data leave the array. The IOP then selects the actual data
byte(s) required.

The desire to provide increased 1/O performance
capability in the 9121 processor while maintaining a very
high level of system data integrity demanded a significantly
fault-tolerant LWS design. However, these requirements
also placed design constraints on the fault-tolerant
techniques which could be used, as follows:

1. Fast data paths. The relatively siow CMOS array chip
access time restricted the amount and type of logic
allowable in data paths leading to and from the LWS.
Simply put, if the 9121 cycle time objective was to be
met, logic in the data paths into and out of the LWS
had to be kept to an absolute minimum.

2. Noncontiguous byte stores. The ability of the IOP to
write any number of bytes under mask register control
required fault tolerance at the byte level. Working with
wider units of data would have created the need for
read-modify-write (RMW) operations, thereby adding
unwanted complexity to the logic in the path of data to
be written to the LWS. RMW sequences require yet
another array access to complete the original write
operation, further degrading overall array performance.

3. Erasing correctable faults. To minimize the likelihood
that subsequent faults result in uncorrectable errors and
to minimize the logic delay penalties for performing
corrections, a means to ‘‘clean up’’ soft (not stuck-at or
hard) errors should be provided. This also adds
complexity to the write paths while requiring additional
array accesses.

These discussions led to the abandonment of traditional
ECC approaches to fault tolerance for the LWS.
SEC/DED ECC across each byte of data provided the
necessary fault tolerance but required an amount of
additional logic considered unacceptable. While this was
not strictly a question of performance, the additional
overhead in logic and array chips was detrimental to the
overall 9121 design because the TCM upon which the LWS
resides was already quite dense and was therefore nearing
the maximum allowable power consumption. ECC
algorithms across wider units of data, while more efficient,
forced a need for read-modify-write operations, as
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considered and rejected, again because of complexity and
potential logic delay in a critical path. It should be noted
that none of these approaches directly addressed the need
to clean up soft, correctable array faults [3].

For these reasons, an alternative approach involving
LWS array redunidancy was selected. While redundancy
does not intuitively appear to be an optimal solution given
the previously stated cost/power objectives, it does allow
for a very modular design in the LWS support logic.
Although the total chip count (logic + arrays) is no less
than for other approaches, the difference is weighted in
favor of the considerably lower-power CMOS array chips.
The LWS array redundancy therefore played a part in
meeting the air-cooling and overall power consumption
goals of the 9121 processor. Redundant arrays also
eliminated any need for RMW operations, because no byte
is dependent upon the contents of any other byte (except
its redundant image) for its fault tolerance. Also, the array
redundancy minimized the requirements for cleaning up
correctable array failures, because good data can
reasonably be expected to reside in one half of the LWS
array. Finally, this LWS design makes very efficient use of
the selected logic technology. As described by
Eichelberger [4], the DCS logic cells used in the 9121
processor are based on selector circuits. The LWS shadow
design, because it is composed of comparators and
selectors, is very efficient in terms of its cell usage and
overall performance.
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o LWS shadow design

The 9121 IOP LWS utilizes six 64Kb CMOS SRAM chips
organized into two identical banks of three chips each.
One of the LWS banks is called the primary array, while
the other is the redundant, or shadow, bank. Data are
partitioned within each bank such that each array chip
contains three data bits (called a triplet) from each of the
eight bytes referenced by an LWS address. Associated
with each triplet is a partial parity bit. The data triplets
and corresponding partial parity bits are physically
partitioned in each LWS bank as depicted in Figure 1. The
two LWS banks, while unique and separate, share a
common data-in bus. This common path helps simplify the
LWS write logic. The write mask function is applied at a
single point, ensuring that each array receives identical
data. From this point on, although the arrays and data
paths through the LWS are replicated, the redundancy is
totally transparent to the IOP.

Read operations from the LWS array are much simpler
and faster than might have been possible with other
detection/correction techniques. On an LWS read
operation, the read address selects eight bytes from the
LWS address space. These eight bytes are read from the
primary and shadow banks simultaneously, the data
selected from each bank are compared, and the ‘“‘correct”
data are gated onto the LWS data output bus for use by
the IOP. Correction, per se, is not performed; the correct
data bits already resident in one or both of the LWS banks
are merely selected onto the active data flow. The LWS
shadow may therefore be described as a detection and
selection mechanism, rather than a detection and
correction algorithm. Thus, the LWS redundancy permits
the elimination of the level(s) of logic usually required for
data bit correction operations. Also, since the stored data
bits are correct in at least one bank of the LWS, there is no
need to perform a rewrite of any corrected data back to the
array. The LWS shadow design therefore creates a
performance advantage by eliminating the need to clean up
known soft failures to avoid logic delays to correct bad data.

® Shadow correction algorithm
When data are fetched from the LWS, a series of
comparisons are performed upon the data leaving the
primary and shadow LWS banks before they are routed for
use by the IOP. As shown in Figure 2, these comparisons
are performed in parallel, with the results forming a vector
which in turn is used to gate the correct data bits to the
data output register.

Three basic types of comparisons are made on the data
fetched from the LWS arrays:

1. DD (data-to-data). Each data triplet from the primary

LWS bank is compared to the corresponding triplet
from the shadow bank.
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Table 1 LWS shadow states.

State DD PP DP DS Data bank
selected

AO0* 0 0 0 0 Primary

BO 1 X 0 1 Primary

B1 1 X 1 0 Shadow

Co 0 1 1 0 Shadow

C1 0 1 0 1 Primary
0 X 1 1

DO 1 X 0 0 Uncorrectable
i X 1
0 1 0 0

D1 0 0 1 0 Uncorrectable
0 0 1

*No errors.

2. PP (parity-to-parity). The partial parity bits from each
bank are also compared.

3. DP/DS. A partial parity bit is generated on each data
triplet as it leaves the array chip. This new parity bit is
compared to the partial parity bit previously stored. DP
compares refer to the check performed on the primary
bank’s partial parity bits, while DS refers to the
comparison performed on the shadow bank’s partial
parity bits.

The results of this series of comparisons are formed into
the vector which describes seven LWS shadow states.
These states are summarized in Table 1. Briefly, the state
vector indicates the condition of the data stored in each
bank of the LWS array, and, consequently, which bank
should be used as the source for each requested data
triplet. For example, when the compare vector indicates
that all levels of comparison are successful (no
miscompares),

A0=DD-PP-DS-DP, )

the LWS can be said to be in state A0. This state indicates
that the data triplet at the selected address is correct in
each of the LWS banks. The data from either side of the
LWS can safely be used in this case, but by default, data
from the primary bank are gated to the data-out register.
(This bank designation is programmable. That is, it is
possible to define which group of three physical chips is
designated as the primary, and which the shadow, via
scan-only SRLs. This capability was included for
diagnostic and hardware debugging purposes.)

When the triplet comparison (DD) indicates a failure in
combination with a miscompare in the generated vs. stored
partial parities, one of the LWS banks is known to contain
a fault. For example, state B0 is said to occur when the
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DP compare is favorable but the DS compare indicates an
error:

B0 =DD-DS - DP. 0))

In this case, the triplet stored in the shadow array is
known to contain one or more faults. Therefore, the triplet
from the primary bank is gated to the output register.
Conversely, when DS compares favorably but DP indicates
an error, the primary bank contains the fault. This state
(B1) results in the selection of the shadow bank triplet for
use by the IOP.

States C0 and C1 occur when the data bits in the
primary and shadow banks compare favorably but stored
partial parity (PP) and generated vs. stored (DS or DP)
comparisons indicate failures. As an example, Equation (3)
describes state C1:

Cl=DD- (PP DS). 3

States CO and C1 indicate that one of the stored partial
parity bits is incorrect but that the stored data triplets in
each bank can be considered to be correct. By default,
data from the bank whose stored partial parity was correct
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are gated for use. Therefore, data from the LWS shadow
are used when state C0 occurs and data from the primary
when state C1 occurs.

When the compare vector contains values that suggest
multiple, indeterminate faults, state DO has been entered.
In general, state DO occurs when the results of the three
levels of comparison conflict with one another. For
example, consider Equation (4):

DD-DP- DS - PP. @

The DD and PP results imply that all of the stored data
and partial parity bits are correct, yet the generated vs.
stored partial parity comparisons yield errors. The actual
failure may be due to multiple failures in the array chips or
to problems in the parity generation logic. In any case, this
is an uncorrectable fault. Similarly, state DI occurs when
only a single level of comparison results in a miscompare.
Again, the implication is that multiple stored bits are in
error or that a control failure has occurred. This, too, is an
uncorrectable state.

® L WS shadow effectiveness

The 9121 local working store shadow design presented
here corrects all single-bit failures within any data triplet.
The checking is self-correcting; single failures in the stored
partial parity bits are also completely correctable.
Furthermore, the LWS shadow design can successfully
detect and correct all three-bit failures which fall within a
data unit (triplet + its partial parity) and can successfully
detect all two- and four-bit failures across this entity.
These results have been verified through extensive analysis
and simulation.

Processor cache

The 9121 processor cache is a 128KB high-speed buffer
designed to match storage access time to the processor
cycle time. The cache is the first and fastest memory level
in a multilevel storage hierarchy, and it services more than
90% of the storage accesses of the 9121 processor. The
cache access time is an order of magnitude faster than the
next storage level (main storage). The 9121 processor
cache uses a store-in management scheme. In other words,
data modified by the processor are held in the cache until
needed elsewhere in the system, or until the cache needs
to remove them to make room for new data. An alternative
approach is the store-through cache, where both cache and
main storage are updated whenever data held in the cache
are modified. While the store-through design is less
complex and offers the advantage of data redundancy, it
also increases the usage of the data bus to main memory,
an important consideration in systems where muitiple
processors and 1/0 servers all vie for access to system
memory. The primary benefit of a store-in cache design is
therefore to minimize the data traffic to main memory at
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the expense of more complicated control logic. If the
performance and data integrity of the system are to be
maintained at their highest levels, the reliability of the
store-in processor cache becomes a critical design concern.
The cache design team chose a three-faceted strategy to
achieve the required high reliability. Briefly, the 9121
processor cache required a high level of fault tolerance,
high error-detection capability, and a self-diagnostic and
self-maintenance facility to minimize exposure to faults.

® Cache ECC scheme

As described earlier, a 64Kb CMOS SRAM was chosen for
the processor cache application. It met density
requirements, and its organization was suitable for the
cache application. From the start, the design goal was to
be able to tolerate any single point of failure within any
cache array chip. This meant that any array failure,
including those which affect the entire chip (chip kill), had
to result in a correctable error scenario. A bit-sliced cache
design with ECC satisfied this requirement.

The 9121 processor cache uses an ECC scheme which
corrects all single-bit errors and detects all double-bit
errors within a single byte. This requires five ECC
check bits per byte of data. Since the cache is read
a double word at a time, 40 check bits are required for each
double word of data, a relatively high checking overhead.
Although SEC/DED across a double word can be
accomplished with a minimum of eight check bits, ECC at
the byte level makes feasible a bit-sliced cache design
using this CMOS array. Byte ECC also simplifies partial
data stores in which fewer than eight bytes have been
modified. As in the LWS, the processor cache design
eliminates the need for read-modify-write sequences; byte
ECC accomplishes this.

The 9121 processor cache is implemented using 26 64Kb
chips. The 26 array chips are divided into two identical
banks of 13 chips each. This array organization permits
two-way interleaving of cached data for better overall
system performance. The cache is four-way set-
associative; on each read cycle four double words are read
from the array. One of these double words is then selectéd
for use by the processor.

The cache array design and layout are depicted in Figure
3. The CMOS array chip is used in its x32 mode; it
contains only one data or check bit per byte. For example,
consider the array chip corresponding to bit 0. The 32
outputs of this chip are divided into four sets of eight bits
to take into account the cache associativity. Within each
set, the eight bits represent bit 0 for each byte in the
double word. Thus, eight of the thirteen array chips
contain data bits 0-7, while the remaining five hold the
required check bits. Since no two data or check bits from
the same byte reside together in a single chip, any array
chip failure within a bank can cause only correctable
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errors. Additionally, two chips within the same bank can
fail entirely, yet the resulting errors will always be
detected.

While the ECC algorithm selected for the 9121 processor
cache provides the required ability to detect and correct
array faults within the cache, it does add delay to the data
read path. To meet cycle time requirements, the path
through the CMOS array had to be extended by 3 ns for
the processor cache application. This was done by
clocking the registers which capture the cache array output
with a clock which is 3 ns later than the main system
clocks. This results in the loss of 3 ns in the paths fed by
these registers, which include the ECC logic paths.
Fortunately, the DCS logic set provides for very efficient
exclusive-OR trees, the major component of ECC logic.
The byte ECC scheme requires only two logic levels for
generating syndromes, and two more for syndrome decode
and data correction. Thus, the reduced cycle time
requirement for the ECC path is met.

® Cache line delete

The processor cache ECC design is capable of correcting
all single-bit errors and detecting all double-bit errors. If a
cache array chip experiences a hard (stuck-at) failure, the
byte containing the error is still usable because the error
can be corrected. However, error checking subsequently
performed on the line(s) containing correctable faults is
essentially reduced to parity checking. Any other failure,
whether soft or hard, which aligns itself within an affected
byte can only be detected, providing the rationale for the
cache line delete (CLD) function. This self-diagnostic
feature is designed to allow the system to gracefully detect
all hard failures and to minimize any data integrity risks
that they might introduce. CLD first appeared in high-end
IBM processor caches [5]. It is used to track cache errors
and to determine whether they are the result of stuck-at
array failures. If a hard failure is detected, the cache line
which contains the failing bit is removed from the active
cache configuration. This prevents the line from being used
and eliminates the potential of another error occurring
within the same byte.

The CLD function actually consists of a combination of
hardware and licensed internal code (LIC). Whenever a
cache access is made, the address and other pertinent
information about the access are retained in dedicated
registers. If a single-bit error occurs, the bit is corrected,
the LIC CLD function is notified that a data correction
took place, and the dedicated registers containing
information about the corrected array access are read. The
LIC checks a CLD table to determine whether this cache
line has experienced any other errors within a specified
amount of time. If too many errors have occurred in this
line during the specified interval, the line is assumed to
contain a hard, stuck-at fault and is therefore deleted. Both
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the time interval and the error-count thresholds are
programmable.

Line deletes do not go on indefinitely. The CLD
function remains active only long enough to determine that
a cache chip is suffering from a fault which affects many
addresses. Deleting continues until one of two thresholds
has been met. The first concerns the total number of
deleted lines allowable within the cache. This value should
be high enough to determine that a severe error exists, yet
low enough that any loss of performance due to the
reduction in cache capacity is negligible. The second
threshold involves the total number of deleted lines
allowed within a congruence class. A congruence class is
defined as the set of all cache lines into which a system
address may be mapped. Since the 9121 processor cache is
four-way set-associative, there are four lines in each
congruence class. At least one line in each congruence
class must be available at all times. Therefore, the
congruence threshold for this design is three lines or
fewer. The deleted line count and congruence thresholds
are also programmable.

If a hard failure occurs and it is severe enough to cause
a deleted line threshold to be met, the 9121 processor
initiates a ‘‘call home”’ via the remote service facility to
indicate that the cache has accumulated failures and that a
repair action should be scheduled. From this point on, no
further lines are deleted. Error correction allows any
remaining lines which may be affected by the hard failure
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to be read, enabling the system to continue operating
normally. Subsequent array failures can cause an
uncorrectable error scenario if any byte is affected by two
or more faults, but the probability of this occurring during
the time between the ‘‘call home’ and the maintenance
action is very small. Thus, the CLD design enhances the
overall reliability and availability of the 9121 processor.

® Cache fault-tolerance effectiveness

The 9121 processor cache byte ECC algorithm results in
the successful detection and correction of all single-bit
failures and the detection of all double-bit and many
multiple-bit failures. The bit-sliced cache design allows the
processor cache to continue functioning even in the
presence of a chip kill in either or both cache banks. This
design also successfully detects up to two chip kills per
bank. The CLD function minimizes the exposure to
uncorrectable errors when hard array failures occur. This
combination allows the 9121 processor to continue
operating normally even in the presence of multiple, severe
array failures.

Conclusions

The Enterprise System/9000 9121 design experience
confirms that system performance and packaging
considerations can and do have a significant impact upon
the type of fault-tolerance strategy which can be used. It
has also shown that the optimal solution for one type of
array application can be very different from the best
solution for another, even within the same system.

The 9121 system design objectives led the IOP and
processor cache designers to develop solutions which
effectively address the issue of fault tolerance for their
respective array applications without adverse effect on the
overall design goals. Briefly, the local working store
shadow approach transformed what was expected to be a
serious performance limitation within the IOP into a
simple, straightforward design which met all design criteria
while efficiently utilizing the technology at hand. The result
is a very fast critical array design with excellent
detection/correction capabilities. The redundant approach
also eliminates correction-related performance penalties. In
the case of the processor cache, the integration of the byte
ECC algorithm with the cache line delete function results
in an extremely reliable cache with excellent self-
diagnostic capability. It ensures the integrity of data
contained within the cache—often the only valid copy of
the data. The fault-tolerance mechanisms employed are
unobtrusive and allow full system availability even in the
unlikely event of multiple cache array chip faults. The
CLD function minimizes the probability of encountering
uncorrectable failures by deleting failing cache addresses
from the active environment and causing preventive
maintenance actions to be scheduled. In short, the LWS
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shadow and processor cache designs demonstrate that
effective and efficient array fault tolerance can be designed
despite conflicting system, RAS, packaging, and
technology constraints.
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