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The design of the IBM Enterprise 
System/9000TM  Type  91 21 Vector  Facility is 
described  and its performance is evaluated  in 
this  paper.  The Vector Facility  design  adheres 
to  the  architecture  developed for  the  3090" 
vector facilities.  The  original  design  objectives 
and  associated  architecture  are  reviewed. 
Vector  operations  and  design  details  are 
discussed,  and  specific  performance  results 
are  shown. 

Introduction 
The  IBM  Enterprise System/9000" (ES/9000r") Type 9121 
Vector Facility  implements the IBM ESA/390" Vector 
Architecture [ 13 on a single air-cooled  thermal conduction 
module (TCM).  This  vector facility is used in each of the 
ES/9000 models. In the  uniprocessor models (190, 210, 
260, 320), the  vector facility is physically mounted in the 
main frame with the  rest of the  central  processor  (CP) and 
memory system,  whereas  on  the  dyadic models (440. 480) 
it is mounted in an  expansion  frame  attached  to  the side  of 
the main frame. 

Although the design  is  based on  that of the  IBM 
ES/3090T" Model J Vector  Facility,  most  areas  were 
significantly redesigned to meet the challenges  imposed by 
new technologies. The design  goals for  the  vector facility 
were  established during  the  development  phase of the first 
IBM 3090" vector facility [ 2 ] ,  announced  as a product in 
October 1985, and  the  framework  for  the  evaluation of 
these  product  objectives  was defined early in the design 
stage.  These original objectives  have  been  the  criteria used 
for  the  development of the follow-on IBM  vector facilities. 
Each  generation of vector facility has brought with it some 
additional form of performance  enhancement [3]. 

Because  these original objectives  are,  for  the most part, 
still applicable to  the ES/9000 Type 9121 Vector  Facility, 
the design objectives for the  vector facility are reviewed in 
the first part of the  paper, followed by a brief review of the 
vector  architecture.  Next,  some  essential  aspects of the 
vector facility  design are  discussed,  and  an  overview is 
presented of how a typical vector  instruction  operates 
along with the  vector  interface with the  cache.  Then,  the 
method  used to  evaluate  the  vector facility performance is 

models. 
I The 3090 Models E, S ,  J ,  and JH processor families are designated as ESi3090 
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The  vectorized  portion of the  job  represents a four  times  increase  over  the 

same  portion  of  the  job  run scalar. The  resultant  vector/scalar  speedup 

ratio is 1.8. 

Application execution times. 

described, including some  details  about  the performance 
measurement  techniques.  Finally,  the  results of these 
performance  measurements  are  discussed. 

Review of the vector design objectives 
The IBM ES19000 Type 9121 Vector Facility  is an optional 
performance-enhancement  feature available for  each of the 
ES/9000 Type 9121 processors.  This  feature offers the 
ability to  process  vector  instructions defined by the IBM 
ESA/390 Vector  Architecture.  This is accomplished by 
adding vector  registers,  vector  arithmetic  hardware 
computational  elements,  and  other  hardware  to  the 
processor.  The  objective of the  vector facility was  not  to 
provide  the  fastest possible vector  hardware,  but  rather  to 
provide  an  integrated, balanced system solution. The basic 
goal was  to  complement a fast  scalar  processor. Many of 
the numerically  intensive  computing (NIC) application 
programs  for  which a vector  processor is utilized may  have 
considerable  scalar  content.  Even highly vectorizable 
programs  sometimes  have  portions of code which run more 
efficiently in scalar mode. The goal was to complement the 
fast  scalar  performance of the  central  processor with a 
level of vector  performance  three  to five times faster  for 
applications in the 5 0 4 0 %  level of vectorization, the mid- 
range of application  vectorizability. This  vectorlscalar  loop 
speedup  ratioZ of  3 to 5 provides internal throughput  rate 
(ITRI3  improvements in the range of one-and-a-half to 
almost  three  times  the  scalar  performance  for typical 
vectorizable applications. For  example,  assume  that a 
processor  has a vector  performance capability four times 
greater  than  its  scalar  performance capability.  Given  a job 
that  is 60% vectorizable  and  uses five hours of CPU time 
in scalar  mode,  the  comparison  shown in Figure 1 can  be 
made. 

? CPU time improvement for the vectorizable portion of the job 
3 ITR is defined as the number of jobs completed per central processor busy 
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Besides  complementing the  scalar  performance,  another 
design objective  was  to  reach this  level of vector 
performance  without limiting dyadic  processing 
capabilities. Dyadic  processors  can  provide  increased 
computing capacity  to  meet  the  demand of a  multiple-job 
workload by using the  VS  FORTRAN Multitasking 
Facility (MTF),  or  they  can  improve  turnaround time for a 
single job through  parallel processing via the Parallel 
FORTRAN  (PF)  product. 

Review of the IBM ESA/390 Vector Architecture 
The  IBM ESA/390 Vector  Architecture is  a common 
architecture  across all models in the System/390TM  family 
that  support a vector facility. Its main features include 

16 vector  registers. 
Vector mask  register. 
Vector  status register. 
Vector activity counter. 
171 instructions. 

The  Vector  Architecture  provides 16 vector  registers (VRs) 
with 256 elements of  32 bits each.  (The  architecture allows 
the number of elements  to  vary on different  models,  but 
the ES/9000 Type 9121 Vector Facility uses 256 elements 
per VR.) An evenlodd  pair of VRs  may  be  combined  to 
form  a logical vector  register which is 64 bits wide. If all 
VRs are used in this manner, only eight logical VRs  are 
available,  but  their  usage may be mixed so that  some 
registers contain double-word data while others  contain 
word-size data. 

The  vector  mask  register (VMR) is 256 bits  in length, 
with each bit corresponding  to  an  element in a  VR. If the 
VMR is used  during  a vector-add  instruction,  for  example, 
and  a bit in the VMR is zero,  the  corresponding  element in 
the  vector registers is not modified. The VMR is primarily 
used for conditional execution in programming loops  and 
for  sparse-matrix manipulations. 

The vector  status  register  (VSR) is 64 bits wide and 
contains several fields. For most instructions,  the  vector 
count  (VCT)  contains  the  number of elements  that  are  to 
be  processed.  The  vector  interruption index (VIX) holds 
the number of the  element  currently being processed  and is 
used for resuming execution  after  an  interruption.  The 
vector mask  mode bit controls  whether  the VMR will be 
used in executing a general-type  vector  instruction.  In 
addition there  are  two  other fields,  primarily  used by an 
operating  system,  for saving and  restoring selected  VRs 
when  swapping between  jobs  or  other  tasks. 

are 171 vector  instructions, including 
In addition to  the System/390 scalar  instructions,  there 

Loads  and stores-by stride,  indirect,  and  masked. 
(Stride  refers to  the spacing of the  elements of a vector 

IBM J .  RES. DEVELOP. VOL. 35 NO. 3 MAY 1991 



U channels 

t 

contml 

" I  
Central processor Instructions 

and addresses 

4 w 
Insrmction 
unit e 

Second CP 
and vector 

Vector Facility attached to the ES/9000 system. 

in storage. Stride 1 means that elements are adjacent, a 
stride 2 vector is one in which there is a gap of one 
element width between the actual elements, and so 
forth.) 
Arithmetic/logicaCincluding add,  subtract, multiply, 
divide, AND, OR, XOR, accumulate, compare, 
minimudmaximum. 

multiply and accumulate. 

mask mode, etc. 

element, etc. 

Compound instructions-multiply  and addhbtract, 

Control-type instructions-load vector count, set vector 

Miscellaneous instructions-save  changed  VR,  load 

Many vector instructions offer four variations: both 
operands from  VRs (VV); one operand from a VR and the 
other from a scalar register (QV); one operand from a VR 

and the other from storage (VST); and one operand from a 
scalar register and the other from storage (QST). The 
scalar register may be either a general register or a 
floating-point register in the CP. In addition, many  of the 
vector instructions operate on three types of data: binary 
integer, short floating-point (32 bits), or long  floating-point 
(64 bits). Note that a VST compound-type instruction 
allows four operations to occur simultaneously: It fetches a 
vector from storage, multiplies it by a vector from a VR, 
adds that result to another vector from a VR, and puts the 
result back into a VR. 

Vector facility  operation 
The vector facility hardware operates in conjunction with 
the central processor in executing vector instructions. In 
general, the CP initializes the instruction, the vector 
facility hardware takes over and runs it to completion, and 369 
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finally the CP performs any completion function necessary. 
Figure 2 shows a high-level  view of  how the vector facility 
is attached to the rest of the ES19000 system. Data go to 
and from the vector facility over a 64-bit bidirectional bus. 
Instructions come to the  vector facility over a 32-bit 
bidirectional bus which  is also used to send addresses to 
the CP for a few special instructions. In addition, there are 
numerous control lines to and from the vector facility 
which are not shown. One vector facility may  be attached 
to each CP in an ES/9000 system. 

This section discusses some of the principal hardware 
functional areas, including the vector registers, the 

370 arithmeticflogic unit, and the multiply/divide unit, and 

describes how vector instructions are executed. Figure 3 
shows a high-level  data-flow  diagram of the vector facility. 

Vector  registers 
The vector registers must  be capable of reading two 
elements and writing a third during every machine cycle 
(for VV instructions). Because the array chips used are not 
capable of both reading and writing in the same cycle, the 
VRs are four-way interleaved. Elements 0, 4, 8, 12, - * , 
252 of each VR are stored in the first interleave set, 
elements 1 ,  5, 9, 13, - , 253 are stored in the second 
interleave set, and so forth. However, a VV instruction 
requires that the same element number from two different 
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VRs arrive at the arithmetic units during the same cycle; 
this also requires reading from the same interleave set at 
the same time, which  is impossible. Therefore, the 
INTERLEAVE register (Figure 3) was added. This allows 
the read to be started for one vector operand one cycle 
before the other vector operand, and ensures that they 
both arrive at the arithmetic units in the same cycle. 

be written into the VRs  must not arrive when that 
interleave set is being  used for a read operation. This was 
solved by analyzing each instruction to determine whether 
an interleave conflict existed. The solution required adding 
some stages to the arithmetic pipelines (which  would  not 
otherwise have been necessary) to delay the operand about 
to be written until that interleave set was no  longer busy. 
This has a minimal impact on performance except on  very 
short vectors. 

An additional complication was that an element about to 

Vector register  recovery  scheme 
To improve machine availability, one new requirement on 
the ES/9000 Type 9121 Vector Facility was that it  must  be 
possible to recover from hardware failures in the vector 
register arrays. Previous schemes used simple parity or 
traditional error-correcting codes (ECC). Parity checking 
does not allow for correction of errors; although ECC does 
allow recovery after an error, it  is relatively difficult to 
implement  with the vector facility chip partitioning, 
requires a significant amount of logic,  and tends to impact 
the overall design of the vector facility. 

To avoid these shortcomings, another recovery method 
was invented. It relies on current array technology, which 
provides much denser array chips than are needed in the 
vector register application. This extra density is  used to 
provide a redundant copy of  all the data stored in the VRs, 
for the purpose of error recovery. The method is  used to 
recover from both transient and most types of permanent 
errors in the array chips. 

for the vector register arrays. This layout allows  reading 
from two different interleaves and writing to a third 
interleave in the same cycle. Note that when a write 
operation is performed on a particular interleave set, a 
corresponding write operation is performed  on the parity 
array interleave set.  The recovery scheme involves adding 
another chip to hold the backup data. Note that this chip 
does not  need to be interleaved like the primary arrays, 
since data  are written only to a single primary interleave 
set during a cycle. During  normal operation, data are never 
read from this backup array chip. Also, note that the 
backup chip holds four times as much data as the primary 
chips, since it must be able to contain all the data in the 
four different primary interleaves. This is possible because 
256Kb array chips are used and only 128 Kb are needed 
for the backup chip. 

Figure 4 shows a high-level  view of the chip partitioning 

I Elements: 1 1 Elements: 1 1 Elements: I 1 Elements: 1 0.4.8.12 ,... 1S.9.13 ,... 2,6,10,14 ,... 3,7,11,15 ,... 

n Backup data 

Elements: 
0,1,2,3,4 ,... 

High-level partitioning of vector  register  arrays. This diagram  has 
been simplified in  that  this  entire  layout of chips is actually  dupli- 
cated. One set holds the even-numbered VRs and  the  other set 
holds the odd-numbered VRs. 

In addition to the backup array for redundancy, as 
described above, another type of redundancy exists in the 
primary data and parity arrays. Since only a small fraction 
of the total array chip is actually used in the vector 
register application, a second address space within the 
same  physical chip is made available via a scan-only latch 
[4]. During  normal operation, only the first address space 
on the chips is used. However, after certain types of 
recovery are performed, the second address space may  be 
used. 

During  normal operation, every time data  are written 
into the primary arrays,  the identical data  are written into 
the corresponding location in the backup array chip. As 
data are read from the primary arrays, normal parity 
checking is done with the data stored in the parity array 
chips. Figure 5 shows a diagram  of  logic involved in the 
recovery scheme. If a parity error is detected by the logic, 
the following recovery algorithm is  used: 

The processor controller stops all processing being done 

The processor controller then reads out the failing 
by the system. 

element from the primary data  arrays (Dp), parity arrays 
(Pp), and the corresponding data element in the backup 
arrays (D,). These sets of data are then compared, with 
the following actions being taken: 

If PARITY(Dp) = P p ,  the problem was probably due to 
the error-checking logic itself. 
If  PARITY(D,) = P p ,  then Dp was bad, and the 
processor controller replaces D,with  D,. 
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If  D, = Dp, then P p  was bad, and the processor 
controller corrects  the  panty in the P, element. 
If (PARITY(D,) # Pp) AND  (PARITY@,) # PJ, the 
failure is unrecoverable, because nothing matches. 

If the processor controller determines that  the failure 
was one of the first three, the failing instruction is 
retried. If the retry is successful, operation continues 
normally. 
If the instruction retry is not successful after a certain 
number of attempts, the problem is probably a 
permanent array failure instead of a transient one. Since 
the primary data and parity arrays have two address 

372 spaces, with  only one being used normally, if there is a 

permanent failure the processor controller can switch to 
the second address space by changing the value  in the 
scan-only latch. The current job is aborted by the 
operating system and further processing continues 
normally. Note that no parity is kept on the  data stored 
in the backup array, since it can be shown that there is 
no additional benefit, from an error-detection or error- 
recovery point of view, to be derived from  including this 
extra hardware. The recovery algorithm checks to see 
that the backup data are consistent with the primary 
parity before replacement, which  is  in  itself  sufficient to 
ensure that these data  are correct to a reasonable 
statistical certainty. 
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Vector  arithmeticllogic unit 
The arithmetic/logic unit (ALU) is a pipelined  design  which 
executes addition and subtraction on  binary integers and 
on short and  long  floating-point data. It also performs the 
logical operations AND, OR, and  XOR.  In addition, the 
ALU  is  used during compare, minimum/maximum, 
accumulate, shift, and certain load-type operations, and 
during the load and store indirect instructions to calculate 
the storage addresses. It consists of four major functional 
areas: preshift, addedlogical, postnormalization, and 
exponent. 

The  ALU uses several types of error checkers. Most of 
the checkers are traditional parity, redundancy, or parity- 
prediction checkers. Modulo 15 residue checking is  used 
instead of the more traditional parity-prediction schemes 
for the main  adderAogica1 section because duplicated 
carry-generation logic to achieve full error detection would 
not  fit on one chip with the normal functional logic. This 
provides approximately 93.3% detection on  any type of 
error within the adderhogical section, including  multibit 
failures. 

Vector  multiplyldivide unit 
The vector multiplyldivide  unit performs both  single-  and 
double-precision floating-point  multiply  and divide 
operations and integer multiply operations and occupies 
approximately one third of the vector facility  TCM. It 
consists of a pipelined four-stage multiplier. For divide 
operations, parts of the multiply  logic are used in 
conjunction with additional logic to create an iterative 
divider which produces four results in 16 cycles for 
double-precision divide operations and four results in ten 
cycles for single-precision divide operations. Figure 6 
shows a high-level  diagram of this unit. 

Multiply 
For multiply operations, the unit is  configured  with four 
main parts: input registers, partial product generators, final 
product assimilation, and postnormalization. One  input 
operand is first latched in the multiplicand registers and the 
other is latched in the multiplier registers. There is also 
one additional staging register for each operand that solves 
the vector register interleave conflict problem. If the 
operation is an integer multiply, the data must  be  shifted 
right  eight  bits to align  with the place where the fraction 
would  go if it were a floating-point operation. Note in the 
diagram that the multiplicand is simultaneously latched in 
all four MCAND-2 latches, which  hold  different values for 
divide operations. Before the multiplier  is latched in the 
MPLER-2 registers, it  is recoded using the traditional 
Booth algorithm [51. 

The next stage of the multiplier consists of the four 
parallel partial product generators (each handling seven 
partial products), shown as partial product generators 
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A, B, C, and D in the diagram. Each of these multiplexes 
multiples (+ 1, - 1, +2, - 2 ,  and 0) of the multiplicand  and 
performs a 740-2 carry-save add, followed  by a chip-wide 
carry-propagate add. 

The next section in the multiplier is the assimilate logic, 
which combines the four partial products from the partial 
product chips and does a 112-bit-wide carry-lookahead add 
to obtain the final product. Note that the carries from the 
chip-wide addition are also added in here, along with a 
29th partial product from the most significant recode 
group. (Recoding a 56-bit  floating-point fraction yields 29 
recode groups. The leftmost group is added at the final 
stage.) 

postnormalization function. The logic has the capability of 
selecting  from either of two divide buses (within a single 
multiplyldivide unit, quotients are generated in  two 
different places) or the multiplier. Postnormalization (for 
multiplication) is done here along with an eight-bit left shift 
to  put integer data back  in its correct format. There is also 
another staging register, to solve the vector register 
interleave conflict problem. 

Divide 
For divide operations, the multiplier is configured as four 
subpipes, each operating semi-independently to produce a 
quotient. Both dividends and divisors enter the unit on the 
multiplicand bus, with the dividend preceding its divisor by 
one cycle and appropriate bit shifting being performed. At 
the same time, the first  few bits of the divisor address a 
table which  yields  an approximate reciprocal of the 
divisor. (The table values are  “stored” in combinational 
logic, logically 10 bits wide  by  1024 deep.) After the start- 
up period, four distinct divides occur simultaneously, and 
the four divisors are stored in the MCAND-2 registers 
throughout the operation. 

The following three equations show the calculations 
being  performed to produce the quotient: 

QDlGIT. = RECIP X RREM,-, , (1) 

QSUM, = QSUM,-, f QDIGlT , (2) 

REM, = REMi-, - (QDIGIT, X DVSR),  (3) 

where REMo = DVND,  QSUM, = 0, and RREM, is an 
approximation to the full REM,. The basic iteration 
consists of multiplying an approximate remainder (on the 
first iteration, the dividend  is the remainder) by the 
approximate reciprocal obtained from the table lookup to 
produce a net of eight quotient bits [Equation (I)]. This  is 
shown in Figure 6  as the QGEN block. This new quotient 
is then added to the previous partial quotient in the 
QSUMMER [Equation (2) ] .  While this addition is taking 
place, the incremental quotient is multiplied  by the divisor 
and subtracted from the previous remainder to produce a 

The  final section of the multiplier performs the 
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Diagram of multiply/divide  unit. 

new remainder [Equation (3)]. This process is repeated 
seven times. Since the remainder may  be negative after the 
final iteration, a "1" is subtracted from the least significant 
bit of the quotient to yield a truncated 56-bit result. The 
quotient then undergoes postnormalization in the 
QSUMMER and is passed to the multiplier 
postnormalization logic to be  placed on the output bus. 

It should be noted that there are two different quotient 
374 generators and two different QSUMMERs. One  pair 

operates on the data in partial product rows A and B and 
the other pair on partial product rows C and D. Each 
iteration  is  two  cycles  long  and  is  staggered  between  partial 
product  rows so that there are no  conflicts. Therefore, at any 
given  time four divide operations are executing. 

Error checking 
To ensure that correct results are being obtained from the 
unit, modulo I5 residue checking is performed. For 
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multiplication, the traditional residue-checking equation is 
used: 

Res (PROD) = Res [Res (MCAND) X Res (MPLER)]. (4) 
? 

Note that this requires the residue to be taken on the 
entire 112-bit result. Also, integers that are negative  must 
be accounted for by  modifying their residues before the 
equation is checked. For division, the equation that is 
checked is 

Res (DVND) = Res {[Res (QVOT) X Res (DVSR)] 
? 

t Res (REM)}.  

Again, because the final remainder may  be negative, its 
residue must be modified before the equation is checked. 

checked by this single residue checker, there are several 
additional checkers. These are mainly redundancy 
checkers on the control logic and parity checkers on the 
input operands. 

Although the vast majority of the multiply/divide  logic  is 

Vector  facility  controls  and instruction  execution 
The vector facility monitors all instructions as they are 
executed by the CP. When a vector instruction is decoded, 
the vector facility begins setting up to perform the 
instruction. Simultaneously, the CP sends the vector any 
scalar register data it needs. The VSR is kept in the CP 
and  is also sent to the vector (if required). For VST  and 
QST instructions, the CP initializes address generation 
logic  within the cache to provide storage data 
automatically to the vector facility as quickly as possible. 

At this point the vector hardware essentially runs the 
instruction to completion. When  it  is finished, it notifies 
the CP if it has any VSR or scalar register data to return; 
such data  are then stored in the appropriate location within 
the CP. Finally, the instruction-processing logic  within the 
CP is  notified to begin executing the next instruction. 

One of the more complex instructions is the STORE 
INDIRECT instruction. This requires the vector facility to 
generate storage addresses by adding a 32-bit integer 
vector in a VR to a base and displacement value from the 
CP in order to store another vector. Since this instruction 
can easily access a different  page  in storage for each 
element, some hardware was added to improve 
performance. A small table is  kept  which contains the 
logical address of the last three consecutive pages that 
have been accessed. When a page that is not in the table is 
about to be accessed, the vector facility requests the CP to 
test  the page for an access exception. If none is found, the 
table is updated with the new address and processing 
continues. With this mechanism, the performance of the 
instruction is significantly improved, because it  is  no longer 
necessary to pretest each new  page that is encountered. 

Interface  with  the cache 
The ES/9000 Type 9121 Vector Facility is different from 
most vector processors in that storage data are accessed 
through the cache instead of directly from main  memory. 
(Storage data physically pass through the CP instead of 
directly from the cache, but this is really due to packaging 
issues and does not affect the way  in  which data  are 
logically accessed.) This scheme was selected because it 
allows reasonable performance for vectors with nonunit 
strides without incurring the added cost of a highly 
interleaved main memory. Of course, it also eliminates the 
problem of keeping cache data synchronized with  main 
memory data, which  would be a problem if the vector 
accessed main  memory directly. 

cache, the data  are returned immediately and the 
performance is excellent. However, when the vector 
storage request misses in the  cache, the vector accesses 
storage data in three different modes, depending on the 
type of instruction and the stride, in an attempt to maintain 
the best performance possible. The first  is  cache-fill mode, 
which lets the cache automatically generate addresses and 
prefetch lines of data from main  memory if they are not 
already in the cache. This permits the pipelining of 
multiple cache lines from main storage. It is used for 
almost all stride 1 and 2 instructions. The second method 
is cache-bypass mode, which  is used in conjunction with 
cache-fill  mode during stride 1 double-precision and stride 
2 single-precision instructions. On cache misses, as  data 
come  from  main memory, they are simultaneously stored 
in the cache and also routed directly to the vector facility. 
This is feasible, since for these strides and precisions the 
vector facility can accept data  at the same rate that main 
memory can send data. This eliminates the need to both 
write and read the cache arrays, which  would decrease 
performance. The final  method is the normal access mode 
used for most scalar instructions, which is used for vector 
accesses in  all other cases. Here the CP generates an 
address and the data  are sent to the vector facility one 
cycle after being received into the cache from main 
memory. Note that the entire line  must be transferred into 
the cache, even if only one element is contained within 
that line. This can result in degraded performance for large 
strides if the data  are not used in some following 
instruction. Since it is not known at  the  start of an 
instruction whether the vector data  are in the  cache, the 
CP makes the decision on the mode at the beginning of the 
instruction, and the same mode is used throughout the 
execution of the instruction. 

Generally, when the vector storage request hits in the 

Vector  performance  evaluation 
The preceding section described the design considerations 
and decisions for the ES/9000 Type 9121 Vector Facility. 
As the design progressed, each design choice was 
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monitored and evaluated for its potential impact on 
performance. This  monitoring activity was  based  on 
modeling and analytic techniques and ensured that final 
results would  be consistent with the objectives. Final 
evaluation relied  on actual measurements. Since the design 
was an extension of the 3090 Vector Facility design, the 
performance evaluation scheme is  similar to the one used 
to evaluate the 3090 vector facilities. 

Vector facility performance was evaluated by  using 
numerically intensive computing (NIC) application 
programs. NIC applications are characterized as follows: 

They make extensive use of floating-point computations, 
with  large amounts of arithmetic data being operated on 
in loops for long periods of time. Generally, the floating- 
point content is greater than 50% of the instruction count 
and total job CPU time. 
They use FORTRAN as the primary  language. 
They run at high CPU utilization rates, typically 

They can have significant I/O requirements. 
exceeding 90%. 

NIC application programs were chosen as the 
framework for evaluation for several reasons. First, they 
allow the direct evaluation of the product design objectives 
on the basis of an extensive investigation of NIC 
application characteristics and the role of vector speed 
within this application performance context. Second, they 
provide the user with a more realistic view of potential 
performance improvements when  migrating  from scalar- 
only systems. The computationally intense nature of these 
NIC programs results from iterative mathematical 
computations on sets of data typically found in loops 
coded as FORTRAN DO statements. However, loop 
performance comparisons and kernel measurements are 
only part of the overall picture. By using application 
programs, the entire problem solution, complete with the 
I/O, data manipulation, and all the other noncomputational 
processing, can be evaluated, rather than just the more 
easily vectorized DO statements. Loop or kernel 
measurements should not be used to characterize the 
overall system performance achieved through the use of 
complete applications. Finally, by using a  set of 
applications covering a variety of disciplines, users can get 
a reasonable estimate of the performance improvement 
they may realize from the Vector Facility system. Since 
actual performance varies by application program, a user 
can determine the performance for an application by 
selecting the stated performance for a specific job or set of 
jobs that closely matches the characteristics of the 
application of interest. As mentioned, one reason for 
differing gains in performance is the variation in 
vectorizable content. Because the ES/9000 Type 9121 

376 Vector Facility accesses storage data through the cache, 
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another factor affecting performance is the cache behavior 
of the application. A variety of factors in a customer 
application, such as stride and vector length [6], may 
influence cache performance. Therefore, if a set of 
application programs representative of a variety of 
relatively  long production NIC runs is collected and the 
members are measured separately, users will  be able to 
relate the results directly to their own NIC requirements. 

With application performance established as the 
framework for the Vector Facility evaluation, a large set of 
application programs was collected and analyzed for 
suitability as benchmark applications. These programs 
came from a variety of sources, including 

Publicly available codes/applications. 
Programs used by customers as benchmarks. 
Customer production or research applications obtained 
under special agreements. 
Licensed application software packages, together with 
specific  problem data or vendor-supplied benchmark 
data. 

A subset of these applications, representing the types of 
production workloads expected to be run on the Vector 
Facility, was chosen, and became the Scientific/ 
Engineering  Application Program (SEAP) benchmark set. 
The job set was constructed to represent the 
engineering/scientific production environment, which 
consists of long-running applications as well as some of 
short duration. All contain a significant  volume of floating- 
point computation. Groups of one to three  jobs represent a 
specific discipline (again, each job within a group is 
measured separately). As the number of jobs included in 
the SEAP job set increased, they were partitioned into two 
groups. A second group labeled “special interest codes” 
was created which contained jobs that were based on 
segments of large applications or possessed an unusually 
high vector content. The SEAP job set has been used for 
the evaluation of  all the IBM vector facility offerings, 
including the ES/9000 Type 9121 Vector Facility. Table 1 
contains the names of the applications within the SEAP 
job set, and the NIC discipline represented by each. 

The SEAP set is not static; it varies as new application 
areas and advanced techniques are  created. The advances 
are reviewed  and studied for potential addition to the 
SEAP set. At the present time, two chemistry codes are 
being considered for inclusion  in the job set. Several SEAP 
jobs are currently being reviewed for representativeness, 
and, if necessary, will  be replaced with newer versions. 
Some of the application codes are continually being 
reviewed against the need to update the product level. 
Applications from disciplines not currently represented by 
the SEAP set  are being considered for inclusion in the job 
set. 
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SEAP job descriptions 
The following are  descriptions containing the solution 
techniques  and  the mathematical  algorithms  used for  each 
SEAP  job [3]. 

Static structural analysis This is a finite element  job 
designed to  form  and  solve a large stiffness matrix of a 
static  analysis problem with little IlO overhead  and high 
processor utilization. The program spends much of its 
computational time  in solving large sparse  systems of 
simultaneous linear equations.  Techniques  for solving  such 
systems  are usually  based on  Gaussian elimination, for 
example L-U decomposition  and  frontal  methods.  Storage 
methods  such  as  submatrix,  compressed  column,  and 
skyline are used extensively. 

Buckling analysis This finite element  job performs  a type 
of nonlinear analysis of  a structure in which the stiffness 
matrix is used to  calculate a  deflection. Another stiffness 
matrix  is formed,  and  the  process is repeated until the 
buckling failure of the  structure is determined. 

Thin-layerfiuid  dynamics This  job is a three- 
dimensional,  thin-layer  Navier-Stokes  problem  simulating 
the  time-dependent  behavior of steady or unsteady inviscid 
and  viscous  compressible flows around simple  body 
configurations. 

Crystal growth f iuidjow This fluid  flow application 
simulates  the fluid flow in Czochralski  crystal  growth, in 
which a large-diameter  cycle is produced by slowly 
extracting it from a crucible of melt. 

Turbine blade analysis This application uses a finite 
difference  algorithm to  solve  the three-dimensional  air flow 
between  the  blades of a  rotating turbine  stage. 

Seismic  analysis This application recovers information 
about underground  terrain from seismic time-trace  data. 
The  programs 

Apply  one-dimensional  moving average filters in either 

Apply two-dimensional  filters  in the  frequency-wave 

Perform normal  move-out (NMO) correction  and 

the  time or frequency  domain. 

number  domain (2D FFT). 

stacking (summing) of traces  from  common midpoint 
data,  and long correlation in the  frequency domain 
(FFT). 
Solve a seismic modeling problem based  on a finite 
element model. 

Black-oil-reservoir simulation This  job is a three-phase 
black-oil-reservoir modeling program (BOAST, from the 

Table 1 SEAP job set. 

SEAP applications Discipline 

Static structural analysis 
Buckling analysis 
Turbine blade analysis 
Thin-layer fluid dynamics 
Flow field analysis 
Large-eddy simulation 
Crystal growth fluid flow 
Biomolecular dynamics 
Time series 
Seismic analysis 
Black-oil-reservoir simulation 

Special interest codes 
Dense-matrix inversion 

Dense-matrix inversion 

Sparse-matrix decomposition 
Quantum chromodynamics 

(long) 

(short) 

Finite element design 
Finite element design 
3D air flow 
3D compressible flow 
Fluid dynamics 
Fluid dynamics 
Fluid flow simulation 
Computational chemistry 
Financial analysis 
2D seismic analysis 
Reservoir modeling 

Linear algebra 

Linear algebra 

Linear algebra 
Quantum physics 

U.S. Department of Energy) which is used  to simulate 
both  the primary  depletion and  the  secondary  recovery 
operations in a two- or three-dimensional black-oil 
reservoir.  The solution uses  the Implicit Pressure, Explicit 
Saturation  (IMPES) method to solve for  the fluid flow in a 
reservoir. The  pressure  and  saturation  equations  for  the 
oillgaslwater systems  are  approximated using a finite 
difference method.  The resulting system of linear  equations 
is  solved  using an  iterative  Line  Successive  Over- 
Relaxation (LSOR) technique. 

Dense-matrix inversion This  job is a segment of a 
customer application benchmark  that  computes  the 
inversion of a dense  matrix.  The  SEAP  set  contains  both a 
long- and  short- (double- and single-) precision  version  of 
this benchmark. 

Biomolecular dynamics This  application  program 
performs  simulations of the molecular dynamics of water 
and  counter  ions  around nucleic acids.  The Newton-Euler 
equations of motion are solved by using 516-order 
predictor-corrector  methods  to  evaluate  the  molecular 
positions and  molecular velocities needed  to  understand 
the hydration behavior. 

Time series In  this  job,  econometric  analysis is 
performed by the Wisconsin  Multiple Time  Series  Package, 
using the  auto-regressive,  integrated moving average 
(ARIMA) process  to  determine  the  parameters of an 
econometric  model,  estimate  the sensitivity of the  model, 
and  forecast  econometric  parameters. 

Flow field  analysis This  job  uses a finite volume  method 
to  analyze  the three-dimensional  inviscid transonic flow 



Table 2 SEAP job characteristics. 

SEAP application MFLOP Scalar Scalar EXCP Total Percent 
FP  FP count virtual vector 

(%I 

count 
instructions operations storage 

(MB) 

Static  structural  analysis 13672  75  37  26505 14.8 
6262 

83 
Buckling  analysis 64 32 42632 14.8 74 

7887 Turbine  blade  analysis* 76 34  116 32.8 93 
9289 Thin-layer  fluid dynamics* 86 42 120 12.0 91 

22989 Flow  field  analysis 83  41 209 27.8 92 
4077 Large-eddy  simulation* 92 36  107 5.5 
790 

95 
Crystal  growth fluid flow 69 40 564 1.4 84 

1857 Biomolecular  dynamics 60 31 1784 2.6 
418 

68 
Time series  analysis 47  26 1059 9.1 

1488 
69 

Seismic  analysis* 64 33 6234 1.6 93 
4559 Black-oil-reservoir  sirnulation 45  21  223 5.5 83 

Special interest codes 
Dense-matrix  inversion 2012  83  33  20 8.1 98 

2012 Dense-matrix  inversion* 83 33 20 4.1 98 
1360 Sparse-matrix  decomposition 72  47  20 13.5 
1783 

88 
Quantum  chromodynamics 72  38  58 6.1 99 

*Indicates short precision 

about an arbitrary wing/fuselageltail/fin  configuration by 
solving the unsteady Euler equations. Adaptive dissipation 
is used to capture the shock waves. A multigrid  algorithm 
accelerates convergence to a steady state. 

Large-eddy simulation This application simulates 
homogeneous fluid  flow  in large eddies. Taylor’s rapid 
distortion theory is used to model the homogeneous 
turbulence. Navier-Stokes equations, including viscous 
terms, are solved by means of a fourth-order Runge-Kutta 
algorithm. The coefficients of a truncated 3D Fourier series 
represent the turbulence field. 

Quantum  chromodynamics This is a university code 
from quantum physics research which performs a quantum 
chromodynamics simulation of interactions between 
elementary particles. Interactions between quarks and 
gluons are simulated by updating the gluon field and 
permitting properties of the quark and gluon  fields to be 
measured. An algorithm based on stochastic quantization 
via the Langevin equation is used to update the gluon  field. 

Sparse-matrix  decomposition This job is a segment of a 
customer application benchmark that computes the 
Cholesky decomposition of a sparse matrix. 

Table 2 presents some of the SEAP job characteristics. 
MFLOP count is the total number of floating-point 
operations in the program, in  millions  (excluding  floating- 
point load  and store instructions). Scalar FP instructions is 
the percentage of the total instructions in the scalar job 
which are floating-point instructions, including loads and 
stores. Scalar FP operations is the same, but includes only 

computational floating-point instructions (no loads or 
stores). EXCP count is a measure of the I/O operations 
(reads and writes) for each program. Total virtual storage 
is an indication of the number of megabytes (MB) of 
storage used by each job. Percent  vector is the percentage 
of the scalar application CPU busy time that was 
vectorized [3]. 

The values given in Table 2 were determined when the 
jobs were  initially executed in scalar mode. Modifying the 
applications to use the Vector Facility can cause these 
values to change; so can changes in the compiler. These 
values should be used as approximations of the floating- 
point content of the jobs. See [31 for specific details. It 
should be noted that slightly over half the applications in 
the SEAP job set are above the mid-range of 
vectorizability. In selecting applications for SEAP, several 
criteria are employed. The major priority is to find 
applications which represent the type of work a 
prospective IBM Vector Facility system user would run. It 
does not necessarily follow that this NIC application will 
also fall into the mid-range. Additionally, some of the 
SEAP  jobs have been a part of the job set for over five 
years; it should be noted that there  are several factors 
which tend to push the vectorization extent upward, such 
as VS FORTRAN compiler enhancements, improved 
algorithm techniques, and additional EngineeringlScientific 
Subroutine Library (ESSL) [7] function and enhancements. 
As a result, although the design objectives have remained 
the same, the SEAP characteristics have changed. It 
should  be noted that the Vector Facility performance is 
good  well into the high vectorizability range, especially if 
the application can make  efficient  usage of the cache 
storage hierarchy through the techniques listed previously. 
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Table 3 CPU busy seconds. 

SEAP  applications ES/438/ ESl9000 ESl9OOO ESl3090 ESN090 ESl9000 ESl9000 
Model 91E Model 320 Model 320 Model 1803 Model 1803 Model 480 Model 480 

scalar scular vector scalur vector scalar vector 

Static  structural  analysis 10853  I702 754  I340 646 1714  827 
Buckling  analysis 5356 869 429 703 375 
Turbine  blade  analysis 8176 1420 463 960 415 
Thin-layer fluid dynamics 7504 1218 478  928 423 1231  507 
Flow  field  analysis 17456 2674 I054  2148 936 
Large-eddy  simulation 3571 554 158  455 I29 
Crystal  growth fluid flow 535  91 39  71 35  91 39 
Biomolecular  dynamics 1752  289 I42  253 I27 
Time series  analysis 374 60 25 54 24.6 
Seismic  analysis I276  214 52 164 45 
Black-oil-reservoir  simulation 5578 953 348  873 325  953  352 

SEAP  special  interest codes 
Dense-matrix  inversion (long) 1874  255  80  68 256 94 
Dense-matrix  inversion 2082 253  67 61 254 68 
Sparse-matrix  decomposition 1006  I40 49 46 
Quantum chromodynamics 1326  224 39 37 

The  SEAP job set has proved to be a valuable  metric for 
engineeringkientific applications; it has been  used to 
evaluate vector facility performance for the ES/3090  family 
and the recently announced ES19000 processors. SEAP is 
measured and reported in both scalar and vector mode, for 
single jobs on one processor and multiple copies on  multi- 
processor configurations. The internal throughput rate 
ratios have been especially useful for evaluating various 
migration path options. SEAP has provided the system 
performance data required and set the expectation levels 
necessary for customer performance evaluations. 

Measurement  methodology  and  results 
The SEAP job set was  run  on  all  IBM  ES/9000 Type 9121 
machines. The SEAP job run times for Models 320 and 480 
(Table 3) demonstrate the hardware performance 
improvement available to IBM  ES/4381TM users through the 
extension of the 3090 vector design to the air-cooled 
environment. Performance numbers for the ES/3090  Model 
180J with Vector Facility are also provided, so that the 
performance of the new machine can be compared to that 
of an existing 3090 machine. Software levels were 
maintained for all measurements and are listed as follows: 

MVS/ESATM Version 3, Release 1.3. 
VS FORTRAN Version 2, Release 4. 
ESSL Version 1, Release 4.0. 
MSC/NASTRAN@ Version  64D. 

Methodology 
The measurements were done in two different  modes: 

1. Single  initiator This  mode  is  used for uniprocessor 
comparisons. Each job was run  on a 9121  Model  320 
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processor with  only one active initiator. Both scalar and 
vector SEAP programs were measured, and CPU busy 
time recorded (SRB + TCB). 

capacity of the 9121 Model 480. Two copies of a subset 
of the SEAP jobs were run. Both scalar and vector 
versions of the subset were run. To ensure 
simultaneous processing at high utilizations by each 
central processor, four copies of the job for each CPU 
were submitted, and the queue held. The number of 
active initiators was 2 for the 480.  All jobs were 
released  from the queue at the same time, and the 
average CPU  time for the jobs executed during the 
measurement period  was used for the internal 
throughput rate comparisons. A few jobs required 
additional steps to attain the highest possible central 
processor utilizations during the measurement interval. 
Additional details are available in [3]. 

2. Multiple initiator This mode  is used to show the 

The SEAP job set was  compiled  using the highest level of 
optimization [OPT = 3 for scalar and VECTOR(LEVEL (2)) 
for vector  measurements]  and the VECTOR(S1ZE = (ANY)) 
option. This  last  option  is  recommended for producing 
applications  independent of the model-dependent vector 
parameters. 

Jobs were run in an unconstrained environment (e.g., 
sufficient  DASD  and 110 paths, paging data  sets, and real 
storage) to minimize performance bottlenecks. 

Results 
Table 3 contains the measurement results. The CPU  busy 
times for both vector and scalar processors are shown. 
Performance data  are shown only for the multi-initiator 
subset on the Model 480. The data show a substantial 
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Table 4 Internal throughput rate ratios. 

SEAP  applications ESl9000 
Model 320 
scalar to 
ESl4381 

Model 91E 

Static structural analysis 6.4 
Buckling analysis 6.2 
Turbine blade analysis 5.8 
Thin-layer fluid dynamics 6.2 
Flow field analysis 6.5 
Large-eddy simulation 6.4 
Crystal growth fluid flow 5.9 
Biomolecular dynamics 6.1 
Time series analysis 6.2 
Seismic analysis 6.0 
Black-oil-reservoir simulation 5.7 

SEAP  special  interest  codes 
Dense-matrix inversion (long) 7.3 
Dense-matrix inversion 8.2 
Sparse-matrix decomposition 7.2 
Quantum chromodynamics 5.9 

ESl9000 ESl9000 
Model 320 Model 320 
vector to 
ESl4381 

vectorlscalar 
ratio 

Model 91 E 

14.4 
12.5 
17.7 
15.7 
16.6 
22.6 
13.7 

15 
12.3 

24.5 
16 

23.4 
31.1 
20.50 
34 

~~ 

2.3 
2.0 
3.1 
2.5 
2.5 
3.5 
2.3 
2.0 
2.4 
4.1 
2.7 

3.2 
3.8 
2.9 
5.7 

~ ~ ~~ ~~~ 

ESl9000 ESl9000 
Model  480 Model  480 
scalar to vector  to 
ESl4381 ESl4381 

Model  91E Model 91E 

12.7 26.2 

12.2  29.6 

11.8 27.4 

11.7 31.7 

14.6  39.9 
16.4 61 
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improvement in performance  for ES/9000 processors 
compared  to  the  IBM ES/4381 Model 91E  processor. 
Although the  CPU  busy  times  shown  for Models 320 and 
480 are essentially the  same,  the 480 was completing 
approximately  twice as many jobs  because it has  two 
processors.  This  increase in throughput is reflected in the 
internal throughput  rate  ratios in Table 4. The  data  also 
indicate that  although  absolute  vector  performance  for  the 
Model 320 is a little less  than  that  for  the ES/3090 Model 
1805, vector-to-scalar  improvements  comparable  to  the 
performance of the 3090 Model 18OJ were achieved. 

CPU  busy  times  shown  for  the ES/9000 processors 
compared  to  the ES14381 Model 91E  processor:  reduction 
of machine cycle time from 52 to 15 ns and  the  presence of 
pipelining in the ES/9000 processors. Pipelining increases 
performance by allowing overlap of instruction execution 
phases.  Other  factors include a larger  cache and  a separate 
110 processor on the ES/9000 processors.  Instruction 
implementation  differences between  the  two machines 
account  for  some positive and negative  influences on  the 
total amount of performance  improvement.  In comparing 
the  performance of the ES19000 machines  to  that of the 
Model 1805, it  should be noted  that  the 18OJ has a 14.5-11s 
cycle time, a larger  cache,  and  some instruction execution 
time  differences  which account  for  the  increased 
performance.  The  performance  improvement  also  depends 
on  the  characteristics of each  SEAP job, and no single 
performance  number  can  be used to reflect performance 
across  the  represented range of jobs.  Table 4 contains  the 
performance  ratios of the  two ES/9000 processors 

There  are  two  key  reasons  for  the  improvement in scalar 

compared  to  the ES/4381 Model 91E,  demonstrating  the 
range of performance  improvement  that is attributed  to  the 
stated differences between  the  machines. Similar 
comparisons  can  be  made  to  the ES/3090 Model 1805 with 
the  data provided in Table 3. The  vector-to-scalar  ratios 
indicate that  the  previously mentioned design  objectives 
were achieved. 

Summary 
The ES/9000 Type 9121 Vector Facility system  was 
designed to provide a balanced system implementation 
offering integrated  scalar,  vector,  and parallel processing 
opportunities.  The design  is based  on  the  architecture 
established  in the 3090 family of vector facilities.  A new 
chip  and module  packaging technology  has allowed 
implementation in a single air-cooled TCM package. 
Reliability has  been  further  enhanced,  and a new  vector 
register error  recovery  technique  implemented. 

Performance  measurements  were  necessary  to  validate 
the  vector  performance of the  new air-cooled processor 
design. Since  the  vector  architecture is  designed to provide 
excellent performance  on numerically intensive computing 
(NIC) application programs,  rather  than specific loops or 
kernels, the  SEAP  job  set is used  for  performance 
evaluation. This  job  set  was a by-product of the 3090 
Vector Facility  design process  and  currently  contains 15 
application jobs.  The  SEAP  job  set  was  developed in 
support of the  observation  that  performance in the  NIC 
environment is application-dependent.  SEAP  has  been 
used  successfully to  set  the  expectation  levels  for specific 
customer  NIC  environments. 
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The measurement results  indicate a successful transfer 
of the 3090 Vector Facility function  and performance to 
the ES/9000 Type 9121 environment. 
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