Design and
performance
of the IBM
Enterprise
System/9000
Type 9121
Vector Facility

by T. J. Slegel
R. J. Veracca

The design of the IBM Enterprise
System/9000™ Type 9121 Vector Facility is
described and its performance is evaluated in
this paper. The Vector Facility design adheres
to the architecture developed for the 3090™
vector facilities. The original design objectives
and associated architecture are reviewed.
Vector operations and design details are
discussed, and specific performance results
are shown.

Introduction

The IBM Enterprise System/9000™ (ES/9000™) Type 9121
Vector Facility implements the IBM ESA/390™ Vector
Architecture [1] on a single air-cooled thermal conduction
module (TCM). This vector facility is used in each of the
ES/9000 models. In the uniprocessor models (190, 210,
260, 320), the vector facility is physically mounted in the
main frame with the rest of the central processor (CP) and
memory system, whereas on the dyadic models (440, 480)
it is mounted in an expansion frame attached to the side of
the main frame.

Although the design is based on that of the IBM
ES/3090™' Model J Vector Facility, most areas were
significantly redesigned to meet the challenges imposed by
new technologies. The design goals for the vector facility
were established during the development phase of the first
IBM 3090™ vector facility [2], announced as a product in
October 1985, and the framework for the evaluation of

. these product objectives was defined early in the design

stage. These original objectives have been the criteria used
for the development of the follow-on IBM vector facilities.
Each generation of vector facility has brought with it some
additional form of performance enhancement [3].

Because these original objectives are, for the most part,
still applicable to the ES/9000 Type 9121 Vector Facility,
the design objectives for the vector facility are reviewed in
the first part of the paper, followed by a brief review of the
vector architecture. Next, some essential aspects of the
vector facility design are discussed, and an overview is
presented of how a typical vector instruction operates
along with the vector interface with the cache. Then, the
method used to evaluate the vector facility performance is

1 The 3090 Models E, 8, J, and JH processor families are designated as ES/3090
models.

“Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and 1BM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM J. RES. DEVELOP, VOL. 35 NO. 3 MAY 1991

T. I. SLEGEL AND R. J. VERACCA

367

368

Scalar mode | 2h | 3h i=5h
Scalar portion Vectorizable portion
Vector mode | 2h | 45 min —>|= 2 h 45 min

Scalar portion Vectorized portion

The vectorized portion of the job represents a four times increase over the
same portion of the job run scalar. The resultant vector/scalar speedup

ratio is 1.8.

1 Application execution times.

described, including some details about the performance
measurement techniques. Finally, the results of these
performance measurements are discussed.

Review of the vector design objectives

The IBM ES/9000 Type 9121 Vector Facility is an optional
performance-enhancement feature available for each of the
ES/9000 Type 9121 processors. This feature offers the
ability to process vector instructions defined by the IBM
ESA/390 Vector Architecture. This is accomplished by
adding vector registers, vector arithmetic hardware
computational elements, and other hardware to the
processor. The objective of the vector facility was not to
provide the fastest possible vector hardware, but rather to
provide an integrated, balanced system solution. The basic
goal was to complement a fast scalar processor. Many of
the numerically intensive computing (NIC) application
programs for which a vector processor is utilized may have
considerable scalar content. Even highly vectorizable
programs sometimes have portions of code which run more
efficiently in scalar mode. The goal was to complement the
fast scalar performance of the central processor with a
level of vector performance three to five times faster for
applications in the 50~80% level of vectorization, the mid-
range of application vectorizability. This vector/scalar loop
speedup ratio” of 3 to 5 provides internal throughput rate
(ITR)’ improvements in the range of one-and-a-half to
almost three times the scalar performance for typical
vectorizable applications. For example, assume that a
processor has a vector performance capability four times
greater than its scalar performance capability. Given a job
that is 60% vectorizable and uses five hours of CPU time
in scalar mode, the comparison shown in Figure 1 can be
made.

2 CPU time improvement for the vectorizable portion of the job.
3 ITR is defined as the number of jobs completed per central processor busy
second.

T. J. SLEGEL AND R. J. VERACCA

Besides complementing the scalar performance, another
design objective was to reach this level of vector
performance without limiting dyadic processing
capabilities. Dyadic processors can provide increased
computing capacity to meet the demand of a muitiple-job
workload by using the VS FORTRAN Multitasking
Facility (MTF), or they can improve turnaround time for a
single job through parallel processing via the Parallel
FORTRAN (PF) product.

Review of the IBM ESA/390 Vector Architecture
The IBM ESA/390 Vector Architecture is a common
architecture across all models in the System/390™ family
that support a vector facility. Its main features include

® 16 vector registers.

e Vector mask register.

e Vector status register.
* Vector activity counter.
¢ 171 instructions,

The Vector Architecture provides 16 vector registers (VRs)
with 256 elements of 32 bits each. (The architecture allows
the number of elements to vary on different models, but
the ES/9000 Type 9121 Vector Facility uses 256 elements
per VR.) An even/odd pair of VRs may be combined to
form a logical vector register which is 64 bits wide. If all
VRs are used in this manner, only eight logical VRs are
available, but their usage may be mixed so that some
registers contain double-word data while others contain
word-size data.

The vector mask register (VMR) is 236 bits in length,
with each bit corresponding to an element in a VR. If the
VMR is used during a vector-add instruction, for example,
and a bit in the VMR is zero, the corresponding element in
the vector registers is not modified. The VMR is primarily
used for conditional execution in programming loops and
for sparse-matrix manipulations.

The vector status register (VSR) is 64 bits wide and
contains several fields. For most instructions, the vector
count (VCT) contains the number of elements that are to
be processed. The vector interruption index (VIX) holds
the number of the element currently being processed and is
used for resuming execution after an interruption. The
vector mask mode bit controls whether the VMR will be
used in executing a general-type vector instruction. In
addition there are two other fields, primarily used by an
operating system, for saving and restoring selected VRs
when swapping between jobs or other tasks.

In addition to the System/390 scalar instructions, there
are 171 vector instructions, including

¢ Loads and stores—by stride, indirect, and masked.
(Stride refers to the spacing of the elements of a vector

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

Vo
channels
3
Li
Channel
control
unit
Central SSOr Instructions
] proce and addresses
! } - —p
Instruction
unit —p
i System Misc. Vector
x:::ory - oor.lttrol Cache controls Facility
uni
Execution ‘ o
unit - Ragl
A Data
1 Second CP
and vector

" Figu

Vector Facility attached to the ES/9000 system.

in storage. Stride 1 means that elements are adjacent, a
stride 2 vector is one in which there is a gap of one
element width between the actual elements, and so
forth.)

Arithmetic/logical—including add, subtract, multiply,
divide, AND, OR, XOR, accumulate, compare,
minimum/maximum.

Compound instructions—multiply and add/subtract,
multiply and accumulate.

Control-type instructions—load vector count, set vector
mask mode, etc.

Miscellaneous instructions—save changed VR, load
element, etc.

Many vector instructions offer four variations: both
operands from VRs (VV); one operand from a VR and the
other from a scalar register (QV); one operand from a VR

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

and the other from storage (VST); and one operand from a
scalar register and the other from storage (QST). The
scalar register may be either a general register or a
floating-point register in the CP. In addition, many of the
vector instructions operate on three types of data: binary
integer, short floating-point (32 bits), or long floating-point
(64 bits). Note that a VST compound-type instruction

allows four operations to occur simultaneously: It fetches a

vector from storage, multiplies it by a vector from a VR,
adds that result to another vector from a VR, and puts the
result back into a VR.

Vector facility operation

The vector facility hardware operates in conjunction with
the central processor in executing vector instructions. In
general, the CP initializes the instruction, the vector
facility hardware takes over and runs it to completion, and

T. J. SLEGEL AND R. J. VERACCA

369

370

PR CP data
Data interface
bidirectional
bus
A
I Putaway l
- VSR logic
A Vector
registers
(256 X 16 X 32)
i VMR logic
Y Y
| VR A | VRB I -

Interleave l Compound I
Data switch
[} [}
ALU MPY/DVD
P I— e)] To vector

Control interface controls

bidirectional

bus

. Figure 3

Vector data flow.

finally the CP performs any completion function necessary.
Figure 2 shows a high-level view of how the vector facility
is attached to the rest of the ES/9000 system. Data go to
and from the vector facility over a 64-bit bidirectional bus.
Instructions come to the vector facility over a 32-bit
bidirectional bus which is also used to send addresses to
the CP for a few special instructions. In addition, there are
numerous control lines to and from the vector facility
which are not shown. One vector facility may be attached
to each CP in an ES/9000 system.

This section discusses some of the principal hardware
functional areas, including the vector registers, the
arithmetic/logic unit, and the multiply/divide unit, and

T. J. SLEGEL AND R. J. VERACCA

describes how vector instructions are executed. Figure 3
shows a high-level data-flow diagram of the vector facility.

® Vector registers

The vector registers must be capable of reading two
elements and writing a third during every machine cycle
(for VV instructions). Because the array chips used are not
capable of both reading and writing in the same cycle, the
VRs are four-way interleaved. Elements 0, 4, 8, 12, - - -,
252 of each VR are stored in the first interleave set,
elements 1, 5, 9, 13, - -+, 253 are stored in the second
interleave set, and so forth. However, a VV instruction
requires that the same element number from two different

1BM J. RES. DEVELQP. VOL. 35 NO. 3 MAY 1991

VRs arrive at the arithmetic units during the same cycle;
this also requires reading from the same interleave set at
the same time, which is impossible. Therefore, the
INTERLEAVE register (Figure 3) was added. This allows
the read to be started for one vector operand one cycle
before the other vector operand, and ensures that they
both arrive at the arithmetic units in the same cycle.

An additional complication was that an element about to
be written into the VRs must not arrive when that
interleave set is being used for a read operation. This was
solved by analyzing each instruction to determine whether
an interleave conflict existed. The solution required adding
some stages to the arithmetic pipelines (which would not
otherwise have been necessary) to delay the operand about
to be written until that interleave set was no longer busy.
This has a minimal impact on performance except on very
short vectors.

Vector register recovery scheme

To improve machine availability, one new requirement on
the ES/9000 Type 9121 Vector Facility was that it must be
possible to recover from hardware failures in the vector
register arrays. Previous schemes used simple parity or
traditional error-correcting codes (ECC). Parity checking
does not allow for correction of errors; although ECC does
allow recovery after an error, it is relatively difficult to
implement with the vector facility chip partitioning,
requires a significant amount of logic, and tends to impact
the overall design of the vector facility.

To avoid these shortcomings, another recovery method
was invented. It relies on current array technology, which
provides much denser array chips than are needed in the
vector register application. This extra density is used to
provide a redundant copy of all the data stored in the VRs,
for the purpose of error recovery. The method is used to
recover from both transient and most types of permanent
errors in the array chips.

Figure 4 shows a high-level view of the chip partitioning
for the vector register arrays. This layout allows reading
from two different interleaves and writing to a third
interleave in the same cycle. Note that when a write
operation is performed on a particular interleave set, a
corresponding write operation is performed on the parity
array interleave set. The recovery scheme involves adding
another chip to hold the backup data. Note that this chip
does not need to be interleaved like the primary arrays,
since data are written only to a single primary interleave
set during a cycle. During normal operation, data are never
read from this backup array chip. Also, note that the
backup chip holds four times as much data as the primary
chips, since it must be able to contain all the data in the
four different primary interleaves. This is possible because
256Kb array chips are used and only 128 Kb are needed
for the backup chip.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

Data Data Data Data
interleave 0 interleave 1 interleave 2 interleave 3
Elements: Elements: Elements: Elements:
04,8,12,... 1,59,13,... 2,6,10,14,... 3,711,15,...
Parity Parity Parity Parity
interleave O interleave 1 interieave 2 interleave 3
Elements: Elements: El El :
0,4,8,12,... 1,5,9,13,... 2,6,10,14,... 3,71115,...

Backup data

Elements:

0,1,2,34,...

been simplified in that this entire layout of chips is actually dupli-
cated. One set holds the even-numbered VRs and the other set
holds the odd-numbered VRs.

In addition to the backup array for redundancy, as
described above, another type of redundancy exists in the
primary data and parity arrays. Since only a small fraction
of the total array chip is actually used in the vector
register application, a second address space within the
same physical chip is made available via a scan-only latch
[4]. During normal operation, only the first address space
on the chips is used. However, after certain types of
recovery are performed, the second address space may be
used.

During normal operation, every time data are written
into the primary arrays, the identical data are written into
the corresponding location in the backup array chip. As
data are read from the primary arrays, normal parity
checking is done with the data stored in the parity array
chips. Figure 5 shows a diagram of logic involved in the
recovery scheme. If a parity error is detected by the logic,
the following recovery algorithm is used:

¢ The processor controller stops all processing being done
by the system.
¢ The processor controller then reads out the failing
element from the primary data arrays (Dp), parity arrays
(Pp), and the corresponding data element in the backup
arrays (D,). These sets of data are then compared, with
the following actions being taken:
o If PARITY(D) = P, the problem was probably due to
the error-checking logic itself.
o If PARITY(D,) = Pp, then Dp was bad, and the
processor controller replaces D with D,

T. J. SLEGEL AND R. J. VERACCA

372

Input data Input parity
Yy] \

NS Data-in < Parity-in L Backup-in ‘
{ register - register A register -
S
a J
a 1 Y i]

n a

t Data - Parity
o ¢ primary primary
n h array array
i, —— Backup

Data Parity amay
secondary secondary
array array
Write
enables
y \ ¥
- Data-out . Parity-out - Backup-out
register = register hegt register >y
|
1 \i)
checl)é
Scan out
Processor -
Error controller o
Scan in

Scan path e e me e

Vector registry recovery scheme data flow.

o IfD = Dp, then P , was bad, and the processor
controller corrects the parity in the Pp element.

o If (PARITY(D)) # P)) AND (PARITY(D,) # P), the
failure is unrecoverable, because nothing matches.

If the processor controller determines that the failure

was one of the first three, the failing instruction is

retried. If the retry is successful, operation continues

normally.

If the instruction retry is not successful after a certain

number of attempts, the problem is probably a

permanent array failure instead of a transient one. Since

the primary data and parity arrays have two address

spaces, with only one being used normally, if there is a

T. J. SLEGEL AND R. J. VERACCA

permanent failure the processor controller can switch to
the second address space by changing the value in the
scan-only latch. The current job is aborted by the
operating system and further processing continues
normally. Note that no parity is kept on the data stored
in the backup array, since it can be shown that there is
no additional benefit, from an error-detection or error-
recovery point of view, to be derived from including this
extra hardware. The recovery algorithm checks to see
that the backup data are consistent with the primary
parity before replacement, which is in itself sufficient to
ensure that these data are correct to a reasonable
statistical certainty.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

® Vector arithmetic/logic unit

The arithmetic/logic unit (ALU) is a pipelined design which
executes addition and subtraction on binary integers and
on short and long floating-point data. It also performs the
logical operations AND, OR, and XOR. In addition, the
ALU is used during compare, minimum/maximum,
accumulate, shift, and certain load-type operations, and
during the load and store indirect instructions to calculate
the storage addresses. It consists of four major functional
areas: preshift, adder/logical, postnormalization, and
exponent.

The ALU uses several types of error checkers. Most of
the checkers are traditional parity, redundancy, or parity-
prediction checkers. Modulo 15 residue checking is used
instead of the more traditional parity-prediction schemes
for the main adder/logical section because duplicated
carry-generation logic to achieve full error detection would
not fit on one chip with the normal functional logic. This
provides approximately 93.3% detection on any type of
error within the adder/logical section, including muitibit
failures.

® Vecror multiply/divide unit

The vector multiply/divide unit performs both single- and
double-precision floating-point multiply and divide
operations and integer multiply operations and occupies
approximately one third of the vector facility TCM. It
consists of a pipelined four-stage multiplier. For divide
operations, parts of the multiply logic are used in
conjunction with additional logic to create an iterative
divider which produces four results in 16 cycles for
double-precision divide operations and four results in ten
cycles for single-precision divide operations. Figure 6
shows a high-level diagram of this unit.

Multiply
For multiply operations, the unit is configured with four
main parts: input registers, partial product generators, final
product assimilation, and postnormalization. One input
operand is first latched in the multiplicand registers and the
other is latched in the multiplier registers. There is also
one additional staging register for each operand that solves
the vector register interleave conflict problem. If the
operation is an integer multiply, the data must be shifted
right eight bits to align with the place where the fraction
would go if it were a floating-point operation. Note in the
diagram that the multiplicand is simultaneously latched in
all four MCAND_2 latches, which hold different values for
divide operations. Before the multiplier is latched in the
MPLER_2 registers, it is recoded using the traditional
Booth algorithm [5].

The next stage of the multiplier consists of the four
parallel partial product generators (each handling seven
partial products), shown as partial product generators

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

A, B, C, and D in the diagram. Each of these multiplexes
multiples (+1, —1, +2, =2, and 0) of the multiplicand and
performs a 7-to-2 carry-save add, followed by a chip-wide
carry-propagate add.

The next section in the multiplier is the assimilate logic,
which combines the four partial products from the partial
product chips and does a 112-bit-wide carry-lookahead add
to obtain the final product. Note that the carries from the
chip-wide addition are also added in here, along with a
29th partial product from the most significant recode
group. (Recoding a 56-bit floating-point fraction yields 29
recode groups. The leftmost group is added at the final
stage.)

The final section of the multiplier performs the
postnormalization function. The logic has the capability of
selecting from either of two divide buses (within a single
multiply/divide unit, quotients are generated in two
different places) or the multiplier. Postnormalization (for
multiplication) is done here along with an eight-bit left shift
to put integer data back in its correct format. There is also
another staging register, to solve the vector register
interleave conflict problem.

Divide
For divide operations, the multiplier is configured as four
subpipes, each operating semi-independently to produce a
quotient. Both dividends and divisors enter the unit on the
multiplicand bus, with the dividend preceding its divisor by
one cycle and appropriate bit shifting being performed. At
the same time, the first few bits of the divisor address a
table which yvields an approximate reciprocal of the
divisor. (The table values are ‘‘stored’” in combinational
logic, logically 10 bits wide by 1024 deep.) After the start-
up period, four distinct divides occur simultaneously, and
the four divisors are stored in the MCAND_2 registers
throughout the operation.

The following three equations show the calculations
being performed to produce the quotient:

ODIGIT, = RECIP X RREM,_, , M
QSUM, = QSUM,_, + QDIGIT, 2
REM, = REM,_, ~ (QDIGIT, x DVSR), 3)

where REM, = DVND, QSUM, = 0, and RREM, is an
approximation to the full REM,. The basic iteration
consists of multiplying an approximate remainder (on the
first iteration, the dividend is the remainder) by the
approximate reciprocal obtained from the table lookup to
produce a net of eight quotient bits [Equation (1)]. This is
shown in Figure 6 as the QGEN block. This new quotient
is then added to the previous partial quotient in the
QSUMMER [Equation (2)]. While this addition is taking
place, the incremental quotient is multiplied by the divisor
and subtracted from the previous remainder to produce a

373

T. J. SLEGEL AND R. J. VERACCA

374

Multiplicand
Dividend
Divisor

Operands

| MCAND 1 l

|

Muttiplier
operand

MPLER .1

QDIGITs ==i-? Recode

&
§ K ¥ ¥ MY TN wee
MCAND_2D MCAND_2C MCAND_2B MCAND_2A
l | e] [vemmm][] |
Recip Y v y Yy
! e I-_: QGENC
] Partial product generator A
. : Y { ™ - L8
[Recip-A | [RecipB | < i Remainder feedback
a4 —7/ Partial product generator B -
. L
[CLA] 18
\ ’—>T0 MPLER h-7/ Partial product generator C é---]
[QDIGITA | To QGEN C ~at—d L =
‘ ! LZ/ Partial product generator D ——d
' REM S
£ Qg‘rbEN J Rows A, B, C, D sums and carries L8
C
CSA /
vy
| I— l Post-norm j \ CLA /
L —
QSUMC 3 ‘ !
Note: QGEN and QSUMMER for
C and D are not shown. MPY post-norm
—
| Result staging register]
Multiply/divide results

Diagram of multiply/divide unit.

new remainder [Equation (3)]. This process is repeated
seven times. Since the remainder may be negative after the
final iteration, a ‘1"’ is subtracted from the least significant
bit of the quotient to yield a truncated 56-bit result. The
quotient then undergoes postnormalization in the
QSUMMER and is passed to the multiplier
postnormalization logic to be placed on the output bus.

It should be noted that there are two different quotient
generators and two different QSUMMERs. One pair

T. J. SLEGEL AND R. J. VERACCA

operates on the data in partial product rows A and B and
the other pair on partial product rows C and D. Each
iteration is two cycles long and is staggered between partial
product rows so that there are no conflicts. Therefore, at any
given time four divide operations are executing.

Error checking

To ensure that correct results are being obtained from the
unit, modulo 15 residue checking is performed. For

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

multiplication, the traditional residue-checking equation is
used:

?
Res (PROD) = Res [Res (MCAND) x Res (MPLER)]. (4)

Note that this requires the residue to be taken on the
entire 112-bit result. Also, integers that are negative must
be accounted for by modifying their residues before the
equation is checked. For division, the equation that is
checked is

)
Res (DVND) = Res {[Res (QUOT) x Res (DVSR)]

+ Res (REM)}. 5)

Again, because the final remainder may be negative, its
residue must be modified before the equation is checked.

Although the vast majority of the multiply/divide logic is
checked by this single residue checker, there are several
additional checkers. These are mainly redundancy
checkers on the control logic and parity checkers on the
input operands.

® Vector facility controls and instruction execution

The vector facility monitors all instructions as they are
executed by the CP. When a vector instruction is decoded,
the vector facility begins setting up to perform the
instruction. Simultaneously, the CP sends the vector any
scalar register data it needs. The VSR is kept in the CP
and is also sent to the vector (if required). For VST and
QST instructions, the CP initializes address generation
logic within the cache to provide storage data
automatically to the vector facility as quickly as possible.

At this point the vector hardware essentially runs the
instruction to completion. When it is finished, it notifies
the CP if it has any VSR or scalar register data to return;
such data are then stored in the appropriate location within
the CP. Finally, the instruction-processing logic within the
CP is notified to begin executing the next instruction.

One of the more complex instructions is the STORE
INDIRECT instruction. This requires the vector facility to
generate storage addresses by adding a 32-bit integer
vector in a VR to a base and displacement value from the
CP in order to store another vector. Since this instruction
can easily access a different page in storage for each
element, some hardware was added to improve
performance. A small table is kept which contains the
logical address of the last three consecutive pages that
have been accessed. When a page that is not in the table is
about to be accessed, the vector facility requests the CP to
test the page for an access exception. If none is found, the
table is updated with the new address and processing
continues. With this mechanism, the performance of the
instruction is significantly improved, because it is no longer
necessary to pretest each new page that is encountered.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

o [nterface with the cache

The ES/9000 Type 9121 Vector Facility is different from
most vector processors in that storage data are accessed
through the cache instead of directly from main memory.
(Storage data physically pass through the CP instead of
directly from the cache, but this is really due to packaging
issues and does not affect the way in which data are
logically accessed.) This scheme was selected because it
allows reasonable performance for vectors with nonunit
strides without incurring the added cost of a highly
interleaved main memory. Of course, it also eliminates the
problem of keeping cache data synchronized with main
memory data, which would be a problem if the vector
accessed main memory directly.

Generally, when the vector storage request hits in the
cache, the data are returned immediately and the
performance is excellent. However, when the vector
storage request misses in the cache, the vector accesses
storage data in three different modes, depending on the
type of instruction and the stride, in an attempt to maintain
the best performance possible. The first is cache-fill mode,
which lets the cache automatically generate addresses and
prefetch lines of data from main memory if they are not
already in the cache. This permits the pipelining of
multiple cache lines from main storage. It is used for
almost all stride 1 and 2 instructions. The second method
is cache-bypass mode, which is used in conjunction with
cache-fill mode during stride 1 double-precision and stride
2 single-precision instructions. On cache misses, as data
come from main memory, they are simultaneously stored
in the cache and also routed directly to the vector facility.
This is feasible, since for these strides and precisions the
vector facility can accept data at the same rate that main
memory can send data. This eliminates the need to both
write and read the cache arrays, which would decrease
performance. The final method is the normal access mode
used for most scalar instructions, which is used for vector
accesses in all other cases. Here the CP generates an
address and the data are sent to the vector facility one
cycle after being received into the cache from main
memory. Note that the entire line must be transferred into
the cache, even if only one element is contained within
that line. This can result in degraded performance for large
strides if the data are not used in some following
instruction. Since it is not known at the start of an
instruction whether the vector data are in the cache, the
CP makes the decision on the mode at the beginning of the
instruction, and the same mode is used throughout the
execution of the instruction.

Vector performance evaluation

The preceding section described the design considerations
and decisions for the ES/9000 Type 9121 Vector Facility.
As the design progressed, each design choice was

T. J. SLEGEL AND R. J. VERACCA

375

376

monitored and evaluated for its potential impact on
performance. This monitoring activity was based on
modeling and analytic techniques and ensured that final
results would be consistent with the objectives. Final
evaluation relied on actual measurements. Since the design
was an extension of the 3090 Vector Facility design, the
performance evaluation scheme is similar to the one used
to evaluate the 3090 vector facilities.

Vector facility performance was evaluated by using
numerically intensive computing (NIC) application
programs. NIC applications are characterized as follows:

o They make extensive use of floating-point computations,
with large amounts of arithmetic data being operated on
in loops for long periods of time. Generally, the floating-
point content is greater than 50% of the instruction count
and total job CPU time.

o They use FORTRAN as the primary language.

o They run at high CPU utilization rates, typically
exceeding 90%.

o They can have significant I/0O requirements.

NIC application programs were chosen as the
framework for evaluation for several reasons. First, they
allow the direct evaluation of the product design objectives
on the basis of an extensive investigation of NIC
application characteristics and the role of vector speed
within this application performance context. Second, they
provide the user with a more realistic view of potential
performance improvements when migrating from scalar-
only systems. The computationally intense nature of these
NIC programs results from iterative mathematical
computations on sets of data typically found in loops
coded as FORTRAN DO statements. However, loop
performance comparisons and kernel measurements are
only part of the overall picture. By using application
programs, the entire problem solution, complete with the
I/0, data manipulation, and all the other noncomputational
processing, can be evaluated, rather than just the more
easily vectorized DO statements. Loop or kernel
measurements should not be used to characterize the
overall system performance achieved through the use of
complete applications. Finally, by using a set of
applications covering a variety of disciplines, users can get
a reasonable estimate of the performance improvement
they may realize from the Vector Facility system. Since
actual performance varies by application program, a user
can determine the performance for an application by
selecting the stated performance for a specific job or set of
jobs that closely matches the characteristics of the
application of interest. As mentioned, one reason for
differing gains in performance is the variation in
vectorizable content. Because the ES/9000 Type 9121
Vector Facility accesses storage data through the cache,

T. J. SLEGEL AND R. J. VERACCA

another factor affecting performance is the cache behavior
of the application. A variety of factors in a customer
application, such as stride and vector length [6], may
influence cache performance. Therefore, if a set of
application programs representative of a variety of
relatively long production NIC runs is collected and the
members are measured separately, users will be able to
relate the results directly to their own NIC requirements.

With application performance established as the
framework for the Vector Facility evaluation, a large set of
application programs was collected and analyzed for
suitability as benchmark applications. These programs
came from a variety of sources, including

¢ Publicly available codes/applications.

o Programs used by customers as benchmarks.

~ Customer production or research applications obtained
under special agreements.

o Licensed application software packages, together with
specific problem data or vendor-supplied benchmark
data.

A subset of these applications, representing the types of
production workloads expected to be run on the Vector
Facility, was chosen, and became the Scientific/
Engineering Application Program (SEAP) benchmark set.
The job set was constructed to represent the
engineering/scientific production environment, which
consists of long-running applications as well as some of
short duration. All contain a significant volume of floating-
point computation. Groups of one to three jobs represent a
specific discipline (again, each job within a group is
measured separately). As the number of jobs included in
the SEAP job set increased, they were partitioned into two
groups. A second group labeled ‘‘special interest codes”’
was created which contained jobs that were based on
segments of large applications or possessed an unusually
high vector content. The SEAP job set has been used for
the evaluation of all the IBM vector facility offerings,
including the ES/9000 Type 9121 Vector Facility. Table 1
contains the names of the applications within the SEAP
job set, and the NIC discipline represented by each.

The SEAP set is not static; it varies as new application
areas and advanced techniques are created. The advances
are reviewed and studied for potential addition to the
SEAP set. At the present time, two chemistry codes are
being considered for inclusion in the job set. Several SEAP
jobs are currently being reviewed for representativeness,
and, if necessary, will be replaced with newer versions.
Some of the application codes are continually being
reviewed against the need to update the product level.
Applications from disciplines not currently represented by
the SEAP set are being considered for inclusion in the job
set.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

SEAP job descriptions

The following are descriptions containing the solution
techniques and the mathematical algorithms used for each
SEAP job [3].

Static structural analysis This is a finite element job
designed to form and solve a large stiffness matrix of a
static analysis problem with little I/O overhead and high
processor utilization. The program spends much of its
computational time in solving large sparse systems of
simultaneous linear equations. Techniques for solving such
systems are usually based on Gaussian elimination, for
example L-U decomposition and frontal methods. Storage
methods such as submatrix, compressed column, and
skyline are used extensively.

Buckling analysis This finite element job performs a type
of nonlinear analysis of a structure in which the stiffness
matrix is used to calculate a deflection. Another stiffness
matrix is formed, and the process is repeated until the
buckling failure of the structure is determined.

Thin-layer fluid dynamics This job is a three-
dimensional, thin-layer Navier-Stokes problem simulating
the time-dependent behavior of steady or unsteady inviscid
and viscous compressible flows around simple body
configurations.

Crystal growth fluid flow This fluid flow application
simulates the fluid flow in Czochralski crystal growth, in
which a large-diameter cycle is produced by slowly
extracting it from a crucible of melt.

Turbine blade analysis This application uses a finite
difference algorithm to solve the three-dimensional air flow
between the blades of a rotating turbine stage.

Seismic analysis This application recovers information
about underground terrain from seismic time-trace data.
The programs

¢ Apply one-dimensional moving average filters in either
the time or frequency domain.

¢ Apply two-dimensional filters in the frequency-wave
number domain (2D FFT).

o Perform normal move-out (NMO) correction and
stacking (summing) of traces from common midpoint
data, and long correlation in the frequency domain
(FFT).

* Solve a seismic modeling problem based on a finite
element model.

Black-oil-reservoir simulation This job is a three-phase
black-oil-reservoir modeling program (BOAST, from the

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 199]

Table 1 SEAP job set.

SEAP applications Discipline

Finite element design
Finite element design
3D air flow

3D compressible flow
Fluid dynamics

Fluid dynamics

Fluid flow simulation
Computational chemistry
Financial analysis

2D seismic analysis
Reservoir modeling

Static structural analysis
Buckling analysis
Turbine blade analysis
Thin-layer fluid dynamics
Flow field analysis
Large-eddy simulation
Crystal growth fluid flow
Biomolecular dynamics
Time series

Seismic analysis
Black-oil-reservoir simulation

Special interest codes

Dense-matrix inversion
(long)

Dense-matrix inversion
(short)

Sparse-matrix decomposition

Quantum chromodynamics

Linear algebra
Linear algebra

Linear algebra
Quantum physics

U.S. Department of Energy) which is used to simulate
both the primary depletion and the secondary recovery
operations in a two- or three-dimensional black-oil
reservoir. The solution uses the Implicit Pressure, Explicit
Saturation (IMPES) method to solve for the fluid flow in a
reservoir. The pressure and saturation equations for the
oil/gas/water systems are approximated using a finite
difference method. The resulting system of linear equations
is solved using an iterative Line Successive Over-
Relaxation (LSOR) technique.

Dense-matrix inversion This job is a segment of a
customer application benchmark that computes the
inversion of a dense matrix. The SEAP set contains both a
long- and short- (double- and single-) precision version of
this benchmark.

Biomolecular dynamics This application program
performs simulations of the molecular dynamics of water
and counter ions around nucleic acids. The Newton-Euler
equations of motion are solved by using 5/6-order
predictor-corrector methods to evaluate the molecular
positions and molecular velocities needed to understand
the hydration behavior.

Time series In this job, econometric analysis is
performed by the Wisconsin Multiple Time Series Package,
using the auto-regressive, integrated moving average
(ARIMA) process to determine the parameters of an
econometric model, estimate the sensitivity of the model,
and forecast econometric parameters.

Flow field analysis This job uses a finite volume method
to analyze the three-dimensional inviscid transonic flow

T. J. SLEGEL AND R. J. VERACCA

377

378

Table 2 SEAP job characteristics.

SEAP application MFLOP Scalar Scalar EXCP Total Percent
count FP FpP count virtual vector
instructions operations storage
(%) (%) (MB)

Static structural analysis 13672 75 37 26505 14.8 83
Buckling analysis 6262 64 32 42632 14.8 74
Turbine blade analysis* 7887 76 34 116 32.8 93
Thin-layer fluid dynamics* 9289 86 42 120 12.0 91
Flow field analysis 22989 83 41 209 27.8 92
Large-eddy simulation* 4077 92 36 107 5.5 95
Crystal growth fluid flow 790 69 40 564 1.4 34
Biomolecular dynamics 1857 60 31 1784 2.6 68
Time series analysis 418 47 26 1059 9.1 69
Seismic analysis* 1488 64 33 6234 1.6 93
Black-oil-reservoir simulation 4559 45 21 223 5.5 83
Special interest codes

Dense-matrix inversion 2012 83 33 20 8.1 98
Dense-matrix inversion* 2012 83 33 20 4.1 98
Sparse-matrix decomposition 1360 72 47 20 13.5 88
Quantum chromodynamics 1783 72 38 58 6.1 99

*Indicates short precision.

about an arbitrary wing/fuselage/tail/fin configuration by
solving the unsteady Euler equations. Adaptive dissipation
is used to capture the shock waves. A multigrid algorithm
accelerates convergence to a steady state.

Large-eddy simulation This application simulates
homogeneous fluid flow in large eddies. Taylor’s rapid
distortion theory is used to model the homogeneous
turbulence. Navier-Stokes equations, including viscous
terms, are solved by means of a fourth-order Runge-Kutta
algorithm. The coefficients of a truncated 3D Fourier series
represent the turbulence field.

Quantum chromodynamics This is a university code
from quantum physics research which performs a quantum
chromodynamics simulation of interactions between
elementary particles. Interactions between quarks and
gluons are simulated by updating the giuon field and
permitting properties of the quark and gluon fields to be
measured. An algorithm based on stochastic quantization
via the Langevin equation is used to update the gluon field.

Sparse-matrix decomposition This job is a segment of a
customer application benchmark that computes the
Cholesky decomposition of a sparse matrix.

Table 2 presents some of the SEAP job characteristics.
MFLOP count is the total number of floating-point
operations in the program, in millions (excluding floating-
point load and store instructions). Scalar FP instructions is
the percentage of the total instructions in the scalar job
which are floating-point instructions, including loads and
stores. Scalar FP operations is the same, but includes only

T. J. SLEGEL AND R. J. VERACCA

computational floating-point instructions (no loads or
stores). EXCP count is a measure of the 1/0 operations
(reads and writes) for each program. Total virtual storage
is an indication of the number of megabytes (MB) of
storage used by each job. Percent vector is the percentage
of the scalar application CPU busy time that was
vectorized [3].

The values given in Table 2 were determined when the
jobs were initially executed in scalar mode. Modifying the
applications to use the Vector Facility can cause these
values to change; so can changes in the compiler. These
values should be used as approximations of the floating-
point content of the jobs. See [3] for specific details. It
should be noted that slightly over half the applications in
the SEAP job set are above the mid-range of
vectorizability. In selecting applications for SEAP, several
criteria are employed. The major priority is to find
applications which represent the type of work a
prospective IBM Vector Facility system user would run. It
does not necessarily follow that this NIC application will
also fall into the mid-range. Additionally, some of the
SEAP jobs have been a part of the job set for over five
years; it should be noted that there are several factors
which tend to push the vectorization extent upward, such
as VS FORTRAN compiler enhancements, improved
aigorithm techniques, and additional Engineering/Scientific
Subroutine Library (ESSL) (7] function and enhancements.
As a result, although the design objectives have remained
the same, the SEAP characteristics have changed. It
should be noted that the Vector Facility performance is
good well into the high vectorizability range, especially if
the application can make efficient usage of the cache
storage hierarchy through the techniques listed previously.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

Table 3 CPU busy seconds.

SEAP applications ES/4381 ES/9000 E5/9000 ES/3090 ES/3090 ES/9000 ES/9000
Model 91E Model 320 Model 320 Model 180J Model 180 Model 480 Model 480
scalar scalar vector scalar vector scalar vector

Static structural analysis 10853 1702 754 1340 646 1714 827
Buckling analysis 5356 869 429 703 375
Turbine blade analysis 8176 1420 463 960 415)
Thin-layer fluid dynamics 7504 1218 478 928 423 1231 507
Flow field analysis 17456 2674 1054 2148 936
Large-eddy simulation 3571 554 158 455 129
Crystal growth fluid flow 535 91 39 71 35 91 39
Biomolecular dynamics 1752 289 142 253 127
Time series analysis 374 60 25 54 24.6
Seismic analysis 1276 214 52 164 45
Black-oil-reservoir simulation 5578 953 348 873 325 953 352
SEAP special interest codes
Dense-matrix inversion (long) 1874 255 80 68 256 94
Dense-matrix inversion 2082 253 67 61 254 68
Sparse-matrix decomposition 1006 140 49 46
Quantum chromodynamics 1326 224 39 37

The SEAP job set has proved to be a valuable metric for
engineering/scientific applications; it has been used to
evaluate vector facility performance for the ES/3090 family
and the recently announced ES/9000 processors. SEAP is
measured and reported in both scalar and vector mode, for
single jobs on one processor and multiple copies on multi-
processor configurations. The internal throughput rate
ratios have been especially useful for evaluating various
migration path options. SEAP has provided the system
performance data required and set the expectation levels
necessary for customer performance evaluations.

Measurement methodology and results

The SEAP job set was run on all IBM ES/9000 Type 9121
machines. The SEAP job run times for Models 320 and 480
(Table 3) demonstrate the hardware performance
improvement available to IBM ES/4381™ users through the
extension of the 3090 vector design to the air-cooled
environment. Performance numbers for the ES/3090 Model
180J with Vector Facility are also provided, so that the
performance of the new machine can be compared to that
of an existing 3090 machine. Software levels were
maintained for all measurements and are listed as follows:

e MVS/ESA™ Version 3, Release 1.3,
e VS FORTRAN Version 2, Release 4.
e ESSL Version 1, Release 4.0.

o MSC/NASTRAN® Version 64D.

® Methodology
The measurements were done in two different modes:

1. Single initiator This mode is used for uniprocessor
comparisons. Each job was run on a 9121 Model 320

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

processor with only one active initiator. Both scalar and
vector SEAP programs were measured, and CPU busy
time recorded (SRB + TCB).

2. Multiple initiator This mode is used to show the
capacity of the 9121 Model 480. Two copies of a subset
of the SEAP jobs were run. Both scalar and vector
versions of the subset were run. To ensure
simultaneous processing at high utilizations by each
central processor, four copies of the job for each CPU
were submitted, and the queue held. The number of
active initiators was 2 for the 480. All jobs were
released from the queue at the same time, and the
average CPU time for the jobs executed during the
measurement period was used for the internal
throughput rate comparisons. A few jobs required
additional steps to attain the highest possible central
processor utilizations during the measurement interval.
Additional details are available in [3].

The SEAP job set was compiled using the highest level of
optimization [OPT = 3 for scalar and VECTOR(LEVEL (2))
for vector measurements] and the VECTOR(SIZE = (ANY))
option. This last option is recommended for producing
applications independent of the model-dependent vector
parameters.

Jobs were run in an unconstrained environment (e.g.,
sufficient DASD and /O paths, paging data sets, and real
storage) to minimize performance bottlenecks.

® Results

Table 3 contains the measurement results. The CPU busy
times for both vector and scalar processors are shown.
Performance data are shown only for the multi-initiator
subset on the Model 480. The data show a substantial

379

T. J. SLEGEL AND R. J. VERACCA

Table 4 Internal throughput rate ratios.

380

SEAP applications ES/9000 ES/9000 ES/9000 ES/9000 ES/9000
Model 320 Model 320 Model 320 Model 480 Model 480
scalar to vector to vector/scalar scalar to vector to
ES/4381 ES/4381 ratio ES/4381 ES/4381
Model 91E Model 91E Model 91E Model 91E

Static structural analysis 6.4 14.4 2.3 12.7 26.2

Buckling analysis 6.2 12.5 2.0

Turbine blade analysis 5.8 17.7 3.1

Thin-layer fluid dynamics 6.2 15.7 2.5 12.2 29.6

Flow field analysis 6.5 16.6 2.5

Large-eddy simulation 6.4 22.6 3.5

Crystal growth fluid flow 5.9 13.7 2.3 11.8 27.4

Biomolecular dynamics 6.1 12.3 2.0

Time series analysis 6.2 15 24

Seismic analysis 6.0 24.5 4.1

Black-oil-reservoir simulation 5.7 16 2.7 11.7 31.7

SEAP special interest codes

Dense-matrix inversion (long) 7.3 23.4 3.2 14.6 399

Dense-matrix inversion 8.2 31.1 3.8 16.4 61

Sparse-matrix decomposition 7.2 20.50 2.9

Quantum chromodynamics 5.9 34 5.7

improvement in performance for ES/9000 processors
compared to the IBM ES/4381 Model 91E processor.
Although the CPU busy times shown for Models 320 and
480 are essentially the same, the 480 was completing
approximately twice as many jobs because it has two
processors. This increase in throughput is reflected in the
internal throughput rate ratios in Table 4. The data also
indicate that although absolute vector performance for the
Model 320 is a little less than that for the ES/3090 Model
180J, vector-to-scalar improvements comparable to the
performance of the 3090 Model 180J were achieved.
There are two key reasons for the improvement in scalar
CPU busy times shown for the ES/9000 processors
compared to the ES/4381 Model 91E processor: reduction
of machine cycle time from 52 to 15 ns and the presence of
pipelining in the ES/9000 processors. Pipelining increases
performance by allowing overlap of instruction execution
phases. Other factors include a larger cache and a separate
1/0 processor on the ES/9000 processors. Instruction
implementation differences between the two machines
account for some positive and negative influences on the
total amount of performance improvement. In comparing
the performance of the ES/9000 machines to that of the
Model 180J, it should be noted that the 180J has a 14.5-ns
cycle time, a larger cache, and some instruction execution
time differences which account for the increased
performance. The performance improvement also depends
on the characteristics of each SEAP job, and no single
performance number can be used to reflect performance
across the represented range of jobs. Table 4 contains the
performance ratios of the two ES/9000 processors

T. J. SLEGEL AND R. J. VERACCA

compared to the ES/4381 Model 91E, demonstrating the
range of performance improvement that is attributed to the
stated differences between the machines. Similar
comparisons can be made to the ES/3090 Model 180J with
the data provided in Table 3. The vector-to-scalar ratios
indicate that the previously mentioned design objectives
were achieved.

Summary
The ES/9000 Type 9121 Vector Facility system was
designed to provide a balanced system implementation
offering integrated scalar, vector, and parallel processing
opportunities. The design is based on the architecture
established in the 3090 family of vector facilities. A new
chip and module packaging technology has allowed
implementation in a single air-cooled TCM package.
Reliability has been further enhanced, and a new vector
register error recovery technique implemented.
Performance measurements were necessary to validate
the vector performance of the new air-cooled processor
design. Since the vector architecture is designed to provide
excellent performance on numerically intensive computing
(NIC) application programs, rather than specific loops or
kernels, the SEAP job set is used for performance
evaluation. This job set was a by-product of the 3090
Vector Facility design process and currently contains 15
application jobs. The SEAP job set was developed in
support of the observation that performance in the NIC
environment is application-dependent. SEAP has been
used successfully to set the expectation levels for specific
customer NIC environments.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

The measurement results indicate a successful transfer
of the 3090 Vector Facility function and performance to
the ES/9000 Type 9121 environment.

Acknowledgments

We would first like to acknowledge all of the vector facility
designers who worked on this project. Their dedication
and attention to detail helped make this one of the most
error-free designs ever produced. We would also like to
thank B. Bartley, L. Boelhouwer, B. Cesare, R. Fuller,

R. Grant, R. Larson, D. Ludovici, P. Marro, C. Mierzwa,
W. Rockefeller, G. Salyer, B. Weiler, and T. Wilson for
their contributions and comments on this paper.

Enterprise System/9000, 3090, ES/9000, ESA/390, ES/3090,
System/390, ES/4381, and MVS/ESA are trademarks of
International Business Machines Corporation.

NASTRAN is a registered trademark of the National
Aeronautics and Space Administration. MSC/NASTRAN is an
enhanced proprietary version developed by the
MacNeal/Schwendler Corporation.

References and notes

1. IBM Enterprise Systems Architecture/370 and System/370
Vector Operations, Order No. SA22-7125; available through
IBM branch offices.

2. IBM Syst. J. 25, No. 1 (1986): D. H. Gibson, D. W. Rain,
and H. F. Walsh, ‘‘Engineering and Scientific Processing on
the IBM 3090,” pp. 36--50; W. Buchholz, ‘“The IBM
System/370 Vector Architecture,”’ pp. 51-62; and R. S.
Clark and T. L. Wilson, *‘Vector System Performance of
the IBM 3090,”" pp. 63-82.

3. IBM ES/3090 Engineering/Scientific Performance,
Technical Bulletin No. GG66-0245-03, IBM Washington
Systems Center, Washington, DC, December 1989.

4. This type of latch may be written to or read in a serial
manner by the processor controller when the vector clocks
are stopped, using the level-sensitive scan design (LSSD)
mechanism. For more information see E. B. Eichelberger
and T. W. Williams, “*A Logic Design Structure for L.SI
Testability,”’ Proceedings of the 14th Design Automation
Conference, New Orleans, June 1977, pp. 462—-468.

S. O. L. MacSorley, ‘‘High-Speed Arithmetic in Binary
Computers,”’ Proc. IRE 49, 67-91 (January 1961).

6. For engineers and scientists who want to improve
performance by exploiting the IBM Vector Facility, the
following are excellent references: David B. Soll,
Vectorization and Vector Migration Techniques, Technical
Bulletin No. SR20-4966-00, June 1986; and Designing and
Writing FORTRAN Programs for Vector and Parallel
Processing, Order No. SC23-0337-00, November 1986; both
available through 1BM branch offices.

7. The Engineering/Scientific Subroutine Library is a set of
highly tuned NIC subroutines. ESSL Release 1.3 also
introduced parallel functions. For more information, refer
to the ESSL General Information Manual, Order No.
GC23-0182; available through IBM branch offices.

Received October 9, 1990

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

Timothy J. Slegel IBM Data Systems Division, Kingston,
New York 12580. Mr. Slegel is an Advisory Engineer in the
Processor Systems Development group at IBM Kingston
working on the design of future vector facility products. He
received the B.S. and M.S. degrees in electrical engineering
from Lehigh University, Bethlehem, Pennsylvania, in 1980 and
1982, respectively. After joining IBM in 1982, he worked on
the arithmetic unit design of the 3090 vector facilities. In 1989
he received the IBM Outstanding Technical Achievement
Award for his work on the IBM 3090 Model S Vector Facility.
Mr. Slegel is a member of the Institute of Electrical and
Electronics Engineers, Eta Kappa Nu, and Tau Beta Pi.

Robert J. Veracca IBM Data Systems Division, Kingston,
New York 12580. Mr. Veracca is an Advisory Engineer in the
Systems Performance group working on performance
evaluation of the ES/9000 Type 9121 processors. He received a
B.S.E.E. degree from Rutgers in 1959. He joined IBM in 1964,
working on memory test equipment design and advanced
manufacturing techniques in both technical and managerial
capacities. In 1975 Mr. Veracca joined the Cryptographic
Product design team and was involved in logic design and
product engineering of the IBM 3845/46 processors. Various
assignments in the Architecture and Standards group followed
and were focused on 8100 System architecture and control-
unit-to-terminal interface architectures.

381

T. J. SLEGEL AND R. J. VERACCA

