
An adder 
aeslgn 
optimized 
for DCS logic 

by A. Weinberger 

The  basic DCS logic  gate  provides a two-way 
SELECT  function  and,  with  modifications,  a 
two-way XOR, OR, or  AND  function. 
Furthermore,  outputs of DCS  gates  can  be 
wired  together  (dotted)  to  perform  dotted 
SELECT, XOR, OR, or AND functions.  The 
versatility of this  logic is illustrated  in  the 
design of a  carry-lookahead  adder. 

Introduction 
DCS  (differential cascode current switch) logic [ l ]  is based 
on a cell that provides a two-way SELECT  as the 
primitive logic function. The cell becomes a two-way 
XOR, OR, or AND with rearranged inputs and/or reduced 
component use. By contrast, the more  familiar ECL 
(emitter-coupled logic)  begins  with a simpler cell 
performing the simpler primitive  logic functions OR/NOR. 
Cells are combined to perform SELECT or XOR 
functions, and even AND/NAND functions when inputs 
with proper polarity are unavailable. 

SELECT and XOR functions. Complex computer logic 
functions include among their constituent parts 
recognizable SELECT and XOR functions. In less obvious 
cases, AND-OR or OR-AND combinations may  be 
converted to  SELECT or XOR functions. Moreover, major 

Efficient use of  DCS requires exploitation of the 

logic functions can at times be respecified  in terms of 
SELECT functions for efficient implementation. 

In this paper, a design of a carry-lookahead adder 
illustrates how the DCS functions of SELECT and XOR 
can  be  fully exploited. Not only are the obvious XOR 
functions of the adder used, but the carry-generate 
functions, which are critical to adder performarice, are 
replaced by simpler pseudo-generate functions, and 
expressed as  SELECT functions. 

The first part of the paper describes DCS  logic and 
compares it  with ECL. The second part describes the 
carry-lookahead functions of an adder, showing the 
advantage of  using the XOR instead of the inclusive OR as 
a constituent primitive function, and leading to the more 
desirable pseudo-generate function. Finally, a long path of 
a 32-bit adder is described, showing the pervasive use of 
SELECT and XOR functions in the adder. 

I" 

DCS  logic 
DCS  logic provides a two-way SELECT function as the 
basic logic gate. Figure 1 shows a simplified circuit 
diagram together with a logic gate representation. The gate 
can also be  used as  a two-way XOR, OR, or AND 
function. If = A and B = A, X = S @ A .  If transistors 
4 and 5 are unused and collectors 6 and 2 are connected, 
X = S + A ;  if, in addition, inputs to 1 and 2  are 
exchanged as well as inputs to 3 and 6, x = S * A .  

reproduction is done without alteration and (2) the Journal reference and  IBM copyright notice are included on the  first page. The title and abstract. but no other portions, of 
"Copyright 1991 by International Business Machines Corporation. Copying in  printed  form for private use is permitted without payment of royalty provided that ( I )  each 

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other 
portion of this paper  must  be obtained from the Editor. 352 

A. WEINBERGER IBM J .  RES. DEVELOP, VOL. 35 NO. 3 MAY 1991 



.................. ~ 

Two-way DCS SELECT cell: (a) circuit and (b) logic symbols. 

Exchanging the  true logic input with its  complement has 
the effect of complementing the input. 

AND  can  also  be implemented  with  dotting (wiring 
together of signals to perform logic). Dotting collector 
outputs  ANDs  them, while dotting emitter  outputs ORs 
them.  Collector dotting is done  at  the X and x outputs 
preceding the  emitter followers, and  emitter dotting is done 
at  the  outputs of the emitter-follower transistors (7 and 8). 
A  combination of collector  and  emitter dotting  implements 
the  DCS dotting functions of SELECT-dot,  XOR-dot, OR- 
dot,  and  AND-dot.  To  AND-dot,  the principal outputs  are 
collector-dotted  and  the  complement  outputs emitter- 
dotted,  as in Figure 2. Figure 3 shows  an OR-dot. Figure 4 
shows  an  XOR-dot, using two  copies of the  gates  to  be 
dotted, while Figure 5 shows a SELECT-dot. 

The primary advantage of  DCS over  the more familiar 
ECL  (emitter-coupled logic) is significantly reduced power 
for  average logic functions of comparable  performance, 

The primitive  gating functions  SELECT,  XOR,  OR,  and 

~~J x +  B 

X.Y 

DXTJx.. 
I+. 

DCS AND-dot 

DCS OR-dot. 

1 DCS XOR-dot. 

particularly for  SELECT  functions  and  the  derivative XOR 
functions.  It is especially advantageous  for  latches, noting 
that a simple  latch  is  a  two-way SELECT  function in 
which  a  clock signal selects  the  new  latch  output  between 
a  new  input and  the prior latch  output. 353 

IBM J .  RES. DEVELOP.  VOL. 35 NO. 3 MAY 1991 A.  WElNBERGER 



s. f 
+ s*B 

' s e x  + S.Y 

4 sax + S.Y 

DCS SELECT-dot. 

The  advantage of DCS  over  ECL in combinational logic 
depends on the  function.  SELECT  and XOR functions 
favor  DCS, while AND  and OR functions  favor  ECL. To 
show this  more clearly,  the logic differences  between  DCS 
and  ECL  are  explained. 

Logically,  DCS differs from  ECL in three important 
aspects.  First,  DCS  uses differential inputs instead of 
reference-controlled inputs. In Figure 1, current is 
switched between  transistors 1 and 2 by means of the dual 
inputs  and A .  In  ECL,  one of the  inputs, say x, is 
replaced by a reference voltage  requiring  a  larger signal 
swing for A ,  but  obviating the need for dual  inputs. In 
addition,  the remaining input, A ,  can be replaced with a 
parallel set of inputs  to perform an  OR:  Namely, A is 
replaced by A ,  + ... + A,.  It should be pointed out, 
however,  that  the dual inputs of DCS  avoid the problem 
with ECL  where a signal must pass through an  inverter 
stage if one of  its destinations  encounters a polarity 
mismatch. 

The  second difference  is that DCS uses  cascoding  to 
perform logic, as in Figure I ,  which shows a  two-level 
cascode logic tree comprising transistors 1 through 6. It is 
converted  to  ECL logic by eliminating transistors 3 
through 6 and level shifters 9 and IO (including  their 
resistors).  Logic is performed  using transistors I and 2 ,  
with x replaced by a reference voltage and A expanded  to 
an OR of inputs. X and x provide the OR and NOR 
outputs,  respectively. 

A third difference between DCS and  ECL is in dotting 
(wired-connection) logic. In ECL, a collector  output may 
be  AND-dotted with collector  outputs of other  ECL  gates 
prior  to  entering  an  emitter follower, and emitter-follower 
outputs may be  further OR-dotted with other  emitter- 
follower outputs.  Thus,  an  ECL  stage  can perform one  to 
three levels of logic: a NOR/OR  gate level and  up  to  two 

354 levels of dotting,  AND  dotting followed by OR dotting.  A 

DCS  stage can perform one or two levels of logic: a gating 
level and an optional  dotting  level. The  gate  can perform 
more  complex functions  than  ECL  (SELECT,  XOR,  AND, 
or OR, instead of only OR/NOR),  although  the  DCS  gate is 
limited to a  two-way OR,  whereas  ECL  permits a  higher 
limit. The single dotting  level is a versatile logic dot 
(SELECT-dot,  XOR-dot,  AND-dot, or OR-dot) 
implemented with an  actual  sequence of collector-dot and 
emitter-dot. 

DCS carry-lookahead adder 
DCS logic permits a  new way of optimizing the design of a 
parallel adder [ 2 ] ,  particularly the parallel carry  functions 
generally known as carry-lookahead and typically defined as 

G j  = Gi + Pi Gi,, t .'. t Pi * ... * e-, * G, > (1) 

= 8: P!,,  ... * Pi , ( 2 )  

where 

Gi,j = carry-generate of bit group i throughj, high to low 

G, = Ai  Bi = carry-generate  from bit i 
8, = carry-propagate through bit i 

order, 

= either H i  (the  exclusive  propagate = Ai C3 Bi)  
or Pi (the inclusive propagate = Ai + B i ) ,  

A i ,  B, = adder inputs to bit i .  

In  ECL logic, the inclusive OR, Pi, is used  as  the 
propagate signal because it  is easier  to implement than  the 
exclusive OR.  Little difference in ease of implementation 
exists in DCS,  because  both  are primitive  gating functions. 

A significant advantage of Hi over Pi is that H i ,  and  the 
extended  propagate  function Hi,j  (= Hi Hi+ , ... * H j ) ,  
can  be  used  as a select signal to simplify the  carry- 
generate  functions.  For  example, 

GI,? = G, + H I  * G, = H ,  * GI + HI * G2 . 
In the second expression H ,  selects  between G, and G,. 
Note,  however, that GI can  be replaced by either A ,  or B , ,  
because E,  ( A ,  or B , )  = ( A ,  B ,  + A ,  B , )  ( A ,  or B , )  
= A ,  * B ,  = G,. 

Any carry-generate  function  can  be replaced by a 
simpler function, a pseudo-generate  function PC,  if it  is 
ANDed with the  complement  carry-propagate  function. 
As  a result,  the  carry-lookahead  can  be designed with 
pG and H functions. For a single bit, pGi = (Ai  or B i ) ,  as 
shown above. 

- 
(3) 

- _  

A multibit pseudo-generate function is  equal to  the 
carry-generate function except  that  the  low-order  subgroup 
carry-generate  function is replaced by the  pseudo-generate 
function. For example, 

PC,,? = H, * PC, + H ,  * PC2 > (4) 

where pG, = GI .  

A. WEINBERGER IBM J .  RES.  DEVELOP. VOL. 35 NO. 3 MAY 1991 



-C5. 

Long path  of a DCS four-stage carry-lookahead adder. 

If it  is  implemented  directly from  the  adder  inputs, 

pG,,, = A, - B, + A, A, + B, A, 

= A, * B, + A, - B, + B, - B, , ( 5 )  

whereas GI,, = A,  B, + A,  A, * B, + B, A, * B2. 
Similarly, 

PG,,, = 4 2  - @I., + HI.? - PG3.4 ' 
- 

(6) 

where H1.2 pG,,, = GI,,. 

perform two  select  functions in one stage. For  example, 
We further  take  advantage of SELECT-dotting  to 

PGI.8 = Hl,4 * PG134 + H1,4 ' pG5,8 

- 

= fi; * (K PG,,, + HI,, PG,.,) 
- 

+ Hl,4 (H5.6 pG5.6 + H5.6 pG7,X)' (7) 

Either  or  can  be  used in a SELECT-dot  to  select 
between  the  two  parenthesized  select  functions. 

generate  and  carry-propagate  functions.  For  example, 
A carry C is also  generated  as a function of pseudo- 

- 
'1 = * PGl.4 + Hl,4 ' ' 5  

= H1.4 (K * PG,,, + - PG,,,) 

+ Hl,4 (G PG5,6 + H5,6 c7). (8) 

Application  to  a  32-bit  adder 
Figure 6 shows a long  path of a  four-stage 32-bit adder. 
Inputs  consist of addend A (= A,, ..., A,, , high-to-low 
order), augend B (= Bo, ..., B,,), and input carry Cin. 
Outputs  consist of a sum S (= S o ,  ..., S , , )  and  an 
output  carry C,,, = C,. In the first stage, 

C,, = A,, B,, + A,, * Ci, + B31 * Ci, . (9) 

IBM J .  RES. DEVELOP. VOL. 35 NO. 3 MAY 1991 

In  the  same  stage,  the two-bit pseudo-generate  and 
carry-propagate  functions  are  generated,  the  former  as in 
Equation (5) with appropriate  subscripts.  For  example, 

PG28.26 = B25 + . + B25 * ' ( 10) 

H25.26 = ('2, 69 '25) * (A26 69 B26)3 (11) 

where  the OR in Equation (10) is implemented as  an 
OR-dot and  the  AND in Equation (1 1) as  an  AND-dot. 

In the  second  stage, C,, is generated  according  to 
Equation (8) with appropriate  subscripts,  together with 
other  pseudo-generate  and  carry-propagate  functions of up 
to eight bit groups.  For  example, 
" 

PG17,24 = H17~20 * (H17.18 * PG17,18 + H1731X * PG19,20) 
- 

+ H17.20 * (H21.22 * PG2I.2, + H,,,22 * PG23,*4)9 (12) 

H173?4 = (H17,1X H19,20) ' (H21,22 ' H23,24)' (13) 

Similarly, C, is generated in the third stage  as 
" 

' 8  HS.16 ' (H8,8 P'5.X + H5,8  * pG9.16) 
- 

+ H5,16 * (H17.24 ' PG17,24 + H1724 * '25)j ( 14) 

together with other  lower-order  carries. 

H, with a select  gate  that  generates C,, I .  For  example, 

So = H, 69 C ,  = H, 69 (H1.4 * pG,,, + * C,). (15) 

In  the  last  stage, a sum Si is produced  as  an XOR-dot  of 

Comparison  to  an ECL adder 
The DCS adder  described  above is  designed for maximum 
performance,  achieved with a critical path  delay of four 
stages.  It is considerably faster  than a performance- 
optimized ECL  adder,  also  achieved with  a  four-stage 
path.  (See  Eichelberger  and Bello [l]  for a performance 

A. WEINBERGER 

355 



and  power  comparison of DCS  and  ECL  gates. DCS 
power  includes  one  current  source, a  pair of emitter 
followers,  and a pair of level shifters.  ECL  power includes 
one  current  source  and  one  emitter follower.) 

Even  at higher performance,  the  DCS  adder  retains a 
significant power  advantage.  The  DCS  adder  uses 241 
current  sources, 118 pairs of emitter  followers,  and 195 
pairs  of level  shifters. (Dotting and shared-level shifters in 
some fixed complex  functions  reduce  the  number of 
emitter  followers  and level  shifters.) The  ECL  adder  uses 
320 current  sources  and 212 emitter followers.  Assuming 
all  high-power circuits (e.g., 5.8 mW for a three-way  NOR 
in ECL  and 7.1 mW  for a two-way  SELECT in DCS*), 
the  DCS  adder  uses roughly 80% of the  power of the  ECL 
adder. 

For a DCS  adder  with  performance  comparable  to  that 
of the  fastest  ECL  adder,  the  power  can  be  reduced by 
using lower-power  gates  or designing the  adder with a 
longer  path  and,  therefore,  fewer  gates. 

Summary and  conclusions 
DCS logic is based  on  the  SELECT  function  and  the 
derivative  XOR, AND, and  OR  functions,  as well as  on 
the  corresponding dotting functions.  Its versatility can  be 
used to  advantage in a variety of logic applications, of 
which  the  carry-lookahead  adder  has  been highlighted. 

In  general,  applications  that  use  or  can  be defined for 
use with SELECT  and XOR functions  are particularly 
suitable for  DCS.  This  includes combinational logic as well 
as  latches, which are basically SELECT  functions. 

References 
1 .  E. B. Eichelberger and S. E. Bello, “Differential Current 

Switch-High Performance at Low Power,” IBM J .  Res. 
Develop. 35, 313-320 (1991, this issue). 

2. A. Weinberger and J. L. Smith, “A One-Microsecond 
Adder Using One-Megacycle Circuitry,” IRE  Trans. 
Electron.  Computers EC-5, 65-73 (1956). 

Received September I, 1990 

356 communication. 
*V. L. Gani, IBM Data Systems Division, Poughkeepsie, NY, private 

A. WEINBERGER 

Arnold  Weinberger IBM Data  Systems  Division, P.O. Box 
950, Poughkeepsie,  New York 12601. Mr. Weinberger received 
his B.S.E.E. from City College of New York and pursued 
graduate work at the University of Maryland. He began his 
computer career at the National Bureau of Standards and in 
1960 joined IBM, first  in Yorktown and later in Poughkeepsie. 
He is a Life  Fellow  of the IEEE. Mr. Weinberger holds 22 
patents and 85 patent publications. For the past several years, 
his efforts have been directed primarily toward evaluating the 
relative logic power of new technologies and developing 
efficient methods for their use. 

IBM J. RES. I IEVELOP. VOL. 35 NO. 3 MAY 1991 


