352

An adder
design
optimized

for DCS logic

by A. Weinberger

The basic DCS logic gate provides a two-way
SELECT function and, with modifications, a
two-way XOR, OR, or AND function.
Furthermore, outputs of DCS gates can be
wired together (dotted) to perform dotted
SELECT, XOR, OR, or AND functions. The
versatility of this logic is illustrated in the
design of a carry-lookahead adder.

introduction

DCS (differential cascode current switch) logic [1] is based
on a cell that provides a two-way SELECT as the
primitive logic function. The cell becomes a two-way
XOR, OR, or AND with rearranged inputs and/or reduced
component use. By contrast, the more familiar ECL
(emitter-coupled logic) begins with a simpler cell
performing the simpler primitive logic functions OR/NOR.
Cells are combined to perform SELECT or XOR
functions, and even AND/NAND functions when inputs
with proper polarity are unavailable.

Efficient use of DCS requires exploitation of the
SELECT and XOR functions. Complex computer logic
functions include among their constituent parts
recognizable SELECT and XOR functions. In less obvious
cases, AND-OR or OR-AND combinations may be
converted to SELECT or XOR functions. Moreover, major

logic functions can at times be respecified in terms of
SELECT functions for efficient implementation. &

In this paper, a design of a carry-lookahead adder
illustrates how the DCS functions of SELECT and XOR
can be fully exploited. Not only are the obvious XOR
functions of the adder used, but the carry-generate
functions, which are critical to adder performarice, are
replaced by simpler pseudo-generate functions, and
expressed as SELECT functions.

The first part of the paper describes DCS logic and
compares it with ECL. The second part describes the
carry-lookahead functions of an adder, showing the
advantage of using the XOR instead of the inclusive OR as
a constituent primitive function, and leading to the more
desirable pseudo-generate function. Finally, a long path of
a 32-bit adder is described, showing the pervasive use of
SELECT and XOR functions in the adder.

DCS logic

DCS logic provides a two-way SELECT function as the
basic logic gate. Figure 1 shows a simplified circuit
diagram together with a logic gate representation. The gate
can also be used as a two-way XOR, OR, or AND
function. fB=Aand B = A, X = § ® A. If transistors
4 and 5 are unused and collectors 6 and 2 are connected,
X = § + A;if, in addition, inputs to 1 and 2 are
exchanged as well as inputs to 3 and 6, X=S8"A.

©Copyright 1991 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of

this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

A. WEINBERGER

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

AL P-X—O—X=5-Z+S5B A _
_5A
N iy 5 N “4+S5'B
s X——Xx=5-A+5"'B N

®)

Two-way DCS SELECT cell: (a) circuit and (b) logic symbols.

Exchanging the true logic input with its complement has
the effect of complementing the input.

The primitive gating functions SELECT, XOR, OR, and
AND can also be implemented with dotting (wiring
together of signals to perform logic). Dotting collector
outputs ANDs them, while dotting emitter outputs ORs
them. Collector dotting is done at the X and X outputs
preceding the emitter followers, and emitter dotting is done
at the outputs of the emitter-follower transistors (7 and 8).
A combination of collector and emitter dotting implements
the DCS dotting functions of SELECT-dot, XOR-dot, OR-
dot, and AND-dot. To AND-dot, the principal outputs are
collector-dotted and the complement outputs emitter-
dotted, as in Figure 2. Figure 3 shows an OR-dot. Figure 4
shows an XOR-dot, using two copies of the gates to be
dotted, while Figure 5 shows a SELECT-dot.

The primary advantage of DCS over the more familiar
ECL (emitter-coupled logic) is significantly reduced power
for average logic functions of comparable performance,

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

XY

Y DOT|
Y

DCS AND-dot.

[:[:); XY
=

DCS OR-dot.

~

DOT
X+7Y Y

T >

| B1=T
Wi

—_— —-X® Y

i 3"
1L

Y X@®Y=XY
Y———Z]— +XY

s

DCS XOR-dot.

particularly for SELECT functions and the derivative XOR
functions. It is especially advantageous for latches, noting
that a simple latch is a two-way SELECT function in
which a clock signal selects the new latch output between
a new input and the prior latch output.

A. WEINBERGER

353

354

+
Uz><l
=~
D
]

:tf:fj |

L

| DCS SELECT-dot.

The advantage of DCS over ECL in combinational logic
depends on the function. SELECT and XOR functions
favor DCS, while AND and OR functions favor ECL. To
show this more clearly, the logic differences between DCS
and ECL are explained.

Logically, DCS differs from ECL in three important
aspects. First, DCS uses differential inputs instead of
reference-controlled inputs. In Figure 1, current is
switched between transistors 1 and 2 by means of the dual
inputs Aand A. In ECL, one of the inputs, say A, is
replaced by a reference voltage requiring a larger signal
swing for A, but obviating the need for dual inputs. In
addition, the remaining input, A, can be replaced with a
parallel set of inputs to perform an OR: Namely, A is
replaced by A, + -+ + A,. It should be pointed out,
however, that the dual inputs of DCS avoid the problem
with ECL where a signal must pass through an inverter
stage if one of its destinations encounters a polarity
mismatch.

The second difference is that DCS uses cascoding to
perform logic, as in Figure 1, which shows a two-level
cascode logic tree comprising transistors 1 through 6. It is
converted to ECL logic by eliminating transistors 3
through 6 and level shifters 9 and 10 (including their
resistors). Logic is performed using transistors 1 and 2,
with A replaced by a reference voltage and A expanded to
an OR of inputs. X and X provide the OR and NOR
outputs, respectively.

A third difference between DCS and ECL is in dotting
(wired-connection) logic. In ECL, a collector output may
be AND-dotted with collector outputs of other ECL gates
prior to entering an emitter follower, and emitter-follower
outputs may be further OR-dotted with other emitter-
follower outputs. Thus, an ECL stage can perform one to
three levels of logic: a NOR/OR gate level and up to two
levels of dotting, AND dotting followed by OR dotting. A

A. WEINBERGER

DCS stage can perform one or two levels of logic: a gating
level and an optional dotting level. The gate can perform
more complex functions than ECL (SELECT, XOR, AND,
or OR, instead of only OR/NOR), although the DCS gate is
limited to a two-way OR, whereas ECL permits a higher
limit. The single dotting level is a versatile logic dot
(SELECT-dot, XOR-dot, AND-dot, or OR-dot)
implemented with an actual sequence of collector-dot and
emitter-dot.

DCS carry-lookahead adder

DCS logic permits a new way of optimizing the design of a
parallel adder [2], particularly the parallel carry functions
generally known as carry-lookahead and typically defined as

Gi.j=G,-+p,- c Gt P Pj-1 . Gj’ (1)
p,,=pi'13i+[.Pj’ (0
where

G,._I. = carry-generate of bit group / through j, high to low
order,
G, = A, B, = carry-generate from bit
13,. = carry-propagate through bit i
= either H, (the exclusive propagate = A, © B))
or P, (the inclusive propagate = A, + B),
A,, B, = adder inputs to bit /.

In ECL logic, the inclusive OR, P, is used as the
propagate signal because it is easier to implement than the
exclusive OR. Little difference in ease of implementation
exists in DCS, because both are primitive gating functions.

A significant advantage of H, over P, is that H, and the

extended propagate function H. (=H-H, - - Hj),
can be used as a select signal to simplify the carry-
generate functions. For example,

G,=G +H -G=H -G +H -G,. 3)

In the second expression H, selects between G, and G,.
Note, however, that G, can be replaced by either A, or B,,
because H, - (A, orB) = (A, B, + A *B) (A orB)
=A B =G,

Any carry-generate function can be replaced by a
simpler function, a pseudo-generate function pG, if it is
ANDed with the complement carry-propagate function.

As a result, the carry-lookahead can be designed with
pG and H functions. For a single bit, pG, = (4, or B)), as
shown above.

A multibit pseudo-generate function is equal to the
carry-generate function except that the low-order subgroup
carry-generate function is replaced by the pseudo-generate
function. For example,

pG,=H, - pG + H - pG,, “)

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

PGos 56

s Pst,zx4

25,26

c .n 27,28 | DOT
n PGy —1- E"st.zs—
Hyg 39— Hys g1

Figure
Long path of a DCS four-stage carry-lookahead adder.

If it is implemented directly from the adder inputs,
pGl,2=Al B +A A+ B A,
=A B +A B +B -8B, %)

whereas G,, = A, - B, + A, + A, B, + B, - A, " B,.
Similarly,

pG,,=H, pG,+ H,, - pG,,, (6)

where H,, - pG,, = G, ,.
We further take advantage of SELECT-dotting to
perform two select functions in one stage. For example,

PGz = H, - pG,,+ H, , - pGy,

=H, H, " pG,+H, " pG)

+ H,, * Hy « pG;, + Hy; - pG,y). 0]

Either H, , or H,, can be used in a SELECT-dot to select
between the two parenthesized select functions.

A carry C is also generated as a function of pseudo-
generate and carry-propagate functions. For example,

C=H, pG, +H,"C
=H, - (1? - pG, + H, * pG,)

+H, - (H - pGio+ Hg + C)). ®
Application to a 32-bit adder

Figure 6 shows a long path of a four-stage 32-bit adder.
Inputs consist of addend A (= A;, -, A,,, high-to-low
order), augend B (= B, -+, B,)), and input carry C, .
Outputs consist of a sum S (= §,, ---, ;) and an

output carry C_, = C,. In the first stage,

C

31

=A, "B, +A, - C +8B,C,. (€)

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY (991

Ay—e] o
H POy — s
B I-n G SHCy Cys

In the same stage, the two-bit pseudo-generate and
carry-propagate functions are generated, the former as in
Equation (5) with appropriate subscripts. For example,

PGy = Ay * Byg + Ayg = Ay + By + Ay, (10)

Hy,o = (A © B)) - (A, © By, (11

where the OR in Equation (10) is implemented as an
OR-dot and the AND in Equation (11) as an AND-dot.

In the second stage, C,, is generated according to
Equation (8) with appropriate subscripts, together with
other pseudo-generate and carry-propagate functions of up
to eight bit groups. For example,

PG, =H sy (Hy g PGy t Hy 5+ pr,zo)

+Hpy o Hyy o PGyt Hyp sy PGy, (12)
H17,24 = (Hl7.l8 ' H19,20) : (H21,22 ' H23,24)' (13)

Similarly, C, is generated in the third stage as

C = H, - (H g

5.16

* pGyy + Hyy + PGy)

- H.,,

17,24

+ H,

5,16

* G, t H

17,24

© Gy, (14)

together with other lower-order carries.
In the last stage, a sum S, is produced as an XOR-dot of
H_ with a select gate that generates C,, . For example,

S,=H,® C =H ®H, pG,+H, C). (15)
Comparison to an ECL adder

The DCS adder described above is designed for maximum
performance, achieved with a critical path delay of four
stages. It is considerably faster than a performance-
optimized ECL adder, also achieved with a four-stage
path. (See Eichelberger and Bello [1] for a performance

A. WEINBERGER

355

and power comparison of DCS and ECL gates. DCS
power includes one current source, a pair of emitter
followers, and a pair of level shifters. ECL power includes
one current source and one emitter follower.)

Even at higher performance, the DCS adder retains a
significant power advantage. The DCS adder uses 241
current sources, 118 pairs of emitter followers, and 195
pairs of level shifters. (Dotting and shared-level shifters in
some fixed complex functions reduce the number of
emitter followers and level shifters.) The ECL adder uses
320 current sources and 212 emitter followers. Assuming
all high-power circuits (e.g., 5.8 mW for a three-way NOR
in ECL and 7.1 mW for a two-way SELECT in DCS*),
the DCS adder uses roughly 80% of the power of the ECL
adder.

For a DCS adder with performance comparable to that
of the fastest ECL adder, the power can be reduced by
using lower-power gates or designing the adder with a
longer path and, therefore, fewer gates.

Summary and conclusions

DCS logic is based on the SELECT function and the
derivative XOR, AND, and OR functions, as well as on
the corresponding dotting functions. Its versatility can be
used to advantage in a variety of logic applications, of
which the carry-lookahead adder has been highlighted.

In general, applications that use or can be defined for
use with SELECT and XOR functions are particularly
suitable for DCS. This includes combinational logic as well
as latches, which are basically SELECT functions.

References

1. E. B. Eichelberger and S. E. Bello, ‘‘Differential Current
Switch—High Performance at Low Power,”” IBM J. Res.
Develop. 35, 313-320 (1991, this issue).

2. A. Weinberger and J. L. Smith, ‘‘A One-Microsecond
Adder Using One-Megacycle Circuitry,”” IRE Trans.
Electron. Computers EC-5, 65-73 (1956).

Received September 7, 1990

*V. L. Gani, IBM Data Systems Division, Poughkeepsie, NY, private
communication.

A. WEINBERGER

Arnold Weinberger IBM Data Systems Division, P.O. Box
950, Poughkeepsie, New York 12601. Mr. Weinberger received
his B.S.E.E. from City College of New York and pursued
graduate work at the University of Maryland. He began his
computer career at the National Bureau of Standards and in
1960 joined IBM, first in Yorktown and later in Poughkeepsie.
He is a Life Fellow of the IEEE. Mr. Weinberger holds 22
patents and 85 patent publications. For the past several years,
his efforts have been directed primarily toward evaluating the
relative logic power of new technologies and developing
efficient methods for their use.

IBM J. RES. DEVELOP. VOL. 35 NO. 3 MAY 1991

